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Abstract

Public transit agencies collect a tremendous amount of data in order to measure bus
performance, including vehicle positions and passenger counts. These data are typ-
ically organized in the same way that the network is organized: split up by route,
with each route further divided into stop-to-stop segments or timepoint-to-timepoint
segments. This type of structure suffers from three drawbacks. First, it does not
capture the spatial relationships between different routes. Second, route and stop
identifiers are arbitrary and change over time, making it difficult to compare perfor-
mance across time periods. Finally, even the stop-to-stop resolution is insufficient for
certain applications, such as planning for transit priority infrastructure at the block
or intersection level.

This thesis addresses those three issues by developing new practical methods that
incorporate the geography of a transit network into bus performance measurement
and analysis. These tools can be used to automate transit planning tasks that have
typically involved specialized knowledge and considerable manual effort. Furthermore,
each of the methods is intentionally designed to support visualization of performance
data as an alternative to tabular representation in order to facilitate the identification
of spatial patterns. A total of eight case studies, developed in concert with transit
agency staff, are included to demonstrate how spatial analysis and visualization can
address real transit planning challenges.

First, a map matching algorithm is described that facilitates the identification
and classification of corridors served by multiple bus routes. A framework is then es-
tablished for systematically aggregating different types of performance metrics across
parallel routes, even if those performance metrics are only available at the stop-to-
stop segment level. Case studies show how corridor identification and performance
aggregation can be used to improve transit priority infrastructure planning, schedule
coordination for parallel routes, and balancing service in local-express corridors.

Next, a method for increasing the resolution of performance data to the block-
to-block level is proposed. Stop-to-stop segments are split at intersections and bus
stops to create a unit of analysis that experiences uniform transit service across its
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length. Performance measures are then assigned to the block-level segments, elim-
inating the dependence on arbitrary and fungible identifiers. This geography-based
representation enables longitudinal comparison of performance that automatically
captures changes in transit service as well as route and stop numbers. Two case stud-
ies demonstrate how these methods can be used to map the evolution of bus networks
and ridership over many years.

Finally, a process is developed for extending the previous methods to include
origin-destination (OD) estimates, enabling the spatial analysis and visualization of
passenger journeys throughout the transit network. It also allows OD-based perfor-
mance metrics that are not available from traditional sources to be assigned to block-
to-block segments for longitudinal comparison. Case studies illustrate the strength of
these methods in mapping the journeys of passengers whose trips involve a transfer,
and for exploring travel pattern changes before and after route modifications.

Future research in this area includes the development of new bus performance met-
rics that incorporate spatial relationships between bus routes. Richer data sources,
such as vehicle positions with a high sampling rate, could be leveraged to visualize
travel speeds at the block-to-block level. Another research area is facilitated by the
longitudinal analysis methods in this thesis: the ability to test theories related to bus
network evolution over time. Finally, these methods lay the foundation for future
research into new transit planning tools for strategic restoration of bus service after
the COVID-19 pandemic.

Thesis Supervisor: John P. Attanucci
Title: Research Associate, Center for Transportation and Logistics

Thesis Supervisor: Anson F. Stewart
Title: Research Scientist, Department of Urban Studies and Planning

Thesis Supervisor: Andrew J. Whittle
Title: Edmund K. Turner Professor of Civil Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Modern public transit agencies collect a tremendous amount of data in order to mea-

sure performance, identify problems and provide information to the public. For buses,

this typically includes vehicle position data from Automatic Vehicle Location (AVL)

systems and passenger boarding and alighting data from Automatic Passenger Count-

ing (APC) systems. Vehicle locations and passenger counts are generally aggregated

at the bus stop, segment, or route level.

A typical framework for organizing performance measurement involves the entire

network as the highest level, which is divided into many individual routes, with each

route further divided into stop-to-stop or timepoint-to-timepoint segments. This

conceptual structure is intuitive as it reflects how schedules are organized and how

performance data is collected. It is a structure used by many U.S. transit agencies;

the U.S. Federal Transit Administration’s Transit Co-operative Research Program

(TCRP) [3] proposes over 400 performance measures, the vast majority of which

are scoped to the system, route and stop level. These scopes differ from the user’s

experience of the transit system, which is rooted in the geography of the network and

how effectively it enables them to travel from one place to another.

Aggregation, partitioning and analysis by bus stop and route has three key draw-

backs that limit the use of automated data to conduct certain types of analysis. First,
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it ignores the spatial relationships between routes that are necessary for a holistic un-

derstanding of network performance and service quality, especially where bus routes

serve the same corridor. This is particularly critical in regions that are served by

several different transit providers with overlapping service areas. Second, it does not

permit analysis or comparison at a high-resolution, for example the city block level.

Bus performance and service quality can vary significantly across two consecutive

blocks. Additionally, routes may overlap for only a portion of a stop-to-stop segment,

which should be reflected in performance analysis and visualization. Finally, the route

and stop identifiers are entirely arbitrary and often change over time. Changing iden-

tifiers limits any systematic comparison of performance and service over long periods

of time.

To illustrate these compounding issues, consider the following challenge that is

frequently confronted within transit agencies. The transit planning team is inter-

ested in identifying and visualizing high impact locations for installing transit signal

priority, a type of traffic signal timing that reduces wait time for buses at signalized

intersections. They have access to boarding and alighting data at each bus stop ID

for each route ID. To determine how many passengers would benefit from transit

signal priority at a given traffic signal, they must identify the passenger load for trips

traveling through that intersection. If more than one route (or agency) traverses an

intersection, the sum of passenger loads should be taken to incorporate all passengers

that stand to benefit from transit signal priority. Locating these overlapping routes

can be difficult if they do not share stops, such as a local and express route pair.

Furthermore, the overlapping routes may branch together or apart between stops,

so a smaller unit of analysis than the stop-to-stop segment is necessary in order to

accurately represent aggregate passenger flows through traffic signals. If the planners

are interested in average flows over a several year period, they would then need to

determine whether any route IDs or stop IDs have changed throughout that period.

As a result of these limitations, evaluating the relationships between routes or

comparing changes in performance over time are typically undertaken on an ad-hoc

basis with considerable manual effort and rely heavily on the experience and knowl-
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edge of staff. There is no standard data format that identifies overlapping bus routes,

nor is there a typical means for converting between previous stop or route IDs and

their new counterparts. To mitigate these limitations, this thesis presents a process

for identifying shared corridors and for aggregating performance across these shared

corridors depending on the type of performance measure. Then, a method is devel-

oped for decomposing the standard bus network representation into small, city-block

level segments that are compared based on their geography rather than arbitrary

identifiers. The spatial decomposition allows for simple aggregation of transit perfor-

mance measures where routes overlap, and the geographic representation facilitates

comparisons of performance over time. Finally, this method is extended for use with

origin-destination data. Case studies based on real transit planning applications are

provided throughout to demonstrate how these methods can be used in practice.

These case studies are accompanied by maps of transit service developed for this

thesis in order to illustrate how visualization can complement transit performance

analysis.

It should be noted that some agencies do maintain the tools to mitigate some

of the aforementioned drawbacks, although the processes typically involve significant

manual effort. The need for improved methods was established through conversations

with staff at several of the largest U.S. transit agencies from September 2019 to May

2021, many of whom expressed that these issues are salient and that systematic

methods are generally not available. A review of the literature, which is included

in Section 1.5, confirmed that the specific methods described in this thesis represent

advances in the state of the practice and have not been previously developed.

1.2 Research Objectives

To address the limitations of current bus performance analysis practices, the objec-

tives of this research is to develop generalizable, systematic methods for the following

tasks:

1. Identifying shared corridors in a bus network and aggregating different types of
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performance metrics across the shared corridors,

2. Decomposing bus networks into block-level units of analysis; and,

3. Converting a network representation based on impermanent identifiers to a con-

sistent representation based on geography.

The benefits of these methods are illustrated through a series of realistic transit

planning case studies, many of which were developed in concert with agency staff.

1.3 Research Approach

Data synthesis, geospatial analysis and visualization are the primary methods used in

this thesis. Methods proposed in this thesis are described in detail for reproducibility,

typically with worked examples. The methods are then tested for different applica-

tions using real transit data. The results, benefits and limitations of each method are

discussed.

The methods described herein were intentionally developed to be generalizable

to any transit agency, big or small, that maintains a compliant GTFS feed. The

performance metrics are calculated using data sources that are widely available to

transit agencies, with the deliberate exception of the metrics presented in Chapter 4.

All of the software packages and libraries referenced herein are open-source and free

to use. The programs for map matching, identifying shared corridors, block-level

decomposition and edge matching are all publicly available at https://github.com/

nick-caros/mst-thesis.

This thesis focuses exclusively on bus transit and intentionally omits rail tran-

sit. The methods included in this thesis certainly could be applied to rail networks;

however, they are likely to be more beneficial for bus transit analysis. Most transit

agencies have significantly more bus routes and stops than rail lines and stations, so

comprehensive identification of relationships between bus routes is a more complex

task. Furthermore, bus routes are much more likely change over time, thus increasing

the need for an automated system of identification and aggregation.
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1.4 Data Sources

There are five primary data sources used in this research. The first two are automated

transit data collection systems used by agencies: Automated Vehicle Location (AVL)

data and Automatic Passenger Counting (APC) data. AVL systems provide a location

and timestamp at regular intervals or upon the occurrence of an event (e.g. the bus

arrives at a bus stop). AVL is used to track the vehicle position over time, facilitate

real-time dispatching, and provide estimates of speed, running times, delay relative

to the schedule, and so on. APC systems provide records of passenger boardings

and alightings at each bus stop, which are used to determine the passenger flow

through the bus network. This research was generously sponsored the Chicago Transit

Authority (CTA) and Massachusetts Bay Transportation Authority (MBTA); as part

of the sponsorship, AVL and APC data from both agencies was shared with the author

and are used as inputs for the case studies in this thesis.

The third data source is the Generalized Transit Feed Specification (GTFS). GTFS

is a widely adopted data standard originally developed for integrating transit infor-

mation into web maps [4]. There are static and real-time versions of GTFS; the static

version is used as an input for the methods in this thesis. It contains information

relating to the transit schedule and geography for a specific transit agency, including

scheduled arrival times, stop sequences and bus stop locations [5].

The fourth primary data source is a graph representation of the street network

in the transit service area, which is not included in the standard GTFS feed. The

geography of the street network is used to determine which streets are traversed by

each bus route, enabling the identification of spatial relationships between routes and

longitudinal analysis that is not reliant on arbitrary identifiers. This thesis uses open

street network data collected from OpenStreetMap.org [6], but other similar sources

could be used instead.

An additional data source is included as part of Chapter 4: origin, destination

and transfer flows. These records are used to illustrate the how a wide variety of data

can be included in the overall analysis framework of this thesis to provide further
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benefits. Origin-destination flows can be estimated for transit systems with “tap-on”

fare collection (see [7]) or collected directly for “tap-on, tap-off” systems. Systems

for estimating or collecting origin, destination and transfer data are becoming more

common as transit agencies move to provide real-time information to riders [8].

1.5 Literature Review

There is a long history of research into the measurement, visualization and analysis

of transit networks. This section reviews relevant literature on creating transit per-

formance measures, spatial analysis of bus networks, transit origin-destination data,

visualization for transit planning, the analysis of shared bus corridors and longitudinal

analysis of bus performance.

1.5.1 Transit Performance Measurement

Developing and applying TPMs has been the subject of considerable research over

many decades [9, 10, 11]. Automated data such as AVL were not initially designed for

performance measurement, so additional processing is typically required [12]. Ham-

merle et al. [13] describes an early application of AVL and APC to measure transit

performance for the CTA. The TCRP subsequently published a report describing how

archived AVL and APC data can be used to measure performance [14]. Ma and Wang

[12] uses these data sources as well as Automated Fare Collection (AFC) to estimate

speed, travel time reliability, ridership and headway variance. Pi et al. [15] created

a platform for assessing service quality in the Pittsburgh region using archived APC

and AVL data.

These data sources can also be used in support of operational decisions. APC and

AVL data have been used in several studies to estimate bus arrival and departure times

[16, 17, 18]. In another application, APC and AVL data were combined to recommend

additional recovery time between inbound and outbound trips in order to reduce bus

bunching [15]. Berkow et al. [19] combines historical data with weather information

and uses statistical analysis to estimate passenger demand and dwell times. Moreira-
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Matias et al. [20] reviews how transit agencies use AVL data to improve control

strategies for the purpose of improving reliability. Real-time AVL, which is not used

in this thesis, has also been studied and found to have great potential for improving

dispatching and control [21].

Recent research has investigated the service planning applications of passive data

sources, including APC, AVL, smart card records, and mobile location records [22,

12, 23, 24]. AVL data has been used to measure bus reliability and to recommend

interventions for improved reliability such as stop consolidation and schedule changes

[25, 22]. It has also been used to design optimal schedules with a high on-time

probability [26]. Another research area is the development of methods for automatic

identification of the causes of certain service deficiencies, such as bus bunching and

arrival delay, using AVL and APC [27, 28]. Route design has also been informed by

automated data [23]. These automated data are collected for individual trips and

vehicles, so the applications have been focused on service improvements at the stop

and route level. Aggregating the data to the corridor level permits a more holistic

representation of the network that considers the relationship between different routes

where overlapping occurs. A recent review paper provides an overview of big data

applications in public transit [29].

It should be noted that bus performance analysis extends beyond operational per-

formance. Other areas of interest, which are beyond the scope of this thesis, include

productivity, equity, and accessibility. Interested readers may refer to Carleton and

Porter [30] for a good summary of equity in public transit, and to Wei et al. [31] for

a discussion of productivity and access.

1.5.2 Spatial Analysis

More recently, research into transit performance measurement has been expanded

to include spatial characteristics of the network. One previous study argues that

“a network wide and spatial perspective in exploring the operational performance of

large transit systems is a worthwhile approach to identifying priorities for transit”

[32]. Horner and Murray [33] finds that the spatial representation of transit networks
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can have a significant impact on the results of transit service assessment.

One of the key spatial analysis methods used in this thesis is a process known as

map matching, which estimates the travel path of a bus route using only the stop loca-

tions. Prior studies have established methods for matching GTFS to a representation

of the road network, although not for the purpose of identifying overlapping routes

[34]. Wessel et al. [35], Li [36] and Ordóñez Medina [37] take different approaches

to matching bus stop locations to street segments with directionality. Li [36] shows

that a shortest-path matching algorithm is accurate for 98% of segments. Perrine

et al. [38] proposes an algorithm for matching GTFS routes to a road network for

multi-modal modeling. Zhou et al. [39] uses a method similar to Perrine et al., but

uses raw GPS traces instead of GTFS as their input. None of these studies attempt

to identify relationships between bus routes using the results of the map matching

process.

The map matching process and other methods described in this thesis use the

GTFS static feed as the source of the geographical and transit network data used

to identify shared corridors. A standard GTFS feed contains information about bus

routes, schedules and stop locations, but is not required to include information about

the road network or the path that each route takes between stops. GTFS has been

widely used for static analysis of transit network characteristics such as accessibility

[40], equity [41] and competitiveness [42], and for other applications such as route

planning [35]. Other studies have developed methods that use GTFS to evaluate the

scheduled performance of transit networks [5].

Spatial decomposition of transit networks can also complement new data sources

to develop performance metrics at a high spatial resolution. The relatively recent

availability of GPS data with a high temporal sampling rate has led to several stud-

ies that analyze bus performance between stops [43]. For example, Stoll et al. [44]

and Figliozzi and Stoll [8] use high-resolution AVL data to generate speed plots and

determine the delay caused by intersections and crosswalks. In an interesting study,

Figliozzi and Glick [45] reviews bus speeds before and after infrastructure improve-

ments using high-resolution GPS traces, where routes on shared corridors are matched
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together in order to calculate average speeds. In each of these studies, the smaller

unit of analysis is used to identify sources of delay due to different infrastructure

elements, not to identify spatial relationships between overlapping routes that can

change between bus stops. The concept of splitting routes at road intersections and

stops was inspired by a TransLink project used for aggregating transit performance

within shared segments [46].

1.5.3 Origin-Destination Flows in Public Transit

Understanding how passengers move throughout the transit network is another impor-

tant component of transit performance measurement. This information is typically

derived from passenger origin-destination flows, which can collected in a number of

different ways. Origin-destination data is used to determine which routes feed one

another, if and where passengers make transfers, and how long each journey takes.

Many transit systems, including the MBTA and CTA, have “tap-on” fare collection

systems whereby users present their fare payment upon entering the system, whether

that is while boarding a bus or passing through fare gates at a rapid transit station.

Transit agencies with “tap-on” fare collection systems can infer destinations for board-

ing records and match journeys to vehicle trips. There are many different approaches

depending on data availability and desired application.

Destination inference is a well-known problem in transit planning and as such

has been the subject of considerable research over decades. Many of the algorithms

use trip chaining behavior to identify patterns [47, 48, 7]. Statistical inference is

a popular approach for handling unlinked trips [49, 50, 51, 52]. A recent survey

paper summarizes past research in this area and provides a comprehensive overview

of ongoing challenges [53].

Alternative sources for origin-destination estimates are also an active field of re-

search. Mobile phone records have been used for this purpose [54, 55], as have on-

board surveys [56]. Additional studies have also leveraged Bluetooth and WiFi signals

to trace passenger flows throughout a transit network [57, 58].

Some transit systems have implemented “tap-on, tap-off” fare collection where
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passengers also use their fare card when exiting the system, allowing for direct col-

lection of origin-destination flows. Whether estimated or collected, origin-destination

flows have been used in many transit planning many applications. These applications

include network design and modification [59, 60], coordinating schedules to improve

transfers [61, 62], and for equity analysis [63, 64]. Wang et al. [65] discusses how

origin-destination flows can be used to generate passenger-based performance met-

rics, such as average transfer time.

1.5.4 Shared Bus Corridors

The shared bus corridors concept is an ongoing area of research that combines per-

formance measurement and spatial analysis to identify how overlapping bus routes

affect passenger decisions and service quality. Chriqui and Robillard [66] developed a

method for modelling transit assignment when multiple routes are available to serve a

passenger journey. Subsequent papers have adopted or expanded upon their method

to solve transit network design problems [67], estimate passenger destinations from

smart card data [68] and for real-time bus control [69]. Bie et al. [70] finds that

explicitly considering route overlap in scheduling can help to reduce travel time and

operating cost. There has been limited research on systematic aggregation of transit

measures at the corridor level. Dimond et al. [71] describes a process for map match-

ing to link bus routes to the road network, with some discussion of how ridership

could be aggregated and visualized at the road segment level. It does not include any

comparison between different routes or any TPMs beyond ridership. This thesis ex-

tends their concept to many different types of corridor-level TPMs, including derived

TPMs that compare performance between routes in a corridor.

1.5.5 Longitudinal Analysis

Another dimension to transit performance analysis is comparison of performance and

coverage over time. There are relatively limited comprehensive efforts to analyze the

temporal evolution of bus transit service, despite a formal methodology proposed by
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the Transportation Research Board [72]. Long-term studies of the growth of transit

networks often focus on rail systems, which typically grow more slowly than bus

networks [32, 73, 74]. Some previous longitudinal evaluations of bus transit systems do

exist, but are based on customer satisfaction surveys rather than network performance

[75]. Other research has reviewed the aggregate changes in bus transit supply across

different urban areas using network-wide measures such as revenue hours [76, 77].

The studies that have reviewed the performance of individual bus routes or entire

networks before and after service changes are almost entirely focused on accessibility

rather than performance [78, 79, 80, 81, 82]. One interesting paper used GIS-based

analysis to evaluate the changes in accessibility for several different proposed bus

network changes [83].

Some examples of longitudinal bus service studies do exist. One recent longitudi-

nal study used GTFS to measure the quantity bus service supplied over the course

of five years, which was then included as an explanatory variable in a model of bus

ridership at the route level [84]. The authors do not discuss whether changing route

or stop identifiers over the course of their study period was a concern. Addition of

service was found to have a positive correlation with ridership. Another reviews the

travel time changes that arise from a large scale network redesign of the bus network

in Helsinki, Finland [85]. The authors note that one issue in comparing schedules

before and after the network changes is the differing stop identifiers, which must be

manually corrected.

The literature most similar to this research are three studies of transit network

evolution in the Toronto area, which compute the changes in transit service in order

to evaluate equity [86] or predict future demand [87, 88]. To the authors’ knowledge,

there has been no previous effort to develop a systematic method for evaluating

temporal changes in transit performance measured at a disaggregate level.

1.5.6 Visualization for Transit Planning

Finally, each of the different components of transit performance measurement de-

scribed above have a spatial context and can therefore benefit from visualization.
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Recent studies have explored the benefits of using Geographic Information System

(GIS) software for dynamic, interactive visualization of transit performance measures

at the stop, route, and network level [12, 89, 90]. Visualization allows the user to inte-

grate data from disparate sources and understand the spatial patterns, relationships

and trends [91]. Data visualization serves to enhance communication during the prob-

lem solving process, and can also be used for exploratory analysis and development of

hypotheses [92]. A 2007 report on the status of transit performance visualization at

the transit agency in Portland, OR [91] argues that “efforts to incorporate new data

visualization techniques will do much to assist with the identification of operational

problems as well as provide insight into potential solutions.”

Kurkcu et al. [93] develops an interactive performance analysis tool using AVL to

visualize metrics at the stop-to-stop level. Stewart et al. [94] describes how automated

data can be visualized at the stop-to-stop and route level to support service planning

and communicate with the public. The authors argue that visualizing combined

headways when multiple routes serve a single stop can support decision making by

transit planners, although they use GTFS stop_id property to identify these shared

stops, which inherently overlooks stations with multiple GTFS stop ids.

Other transit visualization tools include animated and real-time visualizations.

One study used smart card data to map journeys throughout the public transit net-

work [95], allowing users to identify patterns among the load profiles. Tools have

also been developed to visualize the movements of vehicles throughout the transit

network, for evaluation of operations and communication with the public [90]. One

ambitious project has collected and actively displays real time vehicle positions for

over 700 different transit agencies [89].

1.6 Thesis Organization

This section describes the contents of the remaining chapters of this thesis.

Chapter 2 presents a method for identifying shared corridors within a bus network,

and for aggregating different classes of performance metrics across those corridors.
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The “degree of overlap” is compared between the transit agencies of two cities with

very different road topology: Chicago, IL and Boston, MA. Case studies are provided

to demonstrate how these methods can be used for planning transit priority infras-

tructure, reducing effective headways for overlapping routes and allocating service

between parallel routes to reduce crowding.

Chapter 3 presents a method for decomposing bus networks into a set of city

block-level units of analysis. This is a natural extension of the framework Chap-

ter 2, as it enables a simpler aggregation process. These segments are represented by

their geography rather than agency identifiers, enabling longitudinal comparison even

across periods where stops and routes are renamed. Two case studies are included.

The first demonstrates how this method can be used to track changes in service over

time for different neighborhoods in Boston. The second case study applies spatial

decomposition and geographic representation to visualize changes in ridership across

the MBTA network from 2013 to 2019 at the city block level.

Both Chapter 2 and Chapter 3 focus on analyses that can be conducted using

widely available sources of transit data, including event-based AVL, APC and GTFS.

Chapter 4 shows how the framework can be adapted for a richer data source, origin-

destination flow estimates, in order to conduct more advanced analyses. The first case

study demonstrates how origin-destination data can be integrated with the methods

of previous chapters to identify routes with high percentages of transfer passengers.

The second case study investigates spatial trends in passenger destinations before and

after a significant service pattern change.

Chapter 5 offers conclusions, discusses the implications of this research and pro-

vides possible directions for future research in this area.
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Chapter 2

Corridor Identification and

Performance Aggregation

2.1 Introduction and Motivation

Understanding bus transit performance is critical for managing operations, planning

future service changes and identifying locations for improvement. While much re-

search has been devoted to measuring and benchmarking performance at the stop,

route and network level, little attention has been paid to systematic quantification of

the spatial and operational relationships between routes. Identifying corridors shared

by multiple routes, aggregating performance measures across those corridors and vi-

sualizing the results can provide transit planners with a powerful tool for analyzing

bus performance and planning infrastructure changes.

Transit performance measures (TPMs) are used by agencies “to provide quanti-

tative information to operating personnel that can be used to diagnose and correct

service problems and to improve overall performance” [11]. A transit network can be

divided into multiple levels for performance analysis, each with a different resolution

and unit of analysis. Such a structure ignores, however, the spatial relationship and

overlap between different routes, which is critical for a holistic understanding of the

system performance.

Overlapping routes are common in bus networks, such as bus networks that are
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designed to feed a rapid transit system where many bus routes may converge at a single

multi-modal station. In addition, many bus networks include both express routes and

local routes that serve the same corridor. An example of the many overlapping bus

routes within the Massachusetts Bay Transportation Authority (MBTA) network is

shown in Figure 2-1. In some cases, such as the Alameda corridor in Santiago, Chile

and the South East Busway in Brisbane, Australia, corridors may be served by more

than 20 different routes. Identification of routes that traverse a common street, when

required, is typically undertaken by consulting route maps or based on the personal

knowledge of the analyst. Systematic identification for the purpose of facilitating

TPM calculation can be onerous when there are many overlapping routes within a

bus network.

Figure 2-1: Overlapping bus routes near Ruggles Station in Boston, MA [1]

Aggregating TPMs by shared corridor enables three types of analysis that are not

available when routes are considered independently:

1. Infrastructure-level analysis. By aggregating the TPMs of all routes that

traverse each corridor (and therefore use the same lanes, traffic signals, etc.) it

is easier to identify locations where infrastructure interventions such as transit

priority systems would have the greatest impact.

2. Journey-level analysis. Corridor aggregation allows planners to compare the
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performance of routes that serve the same origin-destination pairs and thus would

be interchangeable to many passengers. For example, if three routes share a

common trunk corridor, passengers whose journeys begin and end within the

trunk corridor would be concerned with the combined headways of all three

routes.

3. Comparative analysis. Derived TPMs can be used to illustrate differences in

the performance of routes that share a common corridor. For example, visualizing

a derived TPM that represents the difference in crowding between an express

route and a local route may help to identify locations where service adjustments

could improve the passenger experience.

Systematic identification and matching of routes within shared corridors are not

trivial exercises. Many transit agencies do not maintain an inventory of the streets

traversed by each bus route. The standard General Transit Feed Specification (GTFS)

feed is not required to contain any information relating to the street network or the

path that a bus follows between stops [96]. Combining routes that only share stops

will exclude express routes that run parallel to local routes. In some cases, such as

split near/far side stops or situations where multiple agencies serve the same region,

comparing stop IDs is not sufficient to generate a list of all shared corridors in the

network.

By combining shared corridor-level TPMs with visualization, service planners can

quickly locate areas where transit performance is substandard. Past research has

shown that visualization of TPMs allows planners to identify trends that might not

be apparent when the TPMs are viewed in a tabular format [19]. The capacity for

rapid analysis of performance enables “tactical transit” interventions, a recent trend

in transit service improvement [97]. Tactical transit interventions involve inexpensive,

short-term changes to improve the delivery of transit service as a method of testing

and gaining support for more permanent strategies. TPM visualization can facilitate

tactical transit modifications by locating the areas where such interventions would

have the greatest impact. Visualization can also be used to highlight the spatial
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correlation of performance metrics and to combine transit performance data with

other spatial data.

This chapter establishes a methodology for generating shared bus corridors by

matching routes using a standardized GTFS feed. First, a map matching process

for snapping bus routes to the road network is proposed. Then, spatial relationships

between routes are used to identify shared corridors independent of stop or route iden-

tifiers. Performance measures are separated into three classes based on their input

data and a procedure is proposed for aggregating each class of performance measures

at the shared corridor level. Finally, three extended case studies using real transit

data are used to illustrate how corridor-level analysis can be leveraged and combined

with visualization to generate insights that are not available from typical performance

measures. Each case study demonstrates how corridor-level analysis can be used to

solve well-known transit planning issues: identifying opportunities for transit priority

intervention, improving schedule coordination, and balancing resources between ex-

press and local routes serving the same corridor. This research addresses a gap in the

state of the practice by systematically producing performance measures that account

for the spatial relationships between routes without relying on user knowledge or con-

ventions. The methods can be adopted by transit agencies immediately to facilitate

long term infrastructure planning, optimize routes and schedules, and identify areas

for improved performance.

Here the terminology used throughout the remainder of the chapter is defined.

“Edge” refers to a street segment between two intersections, which is roughly analo-

gous to one side of a city block. “Segment” refers to the section of an individual bus

route between two consecutive stops. Segments are unique for each route. “Corridor”

refers to the streets, or set of edges, that constitute the path of a segment. A corridor

may be served by multiple routes.
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2.2 Map Matching

The first step in developing corridor-level TPMs is to determine which routes share

common edges. Map matching is used to identify the list of edges that is traversed by a

bus when traveling between two consecutive stops. The minimum inputs required for

map matching are the coordinates of each bus stop and a network file representing the

road network. Many GTFS feeds include the optional shapes.txt file that contains

coordinates describing the path of each route. These coordinates can be used to

improve the accuracy of map matching by adding coordinates between bus stops.

Note that these coordinates are sometimes derived from a GPS trace, which is subject

to noise.

If the GTFS shapes.txt coordinates are used, additional processing is required

to split the set of coordinates into stop-to-stop segments. The optional shapes.txt

standard only requires the list of coordinates corresponding to a route, and a field

indicated the order in which those coordinates are traversed. There is no required field

to link a coordinate in the shapes.txt to the bus stops. Per GTFS best practices,

shapes should follow road center-lines and not deviate to boarding locations, so there

are typically no shape coordinates that match the bus stop coordinates specified in the

stops.txt file [98]. We use a custom program to determine the Euclidean distance

between each bus stop and each coordinate in the shapes.txt file for each route

pattern. The coordinate that is closest to each stop is then designated as the “break

point” at which the sequence of coordinates for the full route is divided. The subset

of coordinates occurring between two bus stop break points is then used as the input

coordinates for map matching the path between those stops.

Open source data downloaded from OpenStreetMap (OSM) [6] is used for the road

network information. OSM provides network files for any location across the globe.

The open-source Valhalla map matching service converts the input coordinates from

GTFS into a set of edges [99]. Valhalla builds a graph from the OSM input data, where

the edges of the graph represent the section of street between two intersections. Two-

way streets are represented by two separate edges, one for each direction of travel.
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Given a pair of input coordinates for routing, Valhalla identifies the set of nearby

edges in the road network, then computes the shortest path between them, similar to

the map matching procedure described in Li [36]. The output includes the set of edges

traversed by the shortest path between the two input coordinates. The output also

includes a list of coordinates that define the shortest path, which can be used as the

input to a data visualization program, or to replace inaccurate GPS trace coordinates

in a GTFS feed.

Valhalla allows the user to include a wide range of input parameters to ensure the

desired result is returned. For the purpose of bus corridor matching, the bus mode is

specified so that transit-only right-of-ways are included among the candidate edges.

Other parameters, such as the search distance for nearby edges and the interpolation

distance (a maximum coordinate pair distance threshold) can be tuned to suit the

accuracy and resolution of the input coordinates.

Using the shapes.txt coordinates can also create issues due to errors in GPS

traces. For example, assume that the reported position of a westbound vehicle near

an intersection is 30 feet north of the actual position. The map matching algorithm

might therefore erroneously impute that that the vehicle makes a brief detour by

turning northbound at the intersection, as shown in Figure 2-2. These issues can be

largely avoided through configuration of the map matching parameters.

Figure 2-2: Example of how GPS noise can produce a map matching error

The first solution to this issue is to include a turn_penalty_factor parameter

in the Valhalla input. This parameter enforces a penalty for excessive turns in the

shortest path algorithm, reducing the likelihood that routes with small detours are
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included in the result. It can be calibrated to correspond to the level of accuracy of

the input coordinates. To improve the results even further, the entire bus route should

be matched as a single continuous path, and then split into segments at the specified

input coordinates that correspond to bus stops. This full route map matching method

with break points combined with the turning penalty ensures that the result is a direct

path without unnecessary detours.

2.3 Corridor Identification

Once the set of unique edge IDs is determined for each segment in the network, they

can be compared to identify shared corridors. If two segments have no overlap, or

partial overlap where neither segment is a subset of the other, they will not form a

shared corridor. Otherwise, there are three possible corridor types when comparing

one segment to another. Examples of each corridor type are shown in Figure 2-3.

Figure 2-3: Corridor classification scenarios for different spatial relationships between
routes

A Type A corridor is created when the same set of edges defines each segment and

they share both stops. This is the most common type of corridor, as bus networks
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often feature stop pairs served by multiple bus routes. Corridors that are created

when one segment is a subset of another (Type B and C in Figure 2-3) are critical

for uncovering new insights that are not evident from segment level analysis. Type

B corridors are those that overlap with a shared initial stop, while Type C corridors

overlap with no shared stops. These types of corridors allows for the combined and

comparative analysis of local-express route pairs, such as the corridor shown in Fig-

ure 2-5, that do not have an explicit relationship in the standard GTFS because they

do not share any stops. Counting the number of corridors in a bus network can be

used to quantify the degree of route overlap in the network design. The difference in

overlap between the Chicago Transit Authority (CTA) and MBTA networks is dis-

cussed in the next section. We do not make any normative claims about transit route

design with overlapping segments; it may be desirable to have considerable overlap

based on the service area topology and demand profile.

Comparing the edges of each segment to identify corridors is almost always suffi-

cient, however there are rare situations where errors may occur due to the relationship

between edges and segments. Consider an arterial road with large gaps between in-

tersections. If three or more bus stops are located between successive intersections,

then there would necessarily be two consecutive segments of the same route located

on a single edge. A real life example of this scenario in Lynn, MA is shown in Fig-

ure 2-4, where the Route 435 bus stops three times between intersections. There are

two segments shown, one from Stop 7266 to Stop 7267, and Stop 7267 to Stop 7268.

The map matching process will assign the same edge to both segments, and a direct

comparison would determine that these segments are identical (Case #1). This issue

is unlikely but does occur. For the full MBTA network, 3 such cases were identified

out of more than 8,600 segments, while 8 cases were identified for the Chicago Transit

Agency (CTA) network.

Another similar issue may arise if one segment is contained within a single edge.

The preceding and succeeding segments will also traverse that edge, so it would appear

that the middle segment is a subset of its adjacent segments. To resolve these issues,

we apply a second condition on the corridor identification process: no two segments
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Figure 2-4: Two segments contained within a single edge

may form a corridor if they appear in the same route variant. It may be helpful to

implement an initial screening condition that no two segments may form a corridor

if they are consecutive (i.e. the first stop of one segment is equal to the last stop of

the other, and vice versa). Because stops may have multiple stop_id values in the

GTFS feed, it is also necessary to check that the “same route” condition is satisfied.

2.4 Performance Measure Aggregation

Careful consideration is needed for accurate aggregation of TPMs across shared cor-

ridors. For example, consider the corridor between the two local (Route 86) stops

shown in Figure 2-5, an MBTA bus corridor in Somerville, MA. Note that the ex-

press route (Route CT2) does not serve either of the stops within the corridor, so any

matching method that is based on stop IDs would not identify the overlap. In this

case, it would be accurate to express the total passenger flow of the corridor as the

sum of the passenger flows of all trips across both routes. Determining the average

running time of the corridor, however, is not as straightforward if running time data

is only available at the stop-to-stop resolution for the express route. The running

time of the express route might be affected by conditions upstream or downstream

of the corridor, so it would be incorrect to use the express route running time in the

corridor running time calculation. To ensure that corridor-level TPMs are accurate,

different rules must be used for aggregating (or not aggregating) different types of

TPMs across corridors.

We propose sorting TPMs into three broad classes, each of which is treated ac-
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Figure 2-5: MBTA bus corridor in Somerville, MA served by express and local routes

cording to different logic during the aggregation step: “spatial”, “passenger” and “stop-

based”. In general, this classification system and the assignment of TPMs to different

classes is undertaken according to the principle that segments should be aggregated

into corridors wherever possible to enable new analyses that are not available at the

segment level. It is intended to generate the most granular corridor data possible

while aggregating TPMs in a systematic and intuitive way.

• Spatial TPMs are those where the calculation is based on stop-to-stop dis-

tance (e.g., speed) or the metric is affected by traffic conditions between stops

(e.g., arrival delay). These metrics should therefore only be aggregated across

identical (Type A) segments.

• Stop-based TPMs are perceived at the stop-level, therefore they should be

aggregated across segments that share a common first stop even if the segments

are not identical (Type A and B). One example would be dwell time, which

is aggregated across all routes serving a stop. Stop-based TPMs also include

boardings, frequency/headway, expected wait time and excess wait time. The

corridor frequency would include the combined frequency of all routes serving

a stop.
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Transit Performance
Metric

Typical TPM
Class

Corridor Type
A B C

Speed

Spatial X
Running Time
Delay
Reliability factor
Dwell time

Stop-based X X

Boardings, Alightings
Frequency, Headway
Waiting time
On-time performance
Headway regularity
Passenger flow

Passenger X X X
Crowding

Table 2.1: Correspondence between corridor types and transit performance metric
(TPM) classes

• Passenger TPMs are measures that are based on passenger flow and that are

not affected by conditions between stops. These metrics can be aggregated

across any corridor type. Passenger flow may be used as a passenger TPM

for infrastructure-level analysis. Crowding may also be considered a passenger

TPM for comparative analysis in some applications.

The different classes of TPMs are aggregated between the corridors depending

on the corridor type. All TPMs can be aggregated across Type A corridors, since

all routes share the same stops and traverse the same set of edges. Passenger and

stop-based TPMs such as passenger flow and boardings can be aggregated across

Type B corridors, because the segments overlap and share a common first stop. Only

passenger TPMs such as passenger load can be aggregated across Type C corridors.

These are typically local-express corridors where some local segments are entirely

contained within an express segment and there are no shared stops (see Figure 2-5).

The correspondence between TPM classes and corridor types is shown in Table 2.1,

along with several examples of commonly used TPMs.

Each of the corridor types and TPM classes can be used in many different applica-
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tions, including all three analysis types described in Section 2.1 (infrastructure-level,

journey-level and comparative analysis). Practical examples are provided in Section

2.5. Case Study #1 uses Type A corridors along with spatial and passenger TPMs

for an infrastructure-level analysis. Case Study #2 uses Type A and B corridors with

passenger and stop-based TPMs for a journey-level analysis. Finally, Case Study #3

uses Type A, B and C corridors with passenger TPMs for a comparative analysis.

It is critical to note that these general categorizations are application-dependent;

it may be necessary to shift TPMs between categories for certain use cases, or to

apply additional conditions. For example, crowding might be used as a passenger

TPM for comparing supply allocation between express and local routes serving the

same corridor. Yet it would not be appropriate to compare crowding between a

commuter shuttle and an urban route with one overlapping segment, because the

service areas and demand profiles are much different. Data availability may also

determine these categorizations; if high resolution vehicle position data are available,

allowing interpolation between stops, then spatial metrics could be applied to Type

B and C corridors. Professional judgement should be used to determine how TPMs

are assigned for a given application and whether additional conditions are needed.

2.5 Case Studies

Three case studies are presented in the following subsections. Real operational data,

schedules and route geography of the the CTA and MBTA bus networks are used.

Data from non-holiday weekdays in October 2019 are used for the MBTA, while

similar data from November 2019 are used for the CTA. These periods were chosen

due to data availability, and to represent a typical month during the school year

when transit systems are generally operating at peak demand. Each case study was

developed through consultation with transit planning professionals to demonstrate

the value of corridor analysis in solving problems that arise frequently in practice.

Before the case studies were conducted, the matching procedure was implemented

for both networks in order to quantify the degree of overlap within each network.
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Network Type A Corridors Type B Corridors Type C Corridors
MBTA 37.6% 2.2% 3.0%
CTA 18.0% 3.2% 5.4%

Table 2.2: Percentage of all bus network segments included in each corridor type by
agency

This type of analysis allows planners to measure the degree of route overlap within a

network and compare it to other networks or alternative network designs. The regular

MBTA bus network featured 13,564 route segments serving 8,461 unique stop pairs.

37.6% of route segments are therefore perfect matches with at least one other segment

(Type A corridors). In comparison, only 18% of segments in the regular CTA bus

network were combined into Type A corridors. Table 2.2 shows the percentage of

segments that could be combined into the different corridor types for each network.

Note that none of the Type B and Type C corridors would be identified by a stop

ID-based matching procedure as they do not share both stops. Of the MBTA Type

A corridors, 66 also would not have been identified if stop IDs were used, because

the corridors have different terminal stop IDs at the same location (i.e. depots with

multiple bays).

The difference in the degree of matching between networks is primarily caused

by the difference in the street layouts between cities as well as the bus network

design. Chicago’s street network follows a rectilinear grid pattern so the bus routes

are designed to operate on separate arterial roads that are parallel or orthogonal to one

another. The Boston street network is much more circuitous and thus many routes

travel along shared arterial roads. In the MBTA network, many of the matched

corridors featured three or more segments, including a local segment in downtown

Boston that was found to be a subset of six additional route segments. The CTA

network, however has a greater proportion of subset matches (Type B and C corridors)

than the MBTA network. This is a result of several local-express route pairs (e.g.

Route 9 and X9, Route 49 and X49) in CTA network that travel the same path but

stop at different intervals. The MBTA network, on the other hand, does not contain

any local-express route pairs that run parallel to each other.
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2.5.1 Transit Priority Infrastructure

This case study highlights the ability of corridor-level TPMs to represent bus per-

formance at the infrastructure level. It uses Type A corridors and a combination of

both passenger and spatial metrics to identify locations for bus queue jump lanes.

The National Association of City Transportation Officials (NACTO) defines queue

jump lanes as “... short dedicated transit facilities with either a leading bus interval or

active signal priority to allow buses to easily enter traffic flow in a priority position”

[100]. NACTO also states that “...queue jump treatments can reduce delay consid-

erably, resulting in run-time savings and increased reliability.” Queue jump lanes

provide the same benefit to any bus route that passes through the intersection, so a

corridor-level analysis is especially suitable for this application. This analysis is not

specific to queue-jump lanes; it could be use to plan other bus priority infrastructure

like transit signal priority or dedicated right-of-way.

Identification of priority locations for transit interventions involves two compo-

nents: benefit and impact. Benefit refers to the actual performance improvement

that can be expected as a result of the intervention. The benefit of installing a queue

jump lane at an intersection with little congestion would be minimal. Impact is the

number of passengers who would be affected by the intervention. Combining these

two components allows analysts to identify locations where intervention would provide

a significant improvement for a large number of riders. While reductions in running

time have downstream benefits related to schedule efficiency, downstream reliability

and increased supply capacity, here we will consider only the passenger time savings.

To combine the performance benefit and ridership impact, we will use a use a

TPM derived from combining delays in bus travel times with the number of passengers

experiencing those delays: passenger-weighted congestion delay (PWCD). Congestion

delay is defined as the difference in running time between the minimum running time

in the analysis period (assumed to be free flow speed) and the actual run time for

each trip. AVL records identifying the arrival time at each stop are used to derive the

segment running time. Dwell time is excluded from the speed calculation to remove
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any delays caused due to passenger loading and offloading. This delay is multiplied by

the passenger flow, collected from APC data, to weight by the number of passengers

affected. Finally, the result is normalized by the length of the segment to highlight

locations where a small change could have a significant impact. The result is a PWCD

TPM for each trip measured in passenger-minutes per mile. We use historical APC

and AVL data for 22 weekdays in October 2019 to generate average daily PWCD

results for each segment in the MBTA network.

This analysis benefits substantially from corridor-level aggregation of performance

measures. Reviewing the passenger flow of the routes independent from one another

does not provide a full account of the number of riders that stand to benefit from

the intervention. Passenger flow, which falls into the passenger class of TPMs, is

aggregated as long as one segment in the corridor is a subset of another. Corridor-

level PWCD therefore provides an estimate of the congestion delay encountered by

all passengers traveling through the corridor.

The difference between segment-level and corridor-level PWCD is illustrated using

the MBTA example. Table 2.3 presents top five segments and corridors by PWCD

for the average non-holiday weekday in October 2019. The ranking of corridors by

PWCD includes two locations that were not among the top five segments in PWCD

because the passenger flow is distributed among many routes. The two high-PWCD

corridors are adjacent to a major transit hub, Nubian Station, which is a terminus

station for many bus routes.

This analysis represents a first-order prioritization; other analysis would be needed

to assess the feasibility of implementation. Excess running time compared to the

free-flow condition is used in this case study to identify delay caused by congestion.

Excess running time might occur as a result of conditions such as traffic incidents,

that could not be improved by installing queue jump lanes. Additionally, queue-jump

lanes may not be feasible at all intersections due to infrastructure limitations, fiscal

considerations or political constraints.

Visualization of corridor-level PWCD allows analysts to make quick feasibility

judgements by providing additional geographic context. Figure 2-6 shows corridor-
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Segment Route(s) PWCD
BOS Terminal E to Congress @ World Trade
Center

SL1 19,478

Third @ Chestnut to N. Washington @ Medford 111 17,750
N. Washington @ Medford to Beacon @ Broad-
way

111 17,340

Airport Station to Congress @ World Trade
Center

SL3 15,189

Silver Line Way to BOS Terminal A SL1 12,296
Corridor Route(s) PWCD
BOS Terminal E to Congress @ World Trade
Center

SL1 19,478

Malcolm X @ Shawmut to Nubian Station 15, 23, 28, 44, 45, 66 18,729
Nubian Station to Malcolm X @ Shawmut 14, 15, 23, 28, 41, 44,

45, 56
18,281

Third @ Chestnut to N. Washington @ Medford 111 17,750
N. Washington @ Medford to Beacon @ Broad-
way

111 17,340

Table 2.3: Highest passenger-weighted congestion delay in the MBTA bus network,
by segment and by corridor

level PWCD visualized across the MBTA network. Note that the color bins shown in

Figure 2-6 (as well as Figures 2-8 and 2-9) represent the quintiles of the range. Cor-

ridors with the greatest PWCD are concentrated in high-ridership areas surrounding

downtown Boston, primarily to the south and west in neighborhoods like Roxbury,

Dorchester and the South End. The average daily PWCD per corridor across the

full MBTA network is 1,098 passenger-minute per mile, but the average for corridors

within the City of Boston is more than double at 2,430 passenger-minutes per mile.

Along some corridors, each passenger experiences an average of more than 3.5 minutes

of congestion delay per mile.

The visualization allows quick identification of locations where queue-jump lanes

would be most impactful and feasible. These methods could also be used for other

transit improvements such as transit priority implementation, which has been identi-

fied as a method of reducing bus delays in Boston [101]. In addition, visualization of-

fers an advantage over tabulation because it provides the spatial relationship between

different high-priority locations, allowing installation work to be planned efficiently.
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Figure 2-6: Daily average passenger-weighted congestion delay (PWCD) for MBTA
Type A corridors in October 2019

2.5.2 Effective Headway Analysis

This case study demonstrates how corridor identification can be used in journey-level

analysis. Type A and B corridors are identified and used as the basis for aggregating

passenger and stop-based TPMs.

Some transit systems feature routes which serve many of the same stops. These

routes may be functionally equivalent to passengers whose journeys start and end

within the shared section of the routes. In that case, corridor-level TPMs are more

representative of the rider experience than TPMs for individual routes. Coordinating

schedules at shared stops may help to improve the passenger experience by reducing

expected wait time [102]; however, it can be difficult or impossible to coordinate stop

events in both directions and multiple route combinations. The corridor-level analysis

can help planners identify the highest priority corridors for schedule coordination

based on their potential for improving passenger wait time.

In this case study, we will use the example of the MBTA’s 116 and 117 routes
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that serve communities to the north of downtown Boston. The routes share terminal

stops, Wonderland Station and Maverick Station, as well as the majority of their

intermediate stops. Inferred origin-destination pairs [103] for all weekday journeys in

October 2019 reveal that 81% of Route 116 and 117 journeys could have been served

by either route. Using corridor-level TPM aggregation, we can evaluate the combined

performance of these two routes. The segments within the shared portion of the

routes are matched for both passenger and stop-based TPMs using the methodology

described in Section 2.3.

For this example, we will focus on the period between 6:30 AM and 8:00 AM

as it is a period of high demand for bus service from the suburbs north of Boston

into the downtown core. Scheduled inbound departures (towards downtown Boston)

from the northern terminus, Wonderland Station, are shown in Figure 2-7 for the

October 2019 weekday schedule. These scheduled departures are determined using

the publicly-available GTFS feed. It is estimated (using origin-destination inference)

that 53% of the 14,038 weekday journeys on Route 116 and Route 117 originating

at Wonderland Station could be served by either route. The scheduled headways for

each route are evenly spaced, but when the two routes are viewed as a single combined

route, significant bunching is observed. The two routes are often scheduled to depart

in close succession, followed by gaps as large as 16 minutes.

Figure 2-7: Scheduled weekday bus departures from Wonderland Station, October
2019

There are 11 departures after the first departure at 6:32 AM, with the last de-

parting at 8:03 AM. Departures distributed evenly across this 91-minute period would

produce 8.3-minute headways. Assuming that passenger arrivals are random, the av-
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erage wait time for a passenger whose trip may be served by either route is then half

of the headway, or 4.1 minutes [104]. The expected waiting time for the actual sched-

ule, however, is 6.2 minutes (49% greater), due to the uneven departures. We will

refer to the difference between the actual expected waiting time and the minimum

possible expected waiting time as the “excess wait time” in this context. Excess wait

time can be included as a stop-based TPM for systematic identification of corridors

where schedule coordination between routes could reduce expected wait time. As in

Case Study #1, excess wait time is combined with boarding information to generate

a passenger-weighted TPM. APC records report 1,861 weekday boardings at Won-

derland Station for these routes during October 2019, so the excess wait time for this

example is (6.2 min − 4.1 min)× 1, 861 passengers = 3, 908 passenger-minutes.

This is an example of a stop-based TPM, since it is derived from the departures of

multiple routes serving the single stop. To extend this analysis from a single example

to the entire network, we calculate excess wait time for all high frequency Type A

and B corridors using the typical weekday schedule with arrivals between 6:30 AM

and 8:00 AM. For these purposes, we consider high frequency segments to be any

segments where the average combined headway of all buses serving the segment is

10 minutes or less within the study period. Spatial patterns can be identified by

visualizing excess wait time for the MBTA network as shown in Figure 2-8. The 116-

117 corridor is highlighted in the upper right portion of the map. Service planners

could use such a map to review opportunities for coordinating schedules across routes

in future schedule adjustments.

Not all corridors are comprised of routes that share a significant number of stops,

so the corridor-level analysis is necessary but not sufficient for identifying oppor-

tunities to improve schedule coordination. Transit agencies with access to reliable

origin-destination estimates or smart card data can combine this information with

passenger-weighted excess wait time to create a new TPM that considers the propor-

tion of passengers who stand to benefit from schedule coordination. The results are

described above simply to illustrate the utility of excess wait time analyses regardless

of the availability of journey origin-destination information.
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Figure 2-8: Sum of passenger-weighted excess wait time for the period of 6:30 AM -
8:00 AM across all weekdays in October 2019

Local transit planners are well aware that many passengers treat the 116 and 117

routes as interchangeable. The strength of the corridor-level analysis is that it does

not rely on prior knowledge to identify locations where coordinated scheduling could

improve the passenger experience. Furthermore, it automates the computation of the

combined TPMs wherever routes are found to overlap, replacing ad hoc data queries

and significantly reducing the overall effort.

This case study should not be interpreted as a criticism of current bus scheduling

practices. The routes and time period used in this example were chosen in part

for contrast between the actual and ideal schedule, but generally the schedules of

these routes and others are coordinated wherever feasible. For example, the 116 and

117 scheduled outbound departures during the PM peak hour are evenly spaced and

therefore have minimal excess wait time. Preparing bus schedules is an extremely
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complex process and there are many trade-offs involved. Our intent is simply to

demonstrate the ability of corridor aggregation to facilitate new analyses from the

passenger perspective and quickly identify locations where performance improvements

could be targeted.

2.5.3 Passenger Crowding Comparison

The third benefit of corridor-level analysis is the ability to conduct comparative anal-

ysis of routes serving the same corridors. In this case study, we aggregate crowding,

which is classified as a passenger TPM, across Type A, B and C corridors. Crowding

has become an important concern during the COVID-19 outbreak, given that main-

taining physical distance between passengers to limit spread of the virus is a priority

for transit agencies. In this context, crowding is defined as the passenger load divided

by the seated capacity of the bus. A comparison of bus crowding across several routes

along the same corridor can be used by service planners to identify opportunities to

re-allocate supply between different routes. It could also be used to inform route

design changes.

The corridor-level “crowding variation” TPM derivation is straightforward: for

each corridor where passenger TPMs of multiple segments are matched (Type A, B

and C corridors), we take the difference between the minimum and maximum average

crowding from the set of segments that make up the corridor across the same time

period. APC data and a table of vehicle capacities are used to determine crowding for

each segment. As an example, we use the 49 and X49 bus routes in Chicago. Route

X49 is an express (limited stop) version of Route 49, both running along Ashland

Avenue just west of downtown Chicago. During the PM peak hour (5:00 PM to

6:00 PM), both routes experience significant crowding in the northbound direction as

shown in Figure 2-9.

While both routes experience higher crowding at the northern end of the route

(consistent with commuter travel away from the central business district), crowding on

the local route is highest. For eleven consecutive stop-to-stop segments, the average

weekday crowding on Route 49 is above 75% of seated capacity with an average
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Figure 2-9: PM peak hour crowding for northbound Route 49 and Route X49 buses

crowding level of 85% per segment. The average crowding level on the express route

while traveling across these same 11 segments is 62%. This result suggests that more

supply could be allocated to the local route during the PM rush hour, or that the

express route could make additional stops at local stops within the most crowded

portion to attract some of the ridership away from the local route.

Crowding variation is calculated and visualized for all express-local corridors in

the CTA bus network during the PM peak hour as shown in Figure 2-10 below.

Express-local corridors were identified as any two separate routes that are matched

for at least 75% of their segments. It is evident that while the NB 49/X49 corridor

reaches above 30% crowding variation near the northern end of the route, several

other routes have even higher crowding variation. Several corridors along Lakeshore

Drive and others south and west of downtown feature routes with a difference in

crowding levels greater than 40%.

As mentioned earlier, professional judgement is required in the interpretation and

presentation of these results. It would not be appropriate to compare crowding be-

tween a limited-stop commuter shuttle and a local urban route even if they share
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Figure 2-10: PM peak hour crowding variation for multi-route bus corridors in
Chicago

many of the same segments, because the service areas and demand profiles are much

different. Additional conditions can be applied to this analysis to filter out corridors

where the allocation of supply between routes is not relevant.

This corridor-level comparative analysis is not limited to crowding. Other TPMs,

such as reliability, dwell time or boardings could also be computed and visualized to

locate disparities in performance between routes serving the same corridors. One of

the challenges of improving transit service is disentangling the wide variety of con-

ditions that can contribute to poor performance. Diagnosing performance issues by

comparing routes within the same corridor allows planners to eliminate the condi-

tions related to infrastructure, thus highlighting other contributing factors that may

be easier to resolve.

2.6 Discussion

This chapter describes a systematic method for matching overlapping routes into

corridors for different classes of transit performance measures. Typical transit per-
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formance measures are calculated at the resolution of the segment or route, which

fail to consider the network topology and relationships between different routes. The

corridor matching method enables transit planners to identify and prioritize oppor-

tunities for performance improvements that cannot be identified through segment,

route and network-level analysis alone. Several case studies are described to demon-

strate the potential for corridor analysis in planning infrastructure changes, schedule

coordination and service allocation.

The corridor matching procedure is an example of how transit networks can be

decoupled from their somewhat arbitrary route, route variant and stop designations

in order to identify fundamental topological relationships. This approach also shifts

the focus to performance measures that consider passenger travel patterns. As origin-

destination data become more widely available, transit agencies will be able to better

tailor service design to the needs of passengers.

There are limitations to this method. Steps are included to limit exposure to

incorrect GTFS information, but it ultimately relies on reasonably accurate stop

coordinates. The use of additional coordinates from the optional shapes.txt file is

encouraged when possible to ensure that the map matching result traces the actual

path of the bus route. If no additional shapes are available, there is no way to

determine the actual path between two stops using GTFS, so the map matching

process assumes that the shortest path is followed. In most cases this assumption is

valid, but it may not hold for all paths [37]. Additionally, we have proposed using OSM

as the source of road network information to ensure that the method remains open

source and generalizable. Past research has found OSM to be reasonably accurate

[105], but ultimately it is populated and maintained by volunteer contributors, so

its accuracy cannot be guaranteed. Other sources of road network data may be

substituted if available.

The case studies presented in this chapter are intended to be illustrative exam-

ples of the high-level analyses enabled by these methods. There are limitations and

shortcomings to each. The case study presented in Section 2.5.1 involves ranking

transit segments by delay in order to identify locations for queue jump lanes. It does
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not, however, differentiate between delay that could be ameliorated through queue

jump lanes and delay that is a result of other problems, such as poor signal timing.

Additionally, some locations may not be suitable for queue jump lanes due to infras-

tructure limitations. While this first order analysis can be done systematically using

the methods described, additional investigation will be required before an installation

plan can be developed.

The second case study, described in Section 2.5.2, finds opportunity to coordinate

departures between overlapping routes. Schedules may have been designed for other

reasons, however, that provide benefit to a greater number of passengers. For example,

each of the overlapping routes could be timed to allow for passenger transfers at

separate downstream transit hubs, making it difficult to coordinate schedules between

the two routes. Planners should consider the downstream implications of coordinating

departures before making any schedule changes.

The third case study shows how aggregation across shared corridors can help to

balance service between express and local route pairs based on peak hour crowding.

Looking at average crowding across the peak hour does not capture variations within

the hour, where there can be significant difference. Furthermore, APC data is subject

to error, especially during peak periods, as it relies on sensors that can become blocked

when buses are crowded. The actual results may underestimate or overestimate peak

crowding levels.
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Chapter 3

High-Resolution Geographic

Decomposition

3.1 Introduction and Motivation

Transit planners, analysts and advocates often seek to understand how the supply and

quality of bus transit service changes over time. In most applications, performance

metrics such as reliability and crowding are measured and reported at the route or

stop level, and tabulated by route or stop identifiers. Bus networks are not stable over

time, however; the pattern of stops that constitute a bus route are revised periodically

and arbitrary stop numbers are sometimes reassigned to entirely different locations.

As an example, consider the route changes implemented by the Massachusetts Bay

Transportation Authority (MBTA) in December 2019.

This rather complex route redesign has varying impacts depending on the stop.

For some locations, the service will not change, but the bus route number is different.

In other cases, the service is eliminated entirely. Such changes make it difficult to

conduct an accurate long-term comparison based only on route or stop identifiers. In

order to review the evolution of bus service near Waltham Center, an agency analyst

would have to have prior knowledge (or track down the information) that Route 70A

was replaced by Route 61, and then compare the performance of both routes.

Tracking service changes has become especially important during the COVID-19

55



Figure 3-1: Massachusetts Bay Transportation Authority (MBTA) route changes in
December 2019 [2]

pandemic, as many transit agencies have implemented substantial service reductions

in response to the decline in ridership. Identifying these service changes systematically

is critical to ensure accuracy, given that transit networks are often large and complex.

Fortunately, many North American transit agencies maintains accurate records of

transit service in a consistent format: the General Transit Feed Specification (GTFS).

A systematic method of comparing bus service and performance that is based in

geography, rather than identification numbers, can be used for consistent represen-

tation over time. Location-based comparison also aligns planning more closely with

the way that customers interact with the transit system. However, shifting towards a

better geographic context for the transit network presents challenges in terms of scope

and interpretation. If the city block is taken as the unit of measurement, there may

be tens of thousands of individual data points for a large transit network. Spatial vi-

sualization can solve these issues, however, by representing large sets of disaggregate

transit service data in a familiar setting.

In this chapter, a new method is proposed to decompose a bus transit network into

city block length segments using a standard GTFS feed and open road network data.
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These segments are identified based on geography rather than identifiers, allowing

them to be compared over time. Performance metrics are then can be assigned to

each segment to enable long-term comparison of service quality along each block. Two

case studies of the Massachusetts Bay Transportation Authority (MBTA) bus network

in Boston with 10 years of GTFS feeds illustrate the advantages of this method over

identifier-based comparisons.

3.2 Block-Level Decomposition

To enable consistent representation of a bus transit network over time, a unit of analy-

sis must be chosen. The goal is to select the largest possible unit of analysis for across

the entire length of which the aggregate transit service is consistent. As an example,

consider a segment of the network between two bus stops as the unit of analysis. This

would not be appropriate, because two bus routes could run parallel to one another

for the first half of the stop-to-stop segment, and then one bus could branch off at

an intersection between the two stops. There would not be consistent transit service

across the entire segment. Instead, the distance between two intersections is chosen

as the unit of analysis, with additional boundaries at bus stop locations. Choosing

this unit of analysis, which will now be referred to as an “edge”, provides a stable unit

of analysis across which bus service and performance can be measured.

The decomposition method requires two sets of input data. The first is the GTFS

feed, which includes information relating to the transit network geometry and sched-

ules. A standard GTFS feed contains the stop_times.txt table, from which all of

the unique stop sequences (or “patterns”) that constitute a bus trip can be extracted.

Each pattern is defined as the sequence of stops for one bus route in one direction.

In some cases, bus routes will have multiple variants under the same route ID. For

example, a bus may deviate from the standard route by one stop to serve school

trips during specific weekday hours. The MBTA has 172 bus routes and 833 unique

patterns, meaning that on average there are 2.4 variants per route-direction. Each

variant is retained as a separate pattern in the decomposition process.
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The latitude and longitude coordinates of each stop are collected from the stops.txt

table in the GTFS feed. Patterns are then converted to a sequence of stop coordi-

nates that represent the path of the bus. The stop coordinates are used as inputs

for the open-source Valhalla map matching library, which determines the path of

the bus between stops within the road network. The output is the coordinates of a

line representing that path. OpenStreetMap provides the second set of input data

for the decomposition procedure, used as source of road network information for the

map matching process. Additional discussion of map matching and some important

considerations is included in Section 2.2.

The lines representing the route paths are then split at street intersections to

create a series of discrete directional “edges” that are approximately equivalent to a

city block. Finally, the lines are split again at mid-block bus stops, which allows

us to differentiate performance metrics like crowding and passenger load before and

after a stop event. A distance threshold can be used for determining which stops are

mid-block. This additional step improves the visualization by avoiding the creation

of very small edges between bus stops and nearby intersections. A threshold of 75

feet was found to produce reasonable results and is used to generate the visualizations

shown in this chapter. An illustration of the edge decomposition is shown in Figure 3-

2 below, where a bi-directional bus route is split into fourteen discrete edges. The

diagram on the right shows how stops within 75 feet of an intersection can be ignored

to avoid creating very small edges.

Figure 3-3 provides an example of the edges generated from the map matching

process applied to the MBTA bus network just west of Nubian Square. Note that

there are separate edges on either side of each road intersection and each bus stop.

The MBTA operates one of the largest bus networks in the United States, with 172

routes traversing 39,544 unique edges.

A keen observer will note that the edges are also split at a parking lot driveway on

the north side of Dudley Street, east of Dudley Place (this is represented in Figure 3-3

by a thin white line with no name or arrows). This raises the question of which street

intersections should be considered significant enough to warrant splitting edges. The
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Figure 3-2: Example of bus network discretization into time-invariant geographic
edges, with and without an intersection distance threshold applied

Figure 3-3: An example of transit network decomposition into block-length edges
using map matching
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overall purpose of decomposing the transit network is to create a unit of analysis that

is small enough so that transit service is consistent across the full length of the edge.

In this case, it is unlikely that transit service would stop or turn at the parking lot

driveway, so it would reasonable to ignore the driveway and create one continuous

edge. This can be accomplished by filtering out roads of type “service” from the

OpenStreetMap network.

For each analysis period, the stop pair corresponding to each edge are stored to

allow route or stop-level performance metrics to be assigned to the edges. In the case

that multiple routes serve a single edge, the performance metrics are aggregated across

routes to generate a edge-average or edge-total measure. Schedule-based performance

metrics, such as scheduled frequency or span of service, can be derived directly from

GTFS. Metrics based on passenger loading or observed arrivals would require other

data sources such as APC and AVL. A thorough discussion of metric aggregation

across overlapping bus segments is provided in Chapter 2.

One advantage of the edge-level decomposition is that it limits the complexity

of aggregation across shared stop-to-stop corridors described in Chapter 2. Instead

of three different corridor types, each with different processes for aggregation, there

is only one type of corridor that can be created when comparing edges. Whenever

multiple routes share an edge, they can be matched as a Type A corridor, because

edges are defined such that transit service is consistent across the entire edge. Spatial

and passenger metrics can be aggregated as desired by the analyst without concern

about the type of the metric. Many edges will not start or end at a bus stop. For those

edges, stop-based metrics such as boardings or dwell would not be defined. When

shared edges do abut a bus stop, however, the stop-based metrics can be aggregated

across all routes that traverse the edge.

3.3 Geographic Representation

The edges are more stable than route or stop IDs over time, and are therefore used as

the basis for longitudinal comparison. The comparison could be conducted directly
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using geometry to check for equivalence, but such operations are typically too com-

putationally intensive to be used for comparison at the network scale. To enable a

more efficient method of comparison, the coordinates representing each edge can be

encoded as a unique text string. For this application, the Google Encoded Polyline

compression algorithm is used [106]. There can be some loss associated with the com-

pression due to rounding after the fifth decimal place of the latitude and longitude

decimal degrees, which creates a maximum error of approximately 0.5 meters or 1.5

feet. The potential loss is inconsequential for this application given that the edges are

typically hundreds of feet in length. This text encoding step improves computation

time for comparison between two time periods by two orders of magnitude.

3.4 Longitudinal Comparison

To match edges across two time periods, the first step is to screen for exact matches

between the encoded test strings described in the previous section. This step generally

identifies most of the common edges between periods. If the comparison is being

conducted for the same service area across two time periods, the vast majority of

edges in both periods will have a match. The rate of matching depends on the

number of changes to the bus network between the two comparison periods. An edge

match indicates that a block with bus transit service in the first period continues

to be served in the second period. If an edge from the first period does not have a

match, that indicates that the edge was served and is no longer served (i.e. cancelled

service). If an edge from the second period does not have a match, that indicates that

the edge has new service that did not exist during the first period. To provide a sense

of the matching rate, a comparison of the MBTA bus service between January 2011

and January 2021 found that 86% (31,230 / 36,296 total) of the edges in the January

2011 network were also included in the 2021 network. The remaining 14% (5,066

edges) were no longer being served, but an additional 8,314 new edges were included

in the January 2021 network. In many cases the matching rate will be higher, as

this comparison covers a significant period of time during which there were several
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network changes.

In some cases, the encoded polylines of two segments may not match exactly,

but the segments could be considered equivalent for this analysis. One example is

a segment that begins at a bus depot with multiple bays. Another scenario where

this issue could arise is when an agency revises the coordinates of a bus stop in

GTFS between successive feeds for greater accuracy. This is common, especially

when comparing early GTFS feeds to more recent ones, as GPS sensors and tools for

automating GTFS feed creation have become more sophisticated. Even if the position

was revised by only a few feet, the encoded polylines representing the edges on either

side of the stop would be different between the two feeds. A third and final scenario

can occur when multiple agencies serve the same physical bus stop. If the agencies

use different methods for generating GTFS feeds, they may have minor differences

in the reported coordinates for the same bus stop. In each of these scenarios, the

encoded polylines do not match, yet the edges should be matched for comparison.

An efficient method for comparing edges geographically is therefore needed. As-

sume there are two periods with different service patterns, Period A and Period B.

When comparing edges from Period A to Period B, any edges from Period A that

are not matched during the first screening are stored in a new list. As noted above,

this is a typically a small fraction of the total number of edges. Then we check for

spatial intersections between the unmatched Period A edges and the full set of Period

B edges. The intersection operation is relatively efficient; checking for intersection

between one edge and full set of edges in the January 2021 MBTA network takes less

than 0.2 seconds. To confirm a match based on the intersection of two segments,

it is necessary to then check that the edges have the same direction of travel, as it

is possible that a segment could intersect another segment traveling in the opposite

direction. The direction of travel is determined by computing the angle of a vector

between the first and last coordinates of the segment. If the two directions are within

a certain tolerance, the segments can be considered a match.

There is one more important consideration specific to longitudinal comparison.

Over time, new bus stops may be introduced and old ones may be removed. This
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has the effect of creating two completely different edges along the same block for

the two comparison periods. As an example, consider a block that does not have

a mid-block bus stop during the baseline period. The block would be decomposed

into a single edge for that network. If a new mid-block bus stop is introduced in the

comparison period, then the block would be split into two separate edges for that

network. To avoid this scenario, the individual edges for each network should be

created by splitting at any mid-block bus stop that exists in either bus network.

3.5 Case Study: MBTA Network Evolution, 2011 to

2021

The MBTA maintains a public archive of GTFS feeds dating back to 2009 [107].

This period covers several sweeping changes to the bus network, including the Bus

Network Redesign that began in 2018, and the significant reduction in bus service that

began during the summer of 2020 in response to low ridership during the COVID-

19 pandemic. These feeds are used to visualize service changes over the course of a

decade, even under changing route and stop identifiers. This case study demonstrates

how the geography-based representation, rather than identifier-based representation,

enables a simple yet thorough comparison of transit service across long periods of time.

Such a comparison could be used by transit planners or advocacy groups to identify

spatial disparities in transit service provision over time. The segments displayed in

Figure 3-3 are used as the unit of analysis for comparing the change in transit service

from 2011 to 2021.

Figure 3-4 shows how service has evolved by highlighting segments that were

served in 2011 but no longer served in 2021, regardless of route ID. This includes

elimination of several routes in the northwestern part of the region, as well as consol-

idation of routes along fewer corridors near downtown Boston. One interesting piece

of Boston history can be observed, although it almost appears to be a mapping error:

the elimination of bus service on Long Island in Boston Harbor, which is currently
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abandoned and is not connected to the mainland. There was, however, a bridge to

Long Island until 2014, across which several MBTA bus routes traveled in order to

provide access to social services located on the island. Other changes can also be

observed, such as discontinuation of Route 90 service to Wellington Station after the

opening of the Assembly Square Station on the Orange Line. Several new routes can

be easily identified, such as Route 714 serving the Hull / Hingham peninsula in the

southeastern part of the region. A comprehensive list of all MBTA transit network

changes over many decades is compiled by Belcher [108].

The longitudinal comparison enables further analysis beyond simple binary indi-

cators of service. Figures 3-5 and 3-6 show how the average number of inbound and

outbound weekday trips have changed at the edge resolution from January 2011 to

January 2021 across the entire MBTA network. The trends for each direction are

fairly similar, as service changes are often applied to both directions of a route, but

there are some significant differences. Fewer inbound trips from the communities west

of downtown Boston have been eliminated than outbound trips serving the same area.

Part of this difference is due to route changes presented in Fig. 3-1. Route 70A was

cancelled in both directions, while the new Route 61 only replaced inbound trips for

certain parts of the former Route 70A service area. Figure 3-7 shows the route maps

for Route 70A and Route 61. At the network-scale, it can be observed that trips have

been added within some inner ring suburbs like Chelsea, Medford and Somerville, but

reduced in more distant suburbs to the west, northwest and southeast.

While the network-scale results are informative, the strengths of this decomposi-

tion and geographic representation are more evident at the neighborhood level. One

way that the geographic representation can be useful is that it contextualizes service

pattern changes that do not involve a route identifier change. Consider the case of

MBTA Route 52, a north-south bus route that connected Watertown and Dedham

via Newton. As part of the MBTA’s “Better Bus Project”, a full bus network redesign

that began in 2018, Route 52 was consolidated along a single path and service was

eliminated for a significant part of the original coverage area. The changes to Route

52 were made in order to improve the match between supply and demand. Com-
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(a) Route 70A Service Pattern (b) Route 61 Service Pattern

Figure 3-7: Comparison of North Waltham bus routes before (a) and after (b) the
Bus Network Redesign in December 2019

paring the performance of Route 52 in terms of frequency, delay, and so on before

and after the service pattern changes ignores the fact the Route 52 serves fewer bus

stops. The methods described in this chapter, however, provide a clear and holistic

visualization of the outcome of the network changes: a decrease in frequency along

the blocks where service was cancelled, and an increase in frequency where service

was retained. Figure 3-8 presents the changes in frequency along Route 52 before

and after the implementation of the bus network redesign. All highlighted sections of

Route 52 had fewer trips in 2021 than in 2011, except for a short section where trip

counts have remained relatively static. The edges with cancelled service are easily

identified as they have lost more trips than the edges where service was retained.

These changes to Route 52 are not being criticized; travel demand patterns change

over time and bus networks should be updated periodically in response. This example
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Figure 3-8: Route 52 change in average daily scheduled weekday trips by segment,
January 2011 to January 2021

simply demonstrates how performance measurement and analysis at the route level

does not capture the reality that routes change over time. A systematic method for

computing and visualizing these changes in performance based on geography, using

only GTFS feeds, is a significant improvement over existing analysis tools.

One additional application of this method is in the communication of service

changes, even temporary detours, to the public. The current practice at the MBTA

is to present service changes as a set of stop markers on a web map. In many cases

service changes are not shown visually at all. A visualization that shows how the

route patterns change at the block resolution, such as Figure 3-8, is more intuitive

than showing how each route would change, and would help the public to understand

the implications of service changes in their neighborhoods.
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3.6 Case Study: Mapping Ridership Trends

Leveraging the block-level decomposition and geographic representation for analysing

longitudinal service changes, as shown in the previous section, is a powerful tool be-

cause it relies only on (typically) publicly available data sources. However, if ad-

ditional data is available, these techniques can be used to produce further insights

regarding bus performance and ridership in addition to service delivery. In this case

study, APC data is combined with the block level decomposition to map ridership

changes at the edge level across the MBTA network for a period of several years.

This type of analysis and visualization could be used by transit planners to identify

medium- and long-term spatial trends in ridership in order to estimate future growth

or decline. Much like the previous case study, the advantages of spatial decomposition

and geographic representation over existing techniques are that any changes to route

or stop IDs in the 6 year period are automatically incorporated into the results.

The earliest APC data available for this case study dates back to January 2013.

The intent of this case study is to review the general trends in ridership, so a pre-

COVID-19 comparison period, January 2019, was chosen. The ridership changes

shown in this case study are therefore the differences across the six year period from

January 2013 to January 2019. The APC coverage, or the number of trips with func-

tioning APC devices, has changed over time. For this reason, the average ridership

per weekday trip recorded by APC is used as opposed to the total ridership, which is

not available from existing data sources. This case study reviews the average rider-

ship per trip for the AM peak period, defined in MBTA’s Service Delivery Policy as

7:00 AM - 9:00 AM, which is typically the time period during which ridership is high-

est. As in the previous case study, ridership trends are reviewed for both directions,

inbound and outbound. The inbound direction is busiest during the AM peak period

on a typical weekday, as more people travel towards the central business districts.

The results are shown for the full MBTA network in Figures 3-9 and 3-10. Many

edges have not seen a significant change in ridership over the course of the 6 year study

period. This is fairly consistent with overall ridership trends; the MBTA reported a
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2.6% decline in total unlinked bus trips from 2013 to 2019 [109].

Generally speaking, there has been some decline in occupancy during both periods

in the western portion of the service area (i.e. Lexington, Waltham and Newton). The

corridor served by Route 70 and 70A between Cambridge and Waltham stands out as

having a larger than average occupancy decline, especially in the outbound direction

(between 10 and 12 passengers per trip depending on the segment). Schedules were

very similar between the two periods, so this occupancy decline appears to represent a

total ridership decline over time, consistent with the MBTA’s public ridership counts

[110]. Ridership around the City of Lynn, northeast of downtown Boston, has also

declined. Both of these areas experienced decreases in the number of daily trips as

shown in the previous case study, although the study periods are somewhat different.

Interestingly, many of the routes in or immediately adjacent to the Central Business

District have gained ridership. Neighborhoods such as Charlestown, South Boston,

the South End and East Boston all have many edges which have seen an increase of

more than 3 riders per trip. Note that the bus network is only a one component of

the transit network; some of these changes may be a result of transit riders switching

to or from the rail network.

Leveraging the high-resolution spatial representation and geographic representa-

tion, it is possible to directly observe changes in passenger load patterns due to service

changes at the edge level. A new high-capacity bus route, the SL3, was introduced

in 2018, connecting Chelsea to downtown Boston. For a very short part of its route

in East Boston, it runs parallel to Route 112. Along this part of its route, the SL3

averages a passenger load of 12.5 passengers per inbound weekday AM peak trip.

Figures 3-11a and 3-11b show the change in average weekday passenger load during

the AM peak from January 2013 to January 2019 for Routes 112 and SL3 separately.

Looking at the changes passenger load for Route 112 alone might give the impres-

sion that corridor ridership has declined. Figure 3-11 shows the combined changes in

passenger load in the area where the SL3 and 112 converge. The edge-level spatial

resolution enables differentiation of passenger load patterns before and after the two

routes merge, even though the merge points do not coincide with a bus stop. Stop-to-
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stop or timepoint-to-timepoint level visualization would not be able to capture such

patterns.

It can be observed that the passenger load on Route 112 upstream of the SL3

merge point has also increased. The passenger load on the edge between the last stop

on Route 112 prior to the connection with the SL3, however, has decreased. This is

likely due to passengers alighting from Route 112 and board the SL3 for an express

connection to downtown Boston. Transit planners could use this information to ad-

just schedules or stop locations for improved connections between the 112 and SL3.

Ridership downstream of the merge point is higher in 2019, due to the introduction

of the SL3. After the two routes split further downstream, ridership on Route 112 is

similar to 2013. This example demonstrates how passenger load trends can be inferred

from longitudinal analysis enabled by decomposition and geographic representation.

3.7 Discussion

This chapter presents a systematic method for decomposing transit networks into

small units of analysis (“edges”) that can be used to compare the performance of

bus transit networks at a disaggregate spatial level over long periods of time. To

enable longitudinal comparison, the edges are represented by their geography, rather

than the route or stop identifiers, so that they remain stable in the case of identifier

revisions. These methods allow transit planners to study how supply, performance

and ridership, have changed over time within a given locality, even if their historical

data is only organized by the route and stop identifiers of the era. Two case studies

are included to illustrate the strength of these methods. The first uses only GTFS to

create maps of service changes for every city block in the service area. The second

combines these spatial methods with ridership data to examine trends in bus ridership

based on geography rather than only routes.

This approach, like the methods described in Chapter 2, align the measurement of

bus performance more closely to the way in which passengers interact with the transit

system. Ultimately, changes to route IDs do little to affect the passenger experience,
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so measuring performance by geography can provide a more passenger-oriented per-

spective. This approach also lowers the barrier to conducting comprehensive reviews

of service changes over the course of several years. Curious parties no longer need to

parse service modification announcements or have local knowledge in order to com-

pare the headways in a given neighborhood from one decade to the next. If transit

performance data are available at the route or stop-to-stop level, but the names or

stop patterns of routes have changed over time, it can be onerous to compute how

performance has evolved in a given area. This approach provides a method of map-

ping those data to the appropriate set of edges. Anyone with access to the necessary

GTFS feeds (which are often stored in public archives) can apply these methods to

understand how their local transit agency has provided service in their community.

Advocacy groups can use this information to generate independent visualizations and

explore how proposed service changes affect individual neighborhoods.

Some limitations to this method are important to consider. First, given that map

matching is used in this chapter, the limitations described in Chapter 2 regarding

map matching and OpenStreetMap accuracy guarantees also apply here. Second,

GTFS feeds are not always perfectly accurate, for many reasons. They may not be

updated frequently, so changes to the schedule might occur without being reflected

in the feed. Finally, a more general point about this method, but an important one:

quantifying the amount of service provided along a city block (or an edge, as they are

called in this Chapter) does not provide any indication of accessibility, i.e. where the

transit service enables users to travel. This was a deliberate exclusion, as quantifying

accessibility generally requires further analysis and, for some measures, additional

data sources beyond GTFS and OpenStreetMap. Future extensions could include

weighting by accessibility measures.
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Chapter 4

Origin-Destination Applications

4.1 Introduction and Motivation

The methods proposed in the two previous chapters are effective tools for overcoming

many common challenges in transit planning. Practicality and generalizability were

emphasized in order to make these tools available to transit agencies of all sizes. As

a result, input data sources were limited to those that are widely available, such as

GTFS, AVL and APC. There are, however, additional applications that leverage rich

data sources to generate further insights beyond simple measures of transit supply

and performance. This chapter demonstrates how origin, destination and transfer

(OD) data can be integrated into the framework proposed in the two previous chap-

ters. Moreover, it demonstrates how the aggregation, decomposition and geographic

representation concepts can be used to support a broader set of transit planning tasks

and inquiries.

Automated collection and processing of OD data has been enabled by recent

advances in technology and academic research. So-called “smart cards” are a type

of fare media that are used repeatedly, typically be the same individual, allowing

transit agencies to identify patterns in user behavior. As discussed in Section 1.5.3,

estimating destinations for transit trips is a very active field of research, developing

methods that have been adopted in practice. Simultaneously, more and more transit

agencies are installing tap-on tap-off fare collection systems that obviate the need
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for estimating destinations, although transfers within the fare paid area must still be

inferred. Some pilot projects have even used mobile phone records and other digital

traces to estimate OD flows. The availability of OD data is mixed but trending

upwards. Many larger transit agencies, such as the MBTA and CTA, have access to

estimates of OD flows derived from AFC and AVL records.

OD sources can be used in place of APC counts, which are subject to some error,

or for completely new applications that are not described in earlier chapters. OD

flows are a valuable source of information for understanding spatio-temporal demand

patterns throughout a transit network. These data also facilitate the computation of

information about journey characteristics, such as the number of transfers or travel

times, that is not available from traditional APC or AVL sources. Transit planners

may be interested in reviewing the distribution of destinations for passengers board-

ing at a specific location in order to support long-term service changes. Like other

historical data, however, OD flows are often represented by stop identifiers, or trips

tagged to a route identifier. As discussed in previous chapters, this can make temporal

comparison quite challenging if stop and route identifiers have been revised.

Identifying overlapping routes, spatial decomposition and geographic represen-

tation can all be applied to OD data, just as these methods were applied to APC

and AVL data in previous chapters. The same practical benefits are accrued; spatial

decomposition and aggregation across routes allows performance measures to be anal-

ysed at the block level, while geographic representation facilitates long-term temporal

comparison. Additional steps are required for pre-processing OD data in order for

it to be represented by paths through the transit network rather than straight lines

between origin and destination. Representing the data as a path through the transit

network has the advantage of informing planners about how the transit network is

navigated and which infrastructure elements (i.e. bus lanes, traffic signals) are used.

There are many different planning applications for OD data. Understanding how

demand patterns change before and after service changes provides valuable insight

into travel behavior. It can be used to evaluate whether service changes produced the

desired effect on travel behavior, or if the proffered alternatives to cancelled service
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were actually adopted. By extending systematic geographic representation and aggre-

gation to the analysis of OD flows, these types of questions can be answered quickly

and easily. Furthermore, these methods can be used to support direct comparisons

between OD matrices, which is an emerging area of research [111].

The remainder of this chapter is organized as follows. Section 4.2 describes a

process for converting identifier-based representation of OD flows into a geographic

representation. Sections 4.3 and 4.4 apply these methods and data sources using

real data from the MBTA network, providing two practical use cases. Sections 4.5

summarizes the results and implications.

4.2 Processing Origin-Destination Data

The purpose of this section is to develop a method for extracting OD information into

a quantity or quantities that can be represented at the edge level. Just as AVL data

(vehicle positions) or APC data (passenger counts) can be translated into performance

measures like speed and passenger flow, OD data can be used to compute measures

relating to travel demand. For example, it can be used to determine the percentage

of passengers traveling along each edge that make a transfer to another bus or rail at

some point during their trip. Unlike AVL or APC data, which is typically available

at the stop-to-stop level, OD flows are represented as a pair of stops. In order to

fit OD flows into the framework developed in the two previous chapters, some pre-

processing is required. The first step will be to infer the path taken through the transit

network for each journey if it is not already inferred during the destination inference

process. This translation will allow OD information to be represented geographically,

aggregated across routes serving the same edge, and visualized.

OD data, like AVL and APC data, do not yet have a standardized format or

structure. In this case, we will consider OD data that consists of a separate record

for each vehicle trip within each full passenger journey. For example, if a passenger

journey involves a bus to rail transfer, there would be two records, one for the bus

trip and one for the rail trip. Each record contains an origin boarding stop ID
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Journey ID Leg Origin Stop ID Destination Stop ID
journey_00001 1 875 523
journey_00002 1 16364 6366
journey_00002 2 1722 1726

Table 4.1: Initial origin-destination records

and time, destination alighting stop ID and time. Records are indexed by a unique

journey ID, where multiple records for a given journey ID represent a transfer to

another vehicle for completion of a one-way passenger journey. This is similar to the

structure described by Gordon et al. [7]. From this information, it is possible to infer

the path taken through the transit network from origin to destination as a series of

stop-to-stop segments as shown below.

Consider the sample MBTA OD records provided in Table 4.1. These sample

records will be used as an extended example to illustrate the process. Note that

time-stamps for each origin and destination are omitted for clarity, but would be

included in any OD table.

The first record represents a single bus trip, from Stop 875 (Forest Hills Station)

to Stop 1720 (Morton Street at Canterbury Street) with no transfers. Since both

stops are served by Route 31, it can be inferred that Route 31 was taken directly

from origin to destination. The second journey, represented by the second and third

rows in Table 4.1, involves a transfer from one bus route to another. The first leg

of the journey is from Stop 16364 (River Street at Holmfield Avenue) to Stop 6366

(River Street at Blue Hill Avenue), while the second leg is from Stop 1722 (1624 Blue

Hill Avenue at Mattapan Square) to 1726 (Blue Hill Avenue at Mattapan Library).

Comparing these stops to service patterns from GTFS, it can be inferred that the first

leg was served by Route 24, while the second leg was served by Route 28. In brief, the

first step involves determining the route taken for each leg of the journey, based on

the boarding and alighting stop. If multiple routes serve the boarding and alighting

stops, then the boarding and alighting times can be matched with AVL records to

identify the correct route.

The schedule of each route (available from a GTFS feed) can then be used to
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Journey ID Leg Route ID Origin Sequence Destination Sequence
journey_00001 1 31 1 5
journey_00002 1 24 17 20
journey_00002 2 28 2 6

Table 4.2: Sample origin-destination records converted to stop sequences

Journey ID Leg Traversed Segments

journey_00001 1

(875, 520)
(520, 11521)
(11521, 5232)
(5232, 523)

journey_00002 1
(16364, 6365)
(6365, 16365)
(16365, 6366)

journey_00002 2

(1722, 1723)
(1723, 1724)
(1724, 1725)
(1725, 1726)

Table 4.3: Origin-destination records converted to sequence of segments, represented
by pairs of Stop IDs

derive the set of stop-to-stop segments traversed by each leg of the journey. Table 4.2

summarizes this step by converting the stop IDs from Table 4.1 into a pair of stop

sequences along a route.

Stops 875 and 523 represent the first and fifth stops in the service pattern of

Route 31, therefore the first journey in Table 4.1 traversed the initial four stop-to-

stop segments of Route 31. The segments traversed by the second journey in Table 4.1

will include segments from both Route 24 and Route 28. The list of segments for each

of the sample records is shown in Table 4.3.

Once the full list of segments traversed by each journey is determined, the next

step is to convert the list of segments to a list of edges. This can be done using the

segment-edge correspondence computed in Section 3.2. The final step is to store the

journey information (such as whether it includes a transfer, or the location of the final

journey destination) as a property of each edge in the journey. Once this process is

complete, each edge will contain information for each of the journeys that traverse it,

which can be aggregated if desired. Because the edges are represented geographically
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and are not related to any identifiers, the travel demand measures derived from OD

data can be easily compared over time.

To summarize, this section outlines the series of steps that can be used to generate

measures related to travel demand from an OD data and translate it into a series of

edge properties, or properties of any spatial element of the transit network. The steps

are as follows, starting with a set of OD journey records:

1. Determine the travel demand measure of interest

2. For each leg of the journey:

(a) Use the stop numbers to identify the route taken

(b) Determine the position of the boarding and alighting stops along the route

(c) Add each stop-to-stop segment between the boarding and alighting stops

to the list of traversed segments

3. For each traversed segment:

(a) Identify the set of edges that make up the segment

(b) Add travel demand measure to the properties of each edge

Exploring the fraction of passengers on each edge who make a downstream transfer

could help planners to prioritize reliability improvements, as missed transfers can

add significant delays to passenger journeys (see Section 4.3). Time-invariant units

of analysis are important to track changes over time. Another application would

include identifying and visualizing the destinations for all passengers who traverse

a given edge, as shown in Section 4.4. Such an analysis could support long-term

planning by identifying opportunities for more direct service.

4.3 Case Study: Visualizing Transfer Rates

Understanding where and when passengers make transfers within the transit network

can be extremely helpful for transit planners. Schedules of intersecting bus routes
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and rail lines can be coordinated to reduce transfer times at common transfer points.

Efforts to improve running time and running time reliability are especially beneficial

when applied to routes with a large number of passengers who transfer downstream.

These efforts can help to limit missed transfers, which have an outsized impact on

passenger journey time. The location and times of transfers, as well as information

about whether certain passengers will make a transfer, are not available directly from

AVL or APC systems, but can be inferred from OD estimates.

This case study demonstrates how the methods developed in Chapter 2, aggrega-

tion across shared corridors, can be applied to OD data in order to visualize journey-

related performance measures for the purpose of transit priority infrastructure plan-

ning. In a sense, this case study is an reframing of the first case study in Chapter 2

to focus on the passenger transfer benefits of transit priority infrastructure. Two

related metrics are developed: the first to identify the segments with a high absolute

number of passengers who make a downstream transfer, and the second to combine

the number of downstream transfer passengers with a measure of running time re-

liability. These metrics are then visualized separately for the entire bus network to

identify and prioritize locations where infrastructure-based efforts to improve running

time reliability could be implemented. As described in Chapter 2, systematic corridor

aggregation benefits infrastructure-level analyses such as these by demonstrating the

full impact of any infrastructure improvements.

Real OD data from the MBTA for weekdays in January 2020 is used in this case

study. The selected period represents typical (i.e. pre-COVID) ridership patterns.

Note that the destinations and transfer locations for this OD data are inferred us-

ing AFC and AVL records. Transfers within the rail rapid transit network and from

rail to bus are not considered, as this case study focuses on infrastructure improve-

ments that can be applied to the bus network. Bus-to-rail transfers are considered,

however, as these benefit from bus reliability improvements. Like the case study in

Section 2.5.1, this represents a first order approximation used for illustrative pur-

poses. Transit planners may include additional information and steps as needed to

fit the characteristics of their network.
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Figure 4-1: Average daily downstream transfer passengers by corridor in the inbound
direction for the MBTA bus network, weekdays in January 2020

The first step in evaluating the potential for installing TSP to reduce total jour-

ney times is to identify the travel patterns of passengers prior to making a transfer.

Using the methods from Section 4.2, the number of total passengers making a down-

stream transfer is computed for each segment in the bus network. These counts are

a passenger-level metric, and are aggregated across shared corridors according to the

process defined in Section 2. Downstream transfer passenger counts are visualized for

the inbound and outbound directions in Figures 4-1 and 4-2, respectively.

The legend entries reflect quintiles of the distribution. The median number of

average daily downstream transfer trips for all corridors is 34. The spatial trends are

not entirely surprising. Routes with higher overall ridership generally tend to have a

high number of transfer passengers, although that is not always the case. The express
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Figure 4-2: Average daily downstream transfer passengers by corridor in the outbound
direction for the MBTA bus network, weekdays in January 2020
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routes that use I-90, for example, have relatively high ridership but few transfer

passengers, likely because they are designed to serve commuters and terminate at

major employment centers. In the inbound direction, downstream transfers are more

common on segments upstream of rail stations (e.g. Quincy Center, Nubian Square).

Some routes on the periphery of the service area simply have fewer passengers overall,

and thus a lower number of downstream transfer passengers as well. For the outbound

direction, passengers with downstream transfers are much more concentrated around

the downtown area and nearby neighborhoods.

Keen observers may note that the SL1, traveling between South Station and

Boston Logan Airport, shows very few transfer passengers, despite the fact that it is a

high ridership route that connects to the rail network. The SL1 is free when boarding

at the airport, so there is no need for the passenger to interact with the fare payment

system. As the MBTA’s OD estimation process uses AFC as its primary source of

data, the OD journey records do not capture the inbound passenger load on the SL1.

Once the number of transfer passengers is known, determining segments with poor

reliability is the next step. There are many different measures of reliability used for

bus transit; in this case a simple but reasonable measure that can be weighted by the

number of passengers is appropriate. Standard deviation in running time is used to

develop measures of reliability [112]. Typically, the inverse of the standard deviation

is used to represent reliability, as lower standard deviation then produces a higher

reliability score. For this case study, however, the intent is to highlight areas with

poor reliability, so the standard deviation will be used directly. Alternative measures

of reliability could be substituted here for more detailed analyses, such as headway

variability or on-time performance.

The standard deviation of running times for each segment can be computed by

collecting the distribution of segment travel times from AVL records. The study

period used for running times is the same as for OD flows, weekdays in January

2020. Running times were collected for all times of day to provide a first order

approximation. There can be significant variation in running time standard deviation

between the peak periods and off-peak periods, so period-specific running times could
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be used for a closer investigation.

The standard deviation of running times (in minutes) is multiplied by the number

of transferring passengers to develop a metric which will be called “Transfer Reliability

Improvement Potential”, or TRIP, measured in passenger-minutes. Note that while

this metric has units of passenger-minutes, it is based on the standard deviation and

therefore has no relationship to the total amount of time that could be saved by

reliability improvements. The results are visualized by corridor for the inbound and

outbound directions in Figures 4-3 and 4-4.

Figure 4-3: Average transfer reliability improvement score by corridor in the inbound
direction for the MBTA bus network, weekdays in January 2021

The opportunities for improving bus running time reliability that would affect a

significant number of passengers are spread across many routes. The median value

overall is 91 passenger-minutes. The transfer reliability improvement score is based in
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Figure 4-4: Average transfer reliability improvement score by corridor in the outbound
direction for the MBTA bus network, weekdays in January 2021
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part on the number of downstream passenger trends, so the spatial trends are similar

to Figures 4-3 and 4-4. However, introducing reliability does change the results; for

example, many of the routes traveling inbound towards Lynn have transfer passenger

counts in the third and fourth quintiles, but transfer reliability improvement scores in

the fifth quintile, indicating that the travel time reliability of those corridors is below

average. Opportunities for improving transfer reliability in the outbound direction

are generally concentrated around the inner ring suburbs and Dorchester.

In summary, this case study demonstrates how origin, destination and transfer

records can be combined with the methods of Chapter 2 for more advanced use cases.

The corridors with high transfer reliability improvement potential could be targeted

with infrastructure improvements to increase reliability, such as transit signal priority

or queue jump lanes. Visualization also helps planners to identify spatial trends that

can be used for implementation planning.

4.4 Case Study: Mapping Destination Changes Over

Time

This case study demonstrates how the methods described in Section 4.2 can be used

to visualize changes in travel patterns over time when OD data is available. When

service changes are introduced, passengers whose routes are disrupted must respond

by altering their travel behavior. In many cases, this will include choosing a different

path through the transit network in order to get to the same destination. In other

cases, the traveler may select an alternative destination that is more convenient, or

choose to switch from transit to another travel mode. Examining the distribution of

downstream passenger flows from a given edge, and how they adjust in response to

a service pattern change, can be helpful in adjusting schedules and planning future

changes.

These types of analysis and visualization can be created using traditional OD

data. The same issues that were identified in previous case studies also apply to OD
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data, however. Identifiers are not stable over time, especially in the context of service

changes, so longitudinal comparisons may require manual input to correct for chang-

ing stop or route IDs. This case study demonstrates how geographic representation

facilitates a systematic analysis without any prior knowledge of the service changes.

The MBTA implemented a major bus network change in the fall of 2019 [113,

114]. Five routes were eliminated and dozens of additional routes were modified.

To examine the impacts that these changes had on overall passenger demand as

well as route choice, this case study compares OD flows between January 2019 to

January 2020. The methods from Section 4.2 are used to compute the downstream

passenger flows for each edge in the network. The difference between the baseline

period (January 2019) and the comparison period (January 2020) are calculated. The

last 15 non-holiday weekdays of the month were used to determine passenger flows

for both January 2019 and January 2020. System-wide ridership was 3.7% greater for

the January 2019 period than the January 2020 period. The difference in passenger

flows can then be visualized for any edge in the network, allowing for a comprehensive

review of the passenger impacts of specific service changes.

One of the key network changes that was implemented in the fall of 2019 was the

replacement of Route 70A with a simpler Route 61 and added service on Route 70,

which overlapped with much of Route 70A [114]. These route changes are shown in

Figure 3-7. Some passengers who previously rode Route 70A would have their service

replaced by Route 70, others by Route 61, and some may have to board or alight

at different stops. In January 2019, a typical weekday had 58 scheduled outbound

trips on Route 70, which included 10 minute headways during peak hours and 20 - 30

minute headways during off-peak hours. Route 70A was scheduled to run 20 weekday

outbound trips in January 2019 between 6 AM and 7 PM, with approximately 30

minute peak headways. The cancellation of Route 70A was partially offset by added

service on Route 70. In January 2020, Route 70 had 76 scheduled weekday trips

(a slight decrease of 2 trips per day compared to the prior combined service) with

10 minute headways throughout much of the mornings and evenings. But Route 70

does not provide access north of Waltham Town Center, forcing former Route 70A
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passengers with destinations in that area to transfer to Route 61, which serves many

of the same stops as Route 70A and operates on a similar frequency.

By visualizing the destinations of passengers passing through corridors served by

Route 70A before and after the route changes, it is possible to estimate the effect that

the service change had on passenger route and destination choice. First, OD data is

used to determine downstream passenger flows for each stop-to-stop segment using

the methods described in Section 4.2. Then, the segment-level values are translated

into edge-level using the correspondence between segments and edges developed in

Chapter 3. The conversion to edge-level representation allows for stable compari-

son over time. The result is a set of data that can be used to visualize the set of

downstream passenger flow for any edge in the network.

Figure 4-5 shows outbound passenger flows on a typical weekday for all journeys

passing through an edge that was served by Route 70A and Route 70 for January

2019: Westbound U.S. Route 20 (Main Street) between Lafayette Street and Willow

Street. These are then compared to the passenger flows downstream of the same edge

in January 2020, shown in Figure 4-6. As a result of the network redesign, the edge

is now served by Route 70 only with enhanced headway reliability on the single route

70 as compared to the two separate routes. Passengers who previously used Route

70A to travel north of Waltham Town Center must now transfer to Route 61. The

difference in passenger flows between the two periods is shown in Figure 4-7.

On a typical weekday in January 2019, there were 438 bus passengers traveling

outbound through the selected edge on Main Street, which is represented by the dark

red color west of the selected edge in Figure 4-5. This passenger flow includes passen-

gers on both Routes 70 and 70A. In January 2020, the typical weekday passenger flow

increased to 550 passengers, represented by the dark red color west of the selected

edge in Figure 4-6, potentially suggesting that the service changes attracted more

ridership in the area. The spatial distribution of destinations, however, changed sub-

stantially in response to the service changes. In January 2019, Route 70A carried 48

passengers north of Waltham Town Square, with moderate ridership for many stops

afterwards. In January 2020, on the other hand, a daily average of just 6 passengers
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Figure 4-5: Average daily passenger flow for passengers traveling outbound on MBTA
Routes 70 and 70A in Waltham in January 2019
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Figure 4-6: Average daily passenger flow for passengers traveling outbound on MBTA
Routes 61 and 70 in Waltham in January 2020
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Figure 4-7: Change in average daily passenger flow in North Waltham, January 2019
to January 2020
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have an inferred transfer from Route 70 to Route 61 in order to reach destinations

north of Waltham Town Square. This suggests that the majority of passengers opted

not to follow the recommendations presented in the route change notice (transfer from

Route 70 to Route 61), likely due to the disutility of making a transfer to another bus

route. Based on this analysis, it appears that the service change was successful overall

in attracting significantly more passengers to the primary corridor service while losing

some passengers in the outer suburban edges of the the corridor that now require a

transfer.

This case study summarizes how OD data can be used to visualize passenger flows

throughout the transit network, and provides an example of how that visualization

can inform future service planning. The comparison of ridership over time under

significant network changes allows planners to understand how passengers respond

to new service patterns. The systematic nature of this process makes it simple to

conduct these analyses any time a network is changed or disrupted.

4.5 Discussion

This Chapter proposes a systematic method for processing OD records in order to

assign journey statistics to spatial elements of a transit network, such as the corridor

or edge. This additional step prepares the OD data for the spatial analysis methods

described in the two previous chapters. These records can then be aggregated across

corridors for infrastructure-level analysis, or decomposed and represented geographi-

cally for longitudinal comparison. The proposed process and new data source enable

a new set of analyses beyond what are described in Chapters 2 and 3. Two case stud-

ies with real OD data are included to demonstrate how the methods can be used in

practice for data-driven transit infrastructure planning and for visualizing the effects

of service changes on travel behavior.

OD data is just one additional data source that could be combined with the

methods developed in this thesis. This chapter develops a framework for including

performance measures based on data sources beyond APC, AVL and GTFS. For
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example, targeted surveys that have trip information could be used to create metrics

related to customer satisfaction that are then compared over time. Another example

would be operating cost data, which could be used for developing productivity-related

metrics. The pre-processing step outlined in Section 4.2 can be adapted for use with

these data sources and others.

There are some limitations to the methods described in this chapter. First, the

destinations of OD records are typically inferred unless collected directly from “tap-on,

tap-off” fare systems. While these inferences can be quite accurate, they are typically

subject to some error; the lack of fare system interaction for the SL1 described in the

pre-processing step in Section 4.3 is one such example. Data quality issues for any

OD estimation inputs could be propagated to the OD results.

In addition, Section 4.2 assumes that the OD data has a specific structure: one

record for each vehicle trip by each passenger, with a unique identifier that can be used

to identify linked trips. If the OD data is organized differently, then additional data

processing may be required to achieve the same results. Furthermore, the algorithms

used to determine whether two vehicle trips by the same passenger are part of the same

journey or separate journeys will affect the data structure and impact the transfer

passenger analysis shown in Section 4.3.

There are additional limitations unrelated to data quality. Section 4.4 describes

how changes to passenger destinations before and after network modifications can be

determined systematically, without knowing anything about the network. However,

interpreting the change in destination choices requires additional context that is not

shown in a passenger flow visualization, such as any changes to frequency or forced

transfers. Similarly, additional context is needed for thorough review of opportunities

to reduce transfer waiting times beyond the methods shown in Section 4.3. For exam-

ple, the scheduled transfer duration would help to prioritize reliability improvements,

because reliability is more important when there is little transfer time. Future work

could include additional performance measures that incorporate this information.
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Chapter 5

Conclusions and Recommendations

5.1 Summary

This thesis develops three practical methods for identifying spatial relationships be-

tween elements of a public transit network and using those relationships to generate

new insights:

1. Identification and aggregation of shared bus corridors

2. Spatial decomposition to block-level resolution

3. Geographic representation of transit network elements

These three methods avoid dependence on identifiers such as route names or numbers,

which vary over time and thereby obfuscate changes in transit performance. When

combined, the methods create a powerful framework for transit analysis at the network

scale and at the resolution of individual city blocks.

This analysis framework, with its systematic and robust identification of spatial

relationships, removes the need for personal knowledge of where different elements

of the transit network intersect with one another. It also drastically reduces the

effort needed to conduct comprehensive longitudinal studies by creating a geographic

representation of the transit network. The disaggregate unit of analysis enables transit

performance to be reviewed for individual components of the road network, such
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as traffic signals or queue jump lanes. Finally, this framework is oriented around

visualization and generates outputs that can be use to enhance communication and

identify spatial trends in transit performance.

Multiple case studies are included in each chapter to demonstrate the applica-

tions of these methods, individually and combined. Chapter 2 applies shared corridor

identification and aggregation to solve common transit planning challenges such as

scheduling in shared corridors and balancing service between express and local routes.

Chapter 3 uses the spatial decomposition and geographic representation to conduct

longitudinal analyses of transit service and ridership over many years at a high spa-

tial resolution. Chapter 4 extends the methods of the previous chapter to include

measures of demand generated from OD flows, including passenger transfers and des-

tination distributions.

These case studies present a small fraction of the possible use cases for these

methods. It is hoped that these methods will be adopted in practice and that the

list of use cases continues to grow. Throughout the development of this research,

emphasis was placed on ease of implementation, generalizability and open access.

These tools rely on open source software and there are several applications included

herein based entirely on open data sources. They can be generalized for use by any

transit agency or advocacy group whose transit network is represented by a standard

GTFS feed.

5.2 Limitations

The specific limitations of each of the individual methods described in Chapters 2, 3

and 4 are included in the discussion section of the respective chapters. This section

provides a broader set of limitations regarding the overall approach to transit per-

formance measurement and analysis taken in this thesis. Also included included are

potential barriers to implementation, which are addressed by the recommendations

in Section 5.3.

The first set of limitations are related to data. These methods are predicated on
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the availability of GTFS and OpenStreetMap (or other road network data) to perform

map matching and spatial analysis of the transit network. While GTFS is produced

by nearly all transit operators in the United States, it has seen lower adoption in other

regions. Additionally, reliance on GTFS limits the scope of temporal comparisons as

the data standard was not introduced until 2005 and was not widely adopted for

another several years. Furthermore, many of the studies shown in this thesis rely

on automated transit data including APC, AVL and origin-destination estimation

systems, which are subject to error and lack of coverage. Analysts should be aware of

the limitation of their data sources and take steps to avoid producing analyses that

are affected by data quality results. Some of these steps could include using longer

analysis periods or scaling the results to account for data gaps.

The case studies included in this thesis demonstrate how transit-specific data

sources such as APC and AVL can be used to aggregate, compare and visualize

transit performance. There are other important measures of transit performance that

are not included, as these were intended to be illustrative rather than comprehensive

examples. Changes in fare or fare structure is an important component of transit

service that was not included in the longitudinal comparisons despite their impact

on passenger utility. In a similar vein, measures of equity are also omitted. Equity

in public transit is an important and complex topic with considerable research into

measurement and comparative analysis [30], but is beyond the scope of this thesis. As

mentioned in the limitations in Chapter 3, accessibility measures are also important

but outside the scope of this thesis.

These methods are also based on analysis of traditional fixed route transit net-

works. While fixed-route bus transit is the primary subject of this thesis, the methods

could be applied to rail transit without significant changes. On the other hand, these

methods are not well suited for transit which does not operate on fixed routes or

schedules, such paratransit or demand-responsive transit. Paratransit, while a criti-

cal component of public transit service that should not be overlooked, has a different

service paradigm and performance measures that would benefit from other methods

than those included in this thesis. Demand-responsive transit has become more pop-
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ular in the wake of COVID-19 [115], but ultimately represents a small fraction of

total public transit ridership. If the mode share of demand-responsive transit contin-

ues to grow, the need for dedicated analysis and visualization tools that capture the

inherent flexibility of these modes will increase. Some of these methods, such as the

block-level geographic decomposition, might be quite helpful in demand-responsive

transit analysis and visualization where traditional route and stop identifiers are not

relevant. The tools described in this thesis are intended to make analysis of the

spatial relationships in transit networks easier by eliminating the need for multiple

data sources, expensive software subscriptions and personal knowledge. That said,

implementing these tools will require some technical capacity on the part of transit

agencies or advocacy groups. These barriers have been removed to the extent possible

by consolidating the scripts for corridor matching and aggregation (Chapter 2) and

those for spatial decomposition and edge matching (Chapter 3). Any user, however,

must have the software and knowledge for opening, modifying and running Python

programs.

5.3 Recommendations

It is recommended that transit planning and performance management staff within

transit agencies adopt the methods described herein to streamline and improve the

long-term planning process. The timeframes for conducting these analysis are application-

dependent. For example, methods presented in Sections 2.5.2, 2.5.3 and 4.3 could be

adopted as part of a periodic review process to ensure efficient resource allocation.

The analyses described in Sections 3.6 and 4.4, on the other hand, could be required

as a post-implementation evaluation of network design changes to determine whether

the changes had the desired effect. On the whole, these analyses will improve the

information available to transit planners, limit “information silos” within agencies,

and provide a new perspective on the spatial relationships within transit networks.

As shown in this thesis, these methods have many practical applications for tran-

sit planning, from identifying high-potential locations for transit signal priority to
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investigating long-term trends in ridership at a high spatial resolution. Agencies can

also use these tools to improve the communication of service changes with the public.

It is likely that continued engagement with these tools by transit professionals will

lead to the identification of further use cases.

In order to do adopt these tools, transit agencies should ensure that they have the

technical capacity to automate the processes, produce visualizations and make them

widely available to staff. A limited version of the methods described in Chapter 2 have

already been deployed at two large U.S. transit agencies and have been used to support

decision making, and there are plans to deploy the methods of Chapter 3 in the

future. Lessons learned from these deployments could be shared with other agencies

to reduce implementation challenges. Standardization of data inputs from APC and

AVL systems would also reduce the amount of agency-specific customization needed

to include performance measures beyond those related to scheduled service. Creating

data standards for these systems is the subject of an ongoing project sponsored by

the Transportation Research Board [116].

In addition to agencies, this tool was developed for use by transit advocacy groups.

The primary application that could benefit advocates is the analysis presented in

Section 3.5, where changes in transit service delivery can be reviewed using only

GTFS feeds. It is recommended that these methods be adopted by such groups. If

technical capacity presents a barrier to adoption, local governments should provide

small grants to promote technical development for advocacy groups. Transit agencies

and their riders benefit from a well-informed public.

5.4 Future Work

There is considerable potential for future work related to this thesis. The work in

this thesis provides the practical tools that could enable new and interesting studies

in a variety of directions. Further refinement of these methods would also benefit the

state of the practice.

Future research in this area could develop new TPMs to identify high-priority
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locations for different infrastructure improvements. Additional data sources, such as

high-frequency GPS data, could be incorporated to improve the spatial resolution

of speed and delay data. While this thesis focuses on the bus transit mode almost

exclusively, the methods could also be applied to rail transit where there is often

significant overlap among different branch lines.

Applications of this research could include using these methods to study the

growth of bus transit networks over time. GTFS feeds have been adopted by most

American transit agencies for over a decade, providing a wealth of data on network

topology and service delivery. Transit network data could be combined with socioe-

conomic indicators to examine how service changes have affected different groups.

Future work could also conduct comparative analyses based on the methods described

herein. Statistical analysis of the bus network growth patterns combined with rider-

ship data across different urban areas could be used to identify causal relationships

between network evolution and ridership.

Finally, these methods could be applied to a very topical challenge for transit agen-

cies: COVID-19 pandemic recovery planning. Chapter 4 demonstrates how spatial

decomposition and identifier-free representation enables fast, comprehensive studies

of changes in ridership patterns. While the given example was a before and after

analysis of a specific route design change, the methods could be especially helpful in

reviewing ridership changes throughout the COVID-19 pandemic and into the recov-

ery period. Systematic methods, like those presented in this thesis, would be helpful

as COVID-19 pandemic ridership changes affected the entire network. Most transit

agencies also modified service patterns in response to the pandemic, so these tools

also could be used to distinguish ridership changes that resulted from COVID-19 and

changes that resulted from longer headways or cancelled routes.
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