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Abstract

The ability to measure key physical parameters of athletes is becoming increasingly
critical for today’s sports organizations. Force-velocity profiling is a well-understood
and studied technique for measuring the relationship between speed and output force
in sport-specific contexts. Accurate force-velocity profiling systems can enable a wide
variety of applications for sports organizations to improve player performance, cater
better training programs, and potentially reduce injury rates in the long term. A
current limitation of many of these systems is that they can require context-specific
testing that impacts workflows for players, coaches, and trainers. Given the recent
rise of wearable sensor technologies that track player movement in dynamic contexts,
there is a clear opportunity to leverage new data streams to enhance this process.

We present a novel system for automated force-velocity profiling using publicly
available high-frequency tracking data of NFL players. We demonstrate that our
derived force-velocity envelopes match observed position and player performance, and
provide a proof of concept framework that would allow teams to leverage automated
force-velocity profiling in their internal operations.

Thesis Supervisor: Anette Hosoi
Title: Associate Dean, MIT School of Engineering
Neil and Jane Pappalardo Professor, Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

The field of sports has always been one rich with a competitive drive and a constant

desire to defeat the opponent by whatever means necessary. In an increasingly mod-

ern and interconnected world, the power of using data for competitive and personal

advantage has become quite appealing. While much of the field of sports still relies

on shared knowledge, one-on-one coaching, personal training, and time-tested first

principles, the increasing reliance on data-informed decision-making makes the area

prime for research and exploration. The core tenet of data in sports is quite simple:

sports teams and organizations that can leverage data more effectively may have a

higher chance of improving their specific desired outcomes, whether those are win-

ning a league championship, improving player performance, or reducing injury rates,

among many other potential goals.

With the rise of big data processing, artificial intelligence, and machine learning,

the number of available data streams for sports teams to use are slowly and steadily

increasing [29]. There is a complex challenge for sports organizations to not only

collect this data but also use it in a meaningful way. While there are numerous cutting-

edge applications of data in sport, we focus on the player performance optimization

area of the space, and on the sport of American football (which we will simply refer

to as football from this point forward) in particular. The National Football League is
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the premier professional football organization in the world and is responsible for 32

teams, each one having 53 active players, additional practice squad players, as well

as a massive cohort of coaches, trainers, equipment personnel, and additional staff.

An increasingly critical function for sports performance staff is the ability to mon-

itor player load, track changes over time, and be able to intervene when observed

performance patterns are problematic. New advances in wearable sensor technology

have enabled advances in this space, with bio-metric and sport-specific movement

signals becoming far more accessible [12] [14] [43].

In the following sections, we describe critical power curves, one of the earliest

methods designed to quantify athlete load. Critical power curves serve as a good

introduction to force-velocity profiles, which apply very well in the case of an athlete

sprinting, which happens quite often in the sport of football. We also provide some

context on the sport of football and how our dataset can be leveraged for force-velocity

profiling at a high level. Finally, we outline the critical contributions of this thesis.

1.2 Critical Power Curves

The critical power curve (CP curve for short) is a fundamental tool used primarily

in the sport of cycling, with applications to other sports, as a means of measuring

the maximum power an athlete can achieve in a given time interval [33]. The x-axis

encodes the duration of time that has passed. The y-axis encodes the critical power,

also known as maximum mean power, for a given time duration, which the average

power sustained by the athlete over that duration. It is worth clarifying that each

time duration starts at 𝑡 = 0, so the critical power curve is constructed from left to

right as an athlete works. Figure 1-1 shows an example of a critical power curve.

In our work on force-velocity profiling, we look to critical power curves for example

as they are highly effective at determining the fatigue threshold for a given athlete

[34]. In the world of cycling, they enable sports performance staff and athletes alike to

track progress over time and push the upper envelope of their curve with subsequent

trials. This iterative, data-driven conditioning process is exactly the kind we seek to

14



Figure 1-1: An example of of a critical power curve, showing how different areas under
the curve represent different phases of cycling output [1].

replicate with force-velocity profiling in the context of sprinting.

1.3 Force Velocity Profiling for Sprinting

Beyond critical power curves in cycling, another robust and well-studied methodology

for measuring athlete performance and load is the force-velocity profile. Similar to the

critical power curve, it lives in R2, but has different axis encodings, which are pretty

clear from the name itself: the x-axis encodes velocity, and the y-axis encodes output

force. Figure 1-2 shows an example of a force-velocity profile. There are several key

attributes of a force-velocity profile (or FVP, for short) that are worth noting:

• There is a clear negative relationship between force and velocity, but not nec-

essarily linear.

• The notion of "force" must be clearly defined based on the collecting activity.

• The single force-velocity curve for a given athlete is the upper envelope of all

15



Figure 1-2: A simple example of a force-velocity profile that is completely linear.
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force-velocity points they have generated in a given environment.

There are multiple contexts where force-velocity profiling is a highly useful tool

for athletes and trainers. In a weight-lifting environment, sensors can be used to

track the velocity at which the weight is moving to better tune workouts so athletes

can hit a particular velocity target. For a sprinter, data points from various stages of

their acceleration phase may allow them to improve technique. Jumping for maximal

height on a force plate is another context where FVP is valuable. In any of these

contexts, it can help immediately identify deficiencies in either the force or velocity

dimension (or both). Once identified, these deficiencies can be remedied via modified

training programs, which have the long-term effect of both improving performance

and potentially reducing injury risk [28] [8].

1.4 Football Dataset and Context

Our work in this thesis focuses on the automated force-velocity profiling of professional

American football players, using publicly available from the 2018-2019 season. In

the sport of football, players perform many individual instances of accelerating and

decelerating, which can all be tracked over time and leveraged to generate force-

velocity profiles. This tracking is enabled by sensors worn in the shoulder pads of all

players in each game. The chosen dataset contains this tracking data at a frequency

of 10hz, which has demonstrated high positional accuracy and sufficient sample sizes

for the analysis at hand. We elaborate more on both the sport of American football

and the dataset being used in Chapter 3.

1.5 Contributions

Here I explicitly describe the key contributions presented in this thesis that build on

top of existing work and leverage a publicly available NFL player tracking data set.

17



1.5.1 Extraction of Force from Tracking Data

Building on top of the Keller model of sprinting and using simple kinematics, we

demonstrate a system to automatically derive the net antero-posterior ground reaction

force of a sprinter using only high-frequency velocity and acceleration signals that

capture player motion. We apply Savitzky-Golay filtering and additional custom

post-processing functions to arrive at the final force derivation. Once we have high-

frequency, reliable force data of the same dimension as the input velocity vectors, we

can produce force-velocity profiles for any input sequence.

1.5.2 Parameter Fitting for Sprint Model

We perform a least-squares parameter fitting on every sprinting segment in the dataset

to determine the critical parameters 𝑓 and 𝜏 that arise from the Keller model of

sprinting. These parameters encode the relative level of "effort" being output by a

player in a given sprint segment and can be used to determine a player’s maximum

available sprinting load. We provide a derivation for a new differential equation that

builds upon the Keller model and accounts for both internal dissipation forces within

muscles and external forces caused by drag via air resistance.

1.5.3 Computation of Upper Envelope

Once we extract force-velocity pairs from the high-frequency tracking data, we pro-

pose several methods for computing an upper bounding envelope, which becomes

the true force-velocity "profile" for a given athlete. We compare the efficacy of each

approach for envelope fitting with their relative strengths and weaknesses. This is

a critical step in our pipeline since the upper envelope is the final output that is

visualized for a human user of the system.

1.5.4 Positional Comparison and Outlier Analysis

After deriving individual force-velocity upper envelopes for all players in the dataset,

we perform multiple rounds of evaluation to find trends and patterns at both the

18



player and positional levels. We observe profile behavior that is consistent with pre-

viously known football knowledge, as well as identifying players who have statistically

significant force-velocity deficiencies or surpluses, when compared to the mean and

standard deviation of their given position group.

1.6 Outline

In Chapter 2, we discuss the previous work in the space of sprinting analysis, force-

velocity profiling, and current tests used by sports teams. In Chapter 3, we describe

the problem formulation for automated force-velocity profiling and the dataset used

for analysis. Chapter 4 provides an overview of how we compute the upper force-

velocity envelope used to compare across players. In Chapter 5, we provide experi-

mental results that show the efficacy and value of our force-velocity envelopes. Chap-

ter 6 contains conclusions we have drawn from this research along with suggestions

for potential future work.
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Chapter 2

Related Work

In this chapter, we discuss prior related work when it comes to understanding the force

dynamics of sprinting, similar attempts to quantify the force-velocity relationship, and

current intrusive methods for collecting force-velocity profile data in practice.

2.1 Force-Based Model of Sprinting

Numerous studies have been conducted in recent decades to better understand the

biomechanics of sprinting and develop intuitive models for researchers when analyzing

a sprinting context [17] [35] [25]. Canonical work in this space comes from Keller with

his formulation for the optimal velocity a runner should target when attempting to

win a race [22]. In particular, the problem formulation seeks to solve for an optimal

velocity function 𝑣(𝑡) that allows a runner to run a race of distance 𝐷 in the shortest

amount of time 𝑇 . Appendix A contains a full re-derivation of Keller’s results, but

a key attribute of the solution includes the incorporation of a resistive force per unit

mass characterized by 𝑣
𝜏
, where 𝜏 is a constant for a particular athlete in a given

sprint session.

Keller’s fundamental model also introduces the encoding of the muscular output

force of the athlete 𝑓 as being directly tied to their output velocity in a decaying

manner. In particular, given a maximal mass-normalized muscular output force 𝐹

and internal dissipation force constant 𝜏 , Keller shows that the optimal velocity of

21



Figure 2-1: The velocity function derived from the Keller model of sprinting, with a
clear asymptote.

the runner during a full-effort sprint interval is given by

𝑣(𝑡) = 𝐹𝜏(1 − 𝑒−𝑡/𝜏 ). (2.1)

Figure 2-1 shows the shape of this function, with values for 𝐹 and 𝜏 derived

by Heck and Ellermeijer [16]. This decaying velocity form has been replicated in

several additional studies, validating Keller’s theoretical approach [10] [25]. Once

this understanding of velocity output is known, it can then be applied as a mecha-

nism for actually optimizing that curve, by increasing the maximal mass-normalized

muscular output force 𝐹 and/or adjusting the internal dissipation force constant 𝜏 .

Keller’s force-driven model is certainly not the only one that is well-suited to char-

acterize sprinter velocity behavior. Power balance models can also provide valuable

insights that originate from fundamental concepts of energy conservation that are

non-mechanical (i.e. elastic energy, heat, chemical energy, etc.) [16].
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Keller’s original base sprinting model only relies upon the internal muscular dis-

sipation force characterized by 𝜏 to account for a long-term decay in the output

sprinter velocity. From experimental results and knowledge of aerodynamics, we also

know that resistance forces from drag can also play a role. Heck and Ellermeijer [16]

demonstrate empirical results using a wind-adapted Keller model for sprinting, where

the acceleration depends positively on the propulsive output force, but negatively on

resistive and drag forces, given by

𝑣′(𝑡) = 𝐹𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑡) − 𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒(𝑡) − 𝐹𝑑𝑟𝑎𝑔(𝑡). (2.2)

Substituting in a maximal constant propulsive output force 𝐹𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑡) = 𝐹 ,

a linear resistive force 𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒(𝑡) = 𝑣(𝑡)/𝜏 , and a quadratic drag force 𝐹𝑑𝑟𝑎𝑔(𝑡) =

𝑐(𝑣(𝑡) − 𝑤)2, where 𝑐 is a drag coefficient and 𝑤 represents any non-negligible wind

velocity, they arrive at the following form of acceleration:

𝑣′(𝑡) = 𝐹 − 𝑣(𝑡)/𝜏 − 𝑐(𝑣(𝑡) − 𝑤)2. (2.3)

These fundamental sprinting models are critical for our work as they allow us

to perform parameter fitting and back-solve for parameters like 𝐹 and 𝜏 on each

sprint instance, providing insight into player sprint tendencies and adding a layer of

information on top of the raw force-velocity profile.

2.2 Force Velocity Profiling of Sprinters

Force-velocity profiling is a common and well-understood method that has been ap-

plied in many athletic contexts, including weight lifting [42] [13], vertical and hori-

zontal jumping [21] [31] [20], and sprinting [31] [38]. In all of these contexts, there is

a common process of setting up a controlled test environment with whatever sensor

technologies are required (i.e. velocity gates to track speed over a fixed distance [30],
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GPS technology to get high-frequency positional information [23]), having the ath-

lete go through a particular set of motions, and then generating the profile with any

required post-processing techniques.

Taking the time to perform force-velocity profiling is critical for a sports organiza-

tion as it allows them to identify player-specific deficiencies in either force, velocity, or

in some cases, both [21]. This is not only useful from a tracking and data collection

standpoint but also can directly impact athlete performance in sport-specific con-

texts and also has a significant relationship to player injury and recovery [27]. Once

a force-velocity profile has been collected for a particular athlete, team performance

staff, coaches, and the athlete herself can use this information to build a baseline level

of performance, track changes in that baseline, and adjust training load and exercises

as need to achieve a given target profile level.

For instance, athletes that are force-deficient but have exceptionally high velocity

readings may benefit from a snatch lifting technique versus a hang clean in cer-

tain contexts [37]. This level of personalization and understanding of the athlete is

greatly enhanced by accurate data collection and generation of force-velocity profiles.

Force-velocity profiles are not necessarily a perfect and consistent measure of athlete

performance when the number of training sessions is small [44], so they should be

considered in the long run tracking of an athlete.

In the specific context of sprinting, the force-velocity profile can be used to de-

termine key strengths and weaknesses an athlete may have during the phases of

running. Just as weight lifting exercises have eccentric and isometric loading phases,

a sprinter has to deal with multiple phases including initial acceleration, transition

to full sprinting, and finally full sprinting. The force-velocity profile of runners can

differ depending on their specialty; for instance, the profile of a sprinter may show

stronger horizontal force production than that of a hurdler, who has to balance both

horizontal and vertical force production [41]. Across different sports, these differences

are much more clear and indicate that specialization and focus on (or lack thereof)

sprinting technique has a direct influence on the observed profiles [15].
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Figure 2-2: An athlete performing a weighted sled pull exercise to measure their
force-velocity relationship [6].

2.3 Existing Football Testing for Force-Velocity Pro-

filing

As our thesis focuses on force-velocity profiling in the sport of American football,

it is critical to identify current approaches and prior work in this space. As far as

collecting force-velocity profile data goes, several more intrusive methods are already

in use. One common test is the weighted sled pull, where an athlete must pull a

pre-determined amount of mass over a fixed distance [11] [32]. Timing gates or other

tracking devices can be used to measure the velocity of the athlete, and the force is

based on the mass on the sled, which is varied across trial runs to trace out a profile.

Figure 2-2 shows an example of an athlete performing this exercise.

This exercise has been shown to provide valuable insights into the force-velocity

profile of an athlete but takes time away from other training sessions. Also, its

accuracy is limited by the number of trials that are run, with each trial only providing

a single snapshot of the athlete’s performance at that given mass. An understanding

of these current methods and their limitations helps to motivate the need for an

automated force-velocity profile calculation system, which we outline in the next two

chapters.
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Chapter 3

Force-Velocity Derivation from NFL

Tracking Data

With the prior work and context of force-velocity profiling established, we turn to

the specific work of this thesis: automated force-velocity profile derivation using only

high-frequency tracking data from the National Football League. In this section, we

outline the dataset used for the analysis, as well as how we extract sprinting segments,

conduct player-specific parameter fitting and signal smoothing, and finally compute

the output force given an input velocity and acceleration.

3.1 Football Definitions

Before diving into specific statistics and distributions within the dataset used, it is

critical to clarify key football definitions. As a precursor, it is worth noting that the

following explanations are intended to be high-level and provide sufficient background

information for this thesis. Many details are omitted or intentionally simplified.

The sport of American football involves two opposing teams executing plays

against one another, with the offensive team attempting to drive the football toward

the end zone of the opposing defensive team. There are specific positions for both

the offense and defense. The typical offensive positions (with their corresponding

abbreviations) are quarterback (QB), running back (RB), wide receiver (WR), tight
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Position Name Abbreviation Side of Ball
Quarterback QB offense
Running Back RB offense
Wide Receiver WR offense
Tight End TE offense
Offensive Lineman OL offense
Defensive Lineman DL defense
Linebacker LB defense
Defensive Back DB defense

Table 3.1: List of football positions and abbreviations.

end (TE), and offensive lineman (OL). The typical defensive positions are linebacker

(LB), defensive back (DB), and defensive lineman (DL). There are subcategories and

numerous intricacies within each of these larger position groups, but for this thesis,

we will ignore them. Table 3.1 contains this information in a more structured format

for reference.

On each given play, the offensive team has the option to choose from a variety

of formations (the relative positioning of the players on the field). This defines the

initial player configuration in the x-y space of the field. From there, offensive players

are very restricted in their motion leading up to the point when the ball is snapped.

The snapping of the ball is simply the transfer of the ball from the center (a member

of the offensive lineman position type) to the quarterback. The defensive team, on

the other hand, is allowed to move freely in the moments leading up to the snap,

so long as they do not cross the line of scrimmage (a horizontal line oriented at the

𝑥 position of the ball in the field space). Figure 3-1 shows how the aforementioned

positions are distributed on the field in a simple play scenario.

Both teams put a great deal of thought and strategy into how they move on the

field during a given play. For the offense, this process begins with calling a certain

play type. A run play is one in which the football is transferred directly from the

quarterback to a running back (usually), who then carries the ball and attempts to

run as far as they can toward the opposing team’s end zone. A pass play, on the other

hand, is one in which the football is thrown by the quarterback to another member of
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Figure 3-1: An overhead view of how player locations at the start of a football play.

the offense. No matter the play type, the play ends in one of several main ways: (1)

when a member of the defensive team tackles the current carrier of the ball, which

involves physically forcing the offensive player to touch the ground, (2) a the current

carrier of the ball steps outside the defined playing area, or (3) a score is made by an

offensive player (i.e. by holding in the ball within the opponent’s end zone).

3.2 Dataset Description

Our work relies entirely upon a publicly available dataset hosted on Kaggle, which

contains data for every single passing play in the 2018 NFL season [3]. While it does

not contain any running plays, we still feel confident in its ability to provide a holistic

view of player performance, as players tend to sprint longer distances on pass plays

anyway. The NFL Big Data Bowl is a relatively new annual competition hosted by

the National Football League as a means to promote data analytics efforts in the sport

and develop novel technologies in a crowdsourced, team-based environment. We do
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Number of Unique Games 253
Number of Players 1,303
Number of Plays 19,239
Total Number of Rows @ 10hz 18,309,388

Table 3.2: Key statistics from the public Kaggle tracking dataset.

not make any submission to the competition, nor do we use the data for its original

intended prompt in the competition [2]. The data was collected using RFID sensors

with geo-positional capabilities that were placed in the shoulder pads of players during

all regular-season games [5]. Table 3.2 shows a summary of key statistics within the

dataset, with the most notable figure being over 18 million unique tracking data point

instances across the entire season, sampled at a frequency of 10hz.

The dataset is organized into 3 key subsets: games, players, and plays. The games

subset contains metadata on each game that took place during the 2018 NFL regular

season, including the date and time the game took place, the week number, and

the two teams playing in the game. The players subset contains metadata on each

player that played during the season, including their name, height, weight, date of

birth, college, position name, and a unique identifier. It is worth noting that linemen

are not included in this dataset, since it was originally intended to only be used for

passing plays. Finally, the most critical subset of the dataset comes in the form of

in-game tracking data. The dataset contains a single file for each week of the NFL

season (of which there are 17), with each file holding all of the tracking data for every

play that took place during that week.

Tracking data refers to data that holds time-series position, velocity, and accelera-

tion information for a set of players in an athletic context. The increasing availability

of this new type of data can unlock many new insights and dramatically improve our

understanding of sport dynamics, whether it comes to sport-specific expected points

analysis [24], or as a tool to improve player load management [40]. The market for

tracking data and associated collection systems is expected to be worth 7.3 billion

USD by the year 2023, showing the incredible upside organizations are placing on this

space [26]. Figure 3-2 shows how the x and y dimensions of the tracking data map
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Figure 3-2: Visual depiction of x and y coordinates on football playing surface [3].

onto the football playing field itself, with the x-direction being along the sideline and

the y-direction spanning the width of the field, from one sideline to another.

The dataset contains tracking data at a frequency of 10hz, or 10 data points per

second, per player, per play. Each data instance contains a unique timestamp, meta-

data for the player and currently play, and critical time-series tracking information

fields:

• x - the current x position of the player in yards

• y - the current y position of the player in yards

• s - the current velocity of the player in yards per second

• a - the current acceleration of the player in yards per second2

3.3 Extraction of Sufficient Segments

In Section 3.5, we will discuss our parameter fitting from play-level velocity signals

for a particular player. The form of the velocity function we fit stems from the Keller
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Figure 3-3: Using the critical points of a play’s velocity curve to extract increasing
and decreasing segments.

model with additional terms added to take account for drag forces experienced by

the athlete during sprinting. But, a key requirement of the model is that the athlete

must have sufficient time to accelerate at a maximal force for some time duration

𝑇 . As a result, we must extract segments when the player is either accelerating or

decelerating for some sufficient amount of time. After experimenting with various

threshold levels, we choose a minimum sprint segment length of 1 second.

We use a critical point calculation method to determine the local maxima and

minima of the velocity signals within the data. Figure 3-3 shows an example of our

detection of these critical points and corresponding mapping to a sequence type, which

is either increasing or decreasing (accelerating or decelerating, respectively). Figure

3-3 shows the selection of segments that are above our time threshold of 1 second.

3.4 Signal Smoothing and Differentiation

After extracting sufficiently long segments of accelerating or decelerating player move-

ment data, we perform an additional step of post-processing which involves applying
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Figure 3-4: Selecting segments that are at least 1 second in length.

a smoothing function to all time-series data. We also perform our differentiation of

position to get a velocity, and again to get acceleration. A big reason for the differen-

tiation step is that we do not have complete trust in the methodology or computation

by which the raw acceleration values were derived in the original dataset. Since accel-

eration is such a critical signal for force computation, as will be described in Section

3.6, we rely on high-fidelity positional data in this case and assume smooth differen-

tiation to get velocity and acceleration. From our analysis, the provided acceleration

signal is always non-negative and represents the magnitude of the derivative of the

velocity vector. We know, though, that certainly the players do not always have

a positive acceleration, as they have to slow down at some point. So, we use our

differentiation to get both velocity and acceleration data for consistency.

For the signal smoothing post-processing step, we apply a Savitzky-Golay filter

to the x and y positional data with a window length of 7 and a polynomial order of

2. These parameters have been chosen with the support of previous work in the MIT

Sports Lab when it comes to smoothing tracking data, led primarily by Ferran Vidal-

Codina. The Savitzky-Golay filter operates by applying a succession of convolutions
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Figure 3-5: Example of the effect of smoothing and differentiation for velocity and
acceleration.

of the given window size over the data vector, performing a linear least-squares fit of

the given polynomial order at each iteration to form a smooth curve over the entire

data region [39]. We leverage a cubic spline fit for interpolation and differentiation.

Figure 3-5 shows an example of how this smoothing and differentiation procedure can

enhance the data quality of our positional data.

3.5 Parameter Fitting

Signal smoothing, differentiation, and filtering based on sufficient segment length

are critical pre-processing steps we apply to our tracking data. Before computing
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a force-velocity function, we are interested in key parameters that were originally

introduced in the Keller model. Three key parameters are 𝑓 , the per-unit muscular

force exerted by the athlete, 𝜏 , a time constant that describes the effect of internal

muscular resistive forces on the athlete as they move, and 𝑣0, the initial velocity of the

athlete at the start of a sprint instance. Note that 𝑣0 does not appear in the original

Keller base model as it is assumed the runner is starting from rest. Our work must

include the potential for a non-zero initial velocity since there are sprint segments

where the athlete has decelerated previously, but not to a complete stop.

The units of 𝑓 are N kg−1, the units of 𝜏 are s, and the units of 𝑣0 are m s−1.

Appendices A and B contains a full derivation of the results for the velocity function

from the Keller model, as well as our appended model that accounts for drag forces.

For brevity, let us just re-state the final form for our velocity function 𝑣(𝑡) for an

increasing interval:

𝑣(𝑡) = 𝑓𝜏(1 − 𝑒−𝑡/𝜏 ) +
𝑘

𝑚
𝑓 2𝜏 2(2𝑡𝑒−𝑡/𝜏 + 𝜏𝑒−2𝑡/𝜏 − 𝜏) + 𝑣0𝑒

−𝑡/𝜏 . (3.1)

Figure 3-6 shows a plot of this new 𝑣(𝑡) over a 10 second interval, using derived

parameters from Heck and Ellermeijer [16]. You can observe the slight decrease in

the terminal velocity that is a result of the drag force considerations.

We apply parameter fitting for 𝑓 , 𝜏 , and 𝑣0 for every individual sprinting segment

in our dataset, after applying the previously described segment length filtering, signal

smoothing, and double differentiation. In Chapter 5, we provide an evaluation of the

results of parameter fitting across the entire dataset. In terms of implementation,

we define custom vector functions for 𝑣(𝑡) and utilize the curve_fit function from

the scipy Python package, which uses a non-linear least-squares fit function [4].

This function has the option to pass in bounds for our parameters, which we take

advantage of. The minimum and maximum values for 𝑓 , 𝜏 , and 𝑣0 are given in table

3.5. These values were chosen based on existing literature and domain knowledge

regarding feasible player performance of football players (i.e. reasonable velocities to
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Figure 3-6: Comparison of velocity functions with and without drag force.

Parameter Name Minimum Value Maximum Value
𝑓 0 10
𝜏 1 20
𝑣0 0 12

Table 3.3: List of boundary conditions for sprinting fit parameters.

achieve during a game). Figure 3-7 shows a few examples of the fit velocity function

against the actual data, for a few chosen sprinting intervals. Notice that the maximum

parameter value of 20 is observed with a relatively poor function fit, and the velocity

function does not closely resemble the smooth one seen in Figure 3-6. Our later

evaluation section describes the results of this approach and the rationale for observed

parameters.
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Figure 3-7: Example parameter fits for a few sprinting segments.
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3.6 Force Computation with Drag

Every filtered and processed sprinting segment affords us the ability to compute a

force-velocity profile. Once a reliable and smooth velocity and acceleration signal are

available at our desired 10hz frequency, we can employ the physical kinematics and

force relationship of an accelerating or decelerating sprinter to compute an output

force vector of the same dimension as the input velocity and acceleration. In our

case, since we are operating at a frequency of 10hz with a minimum segment length

of 1s, each sprint force vector will have at least 10 elements, units of N (Newtons).

Figure 3-8 shows the forces related to an athlete while they are undergoing both

acceleration and deceleration, which include a force from the ground, their body

weight due to gravity, and drag forces due to wind and aerodynamics. Let us clearly

define the notion of force that we mean when we generate a force-velocity profile. In

particular, we refer to the force 𝐹 as the net antero-posterior ground reaction force

(GRF) the runner generates at a given time instant. This means the force with which

the ground pushes back up against the athlete, in the forward/backward direction.

Two critical components control the magnitude of this force: the acceleration of

the athlete at the given time instant, and any resistive forces due to drag they are

also experiencing. First, let us take the example of a sprinter who is accelerating

(that is, their velocity is increasing in a given segment). To move at their desired

acceleration, they not only have to generate a force proportional to that acceleration

(weighted by their mass), but also overcome the effects of wind resistance that are

acting against them, which depend upon the square of their velocity and a player-

specific drag coefficient (which is derived from athlete mass, athlete height, and other

environmental constants).

For an accelerating segment with a velocity vector 𝑣(𝑡), acceleration vector 𝑎(𝑡),

athlete with mass 𝑚 and height ℎ, we have the following form for the athlete’s force

output vector 𝐹 (𝑡),
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Figure 3-8: The forces acting on an athlete while sprinting [18].

𝐹 (𝑡) = 𝑚𝑎(𝑡) + 𝑘(𝑣(𝑡) − 𝑤(𝑡))2, (3.2)

𝑘 =
1

2
𝜌𝐴𝑓𝐶𝑑, (3.3)

𝐴𝑓 = 0.0537985ℎ0.725𝑚0.425, (3.4)

𝐶𝑑 = 0.9, (3.5)

where 𝐴𝑓 denotes the frontal cross-sectional area of the athlete, 𝐶𝑑 is the drag

coefficient of a human, 𝜌 is the air density, and 𝑤(𝑡) is the wind velocity at a given

time instant. For our analysis, we assume a wind velocity of 𝑤(𝑡) = 0 (which we

recognize is an imperfect assumption) and assume an air density of 𝜌 that results

from standard air pressure of 760 torr and air temperature of 15 degrees Celsius

(or 59 degrees Fahrenheit). We recognize that temperature certainly affects athlete

speed when sprinting, especially in the sport of football which is usually outside and

is played in a diverse array of environmental conditions. We discuss these factors

further in our evaluation in Chapter 6.

To better leverage the data available to us, we not only utilize accelerating sprint
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segments for force data collection but also have developed a formulation that works

for decelerating segments where the football player is slowing down on the field (for

at least 1 second, the same segment length filter as before). Football is a dynamic

game where players are forced to change speeds, accelerations, and directions quite

often, all the while outputting a ground reaction force that we can extract. So, for a

decelerating segment, we derive a similar form for 𝐹 (𝑡) given by

𝐹 (𝑡) = −𝑚𝑎(𝑡) − 𝑘(𝑣(𝑡) − 𝑤(𝑡))2, (3.6)

with all the same definitions for constants and values as before. Note that 𝐹 (𝑡)

here is the magnitude of the force since the force-velocity profiles we would like to

generate only live in positive 𝐹 and 𝑣 space in R2. The two negative signs in equation

3.6 are worth exploring further. First, we negate the 𝑚𝑎(𝑡) term for the reason just

described - even though the runner is decelerating (their acceleration is negative) and

therefore creating a net ground reaction force in the opposite direction as before, we

want to preserve the magnitude of force as a positive value. The second term, which

takes into account drag effects, has a negative sign in front of it because, in the case of

deceleration, drag forces are actually "helping" the player to slow down, and therefore

subtract from the overall ground reaction force 𝐹 (𝑡) they have to create to generate

the desired deceleration 𝑎(𝑡) < 0.

When analyzing the form that 𝐹 (𝑡) takes for both accelerating and decreasing

segments, it is important to also note how the internal muscular dissipation effects

in the Keller model come into play, and distinguish the output ground reaction force

of the athlete 𝐹 (𝑡) from the initial muscular output force 𝑓 that is parameterized by

Keller. The critical assumption made by Keller is that for a given sprinting interval,

if the athlete is producing a "maximal" mass-normalized muscular output force 𝑓 ,

then 𝑣(𝑡) will take the form that it does and asymptote at 𝑣𝑚𝑎𝑥 = 𝑓𝜏 after a sufficient

amount of time (see Appendices A and B for derivation). Furthermore, the very

reason the velocity asymptotes is due to the internal muscular resistive forces that
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𝜏 allows us to characterize. So, the reason that we don’t need to also explicitly

subtract off some linear dissipation force term in our calculation of 𝐹 (𝑡) (the ground

reaction force generated by the athlete) is because it is already accounted for

in the acceleration vector. Over a given sprinting segment where the sprinter

has a positive acceleration (they are speeding up), the value of that acceleration is

decreasing over time due to tau. 𝐹 (𝑡) being a decreasing function in 𝑣 is driven

primarily by this decrease in acceleration. And this critical relationship is what

characterizes any given force-velocity profile.

Now, we have a corresponding force vector 𝐹 for any velocity vector 𝑣, accompa-

nied by its acceleration vector 𝑎 = 𝑣′. Applying this computation for every sprinting

segment, both accelerating and decelerating, for every player, play, and game in our

dataset, allows us to generate sets of points in 𝐹 − 𝑣 space for each player. Figure

3-9 shows an example scatterplot of this set of points for an example player in our

dataset, Tom Brady. (Note that we have applied some pre-processing routines to get

to this point set - Section 4.2 will go into more detail on these.)

Algorithm 1 summarizes the steps described in this chapter, which take us from

raw, high-frequency positional tracking data to data points in the force-velocity space.
Data: Tracking data from entire season, with game and player metadata
Result: Force-velocity points for every player written to file system
for player in players do

for game in games(player) do
for play in plays(player, game)) do

for sequence in subsequences(play) do
metadata = getMetadata(player, play);
𝑘 = computeDragCoeff(player, metadata);
𝑣, 𝑎 = smoothAndDifferentiate(sequence);
𝑓 , 𝜏 , 𝑣0 = fitParameters(𝑣, 𝑎, 𝑘, metadata);
𝐹 = computeForce(𝑣, 𝑎, 𝑘, metadata);
saveAllResults(player, play, game, etc...);

end
end

end
end

Algorithm 1: Force-velocity point calculation algorithm
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Figure 3-9: The set of all force-velocity points for Tom Brady.
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Chapter 4

Upper Force-Velocity Envelope

Computation

With these points processed in force-velocity space, the next logical step in our work

is to form a reasonable upper envelope to the data points for a given player, which

enables more robust comparison across players and positions and greater insights

for sports organizations. We have taken several approaches in our pursuit of upper

envelope fitting, which we outline in the sections below.

4.1 Problem Formulation

As defined in Chapter 4, we can extract force vectors given reliable, high-frequency

positional data and applying necessary post-processing. We are left with a set of

points 𝑃 ⊂ R2. Let us denote the length of 𝑃 as 𝑛 = |𝑃 |, and each element of 𝑃 is

a velocity-force pair (𝑣𝑖, 𝐹𝑖). Given this input, as well as any required metadata, our

goal is to produce an output upper envelope 𝐸(𝑣), which a curve that lives in the

same force-velocity space as our points 𝑃 . When we say that 𝐸 is an upper envelope,

we mean that in some heuristic sense (to be elaborated on later) it defines an outer

boundary to the top and right of a "good" subset of points in 𝑃 . Semantically, we

want 𝐸 to define, for a given input velocity 𝑣, a confident measure of the best output

force the athlete is capable of achieving at that velocity. This problem is quite
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similar to that of finding the critical power curve in the sport of cycling, as described

earlier in Section 1.2.

There are several attributes and tradeoffs under consideration that make this an

interesting and valuable technical challenge. First, some extraneous points can arise

from our force-velocity computation that are not necessarily representative of the true

upper force envelope a given football player is capable of. In addition, the method

of envelope fitting must be robust enough to handle the point sets 𝑃 for each player,

which may have a very different distribution across various players and/or positions.

Solutions that may work well for some players may fail to capture an accurate envelope

for others. Finally, the envelope calculation approach must be relatively efficient from

a runtime complexity standpoint to make it a tractable analysis option.

With this problem formulation established, we present several of the approaches

for upper envelope computation utilized in our work. We present the pros and cons

of each approach and how each might be utilized in specific contexts.

4.2 Common Pre-Processing Routines

For all of the calculation approaches described below, we employ a few common pre-

processing routines that act as filters on the original point set 𝑃 . First, we only

consider points (𝑣𝑖, 𝐹𝑖) for which both 𝑣𝑖 and 𝐹𝑖 are non-negative. The reason we

have to apply this filter is that some 𝐹 points can stray slightly negative when we

compute force vectors. This initial filter trims the bounds of 𝑃 so we know with

certainty that all the points under consideration are in the top-right quadrant of R2,

which makes all further reasoning much simpler.

Next, we have identified through simple visualization that some force-velocity

points are well outside what a tractable range would be, even for an NFL athlete,

who is among the most powerful in the world. In our dataset, as described in section

3.2, we only have data for passing plays and only for non-lineman positions. Since

linemen are some of the biggest players on the field, both in terms of mass and height,

we do not consider them in our estimation of reasonable upper force bounds.
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Figure 4-1: Average weight of each position group in our dataset.

Figure 4-1 shows the average weight of the players in our dataset (in pounds),

grouped by their relative position. For our purposes, let us take a reasonable upper

mass of a player in our dataset to be 275 pounds, which is equivalent to 124.738 kg,

which we define as 𝑚𝑚𝑎𝑥. We also take into consideration the maximum observed per-

unit muscular output force observed in the literature. (Note that while we already

have recognized in section 3.6 that the per-unit muscular output force 𝑓 is not linearly

proportional to the observed ground reaction force 𝐹 , we can still use it here for a

rough heuristic.) Heck and Ellermeijer [16] demonstrate empirical evidence that Carl

Lewis, who ran in the 100-meter final at the IAAF World Championships in Athletics

of 1987 in Rome, achieved a value of 𝑓 = 9.2 kg N−1. Let us take this as an over-

estimation of the maximum 𝑓 one of our football players could achieve, 𝑓𝑚𝑎𝑥. Taking

𝐹 = 𝑚𝑚𝑎𝑥𝑓𝑚𝑎𝑥 as a heuristic for a maximum expected ground reaction force, we get

𝐹 = 1147 N. So, we feel confident that the players in our dataset will not reasonably

achieve force output levels above the horizontal divide 𝐹 = 1000 N. As a result, all

subsequent plots have a maximum 𝐹 value of 1000 in the y-direction, and we filter

out any (𝑣𝑖, 𝐹𝑖) points in 𝑃 where 𝐹𝑖 > 1000.
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Figure 4-2: Example point scatter plot showing need for additional filtering.

In addition, we know that 𝐹 should be a clear decreasing function in 𝑣. However,

there is a small subset of data points that appear with both a high value of 𝐹 and

𝑣, which should not be incorporated in the upper envelope for a particular player.

To remove these points from consideration, we apply a simple linear filter to the

remaining points in 𝑃 , removing any points (𝑣𝑖, 𝐹𝑖) where 𝐹𝑖 ≥ 1000 − 50𝑣𝑖. Figure

4-2 shows examples of some of these extraneous points and the linear filter being

applied to discard them.

Finally, we also do not generate envelopes that have less than 1000 unique force-

velocity points; that is, players for which |𝑃 | < 1000. We apply this step because we

do not want to bias any evaluation with non-representative envelopes from players

who did not see enough time on the field to truly showcase their talents. A critical

assumption when computing the upper envelope is that it is truly a representative

limit of their force-to-velocity output. So, if a player only was on the field a few times,

it is unlikely that the point sample 𝑃 is a true sampling of their latent underlying

force-velocity distribution.

It is also worth noting that just as we set a custom limit for 𝐹 at 1000, we set a

custom limit for 𝑣 at 10 m s−1. In our dataset, very few (if any) points are above this
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threshold, so we use it to define a clear boundary for the x-axis and standardize all

of our generated force-velocity plots and envelopes.

4.3 Simple Percentile Envelope

The first upper envelope calculation approach is relatively straightforward and in-

volves a simple binning and percentile approach. The intuition here is the same as

the one described previously: we want to include most points in 𝑃 below the enve-

lope, but not all of them, as there can be outlier points that can dramatically influence

the location of the envelope. This is where the utilization of a percentile is valuable.

We can specify a certain percentile threshold, and only take points that fall under

that percentile.

In particular, we specify both a number of bins 𝑏 and a percentile level 𝑝. We

divide the point set 𝑃 horizontally into 𝑛 equally sized bins on the range [0, 10] (the

velocity dimension). Within each bin j, let 𝑃𝑗 be the points within that bin. In

particular, 𝑃𝑗 = { ∀(𝑣𝑖, 𝐹𝑖) ∈ 𝑃 | 10𝑗/𝑏 ≤ 𝑣𝑖 ≤ 10(𝑗 + 1)/𝑏}. For each bin subset 𝑃𝑗,

we compute the point at the 𝑝-th percentile of force, and define that force value 𝐹𝑗

as the representative value for that bin. Let 𝐸̂ be the vector of representative force

values, 𝐸̂ ∈ R𝑏.

However, 𝐸̂ is not the final envelope we return from the procedure. This is because

the bin size 𝑏 cannot always be large enough to generate a smooth enough envelope.

There is a fundamental tradeoff here, though, as there is a benefit to using a not-too

large bin size, since the larger each bin 𝑃𝑗 is, the more representative its force value

𝐹𝑗 becomes. So, rather than just naively increasing 𝑏 to the desired frequency, we

simply re-sample 𝐸̂ at a higher frequency using cubic spline interpolation, sampling

𝑠 >> 𝑏 points over our velocity interval [0, 10]. We iteratively arrived at a bin count

of 𝑏 = 15 and re-sample count of 𝑠 = 40. For the percentile value 𝑝, we use 99.5% to

truly capture as many points as possible while still removing undesired outliers.
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4.4 Percentile Polynomial Fitting

The approach described in the previous section to perform a fit via binning, percentile

computation, and a resulting cubic spline fit is a good initial approach. However, it

does have the downside that the final cubic spline fit uses very local polynomial

approximations to form the curve. This approach can lead to upper envelopes that

have un-intuitive curves and depressions that may be overfitting to the point set 𝑃 .

So, the next step in our progression of envelope calculations is to use a global

polynomial fit over all of the points in the percentile vector 𝐸̂. This is implemented

using the polyfit function from the numpy Python package, which uses a least-squares

loss function in its optimization. This allows us to also customize the polynomial

degree for the fit, which we select to be 5.

Figure 4-3 shows a comparison of the cubic spline and polynomial fits for a few

example players. The global polynomial fit does a better job of capturing the envelope

in a single smooth curve. But, it does lack the granularity of the cubic spline when it

comes to certain depressions that occur at intermediate velocities in the force-velocity

profile. This granularity may not be necessary though to still achieve a good profile.
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Figure 4-3: Comparison of cubic spline vs global polynomial envelope fitting strategies
for select players.
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Chapter 5

Evaluation

In this Chapter, we show various methods of evaluation we used to validate the

results from our force-velocity envelope calculation, described in the previous chapter.

Multiple figures and visualization types are provided to shed insights on patterns

observed in the resulting profiles. We perform comparisons at both the player and

positional levels. We also look at the effects of mass normalization on the envelopes

and the results of the parameter fitting conducted on sprinting segments.

5.1 Positional Averages Analysis

Once a valid force-velocity upper envelope curve 𝐸(𝑣) is computed for all players in

the dataset, a natural initial question is to compare the envelopes from the point

of view of positions on the football team. As described in Section 3.1, the sport of

football is not one-type fits all in terms of the players who compete. The physical

and mental attributes required to be a successful quarterback (QB), for example,

are quite different from those of a wide receiver (WR), or even a linebacker (LB)

on the opposite side of the ball. It is critical to take this positional context into

account when analyzing the resulting force-velocity profiles. Sports performance staff

of football organizations are also quite aware of these position-specific differences, so

an analysis that respects such differences is critical in conveying to them the value of

our novel calculation system.
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Figure 5-1: Comparison of average upper envelopes for select positions.

Figure 5-1 shows a comparison of the average force velocity envelope of a few

critical positions in the dataset (defensive back, linebacker, tight end, wide receiver,

and quarterback). It also contains a line for the average envelope across all players in

the dataset, which serves as a baseline to easily compare against. Figure 5-2 shows

the difference of each position against that baseline, which forms the x-axis of the

plot.

An analysis of these positional averages validates existing insights into the sport of

football while also providing opportunities for discoveries. First, one notes that some

positions have clearly higher force values at lower velocities, including linebackers

and tight ends. But, those same positions have clearly lower force values at high

velocities, mostly because they rarely achieve those top speeds and cannot generate

as much force there. Other positions, like defensive backs and wide receivers, have

the opposite pattern, with force values below the average at low velocities, but then

higher profiles at high velocities. This differentiation between positions is likely a

direct reflection of what these players are asked to do - skill players seek to maximize
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Figure 5-2: Normalized comparison of average upper envelopes for select positions.

top-end speed, while linebackers and tight ends are focused on high acceleration and

power at the start of a play. It is also worth noting that quarterbacks are well below

the overall average at every velocity level. The quarterback position generally is

not asked to move and accelerate at the level of the other players (certainly with

exceptions). This could be a major factor in them having a lower profile. This does

not necessarily mean that this is the best profile they are capable of, but rather that

this is the best profile we have observed in the data.

It is worth considering, though, how the role of player mass contributes to the

envelopes and results being observed here, especially in the case of positions that are

force-efficient at low velocities. Recall the distribution of average player mass seen

in Figure 4-1. Section 5.4 provides a deeper look into these effects and how we may

consider them moving forward.
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Figure 5-3: Comparison of force distributions at two fixed velocity values.

5.2 Fixed-Velocity Comparison

The previous section provides promising results that the resulting force velocity pro-

files are in line with football domain knowledge about relative positional strengths.

Another lens through which we can analyze our profiles, though, is through the lens

of a force distribution at a fixed velocity. This adds a dimension that not only con-

siders the mean profile across all athletes in a given position, at a given velocity, but

also the deviation of force values within a given position. Figure 5-3 provides us the

opportunity to do just this. It shows the force distribution at two fixed velocity values

(𝑣 = 1 and 7 m / s), for three chosen positions of interest: quarterback (QB), wide

receiver (WR), and linebacker (LB).

To derive this visualization, we gather a vector of force values for every player

in a given position, at the given query velocity 𝑣. Then, we apply a kernel density

estimation (KDE) strategy using the kdeplot function from the seaborn Python

package. (Note that section 5.4 examines this same method in the presence of mass
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normalization.)

First, let us examine the means of the resulting distributions for each position and

velocity value. At the low velocity, we see higher force values across the board, which is

to be expected. In particular, at the low velocity, linebackers have the highest average

force, followed by receivers, and then quarterbacks with a significantly lower mean.

At the high velocity, we see receivers overtake linebackers in terms of the highest

mean force, with quarterbacks still in third. These results align well with known

football context, especially when it comes to the passing plays that are present in our

dataset. Linebackers, given their greater mass and more explosive, powerful playing

style, generate higher force values at the lower velocity, which would likely be during

the initial acceleration phase at the start of a pass play when they drop into coverage.

Conversely, receivers can reach a higher top-end speed with greater frequency, causing

their force distribution at that high velocity to have a higher mean. In either case,

quarterbacks are not generating the same level of force as their position requires lower

acceleration, instead favoring smoother motion in the pocket or scrambling to make

a pass.

It is also worth analyzing the standard deviations of the distributions seen here.

The wide receiver position has a much larger standard deviation of force values at

the low velocity value than it does at the high one, where the concentration around

the mean force of ≈ 275N is higher. Conversely, the quarterback position experiences

an increase in deviation as we also increase the velocity. While there are many con-

founding factors at play here, one explanation may lie in the way these positions are

currently played in the NFL. At the wide receiver position, especially on pass plays,

there is a smaller deviation in terms of acceleration at the high velocity, which corre-

sponds to a smaller deviation in force. When a player is moving at that speed, they

have likely completed most of the acceleration phase of their sprinting segment. For

quarterbacks, on the other hand, there is much greater diversity in the playing styles

and movement patterns that may show themselves more clearly at higher velocities.
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5.3 Correlation to Player Performance

There are significant positional deviations of our calculated force-velocity profiles that

both match football intuition and provide opportunities for new analysis. Another

critical level of evaluation is to analyze players within the same position to

identify outliers on both ends of the envelope distribution.

This exercise of comparing players in the same position is critical for several rea-

sons. First, as previously mentioned, since football is such a highly context-dependent

sport, two players who do not share the same position are rarely evaluated and com-

pared against one another. (This is part of the reason why so much time is placed

on recruiting, scouting, and talent identification in the sport to find the best players

within each position separately, although teams have found a way to spend a sur-

prisingly low amount of money in that space [9].) Second, sports performance staff

cater their training plans depending on the position of the athlete, and often even

personalize plans much further than that level [19] [45]. So, placing an envelope in

the context of a player’s position is a key step in turning the calculated envelope into

actionable feedback for team personnel.

Figures 5-4, 5-5, 5-6, and 5-7 show an envelope comparison for the top 2 and

bottom 2 players in each of four critical positions that we feel are well-represented

in passing plays: wide receiver (WR), linebacker (LB), defensive back (DB), and

quarterback (QB). When we say "top" and "bottom", we are explicitly referring to

sorting by the total area between a given player’s envelope and the canonical envelope

representing the average for the given player’s position. Formally, if player 𝑖 has

envelope 𝐸𝑖(𝑣), and their position has average envelope 𝐸̄(𝑣), we define the "rank"

of player 𝑖 to be 𝑅𝑖, given by

𝑅𝑖 =
∑︁
𝑣∈𝑉

𝐸𝑖(𝑣) − 𝐸̄(𝑣), (5.1)

where 𝑉 is a set of velocity values that make up the domain of each envelope. After

computing these ranks, we simply take the top and bottom 𝑘 players by rank for each
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Figure 5-4: Top and bottom 2 envelopes for the wide receiver position.

position. For visualization purposes, we select 𝑘 = 2. Each figure also contains a

gray band representing 1 standard deviation of player force-velocity envelopes for

the given position. An important note regarding these figures is that data below 1

m s−1 or above 9.5 m s−1 should not be completely trusted. This is because that

the acceleration signal at low velocities is highly sensitive and not fully vetted by

the data provider. Also, the fitting technique used can create inconsistencies at

these boundaries. Our discussion of future work in Section 6.2 dives deeper into this

note. The included plots also show a gray band indicating the standard deviation of

envelopes for the given position, as well as black lines for the positional average (solid

line) and overall player envelope average (dotted line).

For the quarterback position, it immediately stands out that Patrick Mahomes has
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Figure 5-5: Top and bottom 2 envelopes for the linebacker position.
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Figure 5-6: Top and bottom 2 envelopes for the defensive back position.
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Figure 5-7: Top and bottom 2 envelopes for the quarterback position.
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the number 1 rank for the force-velocity profile. Without a doubt, Mahomes had an

incredible season in 2018, winning the AP Most Valuable Player, AP Offensive Player

of the Year, led the league in passing touchdowns during the regular season, and

was named First-Team All-Pro [7]. While many factors contribute to a performance

like that, one cannot deny the correlation between this elite level of play and his

top rank in the force-velocity space. His weight of 229 pounds is in line with the

average for all quarterbacks, so there is no bias there. His ability to excel above

the average quarterback envelope at all velocity levels (low, medium, and high) is a

clear representation of his physical abilities. And, at the quarterback position, these

attributes make him a standout and complement his unique playing style. On the

other end of the spectrum, we see quarterbacks like Taylor Heinicke and Colt McCoy

with particularly low force-velocity profiles. One interesting view is to consider if pure

speed is driving the difference in profiles. But, Colt McCoy and Patrick Mahomes

run a nearly identical 40 yard dash time [36]. So, the difference observed here is much

more likely related to acceleration ability and playing style. Our discussion of future

work in Section 6.2 dives deeper into how playing style can have an impact on these

results.

The wide receiver is another interesting position to analyze here. Mike Evans has

the top ranking profile in this position group, with force values approaching 900 N

for low velocities. (It is worth noting that Evans (225 pounds) is heavier than the

average for wide receivers (200 pounds), even after losing 15 pounds previously to

improve performance [46].) Julio Jones falls into a similar category. On the other

hand, Justin Hardy and Austin Carr fall more than 1 standard deviation below the

positional average. While they may get fewer plays and may simply have different

physical attributes when compared to Evans, this difference is still striking and one

that can be used to compare these players, both in terms of sports performance

optimization and player staffing decisions.
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5.4 Mass Normalization Analysis

As alluded to previously, there is a potential for our outlier analysis via rank com-

putation to bias toward players with a higher mass, since the computation of 𝐹 is

mostly determined by the 𝑚𝑎(𝑡) term. So, for the same four positions of interest as

before, we re-compute all player force-velocity envelopes, normalizing each player’s

envelope by their mass in kilogram. The resulting plots are normalized force-velocity

envelopes, with the units of the y-axis being N kg−1. Also, for completeness, we also

apply mass normalization in comparing the average envelopes for multiple positions

(Figures 5-12 and 5-13), the top and bottom two players per position (Figures 5-8,

5-9, 5-10, and 5-11), and in the fixed-velocity comparison (Figure 5-14).

After applying the mass normalization, there are a few interesting changes in

our player sets. First, for example, wide receiver Jakeem Grant becomes the top-

performing profile. Grant is a relatively small receiver (weighing only 161 lbs, while

the positional average is 200 lbs). Accounting for this mass differential, he becomes

the top profile, which means he must be both powerful and still fast despite his small

size. On the other hand, an elite player like Patrick Mahomes remains the top profile

for quarterbacks, even when accounting for different masses. Some players can have

a lower rank after mass normalization as well.

5.5 Parameter Fitting Results

Lastly, we must evaluate the results of the parameter fitting on sprint segments. We

perform parameter fitting to solve for the values of 𝑓 , 𝜏 , and 𝑣0 for all sprinting

segments, both increasing and segments. Equation 3.1 describes the form of 𝑣(𝑡) for

increasing segments. For decreasing segments, the velocity of the athlete takes the

form (see Appendix B for the full derivations)

𝑣(𝑡) = 𝑒−𝑡/𝜏 (𝑣0 − 𝑓𝜏(𝑒𝑡/𝜏 − 1)). (5.2)
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Figure 5-8: Top and bottom 2 envelopes for the wide receiver position, normalized
by mass.
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Figure 5-9: Top and bottom 2 envelopes for the linebacker position, normalized by
mass.
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Figure 5-10: Top and bottom 2 envelopes for the defensive back position, normalized
by mass.
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Figure 5-11: Top and bottom 2 envelopes for the quarterback position, normalized
by mass.
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Figure 5-12: Mass-normalized comparison of average upper envelopes for select posi-
tions.
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Figure 5-13: Zero and mass-normalized comparison of average upper envelopes for
select positions.
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Figure 5-14: Mass-normalized comparison of force distributions at two fixed velocity
values.
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Figure 5-15: Example of a convex velocity function causing problems for our param-
eter fitting with 𝜏 .

After all data processing and filtering is complete, we fit parameters for all valid

segments in our data corpus, of which there are 252,635 (both increasing and de-

creasing). There are several key lenses through which we view this data. First, we

observe that for velocity functions that have a convex shape on the given sprint time

interval, we often fit 𝜏 = 𝜏𝑚𝑎𝑥 = 20, since that is the best the fitter can do with a a

concave velocity function. Figure 5-15 shows an example of this behavior, and Figure

5-16 shows a comparison of the concavity of the function (which we measure using

the mean of the second derivative) against the fit value of 𝜏 . We can observe a large

concentration of segments with a fit value for 𝜏 of 20, with a vast majority of points

having a positive mean value for 𝑣′′(𝑡).

Overall, we observe the distributions for 𝑓 , 𝜏 , and 𝑣0 for all increasing segments in

the dataset, seen in Figure 5-17. It is immediately clear just how many segments have

a 𝜏 value of 20, with all other points having a more geometric distribution, falling off

as 𝜏 increases. Mass-normalized muscular force output values have a mean value of

3.05 N kg−1, and a standard deviation of 1.67. As far as initial velocity values go, 𝑣0

is very often close to 0, showing that most segments involve a player starting from

rest and accelerating, which is in line with the base assumption of the model.
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Figure 5-16: Comparison of concavity of velocity function to 𝜏 .

Figure 5-17: Distribution of 𝜏 values from our parameter fitting
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Chapter 6

Conclusion

In this final chapter, we provide some key insights gained through the result of work

and provide several opportunities for next steps and future work.

6.1 Key Insights

Our automated force-velocity calculation system produces viable envelopes for all the

players in our dataset. We demonstrate correlation against known player performance

and positional tendencies, giving our system initial credibility in the eyes of sports

performance staff, athletes, and other personnel who may stand to benefit from it.

In deriving our force-velocity profiles, there are several key insights and conclusions

discovered along the way that are worth noting.

First, in our incorporation of drag effects in our new wind-adapted Keller model,

we discover that the effects of air resistance and drag are small, leading to only about

a 5-6 % decrease of the terminal velocity at the end of the sprint segment with all

other variables (𝑓 , 𝜏 , 𝑣0 held constant). This is a critical insight as future system

iterations may choose to not include wind effects, with the understanding that the

global effect of this change on the resultant force-velocity profiles will be small.

Next, our work reinforced the understanding that player position is a critical

feature in the sport of football that must be taken into consideration. Researchers

working with this or other related datasets must be aware of the diversity amongst
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positions and factor that into any modeling. A quarterback cannot be viewed in the

same context as a receiver. But, there are similarities between wide receivers and

defensive backs that make them more easily comparable, for instance.

On the subject of context, another key insight is that general domain knowledge

of football is important for making sense of datasets in this area. Our particular

implementation, given the limited data including only pass plays, has very little to no

custom logic that only applies to football. We could easily pass in tracking data from

soccer, for instance, and generate profiles in the same manner (with some slightly

different pre-processing techniques). It is important to note, however, that football

is a highly context-dependent sport and that context must be taken into account.

For instance, the overall style of a given player or team certainly has a massive

effect on their force-velocity profile. As described earlier, Patrick Mahomes is a very

mobile quarterback, and the team he plays for (the Kansas City Chiefs) runs an

offensive scheme that is very conducive to his skill set. Therefore, it is not surprising

that his upper envelope would be the best in his quarterback position, whereas a more

"traditional" quarterback may have a lower envelope just by the nature that he is not

asked or expected to make more forceful/fast movements.

To conclude: the generated force-velocity profiles are not meant to be a single

measure of player performance or skill. Instead, they represent a clear view of the

best observed performance in a given dataset. This contribution is a critical stepping

stone and already serves as a useful tool for sports performance staff to simply measure

this data. The original goal of this work is to develop a more non-obtrusive system

for force-velocity profile generation. Our system achieves just that, leveraging existing

sensor technologies that players can easily wear in existing football environments,

avoiding the need for custom, time-consuming, distracting testing sessions.

6.2 Future Work

We recognize multiple areas for future improvement on top of this work. First, a

critical step will be the inclusion of more data into our existing framework, to enable
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fine-tuning of the calculated force-velocity profiles. Adding data from additional

football contexts will be critical; examples include running plays, special teams plays,

practice sessions, and other team workouts where players are sprinting. This would

provide a much more holistic picture of athlete performance and enable comparisons

across different environments, a critical step for sports performance staff. Additional

data sources should also be vetted for having higher-fidelity data at low velocities, as

this was a limitation of our current Kaggle dataset. We are pleased with our ability

to show promising results using only public data. Private data from particular teams

will enable much deeper insights with the potential for even better results.

Next, additional work can be done to take into account more environmental factors

when computing force values. Our current model assumes a constant temperature

and no wind, which is certainly not the case for many games during the NFL season.

Additional data sources are required here, and analysis should be run to determine

how much of an effect these variables would truly have on the output force since we

already know that drag forces only contribute a small amount to force.

Several strategies for force-velocity upper-envelope fitting have been attempted in

this work, but there is certainly room for improvement here. New objective functions

can be incorporated: rather than only trying to include a certain percentage of points

below the curve, the objective can be modified to also favor smooth curves with

certain endpoint conditions (i.e. must go to 0 around the right end of the point set

𝑃 ). This is a critical area for future improvement as the envelope curve is the key

function that users of the system will see - they often will be abstracted away from

the underlying point set 𝑃 that generated the envelope. We are also looking into the

option of using a contour fitting procedure to find the best envelope that takes in a

desired percentage of force-velocity points.

Sprint segment calculation can be improved to enhance the quality and reduce the

noise of small segments. Our current approach uses a simple critical point method and

then filters segments that are not of a sufficient time length (1 second). To get longer

segments, an additional post-processing step can be added to ignore small segments

and incorporate them into larger surrounding ones, as long as certain criteria are met.
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For example, if a player is accelerating for 2 seconds, decelerates for 0.3 seconds, and

accelerates again for 1 second, these individual segments could be concatenated to

create a total accelerating segment of 3.3 seconds.

Overall, we view many opportunities for future work to build upon this thesis.

Our work here lays out a framework for automated, non-intrusive force-velocity profile

calculation that can create actionable insights for sports organizations in American

football and beyond.

76



Appendix A

Keller Sprinting Model Derivations

Here we outline the velocity function derivation originally presented by Keller to form

a velocity function for a sprinter’s optimal performance in a race [22]. To be clear,

the objective is to find some function 𝑣(𝑡) so that a runner can run a distance 𝐷 in

the shortest time 𝑇 , where

𝐷 =

∫︁ 𝑇

0

𝑣(𝑡)𝑑𝑡. (A.1)

A critical contribution by Keller is the following differential equation, which relates

to the rate of change of velocity to the mass-normalized propulsive force 𝑓(𝑡) and a

linear resistive force 𝑣
𝜏
.

𝑑𝑣

𝑑𝑡
+

𝑣

𝜏
= 𝑓(𝑡). (A.2)

The intuition here is that the runner must output a force to accelerate at the

current rate and overcome internal resistive forces caused by their muscles. Keller

also assumes a maximum feasible output force, such that

𝑓(𝑡) ≤ 𝐹, ∀𝑡 ∈ [0, 𝑇 ]. (A.3)
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In order to solve for 𝑣(𝑡), Keller makes the assumption that the runner is able to

to sustain a maximal output force 𝑓(𝑡) = 𝐹 over some time interval subset 𝑡 ∈ [0, 𝑡1].

So we arrive at the differential equation form

𝑑𝑣

𝑑𝑡
+

𝑣

𝜏
= 𝐹, 𝑡 ∈ [0, 𝑡1]. (A.4)

Given the initial condition 𝑣(0) = 0, since the runner is assumed to be starting

at rest (we remove this requirement later in the appendix), we can provide a specific

solution for 𝑣(𝑡) given by

𝑣(𝑡) = 𝐹𝜏(1 − 𝑒−𝑡/𝜏 ). (A.5)
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Appendix B

Additional Velocity Function

Derivations

Here, we show our derivation of an adapted Keller model that takes into account

drag forces. We show how we arrive at a new velocity function formulation (the one

displayed in Figure 3-6). We also show a derivation for

B.1 Increasing Sprint Segment with Drag

From the base Keller model, we know that a sprinter undergoing acceleration at a

rate of 𝑑𝑣
𝑑𝑡

must obey

𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑣

𝜏
. (B.1)

First, let us solve for this equation when it is not necessarily the case that 𝑣(0) = 0.

We know that B.1 gives the following form for 𝑣(𝑡) when 𝑣(0) = 0:

𝑣(𝑡) = 𝑓𝜏(1 − 𝑒−𝑡/𝜏 ). (B.2)
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But, what if 𝑣(0) = 𝑣0? In this case, we get the following, more general form

𝑣(𝑡) = 𝑣0𝑒
−𝑡/𝜏 + 𝑓𝜏(1 − 𝑒−𝑡/𝜏 ). (B.3)

Now, we add an additional term to the original differential equation, where the

sprinter’s acceleration also depends on the square of their current velocity, accordingly

a small but still significant factor 𝜖 ≈ 𝑘
𝑚

, where 𝑘 is the drag coefficient and 𝑚 is the

mass of the athlete, since we are operating in mass-normalized terms:

𝑑𝑣*

𝑑𝑡
= 𝑓 − 𝑣*

𝜏
− 𝜖𝑣*2. (B.4)

Since we are adding some drag forces, the assumption is that our new modified

velocity function 𝑣*(𝑡) will just be some shift of our original velocity function 𝑣(𝑡)

that is linear in epsilon. Let this be our ansatz:

𝑣*(𝑡) = 𝑣(𝑡) + 𝜖𝑔(𝑡). (B.5)

To derive an approximate form for 𝑔(𝑡), we first plug in the ansatz into the original

relation for 𝑑𝑣*

𝑑𝑡
, giving us

𝑑𝑣*

𝑑𝑡
= 𝑓 − 𝑣(𝑡) + 𝜖𝑔(𝑡)

𝜏
− 𝜖(𝑣(𝑡) + 𝜖𝑔(𝑡))2. (B.6)

Differentiating the left side of B.5 and cancelling via B.1, we have

𝑑𝑣

𝑑𝑡
+ 𝜖

𝑑𝑔

𝑑𝑡
= 𝑓 − 𝑣(𝑡) + 𝜖𝑔(𝑡)

𝜏
− 𝜖(𝑣(𝑡) + 𝜖𝑔(𝑡))2, (B.7)

𝜖
𝑑𝑔

𝑑𝑡
= −𝜖𝑔(𝑡)

𝜏
− 𝜖(𝑣(𝑡) + 𝜖𝑔(𝑡))2. (B.8)
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We can expand out B.8. Since we only seek an approximation for 𝑔(𝑡), we drop

any terms that are larger than order 1 for 𝜖:

𝜖
𝑑𝑔

𝑑𝑡
= −𝜖𝑔(𝑡)

𝜏
− 𝜖𝑣2(𝑡) − 2𝜖2𝑣(𝑡)𝑔(𝑡) − 𝜖3𝑔2(𝑡), (B.9)

𝜖
𝑑𝑔

𝑑𝑡
= −𝜖𝑔(𝑡)

𝜏
− 𝜖𝑣2(𝑡). (B.10)

Now, we can cancel through by 𝜖, giving

𝑑𝑔

𝑑𝑡
= −𝑔(𝑡)

𝜏
− 𝑣2(𝑡). (B.11)

We know the form for 𝑣(𝑡) from B.3, which we can substitute here (for simplicity

and another approximation, we include the 𝑣0 term in our final solution form, but

not at this step). We let 𝑎 = 𝑓𝜏 and 𝑧 = −𝑡/𝜏 for brevity.

𝑑𝑔

𝑑𝑡
= −𝑔(𝑡)

𝜏
− 𝑎2(1 − 𝑒𝑧)2. (B.12)

Using an external differential equation solver, we arrive at the following form for

𝑔(𝑡):

𝑔(𝑡) = 𝑎2(2𝑡𝑒𝑧 + 𝜏𝑒2𝑧 − 𝜏), (B.13)

𝑔(0) = 0. (B.14)

We can now plug this back into our final form for 𝑣*(𝑡), giving us our drag-force-

adapted, non-zero initial velocity adapted velocity function

𝑣*(𝑡) = 𝑓𝜏(1 − 𝑒−𝑡/𝜏 ) +
𝑘

𝑚
𝑓 2𝜏 2(2𝑡𝑒−𝑡/𝜏 + 𝜏𝑒−2𝑡/𝜏 − 𝜏) + 𝑣0𝑒

−𝑡/𝜏 . (B.15)

81



82



Appendix C

Software Packages

This section includes a list of the different software packages and dependencies used

in the development of our automated force-velocity profiling framework. There may

be some sub-dependencies missing from this list. All of these packages are written in

the Python language.

1. pandas: Package for fast and efficient manipulation of tabular data

2. numpy: Efficient vector manipulation

3. matplotlib: Plotting library for all key visualizations

4. seaborn: Package for enhanced visualization and formatting

5. scipy: Parameter fitting and tuning for convex functions

6. scikit-learn: Smoothing and spline functionality for envelope computation
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