
Practical Methods for Scalable Bayesian and Causal
Inference with Provable Quality Guarantees

by
Raj Agrawal

B.A., UC Berkeley (2017)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2021

c○ 2021 Massachusets Institute of Technology. All Rights Reserved.
The author here by grants to MIT the permission to reproduce and to

distribute publicly paper and electronic copies of the thesis document in
whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2021
Certified by. .

Tamara Broderick
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Caroline Uhler
Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Accepted by .

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

Practical Methods for Scalable Bayesian and Causal Inference
with Provable Quality Guarantees

by
Raj Agrawal

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in Electrical Engineering and Computer Science

Abstract

Many scientific and decision-making tasks require learning complex relationships
between a set of 𝑝 covariates and a target response, from 𝑁 observed datapoints
with 𝑁 ≪ 𝑝. For example, in genomics and precision medicine, there may be
thousands or millions of genetic and environmental covariates but just hundreds or
thousands of observed individuals. Researchers would like to (1) identify a small set
of factors associated with diseases, (2) quantify these factors’ effects, and (3) test for
causality. Unfortunately, in this high-dimensional data regime, inference is statistically
and computationally challenging due to non-linear interaction effects, unobserved
confounders, and the lack of randomized experimental data.

In this thesis, I start by addressing the problems of variable selection and esti-
mation when there are non-linear interactions and fewer datapoints than covariates.
Unlike previous methods whose runtimes scale at least quadratically in the number
of covariates, my new method (SKIM-FA) uses a kernel trick to perform inference
in linear time by exploiting special interaction structure. While SKIM-FA identifies
potential risk-factors, not all of these factors need be causal. So next I aim to identify
causal factors to aid in decision making. To this end, I show when we can extract
causal relationships from observational data, even in the presence of unobserved
confounders, non-linear effects, and a lack of randomized controlled data. In the last
part of my thesis, I focus on experimental design. Specifically, if the observational
data is not adequate, how do we optimally collect new experimental data to test if
particular causal relationships of interest exist.

Thesis Supervisor: Tamara Broderick
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Caroline Uhler
Title: Professor of Electrical Engineering and Computer Science

2

Dedicated to my mom and sister.

Acknowledgments
I would like to start by thanking my two amazing advisors Tamara Broderick and
Caroline Uhler for all of their guidance, support, and feedback over the past four years.
I honestly could not ask for better advisors. They have provided me the freedom and
flexibility to pursue research topics I find interesting, and have helped me identify
impactful research questions. Looking back at my old work when I first started at
MIT, I can’t believe how much they have helped me in terms of becoming a better
scientific communicator and critical thinker. Beyond research, their genuine care for
me and everyone else in their groups has led to a very productive and supportive
research environment!

Next, I would next like to thank my committee member Devavrat Shah for helping
throughout the thesis submission process and for insightful comments. I would also
like to thank my undergraduate research advisor Noureddine El Karoui for getting me
started with research, and all my mentors I’ve had throughout my internships.

To all the friends and collaborators in Tamara and Caroline’s group, I want to
thank you for making research and MIT such a great experience. I would like to
give special thanks to Chandler Squires, Lorenzo Masoero, Brian Trippe, Karren
Yang, Jonathan Huggins, Trevor Campbell, Neha Prasad, and Uma Roy for working
on research projects with me. I would like to thank my other co-authors Karthik
Shanmugam, Daria Roithmayr, and Thibaut Horel as well.

Outside of research, I would like to thank Isabel Yang and the whole team at
ArbiLex for their support. I would like to thank Pritpal Kanhaiya, Jonathan Lin,
Manish Paranjpe, Vibhaalakshmi Sivaraman, and Eric Xu for the late-night Uber Eats
and movie nights. I want to thank Christian Lau, Vaikkunth Mugunthan, and Sarath
Pattathil for the weekly Friday walks and interesting discussions at the docks. I want
to thank Sameed Siddiqui for working out and spotting me at the gym, Chandler
Squires for the dinners and helping me put up my glass whiteboard, Lorenzo Masoero
for the best TA partner, and Schrasing Tong and Jason Yu for always accompanying
me to all-you-can eat at Olivera’s. I also would like to thank all my friends from
California, and give a special thanks to Kevin Li and Armin Askari for the fun research
brainstorming sessions.

Finally, I want to thank my mom and sister who have always been there for me as
well as my whole family.

4

Contents

1 Introduction 15
1.1 Prediction and Association . 16
1.2 Causality . 19
1.3 Targeted Experimental Design . 20

2 Data-Dependent Compression of Random Features for Large-Scale
Kernel Approximation 22
2.1 Introduction . 22
2.2 Preliminaries and related work . 24
2.3 Random feature compression via coresets 26

2.3.1 Algorithm derivation . 27
2.3.2 Theoretical results . 28

2.4 Experiments . 32
2.5 Conclusion . 35

3 The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise
Interactions in High Dimensions 37
3.1 Introduction . 37
3.2 Preliminaries and Related Work . 39
3.3 Bayesian Models with Interactions . 40
3.4 The Kernel Interaction Sampler . 42
3.5 The Kernel Interaction Trick: Recovering Posterior Marginals 45
3.6 SKIM: Sparse Kernel Interaction Model 46
3.7 Experiments . 47

4 The SKIM-FA Kernel: High-Dimensional Variable Selection and
Non-Linear Interaction Discovery in Linear Time 53
4.1 Introduction . 53
4.2 A framework for non-linear interactions and sparsity 55

4.2.1 Problem Statement . 55
4.2.2 Our contributions: an overview 55
4.2.3 Interactions and identifiability for nonlinear functions 56
4.2.4 How to achieve sparsity for nonlinear functions 57

4.3 Using two kernel tricks to reduce computation cost 58

5

4.3.1 Trick one: How to represent and access sparsity without incur-
ring the cost of a basis expansion 59

4.3.2 Trick two: A recursion to avoid a combinatorially large summa-
tion over interactions in the presence of covariate independence 60

4.4 How to get sparsity, interactions, and fast inference when covariates
are dependent . 62
4.4.1 Practical problems that arise when assuming independent co-

variates . 63
4.4.2 A change of basis to handle covariate dependence 64

4.5 Final algorithm and implementation details 65
4.6 Related Work . 68
4.7 Experiments . 69

4.7.1 Benchmark Methods . 69
4.7.2 Evaluation Metrics . 70
4.7.3 Synthetic Data Evaluation . 71
4.7.4 Evaluation on Real Data . 75
4.7.5 Impact of Correlated Predictors on the Functional ANOVA . . 76

4.8 Concluding Remarks . 77

5 The DeCAMFounder: Non-Linear Causal Discovery in the Presence
of Hidden Variables 79
5.1 Introduction . 79
5.2 Problem Statement: Causal Discovery in the Presence of Confounding 81
5.3 Existing Causal Discovery Methods 83
5.4 Our Method . 85

5.4.1 Sufficient Statistics for Recovering the DAG 85
5.4.2 Asymptotically Exact Estimates of the Sufficient Statistics . . 86
5.4.3 The DeCAMFounder Score Function 89

5.5 Experiments . 92
5.5.1 Simulated Data . 92
5.5.2 Real Data: Ovarian Cancer Dataset 97

5.6 Conclusion . 101

6 ABCD-Strategy: Budgeted Experimental Design for Targeted Causal
Structure Discovery 102
6.1 Introduction . 102
6.2 Preliminaries . 104
6.3 Optimal Bayesian Experimental Design 105

6.3.1 Budget Constraints . 107
6.4 Tractable Algorithm . 108

6.4.1 Expectation over (𝐺, 𝜃) . 108
6.4.2 Approximating Mutual Information 110
6.4.3 Greedy Optimization . 111

6.5 Experiments . 112
6.6 Concluding Remarks . 114

6

A Appendix for “Data-Dependent Compression of Random Features
for Large-Scale Kernel Approximation” 118
A.1 Proof of Theorem 2.3.4 . 118
A.2 Proof of Theorem 2.3.2 . 122
A.3 Runtime analysis of methods . 126
A.4 Impact of kernel approximation . 128

A.4.1 Kernel ridge regression . 128
A.4.2 Kernel SVM . 128
A.4.3 Kernel PCA . 129

A.5 Additional Experiments . 130

B Appendix for “The Kernel Interaction Trick: Fast Bayesian Discov-
ery of Pairwise Interactions in High Dimensions” 132
B.1 Modeling Multi-Way Interactions . 132
B.2 Proofs . 133

B.2.1 Proof of Proposition 3.4.1 . 133
B.2.2 Proof of Theorem 3.4.3 . 133
B.2.3 Proof of Theorem 3.5.1 . 134
B.2.4 Proof of Corollary 3.5.2 . 135
B.2.5 The General Kernel Interaction Trick 135
B.2.6 Proof of Proposition 3.6.1 . 136

B.3 Example Bayesian Interaction Models 136
B.3.1 Block-Degree Priors . 137
B.3.2 Sparsity Priors . 137

B.4 SKIM Model Details . 137
B.4.1 SKIM Details . 138

B.5 Variable Selection Procedure . 140
B.6 Woodbury Identity and the Matrix Determinant Lemma 141
B.7 Standard Polynomial Kernel . 142

C Appendix for “The SKIM-FA Kernel: High-Dimensional Variable
Selection and Non-Linear Interaction Discovery in Linear Time” 143
C.1 Proofs . 143

C.1.1 Proof of Proposition 4.3.2 . 143
C.1.2 Proof of Lemma 4.3.5 . 144
C.1.3 Proof of Proposition 4.4.1 . 145
C.1.4 Proof of Lemma 4.3.4 . 146
C.1.5 Proof of Theorem 4.3.9 . 147
C.1.6 Proof of Corollary 4.3.10 . 147
C.1.7 Proof of Proposition 4.5.1 . 147
C.1.8 Proof of Lemma 4.4.4 . 148
C.1.9 Proof of Theorem 4.4.5 . 148
C.1.10 Proof of Proposition 4.5.2 . 150

C.2 Literature Review . 151
C.3 Zero Mean Kernels and Finite-Basis Functions 152

7

C.4 MARS ANOVA Procedure . 152
C.5 Additional Experimental Results . 153

D Appendix for “The DeCAMFounder: Non-Linear Causal Discovery
in the Presence of Hidden Variables” 162
D.1 Proofs . 162

D.1.1 Proof of Proposition 5.2.1 . 162
D.1.2 Proof of Lemma 5.4.4 . 163
D.1.3 Proof of Theorem 5.4.1 . 163
D.1.4 Proof of Proposition 5.4.7 . 165

D.2 Score Fuction Details . 166
D.3 Generating Simulated Data . 166
D.4 Additional Figures and Experiments 167

D.4.1 Synthetic Data Experiments 167
D.4.2 Ovarian Cancer Dataset . 168

E Appendix for “ABCD-Strategy: Budgeted Experimental Design for
Targeted Causal Structure Discovery” 175
E.1 Proofs . 175

E.1.1 Proof of Proposition 6.3.2 . 175
E.1.2 Proof of Theorem 6.3.4 . 175
E.1.3 Consistency Counterexample 176
E.1.4 Proof of Theorem 6.4.1 . 178
E.1.5 Proof of Proposition 6.4.2 . 179
E.1.6 Constraint on the Number of Unique Interventions 179
E.1.7 DREAM4 Supplementary Figures 179

8

List of Figures

1-1 Hypothetical data-analysis pipeline broken up into three different stages:
association, causality, and experimental design. Dotted arrows represent
optional inputs, while solid arrows indicate necessary inputs. 15

2-1 Kernel matrix approximation error. Lower is better. Points average 20
runs; error bar is one standard deviation. 33

2-2 Classification accuracy. Higher is better. Points average 20 runs; error
bar is one standard deviation. 34

2-3 Log clock time vs. kernel matrix approximation quality on the Criteo
data. Lower is better. 34

2-4 We plot the relative Frobenius norm error against 𝑆 for 𝐽+ fixed at
5,000. The solid black line corresponds to the results found in Fig. 2-1. 35

2-5 Let 𝑆 = 20,000, 𝐽+ = 105. We plot the relative Frobenius norm error
vs. 𝐽 from 500 to 104. 36

2-6 The performance of GIGA versus Frank-Wolfe for the experiment
described in Fig. 2-1. Solid lines correspond to Frank-Wolfe and dashed
with GIGA. 36

3-1 Empirical evaluation of (a) time and (b) memory scaling with dimension
of marginal likelihood computation. Woodbury and Naive refer to the
baselines in Section 5.2. 47

3-2 The left-hand figure indicates the time to complete four parallel chains
of 1000 iterations of NUTS for the SKIM model proposed in Section 3.6
using KIS (denoted as SKIM-KIS) and FULL. For each point, KIS
had 𝑅̂ < 1.05 while FULL always had 𝑅̂ > 1.05. The right-hand
figure compares the runtime of inference for SKIM-KIS versus fitting
LASSO-based methods. 48

3-3 Variable selection performance of each method for the 36 synthetic
datasets. Each point in each plot indicates one of these datasets for
a particular method. The green regions in the second and last plot
indicate where our method in strictly better than the other two in
terms of variable selection, while the red region indicates the datasets
for which our method is strictly worse. In the first and last figures,
better performance occurs when moving right and/or down. 49

9

3-4 Each red cross denotes the difference in MSE of the hierarchical LASSO
and KIS from the true main effects (left) and pairwise effects (right)
for a given synthetic dataset. When the MSE difference is larger than
0 (i.e., the green shaded region), then our method is closer to the true
effect sizes in terms of Euclidean distance. Similarly, each blue x equals
the difference in MSE of all-pairs LASSO and our method. 50

4-1 The colors denote the contour plot of the function 𝑓 *(𝑥1, 𝑥2) = 𝑥1𝑥2.
Darker green indicates more larger values while darker red indicates
stronger negative values. The gray solid lines in the left and right hand
figures represent the density contours of 𝜇⊗ and 𝜇 in Example 4.4.2,
respectively. 63

4-2 Synthetic Data Test Functions. 71
4-3 Runtime Comparison on Simulated Data 74
4-4 Effect of Correlated Predictors on the Main Effect for 𝑥1 76
4-5 Effect of Correlated Predictors on the Concrete Compressive Strength

Dataset . 77

5-1 The right hand figure reparameterizes the model on the left such that
the unobserved variable (i.e., shaded node) is a source in the graph.
The green arrows represent the DAG corresponding to the conditional
distribution P(𝑥 | ℎ). 81

5-2 Maximum Mean-Squared Error (MSE) across all dimensions for esti-
mating 𝑠 via PCSS. Twenty-five total simulations were performed for
each dataset configuration. 94

5-3 Non-linear estimation of 𝐸[𝑥𝑖 | ℎ] via PCSS for nodes with at least one
parent. 94

5-4 Our parent set evaluation tasks. Green arrows represent the set of true
edges, and red arrows indicate incorrect edges. Dotted arrows indicate
a potential incorrect modifcation to the true parent set of a node. . . 96

5-5 Results for the Wrong Parent Addition and Correct Parent Deletion
tasks (lower values on the y-axis are better for both tasks). The data
are generated according to a non-linear SEM. 25 total simulations per
dataset configuration were performed. 98

5-6 The two genes most positively and negatively correlated with the
transcription factor NFKB1, respectively. GENE-pcss refers to the
total latent confounding variation estimated for that gene via PCSS.
GENE refers to the observed values of the gene. 98

5-7 Both genes have a correlation greater than 0.4 with NFKB1 (left hand
plot). After subtracting out the confounding variation estimated using
PCSS for each gene (denoted as “deconfounded” expression level), the
genes are no longer correlated with the unobserved transcription factor
NFKB1. 99

10

5-8 The x-axis denotes the proportion of times a method scored the in-
correct parent appended to the neighborhood set higher than just the
neighborhood set of a node (i.e., our proxy for the true parent set). The
y-axis denotes the proportion of times a method scored the full neigh-
borhood set higher than the neighborhood set after removing out one of
the neighbors. For LRPS, we provide the intermediate results for each
covariance matrix outputted along its cross-validation path. The black
‘x’ for LRPS corresponds to the performance of the covariance matrix
selected based on cross-validation. We compute the positive likelihood
ratio for each method which equals the ratio between our proxy for
the true positive rate (i.e., the y-axis) and false positive rate (i.e., the
x-axis). These ratios are as follows: Vanilla BIC=.26, PCSS+BIC=.33,
CAM=.42, CAM-OBS=.59, DeCAMFound= .72, LRPS+BIC=.12. . . 100

6-1 Illustration of active learning on a chain graph, beginning with a known
MEC on a simulated dataset with 𝑝 = 15 nodes. The brown circles
indicate the interventions selected in each batch. 115

6-2 Box plots for 50 runs of the random strategy versus our ABCD-strategy
on the graph in Figure 6.5 with 𝑝 = 11 and 𝑛 = 30 samples. The
horizontal line indicates the entropy of the prior distribution, i.e. uniform
over the MEC. Note that 𝑘 = ∞ corresponds to the case with no
constraints on the number of unique interventions. 115

6-3 Performance of intervention strategies for batch sizes 𝑏 as a function
of the total number of samples, computed from 50 Erdös-Rényi DAGs
with density 𝜌 = 0.25. 116

6-4 Top: DREAM4 ground truth 10-node network. Bottom: Performance
of intervention strategies on predicting the descendants of gene 0. . . 117

A-1 Kernel matrix approximation errors. Lower is better. Each point
denotes the average over 20 simulations and the error bars represent
one standard deviation. The HALTON sequence was used to generate
the quasi random features. 130

A-2 Classification accuracy. Higher is better. Each point denotes the average
over 20 simulations and the error bars represent one standard deviation.
The HALTON sequence was used to generate the Quasi random features.131

D-1 Results for the Wrong Parent Addition task. 25 total simulations
per dataset configuration were performed. See Section 5.5.1.2 and
Appendix D.4.1 for a description of the performance metrics. 169

D-2 Results for the Correct Parent Deletion task. 25 total simulations
per dataset configuration were performed. See Section 5.5.1.2 and
Appendix D.4.1 for a description of the performance metrics. 170

D-3 Results for the candidate DAG scoring task. 10 total simulations per
dataset configuration (i.e., linear / non-linear) were performed. 171

11

D-4 PCA scree plot when the input data matrix consists of the 486 observed
genes. Based on this scree plot, we select 𝐾 = 7 components for the
spectral methods. 172

D-5 Absolute value of correlations between TFs and the 486 observed genes.
Only TFs with at least 75 edges are shown. 172

D-6 Out of the 15 latent TFs, BIRC3 has the highest absolute correlation
with NFKB1 and the smallest absolue correlation with JUN. BIRC3-
pcss refers to the total latent confounding variation estimated for that
gene via PCSS. BIRC3 refers to the actual observed values of the gene.
BIRC3-pcss is correlated with NFKB1 (which is correlated with BIRC3)
and not correlated with JUN. 173

D-7 Top left: scatterplot of two genes that are conditionally independent
given each parents’ gene neighborhood sets and TFs but dependent
when removing the TFs. Top right: scatter plot of each gene for the
TF that has the highest correlation with both genes. Bottom left:
correlation with the transcription factor after removing the estimated
confounder sufficient statistics from each gene. Bottom right: weaker
correlation after removing the confounder sufficient statistics from each
gene. Since both genes are still marginally dependent given the TFs
without conditioning on the parent sets, the genes are still correlated
in the bottom right figure. 174

E-1 Each box represents the members of the interventional Markov equiva-
lence classes. For 𝐺* given in the bottom left box, the observational
Markov equivalence class has no edges oriented. The top box represents
the essential graph of the observational Markov equivalence class. The
interventional Markov equivalence class for an intervention at node one
consists of two DAGs given in the bottom box. 177

E-2 Performance of intervention strategies on predicting the descendants of
genes 6 (top) and 8 (bottom). 180

12

List of Tables

2.1 A comparison of training time for PCA, SVM, and ridge regression using
the exact kernel matrix 𝐾 versus a low-rank approximation 𝐾̂ = 𝑍𝑍𝑇 ,
where 𝑍 has 𝐽 columns. Exact training requires either inverting or
computing the SVD of the true kernel matrix 𝐾 at a cost of 𝑂(𝑁3)
time, as shown in the first column. The second column refers to training
the methods using a low-rank factorization 𝑍. For ridge regression and
PCA, the low-rank training cost reflects the time to compute and invert
the feature covariance matrix 𝑍𝑇𝑍. For SVM, the time refers to fitting
a linear SVM on 𝑍 using dual-coordinate descent with optimization
tolerance 𝜌 [Hsieh et al., 2008]. The third column quantifies the uniform
error between the function fit using 𝐾 and the function fit using 𝑍. For
specific details of how the bounds were derived, see Appendix A.4. . . 25

2.2 A comparison of the computational cost of basic random feature maps
(RFM), RFM with JL compression (RFM-JL), and RFM with our
proposed compression using FW (RFM-FW) for 𝑁 datapoints and 𝐽+ =
1/𝜖 log 1/𝜖 up-projection features. The first column specifies the number
of compressed features 𝐽 needed to retain the 𝑂(𝜖) high probability
kernel approximation error guarantee of RFM. The second and third
columns list the complexity for computing the compressed features and
using them for PCA or ridge regression, respectively. Theoretically,
the number of datapoint pairs 𝑆 should be set to Ω(𝐽+

2(log 𝐽+)
2) in

Algorithm 1 (see Theorem 2.3.2) but empirically we find in Section 6.5
that 𝑆 can be set much smaller. See Appendix A.3 for derivations. . 30

2.3 All datasets are taken from LIBSVM. 32

3.1 Per-iteration MCMC runtime and memory scaling of methods for sam-
pling two-way interactions. NAIVE refers to explicitly factorizing Σ𝑁,𝜏

to compute 𝑝(𝐷 | 𝜏, 𝜎2), WOODBURY refers to using the Woodbury
identity and matrix determinant lemma to compute 𝑝(𝐷 | 𝜏, 𝜎2), and
FULL refers to jointly sampling 𝜃 and 𝜏 . The third column provides
the number of parameters sampled. 41

13

3.2 Building dataset results. MAIN (PAIR) MSE refers to total error in
estimating main (pairwise) effects. The main and pairwise MSE added
together yield the total MSE. The second and fourth columns show (#
of effects correctly selected) : (# of incorrect effects selected) for main
and pairwise effects, respectively. Larger green values are better while
larger purple values are worse. 51

3.3 Auto MPG dataset results. Each column represents the (# of original
effects selected) : (# of fake effects selected). A selected main (pairwise)
effect is an “original” effect if it corresponds to one of the original 6
features (15 interactions). Main100 (Pairwise100) and Main200 (Pair-
wise200) denote when 100 and 200 random noise covariates are added
to the original 6 features, respectively. Larger purple values are worse.
Higher green values are not necessarily better since there are no ground
truth interactions. 51

4.1 Synthetic Data Variable Selection Performance Results for 𝑝 = 1000 . 72
4.2 Synthetic Data Estimation Performance Results for 𝑝 = 1000 73
4.3 Variable Selection Performance for the Bike Sharing Dataset. 75
4.4 Estimation Performance for the Bike Sharing Dataset. 75

C.1 Variable Selection Performance for Main Effects Only Setting. 154
C.2 Estimation Performance for Main Effects Only Setting. 155
C.3 Variable Selection Performance for Equal Main and Interaction Effects

Setting. 156
C.4 Estimation Performance for Equal Main and Interaction Effects Setting.157
C.5 Variable Selection Performance for Weak Main Effects Setting. 158
C.6 Estimation Performance for Weak Main Effects Setting. 159
C.7 Proxy Ground Truth Effects and Signal Variances for the Bike Sharing

Dataset. 160
C.8 Variable Selection Performance for the Bike Sharing Dataset. 160
C.9 Estimation Performance for the Bike Sharing Dataset. 161

14

Chapter 1

Introduction

Consider a patient who thinks she is at risk for a certain disease. In order to diagnose
her, we might use a powerful off-the-shelf machine learning method. However, we
must be careful; while machine-learning algorithms have had great success for many
predictive tasks, these same algorithms can sometimes give arbitrarily bad answers.
For example, deep learning models can be fooled to grossly mis-classify images by
adding small amounts of noise [Szegedy et al., 2014]; variational Bayesian inference
methods can report arbitrarily poor uncertainty estimates and point estimates off by
orders of magnitude [Turner and Sahani, 2011, MacKay, 2002, Huggins et al., 2018];
and many black-box machine-learning models are inadvertently biased towards certain
groups of individuals [Kusner et al., 2017a]. Hence, in order to provide the patient
with a trustworthy prediction, we need guarantees that such behavior will not occur,
or at least have diagnostics to alert us when our algorithms fail.

Figure 1-1: Hypothetical data-analysis pipeline broken up into three different stages:
association, causality, and experimental design. Dotted arrows represent optional
inputs, while solid arrows indicate necessary inputs.

Now, suppose we decide that the patient is likely to develop the disease in the
next five years. Then, the natural next question is a preventative one: namely, how

15

can the patient change her lifestyle to prevent the disease from developing? In this
case, we have a causal question. Answering it requires predicting the effects of changes
or interventions to the system (i.e., the patient’s lifestyle). In this case, we seek
methods that can accurately estimate causal effects, or report when such estimation
is not possible from the available data. If it is not possible, then we need powerful
experimental design methods to seek out new data to collect so that the causal question
can be answered with confidence. Such an evolving process of querying and data
collection is summarized in Fig. 1-1. Since I strongly believe that each stage in Fig. 1-1
is important for real-world decision-making, my research over the past 4 years has
addressed each of these areas. I have demonstrated the feasibility of my methods in
published work [Agrawal et al., 2018, 2019c,a,b, Trippe et al., 2019, Agrawal et al.,
2021a, Margossian et al., 2020] and several papers ready for submission or under
review [Horel et al., Agrawal and Broderick, 2021, Agrawal et al., 2021b].

Research Objective. My overall objective is to create a scalable data-analysis
pipeline that informs practitioners not only how to answer association and causal
questions with provable guarantees on quality but also how to move from association
to causation through targeted experimental design. In what follows, I will discuss
completed work in the following three areas that this thesis covers: (1) prediction and
association, (2) causality, and (3) experimental design.

1.1 Prediction and Association
Chapter 2: Speeding up kernel methods. A common starting point in many
data-analysis tasks is using powerful machine learning methods to make predictions,
such as deciding if a patient is at risk for developing a certain disease. Recently,
deep learning has led to state-of-the-art performance on many large-scale prediction
tasks, most notably in image recognition. But the theoretical statistical guarantees
and optimization quality of deep learning methods remain open questions. Kernel
methods, on the other hand, form a flexible class of models that offer comparable
performance to deep learning for many tasks yet come equipped with strong learning-
theoretic guarantees. Unfortunately, they exhibit poor scaling with data size. Given 𝑁
observations, 𝑂(𝑁2) space is required to store the kernel matrix 𝐾 and typically 𝑂(𝑁3)
time is required to use it for learning, as this often entails inverting 𝐾 or computing
its singular-value decomposition. To overcome poor scaling in 𝑁 , researchers have
devised various approximations to exact kernel methods. A widely-applicable and
commonly used tactic is replacing 𝐾 with a rank-𝐽 approximation, which reduces
storage and time requirements to, respectively, 𝑂(𝑁𝐽) and 𝑂(𝑁𝐽2) [Halko et al.,
2011]. Thus, if 𝐽 is sufficently small, only (near-)linear time and space is required
in the dataset size. Random feature maps (RFMs) – particularly random Fourier
features (RFFs) – form a popular approach to construct low-rank approximations
[Kar and Karnick, 2012, Pennington et al., 2015, Daniely et al., 2017, Samo and
Roberts, 2015]. The main idea of RFF is that a wide class of kernels used in practice
can be written as an expectation under some induced probability distribution 𝑄.

16

This alternative characterization provides a recipe to approximate the kernel through
random projections, namely approximating the expectation via a Monte-Carlo average
obtained by drawing 𝐽 points from the induced probability distribution of the kernel
function.

Unfortunately, 𝐽 often needs to be large in RFF in order to approximate the kernel
matrix well, which makes the runtime 𝑂(𝑁𝐽2) intractable for 𝑁 large [Honorio and
Li, 2017, Kar and Karnick, 2012, Rahimi and Recht, 2007, Yang et al., 2012, Huang
et al., 2014]. To this end, I reduced the number of features needed by noting that 𝑄
picks many redundant random features, namely features that do not further improve
kernel approximation [Agrawal et al., 2019a]. The key insight of my paper, accepted at
AISTATS [Agrawal et al., 2019a], is recognizing that such redundancy can be removed
using a coreset of random features. Intuitively, a coreset summarizes a large set of
points by a small, weighted set. In machine learning, coresets have been used to speed
up training time by providing a smaller weighted dataset as input. My contribution
was casting the problem of random feature compression as a coreset construction
problem, and proving how much compression is possible. In particular, I showed that
a set of 𝐽 random features can be compressed to an exponentially smaller set of just
𝑂(log 𝐽) features while still achieving the same statistical guarantees as using all 𝐽
features. Moreover, I empirically demonstrated that such a theoretical exponential
rate is realized on real datasets, including one with over fifty million observations.

Chapter 3: Fitting Bayesian Linear interaction models in linear time. While
kernel methods are successful for fitting rich, non-linear predictive models, sometimes
understanding how a set of covariates relate to a target response is more important
than the prediction itself. For example, in clinical trials and precision medicine,
researchers seek to characterize how individual-level traits impact treatment effects,
and in modern genomic studies, researchers seek to identify genetic variants that are
risk factors for particular diseases. While linear regression is a default method for
these tasks and many others due to its ease of interpretability, its simplicity often
comes at the cost of failing to learn more nuanced information from the data. A
common way to increase flexibility, while still retaining the interpretability of linear
regression, is to augment the covariate space. For instance, two genes together might be
highly associated with a disease even though individually they exhibit only moderate
association; thus, an analyst might want to consider the multiplicative effect of pairs
of covariates co-occurring.

Unfortunately, augmenting the covariate space by including all possible pairwise
interactions means the number of parameters to analyze grows quadratically with
the number of covariates 𝑝. This growth leads to many statistical and computational
difficulties that are only made worse in the high-dimensional setting, where 𝑝 is much
larger than the number of observations 𝑁 . To address both the statistical challenges
and difficulty of interpreting many parameters, practitioners often enforce a sparsity
constraint on the model, reflecting an assumption that only a small subset of all
covariates affect the response. The problem of identifying this subset is a central
problem in high-dimensional statistics and many different LASSO-based approaches
have been proposed to return sparse point estimates. However, these methods do not

17

address how to construct valid confidence intervals or adjust for multiple comparisons.
Fortunately, hierarchical Bayesian methods have a shrinkage effect, naturally handle

multiplicity, can provide better statistical power than multiple comparison corrections,
and can leverage background knowledge. However, naive approaches to Bayesian
inference are computationally intractable for even moderate-dimensional problems.
This intractability has two sources. The first source can be seen even in the simple case
of conjugate linear regression with a multivariate Gaussian prior. Let 𝑋̃ denote the
augmented data matrix including all pairwise interactions, Σ the multivariate Gaussian
prior covariance on parameters, and 𝜎2 the noise variance. Given 𝑁 observations,
computing the posterior requires inverting Σ−1 + 1

𝜎2 𝑋̃
𝑇 𝑋̃, which takes 𝑂(𝑝2𝑁2 +𝑁3)

time. The second source is that reporting on 𝑂(𝑝2) parameters simply has 𝑂(𝑝2) cost.
In work accepted at ICML [Agrawal et al., 2019b], I showed how to speed up

inference in Bayesian interaction models by addressing both problems. In the first case,
I showed how to represent the original model using a Gaussian process (GP). I used
the GP kernel in my kernel interaction sampler (KIS) to take advantage of the special
structure of interactions and avoid explicitly computing or inverting Σ−1+ 1

𝜎2 𝑋̃
𝑇 𝑋̃. In

the second case, I developed a kernel interaction trick to compute posterior summaries
exactly for main effects and interactions between selected main effects to avoid the full
𝑂(𝑝2) reporting cost. In sum, my method can recover posterior means and variances of
non-zero regression coefficients in 𝑂(𝑝𝑁2 +𝑁3) time, a 𝑝-fold speed-up. Empirically,
I found that my method leads to (1) improved Type I and Type II error relative to
state-of-the-art LASSO-based approaches and (2) improved computational scaling in
high dimensions relative to existing Bayesian and LASSO-based approaches.

Chapter 4: Fast High-Dimensional Functional ANOVA Decompositions.
While such linear interaction models can provide an adequate first-order approximation
to a signal of interest, in other applications this assumption can be problematic for both
variable selection and estimation. For example, suppose that one of the covariates has
a quadratic effect on the response. Then, from a purely variable selection perspective,
a linear method will likely not select this covariate since a quadratic effect has weak
(linear) correlation. Another limitation of our previous work was the assumption
of strong-hierarchy, namely that an interaction only occurs if both main effects are
present. While some problems have strong main effects, in other applications this may
not be the case. For example, in genome-wide associate studies, fitting an additive-
only model to predict an individual’s height from genetics only has an 𝑅2 of about
5% even though height is well-predicted by parents’ heights (thought to be between
80%− 90%) [Maher, 2008]. This discrepancy, more generally called the problem of
missing heritability, remains an open challenge in biology for understanding complex
diseases based on genetics. One explanation for missing heritability is not modeling
genetic interactions [Maher, 2008, Aschard, 2016, Slim et al., 2018, Greene et al., 2010].
In other words, the main effects might be weak, or in the extreme case some genes
might only have interaction effects.

I have extended SKIM to model non-linear effects and remove the strong-hierarchy
requirement. In particular, I have shown how to perform sparse, high-dimensional
functional ANOVA decompositions in time linear in dimension unlike previous methods

18

that take at least quadratic time. By explicitly accounting for non-linear interactions
and removing the strong-hierarchy constraint, our method typically has better perfor-
mance than competing methods such as the Lasso and tree based methods on both
simulated and real datasets.

1.2 Causality
Fast uncertainty quantification for learning causal DAGs. Moving from asso-
ciation to causality is an important next step not only for scientific discovery but also
for many decision and policy-making tasks. As a toy example, if we are trying to
fight global warming, banning ice cream will not help; even though ice cream sales
and temperature are highly correlated, ice cream sales are an effect, not a cause, of
temperature. Hence, intervening on ice cream sales, e.g. by closing ice cream shops,
will not lead to any substantive change in global temperature levels.

Most real-world systems contain many variables, and we would like to understand
how perturbing any part of that system changes the joint distribution. Causal directed
acyclic graphs (DAGs) are a powerful way to model such causal structure, and enable
us to seamlessly quantify the effects of perturbations – i.e., interventions to the system.
Each node in a DAG 𝐺 is associated with a random variable 𝑋𝑖, and 𝑋𝑖 is said to
be a cause of 𝑋𝑗 if there exists a directed path from 𝑋𝑖 to 𝑋𝑗 in 𝐺. In applications
where 𝑁 is large relative to 𝑝, a point estimate of 𝐺 suffices from both a practical and
theoretical perspective [Chickering, 2002]. However, in many applications of modern
interest, the number of samples 𝑁 is small relative to the number of nodes 𝑝. In
this case there may be many DAGs that agree with the observed data and it is then
desirable to infer a distribution across DAGs instead of outputting just one DAG.
Taking a Bayesian approach we can define a prior on the space of DAGs, which can
encode expert structural knowledge about the underlying DAG – as well as desirable
properties such as sparsity. The posterior describes the state of knowledge about
𝐺 after observing the data 𝐷, but unfortunately is intractable to compute exactly
since it requires summing over a superexponential number of DAGs [Koivisto and
Sood, 2004]. In many applications, however, we only need summary statistics, namely
posterior means and variances of a function 𝑓(𝐺) of the underlying causal DAG 𝐺.
For example, we might set 𝑓 to indicate what nodes are in the Markov blanket of a
particular node. In such cases, it suffices to compute expectations of the function 𝑓
under the posterior distribution, which can be computed arbitrarily closely as long as
we can sample from the posterior. Problematically, previous state-of-the-art MCMC
samplers either suffer from poor mixing and/or exponentially slow iteration times
with respect to the maximum indegree of the DAG.

In order to achieve fast mixing chains, but remove the exponential timing depen-
dence on the maximum indegree, in my paper published at ICML [Agrawal et al.,
2018] I instead looked at a (suitably-chosen) reduced subspace of DAGs to average
over, namely one DAG for each ordering of the nodes. The main idea was to associate
each permutation to a particular type of DAG, a minimal I-MAP. This mapping uses
the data, namely the sample covariance matrix, to construct the reduced inference

19

space and is well-studied in the frequentist setting. A potential concern is that the
data is used twice, namely to construct the inference space and then to do inference
over it. However, I provided a theoretical bound for the error, i.e. the differences
between the exact and approximate posterior means and variances. In particular, I
showed that the error in the expectation of any functional from the approximation is
exponentially decreasing as a function of the number of samples.

Chapter 5: Non-Linear Causal Discovery in the Presence of Hidden Vari-
ables. Currently, minimal I-MAP MCMC assumes that there are no unmeasured
confounders. However, this assumption is too restrictive for many applications. The
unobserved variables are problematic for structure learning because they can create
spurious edges between variables in the causal graphs. For example, without condition-
ing on the stress-level of an individual, the posterior probability of an edge between
drinking coffee and having cancer might increase. Unfortunately, in the presence of
latent confounding, recovering casual relationships from observational data alone is
an ill-posed problem without additional assumptions. Fortunately, in practice, we
sometimes expect additional structure about the confounders. For example, in gene-
expression data, batch effects can lead to incorrect associations between genes [Leek
and Storey, 2007]. In genome-wide association studies, ancestry differences between
case and controls can create spurious correlations in disease studies [Price et al., 2006].
In finance, the latent “market” and sector variables can explain much of the variation
in stocks [Chandrasekaran et al., 2012, Fan et al., 2013]. Such confounding patterns
are more generally known as pervasive confounders, and represent variables that have
an effect on many observed variables, similar to latent factor models; see [Frot et al.,
2019, Wang and Blei, 2019, Shah et al., 2020, Chandrasekaran et al., 2012] for other
real-world examples of this pervasive assumption.

In Agrawal et al. [2021b], I provide a proof and specific method to estimate
causal relationships in the non-linear, pervasive confounding setting. The heart of our
procedure relies on the ability to actually estimate the pervasive confounding variation
through a simple spectral decomposition of the data matrix. I derive a particular DAG
score function based on this insight, and empirically compare this proposed method (the
“DeCAMFounder”) to existing procedures. By explicitly accounting for confounders
and non-linear effects, the DeCAMFounder typically has better performance than
competing methods on both simulated and real datasets.

1.3 Targeted Experimental Design
Chapter 6: Experimental design for learning causal DAGs. So far we have
considered the case where the data is given. But in many domains, such as biology
or running ads on Bing, the practitioner has control over the data being collected.
In genomics, for instance, genome editing technologies have enabled the collection
of batches of large-scale interventional gene expression data [Dixit et al., 2016]. An
imminent problem is understanding how to optimally select a batch of interventions
and allocate samples across these interventions, over multiple experimental rounds in a

20

computationally tractable manner. One of the most popular ways is simply uniformly
randomly sampling experiments to conduct. However, uniform sampling might be
suboptimal by sampling similar data (redundancy) and/or data that does not help
answer the target question.

Previous works showed that experimental design can improve structure recovery
in causal DAG models. However, these methods assume a basic framework in which
experiments are performed one sample at a time. In practice, experimenters often per-
form a batch of interventions and collect samples over multiple rounds of experiments;
and they must also factor in budget and feasibility constraints, such as on the number
of unique interventions that can be performed in a single experiment, the number of
experimental rounds, and the total number of samples to be collected. Generalizing the
frameworks of previous methods, I assume the experimenter is interested in learning
some function 𝑓(𝐺) of the unknown graph 𝐺 in my paper which was published at
AISTATS [Agrawal et al., 2019c]. Returning to gene regulation, one might set 𝑓(𝐺) to
indicate whether some gene 𝑋 is downstream of some gene 𝑌 , i.e. if 𝑋 is a descendant
of 𝑌 in 𝐺. Using targeted experimental design, all statistical power is placed in
learning the target function rather than being agnostic to recovering all features in
the graph. In addition, I also explicitly took into account that only finitely many
samples are allowed in each round and worked under various budget constraints such
as a limit on the number of rounds and the number of unique interventions.

Since I considered the batched, finite-sample setting, picking experiments opti-
mally turns out to be computationally intractable. To understand why, consider the
problem of allocating 𝑁 total samples across 𝐵 batches such that each batch can have
at most 𝐾 unique experiments. These constraints lead to a difficult combinatorial
problem. To still have optimization quality guarantees when selecting experiments to
conduct, I proposed an information-based score function and proved it is submodular,
which allows experiments to be greedily selected while having (1− 1

𝑒
) guarantees on

optimization quality. Finally, I demonstrated empirically that experimental design
using this method leads to significant boosts over previous methods.

21

Chapter 2

Data-Dependent Compression of
Random Features for Large-Scale
Kernel Approximation

Abstract

Kernel methods offer the flexibility to learn complex relationships in modern, large
data sets while enjoying strong theoretical guarantees on quality. Unfortunately, these
methods typically require cubic running time in the data set size, a prohibitive cost
in the large-data setting. Random feature maps (RFMs) and the Nyström method
both consider low-rank approximations to the kernel matrix as a potential solution.
But, in order to achieve desirable theoretical guarantees, the former may require a
prohibitively large number of features 𝐽+, and the latter may be prohibitively expensive
for high-dimensional problems. We propose to combine the simplicity and generality of
RFMs with a data-dependent feature selection scheme to achieve desirable theoretical
approximation properties of Nyström with just 𝑂(log 𝐽+) features. Our key insight is
to begin with a large set of random features, then reduce them to a small number of
weighted features in a data-dependent, computationally efficient way, while preserving
the statistical guarantees of using the original large set of features. We demonstrate
the efficacy of our method with theory and experiments—including on a data set with
over 50 million observations. In particular, we show that our method achieves small
kernel matrix approximation error and better test set accuracy with provably fewer
random features than state-of-the-art methods.

2.1 Introduction
Kernel methods are essential to the machine learning and statistics toolkit because
of their modeling flexibility, ease-of-use, and widespread applicability to problems
including regression, classification, clustering, dimensionality reduction, and one and
two-sample testing [Hofmann et al., 2008, Schölkopf and Smola, 2001, Chwialkowski
et al., 2016, Gretton et al., 2012]. In addition to good empirical performance, kernel-

22

based methods come equipped with strong statistical and learning-theoretic guaran-
tees [Vapnik, 1998, Mendelson, 2003, Balcan et al., 2008, Boser et al., 1992, Vapnik
et al., 1997, Sriperumbudur et al., 2010]. Because kernel methods are nonparametric,
they are particularly attractive for large-scale problems, where they make it possible
to learn complex, highly non-linear structure from data. Unfortunately, their time and
memory costs scale poorly with data size. Given 𝑁 observations, storing the kernel
matrix 𝐾 requires 𝑂(𝑁2) space. Using 𝐾 for learning typically requires 𝑂(𝑁3) time,
as this often entails inverting 𝐾 or computing its singular value decomposition.

To overcome poor scaling in 𝑁 , researchers have devised various approximations to
exact kernel methods. A widely-applicable and commonly used tactic is to replace 𝐾
with a rank-𝐽 approximation, which reduces storage requirements to 𝑂(𝑁𝐽) and com-
putational complexity of inversion or singular value decomposition to 𝑂(𝑁𝐽2) [Halko
et al., 2011]. Thus, if 𝐽 can be chosen to be constant or slowly increasing in 𝑁 , only
(near-)linear time and space is required in the dataset size. Two popular approaches
to constructing low-rank approximations are random feature maps (RFMs) [Kar
and Karnick, 2012, Pennington et al., 2015, Daniely et al., 2017, Samo and Roberts,
2015]—particularly random Fourier features (RFFs) [Rahimi and Recht, 2007]—and
Nyström-type approximations [Drineas and Mahoney, 2005]. The Nyström method is
based on using 𝐽 randomly sampled columns from 𝐾, and thus is data-dependent. The
data-dependent nature of Nyström methods can provide statistical guarantees even
when 𝐽 ≪ 𝑁 , but these results either apply only to kernel ridge regression [El Alaoui
and Mahoney, 2015, Yang et al., 2017, Rudi et al., 2015] or require burdensome
recursive sampling schemes [Musco and Musco, 2017, Lim et al., 2018]. Random
features, on the other hand, are simple to implement and use 𝐽 random features that
are data-independent. For problems with both large 𝑁 and number of covariates 𝑝,
an extension of random features called Fast Food RFM has been successfully applied
at a fraction of the computational time required by Nyström-type approximations,
which are exponentially more costly in terms of 𝑝 [Le et al., 2013]. The price for this
simplicity and data-independence is that a large number of random features is often
needed to approximate the kernel matrix well [Honorio and Li, 2017, Kar and Karnick,
2012, Rahimi and Recht, 2007, Yang et al., 2012, Huang et al., 2014].

The question naturally arises, then, as to whether we can combine the simplicity
of random features and the ability to scale to large-𝑝 problems with the appealing
approximation and statistical properties of Nyström-type approaches. We provide
one possible solution by making random features data-dependent, and we show
promising theoretical and empirical results. Our key insight is to begin with a
large set of random features, then reduce them to a small set of weighted features
in a data-dependent, computationally efficient way, while preserving the statistical
guarantees of using the original large set. We frame the task of finding this small set
of features as an optimization problem, which we solve using ideas from the coreset
literature [Campbell and Broderick, 2019, 2018]. Using greedy optimization schemes
such as the Frank–Wolfe algorithm, we show that a large set of 𝐽+ random features
can be compressed to an exponentially smaller set of just 𝑂(log 𝐽+) features while still
achieving the same statistical guarantees as using all 𝐽+ features. We demonstrate
that our method achieves superior performance to existing approaches on a range of

23

real datasets—including one with over 50 million observations—in terms of kernel
matrix approximation and classification accuracy.

2.2 Preliminaries and related work
Suppose we observe data {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 with predictors 𝑥𝑛 ∈ R𝑝 and responses 𝑦𝑛 ∈ R.
In a supervised learning task, we aim to find a model 𝑓 : R𝑝 → R among a set
of candidates ℱ that predicts the response well for new predictors. Modern data
sets of interest often reach 𝑁 in the tens of millions or higher, allowing analysts
to learn particularly complex relationships in data. Nonparametric kernel methods
[Schölkopf and Smola, 2001] offer a flexible option in this setting; by taking ℱ to be a
reproducing kernel Hilbert space with positive-definite kernel 𝑘 : R𝑝 × R𝑝 → R, they
enable learning more nuanced details of the model 𝑓 as more data are obtained. As a
result, kernel methods are widespread not just in regression and classification but also
in dimensionality reduction, conditional independence testing, one and two-sample
testing, and more [Schölkopf et al., 1997, Zhang et al., 2011, Gretton et al., 2008, 2012,
Chwialkowski et al., 2016].

The problem, however, is that kernel methods become computationally intractable
for large 𝑁 . We consider kernel ridge regression as a prototypical example [Saunders
et al., 1998]. Let 𝐾 ∈ R𝑁×𝑁 be the kernel matrix consisting of entries 𝐾𝑛𝑚 :=
𝑘(𝑥𝑛, 𝑥𝑚). Collect the responses into the vector 𝑦 ∈ R𝑁 . Then kernel ridge regression
requires solving

min
𝛼∈R𝑁

−1

2
𝛼𝑇 (𝐾 + 𝜆𝐼)𝛼 + 𝛼𝑇𝑦,

where 𝜆 > 0 is a regularization parameter. Computing and storing 𝐾 alone has 𝑂(𝑁2)
complexity, while computing the solution 𝛼⋆ = (𝐾 + 𝜆𝐼)−1𝑦 further requires solving a
linear system, with cost 𝑂(𝑁3). Many other kernel methods have 𝑂(𝑁3) dependence;
see Table 2.1.

To make kernel methods tractable on large datasets, a common practice is to replace
the kernel matrix 𝐾 with an approximate low-rank factorization 𝐾̂ := 𝑍𝑍𝑇 ≈ 𝐾,
where 𝑍 ∈ R𝑁×𝐽 and 𝐽 ≪ 𝑁 . This factorization can be viewed as replacing the kernel
function 𝑘 with a finite-dimensional inner product 𝑘(𝑥𝑛, 𝑥𝑚) ≈ 𝑧(𝑥𝑛)

𝑇 𝑧(𝑥𝑚) between
features generated by a feature map 𝑧 : R𝑝 → R𝐽 . Using this type of approximation
significantly reduces downstream training time, as shown in the second column of
Table 2.1. Previous results show that as long as 𝑍𝑍𝑇 is close to 𝐾 in the Frobenius
norm, the optimal model 𝑓 using 𝐾̂ is uniformly close to the one using 𝐾 [Cortes
et al., 2010]; see the rightmost column of Table 2.1.

However, finding a good feature map is a nontrivial task. One popular method,
known as random Fourier features (RFF) [Rahimi and Recht, 2007], is based on
Bochner’s Theorem:

Theorem 2.2.1 ([Rudin, 1994, p. 19]). A continuous, stationary kernel 𝑘(𝑥, 𝑦) =
𝜑(𝑥− 𝑦) for 𝑥, 𝑦 ∈ R𝑝 is positive definite with 𝜑(0) = 1 if and only if there exists a

24

Table 2.1: A comparison of training time for PCA, SVM, and ridge regression using
the exact kernel matrix 𝐾 versus a low-rank approximation 𝐾̂ = 𝑍𝑍𝑇 , where 𝑍 has
𝐽 columns. Exact training requires either inverting or computing the SVD of the
true kernel matrix 𝐾 at a cost of 𝑂(𝑁3) time, as shown in the first column. The
second column refers to training the methods using a low-rank factorization 𝑍. For
ridge regression and PCA, the low-rank training cost reflects the time to compute and
invert the feature covariance matrix 𝑍𝑇𝑍. For SVM, the time refers to fitting a linear
SVM on 𝑍 using dual-coordinate descent with optimization tolerance 𝜌 [Hsieh et al.,
2008]. The third column quantifies the uniform error between the function fit using 𝐾
and the function fit using 𝑍. For specific details of how the bounds were derived, see
Appendix A.4.

Method Exact Training Cost Low-Rank Training Cost Approximation Error

PCA 𝑂(𝑁3) Θ(𝑁𝐽2) 𝑂
(︁
(1− ℓ

𝑁
)‖𝐾̂ −𝐾‖𝐹

)︁
SVM 𝑂(𝑁3) Θ(𝑁𝐽 log 1

𝜌
) 𝑂

(︂
‖𝐾̂ −𝐾‖

1
2
𝐹

)︂
Ridge Regression 𝑂(𝑁3) Θ(𝑁𝐽2) 𝑂

(︁
1
𝑁
‖𝐾̂ −𝐾‖𝐹

)︁

probability measure 𝑄 such that

𝜑(𝑥− 𝑦) =
∫︁
R𝑝

𝑒𝑖𝜔
𝑇 (𝑥−𝑦)d𝑄(𝜔)

= E𝑄[𝜓𝜔(𝑥)𝜓𝜔(𝑦)
*], 𝜓𝜔(𝑥) := 𝑒𝑖𝜔

𝑇 𝑥.

(2.1)

Theorem 2.2.1 implies that 𝑧complex(𝑥) := (1/
√
𝐽)[𝜓𝜔1(𝑥), · · · , 𝜓𝜔𝐽

(𝑥)]𝑇 , where 𝜔𝑖
i.i.d.∼

𝑄, provides a Monte-Carlo approximation of the true kernel function. As noted by
Rahimi and Recht [2008], the real-valued feature map 𝑧(𝑥) := (1/

√
𝐽)[cos(𝜔𝑇

1 𝑥 +

𝑏1), · · · , cos(𝜔𝑇
𝐽 𝑥+ 𝑏𝐽)]

𝑇 , 𝑏𝑗
unif.∼ [0, 2𝜋] also yields an unbiased estimator of the kernel

function; we use this feature map in what follows unless otherwise stated. The resulting
𝑁 × 𝐽 feature matrix 𝑍 yields estimates of the true kernel function with standard
Monte-Carlo error rates of 𝑂

(︀
1/

√
𝐽
)︀

uniformly on compact sets [Rahimi and Recht,
2007, Sutherland and Schneider, 2015]. The RFF methodology also applies quite
broadly. There are well-known techniques for obtaining samples from 𝑄 for a variety
of popular kernels such as the squared exponential, Laplace, and Cauchy [Rahimi and
Recht, 2007], as well as extensions to more general random feature maps (RFMs), which
apply to many types of non-stationary kernels [Kar and Karnick, 2012, Pennington
et al., 2015, Daniely et al., 2017].

The major drawback of RFMs is the 𝑂(𝑁𝐽𝑝) time and 𝑂(𝑁𝐽) memory costs
associated with generating the feature matrix 𝑍.1 Although these are linear in 𝑁 as

1Fast Food RFM can reduce the computational cost of generating the feature matrix to 𝑂(𝑁𝐽 log 𝑝)
by exploiting techniques from sparse linear algebra. For simplicity, we focus on RFM here, but we
note that our method can also be used on top of Fast Food RFM in cases when 𝑝 is large.

25

desired, recent empirical evidence [Huang et al., 2014] suggests that 𝐽 needs to be
quite large to provide competitive performance with other data analysis techniques.
Recent work addressing this drawback has broadly involved two approaches: variance
reduction and feature compression. Variance reduction techniques involve modifying
the standard Monte-Carlo estimate of 𝑘, e.g. with control variates, quasi-Monte-Carlo
techniques, or importance sampling [Avron et al., 2016, Chang et al., 2017, Shen et al.,
2017, Yu et al., 2016, Avron et al., 2017]. These approaches either depend poorly
on the data dimension 𝑝 (in terms of statistical generalization error), or, for a fixed
approximation error, reduce the number of features 𝐽 compared to RFM only by
a constant. Feature compression techniques, on the other hand, involve two steps:
(1) “up-projection,” in which the basic RFM methodology generates a large number
𝐽+ of features—followed by (2) “compression,” in which those features are used to
find a smaller number 𝐽 of features while ideally retaining the kernel approximation
error of the original 𝐽+ features. Compact random feature maps [Hamid et al., 2014]
represent an instance of this technique in which compression is achieved using the
Johnson–Lindenstrauss (JL) algorithm [Johnson et al., 1986]. However, not only is
the generation and storage of 𝐽+ features prohibitively expensive for large datasets,
JL compression is data-independent and leads to only a constant reduction in 𝐽+ as
we show in Appendix A.3 (see summary in Table 2.2).

2.3 Random feature compression via coresets
In this section, we present an algorithm for approximating a kernel matrix 𝐾 ∈ R𝑁×𝑁

with a low-rank approximation 𝐾 ≈ 𝐾̂ = 𝑍𝑍𝑇 obtained using a novel feature
compression technique. In the up-projection step we generate 𝐽+ random features, but
only compute their values for a small, randomly-selected subset of 𝑆 ≪ 𝑁2 datapoint
pairs. In the compression step, we select a sparse, weighted subset of 𝐽 of the original
𝐽+ features in a sequential greedy fashion. We use the feature values on the size-𝑆
subset of all possible data pairs to decide, at each step, which feature to include and
its weight. Once this process is complete, we compute the resulting weighted subset
of 𝐽 features on the whole dataset. We use this low-rank approximation of the kernel
in our original learning problem. Since we use a sparse weighted feature subset for
compression—as opposed to a general linear combination as in previous work—we
do not need to compute all 𝐽+ features for the whole dataset. This circumvents the
expensive 𝑂(𝑁𝐽+𝑝) up-projection computation typical of past feature compression
methods. In addition, we show that our greedy compression algorithm needs to
output only 𝐽 = 𝑂(log 𝐽+) features—as opposed to past work, where 𝐽 = 𝑂(𝐽+) was
required—while maintaining the same kernel approximation error provided by RFM
with 𝐽+ features. These results are summarized in Table 2.2 and discussed in detail in
Section 2.3.2.

26

2.3.1 Algorithm derivation

Let 𝑍+ ∈ R𝑁×𝐽+ , 𝐽+ > 𝐽 , be a fixed up-projection feature matrix generated by RFM.
Our goal is to use 𝑍+ to find a compressed low-rank approximation 𝐾̂ = 𝑍𝑍𝑇 ≈ 𝐾,
𝑍 ∈ R𝑁×𝐽 . Our approach is motivated by the fact that spectral 2-norm bounds on
𝐾 − 𝐾̂ provide uniform bounds on the difference between learned models using 𝐾
and 𝐾̂ [Cortes et al., 2010], as well as the fact that the Frobenius norm bounds the
2-norm. So we aim to find a 𝑍 that minimizes the Frobenius norm error ‖𝐾 −𝑍𝑍𝑇‖𝐹 .
By the triangle inequality,

‖𝐾 − 𝑍𝑍𝑇‖𝐹
≤ ‖𝐾 − 𝑍+𝑍+

𝑇‖𝐹 + ‖𝑍+𝑍+
𝑇 − 𝑍𝑍𝑇‖𝐹 , (2.2)

so constructing a good feature compression down to 𝐽 features amounts to picking 𝑍
such that 𝑍+𝑍+

𝑇 ≈ 𝑍𝑍𝑇 in Frobenius norm. Let 𝑍+𝑗 ∈ R𝑁 denote the 𝑗th column
of 𝑍+. Then we would ideally like to solve the optimization problem

argmin
𝑤∈R𝐽+

+

1

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹

s.t. 𝑍(𝑤) :=
[︁ √

𝑤1𝑍+1 · · ·
√
𝑤𝐽+𝑍+𝐽+

]︁
‖𝑤‖0 ≤ 𝐽.

(2.3)

This problem is intractable to solve exactly for two main reasons. First, computing
the objective function requires computing 𝑍+, which itself takes Ω(𝑁𝐽+𝑝) time. But
it is not uncommon for all three of 𝑁 , 𝐽+, and 𝑝 to be large, making this computation
expensive. Second, the cardinality, or “0-norm,” constraint on 𝑤 yields a difficult
combinatorial optimization. In order to address these issues, first note that

1

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹 =

E
𝑖,𝑗

i.i.d.∼ 𝜋

[︁
(𝑧+

𝑇
𝑖 𝑧+𝑗 − 𝑧𝑖(𝑤)𝑇 𝑧𝑗(𝑤))2

]︁
,

where 𝜋 is the uniform distribution on the integers {1, . . . , 𝑁}, and 𝑧+𝑖, 𝑧𝑖(𝑤) ∈ R𝐽+

are the 𝑖th rows of 𝑍+, 𝑍(𝑤), respectively. Therefore, we can generate a Monte-Carlo
estimate of the optimization objective by sampling 𝑆 pairs 𝑖𝑠, 𝑗𝑠

i.i.d.∼ 𝜋:

𝑆

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹

≈
𝑆∑︁

𝑠=1

(𝑧+
𝑇
𝑖𝑠
𝑧+𝑗𝑠
− 𝑧𝑖𝑠(𝑤)𝑇 𝑧𝑗𝑠(𝑤))2

= (1− 𝑤)𝑇𝑅𝑅𝑇 (1− 𝑤) s.t.

(2.4)

𝑅 :=
[︁
𝑧+𝑖1
∘ 𝑧+𝑗1

, · · · , 𝑧+𝑖𝑆
∘ 𝑧+𝑗𝑆

]︁
∈ R𝐽+×𝑆,

27

where ∘ indicates a component-wise product. Denoting the 𝑗th row of 𝑅 by 𝑅𝑗 ∈
R𝑆 and the sum of the rows by 𝑟 =

∑︀𝐽+
𝑗=1𝑅𝑗, we can rewrite the Monte Carlo

approximation of the original optimization problem in Eq. (2.3) as

argmin
𝑤∈R𝐽+

+

‖𝑟 − 𝑟(𝑤)‖22

s.t. ‖𝑤‖0 ≤ 𝐽,

(2.5)

where 𝑟(𝑤) :=
∑︀𝐽+

𝑗=1𝑤𝑗𝑅𝑗. Note that the 𝑠th component 𝑟𝑠 = 𝑧+
𝑇
𝑖𝑠
𝑧+𝑗𝑠

of 𝑟 is
the Monte-Carlo approximation of 𝑘(𝑥𝑖𝑠 , 𝑥𝑗𝑠) using all 𝐽+ features, while 𝑟(𝑤)𝑠 =
(
√
𝑤 ∘ 𝑧+𝑖𝑠

)𝑇 (
√
𝑤 ∘ 𝑧+𝑗𝑠

) is the sparse Monte-Carlo approximation using weights
𝑤 ∈ R𝐽+

+ . In other words, the difference between the full optimization in Eq. (2.3)
and the reformulated optimization in Eq. (2.5) is that the former attempts to find
a sparse, weighted set of features that approximates the full 𝐽+-dimensional feature
inner products for all data pairs, while the latter attempts to do so only for the subset
of pairs 𝑖𝑠, 𝑗𝑠, 𝑠 ∈ {1, . . . , 𝑆}. Since a kernel matrix is symmetric and 𝑘(𝑥𝑛, 𝑥𝑛) = 1
for any datapoint 𝑥𝑛, we only need to sample (𝑖, 𝑗) above the diagonal of the 𝑁 ×𝑁
matrix (see Algorithm 1).

The reformulated optimization problem in Eq. (2.5)—i.e., approximating the sum
𝑟 of a collection (𝑅𝑗)

𝐽+
𝑗=1 of vectors in R𝑆 with a sparse weighted linear combination—is

precisely the Hilbert coreset construction problem studied in previous work [Campbell
and Broderick, 2019, 2018]. There exist a number of efficient algorithms to solve this
problem approximately; in particular, the Frank–Wolfe-based method of Campbell
and Broderick [2019] and “greedy iterative geodesic ascent” (GIGA) [Campbell and
Broderick, 2018] both provide an exponentially decreasing objective value as a function
of the compressed number of features 𝐽 . Note that it is also possible to apply other
more general-purpose methods for cardinality-constrained convex optimization [Chen
et al., 1998, Candes and Tao, 2007, Tibshirani, 1994], but these techniques are often
too computationally expensive in the large-dataset setting. Our overall algorithm for
feature compression is shown in Algorithm 1.

2.3.2 Theoretical results

In order to employ Algorithm 1, we must choose the number 𝑆 of data pairs, the
up-projected feature dimension 𝐽+, and compressed feature dimension 𝐽 . Selecting
these three quantities involves a tradeoff between the computational cost of using
Algorithm 1 and the resulting low-rank kernel approximation Frobenius error, but it is
not immediately clear how to perform that tradeoff. Theorem 2.3.2 and Corollary 2.3.3
provide a remarkable resolution to this issue: roughly, if we fix 𝐽+ such that the
basic random features method provides kernel approximation error 𝜖 > 0 with high
probability, then choosing 𝑆 = Ω(𝐽2

+(log 𝐽+)
2) and 𝐽 = Ω(log 𝐽+) suffices to guaran-

tee that the compressed feature kernel approximation error is also 𝑂(𝜖) with high
probability. In contrast, previous feature compression methods required 𝐽 = Ω(𝐽+)
to achieve the same result; see Table 2.2. Note that Theorem 2.3.2 assumes that the

28

Algorithm 1 Random Feature Maps Compression (RFM-FW / RFM-GIGA)
Input: Data (𝑥𝑛)

𝑁
𝑛=1 in R𝑝, RFM distribution 𝑄, number of starting random

features 𝐽+, number of compressed features 𝐽 , number of data pairs 𝑆
Output: Weights 𝑤 ∈ R𝐽+ with at most 𝐽 non-zero entries

1: (𝑖𝑠, 𝑗𝑠)
𝑆
𝑠=1

i.i.d.∼ Unif
(︀
{(𝑖, 𝑗) : 𝑖 < 𝑗, 2 ≤ 𝑗 ≤ 𝑁}

)︀
.

2: Sample (𝜔𝑗)
𝐽+
𝑗=1

i.i.d.∼ 𝑄

3: Sample 𝑏𝑗
unif.∼ [0, 2𝜋], 1 ≤ 𝑗 ≤ 𝐽+

4: for 𝑠 = 1 : 𝑆 do
5: Compute 𝑧+𝑖𝑠

← (1/
√

𝐽+)[cos(𝜔𝑇
1 𝑥𝑖𝑠 + 𝑏1), · · · , cos(𝜔𝑇

𝐽+
𝑥𝑖𝑠 + 𝑏𝐽+)]

𝑇 ; same for
𝑧+𝑗𝑠

6: Compute 𝑅←
[︁
𝑧+𝑖1
∘ 𝑧+𝑗1

, · · · , 𝑧+𝑖𝑆
∘ 𝑧+𝑗𝑆

]︁
7: 𝑅𝑗 ← row 𝑗 of 𝑅; 𝑟 ←

∑︀𝐽+
𝑗=1𝑅𝑗

8: 𝑤 ← solution to Eq. (2.5) with FW [Campbell and Broderick, 2019] or GIGA
[Campbell and Broderick, 2018]

9: 𝑍(𝑤) =
[︁ √

𝑤1𝑍+1 · · ·
√
𝑤𝐽+𝑍+𝐽+

]︁
10: return 𝑍(𝑤)

compression step in Algorithm 1 is completed using the Frank–Wolfe-based method
from Campbell and Broderick [2019]. However, this choice was made solely to simplify
the theory; as GIGA [Campbell and Broderick, 2018] provides stronger performance
both theoretically and empirically, we expect a stronger result than Theorem 2.3.2
and Corollary 2.3.3 to hold when using GIGA. The proof of Theorem 2.3.2 is given in
Appendix A.2 and depends on the following assumptions.

Assumption 2.3.1. (a) The cardinality of the set of vectors {𝑥𝑖−𝑥𝑗, 𝑥𝑖+𝑥𝑗}1≤𝑖<𝑗≤𝑁

is 𝑁(𝑁−1)
2

, i.e., all vectors 𝑥𝑖 − 𝑥𝑗, 𝑥𝑖 + 𝑥𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 are distinct.

(b) 𝑄(𝜔) for 𝜔 ∈ R𝑝 has strictly positive density on all of R𝑝, where 𝑄 is the measure
induced by the kernel 𝑘; see Theorem 2.2.1.

Assumption 2.3.1(a-b) are sufficient to guarantee that the compression coefficient
𝜈𝐽+ provided in Theorem 2.3.2 does not go to 1. If 𝜈𝐽+ → 1 as 𝐽+ →∞, the amount
of compression could go to zero asymptotically. When the 𝑥𝑗’s contain continuous
(noisy) measurements, Assumption 2.3.1(a) is very mild since the difference or sum
between two datapoints is unlikely to equal the difference or sum between two other
datapoints. Assumption 2.3.1(b) is satisfied by most kernels used in practice (e.g.
radial basis function, Laplace kernel, etc.).

We obtain the exponential compression in Theorem 2.3.2 for the following reason:
Frank-Wolfe and GIGA converge linearly when the minimizer of Eq. (2.5) belongs
to the relative interior of the feasible set of solutions [Marguerite and Philip, 1956],
which turns out to occur in our case. With linear convergence, we need to run
only a logarithmic number of iterations (which upper bounds the sparsity of 𝑤) to
approximate 𝑟 by 𝑟(𝑤) for a given level of approximation error. For fixed 𝐽+, Lemma

29

Table 2.2: A comparison of the computational cost of basic random feature maps
(RFM), RFM with JL compression (RFM-JL), and RFM with our proposed compres-
sion using FW (RFM-FW) for 𝑁 datapoints and 𝐽+ = 1/𝜖 log 1/𝜖 up-projection features.
The first column specifies the number of compressed features 𝐽 needed to retain the
𝑂(𝜖) high probability kernel approximation error guarantee of RFM. The second and
third columns list the complexity for computing the compressed features and using
them for PCA or ridge regression, respectively. Theoretically, the number of datapoint
pairs 𝑆 should be set to Ω(𝐽+

2(log 𝐽+)
2) in Algorithm 1 (see Theorem 2.3.2) but

empirically we find in Section 6.5 that 𝑆 can be set much smaller. See Appendix A.3
for derivations.

Method # Compressed Features 𝐽 Cost of Computing 𝑍 PCA/Ridge Reg. Cost

RFM 𝑂 (𝐽+) 𝑂 (𝑁𝐽+) 𝑂
(︀
𝑁𝐽2

+

)︀
RFM-JL 𝑂 (𝐽+) 𝑂 (𝑁𝐽+ log 𝐽+) 𝑂

(︀
𝑁𝐽2

+

)︀
RFM-FW 𝑂 (log 𝐽+) 𝑂 (𝑆𝐽+ log 𝐽+ +𝑁 log 𝐽+) 𝑂

(︀
𝑁(log 𝐽+)

2
)︀

A.5 from Campbell and Broderick [2019] immediately implies that the minimizer
belongs to the relative interior. As 𝐽+ → ∞ (that is, as we represent the kernel
function exactly), we show that the minimizer asymptotically belongs to the relative
interior, and we provide a lower bound on its distance to the boundary of the feasible
set. This distance lower bound is key to the asymptotic worst-case bound on the
compression coefficient given in Theorem 2.3.2 and Theorem 2.3.4.

Theorem 2.3.2. Fix 𝜖 > 0, 𝛿 ∈ (0, 1), and 𝐽+ ∈ N. Then there are constants
𝜈𝐽+ ∈ (0, 1), which depends only on 𝐽+, and 0 ≤ 𝑐*𝛿 < ∞, which depends only on 𝛿,
such that if

𝐽 = Ω

(︃
− log 𝐽+
log 𝜈𝐽+

)︃
𝑎𝑛𝑑 𝑆 = Ω

⎛⎝𝑐*𝛿
𝜖2

[︃
log 1

𝜖

log 𝜈𝐽+

]︃4
log 𝐽+

⎞⎠ ,

then with probability at least 1− 𝛿, the output 𝑍 of Algorithm 1 satisfies

1

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍𝑍𝑇‖2𝐹 ≤ 𝜖.

Furthermore, the compression coefficient is asymptotically bounded away from 1. That
is,

0 < lim sup
𝐽+→∞

𝜈𝐽+ < 1. (2.6)

Corollary 2.3.3. In the setting of Theorem 2.3.2, if we let 𝐽+ = Ω(1/𝜖 log 1/𝜖), then

1

𝑁2
‖𝐾 − 𝑍𝑍𝑇‖2𝐹 = 𝑂(𝜖).

Proof. Claim 1 of Rahimi and Recht [2007] implies that 1
𝑁2‖𝐾 − 𝑍+𝑍+

𝑇‖2𝐹 = 𝑂 (𝜖) if

30

we set 𝐽+ = Ω(1/𝜖 log 1/𝜖). The result follows by combining Theorem 2.3.2 and Eq. (2.2).

Table 2.2 builds on the results of Theorem 2.3.2 and Corollary 2.3.3 to illustrate
the benefit of our proposed feature compression technique in the settings of kernel
principal component analysis (PCA) and ridge regression. Since random features
and random features with JL compression both have 𝐽 = Ω(𝐽+), the 𝑂(𝑁𝐽2

+) cost
of computing the feature covariance matrix 𝑍𝑇𝑍 dominates when training PCA or
ridge regression. In contrast, the dominant cost of random features with our proposed
algorithm is the compression step; each iteration of Frank-Wolfe has cost 𝑂(𝐽+𝑆), and
we run it for 𝑂(log 𝐽+) iterations.

While Corollary 2.3.3 says how large 𝑆 must be for a given 𝐽+, it does not say
how to pick 𝐽+, or equivalently how to choose the level of precision 𝜖. As one would
expect, the amount of precision needed depends on the downstream application. For
example, recent theoretical work suggests that both kernel PCA and kernel ridge
regression require 𝐽+ to scale only sublinearly with the number of datapoints 𝑁 to
achieve the same statistical guarantees as an exact kernel machine trained on all 𝑁
datapoints [Sriperumbudur and Sterge, 2017, Avron et al., 2017, Rudi and Rosasco,
2017]. For kernel support vector machines (SVMs), on the other hand, Sutherland
and Schneider [2015] suggest that 𝐽+ needs to be larger than 𝑁 . Such a choice of 𝐽+
would make random features slower than training an exact kernel SVM. However,
since Sutherland and Schneider [2015] do not provide a lower bound, it is still an open
theoretical question how 𝐽+ must scale with 𝑁 for kernel SVMs.

For 𝐽+ even moderately large, setting 𝑆 = Ω(𝐽2
+(log 𝐽+)

2)) to satisfy Theorem 2.3.2
will be prohibitively expensive. Fortunately, in practice, we find 𝑆 ≪ 𝐽2

+ suffices to
provide significant practical computational gains without adversely affecting approxi-
mation error; see the results in Section 6.5. We conjecture that we see this behavior
since we expect even a small number of data pairs 𝑆 to be enough to guide feature
compression in a data-dependent manner. We empirically verify this intuition in
Fig. 2-4 of Section 6.5.

Finally, we provide an asymptotic upper bound for the compression coefficient 𝜈𝐽+ .
We achieve greater compression when 𝜈𝐽+ ↓ 0. Hence, the upper bound below shows
the asymptotic worst-case rate of compression.

Theorem 2.3.4. Suppose all {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑁} are sampled in Algorithm 1.
Then,

0 < lim sup
𝐽+→∞

𝜈𝐽+ < 1−

(︁
1− ‖𝐾‖𝐹

𝑐𝑄

)︁2
2

< 1, (2.7)

where 𝐾 is the exact kernel matrix and

𝑐𝑄 :=
1

𝑁
E𝜔∼𝑄,𝑏∼Unif[0,2𝜋]‖𝑢(𝜔, 𝑏)‖2,with

𝑢(𝜔, 𝑏) := (cos(𝜔𝑇𝑥𝑖 + 𝑏) cos(𝜔𝑇𝑥𝑗 + 𝑏))𝑖,𝑗∈[𝑁].
(2.8)

By Theorem 2.2.1, ‖𝐾‖𝐹 = 1
𝑁
‖E𝜔,𝑏𝑢(𝜔, 𝑏)‖2, so ‖𝐾‖𝐹 ≤ 𝑐𝑄 by Jensen’s inequality.

31

In Appendix A.1, we show this inequality holds strictly. Hence the term squared
in Eq. (2.7) lies in (0, 1]. Recall ‖𝐾‖2𝐹 =

∑︀𝑁
𝑖=1 𝜆𝑖, for 𝜆𝑖 the eigenvalues of 𝐾.

With these observations, Theorem 2.3.4 says that the asymptotic worst-case rate of
compression improves if 𝐾’s eigenvalue sum is smaller. As rough intuition: If the
sum is small, then 𝐾 may be nearly low-rank and thus easier to approximate via a
low-rank approximation. Since we subsample only 𝑆 of all pairs in Theorem 2.3.2,
the upper bound in Theorem 2.3.4 does not necessarily apply. Nonetheless, for 𝑆
moderately large, this upper bound roughly characterizes the worst-case compression
rate for Algorithm 1.

2.4 Experiments
In this section we provide an empirical comparison of basic random feature maps
(RFM) [Rahimi and Recht, 2007], RFM with Johnson-Lindenstrauss compression
(RFM-JL) [Hamid et al., 2014], and our proposed algorithm with compression via
greedy iterative geodesic ascent [Campbell and Broderick, 2018] (RFM-GIGA). We
note that there are many other random feature methods, such as Quasi-Monte-Carlo
random features [Avron et al., 2016], that one might consider besides RFM-JL. A
strength of our method is that it can be used as an additional compression step
with these methods and is thus complementary with them; we discuss this idea and
demonstrate the resulting improvements in Appendix A.5. In this section, we focus
on Johnson-Lindenstrauss as the current state-of-the-art random features compression
method.

We compare performance on the task of kernel SVM classification [Vapnik et al.,
1997]. We consider five real, large-scale datasets, summarized in Table 2.3. We assess
performance via two quality metrics—Frobenius error of the kernel approximation
and test set classification error. We also measure overall computation time—including
both random feature projection and SVM training. We use the radial basis kernel
𝑘(𝑥, 𝑦) = 𝑒−𝛾‖𝑥−𝑦‖2 ; we pick both 𝛾 and the SVM regularization strength for each
dataset by randomly sampling 10,000 datapoints, training an exact kernel SVM on
those datapoints, and using 5-fold cross-validation. For both RFM-JL and RFM-GIGA
we set 𝐽+ = 5,000, and for RFM-GIGA we set 𝑆 = 20,000.

Figs. 2-1 and 2-2 show the relative kernel matrix approximation error ‖𝑍𝑍𝑇 −

Table 2.3: All datasets are taken from LIBSVM.

Dataset # Samples Dimension # Classes

Adult 48,842 123 2
Human 10,299 561 6
MNIST 70,000 780 10
Sensorless 58,000 9 11
Criteo 51,882,752 1,000,000 2

32

Figure 2-1: Kernel matrix approximation error. Lower is better. Points average 20
runs; error bar is one standard deviation.

𝐾‖𝐹/‖𝐾‖𝐹 and test classification accuracy, respectively, as a function of the number
of compressed features 𝐽 . Note that, since we cannot actually compute 𝐾, we
approximate the relative Frobenius norm error by randomly sampling 104 datapoints.
We ran each experiment 20 times; the results in Figs. 2-1 and 2-2 show the mean
across these trials with one standard deviation denoted with error bars. RFM-GIGA
outperforms RFM and RFM-JL across all the datasets, on both metrics, for the
full range of number of compressed features that we tested. This empirical result
corroborates the theoretical results presented earlier in Section 2.3.2; in practice,
RFM-GIGA requires approximately an order of magnitude fewer features than either
RFM or RFM-JL.

To demonstrate the computational scalability of RFM-GIGA, we also plot the
relative kernel matrix approximation error versus computation time for the Criteo
dataset, which consists of over 50 million data points. Before random feature projection
and training, we used sparse random projections [Li et al., 2006] to reduce the input
dimensionality to 250 dimensions (due to memory constraints). We set 𝐽+ = 5000
and 𝑆 = 2× 104 as before, and let 𝐽 vary between 102 and 103. The results of this
experiment in Fig. 2-3 suggest that RFM-GIGA provides a significant improvement in
performance over both RFM and RFM-JL. Note that RFM-JL is very expensive in
this setting—the up-projection step requires computing a 5× 108 by 5× 103 feature
matrix—explaining its large computation time relative to RFM and RFM-GIGA. For
test-set classification, all the methods performed the same for all choices of 𝐽 (accuracy
of 0.74 ± 0.001), so we do not provide the runtime vs. classification accuracy plot.
This result is likely due to our compressing the 106-dimensional feature space to 250
dimensions, making it hard for the SVM classifier to properly learn.

33

Figure 2-2: Classification accuracy. Higher is better. Points average 20 runs; error bar
is one standard deviation.

Figure 2-3: Log clock time vs. kernel matrix approximation quality on the Criteo data.
Lower is better.

34

Figure 2-4: We plot the relative Frobenius norm error against 𝑆 for 𝐽+ fixed at 5,000.
The solid black line corresponds to the results found in Fig. 2-1.

Given the empirical advantage of our proposed method, we next focus on under-
standing (1) if 𝑆 can be set much smaller than Ω(𝐽2

+(log 𝐽+)
2)) in practice and (2)

if we can get an exponential compression of 𝐽+ in practice as Theorem 2.3.2 and
Theorem 2.3.4 guarantee.

To test the impact of 𝑆 on performance, we fixed 𝐽+ = 5,000, and we let 𝑆 vary
between 102 and 106. Figure 2-4 shows what the results in Fig. 2-1 would have looked
like had we chosen a different 𝑆. We clearly see that after around only 𝑆 = 10,000 there
is a phase transition such that increasing S does not further improve performance.

To better understand if we actually see an exponential compression in 𝐽+ in
practice, as our theory suggests, we set 𝐽+ = 105 (i.e. very large) and fixed 𝑆 = 20,000
as before. We examined the HIGGS dataset consisting of 1.1× 107 samples, and let 𝐽
(the number of compressed features) vary between 500 and 104. Since GIGA can select
the same random feature at different iterations (i.e. give a feature higher weight), 𝐽
reached 8,600 after 104 iterations in Fig. 2-5. Fig. 2-5 shows that for 𝐽 ≈ 2 × 103,
increasing J further has negligible impact on kernel approximation performance—only
0.001 difference in relative error. Fig. 2-5 shows that we are able to compress 𝐽+ by
around two orders of magnitude.

Finally, since our proofs of Theorem 2.3.2 and Theorem 2.3.4 assume Step 8 of
Algorithm 1 is run using Frank-Wolfe instead of GIGA, we compare in Fig. 2-6 how
the results in Fig. 2-1 change by using Frank-Wolfe instead. Fig. 2-6 shows that for
𝐽 small, GIGA has better approximation quality than FW but for larger 𝐽 , the two
perform nearly the same. This behavior agrees with the theory and empirical results
of Campbell and Broderick [2018], where GIGA is motivated specifically for the case
of high compression.

2.5 Conclusion
This work presents a new algorithm for scalable kernel matrix approximation. We first
generate a low-rank approximation. We then find a sparse, weighted subset of the
columns of the low-rank factor that minimizes the Frobenius norm error relative to the
original low-rank approximation. Theoretical and empirical results suggest that our

35

Figure 2-5: Let 𝑆 = 20,000, 𝐽+ = 105. We plot the relative Frobenius norm error vs.
𝐽 from 500 to 104.

Figure 2-6: The performance of GIGA versus Frank-Wolfe for the experiment described
in Fig. 2-1. Solid lines correspond to Frank-Wolfe and dashed with GIGA.

method provides a substantial improvement in scalability and approximation quality
over past techniques. Directions for future work include investigating the effects
of variance reduction techniques for the up-projection, using a similar compression
technique on features generated by the Nyström method [Williams and Seeger, 2001],
and transfer learning of feature weights for multiple related datasets.

36

Chapter 3

The Kernel Interaction Trick: Fast
Bayesian Discovery of Pairwise
Interactions in High Dimensions

Abstract

Discovering interaction effects on a response of interest is a fundamental problem
faced in biology, medicine, economics, and many other scientific disciplines. In theory,
Bayesian methods for discovering pairwise interactions enjoy many benefits such as
coherent uncertainty quantification, the ability to incorporate background knowledge,
and desirable shrinkage properties. In practice, however, Bayesian methods are often
computationally intractable for even moderate-dimensional problems. Our key insight
is that many hierarchical models of practical interest admit a particular Gaussian
process (GP) representation; the GP allows us to capture the posterior with a vector of
𝑂(𝑝) kernel hyper-parameters rather than 𝑂(𝑝2) interactions and main effects. With
the implicit representation, we can run Markov chain Monte Carlo (MCMC) over
model hyper-parameters in time and memory linear in 𝑝 per iteration. We focus on
sparsity-inducing models and show on datasets with a variety of covariate behaviors
that our method: (1) reduces runtime by orders of magnitude over naive applications
of MCMC, (2) provides lower Type I and Type II error relative to state-of-the-art
LASSO-based approaches, and (3) offers improved computational scaling in high
dimensions relative to existing Bayesian and LASSO-based approaches.

3.1 Introduction
Many decision-making and scientific tasks require understanding how a set of covariates
relate to a target response. For example, in clinical trials and precision medicine,
researchers seek to characterize how individual-level traits impact treatment effects,
and in modern genomic studies, researchers seek to identify genetic variants that are
risk factors for particular diseases. While linear regression is a default method for
these tasks and many others due to its ease of interpretability, its simplicity often

37

comes at the cost of failing to learn more nuanced information from the data. A
common way to increase flexibility, while still retaining the interpretability of linear
regression, is to augment the covariate space. For instance, two genes together might be
highly associated with a disease even though individually they exhibit only moderate
association; thus, an analyst might want to consider the multiplicative effect of pairs
of covariates co-occurring.

Unfortunately, augmenting the covariate space by including all possible pairwise
interactions means the number of parameters to analyze grows quadratically with
the number of covariates 𝑝. This growth leads to many statistical and computational
difficulties that are only made worse in the high-dimensional setting, where 𝑝 is
much larger than the number of observations 𝑁 . And 𝑝 ≫ 𝑁 is often exactly the
case of interest in genomic and medical applications. To address the statistical
challenges, practitioners often enforce a sparsity constraint on the model, reflecting
an assumption that only a small subset of all covariates affect the response. The
problem of identifying this subset is a central problem in high-dimensional statistics
and many different LASSO-based approaches have been proposed to return sparse
point estimates. However, these methods do not address how to construct valid
confidence intervals or adjust for multiple comparisons1 [Bien et al., 2013, Lim and
Hastie, 2015, Wu et al., 2009, Nakagawa et al., 2016, Shah, 2016].

Fortunately, hierarchical Bayesian methods have a shrinkage effect, naturally
handle multiplicity, can provide better statistical power than multiple comparison
corrections Gelman et al. [2012], and can leverage background knowledge. However,
naive approaches to Bayesian inference are computationally intractable for even
moderate-dimensional problems. This intractability has two sources. The first source
can be seen even in the simple case of conjugate linear regression with a multivariate
Gaussian prior. Let 𝑋̃ denote the augmented data matrix including all pairwise
interactions, Σ the multivariate Gaussian prior covariance on parameters, and 𝜎2 the
noise variance. Given 𝑁 observations, computing the posterior requires inverting
Σ−1 + 1

𝜎2 𝑋̃
𝑇 𝑋̃, which takes 𝑂(𝑝2𝑁2 +𝑁3) time. The second source is that reporting

on 𝑂(𝑝2) parameters simply has 𝑂(𝑝2) cost.
We propose to speed up inference in Bayesian linear regression with pairwise

interactions by addressing both problems. In the first case, we show how to represent
the original model using a Gaussian process (GP). We use the GP kernel in our kernel
interaction sampler to take advantage of the special structure of interactions and
avoid explicitly computing or inverting Σ−1 + 1

𝜎2 𝑋̃
𝑇 𝑋̃. In the second case, we develop

a kernel interaction trick to compute posterior summaries exactly for main effects
and interactions between selected main effects to avoid the full 𝑂(𝑝2) reporting cost.
In sum, we show that we can recover posterior means and variances of regression
coefficients in 𝑂(𝑝𝑁2 +𝑁3) time, a 𝑝-fold speed-up. We demonstrate the utility and
efficacy of our general-purpose computational tools for the sparse kernel interaction
model (SKIM), which we propose in Section 3.6 for identifying sparse interactions.

1While the knockoff filter introduced in Barber and Candès [2015] is a promising way to control
the false discovery rate, such a method has not been evaluated theoretically or empirically for
interaction models.

38

In Section 6.5 we empirically show (1) improved Type I and Type II error relative
to state-of-the-art LASSO-based approaches and (2) improved computational scaling
in high dimensions relative to existing Bayesian and LASSO-based approaches. Our
methods extend naturally beyond pairwise interactions to higher-order multi-way
interactions, as detailed in Appendix B.1.

3.2 Preliminaries and Related Work
Suppose we observe data 𝐷 = {(𝑥(𝑛), 𝑦(𝑛))}𝑁𝑛=1 with covariates 𝑥(𝑛) ∈ R𝑝 and responses
𝑦(𝑛) ∈ R. Let 𝑋 ∈ R𝑁×𝑝 denote the design matrix and 𝑌 ∈ R𝑁 denote the vector
of responses. Linear models assume that each 𝑦(𝑛) is a (noisy) linear function of the
covariates 𝑥(𝑛). A common strategy to increase the expressivity of linear models is to
augment the original covariates 𝑥(𝑛) with their pairwise interactions

Φ𝑇
2 (𝑥) := [1, 𝑥1, · · · , 𝑥𝑝, 𝑥1𝑥2, · · · , 𝑥𝑝−1𝑥𝑝, 𝑥

2
1, · · · , 𝑥2𝑝].

That is, for a parameter 𝜃 ∈ R𝑝(𝑝+1)/2 and zero-mean i.i.d. errors 𝜖(𝑛), we assume the
data are generated according to

𝑦(𝑛) = 𝜃𝑇Φ2(𝑥
(𝑛)) + 𝜖(𝑛). (3.1)

Our goal is to identify which interaction terms have a significant effect on the
response. Detecting such interactions is important for many applications. For example,
in genomics, two-way interaction terms are needed to detect possible epistasis between
genes [Aschard, 2016, Slim et al., 2018] and to appropriately account for the site-
and sample-specific effects of GC content on genomic and other types of sequencing
data [Benjamini and Speed, 2012, Risso et al., 2011]. In economics and clinical
trials, pairwise interactions between covariates and treatment are used to estimate
the heterogeneous effect a treatment has across different subgroups [Lipkovich et al.,
2017, Section 6]. Unfortunately, having 𝑂(𝑝2) parameters creates statistical and
computational challenges when 𝑝 is large.

To address the statistical issues, practitioners often assume that 𝜃 is sparse (i.e.,
contains only a few non-zero values), and that 𝜃 satisfies strong hierarchy. That is,
an interaction effect 𝜃𝑥𝑖𝑥𝑗

is present only if both of the main effects 𝜃𝑥𝑖
and 𝜃𝑥𝑗

are
present, where 𝜃𝑥𝑖𝑥𝑗

and 𝜃𝑥𝑖
are the regression coefficients of the variables 𝑥𝑖𝑥𝑗 and 𝑥𝑖

respectively [Bien et al., 2013, Lim and Hastie, 2015, Wu et al., 2009, Nakagawa et al.,
2016, Chipman, 1996]. By assuming such low-dimensional structure, inference tasks
such as parameter estimation and variable selection become more tractable statistically.
However, sparsity constraints create computational difficulties. For example, finding
the maximum-likelihood estimator (MLE) subject to ‖𝜃‖0 ≤ 𝑠 requires searching over
Θ(𝑝2𝑠) active parameter subsets. To avoid the combinatorial issues resulting from an
𝐿0 penalty, recent works [Bien et al., 2013, Lim and Hastie, 2015] have instead used
𝐿1 penalties to encourage parameter sparsity for interaction models; 𝐿1 penalties have
a long history in high-dimensional linear regression [Chen et al., 1998, Candes and
Tao, 2007, Tibshirani, 1994],

39

Maximizing the likelihood with an added 𝐿1 penalty is a convex problem. But
each iteration of a state-of-the-art solver for methods given by Bien et al. [2013]
and Lim and Hastie [2015] still takes 𝑂(𝑁𝑝2) time. To handle larger 𝑝, Wu et al.
[2009], Nakagawa et al. [2016], Shah [2016] have proposed various pruning heuristics
for finding locally optimal solutions. However, since these methods do not provide an
exact solution to the optimization problem, any statistical guarantees (such as the
statistical rate at which these estimators converge to the true parameter as a function
of 𝑁 and 𝑝) are weaker than those for exact methods.

𝐿1-based methods face a number of additional challenges: constructing valid
confidence intervals, incorporating background knowledge, and controlling for the issue
of multiple comparisons when testing many parameters for statistical significance. In
many applications such as genome-wide association studies, controlling for multiplicity
is critical to prevent wasting resources on false discoveries. Moreover, since dim(Φ2) =
𝑝(𝑝+1)/2, 𝜃 can be very high dimensional even when 𝑝 is moderately large. Hence, there
will typically be nontrivial uncertainty when attempting to estimate 𝜃. Fortunately,
hierarchical Bayesian methods have (1) a natural shrinkage or regularization effect
such that multiple testing corrections are no longer necessary, (2) better statistical
power than using multiple comparison correction terms such as Bonferroni [Gelman
et al., 2012], and (3) naturally provide calibrated uncertainties. Bayesian methods
can also incorporate expert information.

Though they offer desirable statistical properties, Bayesian approaches are com-
putationally expensive. Previous efforts [Griffin and Brown, 2017, Chipman, 1996]
have focused on developing hierarchical sparsity priors that promote strong hierarchy,
analogous to the LASSO-based approaches [Bien et al., 2013, Lim and Hastie, 2015,
Wu et al., 2009, Nakagawa et al., 2016]. But these methods do not address the
computational intractability of inference for even moderate-dimensional problems.

We address the computational challenges of inference by developing the kernel
interaction trick (Section 3.5), which allows us to access posterior marginals of 𝜃
without ever representing 𝜃 explicitly. Note that while some previous works have
used a degree-two polynomial kernel to implicitly generate all pairwise interactions
[Morota and Gianola, 2014, Weissbrod et al., 2016, Su et al., 2012], those works have
focused on prediction or estimating the cumulative proportion of variance explained
by interactions rather than our present focus on posterior inference.

3.3 Bayesian Models with Interactions
Our goal is to estimate and provide uncertainties for the parameter 𝜃 ∈ Rdim(Φ2). To
take a Bayesian approach, we encode the state of knowledge before observing the data
𝐷 in a prior 𝜋0(𝜃). We express the likelihood as ℒ(𝑌 | 𝜃,𝑋) =

∏︀𝑁
𝑛=1 ℒ(𝑦(𝑛) | 𝜃, 𝑥(𝑛)).

Applying Bayes’ theorem yields the posterior distribution 𝜋(𝜃 | 𝐷) ∝ ℒ(𝑌 | 𝜃,𝑋)𝜋0(𝜃),
which describes the state of knowledge about 𝜃 after observing the data 𝐷. For a
function 𝑓 of interest, we wish to compute the posterior expectation

E𝜋(𝜃|𝐷)[𝑓(𝜃)] =

∫︁
𝑓(𝜃)𝜋(𝜃 | 𝐷)𝑑𝜃. (3.2)

40

Table 3.1: Per-iteration MCMC runtime and memory scaling of methods for sampling
two-way interactions. NAIVE refers to explicitly factorizing Σ𝑁,𝜏 to compute 𝑝(𝐷 |
𝜏, 𝜎2), WOODBURY refers to using the Woodbury identity and matrix determinant
lemma to compute 𝑝(𝐷 | 𝜏, 𝜎2), and FULL refers to jointly sampling 𝜃 and 𝜏 . The
third column provides the number of parameters sampled.

Method Time Memory #

Our Method 𝑂(𝑝𝑁2 +𝑁3) 𝑂(𝑝𝑁 +𝑁2) 𝑂(𝑝)
Naive 𝑂(𝑝6 + 𝑝4𝑁) 𝑂(𝑝4 + 𝑝2𝑁) 𝑂(𝑝)
Woodbury 𝑂(𝑝2𝑁2 +𝑁3) 𝑂(𝑝2𝑁 +𝑁2) 𝑂(𝑝)
Full 𝑂(𝑝2𝑁) 𝑂(𝑝2𝑁) Θ(𝑝2)

Typically, 𝑓(𝜃) = 𝜃𝑗 or 𝑓(𝜃) = 𝜃2𝑗 , which together allow us to compute the posterior
mean and variance of each 𝜃𝑗.

Generative model. Going forward, we model 𝜃 as being drawn from a Gaussian
scale mixture prior to encode desirable properties such as sparsity and strong hierarchy
[cf. Griffin and Brown, 2017, Chipman, 1996, George and McCulloch, 1993, Carvalho
et al., 2009, Piironen and Vehtari, 2017]. These priors have also been used beyond
sparse Bayesian regression [cf. Hamdan et al., 2005, Wainwright and Simoncelli, 1999,
Choy and Chan, 2003]. A Gaussian scale mixture is equivalent to assuming that there
exists an auxiliary random variable 𝜏 ∼ 𝑝(𝜏) such that 𝜃 is conditionally Gaussian
given 𝜏 . Let Σ𝜏 denote the covariance matrix for 𝑝(𝜃 | 𝜏). Also, let 𝜎2 be the latent
noise variance in the likelihood; since it is typically unknown, we treat it as random
and put a prior on it as well. Hence, the full generative model can be written

𝜏 ∼ 𝑝(𝜏)

𝜎2 ∼ 𝑝(𝜎2)

𝜃 | 𝜏 ∼ 𝒩 (0,Σ𝜏)

𝑦(𝑛) | 𝑥(𝑛), 𝜃, 𝜎2 ∼ 𝒩 (𝜃𝑇Φ2(𝑥
(𝑛)), 𝜎2).

(3.3)

Computational challenges of inference. Again, our main goal is to tractably
compute expectations of functions under the posterior 𝜋(𝜃 | 𝐷) ∝ ℒ(𝑌 | 𝜃,𝑋)𝜋0(𝜃).
Since there are Θ(𝑝2) parameter components, direct numerical integration over each
of these components is feasible only when 𝑝 is at most 3 or 4. As a result we turn
to Monte Carlo integration. Two natural Monte Carlo estimators one might use to
approximate E𝜋(𝜃|𝐷)[𝑓(𝜃)] are

1. 1
𝑇

∑︀𝑇
𝑡=1 𝑓(𝜃

(𝑡)) with 𝜃(𝑡) iid∼ 𝜋(𝜃 | 𝐷) or

2. 1
𝑇

∑︀𝑇
𝑡=1 E𝜋(𝜃|𝐷,𝜏 (𝑡))[𝑓(𝜃)] with 𝜏 (𝑡) iid∼ 𝑝(𝜏 | 𝐷).

For the first estimator, we can use Markov chain Monte Carlo (MCMC) techniques

41

to sample each 𝜃(𝑡) approximately independently from 𝜋(𝜃 | 𝐷) since the posterior
is available up to a multiplicative normalizing constant. Computing the prior 𝑝(𝜃),
however, may be analytically intractable because it requires marginalizing out 𝜏 .
We could instead additionally sample 𝜏 . To use gradient-based MCMC samplers,
sampling 𝜏 would require computing the pdfs (and gradients) of the likelihood terms
ℒ(𝑦(𝑛) | 𝑥(𝑛), 𝜃, 𝜎2) and the prior terms 𝑝(𝜃 | 𝜏) and 𝑝(𝜏). So the cost would be
𝑂(𝑝2𝑁 + dim(𝜏)) time per iteration. Even for 𝑝 moderately large, the Θ(𝑝2 + dim(𝜏))
number of parameters might require many MCMC iterations to properly explore such
a large space [MacKay, 1998, Pillai et al., 2012, Beskos et al., 2013]; see also Fig. 3-2
for an empirical demonstration.

To explore a smaller space, and hence potentially reduce the number of MCMC
iterations required for the chains to mix, we might take the second approach: sampling
from 𝑝(𝜏 | 𝐷) by marginalizing out the high-dimensional parameter 𝜃. Sampling each
𝜏 requires computing

𝑝(𝐷 | 𝜏, 𝜎2) =

∫︁
𝑝(𝐷 | 𝜃, 𝜎2)𝑑𝑝(𝜃 | 𝜏). (3.4)

Since 𝑝(𝜃 | 𝜏) is a multivariate Gaussian density function, 𝑝(𝐷 | 𝜏, 𝜎2) equals

(1/
√
2𝜋𝜎2)𝑁 det(2𝜋Σ𝑁,𝜏)

1
2 exp

(︀
− 1

2𝜎2𝑌
𝑇𝑌
)︀

det(2𝜋Σ𝜏)
1
2 exp

(︀
− 1

2𝜎4𝑌 𝑇Φ2(𝑋)Σ𝑁,𝜏Φ2(𝑋)𝑇𝑌
)︀ (3.5)

where Σ−1
𝑁,𝜏 := Σ−1

𝜏 + 1
𝜎2Φ2(𝑋)𝑇Φ2(𝑋). Unfortunately, computing Eq. (3.5) naively

takes prohibitive 𝑂(𝑝6 + 𝑝4𝑁) time – or 𝑂(𝑝2𝑁2 +𝑁3) time when using linear algebra
identities; see Table 3.1 and Appendix B.6 for details.

3.4 The Kernel Interaction Sampler
Our kernel interaction sampler (KIS) provides a recipe for efficiently sampling from
𝑝(𝜏, 𝜎2 | 𝐷) using MCMC. Recall from the last section that the computational
bottleneck for sampling 𝜏 was computing 𝑝(𝐷 | 𝜏, 𝜎2), so we focus on that problem
here. We achieve large computational gains (Table 3.1) by using the special model
structure and a kernel trick to avoid the factorization of Σ𝑁,𝜏 in Eq. (3.5). To that
end, KIS has three main parts: (1) we re-parameterize the generative model given in
Eq. (3.3) using a Gaussian process (GP); (2) we show how to cheaply compute the GP
kernel; and (3) we show how these steps translate into computation of 𝑝(𝐷 | 𝜏, 𝜎2) in
time linear in 𝑝. In Appendix B.1 we extend to the case of higher-order interactions.

For the moment, suppose that we could construct a covariance function 𝑘𝜏 such

42

that the generative model in Eq. (3.3) could be re-parameterized as:

𝜏 ∼ 𝑝(𝜏)

𝑔 | 𝜏 ∼ 𝐺𝑃 (0, 𝑘𝜏)

𝜎2 ∼ 𝑝(𝜎2)

𝑦(𝑛) | 𝑔, 𝑥(𝑛), 𝜎2 ∼ 𝒩 (𝑔(𝑥(𝑛)), 𝜎2),

(3.6)

where 𝐺𝑃 (0, 𝑘𝜏) denotes a Gaussian process (GP) with mean function zero. Defining
the kernel matrix (𝐾𝜏)𝑖𝑗 := 𝑘𝜏 (𝑥

(𝑖), 𝑥(𝑗)), we can conclude that [see Rasmussen and
Williams, 2006, Eq. 2.30]

log 𝑝(𝐷 | 𝜏, 𝜎2) = −1

2
𝑌 𝑇𝐿−1𝑌 − 1

2
log |𝐿| − 𝑁

2
log 2𝜋, (3.7)

where 𝐿 equals 𝐾𝜏 + 𝜎2𝐼𝑁 . Let 𝑇𝑘 denote the time it takes to evaluate 𝑘𝜏 on a pair of
points. The computational bottleneck of Eq. (5.10) is computing and factorizing 𝐾𝜏 ,
which take 𝑂(𝑁2𝑇𝑘) and 𝑂(𝑁3) time, respectively. Hence, as long as 𝑇𝑘 is 𝑂(𝑝), we
can compute 𝑝(𝐷 | 𝜏, 𝜎2) in time linear in 𝑝. To achieve this scaling, we first show (in
the next result) that any generative model in the form of Eq. (3.3) can be rewritten
in the form of Eq. (3.6). We then show how 𝑘𝜏 can be evaluated in 𝑂(𝑝) time for the
models of interest.

Proposition 3.4.1. (Gaussian process representation) Let 𝑌 and 𝑌 be response
vectors generated according to the models in Eq. (3.3) and Eq. (3.6) respectively for
design matrix 𝑋 ∈ R𝑁×𝑝. Let 𝑘𝜏 (𝑥(𝑖), 𝑥(𝑗)) = Φ2(𝑥

(𝑖))⊤Σ𝜏Φ2(𝑥
(𝑗)). Then, 𝑌 | 𝑋 𝑑

= 𝑌 |
𝑋, where 𝑑

= denotes equality in distribution. Moreover, for every draw 𝑔 | 𝜏 ∼ 𝒩 (0, 𝑘𝜏),
there exists some 𝜃 ∈ Rdim(Φ2) such that 𝑔(·) = 𝜃𝑇Φ2(·).

The proof follows directly by considering the weight-space view of a GP [Rasmussen
and Williams, 2006, Chapter 2]; see Appendix D.1 for details.

Next, we need to show that 𝑘𝜏 can be evaluated in 𝑂(𝑝) time for models of interest.
This fact is not obvious; computing 𝑘𝜏 on a pair of points naively still requires explicitly
computing the high-dimensional feature maps Φ2 and prior covariance matrix Σ𝜏 . To
compute 𝑘𝜏 efficiently, we rewrite it as a weighted sum of polynomial kernels of the
form

𝑘𝑐poly,𝑑(𝑥, 𝑥̃) :=
(︁
𝑥𝑇 𝑥̃+ 𝑐

)︁𝑑
,

which each take 𝑂(𝑝) time to compute. Below we define two-way interaction kernels as
particular linear combinations of these polynomial kernels. Then we provide a result
motivating this class; namely, we show that any diagonal Σ𝜏 prior can be written as a
two-way interaction kernel. Fortunately, to the best of our knowledge, all previous
high-dimensional Bayesian regression models assume Σ𝜏 is diagonal [cf. Griffin and
Brown, 2017, Chipman, 1996, George and McCulloch, 1993, Carvalho et al., 2009,
Piironen and Vehtari, 2017]. Hence, this restriction on Σ𝜏 is mild.

43

Definition 3.4.2. (Two-way interaction kernel) We call the kernel 𝑘 a two-way
interaction kernel if for some choice of 𝑀1,𝑀2 ∈ N, 𝛼, 𝜓, 𝜆(𝑚) ∈ R𝑝

+ (𝑚 = 1, . . . ,𝑀1),
𝜈(𝑚) ∈ R+ (𝑚 = 1, . . . ,𝑀2), 1 ≤ 𝑖𝑚 < 𝑗𝑚 ≤ 𝑝 (𝑚 = 1, . . . ,𝑀2), and 𝐴 ∈ R, the kernel
𝑘(𝑥, 𝑥̃) is equal to

𝑀1∑︁
𝑚=1

𝑘1𝑝𝑜𝑙𝑦,2(𝜆
(𝑚) ⊙ 𝑥, 𝜆(𝑚) ⊙ 𝑥̃) +

𝑀2∑︁
𝑚=1

𝜈(𝑚)𝑥𝑖𝑚𝑥𝑗𝑚𝑥̃𝑖𝑚𝑥̃𝑗𝑚

+ 𝑘𝐴𝑝𝑜𝑙𝑦,1(𝛼⊙ 𝑥, 𝛼⊙ 𝑥̃) + 𝑘0𝑝𝑜𝑙𝑦,1(𝜓 ⊙ 𝑥⊙ 𝑥, 𝜓 ⊙ 𝑥̃⊙ 𝑥̃),

where ⊙ is the entrywise product.

Theorem 3.4.3 (1-to-1 correspondence with diagonal Σ𝜏). Suppose 𝑘 is a two-way
interaction kernel. Then

𝑘(𝑥, 𝑥̃) = Φ2(𝑥)
⊤𝑆Φ2(𝑥̃), (3.8)

where the induced prior covariance matrix 𝑆 is diagonal. The entries of 𝑆 are given by

diag(𝑆)(𝑖) = 𝛼2
𝑖 + 2

𝑀1∑︁
𝑚=1

[︁
𝜆
(𝑚)
𝑖

]︁2
diag(𝑆)(𝑖𝑗) = 2

𝑀1∑︁
𝑚=1

[︁
𝜆
(𝑚)
𝑖 𝜆

(𝑚)
𝑗

]︁2
+

𝑀2∑︁
𝑘:𝑖𝑘=𝑖,𝑗𝑘=𝑗

𝜈(𝑚)

diag(𝑆)(𝑖𝑖) = 𝜓2
𝑖 +

𝑀1∑︁
𝑚=1

[︁
𝜆
(𝑚)
𝑖

]︁4
diag(𝑆)(0) =𝑀1 + 𝐴,

where diag(𝑆)(𝑖), diag(𝑆)(𝑖𝑗), diag(𝑆)(𝑖𝑖), and diag(𝑆)(0) denote the prior variances
of the main effect 𝜃𝑥𝑖

, interaction effect 𝜃𝑥𝑖𝑥𝑗
, quadratic effect 𝜃𝑥2

𝑖
, and intercept 𝜃0,

respectively. Furthermore, for any diagonal covariance matrix 𝑆 ∈ Rdim(Φ2)×dim(Φ2),
there exists a two-way interaction kernel that induces 𝑆 as a prior covariance matrix.

Theorem 3.4.3 (proof in Appendix B.2.2) and Proposition 3.4.1 imply that two-way
interaction kernels induce a space of models in 1-to-1 correspondence with models in
the form of Eq. (3.3) when Σ𝜏 is constrained to be diagonal. Since most models of
practical interest have Σ𝜏 diagonal, we can readily construct the two-way interaction
kernel corresponding to Σ𝜏 by solving the system of equations

diag(𝑆)(𝑖) = diag(Σ𝜏)(𝑖) diag(𝑆)(𝑖𝑗) = diag(Σ𝜏)(𝑖𝑗)

diag(𝑆)(𝑖𝑖) = diag(Σ𝜏)(𝑖𝑖) diag(𝑆)(0) = diag(Σ𝜏)(0)
(3.9)

Each of the 𝑀1 + 2 polynomial kernels takes 𝑂(𝑝) time to compute, and each of the
𝑀2 product terms takes 𝑂(1) time. Therefore, we want to select 𝑀1 and 𝑀2 small so
that 𝑘𝜏 can be computed quickly. Since there are more degrees of freedom (i.e., free
variables) available to solve Eq. (3.9) as 𝑀1 and 𝑀2 increase, eventually a solution
will exist as we show in Appendix B.2.2. But Theorem 3.4.3 does not tell us how large

44

𝑀1 and 𝑀2 have to be for an arbitrary model. In Appendix B.3, we solve Eq. (3.9)
for a variety of models of practical interest and show that in these cases, 𝑀1 and 𝑀2

can be set very small (between one and three). Thus 𝑘𝜏 can be computed in 𝑂(𝑝)
time, and so the kernel matrix 𝐾𝜏 can be computed in 𝑂(𝑁2𝑝) time. Finally, then,
we may compute the likelihood 𝑝(𝐷 | 𝜏, 𝜎2) in 𝑂(𝑁2𝑝+𝑁3) time.

3.5 The Kernel Interaction Trick: Recovering Poste-
rior Marginals

Even if we are able to sample 𝜏 much faster using KIS, the problem of computing
E𝑝(𝜃|𝐷,𝜏)[𝑓(𝜃)] remains unresolved. In this section, we show that, given 𝐾𝜏 , any such
expectation can be recovered in 𝑂(1) time by evaluating the GP posterior at certain
test points.

To provide the main intuition for our solution, suppose we would like to compute
the posterior mean of the main effect 𝜃𝑥𝑖

. Let 𝑒𝑖 ∈ R𝑝 denote the 𝑖th unit vector.
Since 𝑔 = 𝜃𝑇Φ2 by Proposition 3.4.1, we have

𝑔(𝑒𝑖) = 𝜃𝑥𝑖
+ 𝜃𝑥2

𝑖

𝑔(−𝑒𝑖) = −𝜃𝑥𝑖
+ 𝜃𝑥2

𝑖

𝑔(𝑒𝑖)− 𝑔(−𝑒𝑖)
2

= 𝜃𝑥𝑖
.

(3.10)

Since 𝑔 is a Gaussian process, the distribution of 𝑍𝑔 := (𝑔(𝑒𝑖), 𝑔(−𝑒𝑖)) | 𝐷, 𝜏 is multivari-
ate Gaussian and can be computed in closed form by appropriate matrix multiplications
of the kernel matrix 𝐾𝜏 ; see Theorem 3.5.1 below for details. Then, by consulting
Eq. (3.10), one can recover 𝜃𝑥𝑖

| 𝐷, 𝜏 as the linear combination [1/2,−1/2]𝑇𝑍𝑔 | 𝐷, 𝜏 ,
which is univariate Gaussian. While we have focused on a particular instance here, this
example provides the main insight for the general formula to compute E𝑝(𝜃|𝐷,𝜏)[𝑓(𝜃)]
from 𝐾𝜏 .

Theorem 3.5.1. (The kernel interaction trick) Let 𝐻𝜏 := (𝐾𝜏 + 𝜎2𝐼𝑁)
−1 and

𝐴𝑖𝑗 := [𝑒𝑖,−𝑒𝑖, 𝑒𝑗, 𝑒𝑖 + 𝑒𝑗]
𝑇 ∈ R4×𝑝.

Let 𝐾𝜏 (𝐴𝑖𝑗, 𝑋) = 𝐾𝜏 (𝑋,𝐴𝑖𝑗)
𝑇 be the 4×𝑁 matrix formed by taking the kernel between

each row of 𝐴𝑖𝑗 with each row of 𝑋. For a row-vector 𝑎 ∈ R4, define the scalars
𝜇𝑎 := 𝑎𝐾𝜏 (𝐴𝑖𝑗, 𝑋)𝐻𝜏𝑌 and

𝜎2
𝑎 := 𝑎

[︀
𝐾𝜏 (𝐴𝑖𝑗, 𝐴𝑖𝑗)−𝐾𝜏 (𝐴𝑖𝑗, 𝑋)𝐻𝜏𝐾𝜏 (𝑋,𝐴𝑖𝑗)

]︀
𝑎𝑇 .

Then the distributions of 𝜃𝑥𝑖
| 𝜏,𝐷, 𝜃𝑥𝑖𝑥𝑗

| 𝜏,𝐷, and 𝜃𝑥2
𝑖
| 𝜏,𝐷 are given by 𝒩 (𝜇𝑎, 𝜎

2
𝑎)

with, respectively, 𝑎 = (1/2,−1/2, 0, 0), 𝑎 = (−1/2, 1/2,−1, 1), and 𝑎 = (1/2, 1/2, 0, 0).

Corollary 3.5.2. Given 𝐾𝜏 , the distributions of 𝜃𝑥𝑖
, 𝜃𝑥𝑖𝑥𝑗

, and 𝜃𝑥2
𝑖

take 𝑂(1) addi-
tional time and memory to compute.

45

We prove Theorem 3.5.1 and Corollary 3.5.2 in Appendix D.1. In Appendix B.2.5,
we generalize Theorem 3.5.1 by showing how to obtain the joint posterior distribution
of any subset of parameters contained in 𝜃. Hence, we can compute E𝑝(𝜃|𝐷,𝜏)[𝑓(𝜃)] for
an arbitrary 𝑓 using the kernel interaction trick.

Note that if we would like to obtain the posterior mean of all Θ(𝑝2) parameters,
then clearly a linear time algorithm in 𝑝 is impossible. Instead, we can adopt a lazy
evaluation strategy where we compute the posterior of one of the Θ(𝑝2) parameters
only when it is needed. This approach is effective in the many applications where we
do not need to look at all the interactions. In particular, we might first find the top 𝑘
main effects. After selecting these variables, we could examine their interactions. The
number of interactions among the main effects (which is Θ(𝑘2)) is much smaller than
the total number of possible interactions (which is Θ(𝑝2)) if 𝑘 ≪ 𝑝. Such a strategy
is natural if we believe that 𝜃 satisfies the (commonly assumed) strong hierarchy
restriction.

3.6 SKIM: Sparse Kernel Interaction Model
To demonstrate the utility and efficacy of the kernel interaction sampler and kernel
interaction trick, we choose a particular model that we call the sparse kernel interaction
model (SKIM). In what follows, we first detail SKIM, which we will see promotes
sparsity and strong hierarchy. Then, by observing that SKIM is a special case of the
general model in Eq. (3.3), we can show that SKIM induces a two-way interaction
kernel via Theorem 3.4.3 and Eq. (3.9). We will see that this kernel has only 3
components and thus takes only 𝑂(𝑝) time to evaluate. By Corollary B.2.3, we can
compute the distribution of interaction terms from SKIM in 𝑂(1) time once we have
computed the kernel matrix. Hence, the final computation time for discovering main
effects and interaction effects with SKIM will be 𝑂(𝑁2𝑝+𝑁3) by the discussion at
the end of Section 3.5.

SKIM2 is given in full detail, together with discussion of hyperparameter selection
and intepretation, in Appendix B.4.1. It is a particular instance of a general class of
hierarchical sparsity priors [cf. Griffin and Brown, 2017, Chipman, 1996, George and
McCulloch, 1993] that have the following form:

𝜅 ∼ 𝑝(𝜅) 𝜂 ∼ 𝑝(𝜂) 𝑐2 ∼ 𝑝(𝑐2)

𝜃𝑥𝑖
| 𝜅, 𝜂 ∼ 𝒩 (0, 𝜂21𝜅

2
𝑖)

𝜃𝑥𝑖𝑥𝑗
| 𝜅, 𝜂 ∼ 𝒩 (0, 𝜂22𝜅

2
𝑖𝜅

2
𝑗)

𝜃𝑥2
𝑖
| 𝜅, 𝜂 ∼ 𝒩 (0, 𝜂23𝜅

4
𝑖)

𝜃0 | 𝑐2 ∼ 𝒩 (0, 𝑐2),

(3.11)

where 𝜃0 is the intercept term and every 𝜂𝑖 or 𝜅𝑗 is a scalar.
We next show that any prior in the form of Eq. (3.11) induces a 𝑂(𝑝) two-way

interaction kernel. The proof is in Appendix B.2.6.

2See https://github.com/agrawalraj/skim for the code.

46

https://github.com/agrawalraj/skim

Figure 3-1: Empirical evaluation of (a) time and (b) memory scaling with dimension
of marginal likelihood computation. Woodbury and Naive refer to the baselines in
Section 5.2.

Proposition 3.6.1. Taking 𝜏 := (𝜂, 𝜅, 𝑐2), the generative model in Eq. (3.11) is
equivalent to using the following kernel in Eq. (3.6):

𝑘𝜏 (𝑥, 𝑥̃) =
𝜂22
2
𝑘1poly,2(𝜅⊙ 𝑥, 𝜅⊙ 𝑥̃)

(𝜂23 −
𝜂22
2
)𝑘0poly,1(𝜅⊙ 𝑥⊙ 𝑥, 𝜅⊙ 𝑥̃⊙ 𝑥̃)

+
(︀
𝜂21 − 𝜂22

)︀
𝑘0poly,1(𝜅⊙ 𝑥, 𝜅⊙ 𝑥̃) + 𝑐2 − 𝜂22

2
.

3.7 Experiments
Time and memory cost versus Bayesian baselines. We first assess the compu-
tational advantages of our kernel interaction sampler (KIS) by comparing it with each
baseline Bayesian method in Table 3.1. We start by profiling the time and memory
cost of computing 𝑝(𝐷 | 𝜏, 𝜎2), which we have seen is a computational bottleneck
for sampler option 2 in Section 5.2. In Fig. 3-1, we depict the time and memory
cost of 𝑝(𝐷 | 𝜏, 𝜎2) computation for conjugate linear regression with an isotropic
Gaussian prior on synthetic datasets with 𝑁 = 50. We vary 𝑝 but not 𝑁 because we
are interested primarily in the high-dimensional case when 𝑝 is large relative to 𝑁 .
Fig. 3-1 shows that KIS yields orders-of-magnitude speed and memory improvements
over the baseline methods for computing 𝑝(𝐷 | 𝜏, 𝜎2).

We next compare inference for SKIM using KIS, which marginalizes out 𝜃 and
samples 𝜏 , to jointly sampling (𝜃, 𝜏) (denoted FULL).3 We implemented KIS and
FULL in Stan Carpenter et al. [2019] and used the NUTS algorithm Hoffman and
Gelman [2014] for sampling (4 chains with 1,000 iterations per chain). As shown in
Fig. 3-2(a), KIS is orders of magnitude faster even for lower values of 𝑝. In Section 5.2
we remarked that since FULL explores a much higher-dimensional space, there might

3See the discussion of sampler option 1 in Section 5.2.

47

‘

(a) NUTS Runtimes

‘

(b) LASSO runtime comparisons

Figure 3-2: The left-hand figure indicates the time to complete four parallel chains
of 1000 iterations of NUTS for the SKIM model proposed in Section 3.6 using KIS
(denoted as SKIM-KIS) and FULL. For each point, KIS had 𝑅̂ < 1.05 while FULL
always had 𝑅̂ > 1.05. The right-hand figure compares the runtime of inference for
SKIM-KIS versus fitting LASSO-based methods.

be issues with mixing. To explore this possibility empirically, we check the Gelman–
Rubin statistic (𝑅̂) values of the output from both KIS and FULL. We found that,
for FULL, the 𝑅̂ values were greater than 1.05, with some reaching as high as 1.5
(indicating poor mixing), while for KIS all 𝑅̂ values were less than 1.05 (suggesting
good mixing).

Comparison to LASSO: synthetic data. Having demonstrated the considerable
computational savings over baseline Bayesian approaches, we next demonstrate the
advantage of our method over frequentist approaches such as the LASSO. In particular,
we consider the common case when the true high-dimensional parameter 𝜃 is assumed
to be sparse and satisfies the requirement of strong hierarchy. To the best of our
knowledge, there has not been an extensive empirical comparison between sparse
Bayesian interaction models and sparse frequentist interaction models. The likely
reason is that each MCMC iteration for sampling 𝜏 takes 𝑂(𝑁2𝑝2 +𝑁3) time using
the Woodbury matrix method. The per-iteration cost of the iterative optimization
solver for the LASSO and the hierarchical LASSO, on the other hand, is 𝑂(𝑁𝑝2),
which is much faster when 𝑁 is even moderately large. Fortunately, SKIM admits a
cheap-to-compute kernel function such that each MCMC iteration takes 𝑂(𝑁2𝑝+𝑁3)
time, which is faster than the LASSO-style approaches in cases when 𝑝 is large relative
to 𝑁 .

We benchmark SKIM against generating all pairwise interactions and running the
LASSO (denoted pairs LASSO) and the hierarchical LASSO Lim and Hastie [2015],
which constrains the fitted parameters to satisfy strong hierarchy. We generate 36
different synthetic datasets, which differ in the number of observations, dimension,
and signal-to-noise ratio. The covariates 𝑋 are drawn from 𝒩 (0, 𝜆2𝐼𝑝) for different
choices of 𝜆. Here, 𝜆 controls the signal-to-noise ratio; when 𝜆 is larger, the signal

48

‘

(a) Main effects differences

‘

(b) Pairwise effects differences

Figure 3-3: Variable selection performance of each method for the 36 synthetic datasets.
Each point in each plot indicates one of these datasets for a particular method. The
green regions in the second and last plot indicate where our method in strictly better
than the other two in terms of variable selection, while the red region indicates the
datasets for which our method is strictly worse. In the first and last figures, better
performance occurs when moving right and/or down.

is stronger. We consider 𝑁 ∈ {50, 100, 200} observations, 𝑝 ∈ {50, 100, 200, 500}
dimensions (which translates into between roughly 1.25 × 103 and 1.25 × 105 total
interaction parameters), and 𝜆 ∈ {1, 2, 5}. In each dataset, we select five variables
(and their pairwise interactions) to affect 𝑦, and we allow the rest of the variables
to lead to spurious correlations with the response 𝑦. We set the magnitudes of all
non-zero effects to 1. Finally, 𝑦 | 𝑥, 𝜃* ∼ 𝒩 (0, 𝜎2), where the noise variance 𝜎2 equals
the largest 𝜆2 value, namely 25, to mimic the realistic case when the noise variance is
large relative to the signal. We compare each method in terms of variable selection
quality and mean-squared error (MSE) between the fitted and true parameter. For
variable selection, we select a parameter only if the posterior mean of that parameter
is farther than 2.59 times its (average) posterior standard deviation from zero; see
Appendix B.5 for details. For the hierarchical LASSO and pairs LASSO, the variables
selected are those with non-zero coefficients, and we use 5-fold cross-validation to find
the strength of the 𝐿1 penalties. We fit the hierarchical LASSO using the glinternet
package in R and pairs LASSO using sklearn in python. We implemented KIS is
Stan (4 chains with 1,000 iterations each). The 𝑅̂ values for each dataset were less
than 1.05.

First, we examine how well each method selects main effects and pairwise effects.
Each point in Fig. 3-3(a) shows the number of main effects selected and number of
incorrect main effects selected for a given synthetic dataset. In this plot, it is clear that
our method has better false discovery rate (FDR) control over the other two methods
on average. Fig. 3-3(c) shows the FDR performance for pairwise effects. To compare
the methods at the dataset level, in Fig. 3-3(b,d) we consider the difference in the
number of correct and incorrect main effects selected by our method and the LASSO

49

‘

(a) MSE difference (main)

‘

(b) MSE difference (pairwise)

Figure 3-4: Each red cross denotes the difference in MSE of the hierarchical LASSO
and KIS from the true main effects (left) and pairwise effects (right) for a given
synthetic dataset. When the MSE difference is larger than 0 (i.e., the green shaded
region), then our method is closer to the true effect sizes in terms of Euclidean distance.
Similarly, each blue x equals the difference in MSE of all-pairs LASSO and our method.

methods for each dataset. The green shaded regions indicate the datasets for which our
method simultaneously selects more correct main effects and has fewer incorrect main
effects, i.e., is strictly better than the other two methods for any variable selection
metric. Finally, in Fig. 3-4 we look at the difference in MSE to 𝜃*, broken down in
terms of the error for estimating main and pairwise effects. Again, we see for the
great majority of the datasets, KIS outperforms the LASSO based approaches. In
Fig. 3-2(b) we see that SKIM-KIS has competitive runtimes relative to pairs LASSO
and hierarchical LASSO.

Comparison to LASSO: synthetic data, real covariates. To understand the
impact of the geometry of the covariates on performance, we took the Residential
Building Data Set from the UCI Machine Learning Repository and simulated responses
as in our previous synthetic experimental setup. In particular, we randomly chose
5 variables and their 10 pairwise interactions to have non-zero effects. In this case,
the covariates are highly correlated (the first 20 out of 105 principal components
capture over 99% of the variance in the data). In Table 3.2, we see that SKIM signifi-
cantly outperforms the LASSO-based methods for recovering main and pairwise effects.

Comparison to LASSO: cars miles per gallon dataset. We conclude by com-
paring the methods on the Auto MPG dataset, from the UCI Machine Learning
Repository, which contains 𝑁 = 398 samples and 𝑝 = 8 variables. We consider only
the 6 numerical variables (cylinders, displacement, horsepower, weight, acceleration,
model year) and standardize the data by subtracting the mean and dividing by the
standard deviation. To compare the methods, we first fit SKIM and the LASSO-
based methods (via 5-fold cross-validation) on these 6 features. Our method selects
three main effects (weight, horsepower, acceleration) and one interaction (weight ×

50

Table 3.2: Building dataset results. MAIN (PAIR) MSE refers to total error in
estimating main (pairwise) effects. The main and pairwise MSE added together yield
the total MSE. The second and fourth columns show (# of effects correctly selected)
: (# of incorrect effects selected) for main and pairwise effects, respectively. Larger
green values are better while larger purple values are worse.

Method Main MSE # Main Pair MSE # Pair

SKIM 0.1 3 : 0 7.0 3 : 0
PLASSO 5.0 2 : 5 9.3 3 : 21
HLASSO 1.5 3 : 19 7.8 3 : 18

Table 3.3: Auto MPG dataset results. Each column represents the (# of original
effects selected) : (# of fake effects selected). A selected main (pairwise) effect is an
“original” effect if it corresponds to one of the original 6 features (15 interactions).
Main100 (Pairwise100) and Main200 (Pairwise200) denote when 100 and 200 random
noise covariates are added to the original 6 features, respectively. Larger purple values
are worse. Higher green values are not necessarily better since there are no ground
truth interactions.

Method Main100 Main200 Pair100 Pair200

SKIM 3 : 0 3 : 0 1 : 0 1 : 0
PLASSO 4 : 1 4 : 0 4 : 99 2 : 78
HLASSO 5 : 4 6 : 46 5 : 2 4 : 38

horsepower). The hierarchical LASSO selects all six main effects and 8 out of the 15
possible pairwise interactions. Pairs LASSO selects 5 main effects and 8 interactions.

Since there is no ground truth, and all of the main and pairwise interactions could
a priori affect miles per gallon, it is difficult to compare the methods. To better assess
the methods, we instead append random noise covariates and refit each model. In
particular, we draw additional covariates from a 𝒩 (0, 𝐼𝑚), for 𝑚 = 100, 200 and add
these noise variables to the original 6 features. The total number of main and pairwise
regression coefficients grows to 5,671 and 21,321 for 𝑚 = 100, 200 respectively, making
the regression task very high-dimensional. The results are summarized in Table 3.3.
All methods are able to pick up some main effects and pairwise effects from the original
dataset. Beyond that observation, we cannot compare which main and interaction
effects from the original data are real. However, we do know that all noise effects are
fake. We see that even with more noise directions, our method selects the same main
effects and pairwise effects as the noiseless covariate case; that is, it does not pick up
any fake effects. The two LASSO-based methods, on the other hand, incorrectly select
many noise variables as interactions.

51

Conclusion. Through our kernel interaction sampler we have demonstrated that
Bayesian interaction models can offer both competitive computational scaling relative
to LASSO-based methods and improved Type I and II error rates. While our method
runs in time linear in 𝑝 per iteration, the cubic dependence on 𝑁 still makes inference
computationally challenging. Fortunately, there is a wide GP literature that deals
precisely with reducing this cubic timing dependence through inducing points [Titsias,
2009, Quiñonero Candela and Rasmussen, 2005] or novel conjugate-gradient techniques
[Gardner et al., 2018]. An interesting future direction will be to empirically and
theoretically understand the statistical penalty of using these inducing point methods
to scale SKIM to the setting of both large 𝑁 and large 𝑝.

52

Chapter 4

The SKIM-FA Kernel:
High-Dimensional Variable Selection
and Non-Linear Interaction Discovery
in Linear Time

Abstract

Many scientific problems require identifying a small set of covariates that are associated
with a target response and estimating their effects. Often, these effects are non-linear
and include interactions, so linear and additive methods can lead to poor estimation and
variable selection. The Bayesian framework makes it straightforward to simultaneously
express sparsity, non-linearity, and interactions in a hierarchical model. But, as
for the few other methods that handle this trifecta, inference is computationally
intractable — with runtime at least quadratic in the number of covariates, and often
worse. In the present work, we solve this computational bottleneck. We first show
that suitable Bayesian models can be represented as Gaussian processes (GPs). We
then demonstrate how a kernel trick can reduce computation with these GPs to
𝑂(# covariates) time for both variable selection and estimation. Our resulting fit
corresponds to a sparse orthogonal decomposition of the regression function in a
Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects
represent all variation that cannot be explained by lower-order effects. On a variety of
synthetic and real datasets, our approach outperforms existing methods used for large,
high-dimensional datasets while remaining competitive (or being orders of magnitude
faster) in runtime.

4.1 Introduction
Many scientific and decision-making tasks require learning complex relationships
between a set of 𝑝 covariates and target response from 𝑁 ≪ 𝑝 observed datapoints.
For example, in genomics and precision medicine, researchers would like to identify a

53

small set of genetic and environmental factors (out of the potentially thousands or
millions) associated with diseases and quantify their effects [Maher, 2008, Aschard,
2016, Slim et al., 2018, Greene et al., 2010]. Estimating these effects can be challenging,
however, without sufficiently flexible models. Blood sugar levels, for example, could
depend non-linearly on an individual’s age; we might expect that younger people
have a lower chance of developing high blood sugar levels than older people. In other
instances, effects can be challenging to estimate due to multiplicative interactions. A
particular drug could help individuals with certain genetic characteristics but harm
others. To learn such nuances in our data, we need statistical methods that can model
non-linear and interaction effects. We also need computationally efficient methods
that can scale to large 𝑝 settings. Unfortunately, as we detail below, existing methods
suffer in at least one of these three categories.

Sparse linear regression methods (e.g., the Lasso) are typically fast but do not
have the flexibility to learn non-linear or interaction effects [Chen et al., 1998, Candes
and Tao, 2007, Nakagawa et al., 2016]. SpAM extends the Lasso to model non-linear
effects but assumes additive effects [Liu et al., 2008]. Conversely, the hierarchical
Lasso models interactions but assumes linearity, and its runtime scales quadratically
with dimension [Bien et al., 2013]. Recently, Agrawal et al. [2019d] developed a kernel
trick to learn interactions in time linear in dimension but this method assumes linear
effects. Black-box approaches, such as neural networks and random forests, learn
interactions and non-linear effects for the purposes of prediction. However, it is not
clear how to actually access the effects from the fitted prediction model.

The hierarchical functional ANOVA [Stone, 1994], which includes many of the
models described above as special cases, provides a powerful framework to jointly
model interactions and non-linear effects. Unfortunately, existing functional ANOVA
methods, which are primarily kernel regression based, do not scale well with dimen-
sion [Gu and Wahba, 1993, Lin and Zhang, 2006, Gunn and Kandola, 2004]; these
methods use kernels that take 𝑂(𝑝𝑄) time to evaluate, where 𝑄 equals the size of the
highest order interaction. Hence, running kernel ridge regression for inference takes
𝑂(𝑝𝑄𝑁2 +𝑁3) time.

Contributions. We propose SKIM-FA kernels to model non-linear and interaction
effects. We show how to compute SKIM-FA kernels in 𝑂(𝑝𝑄) time by exploiting
special low-dimensional structure. We motivate this structure from the perspective
of hierarchical Bayesian modeling. Then, we use equivalences between kernel ridge
regression, Gaussian process, and conjugate Bayesian linear regression to develop our
efficient inference procedure.

Outline. The rest of the paper is outlined as follows. We start by describing how to
model non-linear interaction effects and encode sparsity using hierarchical Bayesian
modeling in Section 4.2. In Section 4.3, we develop two kernel tricks to perform
inference more efficiently when the covariates are independent. Then, we extend
our procedure to the general covariate case in Section 4.4. We defer implementation
details of our final algorithm to Section 4.5. We conclude by discussing related work
in Section 4.6 and benchmarking our method against other methods often used to

54

model high-dimensional data in Section 6.5.

4.2 A framework for non-linear interactions and spar-
sity

4.2.1 Problem Statement

Suppose we collect data 𝐷 = {(𝑥(𝑛), 𝑦(𝑛))}𝑁𝑛=1 with covariates 𝑥(𝑛) ∈ R𝑝 and continuous
scalar responses 𝑦(𝑛) = 𝑓 *(𝑥(𝑛)) + 𝜖(𝑛), where 𝜖(𝑛) iid∼ 𝒩 (0, 𝜎2

noise), 𝑥(𝑛)
iid∼ 𝜇, and 𝑓 * ∈ ℋ.

We would like to identify what covariates 𝑓 * depends on (i.e., perform variable selection)
and recover interactions effects using only noisy realizations of 𝑓 *. To perform such
inference, we use penalized regression:

𝑓 = argmin
𝑓∈ℋ

𝑁∑︁
𝑛=1

ℒ(𝑦(𝑛), 𝑓(𝑥(𝑛))) + 𝐽(𝑓), (4.1)

where ℒ(·, ·) and 𝐽(𝑓) denote some loss function and penalty on model complexity,
respectively. This paper focuses on four subproblems resulting from Eq. (4.1): (P1)
picking ℋ to model interactions (P2) selecting ℒ(·, ·) and 𝐽(𝑓) to induce sparsity,
(P3) tractably solving Eq. (4.1) for our choice of sparsity-inducing 𝐽(𝑓), and (P4)
efficiently reporting effects in 𝑓 .

4.2.2 Our contributions: an overview

We describe, at a high-level, our solution to subproblems P1 through P4, and what
parts of our solution are new.
P1 - Constructing ℋ. Our construction of ℋ in Section 4.2.3 is based on Huang
[1998]. We use the hierarchical functional ANOVA introduced in Stone [1994] to
make recovering interaction effects a well-defined inference task (i.e., statistically
identifiable).
P2 - Selecting the loss and penalty. We select the loss and penalty from a hier-
archical Bayesian modeling point-of-view in Section 4.2.4, where the loss corresponds
to the negative log-likelihood of the data, and the penalty 𝐽(𝑓) corresponds to the
negative log prior of 𝑓 . Existing sparse Bayesian interaction methods do not work at
our level of generality. Nevertheless, our proposed class of priors are heavily influenced
by existing sparse Bayesian interaction models. Our solutions to P3 and P4 are our
core contributions.
P3 - Solving Eq. (4.1). We solve Eq. (4.1) in time linear in 𝑝 by using two kernel
tricks. The first kernel trick, described in Section 4.3, is based on the seminal smoothing
spline ANOVA (SS-ANOVA) work by Gu and Wahba [1993]. To make this connection
to SS-ANOVA, we show that there exists a duality between the class of hierarchical
models proposed in Section 4.2.4 and reproducing kernel Hilbert spaces induced by
what we call model selection kernels. Model selection kernels generalize the kernels

55

used in Gu and Wahba [1993] by removing the requirement that all covariates be
independent. Our second kernel trick is unique to our new model, the sparse kernel
interaction model for functional ANOVA (SKIM-FA), which belongs to the class of
models in Section 4.2.4.
P4 - Reporting effects. For the case of independent covariates, we report effects
using the procedure in Gu and Wahba [1993]. Our new contribution, provided in
Section 4.4, is developing an efficient algorithm to report effects for the non-independent
case.

4.2.3 Interactions and identifiability for nonlinear functions

To model interactions of order up to 𝑄 (i.e., effects that only depend on at most 𝑄
unique covariates), we “glue” function spaces of different interaction orders together
to construct ℋ. Then, we use the hierarchical functional ANOVA to make inference
over ℋ well-defined (i.e., so that each function in ℋ has a unique expansion).

Modeling Interactions. Let ℋ = ℋ𝑄 :=
⨁︀

𝑉 :|𝑉 |≤𝑄ℋ𝑉 , where ℋ𝑉 belongs to the
space of all square-integrable functions of 𝑥𝑉 (with respect to the probability measure
𝜇) and 𝑉 ⊂ [𝑝] := {1, · · · , 𝑝}. Then,⨁︁
𝑉 :|𝑉 |≤𝑄

ℋ𝑉 = {𝑓 : 𝑓 =
∑︁

𝑉 :|𝑉 |≤𝑄

𝑓𝑉 (𝑥𝑉), 𝑓𝑉 ∈ ℋ𝑉 }

= {𝑓 : 𝑓 = 𝑓∅ +

𝑝∑︁
𝑖=1

𝑓{𝑖}(𝑥𝑖) +

𝑝∑︁
𝑖<𝑗

𝑓{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗) + · · ·+ 𝑓{1,··· , 𝑝}(𝑥1, · · · , 𝑥𝑝)},

(4.2)

where 𝑓∅ belongs to the space of constant functions ℋ∅ = {𝜃 : 𝜃 ∈ R}. Similar to addi-
tive models, 𝑓{𝑖}(𝑥𝑖) has the interpretation as the main or marginal effect of covariate
𝑥𝑖 on 𝑦. Similarly, 𝑓{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗) has the interpretation as the two-way or pairwise effect
of 𝑥𝑖 and 𝑥𝑗 on 𝑦. Unfortunately, the components in Eq. (4.2) are not identifiable
without further constraints. For example, if 𝑓 *(𝑥) = 𝑓1(𝑥1)+ 𝑓2(𝑥2)+ 𝑓12(𝑥1, 𝑥2), then
𝑓 * also decomposes as 𝑓1(𝑥1) + [𝑓2(𝑥2) + 5] + [𝑓12(𝑥1, 𝑥2)− 5].

Identifiability with the Functional ANOVA. To resolve identifiability issues, we
construct a smaller space of functions ℋ𝑜

𝑉 ⊂ ℋ𝑉 , where ℋ𝑜
𝑉 only includes functions

whose variation cannot be explained by lower-order effects of 𝑥𝑉 :

ℋ𝑜
𝑉 = {𝑓𝑉 ∈ ℋ𝑉 : ∀𝐴 (𝑉, ∀𝑓𝐴 ∈ ℋ𝐴, ⟨𝑓𝑉 , 𝑓𝐴⟩𝜇 = 0}, (4.3)

where ⟨·, ·⟩𝜇 measures similarity between functions through their covariance. That is,
for 𝑓𝐴 ∈ ℋ𝐴 and 𝑓𝐵 ∈ ℋ𝐵, ⟨𝑓𝐴, 𝑓𝐵⟩𝜇 = E𝑥∼𝜇[𝑓𝐴(𝑥𝐴)𝑓𝐵(𝑥𝐵)].

Theorem 4.2.1. [Stone, 1994, Huang, 1998] Suppose 𝑓 ∈ ℋ𝑄 and 𝜇 is absolutely
continuous with respect to Lebesgue measure. Further, suppose that the domain of

56

functions in ℋ𝑄 range over a compact set 𝒳 of R𝑝. Then, there exists (𝜇-almost
everywhere) unique functions 𝑓𝑉 ∈ ℋ𝑜

𝑉 such that 𝑓 =
∑︀

𝑉 :|𝑉 |≤𝑄 𝑓𝑉 .

Definition 4.2.2. Suppose 𝑓 =
∑︀

𝑉 :|𝑉 |≤𝑄 𝑓𝑉 where 𝑓𝑉 ∈ ℋ𝑜
𝑉 . Then,

∑︀
𝑉 :|𝑉 |≤𝑄 𝑓𝑉 is

called the functional ANOVA decomposition of 𝑓 with respect to 𝜇.

By the orthogonality constraints in Eq. (4.3), 𝑓{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗) in the functional ANOVA
decomposition, for example, represents the variation that cannot be explained by 1D
functions of 𝑥𝑖 and 𝑥𝑗 and an intercept. When the covariates are independent, then
the signal variance further decomposes as

var(𝑓) = var(𝑓{∅}) +
∑︁
𝑖

var(𝑓{𝑖}) +
∑︁
𝑖,𝑗

var(𝑓{𝑖,𝑗}) + · · · var(𝑓{1,2,··· ,𝑝}(𝑥1, · · · , 𝑥𝑝)),

(4.4)

where var(𝑓) = ⟨𝑓, 𝑓⟩𝜇. Hence, Eq. (4.4) allows us to analyze how the variance of the
function is distributed across the interactions of different orders. Hence, the name
functional analysis of variance or ANOVA.

4.2.4 How to achieve sparsity for nonlinear functions

We motivate our choice of loss and penalty in Eq. (4.1) from a Bayesian point-of-view.
That is, we view ℒ(·, ·) as the negative log-likelihood function, 𝐽(𝑓) as the negative
log prior on 𝑓 , and 𝑓 as the maximum a priori (MAP) estimate under our proposed
Bayesian model.

Our Loss. Since the noise terms are Gaussian, the log-likelihood of the data given 𝑓
is Gaussian. Hence, we pick ℒ to equal squared-error loss.

Our Penalty. Since we are primarily interested in the case when 𝑓 * is sparse, i.e.,
when many of the effects 𝑓𝑉 equal zero, we would like 𝐽(𝑓) to exploit such sparsity. To
this end, we take a basis expansion of each component space, and then place a sparsity
prior on the basis coefficients. We assume that for all 𝑉 ⊂ [𝑝] and 1 ≤ |𝑉 | ≤ 𝑄, there
exists a 𝐵𝑉 ∈ N ∪ {∞} and feature map Φ𝑉 : R|𝑉 | ↦→ R𝐵𝑉 such that the components
of Φ𝑉 form a basis of ℋ𝑜

𝑉 . Then, for any 𝑓𝑉 ∈ ℋ𝑜
𝑉 , there exists Θ𝑉 ∈ R𝐵𝑉 such that

𝑓𝑉 (𝑥𝑉) = Θ𝑇
𝑉Φ𝑉 (𝑥𝑉). Hence, if we can estimate Θ𝑉 , we can estimate the functional

ANOVA decomposition of *𝑓 by Theorem 4.2.1.
To obtain a MAP estimate of Θ𝑉 , we draw each Θ𝑉 ∼ 𝒩 (0, 𝜃𝑉 · 𝐼𝐵𝑉

× 𝐼𝐵𝑉
), where

𝜃𝑉 is a non-negative auxiliary parameter drawn from a sparsity prior (e.g., a Laplace
prior); see Section 4.5 for our particular choice of sparsity prior. If 𝜃 := {𝜃𝑉 } is sparse,
then we claim that {𝑓𝑉 } is sparse. To understand why, suppose 𝜃𝑉 = 0. Then, the
prior variance of 𝑓𝑉 equals 0. Hence, 𝑓𝑉 will equal 0.

Since Φ𝑉 is a basis of ℋ𝑜
𝑉 and our prior on Θ𝑉 has full support on R𝐵𝑉 , our

choice of likelihood and prior allows us to model any 𝑓 ∈ ℋ𝑄. We summarize our full

57

hierarchical Bayesian model below:

Θ𝑉 | 𝜃𝑉 ∼ 𝒩 (0, 𝜃𝑉 · 𝐼𝐵𝑉
× 𝐼𝐵𝑉

), 𝑉 ⊂ [𝑝], |𝑉 | ≤ 𝑄, 𝜃𝑉 > 0

𝑓 =
∑︁

𝑉 :|𝑉 |≤𝑄

Θ𝑇
𝑉Φ𝑉 (·)

𝑦(𝑛) | 𝑥(𝑛),Θ, 𝜎2
noise ∼ 𝒩 (𝑓(𝑥(𝑛)), 𝜎2

noise), 𝑛 ∈ [𝑁],

(4.5)

where the first equation corresponds to exp(−𝐽(𝑓)) and the last equation corresponds
to exp(−ℒ(𝑦(𝑛), 𝑓(𝑥(𝑛)))). While there certainty exist other likelihoods and priors to
model interactions and sparsity, many existing sparse Bayesian models are in the form
of Eq. (4.5). Importantly, such models have been shown to have desirable statistical
properties (theoretical or empirical); see, for example, Wei et al. [2019], Curtis et al.
[2014], Griffin and Brown [2017], Agrawal et al. [2019d], Chipman [1996], George and
McCulloch [1993]. As we show in the next section, the Gaussian likelihood and prior
will allow us to leverage computational tricks to speed up inference.

4.3 Using two kernel tricks to reduce computation
cost

Conditional on 𝜃, Eq. (4.5) reduces to conjugate Bayesian regression. Hence, we can
analytically compute the MAP estimate of Θ𝑉 (and hence solve Eq. (4.1) in closed-
form). Unfortunately, as we show below, it is computationally intractable to compute
this closed-form solution in general. To remedy this computational intractability, we
show how to make inference scale linearly with 𝑝 by exploiting additional special
model structure in Section 4.3.1 and Section 4.3.2.

Intractability of Conjugate Bayesian Regression. Our model in Eq. (4.5) has
𝐵𝑄 :=

∑︀
𝑉 :|𝑉 |≤𝑄𝐵𝑉 parameters. In general, computing the MAP estimate of these 𝐵𝑄

parameters requires inverting a 𝐵𝑄×𝐵𝑄 covariance matrix. Hence, the computational
cost of MAP inference scales as 𝑂(𝐵3

𝑄 +𝑁𝐵2
𝑄). 𝐵𝑄 may be prohibitively large for two

reasons. The first problem arises if any of the basis expansion sizes (i.e., a particular
𝐵𝑉) is large. If ℋ𝑉 is infinite-dimensional, for example, then 𝐵𝑉 =∞. Even if all the
ℋ𝑉 are finite-dimensional, 𝐵𝑉 typically grows exponentially with the size of |𝑉 |; see,
for example, Huang [1998]. The second issue arises from the combinatorial sum over
interactions; even if all of the 𝐵𝑉 equal 1, 𝐵𝑄 still has on the order of 𝑂(𝑝𝑄) terms.
Hence, without additional structure, the computation time for conjugate Bayesian
regression is lower bounded by Ω(𝑝3𝑄 + 𝑝2𝑄𝑁). Fortunately, due to unique structure
in our problem, we show how to avoid the cost of explicitly generating the basis
expansion (“Trick one” in Section 4.3.1), and summing over all 𝑂(𝑝𝑄) interactions
(“Trick two” in Section 4.3.2).

In what follows, we assume 𝜃 is fixed. Then, we to estimate 𝜃 in Section 4.5.

58

4.3.1 Trick one: How to represent and access sparsity without
incurring the cost of a basis expansion

We show how to remove the computational dependence on the size of 𝐵𝑉 through a
kernel trick. We also show how to compute the functional ANOVA decomposition of
𝑓 using this kernel trick. Our kernel generalizes the one used in Gu and Wahba [1993],
which assumes independent covariates, to the case of general covariate distributions.
In order to prove the existence of a kernel trick, we make the following assumption:

Assumption 4.3.1. Each ℋ𝑉 is a reproducing kernel Hilbert space (RKHS).

While there exists a reproducing kernel function that induces ℋ𝑉 by Assump-
tion 4.3.1, the non-trivial part is showing the existence of a kernel to induce ℋ𝑜

𝑉 , which
is not immediate due to the orthogonality constraints in Eq. (4.3).

Proposition 4.3.2. (existence of a kernel trick) Under Assumption 4.3.1, there
exists a positive-definite kernel 𝑘𝑉 such that 𝑘𝑉 (𝑥, 𝑥̃) = ⟨Φ𝑉 (𝑥),Φ𝑉 (𝑥̃)⟩, where the
components of Φ𝑉 ∈ R𝐵𝑉 form a countable basis of ℋ𝑜

𝑉 .

In Section 4.3.2, we show how to efficiently evaluate 𝑘𝑉 without explicitly computing
the feature maps. In light of Proposition 4.3.2, we introduce model selection kernels
to rewrite the model in Eq. (4.5) as a Gaussian process. We then show how this
reparametrization allows us to perform inference more efficiently.

Definition 4.3.3. A kernel 𝑘𝜃 is a model selection kernel if it can be written as∑︀
𝑉 :|𝑉 |≤𝑄 𝜃𝑉 𝑘𝑉 , where 𝑘𝑉 is the reproducing kernel for ℋ𝑜

𝑉 and 𝑘∅(𝑥, 𝑥̃) = 1 (i.e., the
kernel that induces the space of constant functions ℋ∅).

Lemma 4.3.4. Suppose 𝑘𝜃 is a model selection kernel. Then, the distribution of 𝑌 | 𝑥
in Eq. (4.5) has the same distribution as instead placing a zero-mean Gaussian process
prior with covariance kernel 𝑘𝜃 on 𝑓 .

Based on the reparametrization in Lemma 4.3.4, 𝐽(𝑓) equals the penalty induced
by the kernel 𝑘𝜃. Hence, the solution to Eq. (4.1) reduces to kernel ridge-regression (i.e.,
the posterior predictive mean of the Gaussian process) by Rasmussen and Williams
[2006, Chapter 2]:

𝑓(𝑥) = 𝑓𝜃(𝑥) :=
𝑁∑︁

𝑛=1

𝛼̂𝑛𝑘𝜃(𝑥𝑛, 𝑥), 𝛼̂ = (𝐾𝜃 + 𝜎2
noise𝐼𝑁×𝑁)

−1𝑌, (4.6)

where 𝑌𝑛 = 𝑦(𝑛) and [𝐾𝜃]𝑛𝑚 = 𝑘𝜃(𝑥
(𝑛), 𝑥(𝑚)).

Unlike the weight-space view in Section 4.2.4 where 𝑓𝑉 = Θ𝑇
𝑉Φ𝑉 (·), it is not

clear how to actually recover 𝑓𝑉 from 𝑓𝜃(𝑥). For general kernels, accessing 𝑓𝑉 (and
consequently computing the functional ANOVA of 𝑓𝜃(𝑥)) lacks an analytical form.
Fortunately, model selection kernels allow us to immediately recover each component
in the functional ANOVA decomposition of 𝑓𝜃(𝑥) as follows:

59

Lemma 4.3.5. Suppose 𝑘𝜃 is a model selection kernel and 𝑓 (𝑀)(𝑥) =
∑︀𝑀

𝑚=1 𝛼𝑚𝑘𝜃(𝑥𝑚, 𝑥)

for 𝛼𝑚 ∈ R and 𝑥𝑚 ∈ R𝑝. Then, 𝑓 (𝑀)(𝑥) =
∑︀

𝑉 :|𝑉 |≤𝑄 𝑓𝑉 , where 𝑓𝑉 = 𝜃𝑉
∑︀𝑀

𝑚=1 𝛼𝑚𝑘𝑉 (𝑥𝑚, 𝑥) ∈
ℋ𝑜

𝑉 .

As a consequence of Lemma 4.3.5, model selection kernels make it easy to perform
variable selection1 as well.

Corollary 4.3.6. (non-linear variable selection) Suppose 𝑓 (𝑀)(𝑥) =
∑︀𝑀

𝑚=1 𝛼𝑚𝑘𝜃(𝑥𝑚, 𝑥).
Then, 𝑓 (𝑀)(𝑥) functionally depends on the set of covariates {𝑖 : ∃𝑉 ⊂ [𝑝], 𝑖 ∈
𝑉 s.t. 𝜃𝑉 ̸= 0}.

While we have avoided the cost of generating the basis expansion to solve Eq. (4.1),
computing Eq. (4.6) is still computationally intractable; 𝑘𝜃 sums over 𝑂(𝑝𝑄) kernels.
Hence, the cost to compute the kernel matrix 𝐾𝜃 and invert (𝐾𝜃 + 𝜆𝐼𝑁×𝑁) takes
𝑂(𝑁2𝑝𝑄) and 𝑂(𝑁3) time, respectively.

4.3.2 Trick two: A recursion to avoid a combinatorially large
summation over interactions in the presence of covariate
independence

We show how to compute 𝑘𝜃 in 𝑂(𝑝𝑄) time (and hence solve Eq. (4.6) in 𝑂(𝑝𝑄𝑁2+𝑁3)
time) for a particular subset of model selection kernels that we call SKIM-FA ker-
nels. In what follows, we start by motivating SKIM-FA kernels from the hierarchical
Bayesian characterization of model selection kernels in Eq. (4.5). Then, we show
that when the covariates are independent, we can compute SKIM-FA kernels much
more efficiently using a second kernel trick. In Section 4.4, we generalize to the non-
independent covariate case by building on top of the procedure described in this section.

The Sparse Kernel Interaction Model for Functional ANOVA (SKIM-FA).
In Eq. (4.5), {𝜃𝑉 } does not necessarily have any special structure. SKIM-FA, on the
other hand, assumes that 𝜃𝑉 =

∏︀
𝑖∈𝑉 𝜂

2
|𝑉 |𝜅

2
𝑖 for some non-negative random vectors

𝜅 ∈ R𝑝
+ and 𝜂 ∈ R𝑄+1

+ . Then, the prior on Θ𝑉 in Eq. (4.5) simplifies to

Θ𝑉 | 𝜂, 𝜅 ∼ 𝒩

⎛⎝0, 𝜂2|𝑉 |

∏︁
𝑖∈𝑉

𝜅2𝑖 · 𝐼𝐵𝑉
× 𝐼𝐵𝑉

⎞⎠ , (4.7)

for SKIM-FA, which generalizes the prior used in Agrawal et al. [2019d] for linear
pairwise interaction models.

SKIM-FA Interpretation. In Eq. (4.7), 𝜂2|𝑉 | quantifies the overall strength of |𝑉 |-
way interactions by modifying the prior variance of all effects of order |𝑉 |. 𝜅𝑖 plays the

1For general non-linear regression functions, performing variable selection can be challenging; in
principle, showing that a fitted regression function does not depend on 𝑥𝑖 requires checking that the
fitted function is constant in 𝑥𝑖 across the entire domain.

60

role of a “variable importance” measure for covariate 𝑥𝑖 by affecting the prior variance
of all effects involving covariate 𝑥𝑖. Hence, if it turns out an effect involving 𝑥𝑖 is
strong, the posterior of 𝜅𝑖 will place high-probability at large values (i.e., indicating
that covariate 𝑥𝑖 has high “importance”). Notice that if 𝜅𝑖 = 0, then the prior variance
of Θ𝑉 equals 0 whenever 𝑖 ∈ 𝑉 . Consequently, all effects involving 𝑥𝑖 will equal 0.
Hence, we can perform variable selection in 𝑂(𝑝) time by just examining the sparsity
pattern of 𝜅 instead of in 𝑂(𝑝𝑄) time using Corollary 4.3.6. In Section 4.5, we show
how we select our sparsity prior on 𝜅. Finally, note that while we added more structure
to the prior, we have not lost modeling flexibility; as long as P*(𝜅𝑖) does not equal 0
with probability one, then the prior variance of Θ𝑉 will be non-zero. Hence, our prior
will have support on all of ℋ𝑄.

Definition 4.3.7. A SKIM-FA kernel is a model selection kernel that can be written
as

𝑘SKIM-FA(𝑥, 𝑥̃) =
∑︁

𝑉 :|𝑉 |≤𝑄

⎡⎣𝜂2|𝑉 |

∏︁
𝑖∈𝑉

𝜅2𝑖

⎤⎦ 𝑘𝑉 (𝑥, 𝑥̃).
for some 𝜅 ∈ R𝑝 and 𝜂 ∈ R𝑄+1.

Proposition 4.3.8. For a SKIM-FA kernel, Eq. (4.5) can be replaced by Eq. (4.7) in
Lemma 4.3.4.

Proof. Set 𝜃𝑉 = 𝜂2|𝑉 |
∏︀

𝑖∈𝑉 𝜅
2
𝑖 in Lemma 4.3.4.

Efficient Evaluation of SKIM-FA Kernels. Recall that 𝑘𝑖 is the reproducing
kernel for ℋ𝑜

𝑖 . Suppose, for the moment, that the reproducing kernel 𝑘𝑉 for ℋ𝑜
𝑉

equals
∏︀

𝑖∈𝑉 𝑘𝑖 (we will shortly show that this condition holds when the covariates are
independent). Then, by Theorem 4.3.9 and Corollary 4.3.10 below, we can compute
SKIM-FA kernels orders of magnitude faster by not explicitly summing over all 𝑂(𝑝𝑄)
interactions in Definition 4.3.7.

Theorem 4.3.9. Suppose 𝑘𝑉 (𝑥, 𝑥̃) =
∏︀

𝑖∈𝑉 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖). Then,

𝑘SKIM−FA(𝑥, 𝑥̃) =

𝑄∑︁
𝑞=1

𝜂2𝑞𝑘𝑞(𝑥, 𝑥̃) s.t.

𝑘𝑞(𝑥, 𝑥̃) =
1

𝑞

𝑞∑︁
𝑠=1

(−1)𝑠+1𝑘𝑞−𝑠(𝑥, 𝑥̃)𝑘
𝑠(𝑥, 𝑥̃), 𝑘0(𝑥, 𝑥̃) = 1,

𝑘𝑠(𝑥, 𝑥̃) =

𝑝∑︁
𝑖=1

𝜅2𝑠𝑖 [𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)]
𝑠.

(4.8)

As we show in Appendix D.1, the key to proving Theorem 4.3.9 is an old recursive
kernel formula provided in Vapnik [1995, pg. 199]. From Theorem 4.3.9, we have two
corollaries. The first requires a short inductive argument; see Appendix D.1. The
second follows immediately by setting 𝑄 = 2 into Eq. (4.8).

61

Corollary 4.3.10. 𝑘SKIM−FA(𝑥, 𝑥̃) takes 𝑂(𝑝𝑄) time to evaluate on a pair of points.

Corollary 4.3.11. Suppose 𝑄 = 2. Then, 𝑘SKIM-FA(𝑥, 𝑥̃) equals

.5𝜂22

⎡⎢⎣
⎛⎝ 𝑝∑︁

𝑖=1

𝜅2𝑖 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)

⎞⎠2

−
𝑝∑︁

𝑖=1

𝜅4𝑖 [𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)]
2

⎤⎥⎦+ 𝜂21

𝑝∑︁
𝑖=1

𝜅2𝑖 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖) + 𝜂20 (4.9)

To see how Eq. (4.8) acts as another kernel trick, consider the linear interaction
case when ℋ𝑄 consists of interactions of the form

∏︀
𝑖∈𝑉 𝑥𝑖. Suppose further that 𝜅 and

𝜂 are equal to the ones vector. Then, 𝑘SKIM−FA(𝑥, 𝑥̃) =
∑︀

𝑉 :|𝑉 |≤𝑄

∏︀
𝑖∈𝑉 𝑥𝑖𝑥̃𝑖, which

explicitly generates and sums over the interactions
∏︀

𝑖∈𝑉 𝑥𝑖. However, it is well known
that polynomial kernels implicitly generate interactions, and hence can be used instead
to avoid summing over all interactions. The core idea in Eq. (4.8) is similar; the
kernels 𝑘𝑠 raised to the 𝑠 power in Eq. (4.8) implicitly generate interactions of order
equal to 𝑠 just like a polynomial kernel. However, instead of generating interactions of
the form

∏︀
𝑖∈𝑉 𝑥𝑖, 𝑘

𝑠 operates on one-dimensional kernels 𝑘𝑖 to generate interactions of
the form

∏︀
𝑖∈𝑉 𝑘𝑖. Since 𝑘𝑉 =

∏︀
𝑖∈𝑉 𝑘𝑖 by assumption, these “interactions” of kernels

span ℋ𝑜
𝑉 by the product property of kernels.

We conclude by providing sufficient conditions for when 𝑘𝑉 actually simplifies as∏︀
𝑖∈𝑉 𝑘𝑖 by using a result from Gu and Wahba [1993]. We leave our construction of 𝑘𝑖

to Appendix C.3.

Assumption 4.3.12. (Tensor product space) For all 𝑉 ⊂ [𝑝] and 1 ≤ |𝑉 | ≤ 𝑄,
ℋ𝑉 =

⨂︀
𝑖∈𝑉 ℋ𝑖.

Proposition 4.3.13. [Gu and Wahba, 1993] Suppose 𝜇 = 𝜇⊗, where 𝜇⊗(𝑥) :=
𝜇1(𝑥1) ⊗ 𝜇2(𝑥2) · · · ⊗ 𝜇𝑝(𝑥𝑝) and 𝜇𝑗 is the marginal distribution of 𝑥𝑗. Then, un-
der Assumption 4.3.1 and Assumption 4.3.12, 𝑘𝑉 =

∏︀
𝑖∈𝑉 𝑘𝑖.

Since any Hilbert space of square-integrable functions of 𝑥𝑉 can be approximated
arbitrarily well by taking tensor products of one-dimensional Hilbert spaces by Stone
[1994], Huang [1998], Assumption 4.3.12 is a mild assumption. The more problematic
assumption is that all covariates are independent (i.e., that 𝜇 = 𝜇⊗).

4.4 How to get sparsity, interactions, and fast infer-
ence when covariates are dependent

Here we extend to the general 𝜇 case. We start by motivating why this extension
is important in Section 4.4.1. Then, in Section 4.4.2, we develop a change-of-basis
formula to take the functional ANOVA decomposition of 𝑓𝜃 with respect to 𝜇⊗ to one
with respect to 𝜇. While our formula assumes 𝑄 = 2, we expect that our formula
naturally extends beyond the pairwise case.

62

Figure 4-1: The colors denote the contour plot of the function 𝑓 *(𝑥1, 𝑥2) = 𝑥1𝑥2.
Darker green indicates more larger values while darker red indicates stronger negative
values. The gray solid lines in the left and right hand figures represent the density
contours of 𝜇⊗ and 𝜇 in Example 4.4.2, respectively.

4.4.1 Practical problems that arise when assuming indepen-
dent covariates

Even though 𝜇⊗ has the same 1D marginal distributions as 𝜇, we prove that the
functional ANOVA decomposition of an 𝑓 ∈ ℋ can be arbitrarily different depending
on the choice of measure. We prove this claim by showing something stronger, namely
that the intercepts between two functional ANOVA decompositions can be arbitrarily
far apart.

Proposition 4.4.1. For any Δ > 0, there exists a probability measure 𝜇 and square-
integrable 𝑓 such that the relative difference

|𝑓𝜇
∅ − 𝑓

𝜇⊗
∅ |

|𝑓𝜇
∅ |

> Δ, where 𝑓𝜇
∅ = E𝜇𝑓(𝑋) and 𝑓

𝜇⊗
∅ = E𝜇⊗𝑓(𝑋).

To build intuition for Proposition 4.4.1, and motivate using 𝜇 instead of 𝜇⊗ to
compute the functional ANOVA decomposition of 𝑓𝜃, consider the following toy
example.

Example 4.4.2. Suppose 𝑓 *(𝑥1, 𝑥2) = 𝑥1𝑥2, where 𝑥1 could represent exercise, 𝑥2
protein consumption, and 𝑓 *(𝑥1, 𝑥2) the expected cardiovascular health of an individual
who consumes 𝑥1 grams of protein and exercises 𝑥2 times per week. Suppose exercise
and protein consumption are positively correlated and that 𝜇 equals a multivariate
Gaussian distribution with mean zero, unit covariance, and correlation equal to .9.
Then, 𝜇⊗ equals a multivariate Gaussian distribution with mean zero, unit covariance
but correlation equal to 0. Suppose we report the intercept 𝑓∅ to summarize the typical
cardiovascular health in the population. In the functional ANOVA decomposition of
𝑓 * with respect to 𝜇, 𝑓∅ = E𝜇[𝑓

*] = E𝜇[𝑓
* + 𝜖] = E𝜇[𝑌] ≈ .89. Hence, this intercept

63

has the interpretation as the average cardiovascular health in the population. If we
instead use 𝜇⊗, then 𝑓∅ = E𝜇⊗𝑓

* = 0 ̸= E𝜇[𝑓
*]. In this case, it is not clear how to

interpret this intercept; 𝜇⊗ averages the regression surface 𝑓 * over individuals who
rarely occur in the actual population (e.g., those who exercise very frequently but not
not consume much protein); see also Fig. 4-1 for a visualization.

4.4.2 A change of basis to handle covariate dependence

We generalize to the non-independent case through a change-of-basis formula provided
in Theorem 4.4.5. Our formula allows us to re-expresses the effects estimated using the
kernel in Section 4.3.2, which assumes independent covariates, to one with respect to
the actual distribution 𝜇. Our idea is similar to ideas in numerical linear algebra; we
use one parameterization of a vector space, in our case the space of functions ℋ𝑄, that
makes computation “nice.” Once we finish computation in the “nice” parameterization,
we use a change-of-basis formula to report the actual quantity we care about in
the original parameterization of the space, namely reporting the functional ANOVA
decomposition of our fit 𝑓𝜃 with respect to 𝜇.

To make this idea mathematically precise, suppose we can write ℋ𝑄 using two
different parameterizations, one that uses 𝜇⊗ in Eq. (4.3) (denoted as ℋ𝑜

𝑉,𝜇⊗
) and the

other that uses 𝜇 in Eq. (4.3) (denoted as ℋ𝑜
𝑉,𝜇). Then,

ℋ𝑄 =
⨁︁

𝑉 :|𝑉 |≤𝑄

ℋ𝑉 (4.10)

=
⨁︁

𝑉 :|𝑉 |≤𝑄

ℋ𝑜
𝑉,𝜇⊗ (4.11)

=
⨁︁

𝑉 :|𝑉 |≤𝑄

ℋ𝑜
𝑉,𝜇. (4.12)

If these equalities indeed hold, then we can use Theorem 4.3.9 to estimate 𝑓 * in
𝑂(𝑝𝑄𝑁2 +𝑁3) time. Hence, it suffices to show how to take this estimate of 𝑓 * and
compute its functional ANOVA decomposition with respect to 𝜇 instead of 𝜇⊗ (i.e.,
move from the parameterization in Eq. (4.11) to the one in Eq. (4.12)). We show how
to compute this change-of-basis when all the ℋ𝑖 are finite-dimensional.

Assumption 4.4.3. For all 𝑖 ∈ [𝑝] there exists a 𝐵𝑖 <∞ and linearly independent
set of continuous functions {𝜑𝑖𝑏}𝐵𝑖

𝑖=1 such that ℋ𝑖 = span{1, 𝜑𝑖1, · · · , 𝜑𝑖𝐵𝑖
} and Φ𝑖 =

[𝜑𝑖1, · · · , 𝜑𝑖𝐵𝑖
]𝑇 .

Assumption 4.4.3 is a mild condition since we can approximate any function
arbitrarily well by setting 𝐵𝑖 sufficiently large since ℋ𝑖 is seperable; see, Huang
[1998], for rates of convergence for different finite-basis approximations. Under this
assumption, Lemma 4.4.4 implies that ℋ𝑜

𝑉,𝜇⊗
= ℋ𝑜

𝑉,𝜇. Hence, a change-of-basis formula
exists. We provide the change-of-basis formula for 𝑄 = 2 in Theorem 4.4.5.

Lemma 4.4.4. Under Assumption 4.3.12 and Assumption 4.4.3, any 𝑓 ∈ ℋ is
square-integrable with respect to any probability measure.

64

Theorem 4.4.5. Suppose 𝑄 = 2 and that Assumption 4.3.12 and Assumption 4.4.3
hold. For 𝑓 ∈ ℋ, let

𝑓 = 𝑓
𝜇⊗
∅ +

𝑝∑︁
𝑖=1

𝑓
𝜇⊗
{𝑖} +

𝑝∑︁
𝑖,𝑗=1

𝑓
𝜇⊗
{𝑖,𝑗}

= 𝑓𝜇
∅ +

𝑝∑︁
𝑖=1

𝑓𝜇
{𝑖} +

𝑝∑︁
𝑖,𝑗=1

𝑓𝜇
{𝑖,𝑗}

be the functional ANOVA decomposition of 𝑓 with respect to 𝜇⊗ and 𝜇, respectively.
Then, there exists unique coefficients, Ψ𝑖

𝑖𝑗 ∈ R1×𝐵𝑖 ,Ψ𝑗
𝑖𝑗 ∈ R1×𝐵𝑗 ,Ψ0

𝑖𝑗 ∈ R, such that

𝑓𝜇
{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗) = 𝑓

𝜇⊗
{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗)− [Ψ𝑖

𝑖𝑗Φ𝑖(𝑥𝑖) + Ψ𝑗
𝑖𝑗Φ𝑗(𝑥𝑗) + Ψ0

𝑖𝑗]

𝑓𝜇
{𝑖}(𝑥𝑖) = 𝑓

𝜇⊗
{𝑖} (𝑥𝑖) +

∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗Φ𝑖(𝑥𝑖) +

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖(𝑥𝑖)

𝑓𝜇
∅ = 𝑓

𝜇⊗
∅ +

∑︁
𝑖<𝑗

Ψ0
𝑖𝑗,

(4.13)

where Φ𝑖 denotes the (finite-dimensional) feature map in Definition 4.3.3.

We prove Theorem 4.4.5 in Appendix D.1. By Corollary 4.3.10, we can estimate
𝑓
𝜇⊗
{𝑖} (𝑥𝑖) and 𝑓

𝜇⊗
{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗) in time linear in 𝑝. Hence, it remains to show how we can

actually compute each Ψ𝑖
𝑖𝑗 in Theorem 4.4.5. In Section 4.5, we show how to estimate

Ψ𝑖
𝑖𝑗 arbitrarily well using a Monte Carlo approach.

4.5 Final algorithm and implementation details
We start by describing and motivating our choice of sparsity prior on 𝜅. Then, we show
how we fit 𝜅 and 𝜂𝑞 using cross-validation and our computational tricks in Section 4.3.
We conclude by showing how we compute Ψ𝑖

𝑖𝑗 in Theorem 4.4.5 via Monte Carlo.

Our Sparsity Inducing Prior on 𝜅. To induce sparsity in 𝜅 for variable selection,
we pick a prior on 𝜅𝑖 that equals the mixture of a discrete point mass at 0 and
a Uniform(0, 1) random variable. Similar to a spike-and-slab prior [George and
McCulloch, 1993], the point mass at 0 allows us to achieve exact sparsity. Unlike
a spike-and-slab prior, however, we construct our prior so that we can still take
gradients (and hence use continuous optimization techniques like gradient descent);
see Algorithm 2 for details. Our construction involves introducing another random
variable 𝑈𝑖 so that

𝜅𝑖 =
1

1− 𝑐
max(𝑈𝑖 − 𝑐, 0), 𝑈𝑖 ∼ Uniform(0, 1). (4.14)

Then, P*(𝜅𝑖 = 0) = 𝑐. Otherwise, with probability 1− 𝑐, 𝜅𝑖 ∼ Uniform(0, 1). Hence, 𝑐
plays a similar role as a prior inclusion probability in a spike-and-slab prior. Since 𝜅𝑖

65

is a deterministic function of 𝑈𝑖, it suffices to estimate 𝑈𝑖 instead as we detail below.

Cross-Validation Loss and Optimization. Given the empirical success of cross-
validation and its use in other functional ANOVA methods (e.g., as in Gu and
Wahba [1993], Lin and Zhang [2006]), we also use cross-validation to fit the SKIM-FA
kernel hyperparameters 𝜅 and 𝜂. Specifically, we would like to pick 𝑈, 𝜂, 𝜎2

noise (where
𝜅𝑖 =

1
1−𝑐

max(𝑈𝑖 − 𝑐, 0)) by minimizing a leave-𝑀 -out cross validation loss:

𝐿(𝑈, 𝜂, 𝜎2
noise) =

1(︀
𝑁
𝑀

)︀ ∑︁
𝐴:𝐴⊂[𝑁]
|𝐴|=𝑁−𝑀

⎡⎣ 1

𝑀

∑︁
𝑚∈𝐴

(𝑦(𝑚) − 𝑓𝐴(𝑥(𝑚)))2

⎤⎦ ,
= E𝐴∼𝜋

⎡⎣ 1

𝑀

∑︁
𝑚∈𝐴

(𝑦(𝑚) − 𝑓𝐴(𝑥(𝑚)))2

⎤⎦
(4.15)

where 𝑓𝐴 equals the kernel ridge regression fit in Eq. (4.6) using the subset of datapoints
in 𝐴 and 𝜋 equals the uniform distribution over all 𝑁 −𝑀 sized partitions of [𝑁].

Since the gradient of 𝐿(𝑈, 𝜂, 𝜎2
noise) exists2, we can minimize Eq. (4.15) using

gradient descent. However, this loss is computationally intensive; we need to solve
Eq. (4.6)

(︀
𝑁
𝑀

)︀
times in order to take a single gradient descent step. Instead, we

approximate Eq. (4.15) by using Monte Carlo cross validation. Specifically, we
randomly draw a single 𝐴 from 𝜋 in Eq. (4.15) and use the mean-squared prediction
error of 𝑓𝐴 to estimate Eq. (4.15). Then, this estimate leads to an unbiased estimate of
Eq. (4.15), and hence the gradient of 𝐿(𝑈, 𝜂, 𝜎2

noise). We summarize our full procedure
in Algorithm 2. Note that in Algorithm 2 we do not minimize over 𝑈 but instead over
𝑈̃ , where 𝑈𝑖 =

𝑈̃2
𝑖

𝑈̃2
𝑖 +1

. Since the range of 𝑈̃2
𝑖

𝑈̃2
𝑖 +1

equals (0, 1) when 𝑈̃𝑖 varies over all of

R, we can optimize 𝑈̃𝑖 over an unconstrained domain.

Proposition 4.5.1. Suppose 𝜅(𝑡)𝑖 = 0 at some iteration 𝑡 in Algorithm 2. Then, for
all subsequent iterations 𝑡′ ≥ 𝑡, 𝜅(𝑡

′)
𝑖 = 0.

Based on Proposition 4.5.1, we may view Algorithm 2 as a gradient-based analogue
of backward stepwise regression; we start with the full saturated model by initializing
all 𝑈̃𝑖 = 1 (and consequently all 𝜅𝑖 > 0). Then, we keep pruning off covariates the
longer we run gradient descent. We demonstrate empirically in Section 6.5 that the
actual data-generating covariates remain while the irrelevant covariates get pruned
off. Once we have found the kernel hyperparameters from Algorithm 2, Algorithm 3
and Algorithm 4 show how to perform variable selection and recover the effects,
respectively. Both Algorithm 3 and Algorithm 4 follow directly from Corollary 4.3.6
and Lemma 4.3.5.

2Although 1
1−𝑐 max(𝑈𝑖 − 𝑐, 0) is not differentiable at 𝑐, we may instead take the sub-gradient. To

compute gradients, we use the automatic differentiation library PyTorch.

66

Algorithm 2 Learn SKIM-FA Kernel Hyperparameters and Kernel Ridge Weights
1: procedure LearnHyperParams(𝑀 , 𝛾, 𝑇)
2: For all 𝑖 ∈ [𝑝], set 𝑈̃ (0)

𝑖 = 1

3: For all 𝑞 ∈ [𝑄], set 𝜂(0)𝑞 = 1

4: 𝜎
(0)
noise =

√︀
.5var(𝑌) ◁ Initialize noise variance as half of the response variance

5: 𝜏 (0) = (𝑈̃ , 𝜂
(0)
𝑞 , 𝜎

(0)
noise)

6: for 𝑡 ∈ 1 : 𝑇 do ◁ Update parameters via gradient descent
7: Randomly select 𝑁 −𝑀 datapoints and collect covariates and responses in
𝑋𝐴, 𝑌𝐴

8: 𝑈
(𝑡)
𝑖 =

[𝑈̃
(𝑡)
𝑖]2

[𝑈̃
(𝑡)
𝑖]2+1

, 𝑖 ∈ [𝑝]

9: 𝜅
(𝑡)
𝑖 = max(𝑈

(𝑡)
𝑖 − 𝑐, 0), 𝑖 ∈ [𝑝]

10: Compute kernel matrix 𝐾𝐴
𝜏 , where [𝐾𝐴

𝜏]𝑖𝑗 = 𝑘SKIM-FA(𝑋
𝐴
𝑖 , 𝑋

𝐴
𝑗) via Eq. (4.8)

11: Let 𝑓𝐴 equal the solution of Eq. (4.6) with 𝜆 = [𝜎
(𝑡)
noise]

2, 𝐾 = 𝐾𝐴
𝜏 , 𝑌 = 𝑌𝐴

12: 𝐿 = 1
𝑀

∑︀
𝑛∈𝐴𝑐(𝑦(𝑛) − 𝑓𝐴(𝑥(𝑛)))2

13: 𝜏 (𝑡+1) = 𝜏 (𝑡) − 𝛾∇𝜏 (𝑡)𝐿 ◁ Compute gradients via an automatic
differentiation library

14: Compute 𝛼(𝑇), the kernel ridge regression weights found by solving Eq. (4.6)
using all 𝑁 datapoints with SKIM-FA hyperparameters equal to 𝜅(𝑇), 𝜂(𝑇), 𝜎

(𝑇)
noise

15: return 𝜅(𝑇), 𝜂(𝑇), 𝜎
(𝑇)
noise, 𝛼

(𝑇)

Algorithm 3 SKIM-FA Variable Selection
1: procedure VarSelect(𝜅)
2: return {𝑖 : 𝜅𝑖 ̸= 0}

Algorithm 4 Estimated functional ANOVA effect 𝑓𝑉 of 𝑓𝜃 with respect to 𝜇⊗

1: procedure OrthEffects(𝑉 , 𝛼, 𝜅, 𝜂, 𝛼)
2: 𝜃𝑉 = 𝜂2|𝑉 |

∏︀
𝑖∈𝑉 𝜅

2
𝑖

3: return 𝑓𝑉 (·) = 𝜃𝑉
∑︀𝑁

𝑛=1 𝛼𝑛𝑘𝑉 (𝑥
(𝑛), ·)

67

Estimating Ψ𝑖
𝑖𝑗 for Change-of-Basis Formula in Theorem 4.4.5. To estimate

Ψ𝑖
𝑖𝑗, we use a Monte Carlo procedure in Algorithm 5.

Algorithm 5 Change of Basis Formula for Finite Dimensional Model Selection Kernels
1: procedure ReExpressEffect(𝛼, 𝑘𝜃, 𝑊 , 𝜇)
2: Compute 𝑓𝜇⊗

{𝑖,𝑗}, 𝑓
𝜇⊗
{𝑖} , 𝑓

𝜇⊗
∅ using Algorithm 4

3: For 1 ≤ 𝑤 ≤ 𝑊 randomly sample 𝑥(𝑤) iid∼ 𝜇
4: Compute 𝑋𝑖𝑗 = [Φ𝑖(𝑥

(1)
𝑖) · · ·Φ𝑖(𝑥

(𝑊)
𝑖) Φ𝑗(𝑥

(1)
𝑗) · · ·Φ𝑗(𝑥

(𝑊)
𝑗)]𝑇

5: Compute 𝑓𝜇⊗
𝑖𝑗,𝑊 = [𝑓

𝜇⊗
{𝑖,𝑗}(𝑥

(1)
𝑖 , 𝑥

(1)
𝑗) · · · 𝑓𝜇⊗

{𝑖,𝑗}(𝑥
(𝑊)
𝑖 , 𝑥

(𝑊)
𝑗)]𝑇

6: Compute [Ψ̂𝑖
𝑖𝑗 Ψ̂

𝑗
𝑖𝑗]

𝑇 = (𝑋𝑇
𝑖𝑗𝑋𝑖𝑗)

−1𝑋𝑇
𝑖𝑗𝑓

𝜇⊗
𝑖𝑗,𝑊 ◁ Least-squares projection

7: Compute 𝑓𝜇
{𝑖,𝑗} = 𝑓

𝜇⊗
{𝑖,𝑗} − [Ψ̂𝑖

𝑖𝑗Φ
𝑇
𝑖 (·) + Ψ̂𝑗

𝑖𝑗Φ
𝑇
𝑗 (·) + Ψ0

𝑖𝑗]

8: Compute 𝑓𝜇
{𝑖} = 𝑓

𝜇⊗
{𝑖} +

∑︀
𝑗>𝑖 Ψ̂

𝑖
𝑖𝑗Φ𝑖(·) +

∑︀
𝑗<𝑖 Ψ̂

𝑖
𝑗𝑖Φ𝑖(·)

9: Compute 𝑓𝜇
∅ = 𝑓

𝜇⊗
∅ +

∑︀
𝑖<𝑗 Ψ̂

0
𝑖𝑗

10: return 𝑓𝜇
{𝑖,𝑗}, 𝑓

𝜇
{𝑖}, 𝑓

𝜇
∅

Proposition 4.5.2. Let 𝑊 → ∞ in Algorithm 5. Then, the components returned
from Algorithm 5 converge to the decomposition in Eq. (4.13).

4.6 Related Work
The seminal work by Gu and Wahba [1993] used a type of model selection kernel to
estimate the functional ANOVA decomposition of 𝑓 * with splines. Since the method
in Gu and Wahba [1993] does not lead to sparsity, Gunn and Kandola [2004], Lin and
Zhang [2006] put an 𝐿1 penalty on 𝜃 to achieve sparsity, similar to multiple kernel
learning techniques [Lanckriet et al., 2004]. Adding an 𝐿1 penalty does not lead to an
analytical solution nor a convex optimization problem. Hence, Gunn and Kandola
[2004], Lin and Zhang [2006] alternate between minimizing 𝜃 and recomputing 𝑓𝜃,
similar to Algorithm 2. Other approaches use cross-validation and gradient descent to
iteratively select 𝜃 [Gu and Wahba, 1993]. In either case, the computational bottleneck
is computing and inverting (𝐾𝜃 + 𝜎2

noise𝐼𝑁×𝑁)
−1𝑌 : 𝑘𝜃 takes 𝑂(𝑝𝑄) time to compute

on a pair of points. Hence, computing and inverting 𝐾𝜃 + 𝜎2
noise𝐼𝑁×𝑁 takes 𝑂(𝑝𝑄𝑁2)

time and 𝑂(𝑁3) time, respectively.
Many existing functional ANOVA techniques assume that all covariates are inde-

pendent, i.e., that 𝜇 equals product measure; see, for example, Gunn and Kandola
[2004], Lin and Zhang [2006], Gu and Wahba [1993], Durrande et al. [2013]. Hooker
[2007] highlighted pathologies that arise when using 𝜇⊗ instead of 𝜇. Specifically,
he empirically showed on synthetic and real data that the functional ANOVA de-
composition of an 𝑓 ∈ ℋ with respect to 𝜇 can be significantly different than the
decomposition with respect to 𝜇⊗. This discrepancy arises because 𝜇⊗ can place high
probability in regions where the actual covariate distribution 𝜇 has low probability;
see also Section 4.4.1.

68

4.7 Experiments
In this section, we compare our inference methods in Section 4.5 against existing
procedures in terms of variable selection and estimation performance. We describe
these benchmark methods and performance metrics in Section 4.7.1 and Section 4.7.2,
respectively. In Section 4.7.3, we evaluate each method on simulated data so that
we have ground truth effects. In Section 4.7.4, we evaluate methods on a real
dataset (the bike-sharing dataset from the UCI machine-learning repository) using
a similar procedure as in Agrawal et al. [2019d] to construct a synthetic ground
truth. To highlight the importance of Algorithm 5, we conclude by showing the
sensitivity of functional ANOVA decompositions with respect to the measure chosen
in Section 4.7.5. All results can be re-generated using the data and code provided in
https://github.com/agrawalraj/banova.

4.7.1 Benchmark Methods

We compare our method against other methods used to model high-dimensional data
and interactions. We focus on the 𝑄 = 2 case throughout since (1) existing methods
typically only work for the pairwise interaction case and (2) higher order interactions
are often difficult to interpret and estimate. Even when 𝑄 = 2, the functional
ANOVA methods outlined in Section 4.7.1 take 𝑂(𝑝2𝑁2 + 𝑁3) time, making them
computationally intractable for even moderate 𝑝 and 𝑁 settings. Instead, we focus on
methods that can model interactions and actually scale to moderate-to-large 𝑝 and 𝑁
settings. These methods include approximate “two-stage” and greedy forward-stage
regression methods, and linear interaction models. We detail these approaches in
more depth in Appendix C.2. The list below summarizes the candidate methods (and
software implementations) selected from each category for empirical evaluation3.

∙ SPAM-2Stage: performs variable selection by fitting a sparse additive model
(SpAM) [Liu et al., 2008] to the data. We use the sam package in R. Since sam
does not provide a default way to select the 𝐿1 regularization strength, we use
5-fold cross-validation. For estimation, we generate all main and interaction
effects among the subset of covariates selected by SpAM. We calculate these
effects by taking pairwise products of univariate basis functions generated from
a cubic spline basis with 5 total knots; see Appendix C.3 for details. The basis
coefficients (and hence effects) are estimated using ridge-regression, where again
we use 5-fold cross-validation to pick the 𝐿2 regularization strength.

∙ Multivariate Additive Regression Splines (MARS): we use the python
implementation of MARS [Friedman, 1991] in py-earth. We consider two
functional ANOVA decompositions of the fitted regression function:

3Agrawal et al. [2019d] fit linear interaction models in 𝑂(𝑝𝑁2 +𝑁3) time per iteration, which
has the same asymptotic complexity as Algorithm 2. However, they use Hamiltonian Monte Carlo
(HMC) to perform inference. Each HMC step requires computing and inverting an 𝑁 ×𝑁 kernel
matrix many times. Hence, their method takes hours to complete when 𝑝 and 𝑁 are larger than 500.
Due to this computational intensity, we do not benchmark against their method.

69

– MARS-Vanilla: the main effect of each covariate equals the sum of all
selected univariate basis functions of that covariate (i.e., after the pruning
step of MARS). Similarly, each pairwise effect equals the sum of all selected
bivariate basis functions of those two covariates. This is the functional
ANOVA decomposition originally proposed in Friedman [1991] and the one
actually implemented in existing MARS software packages. It is unclear,
however, what measure this functional ANOVA decomposition is taken
with respect to.

– MARS-EMP: to the best of our knowledge, there currently does not
exist a procedure to perform a functional ANOVA decomposition of MARS
with respect to 𝜇⊗. We describe how to perform such a decomposition in
Appendix C.4, which could be of independent interest.

∙ Hierarchical Lasso (HierLasso): we use the implementation of HierLasso
[Lim and Hastie, 2015] using the authors’ R package glinternet. Since Lim
and Hastie [2015] use cross-validation to pick the 𝐿1 regularization strength, we
similarly use 5-fold cross-validation.

∙ Pairs Lasso: runs the standard Lasso on the expanded set of features, i.e.,
{𝑥𝑖}𝑝𝑖=1 and {𝑥𝑖𝑥𝑗}𝑝𝑖,𝑗=1. We fit the Lasso using the python package sklearn,
and use 5 fold cross-validation to select the 𝐿1 regularization strength.

4.7.2 Evaluation Metrics

Variable Selection Evaluation Metrics. We consider both the power to select
correct covariates and avoid incorrect ones.

∙ # of Correct Selected - number of covariates correctly selected by the method.
Higher is better.

∙ # Wrong Selected: number of covariates incorrectly selected by the method (i.e.,
Type I error). Lower is better.

∙ # Correct Not Selected - number of covariates that belong to the true model
but were not selected by the method (i.e., Type II error). Lower is better.

Estimation Evaluation Metrics. We evaluate how well a method estimates main
effects and interaction effects. Instead of only looking at the total mean squared
estimation error, we break this error into multiple buckets to understand what bucket
drives the majority of the error. Lower is better for all of the quantities below.

∙ Correct Selected SSE (Main) - computes the sum of squared errors (SSE) between
each estimated main effect component and true main effect component. This
equals

∑︀
𝑖∈𝑆1
‖𝑓 *

𝑖 − 𝑓𝑖‖2𝜇, where 𝑆1 is the set of correctly identified main effects,
𝑓𝑖 is the estimated main effect, and 𝑓 *

𝑖 is the true main effect.

70

∙ Correct Not Selected SSE (Main) - computes the total squared norm of each
main effect component not selected. This equals,

∑︀
𝑖∈𝑆2
‖𝑓 *

𝑖 ‖2𝜇, where 𝑆2 is the
set of correct main effects not selected.

∙ Wrong Selected SSE (Main) - computes the total squared norm of each main
effect component incorrectly selected. This equals,

∑︀
𝑖∈𝑆3
‖𝑓𝑖‖2𝜇, where 𝑆3 is the

set of incorrect main effects selected.

∙ Correct Selected SSE (Pair) - same as Correct Selected SSE (Main) except for
correctly selected interactions

∙ Correct Not Selected SSE (Pair) - same as Correct Not Selected SSE (Main)
except for correct interactions not selected

∙ Wrong Selected SSE (Pair) - same as Wrong Selected SSE (Main) except for
interactions incorrectly selected

∙ Total SSE - the sum of the 6 buckets above

∙ Total SSE / Signal Variance - this equals the relative estimation error, i.e., Total
SSE divided by the true signal variance.

4.7.3 Synthetic Data Evaluation

Figure 4-2: Synthetic Data Test Functions.

We randomly generate covariates and responses as follows. For the covariates, we
draw each data point and covariate dimension 𝑥(𝑛)𝑖

iid∼ Uniform([−1, 1]). Since [−1, 1] is
compact, Theorem 4.2.1 ensures that the functional ANOVA decomposition is unique.
We let 𝑦 depend on the first 5 covariates; the remaining 𝑝− 5 covariates are taken as
noise covariates that we do not want to select. To generate responses reflective of what
we might expect in real data, we consider the 5 trends shown in Fig. 4-2: linear, sine,
logistic, quadratic, and exponential. We let the main effects equal the sum of these 5
trends, where the 𝑖th trend is applied to covariate 𝑖. For the interactions between the

71

Table 4.1: Synthetic Data Variable Selection Performance Results for 𝑝 = 1000

Method Setting # Correct Selected # Wrong Selected # Correct Not Selected
SKIM-FA Main-Only 3 0 2
HierLasso Main-Only 4 5 1

Pairs Lasso Main-Only 4 6 1
SPAM-2Stage Main-Only 5 15 0

MARS Main-Only 5 70 0
SKIM-FA Equal 5 0 0

SPAM-2Stage Equal 5 15 0
HierLasso Equal 4 40 0
MARS Equal 4 71 0

Pairs Lasso Equal 5 213 0
SKIM-FA Weak Main 5 9 0

SPAM-2Stage Weak Main 1 41 4
MARS Weak Main 5 75 0

HierLasso Weak Main 5 120 0
Pairs Lasso Weak Main 5 144 0

first 5 covariates, we consider all pairwise products of the 5 trends above, resulting in
10 total interactions. We select a noise variance such that the 𝑅2 =

𝜎2
signal

𝜎2
signal+𝜎2

noise
= .8,

where 𝜎2
signal = ⟨𝑓 *, 𝑓 *⟩𝜇. We further decompose the signal variance in terms of the

total variance explained by main effects and interactions. Similar to the empirical
evaluations in Lim and Hastie [2015] we consider the following three settings:

∙ Main Effects Only: each of the 5 main effects has 1/5th of the total sig-
nal variance, and each pairwise effect has 0 signal variance (i.e., no pairwise
interactions).

∙ Equal Main and Interaction Effects: each main effect and pairwise effect
has .5 * 1/5 and .5(1 / 10) of the total signal variance, respectively. Hence, the
total main effect variance equals the total pairwise signal variance.

∙ Weak Main Effects: each main effect and pairwise effect has .01 * 1/5 and
.99(1 / 10) of the total signal variance, respectively. Hence, the total main effect
and pairwise effect variances equal 1% and 99% of the total signal variance,
respectively.

To test the impact of increasing dimensionality on inference quality, we consider
𝑝 ∈ {250, 500, 1000} and keep 𝑁 = 1000 fixed for each setting.

Main Effects Only Setting. We summarize the variable selection and estimation
performances of each method (for 𝑝 = 1000) in Table 4.1 and Table 4.2, respectively.
Appendix D.4 contains the results for the remaining choices of 𝑝 (see Table C.1 and
Table C.2). Each method selects the majority of correct covariates. However, some
methods, namely Pairs Lasso and HierLasso have a systematic bias; for all choices
of 𝑝, they never select covariate 3 (the quadratic trend) since a quadratic trend has
a weak linear correlation. Since the other methods can model non-linear data, they

72

Table 4.2: Synthetic Data Estimation Performance Results for 𝑝 = 1000

Method Setting

Correct
Selected

SSE
(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected

SSE
(Main)

Correct
Selected

SSE
(Pair)

Correct
Not

Selected
SSE

(Pair)

Wrong
Selected

SSE
(Pair)

Total
SSE

Total SSE
÷

Signal
Variance

SPAM-2Stage Main Only 2.67 0 0.78 0 0 0.02 3.46 0.17
MARS-EMP Main Only 0.45 0 2.68 0 0 2.39 5.51 0.28

SKIM-FA Main Only 2.7 8.1 0 0 0 0.24 11.03 0.55
MARS-VANILLA Main Only 16.14 0 1.56 0 0 10.33 28.02 1.4

SKIM-FA Equal 1.54 0 0 0.29 0 0 1.82 0.09
SPAM-2Stage Equal 1.67 0 1.07 0.41 0 2.16 5.31 0.27
MARS-EMP Equal 0.61 0 3.84 1.7 0 2.52 8.67 0.43

MARS-VANILLA Equal 454.88 0 3.16 21.46 0 13.22 492.72 24.64
SKIM-FA Weak Main 0.72 0 1.37 0.61 0 0.63 3.33 0.17

MARS-EMP Weak Main 0.67 0 5.86 3.37 0 5.63 15.52 0.78
SPAM-2Stage Weak Main 0.16 0.2 6.69 0 18.33 0.31 25.69 1.28

MARS-VANILLA Weak Main 23.62 0 3.18 23.16 0 15.43 65.39 3.27

can pick up this trend. Hence, they have better statistical power to detect correct
covariates, improving variable selection performance.

In terms of Type I error, some methods select incorrect covariates much more
frequently than others. For example, MARS consistently selects over 50 incorrect
covariates for all choices of 𝑝. Since MARS induces sparsity through a greedy pruning
step instead of an actual sparsity inducing penalty as in the other methods, this might
explain its poorer performance.

For estimation, we only compare the non-linear methods; linear methods will
artificially perform poorly since some of the effects are highly non-linear by construc-
tion. Evaluating estimation performance is more tricky since the functional ANOVA
decomposition depends on the choice of measure. Unless otherwise stated, we use the
joint distribution of the covariates as the measure.

Since MARS-VANILLA performs a functional ANOVA decomposition with respect
to an unspecified measure, it is unclear how to interpret its main and interaction effects.
One might think (and truthfully what we initially thought) that MARS-VANILLA
would still return a functional decomposition close to one with respect to the actual
covariate distribution. Table C.2 shows that this intuition is incorrect - the relative
estimation error of MARS-VANILLA always exceeds 1! This poor estimation perfor-
mance stems from not specifying the measure (and hence the target of inference), not
MARS’s ability in finding a model with good predictive performance. In particular,
MARS-EMP, which produces the exact same predictions as MARS-VANILLA, yields
much better estimation performance because it re-orthogonalizes the fit with respect
to the actual covariate distribution.

Equal Main and Interaction Effects Setting. We summarize the variable se-
lection and estimation performances of each method in Table C.3 and Table C.4,
respectively. In this setting, all methods are able to recover all 5 true covariates.
Unlike in the Main Effects Only Setting, the linear methods can still select covariate 3
(the one with a quadratic main effect trend) because covariate 3 has interactions with
other variables that result in stronger linear correlation with linear interaction effects.

73

For both estimation and variable selection, SKIM-FA performs better than the other
methods.

Weak Main Effects Setting. We summarize the variable selection and estimation
performances of each method in Table C.5 and Table C.6, respectively. In the setting
of weak main effects, both Spam-2Stage and MARS perform very poorly relative to
their performances in the other two settings. For Spam-2Stage, it only selects one
correct covariate for 𝑝 = 500 and 𝑝 = 1000. This poor variable selection is expected;
the effective 𝑅2 for SpAM to perform variable selection is small (.01) due to the
additivity assumption even though the true signal remains strong (𝑅2 = .8). The
signal is locked away in the interactions!

MARS performs poorly for similar reasons due to the greedy sequential fitting
procedure. In the extreme case of no main effects, for example, MARS randomly
selects covariates as main effects. By random chance, MARS will eventually select a
correct main effect. Once it selects a correct main effect covariate, it will then pick the
correct covariate forming the (strong) interaction. Hence, MARS will need to select
many incorrect covariates as main effects before identifying the true interactions.

Figure 4-3: Runtime Comparison on Simulated Data

Runtime Comparisons. We conclude this section by comparing each method in
term of runtime. Apart from the two Lasso methods which take 𝑂(𝑝2𝑁) time, the
remaining ones just depend linearly on 𝑝. When 𝑝 > 𝑁 , our method takes 𝑂(𝜅𝑁3)
while the two Lasso based methods take 𝑂(𝜅2𝑁3) time, where 𝜅 = 𝑝/𝑁 . Hence, for
higher-dimensional problems, our method will become much faster relative to the
Lasso methods. For example, in genome-wide association studies, datasets can have
𝑁 on the order of 103 and 𝑝 on the order of 107 [1000 Genomes Project, 2015]. Hence,
𝜅 = 104, which corresponds to a potential 104 computational speedup factor. In
Fig. 4-3, we compare the runtimes of each method as we vary 𝑝/𝑁 on simulated data.
We keep 𝑁 fixed at 100 and vary 𝑝 from 10 to 104. As expected, as 𝑝/𝑁 increases, our
method yields significant computational savings relative to Pairs Lasso and HierLasso.

74

Table 4.3: Variable Selection Performance for the Bike Sharing Dataset.

Method # Covariates # Original Selected # Wrong Selected

SKIM-FA 1000 3 0
HierLasso 1000 3 5

SPAM-2Stage 1000 3 8
Pairs Lasso 1000 3 76

MARS 1000 3 119

Table 4.4: Estimation Performance for the Bike Sharing Dataset.

Method # Noise

Correct
Selected

SSE
(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected

SSE
(Main)

Correct
Selected

SSE
(Pair)

Correct
Not

Selected
SSE

(Pair)

Wrong
Selected

SSE
(Pair)

Total
SSE

SKIM-FA 1000 0.145 0.002 0 0.107 0.009 0 0.263
SPAM-2Stage 1000 0.149 0.002 0.027 0.081 0.009 0.000 0.269
MARS-EMP 1000 0.214 0.002 0.485 0.054 0.026 0.245 1.026

MARS-Vanilla 1000 6.556 0.002 0.796 0.947 0.026 1.882 10.209

4.7.4 Evaluation on Real Data

Evaluating the methods in terms of variable selection and estimation quality is
challenging because we typically do not have ground truth main and interaction effects
for high-dimensional data. Similar to the evaluation procedure in Agrawal et al.
[2019d], we instead take a low-dimensional dataset where 𝑁 is large and 𝑝 is small.
We make it high-dimensional by adding synthetic random noise covariates. These two
choices have several purposes. First, by fitting a regression function on the original
low-dimensional dataset, standard 𝑁−1/2 statistical convergence rates apply. Hence,
for large 𝑁 , a maximum-likelihood estimate of the regression function will be close to
the true regression function, creating a (near) ground truth for estimation evaluation.
For variable selection, the random noise covariates create a “synthetic control”; if a
method selects any of the random noise covariates as a main or interaction effect, we
know the method selected an incorrect covariate.

Based on these ideas, we consider the popular (low-dimensional) Bike Sharing
dataset which we downloaded from the UCI Machine Learning Repository. This
dataset contains 17,389 datapoints, and 13 covariates. We consider 4 continuous
variables (hour, air temperature, humidity, windspeed) and use the total number of
bikes rented as the response. We standardize the response by subtracting the mean
and dividing by the standard deviation, and min-max standardize the covariates so
that each covariate belongs to [0, 1]. For the proxy ground truth, we fit a pairwise
interaction model consisting of all 4 main effects and 6 possible pairwise interactions.

Similar to our synthetic evaluation, we randomly subsample a total of 𝑁 = 103

datapoints for training each model. To make the inference task high-dimensional we
inject 𝑝noise ∈ {250, 500, 1000} random noise covariates, where these noise covariates

75

Figure 4-4: Effect of Correlated Predictors on the Main Effect for 𝑥1

(a) 𝜌 = .1 (b) 𝜌 = .5

are drawn iid from a Uniform(0, 1) distribution. We report on the same variable
selection and estimation metrics as in the synthetic experiments for 𝑝noise = 1000 in
Table 4.3 and Table 4.4, respectively; see Table C.8 and Table C.9 for all choices of
𝑝noise. We see that again SKIM-FA has similar or much better estimation and variable
selection performance relative to the other methods.

4.7.5 Impact of Correlated Predictors on the Functional ANOVA

So far we have performed the functional ANOVA decomposition assuming that the
covariates are jointly independent (for our synthetic data evaluation in Section 4.7.3
this was true by design). Here we show the effect correlated predictors have on the
resulting decomposition. Since previous functional ANOVA methods assume product
measure while Algorithm 5 provides the flexibility to select different measures, we
demonstrate the practical utility of this flexibility here. To this end, we consider
the simplest possible regression function with interactions; 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2. If
𝑥1 ⊥⊥ 𝑥2, then the functional ANOVA decomposition of 𝑓 with respect to 𝑝(𝑥1, 𝑥2)
equals 𝑥1𝑥2. However, if 𝑥1 and 𝑥2 are correlated, then this is no longer the case. In
particular, 𝑓 can be explained well by additive effects (e.g., in the degenerate case
when 𝑥1 = 𝑥2, then 𝑓(𝑥1, 𝑥2) = 𝑥21). To test this empirically, we randomly generate
𝑥1, 𝑥2 from a multivariate Gaussian distribution with marginal variances equal to 1
and pairwise correlation equal to 𝜌. We let 𝜌 ∈ {.1, .5}. Fig. 4-4 shows that when
𝜌 gets stronger, the discrepancy between a functional ANOVA decomposition with
respect to 𝑝(𝑥1, 𝑥2) versus product measure 𝜇⊗ = 𝑁(0, 1) ⊗ 𝑁(0, 1) increases. As
expected, as the correlation increases, a quadratic-like function of 𝑥1 and 𝑥2 explains
𝑓 increasingly well.

We perform a similar analysis above but for real data, namely the popular Concrete
Compressive Strength dataset from the UCI machine learning repository. In Fig. 4-5,
we plot the correlations between the 8 covariates that potentially predict the response
(concrete strength). The two most correlated covariates are the amount of water and

76

Figure 4-5: Effect of Correlated Predictors on the Concrete Compressive Strength
Dataset

(a) Absolute Value of Correlation Matrix (b) Main Effect of Water on Strength

superplasticizer. Since the covariates have non-trivial correlations, we might expect
that the functional ANOVA decomposition with respect to 𝜇 and 𝜇⊗ might be different
based on Proposition 4.4.1. In Fig. 4-5 we see that there indeed is a difference; the
(estimated) additive effect for water on concrete strength varies significantly depending
on which measure is selected to perform the functional ANOVA decomposition.

4.8 Concluding Remarks
In this paper, we developed a new, computationally efficient method to perform sparse
functional ANOVA decompositions. The heart of our procedure relied on a new kernel
trick to implicitly represent non-linear interactions (Theorem 4.3.9), and a change-of-
basis formula (Theorem 4.4.5) to re-express the fit in terms of an arbitrary measure.
We compared our method against other methods often used to model high-dimensional
with interactions. We found improved performance on both simulated and real datasets
by relaxing assumptions such as linearity and the presence of strong-additive effects
while still remaining competitive (or being orders of magnitude faster) in terms of
runtime.

There are many interesting future research directions. One involves scaling our
method to both the large 𝑁 and 𝑝 setting; our current method takes 𝑂(𝑝𝑄𝑁2 +𝑁3)
time which becomes problematic for large 𝑁 . This cubic dependence, however, is
not unique to our method but rather a fundamental obstacle faced by kernel ridge
regression and Gaussian processes. Fortunately, many methods already exist to help
alleviate these computational challenges with respect to 𝑁 ; see, for example, Gardner
et al. [2018], Titsias [2009], Quiñonero Candela and Rasmussen [2005]. Another
interesting direction involves applying our method to real biological datasets. In

77

particular, an open challenge in genomics has been detecting epistasis, or interaction
effects between genetic variants, from genome sequencing data [Maher, 2008, Aschard,
2016, Slim et al., 2018, Greene et al., 2010]. These challenges arise because 𝑝 is in the
millions, so the number of pairwise interactions is on the order of trillions. Since our
method does not require explicitly generating all interactions, it has the potential to
tractably detect interactions in such ultra high-dimensional data regimes.

78

Chapter 5

The DeCAMFounder: Non-Linear
Causal Discovery in the Presence of
Hidden Variables

Abstract

Many real-world decision-making tasks require learning causal relationships between a
set of variables. Typical causal discovery methods, however, require that all variables
are observed, which might not be realistic in practice. Unfortunately, in the presence
of latent confounding, recovering causal relationships from observational data without
making additional assumptions is an ill-posed problem. Fortunately, in practice,
additional structure among the confounders can be expected, one such example being
pervasive confounding, which has been exploited for consistent causal estimation in
the special case of linear causal models. In this paper, we provide a proof and method
to estimate causal relationships in the non-linear, pervasive confounding setting. The
heart of our procedure relies on the ability to estimate the pervasive confounding
variation through a simple spectral decomposition of the observed data matrix. We
derive a DAG score function based on this insight, and empirically compare our
method to existing procedures. We show improved performance on both simulated
and real datasets by explicitly accounting for both confounders and non-linear effects.

5.1 Introduction
Many decision-making and scientific tasks require learning causal relationships between
observed variables. For example, biologists seek to identify causal pathways in gene-
regulatory networks, epidemiologists search for the causes of diseases in complex social
networks, and data scientists in large companies or government agencies vet the biases
of their machine-learning models by investigating their causal structure [Spirtes et al.,
2000, Friedman et al., 2000b, Pearl, 2009, Robins et al., 2000a, Kusner et al., 2017b].
While linear causal methods are often used to model such relationships, they can fail
to learn more nuanced information from the data. For instance, in time series data,

79

some variables may exhibit seasonal variation, so that their dependence on time varies
sinusoidally. In other instances, variables may exhibit non-monotonic (e.g., quadratic)
dependence on their causes; an individual’s health, for example, may generally be an
increasing function of the amount of exercise they do, but may begin to decline with
over-exercise. In either case, such trends have weak linear correlation. Hence, a linear
causal model may lead to poor estimates of the DAG.

To remedy the limitations of linear methods, recent advancements in causal
structure discovery have focused on recovery in the nonlinear causal additive setting,
which assumes that each variable equals a nonlinear function of its parents plus
independent noise [Hoyer et al., 2009, Mooij et al., 2009, Peters et al., 2014, Bühlmann
et al., 2014]. While these non-linear methods consistently recover the true DAG, they
assume that all variables are measured, i.e., no latent confounding. However, in many
real-world applications, we might expect missing variables. For example, in the social
sciences (e.g., economics or psychology), it can be tricky or impossible to measure
potential confounders (e.g., abstract variables such as “the market”, “happiness”, etc.).
Unfortunately, in the presence of such confounding, a DAG can no longer accurately
capture the dependencies among the random variables [Richardson and Spirtes, 2002].

In the seminal work by Richardson and Spirtes [2002], the authors introduced a
larger family of graphical models called ancestral graphs to account for confounding.
While this work considers arbitrary patterns of confounding, we sometimes expect
more structure about the confounders in real-world systems. For example, in gene-
expression data, batch effects can lead to incorrect associations between genes [Leek
and Storey, 2007]. In genome-wide association studies, ancestry differences between
case and controls can create spurious correlations in disease studies [Price et al., 2006].
In finance, latent “market” and “sector” variables can explain much of the variation in
stocks [Chandrasekaran et al., 2012, Fan et al., 2013]. Such confounders that have
an effect on many observed variables are known as pervasive confounders; see Frot
et al. [2019], Wang and Blei [2019], Shah et al. [2020], Chandrasekaran et al. [2012] for
other real-world examples with pervasive confounders. Under the assumption that the
confounders are pervasive, Frot et al. [2019], Shah et al. [2020] show how to recover
the true causal structure over the observed variables, i.e., the DAG corresponding to
the conditional distribution of the observed variables, given the confounders. However,
they both assume that all causal relationships are linear.

Contributions. In this paper, we consider causal discovery in the non-linear addi-
tive noise and pervasive confounding setting. We show that the true graph is still
recoverable in Theorem 5.4.1 and we provide a practical method for estimation in
Section 5.4.3. The heart of our procedure relies on the ability to estimate the pervasive
confounding variation through a simple spectral decomposition of the observed data
matrix using a principal components analysis. This approach is similar in spirit to
the Deconfounder algorithm proposed by Wang and Blei [2019], where the goal is not
structure discovery but rather estimating average treatment effects.

Outline. The remainder of the paper is structured as follows: we start in Section 5.2
by formalizing the target of inference and the assumptions about the data generating

80

𝑥1 ℎ

𝑥2

𝑥3

(a) Data-Generating DAG

𝑥1

𝑥2

𝑥3 ℎ

(b) Reparameterized DAG

Figure 5-1: The right hand figure reparameterizes the model on the left such that the
unobserved variable (i.e., shaded node) is a source in the graph. The green arrows
represent the DAG corresponding to the conditional distribution P(𝑥 | ℎ).

process. In Section 5.3, we discuss related methods for causal discovery in the presence
of confounders. We conclude by comparing our method, which we outline in Section 5.4,
to existing methods on both real and synthetic datasets in Section 6.5.

5.2 Problem Statement: Causal Discovery in the Pres-
ence of Confounding

Preliminaries. We would like to estimate the causal relationships between the
components of 𝑥 ∈ R𝑝 given 𝑁 observational datapoints {𝑥(𝑛)}𝑁𝑛=1, where 𝑥(𝑛) iid∼ P(𝑥).
Since we assume the existence of unmeasured confounders, in general there does
not exist a DAG 𝐺 such that P(𝑥) factorizes as

∏︀𝑝
𝑖=1 P(𝑥𝑖 | Pa𝐺(𝑥𝑖)), where Pa𝐺(𝑥𝑖)

denotes the parents of 𝑥𝑖 in 𝐺 [Richardson and Spirtes, 2002]. Problematically,
this factorization or Markov property is required by many existing causal learning
algorithms to correctly recover causal relationships; see, for example, Chickering [2002],
Kalisch and Bühlmann [2007], Solus et al. [2020], Peters et al. [2014]. Instead, we
might imagine a true underlying data-generating process (𝑥, ℎ) ∈ R𝑝+𝐾 such that
P(𝑥, ℎ) indeed factorizes according to a DAG 𝐺*, where ℎ plays the role of the latent
confounders. Then, the resulting structural causal model (SCM) associated with 𝐺*

implies that each variable 𝑥𝑗 can be written as a function 𝑓𝑗 of its parents in 𝐺* and
independent noise 𝜖𝑗. Hence, a directed edge 𝑥𝑖 → 𝑥𝑗 in the graph represents that 𝑥𝑖
is a direct cause of 𝑥𝑗.

In general, the dependencies between ℎ and 𝑥 can be complex. For example, if
𝑥1 = age, 𝑥2 = education, 𝑥3 = health, ℎ = income, we might expect that ℎ is a
cause of both 𝑥2 and 𝑥3, and a child of 𝑥1; see also Fig. 5-1a. However, we prove in
Proposition 5.2.1 that we can always reparameterize the model to remove some of
these complex dependencies. In particular, we can construct new latent confounders
that are exogenous (i.e., sources in the graph) without modifying the causal ordering
of the observed variables.

Proposition 5.2.1. Suppose that the joint distribution P of a random vector (𝑥, ℎ) ∈
R𝑝+𝐾 is Markov with respect to a causal DAG 𝐺. Then, there exists an exogenous
ℎ′ ∈ R𝐾 and joint distribution P′ and DAG 𝐺′, such that (1) P′(𝑥, ℎ′) is Markov with

81

respect to 𝐺′, (2), P(𝑥) = P′(𝑥), and (3) the partial order induced by 𝐺′ equals the
partial order induced by 𝐺 on the subset of observed nodes {𝑥1, · · · , 𝑥𝑝}.

We prove Proposition 5.2.1 in Appendix D.1. The main proof idea is taking the
structural causal model for (𝑥, ℎ), and letting ℎ′ equal the independent noise terms in
ℎ. In light of Proposition 5.2.1, we assume throughout that the latent confounders
ℎ ∈ R𝐾 are sources, i.e., have no observed variables as parents. Hence, conditional on
the confounders, P(𝑥 | ℎ) also factorizes according to a DAG, namely the one formed
by removing ℎ and all arrows pointing out of ℎ from the full DAG over (𝑥, ℎ) (i.e.,
the green arrows in Fig. 5-1b).

Target of Inference. In this paper, we would like to recover 𝐺*, the DAG associated
with the conditional distribution P(𝑥 | ℎ) using only the 𝑁 observed datapoints
{𝑥(𝑛)}𝑁𝑛=1. Since ℎ is exogenous, the SCM simplifies to

𝑥𝑗 = 𝑓𝑗(𝑥Pa𝐺* (𝑗), ℎ, 𝜖𝑗),

where ℎ ∼
∏︀𝐾

𝑘=1 P(ℎ𝑘), 𝜖 ∼
∏︀𝑝

𝑖=1 P(𝜖𝑖), ℎ ⊥⊥ 𝜖. Unfortunately, due to the curse of
dimensionality, the number of datapoints required to accurately estimate 𝑓𝑗 depends
exponentially on the number of parents [Gyorfi et al., 2003]. Given this statistical
hardness result, we assume that each 𝑓𝑗 has low-dimensional structure.

Causal additive models (CAMs) are a popular way of introducing low-dimensional
structure to strike the balance between flexibility and statistical efficiency [Bühlmann
et al., 2014]. A CAM assumes that each node can be written as an additive function
of its parents and independent noise. We make this assumption and consider the
following model in this paper:

𝑥𝑗 =
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑗)

𝑓𝑖𝑗(𝑥𝑖) +
𝐾∑︁
𝑘=1

𝑔𝑘𝑗(ℎ𝑘) + 𝜖𝑗

=
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑗)

𝑓𝑖𝑗(𝑥𝑖) + 𝑑𝑗 + 𝜖𝑗, where 𝑑𝑗 =
𝐾∑︁
𝑘=1

𝑔𝑘𝑗(ℎ𝑘),

(5.1)

where the 𝑓𝑖𝑗 and 𝑔𝑘𝑗 are unknown functions. If we define a new noise term 𝜖𝑗 = 𝑑𝑗+𝜖𝑗 ,
then this model is equivalent to an SCM with correlated errors.

Problem Statement. If we could remove the direct confounding effect 𝑑𝑗 on each
node 𝑥𝑗, then 𝑥𝑗 − 𝑑𝑗 factorizes according to 𝐺*. Hence, applying the procedures
developed in Peters et al. [2014], Bühlmann et al. [2014] on the data {𝑥(𝑛)𝑗 − 𝑑

(𝑛)
𝑗 }𝑁𝑛=1

recovers 𝐺* as𝑁 →∞. Of course, the whole discussion so far and the motivation of our
paper is that ℎ is not observed. Hence, we cannot directly use existing non-linear causal
discovery methods to recover 𝐺*. The main two results of this paper (Theorem 5.4.1
and Theorem 5.4.6) show that when ℎ has an effect on many variables, then we can
construct “sufficient statistics” 𝑠1, · · · , 𝑠𝑝 of ℎ using a principal component analysis
(PCA) on the observed data. In particular, we show how to construct 𝑠 = (𝑠1, . . . , 𝑠𝑝)

82

and show that P(𝑥 | 𝑠) factorizes according to 𝐺*.
Before presenting our method in Section 5.4, we first discuss related methods for

learning causal structure in the presence of confounding.

5.3 Existing Causal Discovery Methods
Two approaches for learning causal structure in the presence of confounders have been
proposed. The first approach models the conditional independence structure of P

(︀
(
)︀
𝑥)

using an ancestral graph and then tries to recover edges in this graph. Algorithms
for this include FCI [Spirtes et al., 2000], RFCI [Colombo et al., 2012], and GSPo
[Bernstein et al., 2020]. Apart from the computational intensiveness of some of these
algorithms, the price of not assuming any structure about the confounders translates
into weaker identifiablity results relative to methods that exploit additional structural
assumptions; see, for example, Figure 1 of [Frot et al., 2019].

The second approach assumes special structure about the confounders, namely
that the confounders have an effect on a non-vanishing proportion of the observed
variables as 𝑝→∞. Such variables are called pervasive confounders.

Definition 5.3.1. ℎ𝑘 is a pervasive confounder if Ch𝐺*(ℎ𝑘)→∞ as 𝑝→∞, where
Ch𝐺*(ℎ𝑘) denotes the children of ℎ𝑘 in 𝐺*.

This type of confounding structure has been exploited for matrix completion and
high-dimensional covariance estimation tasks [Cai et al., 2010, Chandrasekaran et al.,
2009, Fan et al., 2013]. More recently, similar ideas have been used for learning both
directed and undirected Gaussian graphical models. Directed Gaussian graphical
models are a special case of the SCM in Eq. (5.1) considered in this paper, namely
where 𝑓𝑖𝑗 and 𝑔𝑖𝑗 are linear and 𝜖𝑗 is Gaussian; in this case, Eq. (5.1) simplifies to the
more familiar form:

𝑥 = 𝐵𝑥+Θℎ+ 𝜖 s.t. 𝜖 ∼ 𝑁(0, 𝐷), ℎ ∼ 𝑁(0, 𝐼),

where 𝐵 ∈ R𝑝×𝑝 and Θ ∈ R𝑝×𝐾 are upper-triangular matrices consisting of edge
weights. Hence,

𝑥 = (𝐼 −𝐵)−1𝜖+ (𝐼 −𝐵)−1Θℎ. (5.2)

In the Gaussian setting with pervasive confounders, a number of methods have been
proposed to consistently estimate the covariance matrix of the conditional distribu-
tion P

(︀
(
)︀
𝑥 | ℎ) using only datapoints drawn from P

(︀
(
)︀
𝑥) [Chandrasekaran et al.,

2012, Fan et al., 2013, Frot et al., 2019, Shah et al., 2020]. Since in this setting the
covariance matrix suffices for conditional independence testing, these methods can
consistently recover the true graph up to its Markov equivalence class for directed
Gaussian graphical models. The methods for estimating the underlying covariance
matrix in the Gaussian setting fall into two approaches, which we call the spectral
approach and the optimization approach and which we describe below. Our proposed
method generalizes the spectral approach.

83

Optimization Approach: Deconfounding the Precision Matrix. This approach starts by
decomposing the precision matrix of (𝑥, ℎ) into the blocks

[Cov((𝑥, ℎ))]−1 =

(︃
𝐽𝑂 𝐽𝑂𝐻

𝐽𝐻𝑂 𝐽𝐻

)︃
.

By standard theory for multivariate Gaussian distributions, 𝐽𝑂 ∈ R𝑝×𝑝 is the precision
matrix of the conditional distribution P

(︀
(
)︀
𝑥 | ℎ), and hence the target of inference.

The key idea for estimating 𝐽𝑂 is to relate the observed precision matrix [Cov(𝑥)]−1

and the target quantity 𝐽𝑂 via Schur complements:

[Cov(𝑥)]−1 = 𝐽𝑂 − 𝐽𝑂𝐻𝐽
−1
𝐻𝐻𝐽𝐻𝑂.

For sparse DAGs, 𝐽𝑂 is a sparse matrix, and for 𝐾 ≪ 𝑝, 𝐽𝑂𝐻𝐽
−1
𝐻𝐻𝐽𝐻𝑂 is low-rank.

Hence, when the confounders are pervasive, it is possible to estimate each component
through a low-rank plus sparse matrix decomposition of [Cov(𝑥)]−1 [Chandrasekaran
et al., 2009, Chandrasekaran et al., 2012].

Spectral Approach: Deconfounding the Covariance Matrix. In contrast to the opti-
mization approach, this approach works towards an estimate of the covariance matrix.
Using the SCM in Eq. (5.2), we obtain

Cov(𝑥) = (𝐼 −𝐵)−1𝐷(𝐼 −𝐵)−𝑇 + (𝐼 −𝐵)−1ΘΘ𝑇 (𝐼 −𝐵)−𝑇

= (𝐼 −𝐵)−1𝐷(𝐼 −𝐵)−𝑇 + Θ̃Θ̃𝑇 s.t. Θ̃ = (𝐼 −𝐵)−1Θ

= 𝐽−1
𝑂⏟ ⏞

sparse inverse

+ Θ̃Θ̃𝑇⏟ ⏞
low-rank

.
(5.3)

If the confounders are pervasive, then a non-neglible fraction of Θ is non-vanishing and
the eigenvalues of Θ̃Θ̃𝑇 grow linearly with the dimension 𝑝. However, the eigenvalues
of 𝐽𝑂 are bounded. As a result, the spectrum of Cov(𝑥) is dominated by the spectrum
of Θ̃Θ̃𝑇 if its eigenvalues diverge significantly from those of 𝐽𝑂, i.e. they are well-
separated. Hence, the first 𝐾 principal components of Cov(𝑥) approximate Θ̃Θ̃𝑇 well,
and consequently provide a way to separate out 𝐽−1

𝑂 [Fan et al., 2013, Wang and
Fan, 2017]. In settings when the eigenvalues of 𝐽−1

𝑂 and Θ̃Θ̃𝑇 in Eq. (5.3) are not
well-separated, Shah et al. [2020] propose a modified covariance estimator and use it
for learning the causal model in the linear setting. Outside of the graphical models
literature, the spectral approach is also similar in flavor to the approach proposed by
Wang and Blei [2019] to estimate average treatment effects in the potential outcomes
framework.

The current methods described above for learning in the presence of pervasive
confounders are all grounded in the linear setting. In the next section, we show how
to extend these techniques to the nonlinear causal additive setting. As we will see,
current methods are not consistent in this setting, and need careful modification. In
particular, the methods above only estimate the low-rank component for the purpose of

84

removing it, creating a new “processed” version of the data. However, in the nonlinear
causal additive setting, the low-rank component plays a more complex role, as we now
show.

5.4 Our Method
Our goal is to learn 𝐺*, the DAG induced by the conditional distribution P(𝑥 | ℎ)
under the model in Eq. (5.1). In Section 5.4.1, we introduce a sufficient statistic
𝑠 of the confounders ℎ, and prove that P(𝑥 | 𝑠) also factorizes according to 𝐺*. It
therefore suffices to estimate 𝑠 in order to recover 𝐺*. In Section 5.4.2 we show that
in the pervasive confounding setting, we can consistently estimate 𝑠 using a principal
components analysis on the observed data. We conclude in Section 5.4.3 by proposing
a new score function that scores DAGs using these estimates of 𝑠.

In what follows, we assume without any loss of generality that 𝜋* := (1 · · · 𝑝) is a
consistent topological ordering of 𝐺* (i.e., that 𝑥𝑖 can only be a cause not an effect of
a variable 𝑥𝑗 when 𝑖 < 𝑗) to simplify notation.

5.4.1 Sufficient Statistics for Recovering the DAG

Our main theorem below, which we prove in Appendix D.1, says that P(𝑥 | 𝑠) factorizes
according to 𝐺* when 𝑠 equals the conditional expectation E[𝑥 | ℎ].

Theorem 5.4.1. There exist functions {𝑟𝑗}𝑝𝑗=1 such that the SCM in Eq. (5.1) can
be re-written as

𝑥𝑗 =
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑗)

𝑓𝑖𝑗(𝑥𝑖) + [𝑠𝑗 − 𝑟𝑗(𝑠1, · · · , 𝑠𝑗−1)] + 𝜖𝑗,

where
𝑠𝑗 = E[𝑥𝑗 | ℎ].

Hence, the conditional distribution 𝑥 | 𝑠 factorizes according to 𝐺*.

Corollary 5.4.2. 𝐺* is identifiable from the conditional distribution 𝑥 | 𝑠 when all
the 𝑓𝑖𝑗 are non-linear and three-times differentiable.

Proof. By Theorem 5.4.1, 𝑥 | 𝑠 factorizes according to 𝐺*. Since 𝜖𝑗 ⊥⊥ {(𝑥𝑖, 𝑟𝑖)}𝑗−1
𝑖=1 ,

the SCM in Theorem 5.4.1 is an additive noise model. By Corollary 31 of Peters et al.
[2014], 𝐺* is identifiable from observational data alone.

By Corollary 5.4.2, the task of identifying 𝐺* reduces to one of computing or
estimating 𝑠. Since we do not know ℎ, we cannot estimate 𝑠 by regressing 𝑥 on
ℎ. Before showing how we can implicitly estimate 𝑠 using principal components
analysis in the next section, we describe the special linear case to build intuition for
Theorem 5.4.1.

85

Example 5.4.3. In the linear setting of Eq. (5.2),

𝑠 = E[𝑥 | ℎ]
= E[(𝐼 −𝐵)−1𝜖+ (𝐼 −𝐵)−1Θℎ | ℎ]
= (𝐼 −𝐵)−1Θℎ, since 𝜖 ⊥⊥ ℎ and E[𝜖] = 0.

Lemma 5.4.4 below, which we prove in Appendix D.1 using a simple recursive argument,
allows us to re-write each entry 𝑠𝑗 of 𝑠 in a more revealing form.

Lemma 5.4.4. In the linear setting,

𝑠𝑗 = [(𝐼 −𝐵)−1Θℎ]𝑗

=
∑︁

𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗[(𝐼 −𝐵)−1Θℎ]𝑖 +Θ𝑇
𝑗,·ℎ,

where Θ𝑗,· denotes the 𝑗th row of Θ.

Recalling that 𝑑𝑗 = Θ𝑇
𝑗,· ℎ = 𝑠𝑗 − 𝑟𝑗, then

𝑟𝑗 =
∑︁

𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗[(𝐼 −𝐵)−1Θℎ]𝑖.

=
∑︁

𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗𝑠𝑖 (by Lemma 5.4.4).
(5.4)

Therefore, the SCM in Eq. (5.2) can be re-written as

(𝑥𝑗 − 𝑠𝑗) =
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗(𝑥𝑖 − 𝑠𝑖). (5.5)

If we can estimate 𝑠𝑗, then Eq. (5.5) leads to a natural data pre-processing algorithm:
given an input dataset {𝑥(𝑛)}𝑁𝑛=1, provide the analyst with the processed dataset
{(𝑥(𝑛) − 𝑠(𝑛))}𝑁𝑛=1. Given this processed dataset, the analyst can then feed this data
into a linear causal learning algorithm and learn 𝐺* up to its Markov equivalence
class.

In the next section, we provide settings under which 𝑠 can be estimated consistently
in the non-linear setting and also provide statistical rates of convergence for our
estimator.

5.4.2 Asymptotically Exact Estimates of the Sufficient Statis-
tics

To estimate 𝑠, we reduce our problem into the linear latent factor setting studied by
Fan et al. [2013]; see also Section 5.3.

86

Reduction to Fan et al. [2013]. Let 𝜇* denote the joint distribution of (𝜖, ℎ).
Assume that each random variable 𝑥𝑗 ∈ ℋ* ⊂ 2(𝜇*), where ℋ* is a complete Hilbert
space and 2(𝜇*) consists of all square-integrable functions of (𝜖, ℎ) with respect to the
measure 𝜇*. Then, there exists 𝑀 (possibly equal to infinity) set of basis functions
{𝜑𝑚}𝑀𝑚=1 such that

𝑠𝑗 = E[𝑥𝑗 | ℎ] ∈ ℋ𝑀 := span{𝜑1(ℎ), · · · , 𝜑𝑀(ℎ)} ∀𝑗 ∈ [𝑝]

= 𝜓𝑇
𝑗 Φ(ℎ), Φ(ℎ) := [𝜑1(ℎ), · · · , 𝜑𝑀(ℎ)]𝑇 ,

since ℋ* is separable [Rudin, 1974].

Assumption 5.4.5. Suppose there exists 𝑀 <∞ such that 𝑠𝑗 ∈ ℋ𝑀 for all 𝑗 ∈ [𝑝].

Under Assumption 5.4.5, we can express the 𝑛th datapoint (𝑥(𝑛), ℎ(𝑛))
iid∼ P(𝑥, ℎ) as

𝑥(𝑛) = E[𝑥(𝑛) | ℎ(𝑛)] + [𝑥(𝑛) − E[𝑥 | ℎ(𝑛)]]
= ΨΦ(ℎ(𝑛)) + 𝑢(𝑛), 𝑢(𝑛) := 𝑥(𝑛) −ΨΦ(ℎ(𝑛)),

(5.6)

where the 𝑗th row is Ψ𝑗,· = 𝜓𝑇
𝑗 . Since 𝑢(𝑛) is simply the residual after removing all

of the variation explained by ℎ, it holds that Cov(Φ(ℎ), 𝑢) = 0𝑀×𝑝. Hence, Φ(ℎ(𝑛)),
which plays the role of the latent factors in Fan et al. [2013], and 𝑢(𝑛) are uncorrelated.
Then, the model in Eq. (5.6) is equivalent to the one studied by Fan et al. [2013].

Our estimator for 𝑠(𝑛) = ΨΦ(ℎ(𝑛)) below is mathematically equivalent to the least-
squares estimator provided in Section 2.3 of Fan et al. [2013]. Although our estimator is
equivalent, we derive the estimator from the perspective of matrix perturbation theory
instead of least-squares. This alternative formulation provides additional geometric
insights.

Derivation of the Estimator. By Eq. (5.6), we can decompose the data matrix
𝑋 ∈ R𝑁×𝑝 as,

𝑋 = 𝑆 + 𝑈 s.t. 𝑋 = [𝑥(1) · · ·𝑥(𝑁)]𝑇 , 𝑆 = [𝑠(1) · · · 𝑠(𝑁)]𝑇 ,

𝑈 = [𝑢(1) · · ·𝑢(𝑁)]𝑇 .

The goal is to deconvolve 𝑆 from the observable 𝑋. 𝑈 can be viewed as playing the
role of a perturbation to the matrix of interest 𝑆. To apply matrix perturbation
results such as Weyl’s eigenvalue theorem and the sin(𝜃) theorem [Davis and Kahan,
1970], we need to understand the spectral properties of 𝑆 and 𝑈 . To this end, if
𝑀 < max(𝑁, 𝑝), then 𝑆 has rank 𝑀 . Hence,

‖𝑆‖2𝐹 =

𝑝∑︁
𝑚=1

𝜆𝑚(𝑆
𝑇𝑆)

=
𝑀∑︁

𝑚=1

𝜆𝑚(𝑆
𝑇𝑆), (since 𝜆𝑚(𝑆𝑇𝑆) = 0 for 𝑚 > 𝑀),

(5.7)

87

where 𝜆𝑚(·) denotes the 𝑚th largest eigenvalue of a matrix. If ℎ has an effect on
many variables, or equivalently if Ψ has many non-zero entries, then ‖𝑆‖2𝐹 → ∞.
By Eq. (5.7), this implies that the top 𝑀 non-zero eigenvalues of 𝑆 must also go to
infinity. Therefore, the spectrum of 𝑆 is concentrated or spiked on 𝑀 eigenvalues
instead of being spread out on all 𝑝 possible eigenvalues. Conversely, for sparse 𝐺*

with bounded node degrees, the eigenvalues of 𝑈 are diffuse and bounded. Intuitively,
the eigenvalues are not large because there are no “directions” that capture much of
the variability or variance in 𝑈 due to the sparsity condition on 𝐺*. This discrepancy
between the spectra of 𝑆 and 𝑈 give rise to a natural estimator to recover 𝑆: project
𝑋 onto an 𝑀 -dimensional subspace using principal component analysis (PCA). Since
most of the variability in 𝑋 occurs in the subspace spanned by 𝑆, PCA should output
a subspace close to 𝑆. Recalling the many equivalent characterizations of PCA, we
can find this projection by solving for the one that minimizes the empirical squared
reconstruction loss:

Π*
PCA = argmin

rank(Π)≤𝑀

1

𝑁

𝑁∑︁
𝑛=1

‖𝑥(𝑛) − Π(𝑥(𝑛))‖22.

= argmin
rank(Π)≤𝑀

‖𝑋 − Π(𝑋)‖22 s.t. Π(𝑋) = [Π(𝑥(1)) · · ·Π(𝑥(𝑁))]𝑇

= argmin
rank(Π)≤𝑀

‖𝑋 − Π(𝑋)‖2𝐹 .

Fortunately, this optimization problem has a closed-form solution, namely

Π*
PCA(𝑥) = 𝑉𝑀𝑉

𝑇
𝑀𝑥 s.t. Σ̂ = 𝑉 Λ𝑉 𝑇 , (5.8)

where Σ̂ is the sample covariance matrix, 𝑉 Λ𝑉 𝑇 is the eigendecomposition of Σ̂, and
𝑉𝑀 is the matrix consisting of the top 𝑀 eigenvectors of 𝑉 . Then, our estimate 𝑠(𝑛)𝑗

of 𝑠(𝑛)𝑗 = [𝑆]𝑛𝑗 equals
𝑠(𝑛) = Π*

PCA(𝑥
(𝑛)) = 𝑉𝑀𝑉

𝑇
𝑀𝑥

(𝑛).

Theorem 5.4.6. Under Assumption (1)-(4) of Fan et al. [2013], and Assump-
tion 5.4.5,

max
1≤𝑗≤𝑝,1≤𝑛≤𝑁

‖𝑠𝑗(𝑛) − 𝑠(𝑛)𝑗 ‖2 = 𝑂𝑝

(︃
log(𝑁)1/𝑐

√︂
log 𝑝

𝑁
+
𝑁

1
4

√
𝑝

)︃
,

for some constant 𝑐 > 0.

Proof. See Corollary 1 of Fan et al. [2013].

Hence, ignoring log factors, we can estimate 𝑠
(𝑛)
𝑗 at the rate 𝑂̃

(︂
1√
𝑁
+ 𝑁

1
4√
𝑝

)︂
.

Therefore, we need both 𝑝 and 𝑁 to grow for consistent estimation of 𝑠(𝑛)𝑗 . Intuitively,
as 𝑝 grows, the eigenvalues or “spikiness” of 𝑆 increases, making the projection via PCA

88

tend towards 𝑆; for a precise statement, see Proposition 1 and 2 of Fan et al. [2013].
On the other hand, as 𝑁 grows, the estimate of the covariance matrix improves and
thereby reduces the estimation error of projecting via the sample covariance matrix.
In the original paper by Fan et al. [2013], the authors required that Φ(ℎ) have an effect
on 𝑂(𝑝) variables. In later work by Wang and Fan [2017], the authors showed that
this dependence can be weakened to 𝑂(√𝑝); see Theorems 3.1 and 3.2 of Wang and
Fan [2017]. Finally, we note that our matrix formulation in Section 5.4.2 resembles the
decomposition used in robust synthetic control for counterfactual estimation [Amjad
et al., 2018, Agarwal et al., 2019]. However, unlike in synthetic control, our goal is to
estimate the causal graph.

Algorithm 6 summarizes our approach for estimating the matrix of sufficient
statistics 𝑆. In practice, we might not know what 𝑀 to use in Algorithm 6. To
this end, we can use the estimator provided in Section 2.4 of Fan et al. [2013] to
estimate 𝑀 . As we show in Section 6.5, it is often easier to instead visually inspect
the spectrum of the sample covariance matrix (i.e., the scree plot) to pick 𝑀 .

5.4.3 The DeCAMFounder Score Function

In this section, we exploit the special conditional independence structure implied by
Theorem 5.4.1 as well as Algorithm 6 to estimate 𝐺* via a score-based approach. In
general, score-based approaches consist of two parts: (1) a score-function to measure
the quality of a DAG and (2) a combinatorial optimization procedure to optimize
this score-function over the space of DAGs. There are many existing general-purpose
procedures for (2); see, for example, Chickering [2002], Solus et al. [2020], Bühlmann
et al. [2014]. Hence, we focus our attention on (1), namely developing a score function
to estimate the graph in the pervasive confounding setting.

A natural starting point (based on its popularity in the linear setting) might be to
use the Bayesian information criterion (BIC) as the score function, which penalizes
DAGs based on the number of parameters [Chickering, 2002]. For linear models,
computing this penalty is straightforward because the number of parameters simply
equals the number of edges in the graph (corresponding to number of edge weights
to be estimated) and 𝑝 (the number of node noise variances to be estimated). For
non-linear models, however, the number of parameters can be infinite. Hence, BIC
cannot directly be applied. Instead, we use a Bayesian score, namely the marginal
log-likelihood of the DAG (which the BIC approximates with a second-order Taylor
series) conditional on the matrix of confounder sufficient statistics 𝑆. Specifically, we

Algorithm 6 Principal Confounding Sufficient Statistics
1: procedure pcss(𝑋,𝑀)
2: Σ̂ = 1

𝑁
𝑋𝑇𝑋

3: 𝑉,Λ, 𝑉 𝑇 = eigen(Σ̂) ◁ Eigendecomposition of Σ̂
4: 𝑆 = (𝑉𝑀𝑉

𝑇
𝑀𝑋

𝑇)𝑇 ∈ R𝑁×𝑝 ◁ Sufficient statistics derived in Eq. (5.8)
5: return 𝑆

89

score a DAG 𝐺 by

P(𝑋 | 𝐺,𝑆) =
∫︁
Ω𝐺

P(𝑋 | 𝐺,𝑆,Ω𝐺)𝑑P(Ω𝐺), (5.9)

where P(Ω𝐺) is a prior over the unknown set of functions Ω𝐺 := {{𝑓𝑖𝑗}𝑖∈Pa𝐺(𝑥𝑗), 𝑟𝑗}
𝑝
𝑗=1

defining the model (see Theorem 5.4.1). In the following, we consider the special
setting where the prior P(Ω𝐺) is given by a Gaussian process.

We define our score function, the DeCAMFounder Score, by placing Gaussian
process priors on Ω𝐺 as in Friedman and Nachman [2000]. This choice of prior
provides flexibility to model non-linear relationships, while having desirable theoretical
properties such as statistical consistency; see, for example, Chapter 7 of Rasmussen
and Williams [2006]. In the following, we show in Proposition 5.4.7 that under suitable
assumptions we can analytically compute Eq. (5.9) by using a GP prior. Based on the
analytical formula provided in Proposition 5.4.7, we show in Corollary 5.4.8 that we
can compute Eq. (5.9) in 𝑂(𝑝𝜅𝑁2 + 𝑝𝑁3) time, where 𝜅 depends on the maximum
number of parents in 𝐺 and the functions 𝑟𝑗.

Proposition 5.4.7. Suppose that

𝜖𝑗 ∼ 𝒩 (0, 𝜎2
𝑗)

𝑓𝑖𝑗 ∼ 𝐺𝑃 (0, 𝑘𝜃𝑖𝑗(·, ·))
𝑟𝑗 ∼ 𝐺𝑃 (0, 𝑘𝜂𝑗(·, ·),

where 𝑘𝜃𝑖𝑗(·, ·) and 𝑘𝜂𝑗(·, ·) are positive definite kernel functions with kernel hyperpa-
rameters 𝜃𝑖𝑗 and 𝜂𝑗, and 𝜖𝑗 denotes the noise terms in Eq. (5.1). For all 1 ≤ 𝑗 ≤ 𝑝,
select 𝑠𝐶𝑗

⊂ {𝑠1, · · · , 𝑠𝑗−1} and a function 𝑞𝑗 such that 𝑟𝑗 = 𝑞𝑗(𝑠𝐶𝑗
) in Theorem 5.4.1.

Then, Eq. (5.9) equals

𝑝∑︁
𝑗=1

logP(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗
) = −.5

𝑝∑︁
𝑗=1

[︁
𝑋̃𝑇

𝑗 𝐿
−1
𝑗 𝑋̃𝑗 − log det𝐿𝑗 −𝑁 log(2𝜋)

]︁
,

(5.10)
where 𝑋𝑗 − 𝑆𝑗, 𝐿𝑗 = 𝐾𝑗 + 𝜎2

𝑗 𝐼𝑁×𝑁 , and [𝐾𝑗]𝑛𝑚 = 𝑘𝜃𝑖𝑗 ,𝜂𝑗((𝑥
(𝑛), 𝑠(𝑛)), (𝑥(𝑚), 𝑠(𝑚))) for

𝑘𝜃𝑖𝑗 ,𝜂𝑗((𝑥, 𝑠), (𝑥̃, 𝑠)) =
∑︁

𝑖∈Pa𝐺(𝑥𝑗)

𝑘𝜃𝑖𝑗(𝑥𝑖, 𝑥̃𝑖) + 𝑘𝜂𝑗(𝑠𝐶𝑗
, ˜𝑠𝐶𝑗

).

Corollary 5.4.8. Under the assumptions of Propositions 5.4.7, P(𝑋 | 𝐺,𝑆) takes
𝑂(𝑝𝜅𝑁2 + 𝑝𝑁3) time to compute, where 𝜅 = max1≤𝑗≤𝑝 |Pa𝐺(𝑥𝑗)|+ |𝐶𝑗|.

Proof. It suffices to show that P(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗
) takes 𝑂(𝜅𝑁2 +𝑁3) time to

compute by Proposition 5.4.7. 𝑘𝜃𝑖𝑗 ,𝜂𝑗 takes at most 𝑂(𝜅) time to evaluate on a pair of
points. Hence, the 𝑁 ×𝑁 kernel matrix 𝐾𝑗 takes at most 𝑂(𝜅𝑁2) time to compute.
Computing the determinant and inverse of 𝐿𝑗 takes 𝑂(𝑁3) time. Finally, the matrix
vector multiplication 𝑋̃𝑇

𝑗 𝐿
−1
𝑗 𝑋̃𝑗 takes 𝑂(𝑁2) time.

90

We prove Proposition 5.4.7 in Appendix D.1. Since 𝑠𝐶𝑗
is not a subset of 𝑠Pa𝑥𝑗 (𝐺)

in general, Eq. (5.10) does not reduce into summands that only depend on the
parents in 𝐺 (i.e., lacks decomposablity). Decomposablity, however, is critical from
a computational perspective, since given the marginal likelihood of a DAG 𝐺, it
allows computing the marginal of a new DAG 𝐺′ by only recomputing the marginal
likelihood of the parent sets that changed relative to 𝐺. To this end, we assume, for
computational efficiency, that each 𝑟𝑗 in Theorem 5.4.1 only depends on 𝑠Pa𝐺* (𝑥𝑗) in
Algorithm 7.

Assumption 5.4.9. There exists some 𝑞𝑗 such that 𝑟𝑗 = 𝑞𝑗(𝑠Pa𝐺* (𝑥𝑗)) for all 1 ≤ 𝑗 ≤ 𝑝.

Under Assumption 5.4.9, we can compute Eq. (5.9) in 𝑂(𝑝𝜅𝑁2+ 𝑝𝑁3) time, where
𝜅 equals two times the maximum number of parents in 𝐺 by Corollary 5.4.8. We
might expect that Assumption 5.4.9 holds (at least approximately) based on the
following considerations: as we show in the proof of Theorem 5.4.1 in Appendix D.1,
𝑟𝑗 =

∑︀
𝑖∈Pa𝐺* (𝑥𝑗)

E[𝑓𝑖𝑗(𝑥𝑖) | ℎ]. Since 𝑠𝑖 = 𝐸[𝑥𝑖 | ℎ], we might expect that there exists a
function 𝑧𝑖 such that E[𝑓𝑖𝑗(𝑥𝑖) | ℎ] ≈ 𝑧𝑖(𝑠𝑖). When 𝑓𝑖𝑗 is a linear function, for example,
then there always exists such a 𝑧𝑖; see Eq. (5.4) for the exact formula of 𝑧𝑖. Hence, if
E[𝑓𝑖𝑗(𝑥𝑖) | ℎ] ≈ 𝑧𝑖(𝑠𝑖), then 𝑟𝑗 ≈

∑︀
𝑖∈Pa𝐺* (𝑥𝑗)

𝑧𝑖(𝑠𝑖) is well approximated by a function
of 𝑠Pa𝐺* (𝑥𝑗). Under Assumption 5.4.9, the log marginal likelihood simplifies into a
decomposable score

logP(𝑋 | 𝑆,𝐺) =
𝑝∑︁

𝑗=1

logP(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆Pa𝐺(𝑥𝑗))

by Proposition 5.4.7. In general, we might not know a priori what kernel hyperparam-
eters 𝜃𝑖𝑗, 𝜂𝑗, or noise variance 𝜎𝑗 to select in Eq. (5.10).

To this end, we follow the common approach of maximizing the marginal likelihood
(also know as Type II maximum likelihood estimation) with respect to these parameters
using gradient ascent instead of placing hyperpriors over these parameters [Friedman
and Nachman, 2000, Section 4]. We summarize our final derived score function
in Algorithm 7. In our implementation of the DeCAMFounder score, we use the
probabilistic programming language GPyTorch [Gardner et al., 2018] to fit kernel
hyperparameters via gradient ascent. In Appendix D.2, we detail the particular kernel
functions used in our experiments.

Algorithm 7 The DeCAMFounder Score
1: procedure decam(𝑋,𝐺,𝑀) ◁ 𝐺 a DAG with vertex set [𝑝]
2: 𝑆 = PCSS(𝑋,𝑀) ◁ Computed from Algorithm 6
3: 𝜋 is a topological order of 𝐺
4: 𝑚𝑙𝑙 = 0
5: for 𝑖 in [𝑝] do
6: 𝑚𝑙𝑙 = 𝑚𝑙𝑙 + argmax𝜃𝑖𝑗 ,𝜂𝑗 ,𝜎𝑗

[Eq. (5.10)] ◁ Maximize via gradient ascent

7: return 𝑚𝑙𝑙 ◁ The log marginal likelihood of 𝐺.

91

5.5 Experiments
In this section, we start by empirically assessing how well the Principal Confound-
ing Sufficient Statistics or PCSS procedure outlined in Algorithm 6 estimates the
confounder sufficient statistics 𝑠 = E[𝑥 | ℎ]. Although PCSS provides asymptotically
exact estimates for 𝑠 by Theorem 5.4.6, these estimates are noisy in the finite observa-
tional data regime. We test the impact of the estimation error on the performance
of our DeCAMFounder score function (which assumes 𝑠 is provided exactly) for the
task of causal discovery in Section 5.5.1.2 and Section 5.5.2.2. We benchmark our
DeCAMFounder score function against other popularly used score functions in the
fully-observed and/or pervasive confounding setting. We discuss these benchmark
methods in greater depth in Section 5.5.1.2.

We start our evaluation with simulated data so as to have access to a known
ground truth DAG. In Section 5.5.2, we then also evaluate our method on an ovarian
cancer dataset, which can partially be validated based on prior biological knowledge
about the underlying system. We thank the authors in Frot et al. [2019] for providing
a pre-processed and easily reproducible version of this dataset (as well as personal
assistance). All results can be regenerated using the data and code provided in
https://github.com/uhlerlab/decamfound.

5.5.1 Simulated Data

In this set of simulations we analyze the sensitivity and robustness of our method with
respect to different data characteristics. To this end, we vary the following parameters:
strength of confounding, linear or non-linear SCM, and dimensionality.

Controlling the Strength of Confounding. Generating non-linear (and even
linear) data can be challenging. For example, without proper normalization, the
variance of downstream nodes will explode (e.g., consider a line graph with edge
weights equal to 2). From a signal processing perspective, if the noise variance of each
node is drawn from the same distribution (e.g., as in Peters et al. [2014], Hauser and
Bühlmann [2012]), then downstream nodes will typically have a higher signal-to-noise
ratio than upstream nodes. To prevent such artifacts about the underlying data
simulation process to skew results, we use the following normalization (some edge
cases occur for source nodes or those independent of ℎ, see Appendix D.3 for details):

∙ Unit variance nodes: Var(𝑥𝑗) = 1 for all 𝑗 ∈ [𝑝].

∙ Zero mean nodes: E[𝑥𝑗] = 0 for all 𝑗 ∈ [𝑝].

∙ Fixed signal, confounding, and noise variances: for all 𝑗 ∈ [𝑝]:

– Cov(𝑥𝑗, 𝜖𝑗) = 𝜎2
noise,

– Cov(
∑︀𝐾

𝑘=1 𝑔𝑘𝑗(ℎ𝑘)) = 𝜎2
ℎ, and

– Cov(
∑︀

𝑥𝑖∈Pa𝐺* (𝑥𝑗)
𝑓𝑖𝑗(𝑥𝑖)) = 𝜎2

signal.

92

Since all nodes have unit variance, 𝜎2
ℎ (𝜎2

signal) equals the fraction of the variation
in 𝑥𝑗 explained by ℎ (observed variables), or equivalently, the 𝑅2 of a model where
the explanatory variables consist of all confounders (all observed variables). In our
experiments, we fix 𝜎2

noise = 0.2. In other words, if we could actually observe both 𝑥
and ℎ, then the noise in the problem is relatively small. To assess how the strength
of confounding affects DAG recovery, we vary 𝜎2

ℎ. Note that 𝜎2
signal is a deterministic

function of 𝜎2
ℎ: 𝜎2

signal = Var(𝑥𝑗)− 𝜎2
noise − 𝜎2

ℎ = 0.8− 𝜎2
ℎ, so that varying 𝜎2

ℎ implicitly
varies the observed signal variance 𝜎2

signal.

Linear / Non-Linear SCM. In real data, we often expect certain characteristic
patterns such as upward, seasonal, or quadratic trends. Based on this intuition, we
draw each 𝑓𝑖𝑗 and 𝑔𝑘𝑗 from the set of linear trends {𝜃𝑥 : 𝜃 ∈ R𝑝}, seasonal trends
{𝜃 sin(𝜋𝑥) : 𝜃 ∈ R𝑝}, or quadratic trends {𝜃𝑥2 : 𝜃 ∈ R𝑝} when generating non-linear
data. For data generated from a linear SCM, we assume that all 𝑓𝑖𝑗 and 𝑔𝑘𝑗 belong to
the set of linear trends {𝜃𝑥 : 𝜃 ∈ R𝑝}.

Data Generation. We randomly draw 𝐺* from an Erdös-Rényi random graph model
with expected neighborhood size of 5 and consider graphs with number of observed
nodes 𝑝 ∈ {250, 500, 1000}. As in Frot et al. [2019], we assume that each confounder
ℎ𝑘 is a direct cause of node 𝑥𝑗 with a 70% chance. Given the graph, we randomly
select a trend type for each edge (i.e., the 𝑓𝑖𝑗 and 𝑔𝑘𝑗) with equal probability. We then
randomly draw a weight 𝜃 ∼ Uniform([−1,−.25] ∪ [.25, 1]) and appropriately scale
weights of all parents simultaneously to satisfy the normalization constraints above.
We finally add 𝑁(0, 𝜎2

noise) noise to each node; see Appendix D.3 for more details
and references to our python code. Unless otherwise stated, we draw 25 random
datasets for each specific configuration of confounding strength, dimensionality, etc.
We consider 𝐾 = 1 pervasive confounders which allows us to plot how each node
varies as a function of this confounder. This confounder could, for example, represent
batch effects in biological experiments, the market in stock-market data, or ancestry
in genome-wide association studies.

5.5.1.1 Confounder Sufficient Statistics Estimation Performance

In the following, we quantify the mean-squared estimation error of 𝑠. Based on
Theorem 5.4.6, this error should decrease as 𝑁 and 𝑝 increase. To test this empirically,
we keep the ratio of 𝑝

𝑁
fixed at 2 (i.e., the high-dimensional case), and vary the

confounding strength, dimensionality, etc. Fig. 5-2 shows the maximum mean-squared
error which equals

max
𝑗∈[𝑝]

1

𝑁

𝑁∑︁
𝑛=1

(︁
𝑠
(𝑛)
𝑗 − 𝑠

(𝑛)
𝑗

)︁2
.

In the linear case, we can compute 𝑠 analytically (see Lemma 5.4.4). In the non-linear
case, there is no analytical expression for 𝑠. However, for observed nodes 𝑥𝑗 that only
have confounders as parents, 𝑠𝑗 =

∑︀𝐾
𝑘=1 𝑔𝑘𝑗(ℎ𝑘) = 𝑑𝑗. Since we are simulating data

and have access to ℎ, we can compute 𝑠𝑗 for these nodes. Thus, in Fig. 5-2, the max

93

Figure 5-2: Maximum Mean-Squared Error (MSE) across all dimensions for esti-
mating 𝑠 via PCSS. Twenty-five total simulations were performed for each dataset
configuration.

MSEs for the non-linear SCM case are only with respect to nodes that have only
confounders as parents. From this figure, we see that the MSE decreases as 𝑝 increases
or when the strength of the confounders increases.

To evaluate the quality of PCSS for nodes 𝑥𝑗 that occur further downstream
(i.e., have some observed nodes as parents), we can make qualitative assessments.
In particular, since we only have 𝐾 = 1 confounders, we can plot 𝑥𝑗 against ℎ1.
The visual trend we see from the resulting scatterplot corresponds to the desired
conditional expectation 𝑠𝑗 = E[𝑥𝑗 | ℎ]. By plotting the confounder sufficient statistics
estimated from PCSS on the same plot for each dimension, we can qualitatively check
for a matching trend. Fig. 5-3 shows these scatterplots for a particular random data
simulation and select nodes that have at least one parent. We see that PCSS indeed
matches the data trend well.

5.5.1.2 Evaluation of the DeCAMFounder Score

We now transition to evaluating the quality of our DeCAMFounder score function,
which depends on noisy estimates of 𝑠 via PCSS to score DAGs. For this, we want
to separate the merits of the score function from the underlying combinatorial opti-

Figure 5-3: Non-linear estimation of 𝐸[𝑥𝑖 | ℎ] via PCSS for nodes with at least one
parent.

94

mization procedure. Since most score functions used in practice are decomposable
(including ours), we can reduce the evaluation to the task of effectively scoring parent
sets; typical DAG optimization procedures build up a DAG by greedily optimizing
over parent sets [Chickering, 2002]. As we show below, this reduction not only allows
us to abstract out the challenging combinatorial optimization problem but also enables
us to evaluate methods on larger scale datasets since we do not need to score the
whole DAG. Our method, similar to existing kernel constraint-based methods such as
RESIT [Peters et al., 2014], takes 𝑂(𝑁3) time to score a single parent set.

Description of the Parent Set Evaluation Tasks. A local change to a parent set
in greedy procedures typically involves a single node addition (i.e., adding a node to
the current parent set) or deletion (i.e., removing a node from the current parent set).
In the presence of latent confounding, methods that do not account for confounders
are susceptible to adding spurious edges. For example, if nodes 𝑥𝑖 and 𝑥𝑗 have a
common cause, a method that assumes no latent confounding might add an edge
from 𝑥𝑖 to 𝑥𝑗 or vice versa with high probability, even when all the true parents of
the node are included in the current parent set. This observation leads to a natural
evaluation procedure: consider the set of all nodes 𝐶 := {𝑥𝑗 : 𝑑𝑗 ̸= 0} that have a
direct confounding effect. Randomly select a node 𝑥𝑗′ from 𝐶 and randomly sample
𝑀 nodes 𝑥𝑟1 , · · · , 𝑥𝑟𝑀 from 𝐶 that are not parents of 𝑥𝑗′ . Then, we can evaluate the
methods in terms of scoring the following 𝑀 + 1 parent sets:

𝑃correct = Pa𝐺*(𝑥𝑗′)

𝑃𝑖 = Pa𝐺*(𝑥𝑗′) ∪ {𝑥𝑟𝑖} for 𝑖 ∈ [𝑀].

Again, we might expect that methods that do not correct for confounders score the 𝑃𝑖

higher than 𝑃correct due to spurious correlations created by the confounders. In our
evaluation, we pick 𝑀 = 100. We call this evaluation procedure the Wrong Parent
Addition Task. We note that this task is similar to the popular “CauseEffectPairs”
causality challenge introduced by Mooij et al. [2016].

The second parent set evaluation task concerns the node deletion phase. Here, we
expect that linear methods may suffer by potentially removing true parent nodes. For
example, if a parent node has weak linear correlation with the target node (e.g., as is
the case with our sine and quadratic trends), then that parent would likely be pruned
off using a sparsity-inducing score function such as BIC or penalized log-likelihood
with an 𝐿0 or 𝐿1 penalty.

Similar to the Wrong Parent Addition task, we first randomly select a node 𝑥𝑗′
with at least one observed parent node. For each node in the parent set of 𝑥𝑗′ , let

𝑃correct = Pa𝐺*(𝑥𝑗′)

𝑃𝑖 = Pa𝐺*(𝑥𝑗′) ∖ {𝑥𝑖} for 𝑥𝑖 ∈ Pa𝐺*(𝑥𝑗′).

We would again like to understand if certain score functions favor incorrect 𝑃𝑖 parent
sets when the parents have non-linear effects on the target. We call this evaluation
procedure the Correct Parent Deletion task. These two tasks are illustrated in Fig. 5-4.

95

(a) Wrong Parent Addi-
tion

(b) Correct Parent
Deletion

Figure 5-4: Our parent set evaluation tasks. Green arrows represent the set of true
edges, and red arrows indicate incorrect edges. Dotted arrows indicate a potential
incorrect modifcation to the true parent set of a node.

We consider the following benchmark procedures. The first three methods are
linear, and use the BIC score (with different estimates of the covariance matrix). In
particular, the BIC score for Gaussian errors is a function of the target node 𝑥𝑗 , parent
set 𝑃𝑗, and estimated covariance matrix Σ̂:

BIC(𝑥𝑗, 𝑃𝑗, Σ̂) = −
(︂
𝑁

2
log(2𝜋𝜎̂2

𝑗|𝑃𝑗
) +

𝑁

2

)︂
− .5 log(𝑁)(|𝑃𝑗|+ 2), (5.11)

where the conditional noise variance (based on Schur complements) equals

𝜎̂2
𝑗|𝑃𝑗

= Σ̂𝑗𝑗 − Σ̂𝑗𝑃𝑗
Σ̂−1

𝑃𝑗𝑃𝑗
Σ̂𝑃𝑗𝑗.

Benchmark Methods.

1. Vanilla BIC: scores each parent set by inputting the sample covariance matrix
1
𝑁
𝑋𝑇𝑋 into Eq. (5.11).

2. LRPS + BIC: scores each parent using the covariance matrix estimated from
a low-rank plus sparse (LRPS) decomposition of the sample precision matrix;
see Frot et al. [2019]. We use the author’s code in R to fit this decomposition,
and pick the hyperparameters using cross-validation.

3. PCSS + BIC: scores each parent using the covariance matrix 1
𝑁
(𝑋−𝑆)𝑇 (𝑋−𝑆),

where 𝑆 is the output from Algorithm 6. We pick one principal component and
3 principal components for the linear and non-linear case, respectively. This
choice was based on visual inspection of the spectrum of the covariance matrix.
See the Appendix.

4. CAM: scores each parent via Eq. (5.10) but sets 𝑆𝐶𝑗
equal to the zero matrix

(i.e., the marginal likelihood from a vanilla Gaussian process CAM model).

96

5. CAM-OBS: scores each parent via Eq. (5.10) but sets 𝑆𝐶𝑗
equal to ℎ (the true

confounders) and 𝑋̃𝑖 = 𝑋𝑖 instead.

For both parent set tasks, we fix 𝑁 = 250 and 𝑝 = 500 but vary the strength of
confounding. For the Correct Parent Deletion task, we exclude the linear trend from
the set of trends when generating non-linear data to focus on the particular problem
of modeling non-linearities as described above. Apart from that, the data in both
settings are generated as specified at the beginning of this section. Fig. 5-5 shows the
non-linear SEM results. The remaining results are shown in Fig. D-1 and Fig. D-2. In
these figures, the different methods are compared using the following metric:

Prop. Times MLL Wrong > MLL True: out of the 𝑀 incorrect parent sets,
what proportion have scores larger than the true parent set. Lower is better here.

Our findings based on this analysis are: Fig. 5-5 and Fig. D-1 show that methods
that account for confounders (i.e., LRPS+BIC, PCSS+BIC, CAM-OBS, DeCAM-
Found), place higher probability on the correct parent set for the Wrong Parent
Addition task across different settings relative to those that do not model the con-
founders. In addition, Fig. 5-5 and Fig. D-2 show that for the Correct Parent Deletion
task, as expected, the linear methods suffer in the non-linear setting. Note that
unlike PCSS+BIC, LRPS+BIC suffers even in the linear setting because it induces a
very sparse graph, causing it to delete true parents. Also note that it is not possible
to run CAM-OBS in practice, since it requires knowing the unobserved confouders
ℎ; we include it merely as a benchmark to understand how parent set recovery is
affected by estimation error (i.e., only having finite observational data) rather than
latent confounding. Interestingly, our method, which does not require knowing ℎ,
sometimes outperforms CAM-OBS. This might be because our method leverages all 𝑝
observed nodes to estimate the confounding variation via PCA. CAM-OBS, on the
other hand, estimates the confounding variation one node at a time (i.e., by regressing
each observed node on ℎ). Finally, all methods suffer when the confounding strength
increases since the observed signal necessarily becomes weaker. We provide additional
empirical results including a DAG evaluation scoring task in Appendix D.4.1.

5.5.2 Real Data: Ovarian Cancer Dataset

We use the (pre-processed) ovarian cancer RNA-seq dataset from Frot et al. [2019]
which consists of 𝑁 = 247 human samples and 𝑝 = 501 genes. There are 15 total
transcription factors (TFs), and the remaining 486 genes interact with at least one of
these TFs. This dataset has a partial ground truth, namely that the 15 TFs should
precede the 486 genes in the true causal ordering. The reference network for the 501
variables is obtained using Netbox, a software tool for performing network analysis
using biological knowledge and community network-based approaches [Cerami et al.,
2010]. A caveat, however, is that edges in this network might not have a precise
probabilistic meaning (i.e., in either a causal or undirected probabilistic graphical
model sense).

97

(a) Wrong Parent Addition Task (b) Correct Parent Deletion Task

Figure 5-5: Results for the Wrong Parent Addition and Correct Parent Deletion tasks
(lower values on the y-axis are better for both tasks). The data are generated according
to a non-linear SEM. 25 total simulations per dataset configuration were performed.

Figure 5-6: The two genes most positively and negatively correlated with the transcrip-
tion factor NFKB1, respectively. GENE-pcss refers to the total latent confounding
variation estimated for that gene via PCSS. GENE refers to the observed values of
the gene.

One way the authors in Frot et al. [2019] benchmarked their methods was by
counting the number of directed edges from TFs to genes that agree with the edges in
NetBox. The authors stated that confounding can be expected in this dataset due to
unobserved transcription factors or batch effects. We here take a different approach for
the evaluation and instead explicitly create confounders by design. In particular, we
remove all 15 TFs from the dataset and assume that we only observed the remaining
486 genes.

5.5.2.1 Estimating the Confounding Variation

By removing the TFs, we can evaluate the methods in a similar fashion as the simulated
experiments since we know the true values of the TFs. In the following, we first assess
our ability to estimate 𝑠. Suppose that an observed gene 𝑥𝑗 is strongly correlated
with one of the 15 latent TFs 𝑡𝑘. Then, we would expect that E[𝑥(𝑛)𝑗 | 𝑡𝑘 = 𝑡

(𝑛)
𝑘] ≈

98

Figure 5-7: Both genes have a correlation greater than 0.4 with NFKB1 (left hand
plot). After subtracting out the confounding variation estimated using PCSS for each
gene (denoted as “deconfounded” expression level), the genes are no longer correlated
with the unobserved transcription factor NFKB1.

E[𝑥(𝑛)𝑗 | ℎ = ℎ(𝑛)] = 𝑠
(𝑛)
𝑗 . Since we know 𝑡𝑘, we can produce a similar plot as in

Fig. 5-3. To this end, we look at NFKB1 which is a TF known to be associated
with ovarian cancer [Harrington and Annunziata, 2019]. In Fig. 5-6, we look at the
highest positive and negatively correlated genes with NFKB1, which are BIRC3 and
SMARCE1 respectively. We see that the estimated confounding variation for each
gene estimated from PCSS correlates well with the unobserved TF NFKB1. This
suggests that the confounding variation estimated from PCSS corresponds to true
confounding (i.e., in this instance NFKB1).

5.5.2.2 Parent Recovery Performance

Unlike in the simulated dataset experiments, we do not know the true causal graph.
In Frot et al. [2019], the authors used the graph structure predicted by NetBox as
one way to evaluate their methods. We follow a similar strategy in order to replicate
the parent evaluation tasks from the simulated data experiments. We do this by first
treating the graph outputted by NetBox as the ground truth undirected graph. Since
we do not know the true parent sets for each node, we use the neighborhood set in the
undirected graph as a proxy. Hence, to find genes likely to have spurious edges due to
the removed TFs, we consider the set of gene pairs that are conditionally independent
given the TFs and neighborhood sets of each node but marginally dependent given
just the neighborhood sets. For each ordered pair of genes, we select the first element
to be the target node and the second element as the spurious parent to add. We take
the neighborhood set of the target nodes as the proxy for the true parent set, and
score this neighborhood set relative to the neighborhood set appended with the wrong
parent candidate. For each method, we compute the proportion of times that the
neighborhood set appended with the wrong parent candidate has a higher score than
just the neighborhood set (i.e., analogous to the Wrong Parent Addition task). Since
the 15 removed TFs have high node degrees, many gene pairs satisfy the criteria above
(which would require us to score about 70K possible parent sets). Instead, we focus

99

Figure 5-8: The x-axis denotes the proportion of times a method scored the incorrect
parent appended to the neighborhood set higher than just the neighborhood set of
a node (i.e., our proxy for the true parent set). The y-axis denotes the proportion
of times a method scored the full neighborhood set higher than the neighborhood
set after removing out one of the neighbors. For LRPS, we provide the intermediate
results for each covariance matrix outputted along its cross-validation path. The black
‘x’ for LRPS corresponds to the performance of the covariance matrix selected based
on cross-validation. We compute the positive likelihood ratio for each method which
equals the ratio between our proxy for the true positive rate (i.e., the y-axis) and
false positive rate (i.e., the x-axis). These ratios are as follows: Vanilla BIC=.26,
PCSS+BIC=.33, CAM=.42, CAM-OBS=.59, DeCAMFound= .72, LRPS+BIC=.12.

on a subset of edges with at least one strong TF confounder. In particular, we require
that each node in the formed edge have correlation greater than 0.4 with one of the
15 removed TFs. This choice makes it more likely that one of the 15 left out TFs
is the actual confounder rather than e.g., batch effects, and results in roughly 1000
parent sets to score. One such gene pair with a strong TF confounder is illustrated
in Fig. 5-7. We see how removing the confounder sufficient statistics from each gene
results in removing the shared confounding effect of the strongest transcription factor
NFKB1.

To also evaluate a method’s statistical power / ability to detect edges, we randomly
sample 500 edges from the NetBox undirected graph. For each edge, we randomly
select one of the edges as the target node and consider removing the second node from
the target node’s neighborhood set. In particular, we check if a method scores the
parent set with the second node removed from the neighborhood set lower than the
full neighborhood set (i.e., similar to the Correct Parent Deletion task).

The results for both tasks are summarized in Fig. 5-8. We see that LRPS produces
a very sparse graph, and hence almost never adds a wrong parent. However, it
almost always removes true edges, which comes at the expense of statistical power.
Our method has the highest power per unit of false positives. Rather surprisingly,
CAM-OBS, which explicitly uses the 15 held out transcription factors, selects wrong

100

parents more often than our method. This might be the result of having additional
(pervasive) confounders beyond the 15 TFs we introduced by design, as raised by Frot
et al. [2019].

5.6 Conclusion
In this paper, we showed that we can identify the causal graph 𝐺* among the observed
nodes in the setting of non-linear effects and pervasive confounders. We proposed a
practical algorithm, the DeCAMFounder, to consistently estimate 𝐺* using Gaussian
processes. Since the DeCAMFounder explicitly accounts for confounders and non-
linear effects, we found improved performance on both simulated and real datasets
relative to existing methods.

There are a number of interesting future directions. One involves improving scala-
bility; our current method takes 𝑂(𝑁3) time to score a single parent set since we must
invert an 𝑁 ×𝑁 kernel matrix. An interesting direction is to improve computation
time by making use of existing techniques for large-scale kernel matrix approximation;
see, for example, Titsias [2009], Drineas and Mahoney [2005], Agrawal et al. [2019a].
Another interesting direction is to explore how to handle selection bias. In Frot et al.
[2019], for example, the authors showed how to account for selection bias and pervasive
confounders in the linear setting. It would be interesting to explore whether a similar
idea could be used to extend the DeCAMFounder to handle selection bias.

101

Chapter 6

ABCD-Strategy: Budgeted
Experimental Design for Targeted
Causal Structure Discovery

Abstract

Determining the causal structure of a set of variables is critical for both scientific
inquiry and decision-making. However, this is often challenging in practice due to
limited interventional data. Given that randomized experiments are usually expensive
to perform, we propose a general framework and theory based on optimal Bayesian
experimental design to select experiments for targeted causal discovery. That is, we
assume the experimenter is interested in learning some function of the unknown graph
(e.g., all descendants of a target node) subject to design constraints such as limits
on the number of samples and rounds of experimentation. While it is in general
computationally intractable to select an optimal experimental design strategy, we
provide a tractable implementation with provable guarantees on both approximation
and optimization quality based on submodularity. We evaluate the efficacy of our
proposed method on both synthetic and real datasets, thereby demonstrating that
our method realizes considerable performance gains over baseline strategies such as
random sampling.

6.1 Introduction
Determining the causal structure of a set of variables is a fundamental task in causal
inference, with widespread applications not only in artificial intelligence but also
in scientific domains such as biology and economics [Friedman et al., 2000a, Pearl,
2003, Robins et al., 2000b, Spirtes et al., 2000]. One of the most common ways of
representing causal structure is through a directed acyclic graph (DAG), where a
directed edge between two variables in the DAG represents a direct causal effect and
a directed path indicates an indirect causal effect [Spirtes et al., 2000].

Causal structure learning is intrinsically hard, since a DAG is generally only iden-

102

tifiable up to its Markov equivalence class (MEC) [Verma and Pearl, 1991, Andersson
et al., 1997]. Identifiability can be improved by performing interventions [Hauser and
Bühlmann, 2012, Yang et al., 2018], and several algorithms have been proposed for
structure learning from a combination of observational and interventional data [Wang
et al., 2017, Hauser and Bühlmann, 2012, Yang et al., 2018]. Since experiments tend
to be costly in practice, a natural question is how principled experimental design (i.e.,
selection of intervention targets) can be leveraged to maximize the performance of
these algorithms under budget constraints.

Seminal works by Tong and Koller [2001] and Murphy [2001] showed that experi-
mental design can improve structure recovery in causal DAG models. However, these
methods assume a basic framework in which experiments are performed one sample at
a time. In practice, experimenters often perform a batch of interventions and collect
samples over multiple rounds of experiments; and they must also factor in budget
and feasibility constraints, such as on the number of unique interventions that can
be performed in a single experiment, the number of experimental rounds, and the
total number of samples to be collected. In genomics, for instance, genome editing
technologies have enabled the collection of batches of large-scale interventional gene
expression data [Dixit et al., 2016]. An imminent problem is understanding how to
optimally select a batch of interventions and allocate samples across these interventions,
over multiple experimental rounds in a computationally tractable manner.

Since the initial works by Tong and Koller [2001] and Murphy [2001], there have
been a number of new experimental design methods under budget constraints [Hauser
and Bühlmann, 2014, Ghassami et al., 2018, Ness et al., 2018]. These methods suffer
from two drawbacks: (1) poor computational scaling [cf. Ness et al., 2018] or (2) strong
assumptions including the availability of infinite observational and/or interventional
data from each experiment [cf. Hauser and Bühlmann, 2014, Ghassami et al., 2018].
Since it is difficult to learn the correct MEC in a limited sample setting, it is desirable
to use interventional samples not only to improve identifiability but also to help
distinguish between observational MECs.

Generalizing the frameworks in [Tong and Koller, 2001, Murphy, 2001, Cho et al.,
2016, Hauser and Bühlmann, 2014, Ness et al., 2018], we assume the experimenter is
interested in learning some function 𝑓(𝐺) of the unknown graph 𝐺. Returning to gene
regulation, one might set 𝑓(𝐺) to indicate whether some gene 𝑋 is downstream of
some gene 𝑌 , i.e. if 𝑋 is a descendant of 𝑌 in 𝐺. Using targeted experimental design,
all statistical power is placed in learning the target function rather than being agnostic
to recovering all features in the graph. In addition, we also explicitly take into account
that only finitely many samples are allowed in each round, and work under various
budget constraints such as a limit on the number of rounds of experimentation.

We start by reviewing causal DAGs in Section 6.2 and then propose an entropy-
based score function that generalizes the one by Tong and Koller [2001] and Murphy
[2001] in Section 6.3. Since optimizing this score function is in general computationally
intractable, we propose our ABCD-Strategy consisting of approximations via weighted
importance sampling and greedy optimization in Section 6.4. We also provide guaran-
tees for this algorithm based on submodularity. Further, in contrast to earlier score
functions, we show that our proposed score function is provably consistent. Finally, in

103

Section 6.5 we demonstrate the empirical gains of the proposed method over random
sampling on both synthetic and real datasets.

6.2 Preliminaries
Causal DAGs. Let 𝐺 = ([𝑝], 𝐴) be a directed acyclic graph (DAG) with vertices
[𝑝] := {1, . . . , 𝑝} and directed edges 𝐴, where (𝑖, 𝑗) ∈ 𝐴 represents the arrow 𝑖→ 𝑗. A
linear causal model is specified by a DAG 𝐺 and a corresponding set of edge weights
𝜃 ∈ R|𝐴|. Each node 𝑖 in 𝐺 is associated with a random variable 𝑋𝑖. Under the Markov
Assumption, each variable 𝑋𝑖 is conditionally independent of its nondescendants given
its parents, which implies that the joint distribution factors as

∏︀𝑝
𝑖=1 P

(︀
𝑋𝑖 | Pa𝐺(𝑋𝑖)

)︀
,

where Pa𝐺(𝑋𝑖) denotes the parents of node 𝑋𝑖 [Spirtes et al., 2000, Chapter 4]. This
factorization implies a set of conditional independence (CI) relations; the Markov
equivalence class (MEC) of a DAG 𝐺 consists of all DAGs that share the same CI
relations [Lauritzen, 1996, Chapter 3]. The essential graph Ess(𝐺) is a partially
oriented graph that uniquely represents the MEC of a DAG by placing directed arrows
on edges consistent across the equivalence class and leaves the other edges undirected
[Andersson et al., 1997].

Learning with Interventions. Let intervention 𝐼 ⊆ [𝑝] be a set of interven-
tion targets. Intervening on 𝐼 removes the incoming edges to the random variables
𝑋𝐼 := (𝑋𝑖)𝑖∈𝐼 in 𝐺 and sets the joint distribution of 𝑋𝐼 to a new interventional
distribution P𝐼 . The resulting mutilated graph is denoted by 𝐺𝐼 . A typical choice of
P𝐼 is the product distribution

∏︀
𝑖∈𝐼 𝑓𝑖(𝑋𝑖), where each 𝑓𝑖(𝑋𝑖) is the probability density

function for the intervention at 𝑋𝑖. We denote by ℐ* := {𝐼1, · · · , 𝐼𝐾} the set of all
𝐾 ∈ N allowed interventions and by ℐ ⊆ ℐ* the subset of selected interventions. An
intervention 𝐼 = ∅ indicates observational data. We assume that ℐ* is a conservative
family of interventions, i.e., for any 𝑖 ∈ [𝑝], there exists some 𝐼𝑗 ∈ ℐ* such that 𝑖 /∈ 𝐼𝑗
[Hauser and Bühlmann, 2012]. Given a conservative family of targets ℐ, two DAGs
𝐺1 and 𝐺2 are ℐ-Markov equivalent if they are observationally Markov equivalent and
for all 𝐼 ∈ ℐ, 𝐺𝐼

1 and 𝐺𝐼
2 have the same skeleta [Hauser and Bühlmann, 2012, 2015].

The set of ℐ-Markov equivalent DAGs can be represented by the ℐ-essential graph
Essℐ(𝐺), a partially directed graph with at least as many directed arrows as Ess(𝐺)
[Hauser and Bühlmann, 2012, Theorem 10].

Bayesian Inference over DAGs. In various applications, the goal is to recover
a function 𝑓(𝐺) of the underlying causal DAG 𝐺 given a mix of 𝑛 independent
observational and interventional samples 𝐷 = {(𝑋𝑚𝑖, 𝐼

(𝑚)) : 𝐼(𝑚) ∈ ℐ*,𝑚 ∈ [𝑛], 𝑖 ∈
[𝑝]}. For example, we might ask whether an undirected edge (𝑖, 𝑗) is in 𝐴, or we might
wish to discover which nodes are the parents of a node 𝑖. We can encode our prior
structural knowledge about the underlying DAG through a prior P(𝐺). The likelihood

104

P(𝐷 | 𝐺) is obtained by marginalizing out 𝜃:

P(𝐷 | 𝐺) =
∫︁
𝜃

P(𝐷, 𝜃 | 𝐺) 𝑑𝜃

=

∫︁
𝜃

P(𝐷 | 𝜃,𝐺)P(𝜃 | 𝐺) 𝑑𝜃

and can be computed in closed-form for certain distributions [Geiger and Heckerman,
1999, Kuipers et al., 2014]. Applying Bayes’ Theorem yields the posterior distribution
P(𝐺 | 𝐷) ∝ P(𝐷 | 𝐺)P(𝐺), which describes the state of knowledge about 𝐺 after
observing the data 𝐷. Given the posterior, we can then compute EP(𝐺|𝐷)𝑓(𝐺), the
posterior mean of some target function 𝑓(𝐺). Note that when 𝑓 is an indicator
function, this quantity is a posterior probability.

6.3 Optimal Bayesian Experimental Design
Our goal is to learn some feature 𝑓(𝐺) of the unknown graph through experimental
design under budget constraints such as limited number of experimental rounds. In
principle, this question can be answered using optimal Bayesian experimental design,
namely by selecting the experiment that maximizes the expected value of some utility
function 𝑈 , where the expectation is with respect to hypothetical data generated
according to our current beliefs [Chaloner and Verdinelli, 1995]. Here, the expected
utility function 𝑈 is a function defined on multisets of ℐ*:

Definition 6.3.1. The expected utility 𝑈 𝑓 (𝜉;𝐷) of a multiset of interventions 𝜉 ∈ Zℐ*

for learning a function 𝑓(𝐺) given currently collected data 𝐷 is given by

𝑈 𝑓 (𝜉;𝐷) = E𝑦∼P(𝑦|𝐷,𝜉) 𝑈
𝑓 (𝑦, 𝜉;𝐷)

= E𝐺,𝜃|𝐷E𝑦|𝐺,𝜃,𝜉 𝑈
𝑓 (𝑦, 𝜉;𝐷), 𝑦 ∈ R|𝜉|,

(6.1)

where 𝑈 𝑓(𝑦, 𝜉;𝐷) ∈ R is a function measuring the utility of observing additional
samples 𝑦 from a proposed design 𝜉 and |𝜉| :=

∑︀
𝐼∈ℐ* |# times 𝐼 in 𝜉|. The optimal

Bayesian design 𝜉* under a set of design constraints 𝐶 is given by

𝜉* ∈ argmax 𝜉 ∈ Zℐ* ∩ 𝐶 𝑈 𝑓 (𝜉;𝐷). (6.2)

We denote samples collected from such an optimal strategy 𝜉* by 𝐷𝜉*

In Definition 6.3.1, 𝑦 is distributed according to our current beliefs P(𝑦 | 𝐷, 𝜉)
= E𝐺,𝜃|𝐷

[︀
P(𝑦 | 𝐺, 𝜃, 𝜉)

]︀
, a mixture distribution over (𝐺, 𝜃), and the utility function

𝑈 𝑓(𝑦, 𝜉;𝐷) is averaged over this distribution. There are many potential choices for
𝑈 𝑓 (𝑦, 𝜉;𝐷), a popular one being mutual information. Tong and Koller [2001], Cho et al.
[2016] and Murphy [2001] propose optimizing mutual information for the problem of
recovering the full graph. More precisely, they consider the problem where 𝑓(𝐺) = 𝐺
in the active learning setting, where the experimenter can adaptively collect one
sample at a time. We here extend their framework to general functions 𝑓(𝐺) and the

105

batched setting, where multiple samples are collected at once and the total number of
batches is fixed by the experimenter. Hence, 𝑈 𝑓 must be defined on multisets instead
of elements of ℐ* since multiple samples (i.e., interventions of the same type) may be
collected in each batch. Note that the difficulty in solving Eq. (6.2) stems from the
constraint set 𝐶, which renders this optimization problem combinatorial.

Recently, Ness et al. [2018] proposed a Bayesian experimental design method to
work in the batched setting. The authors proposed a utility function based on the
expected number of additional edges that could be oriented by performing a particular
intervention given the observational MEC. This function is similar to the one proposed
by Hauser and Bühlmann [2014] and Ghassami et al. [2018], in which interventions
are chosen that fully identify the causal network given the MEC. Unfortunately, the
algorithm in Ness et al. [2018] has factorial dependence on the size of the batch; in
addition, we prove in Appendix E.1.3 that their proposed utility function is, in general,
not consistent ; see Definition 6.3.3 for a definition of consistency.

We therefore follow the approach taken by Tong and Koller [2001] and Murphy
[2001] and consider the utility function 𝑈 𝑓 (𝑦, 𝜉;𝐷) to be given by mutual information.
Maximizing the mutual information is equivalent to picking the set of interventions that
leads to the greatest expected decrease in entropy of 𝑓(𝐺). The mutual information
utility function is given by

𝑈 𝑓
M.I.(𝑦, 𝜉;𝐷) := 𝐻(𝑓 | 𝐷)−𝐻(𝑓 | 𝐷, 𝑦 = 𝑦, 𝜉), (6.3)

where the entropy 𝐻(𝑓 | 𝐷) equals∑︁
𝑒:𝑓(𝐺)=𝑒

−P(𝑓(𝐺) = 𝑒 | 𝐷) logP(𝑓(𝐺) = 𝑒 | 𝐷),

and P(𝑓(𝐺) = 𝑒 | 𝐷) = EP(𝐺|𝐷)1(𝑓(𝐺) = 𝑒),

P(𝐺 | 𝐷) ∝
∫︁
𝜃

P(𝐷 | 𝐺, 𝜃)P(𝜃 | 𝐺)P(𝐺).

To better understand the behavior of 𝑈 𝑓
M.I., we prove the following proposition, which

highlights the behavior of 𝑈 𝑓
M.I. in the limit of infinite samples per intervention; this is

the setting studied by Hauser and Bühlmann [2014] and Ghassami et al. [2018].

Proposition 6.3.2. Suppose that the Markov equivalence class 𝒢 of 𝐺* is known and
the goal is to identify the underlying true DAG 𝐺*. Furthermore, assume a uniform
prior over 𝒢, infinite samples per intervention 𝐼 ∈ ℐ, and at most 𝐾 unique interven-
tions per batch as in Ghassami et al. [2018]. Then, 𝑈M.I. selects the interventions

ℐM.I. ∈ argmin |ℐ| ≤ 𝐾
1

|𝒢|
∑︁
𝐺∈𝒢

log2 |Essℐ(𝐺)|

where |Essℐ(𝐺)| := |{𝐺′ ∈ 𝒢 : 𝐺
′ ∈ Essℐ(𝐺)}|.

This result (proof in Appendix) shows that in the limiting case, mutual information
selects interventions that lead to the finest expected log ℐ-MEC sizes. This limiting

106

behavior of mutual information parallels what graph-based score functions do, such as
the ones considered by Hauser and Bühlmann [2014], Ghassami et al. [2018] and Ness
et al. [2018], that invoke the Meek Rules [Verma and Pearl, 1992] to select interventions
that orient the most number of edges in the ℐ-essential graphs (in expectation).

A score function based on mutual information is particularly appealing since it not
only has desirable properties in the infinite sample setting, but also does not require
the MEC to be known, naturally handling the case of finite sample sizes. In particular,
a score function based solely on Meek rules will not pick the same intervention twice
by definition, since repeating the same intervention does not improve identifiability.
As a result, adapting graph-based score functions in the finite sample regime requires
first constructing an intervention set and then allocating samples instead of jointly
picking and allocating samples. Mutual information, on the other hand, can pick the
same intervention twice; for example if a particular intervention is very informative,
selecting it twice and allocating more samples to it might lead to a greater expected
decrease in entropy than a new intervention.

6.3.1 Budget Constraints
So far we have not specified the constraint set 𝐶 in Eq. (6.2). To this end, we assume
that the experimenter has a total of 𝑁 samples to allocate across 𝐵 batches. While
one could try to optimize the partition of 𝑁 samples across batches, in this work we
study the simpler case where each batch 𝑏, 1 ≤ 𝑏 ≤ 𝐵, receives a pre-specified amount
of samples 𝑁𝑏 with

∑︀
𝑏𝑁𝑏 = 𝑁 . For simplifying notation we assume throughout that

𝑁𝑏 =
𝑁
𝐵

. We leave the study of adaptive batch sizes 𝑁𝑏 for future work. The constraint
set then equals,

𝐶𝑁,𝑏 := {𝜉 ∈ Zℐ*
: |𝜉| = 𝑁𝑏}, (6.4)

where the subscripts on 𝐶 emphasize the dependence on 𝑁 and 𝑏. Then, the optimal
design in batch 𝑏 is obtained by solving the following combinatorial optimization
problem:

𝜉*𝑏 ∈ argmax 𝜉 ∈ Zℐ* ∩ 𝐶𝑁,𝑏 𝑈(𝜉;𝐷𝑏−1), (6.5)

where 𝐷𝑏−1 := [𝐷𝜉*1
, · · · , 𝐷𝜉*𝑏−1

] is all the data collected at the start of batch 𝑏 and
𝑈(𝜉;𝐷𝑏−1) could, for example, be the mutual information defined in Eq. (6.3). Notice
that while a particular form of 𝑈(𝜉;𝐷𝑏−1) is provided in Definition 6.3.1, 𝑈(𝜉;𝐷𝑏−1)
need not necessarily be a Bayesian utility function to fit within the framework of
Eq. (6.5).

We now define a natural notion of consistency for any experimental design method
that can be cast as an optimization routine in the form of Eq. (6.5). Since the
consistency of a utility function should not depend on a specific constraint set such as
𝐶𝑁,𝑏, Definition 6.3.3 assumes the constraint set is arbitrary and set by the practitioner.

Definition 6.3.3. Suppose 𝑓(𝐺) is identifiable in Essℐ
*
(𝐺*), where 𝐺* is the true

unknown DAG. Let 𝐶𝑁,𝑏, 1 ≤ 𝑏 ≤ 𝐵 denote the constraints in batch 𝑏. A utility

107

function 𝑈(𝜉) is budgeted batch consistent for learning a target feature 𝑓(𝐺) if

P
(︀
𝑓(𝐺) | 𝐷𝐵

)︀ 𝜇* a.s.−−−→ 1(𝑓(𝐺) = 𝑓(𝐺*)),

as 𝑁,𝐵 → ∞, where 𝜇* is the law determined by the true unknown causal DAG
(𝐺*, 𝜃*)

Theorem 6.3.4. 𝑈 𝑓
M.I. is budgeted batch consistent for single-node interventions, i.e.,

when ℐ* = {{1}, · · · , {𝑝}}.

Remark 1. While Theorem 6.3.4 may not be surprising (proof in the Appendix), we
found that various utility functions that seem natural and have been proposed in earlier
work are not consistent in the budgeted setting. In particular, in Appendix E.1.3
we show that the utility function proposed by Ness et al. [2018] is not consistent
for single-node interventions. The main issue is that there are DAGs and constraint
sets for which the same interventions keep getting selected, instead of selecting new
interventions to fully identify 𝑓(𝐺).

6.4 Tractable Algorithm
While Section 6.3 provides a general framework for targeted experimental design,
there are several computational challenges that we have not yet addressed. The
first challenge is computing 𝑈 𝑓

M.I.(𝜉;𝐷). This objective function requires summing
over an exponential number of DAGs and marginalizing out the edge weights 𝜃. In
this section, we discuss how to approximate 𝑈 𝑓

M.I.(𝜉;𝐷) by sampling graphs (either
through MCMC or the DAG-bootstrap Friedman et al. [1999]) and using the maximum
likelihood estimator of 𝜃 for each graph. Taken together, these approximations not
only allow the mutual information score to be computed tractably but also lead to
desirable optimization properties. In particular, we prove in Theorem 6.4.1 that our
approximate utility function is submodular. This property enables optimizing the
approximate objective in a sequential greedy fashion with provable guarantees on
optimization quality.

6.4.1 Expectation over (𝐺, 𝜃)

A serious problem from a computational perspective is the expectation over (𝐺, 𝜃)
in Definition 6.3.1. Since the number of DAGs grows superexponentially with 𝑝,
enumerating all possible DAGs is intractable. Instead, in each batch 𝑏, we propose to
sample 𝑇 graphs according to the posterior P(𝐺 | 𝐷𝑏−1). This can be done using a
variety of different Markov chain Monte-Carlo (MCMC) samplers; see for example
Heckerman et al. [1997], Ellis and Wong [2008], Friedman and Koller [2003], Niinimaki
et al. [2016], Kuipers and Moffa [2017], Madigan and York [1995], Grzegorczyk and
Husmeier [2008], Agrawal et al. [2018]. An alternative that is often faster but still
achieves good performance, is approximating the posterior via a high-probability
candidate set of 𝑇 DAGs 𝒢𝑇 [Heckerman et al., 1997, Friedman et al., 1999]. While there

108

are many ways to build up this set, a popular approach is through the nonparametric
DAG bootstrap [Friedman et al., 1999]. The main idea is to subsample the data (with
replacement) 𝑇 times and fit a DAG learning algorithm to each of the generated
datasets to construct 𝒢𝑇 . Each 𝐺 ∈ 𝒢𝑇 can then be weighted according to the ratio of
unnormalized posterior probabilities,

𝑤𝐺,𝐷 :=
P(𝐺)P(𝐷 | 𝐺)∑︀

𝐺∈𝒢𝑇
P(𝐺)P(𝐷 | 𝐺)

(6.6)

to form an approximate posterior P̂(𝐺) := 𝑤𝐺,𝐷1(𝐺 ∈ 𝒢𝑇). The DAG learning
algorithm used for this purpose must be able to handle a mix of observational and
interventional data. Two recent methods that have been developed for this purpose
are given in Hauser and Bühlmann [2012] and Wang et al. [2017]. We summarize
constructing an approximate posterior via the DAG bootstrap in Algorithm 8.

Algorithm 8 DAGBootSample
Input: N datapoints 𝐷𝑁 , number of samples T
Output: 𝑇 bootstrap DAG samples 𝒢𝑇

1: 𝒢𝑇 ← ∅
2: for 𝑠 = 1 : 𝑇 do
3: 𝐷̃𝑁 ← 𝑁 datapoints sampled (with replacement) from 𝐷𝑁

4: 𝐺𝑠 ← DAGLearner(𝐷𝑁) e.g. [Wang et al., 2017, Hauser and Bühlmann, 2012]
5: 𝒢𝑇 ← 𝒢𝑇 ∪𝐺𝑠

return 𝒢𝑇

Given 𝒢𝑇 , which can be constructed from Algorithm 8 or sampled from a Markov
chain, we next discuss how to compute the expectation over 𝜃. Recall that 𝑈 𝑓

M.I.(𝜉;𝐷)
is given by

E𝐺|𝐷

[︁
E𝑦|𝐺,𝜉𝑈

𝑓
M.I.(𝑦, 𝜉;𝐷)

]︁
= E𝐺|𝐷

[︁
E𝜃|𝐺,𝐷E𝑦|𝐺,𝜃,𝜉𝑈

𝑓
M.I.(𝑦, 𝜉;𝐷)

]︁
.

(6.7)

Instead of carrying out the expensive expectation over 𝜃 | 𝐺,𝐷 in Eq. (6.7), we use the
MLE of 𝜃 for each sampled 𝐺. This approximation is justified by the Bernstein-von
Mises Theorem, which implies that

P(𝜃 | 𝐺,𝐷)→ 𝑁(𝜃𝐺MLE,
1

𝑛
𝐼(𝜃𝐺)

−1),

𝜃𝐺MLE := argmax 𝜃 P(𝐷 | 𝐺, 𝜃).
(6.8)

Here, 𝑛 is the number of datapoints in 𝐷, and 𝐼(𝜃𝐺) is the Fisher information matrix of
the parameter 𝜃𝐺, which is the asymptotic limit of the maximum likelihood estimator
𝜃𝐺MLE [Van der Vaart, 2000, Chapter 10]. Therefore, the posterior distribution 𝜃 | 𝐷,𝐺
concentrates around 𝜃𝐺MLE at the standard 𝑂(1/

√
𝑛) statistical rate. Hence, for

109

moderate 𝑛 (e.g., when a moderate amount of observational data is provided at the
start of the experimental design), Eq. (6.8) implies

E𝐺|𝐷E𝜃|𝐺,𝐷

[︁
E𝑦|𝐺,𝜃,𝜉𝑈

𝑓
M.I.(𝑦, 𝜉;𝐷)

]︁
≈ E𝐺|𝐷

[︁
E𝑦|𝐺,𝜃𝐺MLE,𝜉

𝑈 𝑓
M.I.(𝑦, 𝜉;𝐷)

]︁
.

(6.9)

In Hauser and Bühlmann [2015, Section 6.1], the authors provide a closed-form
expression for 𝜃𝐺MLE when 𝑦 | 𝐺, 𝜃 is multivariate Gaussian. In this case, 𝜃𝐺MLE is a
simple function of the sample covariance matrix.

6.4.2 Approximating Mutual Information

While in the previous subsection we showed how to approximate the expectations in
Eq. (6.9), computing 𝑈 𝑓

M.I.(𝑦, 𝜉) even for a fixed 𝑦 is intractable since we must sum
over all possible DAGs. Recall from Eq. (6.3) that the mutual information utility
function is

𝑈 𝑓
M.I.(𝑦, 𝜉;𝐷) = 𝐻(𝑓 | 𝐷)−𝐻(𝑓 | 𝐷, 𝑦 = 𝑦, 𝜉). (6.10)

Note that 𝐻(𝑓 | 𝐷) is a constant and does not matter in the optimization over 𝜉.
More care is required for computing the second term in Eq. (6.10), since the posterior
of 𝐺 changes as a result of observing 𝑦, the realizations of the interventions specified
by 𝜉. We therefore cannot immediately use the samples in 𝒢𝑇 to approximate this
term. To overcome this problem, we propose to use weighted importance sampling
and approximate 𝐻(𝑓 | 𝐷, 𝑦, 𝜉) by a weighted average of DAGs in 𝒢𝑇 . We define the
importance sample weights for DAG 𝐺𝑖, 1 ≤ 𝑖 ≤ 𝑇 , by

𝑤𝑖 :=
P(𝐷, 𝑦 | 𝐺𝑖, 𝜉)

P(𝐷 | 𝐺𝑖)
. (6.11)

In general, 𝑤𝑖 is not equal to P(𝑦 | 𝐺, 𝜉) since 𝐷 and 𝑦 are dependent without
conditioning on 𝜃. While P(𝐷, 𝑦 | 𝐺, 𝜉) can be computed in closed-form if the prior
on 𝜃 | 𝐺 belongs to one of the families described in Geiger and Heckerman [1999], the
dependence on previous samples in the importance weights makes greedily building up
the intervention set 𝜉 expensive. In particular, since Eq. (6.11) does not factorize, the
importance weights must be recomputed with every new additional intervention, which
again requires an integration over all parameters. Motivated by the approximation in
Section 6.4, where the parameters of each sampled 𝐺 ∈ 𝒢𝑇 are not marginalized out,
we instead propose using the importance sample weights

𝑤̂𝑖 :=
P(𝐷, 𝑦 | 𝐺𝑖, 𝜃

𝐺𝑖
MLE, 𝜉)

P(𝐷 | 𝐺𝑖, 𝜃
𝐺𝑖
MLE)

= P(𝑦 | 𝐺𝑖, 𝜉, 𝜃
𝐺𝑖
MLE);

(6.12)

𝑤̂𝑖 has the natural interpretation of re-weighting each DAG by the likelihood of the
newly observed data 𝑦.

110

Recall from Eq. (6.3), that 𝑈 𝑓
M.I.(𝑦, 𝜉;𝐷) is based on weighting each DAG according

to its posterior probability P(𝐺 | 𝐷) ∝
∫︀
𝜃
P(𝐷 | 𝐺, 𝜃)P(𝜃 | 𝐺)P(𝐺). Using the

importance sample weights 𝑤̂𝑖 translates into approximating the mutual information
against a different posterior distribution in Eq. (6.3), namely

P̃(𝐺 | 𝐷) ∝ P(𝐷 | 𝐺, 𝜃𝐺MLE)P(𝐺), (6.13)

which is a specific instance of an empirical Bayes approximation. In what follows,
we denote the mutual information score based on the posterior in Eq. (6.13) by
𝑈̃ 𝑓

M.I.(𝑦, 𝜉;𝐷).

6.4.3 Greedy Optimization

The cardinality constraint |𝜉| = 𝑁𝑏 makes our optimization problem a difficult integer
program. In the following, we show how to overcome this final computational hurdle
using a generalized notion of submodularity for multisets [Soma and Yoshida, 2016]. In
particular, we prove that greedily selecting interventions provides a (1− 1

𝑒
) guarantee

on optimization quality.

Algorithm 9 GreedyDesign
Input: Utility function 𝑈 , number of samples 𝑁𝑏, intervention family ℐ*
Output: Multiset of interventions 𝜉

1: 𝜉 ← ∅
2: for 𝑠 = 1 : 𝑁𝑏 do
3: 𝐼* ∈ argmax 𝐼 ∈ 𝐼* 𝑈(𝜉 ∪ 𝐼)
4: 𝜉 ← 𝜉 ∪ 𝐼*

return 𝜉

Theorem 6.4.1. Suppose 𝑓(𝐺) = 𝐺 i.e. the goal is to recover the full graph as in
Tong and Koller [2001], Cho et al. [2016], Murphy [2001], Ness et al. [2018]. Then
the difference between the global optimum

𝑣*𝑏 = max
𝜉∈Zℐ*∩𝐶𝑁,𝑏

E𝐺|𝐷𝑏−1
E𝑦|𝐺,𝜃𝐺MLE,𝜉 𝑈̃

𝑓
M.I.(𝑦, 𝜉;𝐷)

and 𝑣𝑏 = GreedyDesign(𝑈̃ 𝑓
M.I., 𝑁𝑏, ℐ*), the output of Algorithm 9 in batch 𝑏, satisfies

𝑣𝑏 ≥ (1− 1
𝑒
)𝑣*𝑏 , where 𝐶𝑁,𝑏 is defined as in Eq. (6.4).

Remark. We conjecture that Theorem 6.4.1 holds for arbitrary functions 𝑓 , but we
currently only have a proof (see Appendix) for the case when 𝑓(𝐺) = 𝐺.

We conclude this section by summarizing the developed Active Budgeted Causal
Design Strategy (ABCD-Strategy) in Algorithm 10 and then summarizing all the
proposed approximations.

111

Algorithm 10 ABCD-Strategy
Input: Target functional 𝑓 , interventional data collected 𝐷𝑏−1, observational

data 𝐷𝑜𝑏𝑠, number of batch samples 𝑁𝑏, intervention family ℐ*, number of DAGs 𝑇 ,
number of datasets 𝑀

Output: Multiset of interventions 𝜉
1: 𝜉 ← ∅
2: 𝐺𝑇 ←DAGBootSample([𝐷𝑜𝑏𝑠, 𝐷𝑏−1], 𝑇)
3: Compute 𝑈̂ 𝑓

M.I. via Eq. (6.14)
4: return GreedyDesign(𝑈̂ 𝑓

M.I., 𝑁𝑏, ℐ*)

In terms of approximations, Eq. (6.9) implies

E𝐺,𝜃|𝐷

[︁
E𝑦|𝐺,𝜃,𝜉𝑈̃

𝑓
M.I.(𝑦, 𝜉;𝐷)

]︁
≈ E𝐺,|𝐷

[︁
E𝑦|𝐺,𝜃𝐺MLE,𝜉

𝑈̃M.I.(𝑦, 𝜉;𝐷)
]︁

≈
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑈̃ 𝑓
M.I.(𝑦𝑡𝑚, 𝜉;𝐷),

s.t. 𝑦𝑡𝑚
i.i.d∼ 𝑦 | 𝐺𝑡, 𝜃

𝐺
MLE, 𝜉

≈
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑈̂ 𝑓
M.I.(𝑦𝑡𝑚, 𝜉;𝐷), where

(6.14)

𝑈̂ 𝑓
M.I.(𝑦𝑡𝑚, 𝜉;𝐷) := 𝐻1(𝑓 | 𝐷)−𝐻2(𝑓 | 𝐷),

P̂1(𝐺 | 𝐷) := 𝑤𝐺,𝐷1(𝐺 ∈ 𝒢𝑇),

P̂2(𝐺 | 𝐷, 𝑦, 𝜉) :=
𝑤𝐺,𝐷P(𝑦 | 𝐺, 𝜉, 𝜃𝐺MLE)∑︀𝑇

𝑡=1𝑤𝐺𝑡,𝐷P(𝑦 | 𝐺𝑡, 𝜉, 𝜃
𝐺𝑡
MLE)

,

where 𝑀 is the number of synthetic datasets generated, 𝐻1 and 𝐻2 are the entropies
induced by P̂1 and P̂2 respectively, and 𝑤𝐺,𝐷 is defined in Eq. (6.6). Note that 𝑈̂ 𝑓

M.I. is
based on the importance sample weights given in Eq. (6.12).

Proposition 6.4.2. The total runtime of Algorithm 9 with input utility function 𝑈̂ 𝑓
M.I.

is 𝑂(𝑝𝑇𝜅3 + |ℐ*|𝑀𝑇 2𝑁𝑏𝜅𝑝), where 𝜅 is the maximum indegree of a graph in 𝒢𝑇 .

See Appendix E.1.5 for the proof of Proposition 6.4.2.

6.5 Experiments
We begin by considering a simple case to demonstrate the behavior of our ABCD-
strategy under easily interpretable conditions. Consider the chain graph on 2𝑚− 1
nodes,

1→ 2→ . . .→ 𝑚→ . . .→ 𝑝 = 2𝑚− 1. (6.15)

112

The corresponding essential graph is completely undirected, and the MEC has 2𝑚− 1
members, one with each node as the source. Assume that sufficient observational data
is available to identify the MEC, and we are interested in fully identifying the DAG.
Then, our ABCD-strategy selects interventions in order to minimize the expected
entropy of the posterior over this MEC. Given a limit of one intervention per batch
but infinite samples per batch, Proposition 6.3.2 implies the expected entropy after
intervening at node 𝑖 or 2𝑚− 𝑖, 1 ≤ 𝑖 ≤ 𝑚, is

1

2𝑚− 1

(︁∑︁
𝑗<𝑖

log(𝑖− 2) +
∑︁
𝑗>𝑖

log(𝑚− (𝑖+ 2))
)︁
,

which is minimized by choosing the midpoint 𝑖 = 𝑚. Analogously, we see that the
updated {∅, {𝑚}}-MEC is of the same form, so in the second batch, the optimal
intervention will be halfway through the remaining nodes. This process of bisection
is illustrated in Figure 6-1 and matches the behavior of our algorithm even in the
finite-sample regime as described next.

Figure 6-2 illustrates the performance of our ABCD-strategy on fifty 11-node chain
graphs with random edge weights sampled from [−1,−.25] ∪ [.25, 1]. For comparison,
we consider a random intervention strategy that uniformly distributes the samples in
each batch to 𝑘 interventions picked uniformly at random, where 𝑘 is the maximum
number of unique interventions allowed per batch. Whereas the median-performing
random strategy barely reduces the entropy, the ABCD-strategy reduces the entropy
significantly in all runs. When all 𝑘 interventions are picked for the same batch, so
that ABCD receives no feedback, the median-performing run of active learning still
reduces the entropy as much as the best-performing runs of the random strategy.

Having demonstrated the behavior of ABCD for a simple case, we now analyze
the performance of our method on more general DAGs. The skeleton of each graph
is sampled from an Erdös-Rényi model with density 𝜌 = 0.25. The edges of these
graphs are directed by sampling a permutation of the nodes uniformly at random and
orienting the edges accordingly. To avoid long runtimes when enumerating the MEC,
we disposed of graphs with more than 100 members in their MEC.1 When the MEC is
known, we may define a variant of the random strategy, Chordal-Random, which only
intervenes on nodes that are in chordal components of the essential graph, i.e., nodes
adjacent to at least one undirected edge. Since the Meek rules can only propagate
by intervening within chordal components, Chordal-Random is a more fair baseline
strategy for comparison than simple random sampling.

Figure 6-3a demonstrates the improvement in selecting interventions using the
ABCD-strategy as compared to Chordal-Random when the number of unique interven-
tions per batch is bounded by one. The entropy reduction for an interventional data
set 𝐷𝜉 is defined as 𝐻(𝐺)−𝐻(𝐺|𝐷𝜉)

𝐻(𝐺)
, and it is used as a metric so that MECs of different

sizes are comparable. Since the number of total possible unique interventions is 𝑘𝐵,
an increase in the number of batches also increases the variability of the interventions,

1From a sample of 10,000 graphs, only 54 had MEC size greater than 100. Based on the results
by Gillispie and Perlman [2001], we expect the MECs to be typically small.

113

reflected in the increase of entropy reduction with batch size. Already with only 192
samples and 3 total batches, our ABCD-strategy is able to learn most graphs with
complete certainty. The comparable performance of the Budgeted Experiment Design
(BED) strategy [Ghassami et al., 2018] suggests that for the given experimental setup,
the interventions that orient the most edges correspond well to those that most reduce
entropy as we discussed in Proposition 6.3.2. Figure 6-3b shows that the performance
of the ABCD-strategy remains strong even when the MEC of the graph is not known.
Specifically, up to 3 additional MECs were generated by randomly flipping non-covered
edges that did not create cycles, and again only graphs for which the union of these
MECs had cardinality less than 100 were kept. Note that we are not able to compare
with BED since BED requires that the MEC is known.

DREAM4 Synthetic Dataset. Finally, we applied our experimental design strategy
to gene expression data from the DREAM4 10-node in-silico network reconstruction
challenge [Schaffter et al., 2011]. These data are generated from stochastic differential
equations and simulate microarray data of gene regulatory networks. We constructed
an observational dataset from the wild-type, multifactorial perturbation, and time 0
time-series samples (16 samples in total), and similarly, interventional datasets from
the knockdown and knockout samples (2 samples each).

Previous work on experimental design applied to biological datasets [Cho et al.,
2016] has focused on learning the entire network. In practice, practitioners may
be specifically interested in performing experiments to elucidate a functional of the
network, such as the pathway or local network surrounding a gene of interest. To
emulate this setting, we applied our ABCD-strategy towards learning the downstream
genes of select genes from the true network (Figure 6-4, top). Despite high variations
in learning due to the small size of the dataset, we observed an improvement over the
random strategy for several central genes (Fig. 6-4, bottom; Fig. E-2). These results
illustrate the promise of applying targeted experimental design for applications to
genomics.

6.6 Concluding Remarks
We proposed Active Budgeted Causal Design Strategy (ABCD-Strategy), an experimen-
tal method based on optimal Bayesian experimental design with provable guarantees on
approximation quality. Empirically, we demonstrated that ABCD yields considerable
boosts over random sampling for both targeted and full causal structure discovery.
Such experimental design strategies are particularly relevant for applications to ge-
nomics, where the number of possible experiments is huge due to the possibility of
intervening on combinations of genes.

114

Figure 6-1: Illustration of active learning on a chain graph, beginning with a known
MEC on a simulated dataset with 𝑝 = 15 nodes. The brown circles indicate the
interventions selected in each batch.

Figure 6-2: Box plots for 50 runs of the random strategy versus our ABCD-strategy on
the graph in Figure 6.5 with 𝑝 = 11 and 𝑛 = 30 samples. The horizontal line indicates
the entropy of the prior distribution, i.e. uniform over the MEC. Note that 𝑘 = ∞
corresponds to the case with no constraints on the number of unique interventions.

115

(a) Single MEC

(b) Multiple MECs.

Figure 6-3: Performance of intervention strategies for batch sizes 𝑏 as a function of the
total number of samples, computed from 50 Erdös-Rényi DAGs with density 𝜌 = 0.25.

116

Figure 6-4: Top: DREAM4 ground truth 10-node network. Bottom: Performance of
intervention strategies on predicting the descendants of gene 0.

117

Appendix A

Appendix for “Data-Dependent
Compression of Random Features for
Large-Scale Kernel Approximation”

A.1 Proof of Theorem 2.3.4
The proofs of Theorem 2.3.2 and Theorem 2.3.4 rely on the main error bound for
the Hilbert coreset construction problem given in Eq. (A.1) [Campbell and Broderick,
2019]. We restate this error bound in Lemma A.1.2, which depends on several key
quantities given below:

∙ 𝑐𝑙𝑠 := 1
𝐽+

cos(𝜔𝑇
𝑙 𝑥𝑖𝑠 + 𝑏𝑙) cos(𝜔

𝑇
𝑙 𝑥𝑗𝑠 + 𝑏𝑙), such that 1 ≤ 𝑠 ≤ 𝑆 and 1 ≤ 𝑙 ≤ 𝐽+

∙ 𝜎̂2
𝑗 := 1

𝑆

∑︀𝑆
𝑠=1 𝑐

2
𝑗𝑠 =

1
𝑆
‖𝑅𝑗‖22

∙ 𝜎̂2 :=
(︁∑︀𝐽+

𝑗=1 𝜎̂𝑗

)︁2
Definition A.1.1. [Campbell and Broderick, 2019] The Hilbert construction problem
is based on solving the quadratic program,

argmin
𝑤∈R𝐽+

+

1

𝑆
‖𝑟 − 𝑟(𝑤)‖22 s.t.

𝐽+∑︁
𝑗=1

𝑤𝑗𝜎̂𝑗 = 𝜎̂. (A.1)

Remark. The minimizer of Eq. (A.1) is 𝑤* = (1, · · · , 1) since 𝑟(𝑤*) = 𝑟. However, the
goal is to find a sparse 𝑤. Instead of adding sparsity-inducing constraints (such as
𝐿1 penalties), which would lead to computational difficulties for large-scale problems,
Campbell and Broderick [2019] minimize Eq. (A.1) greedily through the Frank-Wolfe
algorithm. Frank-Wolfe outputs a sparse 𝑤 since the sparsity of 𝑤 is bounded by the
number of iterations Frank-Wolfe is run for.

118

Lemma A.1.2. [Campbell and Broderick, 2019, Theorem 4.4] Solving Eq. (A.1) with
𝐽 iterations of Frank-Wolfe satisfies

1

𝑆
‖𝑟 − 𝑟(𝑤)‖22 ≤

𝜎̂2𝜂2𝜂2𝜈2𝐽
𝜂2𝜈−2(𝐽−2) + 𝜂2(𝐽 − 1)

≤ 𝜈2𝐽−2
𝐽 ,

(A.2)

where 0 ≤ 𝜈𝐽 < 1. Furthermore, 𝜈2𝐽 = 1− 𝑑2

𝜎2𝜂2
where 𝑑 is the distance from 𝑟 to the near-

est boundary of the convex hull of
{︁

𝜎̂
𝜎̂𝑗
𝑅𝑗

}︁𝐽+

𝑗=1
and 𝜂2 := 1

𝑆
max𝑖,𝑗∈[𝐽+]

⃦⃦⃦
𝑅𝑖

𝜎̂𝑖
− 𝑅𝑗

𝜎̂𝑗

⃦⃦⃦2
, 0 ≤

𝜂 ≤ 2.

We prove Theorem 2.3.4 first since the main idea is captured in this proof. The
proof of Theorem 2.3.2 is more involved since we must use a number of concentration
bounds to justify subsampling only 𝑆 datapoint pairs instead of all 𝑁(𝑁−1)

2
possible

datapoint pairs. Both proofs will also depend on the following constants.

∙ 𝜎2
𝑗 := 1

𝑉 *

∑︀𝑉 *

𝑠=1 𝑐
2
𝑗𝑠 =

1
𝑉 *‖𝑅𝑗‖22

∙ 𝜎2 :=
(︁∑︀𝐽+

𝑗=1 𝜎𝑗

)︁2
Here, 𝑉 * = 𝑁(𝑁−1)

2
, that is when all datapoint pairs above the diagonal are included.

𝜎̂2
𝑗 and 𝜎̂2 are simply unbiased estimates of 𝜎2

𝑗 and 𝜎2 based on sampling only 𝑆
instead of all 𝑉 * datapoint pairs.

While Lemma A.1.2 guarantees 0 < 𝜈𝐽+ < 1, it does not guarantee that 𝜈𝐽+ → 1 as
the number of random features 𝐽+ →∞. The following Lemma is critical in showing
that 𝜈𝐽+ does not approach 1, which would result in no compression.

Lemma A.1.3. Let {𝑥𝑖}𝐾𝑖=1 be a set of points in R𝑝 that satisfies Assumption 2.3.1(a).
Consider the vector 𝑣𝜔,𝑏 = (cos(𝜔𝑇𝑥𝑖 + 𝑏) cos(𝜔𝑇𝑥𝑗 + 𝑏))𝑖<𝑗,𝑖∈[𝐾−1] ∈ R

𝐾(𝐾−1)
2 . Let the

unit vector 𝑢𝜔,𝑏 :=
𝑣𝜔,𝑏

‖𝑣𝜔,𝑏‖
. If 𝜔𝑗

i.i.d.∼ 𝐹 and 𝑏𝑗
i.i.d.∼ 𝐺, where 𝐹 has positive density on

all of R𝑝 and 𝐺 has positive density on [0, 2𝜋], then

d
(︁
ConvexHull{𝑢𝜔𝑗 ,𝑏𝑗}𝐽𝑗=1,𝒮

𝐾(𝐾−1)
2

−1
)︁
→ 0 for 𝐽 →∞

s.t. d(𝐴,𝐵) := max
𝑎∈𝐴,𝑏∈𝐵

||𝑎− 𝑏||2.
(A.3)

Here, 𝒮
𝐾(𝐾−1)

2
−1 denotes the surface of the unit sphere in R

𝐾(𝐾−1)
2 .

Proof. By construction, each unit vector 𝑢𝑖 := 𝑢𝜔𝑖,𝑏𝑖 lies on the boundary of the unit
sphere in R

𝐾(𝐾−1)
2 . Hence, 𝐹,𝐺 induce a distribution on 𝒮

𝐾(𝐾−1)
2

−1. It suffices to show
𝒮

𝐾(𝐾−1)
2

−1 has strictly positive density everywhere since, as 𝐽 →∞, any arbitrarily
small neighborhood around a collection of points that cover 𝒮

𝐾(𝐾−1)
2

−1 will be hit by
some 𝑢𝑖 with probability 1. By standard convexity arguments, the convex hull of the
𝑢𝑖 will arbitrarily approach 𝒮

𝐾(𝐾−1)
2

−1 by taking the radius of the neighborhoods to

119

zero. We now show 𝒮
𝐾(𝐾−1)

2
−1 has strictly positive density everywhere. Since 𝑢𝑖 is the

normalized vector of 𝑣𝑖 := 𝑣𝜔𝑖,𝑏𝑖 and each component of 𝑣𝑖 is between −1 and 1, it
suffices to show, by the continuity of the cosine function, that for any 𝑎 ∈ {−1, 1}

𝐾(𝐾−1)
2

there exist some 𝜔𝑖, 𝑏𝑖 such that sign(𝑣𝑖) := (sign(𝑣𝑖𝑙))𝑙∈𝐾(𝐾−1)
2

equals 𝑎. Recall that

cos(𝑎) cos(𝑏) =
1

2
(cos(𝑎+ 𝑏) + cos(𝑎− 𝑏)). (A.4)

Take 𝑏𝑖 = 0. Then, Equation (A.4) implies 𝑣𝑖𝑙 = 1
2
(cos(𝜔𝑇

𝑖 (𝑥𝑖𝑙 +𝑥𝑗𝑙)+cos(𝜔𝑇 (𝑥𝑖𝑙−𝑥𝑗𝑙)).
Consider the vector 𝑣𝑖 = (cos(𝜔𝑇

𝑖 (𝑥𝑖𝑙 + 𝑥𝑗𝑙), cos(𝜔
𝑇
𝑖 (𝑥𝑖𝑙 − 𝑥𝑗𝑙))𝑙∈𝐾(𝐾−1)

2

∈ R𝐾(𝐾−1). It
suffices to show that for any 𝑎̃ ∈ {−1, 1}𝐾(𝐾−1), there exists an 𝜔𝑖 such that sign(𝑣𝑖) = 𝑎̃.
Recall that the cosine function has infinite VC dimension, namely that for any labeling
𝑦1, · · · , 𝑦𝑀 ∈ {−1, 1} of distinct points 𝑥1, · · ·𝑥𝑀 ∈ R𝑝, there exists an 𝜔* such that
sign(cos((𝜔*)𝑇𝑥𝑚)) = 𝑦𝑚. Take 𝑀 = 𝐾(𝐾 − 1), 𝑦𝑚 = 𝑎̃𝑚, 𝑥𝑚 = 𝑥𝑖𝑚 + 𝑥𝑗𝑚 , and
𝑥𝑚+1 = 𝑥𝑖𝑚 − 𝑥𝑗𝑚 . Since all the 𝑥𝑚 are distinct by Assumption 2.3.1(a), we can find
an 𝜔𝑖 such that sign(𝑣𝑖) = 𝑎̃ as desired.

Proof. We now prove Theorem 2.3.4. Each 𝑅𝑗 ∈ R
𝑁(𝑁−1)

2 and the 𝑅𝑗’s are i.i.d. since
each 𝜔𝑗 is drawn i.i.d. from 𝑄. The induced Hilbert norm ‖ · ‖𝐻 of each 𝑅𝑗 is given
by ‖𝑅𝑗‖2𝐻 = 2

𝑁(𝑁−1)
‖𝑅𝑗‖22 [Campbell and Broderick, 2019]. Hence, 𝑅𝑗 :=

𝑅𝑗

𝜎𝑗
is a unit

vector in the vector space with norm ‖ · ‖𝐻 . By Lemma A.1.3,

d
(︁
ConvexHull{𝑅̃𝑗}𝐽+𝑗=1,𝒮

𝑁(𝑁−1)
2

−1
)︁
→ 0 (A.5)

Let 𝑟 := 1
𝜎

∑︀𝐽+
𝑗=1 𝜎𝑗𝑅𝑗 ∈ ConvexHull{𝑅̃𝑗}𝐽+𝑗=1 and observe that 𝑟 = 𝑟

𝜎
. The distance,

which we denote as 𝑑𝐽+ , between 𝑟 and the ConvexHull{𝑅̃𝑗}𝐽+𝑗=1 approaches 1− ‖𝑟‖𝐻
since the ConvexHull{𝑅̃𝑗}𝐽+𝑗=1 approaches 𝒮

𝑁(𝑁−1)
2

−1. Hence,

lim
𝐽+→∞

𝑑𝐽+ = 1− lim
𝐽+→∞

‖𝑟‖𝐻 = 1−
lim𝐽+→∞ ‖𝑟‖𝐻
lim𝐽+→∞ 𝜎

. (A.6)

Now,

𝑟𝑠 =
1

𝐽+

𝐽+∑︁
𝑗=1

𝑐𝑗𝑠
𝐽+→∞−→ 𝑘(𝑥𝑖𝑠 , 𝑥𝑗𝑠). (A.7)

Hence, as 𝐽+ →∞,

‖𝑟‖𝐻 →
√︃

2

𝑁(𝑁 − 1)

∑︁
𝑖<𝑗

(𝑘(𝑥𝑖, 𝑥𝑗))2. (A.8)

120

Now,

𝜎 =

𝐽+∑︁
𝑗=1

𝜎𝑗

=

𝐽+∑︁
𝑗=1

⎯⎸⎸⎷ 1

𝑉 *

𝑉 *∑︁
𝑠=1

𝑐2𝑗𝑠

=

𝐽+∑︁
𝑗=1

⎯⎸⎸⎷ 1

𝑉 *

𝑉 *∑︁
𝑠=1

1

𝐽2
+

cos2(𝜔𝑇
𝑗 𝑥𝑖𝑠 + 𝑏𝑗) cos2(𝜔𝑇

𝑗 𝑥𝑗𝑠 + 𝑏𝑗)

=
1

𝐽+

𝐽+∑︁
𝑗=1

⎯⎸⎸⎷ 1

𝑉 *

𝑉 *∑︁
𝑠=1

cos2(𝜔𝑇
𝑗 𝑥𝑖𝑠 + 𝑏𝑗) cos2(𝜔𝑇

𝑗 𝑥𝑗𝑠 + 𝑏𝑗)

=

√︃
2

𝑁(𝑁 − 1)

1

𝐽+

𝐽+∑︁
𝑗=1

‖(cos(𝜔𝑇
𝑗 𝑥𝑚 + 𝑏𝑗) cos(𝜔

𝑇
𝑗 𝑥𝑛 + 𝑏𝑗))𝑚<𝑛‖2

→

√︃
2

𝑁(𝑁 − 1)
E𝜔,𝑏‖(cos(𝑤𝑇𝑥𝑚 + 𝑏) cos(𝑤𝑇𝑥𝑛 + 𝑏))𝑚<𝑛‖2

(A.9)

If 𝑥 ̸= 𝑦 and 𝑤 ̸= 0, then

𝑘(𝑥, 𝑦) = E𝜔,𝑏 cos(𝑤
𝑇𝑥+ 𝑏) cos(𝑤𝑇𝑦 + 𝑏)

< E𝜔𝑖,𝑏| cos(𝑤𝑇𝑥+ 𝑏) cos(𝑤𝑇𝑦 + 𝑏)|.
(A.10)

by Jensen’s inequality. Hence, Eq. (A.10) and Assumption 2.3.1(a-b) together imply

lim𝐽+→∞ ‖𝑟‖2
lim𝐽+→∞ 𝜎

< 1. (A.11)

By Eq. (A.8) and Eq. (A.9),

lim𝐽+→∞ ‖𝑟‖𝐻
lim𝐽+→∞ 𝜎

≤ ‖𝐾‖𝐹
E𝜔,𝑏‖𝑢(𝜔, 𝑏)‖2

, (A.12)

where 𝑢(𝜔, 𝑏) is defined in Theorem 2.3.4. Lemma A.1.2 says that 𝜈2𝐽+ = 1 − 𝑑2

𝜎2𝜂2
,

where 𝑑 is the distance from 𝑟 to the nearest boundary of the convex hull of
{︁

𝜎
𝜎𝑗
𝑅𝑗

}︁𝐽+

𝑗=1
.

Hence, 𝑑 = 𝜎𝑑𝐽+ and 𝜈2𝐽+ = 1−
𝑑2𝐽+
𝜂2

. Eq. (A.6) and Eq. (A.12) together imply,

lim inf
𝐽+→∞

𝑑𝐽+ ≤ 1− ‖𝐾‖𝐹
E𝜔,𝑏‖𝑢(𝜔, 𝑏)‖2

. (A.13)

121

Therefore, since 0 ≤ 𝜂2 ≤ 2 by Lemma A.1.2,

lim sup
𝐽+→∞

𝜈2𝐽+ ≤ lim sup
𝐽+→∞

1−
𝑑2𝐽+
2

= 1− lim inf
𝐽+→∞

𝑑2𝐽+
2

≤ 1−

(︁
1− ‖𝐾‖𝐹

E𝜔,𝑏‖𝑢(𝜔,𝑏)‖2

)︁2
2

.

(A.14)

A.2 Proof of Theorem 2.3.2
The following technical lemma is needed to derive the probability bound in Theo-
rem 2.3.2.

Lemma A.2.1. Suppose 𝜎2

𝐽2
+𝜎2

𝑖
≤ 𝑀 for some 1 ≤ 𝑀 < ∞ for all 𝑖 ∈ [𝐽+]. For

𝑆 ≥ 8𝑀2

𝜎4 log
(︁

2𝐽+
𝛿2

)︁
P

(︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 5𝑀

)︃
≤ 𝛿 (A.15)

for all 𝑖 ∈ [𝐽+].

Proof. Notice that

E𝑖𝑠,𝑗𝑠𝜎𝑙
2 =

1

𝑆

𝑆∑︁
𝑠=1

E𝑖𝑠,𝑗𝑠𝑐
2
𝑙𝑠

=
1

𝑁2

𝑁2∑︁
𝑠=1

𝑐2𝑙𝑠

= 𝜎2
𝑙 .

Hence, 𝜎𝑙2 is an unbiased estimator of 𝜎2
𝑙 . Each 𝑐2𝑙𝑠 ≤ 1

𝐽+
2 is a bounded random

variable, and the collection of random variables {𝑐2𝑙𝑠}𝑆𝑠=1 are i.i.d. since 𝑖𝑠, 𝑗𝑠
i.i.d.∼ 𝜋.

Hence, by Hoeffding’s inequality,

P
(︀
|𝜎̂2

𝑙 − 𝜎2
𝑙 | ≥ 𝑡

)︀
≤ 2 exp

(︀
−2𝑆𝐽4

+𝑡
2
)︀
. (A.16)

Define the event 𝐴𝑡 := ∪𝐽+
𝑖=1{|𝜎̂2

𝑖 − 𝜎2
𝑖 | < 𝑡} and pick 𝑡 such that 𝑡 ≤ min𝑖∈[𝐽+] 𝜎

2
𝑖 .

Since 𝜎2
𝑖 ≥ 𝜎2

𝑀
by assumption, it suffices to pick 0 < 𝑡 ≤ 𝜎2

𝑀
. Conditioned on 𝐴𝑡,

122

𝜎̂𝑖 ≤
√︀
𝜎2
𝑖 + 𝑡 ≤ 𝜎𝑖 +

√
𝑡, which implies 𝜎̂2 ≤ (𝜎 + 𝐽+

√
𝑡)2. Therefore,

P

(︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 𝑐𝑀

)︃
= P

⎛⎝𝐴𝑐
𝑡 ∪

{︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 𝑐𝑀

}︃⎞⎠+ P

⎛⎝𝐴𝑡 ∪

{︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 𝑐𝑀

}︃⎞⎠
≤ P (𝐴𝑐

𝑡) + P

⎛⎝𝐴𝑡,

{︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 𝑐𝑀

}︃⎞⎠
≤ P (𝐴𝑐

𝑡) + P

(︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 𝑐𝑀 | 𝐴𝑡

)︃

≤ P (𝐴𝑐
𝑡) + P

(︃
(𝜎 +

√
𝑡𝐽+)

2

𝐽2
+(𝜎

2
𝑖 − 𝑡)

≥ 𝑐𝑀 | 𝐴𝑡

)︃
.

(A.17)

Notice that P
(︁

(𝜎+
√
𝑡𝐽+)2

𝜎2
𝑖 −𝑡

≥ 𝑐𝑀2 | 𝐴𝑡

)︁
is either 0 or 1 since 𝜎𝑖 and 𝜎 are constants.

We pick 𝑡 so that this probability is 0. To pick 𝑡, notice that,

(𝜎 +
√
𝑡𝐽+)

2

𝐽2
+(𝜎

2
𝑖 − 𝑡)

=

(︁
𝜎
𝜎𝑖
+

√
𝑡𝐽+
𝜎𝑖

)︁2
𝐽2
+(1− 𝑡

𝜎2
𝑖
)

≤

(︁
𝐽+
√
𝑀 + 𝐽+

√
𝑡𝑀𝐽+
𝜎

)︁2
𝐽2
+(1− 𝑡

𝜎2
𝑖
)

≤
𝑀
(︁
1 +

√
𝑡𝐽+
𝜎

)︁2
1− 𝑀𝐽2

+𝑡

𝜎2

,

(A.18)

where the last inequality holds as long as 0 < 𝑡 < 𝜎2

𝑀𝐽2
+

and follows by noting that
1
𝜎2
𝑖
≤ 𝑀𝐽2

+

𝜎2 by assumption. Pick 𝑡 = 𝜎2

4𝐽2
+𝑀

. Since 0 ≤ 𝜎 ≤ 1, this choice of 𝑡 implies

𝑀

(︂
1+

√
𝑡𝐽+
𝜎

)︂2

1−
𝑀𝐽2

+𝑡

𝜎2

≤ 5𝑀 . Hence, for 𝑐 = 5 and this choice of 𝑡, P
(︁

(𝜎+
√
𝑡𝐽+)2

𝐽2
+(𝜎2

𝑖 −𝑡)
≥ 5𝑀 | 𝐴𝑡

)︁
= 0.

Combining Eq. (A.17) and Eq. (A.16), we have by a union bound that,

P

(︃
𝜎̂2

𝐽2
+𝜎𝑖

2 ≥ 5𝑀

)︃
≤ 2𝐽+ exp

(︃
−1

8
𝑆
𝜎4

𝑀2

)︃
, (A.19)

for all 𝑖 ∈ [𝐽+]. Solving for 𝑆 by setting the right hand side above to 𝛿 yields the
claim.

We have all the pieces to prove Theorem 2.3.2. We follow the proof strategy in
[Campbell and Broderick, 2019, Theorem 5.2].

123

Proof. Let 𝑅* =
[︀
𝑧+

𝑇
1 ∘ 𝑧+𝑇

1 , · · · 𝑧+𝑇
𝑁−1 ∘ 𝑧+𝑇

𝑁 , 𝑧+
𝑇
𝑁 ∘ 𝑧+𝑇

𝑁

]︀
∈ R𝐽+×𝑁2 . Notice,

1

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹 = (1− 𝑤)𝑇 𝑅
*

𝑁

𝑅*𝑇

𝑁
(1− 𝑤). (A.20)

We approximate Eq. (A.20) with (1−𝑤)𝑇 𝑅√
𝑆

𝑅𝑇
√
𝑆
(1−𝑤) and bound the error. Suppose

𝐷* := max
𝑖,𝑗∈[𝐽+]

⃒⃒⃒⃒
⃒⃒
(︃
𝑅*

𝑁

𝑅*𝑇

𝑁

)︃
𝑖𝑗

−

(︃
𝑅√
𝑆

𝑅𝑇

√
𝑆

)︃
𝑖𝑗

⃒⃒⃒⃒
⃒⃒ ≤ 𝜖

2
.

Then,

(1− 𝑤)𝑇 𝑅
*

𝑁

𝑅*𝑇

𝑁
(1− 𝑤)− (1− 𝑤)𝑇 𝑅√

𝑆

𝑅𝑇

√
𝑆
(1− 𝑤) ≤

∑︁
𝑖,𝑗∈[𝐽+]

|𝑤𝑖 − 1||𝑤𝑗 − 1|𝐷*

≤ ‖𝑤 − 1‖21
𝜖

2
.

(A.21)

Notice,

E𝑖𝑠,𝑗𝑠

⎡⎣(︃ 𝑅√
𝑆

𝑅𝑇

√
𝑆

)︃
𝑖𝑗

⎤⎦ = E𝑖𝑠,𝑗𝑠

⎡⎣ 1

𝑆

𝑆∑︁
𝑠=1

𝑐𝑖𝑠𝑐𝑗𝑠

⎤⎦
=

1

𝑆

𝑆∑︁
𝑠=1

𝐸𝑖𝑠,𝑗𝑠

[︀
𝑐𝑖𝑠𝑐𝑗𝑠

]︀
= 𝐸𝑖𝑠,𝑗𝑠

[︀
𝑐𝑖𝑠𝑐𝑗𝑠

]︀
=

1

𝑁2

𝑁2∑︁
𝑠=1

𝑐𝑖𝑠𝑐𝑗𝑠

=

(︃
𝑅*

𝑁

𝑅*𝑇

𝑁

)︃
𝑖𝑗

.

(A.22)

Hence, the i.i.d. collection of random variables {𝑐𝑖𝑠𝑐𝑗𝑠}𝑆𝑠=1 yields an unbiased estimate
of
(︁

𝑅*

𝑁
𝑅*𝑇

𝑁

)︁
𝑖𝑗
. Each 𝑐𝑖𝑠𝑐𝑗𝑠 is bounded by 1

𝐽2
+
. Therefore, by Hoeffding’s inequality and

a simple union bound,

P
(︂
𝐷* ≥ 𝜖

2

)︂
≤ 2𝐽2

+ exp
(︀
−2𝑆𝐽4

+𝜖
2
)︀
. (A.23)

Setting the right-hand side to 𝛿*

2
and solving for 𝜖

2
implies with probability at least

124

1− 𝛿*

2
,

𝜖

2
≤ 1√

𝑆𝐽+
2
log

[︃
4𝐽2

+

𝛿*

]︃ 1
2

. (A.24)

Hence, with probability at least 1− 𝛿*

2
,

1

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹 ≤ (1− 𝑤)𝑇 𝑅√
𝑆

𝑅𝑇

√
𝑆
(1− 𝑤) + ‖1− 𝑤‖21

1√
𝑆𝐽2

+

log

[︃
4𝐽2

+

𝛿*

]︃ 1
2

=
1

𝑆
‖𝑟 − 𝑟(𝑤)‖22 + ‖1− 𝑤‖21

1√
𝑆𝐽2

+

log

[︃
4𝐽2

+

𝛿*

]︃ 1
2

Lemma A.1.2 implies that there exists a 0 ≤ 𝜈 < 1 such that 1
𝑆
‖𝑟 − 𝑟(𝑤)‖22 ≤ 𝜈2𝐽−2.

Since 𝜈 depends on the pairs 𝑖𝑙, 𝑗𝑙 picked, we can take 𝜈* to be the largest 𝜈 possible.
Since the set of all possible 𝑆 pairs is finite, that implies 0 ≤ 𝜈* < 1. Hence, setting
𝐽 = 1

2
log𝜈*

(︀
𝜖
2

)︀
+ 2 guarantees that 1

𝑆
‖𝑟 − 𝑟(𝑤)‖22 ≤ 𝜖

2
for any collection of drawn

𝑖𝑙, 𝑗𝑙, 1 ≤ 𝑙 ≤ 𝑆. Assume for any 𝑎 ∈ (0, 1] and 𝛿 > 0, we can find an 𝑀 such that

P
(︂
max

𝑗

𝜎2/(𝐽2
+𝜎2

𝑗) > 𝑀

)︂
< 𝑎𝛿. (A.25)

If Eq. (A.25) holds, we may assume max𝑗 𝜎2/(𝐽2
+𝜎2

𝑗) < 𝑀 by setting 𝑀 large enough
since we just need a 1 − 𝛿 probabilistic guarantee. By the polytope constraint in
Eq. (A.1), 𝑤*

𝑖 ≤ 𝜎̂
𝜎̂𝑖

for all 𝑖 ∈ [𝐽+]. Without loss of generality, assume the first 𝐽
components of 𝑤* can be the only non-zero values since 𝑤* is at least 𝐽 sparse. For
𝑆 ≥ 8𝑀4

𝜎4 log
(︁

2𝐽+
𝛿2

)︁
, Lemma A.2.1 implies with probability at least 1− 𝛿*

2
,

‖1− 𝑤*‖21 ≤
(︂
𝜎̂

𝜎̂𝑖
𝐽 + (𝐽+ − 𝐽)

)︂2

≤
(︀
𝐽𝑀𝐽+ + 𝐽+)

)︀2
≤ (2𝐽𝑀

√
5𝐽+)

2

≤ 10𝐽2
+𝑀

2𝐽2

≤ 10𝐽2
+𝑀

2 (log
2
𝜖
)2

(log 𝜈)2

(A.26)

Therefore, with probability at least 1− 𝛿*,

1

𝑁2
‖𝑍+𝑍+

𝑇 − 𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹 ≤
𝜖

2
+

10𝑀2(log 2
𝜖
)2

√
𝑆(log 𝜈)2

log

[︃
4𝐽2

+

𝛿*

]︃ 1
2

. (A.27)

Finally, setting 𝑆 ≥ max

(︃
100
𝜖2

[︂
𝑀

(log 2
𝜖
)

(log 𝜈)

]︂4
log
[︁
4𝐽+

2

𝛿*

]︁
, 8𝑀4

𝜎4 log
(︁

2𝐽+
𝛿2

)︁)︃
implies 1

𝑁2‖𝑍+𝑍+
𝑇−

125

𝑍(𝑤)𝑍(𝑤)𝑇‖2𝐹 ≤ 𝜖 with probability at least 1− 𝛿* which matches the rate provided in
Theorem 2.3.2. It remains to show Eq. (A.25). Notice that

𝜎

𝐽+𝜎𝑗
=

1

𝐽+
+

1

𝐽+

∑︁
𝑖 ̸=𝑗

𝜎𝑖𝑗, (A.28)

where 𝜎𝑖𝑗 := 𝜎𝑖

𝜎𝑗
. Notice that each 𝜎𝑖𝑗 are i.i.d. for 𝑖 ̸= 𝑗. Let the 𝜇𝑗 = E𝜎𝑖𝑗 and 𝑠𝑗 be

the standard deviation of 𝜎𝑖𝑗. Since each 𝜎𝑗 is i.i.d. that implies 𝜇𝑗 and 𝑠𝑗 are both
constant across 𝑗 so we drop the subscript. By a union bound, it suffices to show for
any 𝜏 > 0 we can find an 𝑀 such that

P

⎛⎝ max
1≤𝑗≤𝐽+

1

𝐽+

∑︁
𝑖 ̸=𝑗

𝜎𝑖𝑗 > 𝑀

⎞⎠ < 𝜏. (A.29)

By Chebyshev’s inequality,

P

⎛⎝ 1

𝐽+

∑︁
𝑖 ̸=𝑗

𝜎𝑖𝑗 − 𝜇 >
𝑐𝑠

𝐽+

⎞⎠ ≤ 1

𝑐2
. (A.30)

Take 𝑐 = 𝐽+𝜏 . Then,

P

⎛⎝ 1

𝐽+

∑︁
𝑖 ̸=𝑗

𝜎𝑖𝑗 − 𝜇 >
𝑐𝑠

𝐽+

⎞⎠ ≤ 1

𝐽2
+𝜏

< 𝜏. (A.31)

By a union bound, Eq. (A.30) implies

P

⎛⎝ max
1≤𝑗≤𝐽+

1

𝐽+

∑︁
𝑖 ̸=𝑗

𝜎𝑖𝑗 > 𝑀

⎞⎠ <
1

𝜏𝐽+
< 𝜏

for 𝑀 = 𝜇+ 𝑠𝜏 as desired.
The proof showing that lim sup𝐽+→∞ 𝜈𝐽+ < 1 is the same as the proof Theo-

rem 2.3.4.

A.3 Runtime analysis of methods
The ridge regression and PCA runtimes depend on the number of features used, as
specified in Table 2.1, and therefore follow from the first column of the table.

First, we show that using RFM with 𝐽+ = 𝑂
(︀
1
𝜖
log 1

𝜖

)︀
number of random fea-

tures ensures that 1
𝑁2‖𝐾 − 𝐾̂‖2𝐹 = 𝑂(𝜖) with high probability. By a union bound,

P
(︁

1
𝑁2‖𝐾 − 𝐾̂‖2𝐹 ≤ 𝜖

)︁
≥ P

(︁
max𝑖,𝑗∈[𝑁] |𝐾𝑖𝑗 − 𝐾̂𝑖𝑗| ≤

√
𝜖
)︁
. Now, Claim 1 of Rahimi

126

and Recht [2007] implies

P
(︂
max
𝑖,𝑗∈[𝑁]

|𝐾𝑖𝑗 − 𝐾̂𝑖𝑗| ≥
√
𝜖

)︂
= 𝑂

(︂
1

𝜖
𝑒−𝐽+𝜖

)︂
. (A.32)

Setting the right-hand side of Eq. (A.32) to some fixed probability threshold 𝛿* implies
𝐽+ = 𝑂

(︁
1
𝜖
log
(︀

1
𝜖𝛿*

)︀)︁
. Since 𝛿* is some fixed constant, 𝐽+ = 𝑂

(︀
1
𝜖
log 1

𝜖

)︀
number

of random features suffices for an 𝑂(𝜖) error guarantee. Hence, it suffices to use
𝐽+ = 𝑂

(︀
1
𝜖
log 1

𝜖

)︀
as the up-projection dimension for both RFM-FW and RFM-JL.

To prove the bounds for RFM-FW, take 𝑆 = Ω(𝐽2
+(log 𝐽+)

2). It is straightforward
to check that this choice of 𝑆 satisfies the requirements of Theorem 2.3.2. By
Theorem 2.3.2, it suffices to set 𝐽 = 𝑂 (log 𝐽+) for an 𝑂(𝜖) error guarantee. Hence,
Algorithm 1 takes 𝑂(𝑆𝐽+ log 𝐽+) time to compute the random feature weights 𝑤
since Frank-Wolfe has to be run for a total of 𝑂(log 𝐽+) iterations. Finally, it takes
𝑂(𝑁 log 𝐽+) to apply these 𝑂(log 𝐽+) weighted random features to the 𝑁 datapoints.
We conclude by proving the time complexity of RFM-JL.

Denote 𝑥𝑖 := (𝑍+)𝑖 ∈ R𝐽+ as the mapped datapoints from RFM. Let 𝐴 ∈ R𝐽×𝐽+ for
𝐽 ≤ 𝐽+ be a matrix filled with i.i.d. 𝑁(0, 1

𝐽
) random variables for the JL compression

step. Let 𝑓(𝑥) := 𝐴𝑥. It suffices to pick a 𝐽 such that,

P
(︂
max
𝑖,𝑗∈[𝑁]

⃒⃒⃒
𝑥𝑖

𝑇𝑥𝑗 − 𝑓(𝑥𝑖)𝑇𝑓(𝑥𝑗)
⃒⃒⃒
≥
√
𝜖

)︂
≤ 𝛿* (A.33)

for RFM-JL. We use the following corollary from Kakade and Shakhnarovich [2009,
Corollary 2.1] to bound the above probability.

Lemma A.3.1. Let 𝑢, 𝑣 ∈ R𝑑 and such that ‖𝑢‖ ≤ 1 and ‖𝑣‖ ≤ 1. Let 𝑓(𝑥) = 𝐴𝑥,
where 𝐴 is a 𝑘 × 𝑑, 𝑘 ≤ 𝑑 matrix of i.i.d. 𝑁(0, 1

𝑘
) random variables. Then,

P
(︁
| 𝑢𝑇𝑣 − 𝑓(𝑢)𝑇𝑓(𝑣) |

)︁
≤ 4𝑒−

1
4
(𝜖2−𝜖3)𝑘. (A.34)

‖𝑥𝑖‖2 = 1 since 𝑥𝑖 = 1√
𝐽+

(︁
cos(𝜔𝑇

1 𝑥𝑖 + 𝑏), · · · , cos(𝜔𝑇
𝐽+
𝑥𝑖 + 𝑏)

)︁
. Hence, we may

apply Lemma A.3.1 to 𝑥𝑖. By a union bound and an application of Lemma A.3.1,
Eq. (A.33) is bounded by 𝑂

(︀
𝑁2𝑒−𝐽𝜖

)︀
. Setting 𝑁2𝑒−𝐽𝜖 equal to 𝛿* and solving for 𝐽

implies that 𝐽 = Ω

(︂
1
𝜖
log
(︁

𝑁2

𝛿*

)︁)︂
. Hence, 𝐽 = 𝑂

(︀
1
𝜖
log𝑁

)︀
. Now, 𝑂

(︀
1
𝜖

)︀
= 𝑂

(︂
𝐽+
log 1

𝜖

)︂
which implies 𝐽 = 𝑂

(︂
𝐽+ log𝑁

log 1
𝜖

)︂
. Since 𝑁 > 𝐽+ > 𝑂

(︀
1
𝜖

)︀
, 𝐽 = Ω(𝐽+) suffices for an for

an 𝑂(𝜖) error guarantee. While the JL algorithm typically takes 𝑂 (𝑁𝐽+𝑘) time to
map a 𝑁 ×𝐽+ matrix to a 𝑁 × 𝑘 matrix, the techniques in Hamid et al. [2014, Section
3.5] show that only 𝑂 (𝑁𝐽+ log 𝐽) time is required by using the Fast-JL algorithm.

127

A.4 Impact of kernel approximation
Here we provide the precise error bound and runtimes for kernel ridge regression, kernel
SVM, and kernel PCA when using a low-rank factorization 𝑍𝑍𝑇 of 𝐾. We denote
𝑋 ⊂ R𝑝 as the input space and define 𝑐 > 0 such that 𝐾(𝑥, 𝑥) ≤ 𝑐 and 𝐾̂(𝑥, 𝑥) ≤ 𝑐
for all 𝑥 ∈ 𝑋. This condition is verified with 𝑐 = 1 for Gaussian kernels for example.
All the bounds provided follow from Cortes et al. [2010], Talwalkar [2010], where we
simply replace the spectral norm with the Frobenius norm since the Frobenius norm
upper bounds the spectral norm.

A.4.1 Kernel ridge regression

Exact kernel ridge regression takes 𝑂(𝑁3) since 𝐾 must be inverted. Suppose 𝐾 ≈
𝑍𝑍𝑇 := 𝐾̂, where 𝑍 could be found using RFM for example. Running ridge regression
with the feature matrix 𝑍 just requires computing and inverting the covariance matrix
𝑍𝑇𝑍 ∈ 𝑅𝐽×𝐽 which takes Θ(max(𝐽3, 𝑁𝐽2)) time. Proposition A.4.1 quantifies the
error between the regressor obtained from 𝐾 and the one from 𝐾̂.

Proposition A.4.1. (Proposition 1 of Cortes et al. [2010]) Let 𝑓 denote the regression
function returned by kernel ridge regression when using the approximate kernel matrix
𝐾̂ ∈ R𝑁×𝑀 , and 𝑓 * the function returned when using the exact kernel matrix 𝐾.
Assume that every response 𝑦 is bounded in absolute value by 𝑀 for some 0 < 𝑀 <∞.
Let 𝜆 := 𝑁𝜆0 > 0 be the ridge parameter. Then, the following inequality holds for all
𝑥 ∈ 𝑋:

|𝑓(𝑥)− 𝑓 *(𝑥)| ≤ 𝑐𝑀

𝜆20𝑁
‖𝐾̂ −𝐾‖2

≤ 𝑐𝑀

𝜆20𝑁
‖𝐾̂ −𝐾‖𝐹

= 𝑂

(︂
1

𝑁
‖𝐾̂ −𝐾‖𝐹

)︂

A.4.2 Kernel SVM

Kernel SVM regression takes 𝑂(𝑁3) using 𝐾 since 𝐾 must be inverted. Again suppose
𝐾 ≈ 𝑍𝑍𝑇 := 𝐾̂. Then, training a linear SVM via dual-coordinate decent on 𝑍 has
time complexity 𝑂 (𝑁𝐽 log 𝜌), where 𝜌 is the optimization tolerance Hsieh et al. [2008].

Proposition A.4.2. (Proposition 2 of Cortes et al. [2010]) Let 𝑓 denote the hypothesis
returned by SVM when using the approximate kernel matrix 𝐾̂, 𝑓 * the hypothesis
returned when using the exact kernel matrix 𝐾, and 𝐶0 be the penalty for SVM. Then,

128

the following inequality holds for all 𝑥 ∈ 𝑋:

|𝑓(𝑥)− 𝑓 *(𝑥)| ≤
√
2𝑐

3
4𝐶0‖𝐾̂ −𝐾‖

1
4
2

⎡⎣1 + ‖𝐾̂ −𝐾‖ 1
4
2

4𝑐

⎤⎦
≤
√
2𝑐

3
4𝐶0‖𝐾̂ −𝐾‖

1
4
𝐹

⎡⎣1 + ‖𝐾̂ −𝐾‖ 1
4
𝐹

4𝑐

⎤⎦ .
= 𝑂

(︂
‖𝐾̂ −𝐾‖

1
2
𝐹

)︂
.

A.4.3 Kernel PCA

We follow Talwalkar [2010] to understand the effect matrix approximation has on
kernel PCA. For a more in-depth analysis, see pg. 92-98 of Talwalkar [2010]. Without
loss of generality, we assume the data are mean zero.

Let Φ(·) be the unique feature map such that 𝑘(𝑥, 𝑦) =
⟨︀
Φ(𝑥),Φ(𝑦)

⟩︀
. Let the

feature covariance matrix be denoted as ΣΦ := Φ(𝑋𝑁)Φ(𝑋𝑁)
𝑇 , where Φ(𝑋𝑁) :=[︀

Φ(𝑥1) · · ·Φ(𝑥𝑛)
]︀
. Since the rank of ΣΦ is at most 𝑁 , let 𝑣𝑖 1 ≤ 𝑖 ≤ 𝑁 be the 𝑁

singular vectors of ΣΦ. For certain kernels, e.g., the RBF kernel, the 𝑣𝑖 are infinite
dimensional. However, the projection of Φ(𝑥) onto each 𝑣𝑖 is tractable to compute via
the kernel trick:

Φ(𝑥)𝑇𝑣𝑖 = Φ(𝑥)
Φ(𝑋𝑁)𝑢𝑖√

𝜎𝑖
=
𝑘𝑇𝑥 𝑢𝑖√
𝜎𝑖
, (A.35)

where 𝑘𝑥 := (𝐾(𝑥1, 𝑥), · · · , 𝐾(𝑥𝑁 , 𝑥)) and 𝑢𝑖 is the ith singular vector of 𝐾 with
associated eigenvalue 𝜎𝑖. Often, the goal is to project Φ(𝑥) onto the first 𝑙 eigenvectors
of ΣΦ for dimensionality reduction. To analyze the error of the projection, let 𝑃𝑉𝑙

be
defined as the subspace 𝑉𝑙 spanned by the top 𝑙 eigenvectors of ΣΦ. Then, the average
empirical residual 𝑅𝑙(𝐾) of a kernel matrix 𝐾 is defined as,

𝑅𝑙(𝐾) :=
1

𝑁

𝑁∑︁
𝑛=1

‖Φ(𝑥𝑛)‖2 −
1

𝑁

𝑁∑︁
𝑛=1

‖𝑃𝑉𝑙
(Φ(𝑥𝑛))‖2

=
∑︁
𝑖>𝑙

𝜎𝑖

(A.36)

𝑅𝑙(𝐾) is simply the spectral error of a low-rank decomposition of ΣΦ using the SVD.
If we instead use 𝐾̂ for the eigendecomposition, the following proposition bounds the
difference between 𝑅𝑙(𝐾) and 𝑅𝑙(𝐾̂).

Proposition A.4.3. (Proposition 5.4 of Talwalkar [2010]) For 𝑅𝑙(𝐾) and 𝑅𝑙(𝐾̂)

129

Figure A-1: Kernel matrix approximation errors. Lower is better. Each point denotes
the average over 20 simulations and the error bars represent one standard deviation.
The HALTON sequence was used to generate the quasi random features.

defined as above,

|𝑅𝑙(𝐾)−𝑅𝑙(𝐾̂)| ≤
(︂
1− 𝑙

𝑁

)︂
‖𝐾 − 𝐾̂‖2

≤
(︂
1− 𝑙

𝑁

)︂
‖𝐾 − 𝐾̂‖𝐹 .

A.5 Additional Experiments
As stated in Section 6.5, our method may be applied on top of other random feature
methods. In particular, many previous works have reduced the number of random
features needed for a given level of approximation by sampling them from a different
distribution (e.g., through importance sampling or Quasi-Monte-Carlo techniques).
Regardless of the way the random features are sampled, our method can still be used
for compression.

To demonstrate this point further, we consider generating random features using
Quasi-Monte-Carlo [Avron et al., 2016]. Quasi random features work by generating
a sequence of points from a (low-discrepancy) grid of points in [0, 1]𝑝. Points are
sampled from the target random-features distribution 𝑄 by applying the inverse CDF
of 𝑄 on each of these points in the sequence. In Avron et al. [2016], the authors
showed that generating random features in this way improved performance over the
classical random features method provided in Rahimi and Recht [2007]. In Fig. A-1

130

Figure A-2: Classification accuracy. Higher is better. Each point denotes the average
over 20 simulations and the error bars represent one standard deviation. The HALTON
sequence was used to generate the Quasi random features.

and Fig. A-2, we see that our method is able to compress the number of quasi random
features, which is similar to the behavior in Fig. 2-1 and Fig. 2-2. Note that the
experimental setup is exactly the same as in Section 6.5 except that the random
features are now generated using Quasi-Monte-Carlo.

131

Appendix B

Appendix for “The Kernel Interaction
Trick: Fast Bayesian Discovery of
Pairwise Interactions in High
Dimensions”

B.1 Modeling Multi-Way Interactions
In certain applications, we might expect that there are interactions of order greater
than two. For example, suppose we are trying to predict college admissions. Then,
we might expect a three-way interaction between a candidate’s SAT score, GPA, and
extracurricular involvement. Individually, these variables might only exhibit moderate
association but together they could have a multiplicative effect. For example, we
might expect that candidates who have high SAT scores, high GPAs, and excellent
extracurricular activities will be accepted with near certainty, while candidates who
only possess one/two of these qualities are borderline applicants.

We now show how to extend our results to handle such three-way, or more generally,
𝑟-way interactions.

Definition B.1.1. (𝑟-way interactions) The 𝑟-way interactions of a covariate vector
𝑥 ∈ R𝑝 are generated from the feature map

Φ𝑟(𝑥) :=
𝑟⨁︁

𝑑=1

⨁︁
𝑘:𝑘1+···+𝑘𝑝=𝑑

𝑝∏︁
𝑗=1

𝑥
𝑘𝑗
𝑗 , 𝑘 ∈ N𝑝,

where
⨁︀𝑚

𝑗=1 𝑎𝑗 := (𝑎11, · · · , 𝑎1𝑘1 , · · · , 𝑎𝑚1, · · · , 𝑎𝑚𝑘𝑚) denotes the concatenation of
vectors 𝑎𝑗 ∈ R𝑘𝑗 .

To model 𝑟-way interactions, we must use degree 𝑟 polynomial kernels to generate
all the necessary interactions. Hence, we recommend using the following generalized
two-way interaction kernel, which we call the 𝑟-way interaction kernel.

132

Definition B.1.2. (𝑟-way interaction kernel) A kernel 𝑘 is called an 𝑟-way interaction
kernel if for some choice of 𝑀1,𝑀2,𝑀3 ∈ N, 𝛼, 𝜓, 𝜆(𝑚) ∈ R𝑝

+ (𝑚 = 1, . . . ,𝑀1),
𝜈(𝑚) ∈ R+ (𝑚 = 1, . . . ,𝑀2), and ∇(𝑚) ∈ R𝑝

+ (𝑘 = 1, . . . ,𝑀3) it can be re-expressed as

𝑀1∑︁
𝑚=1

𝑘1𝑝𝑜𝑙𝑦,𝑟(𝜆
(𝑚) ⊙ 𝑥, 𝜆(𝑚) ⊙ 𝑦) +

𝑀2∑︁
𝑚=1

𝜈(𝑚)

[︃
𝑟∏︁

𝑠=1

𝑥𝑖𝑠𝑚

𝑟∏︁
𝑠=1

𝑦𝑖𝑠𝑚

]︃
+

𝑀3∑︁
𝑚=1

𝑘𝑟−1(∇(𝑚) ⊙ 𝑥,∇(𝑚) ⊙ 𝑦),

where ⊙ is the Hadamard product and 𝑘𝑟−1 is an 𝑟− 1 degree interaction kernel. The
base case kernel (i.e., when 𝑟 = 2) is provided in Definition 3.4.2.

To select the weights for an 𝑟-way interaction kernel, we must solve a system
of equations similar to Eq. (3.9), except for a target prior covariance matrix Σ𝜏 ∈
Rdim(Φ𝑟)×dim(Φ𝑟).

B.2 Proofs

B.2.1 Proof of Proposition 3.4.1

Let 𝑔(·) = 𝜃𝑇Φ2(·) and 𝜃 | 𝜏 ∼ 𝒩 (0,Σ𝜏). Then, 𝑦(𝑛) = 𝑔(𝑥(𝑛)) + 𝜖(𝑛). The first claim
follows by taking 𝜑 = Φ2 and 𝑓 = 𝑔 in Rasmussen and Williams [2006, Equation 2.12].

The second claim follows directly from the duality between the weight-space and
function-space view of a GP [Rasmussen and Williams, 2006, Chapter 2].

B.2.2 Proof of Theorem 3.4.3

The proof of Theorem 3.4.3 depends critically on Lemma B.2.1 below, which character-
izes the relation between adding two kernels and the resulting induced prior covariance
matrix.

Lemma B.2.1. Let 𝑘1 and 𝑘2 be two kernels such that there exists vectors 𝑎(1), 𝑎(2) ∈
Rdim(Φ2) for which 𝑘𝑖(𝑥, 𝑦) = ⟨𝑎(𝑖)⊙Φ2(𝑥), 𝑎

(𝑖)⊙Φ2(𝑦)⟩. Let 𝑘3(𝑥, 𝑦) = 𝑘1(𝑥, 𝑦)+𝑘2(𝑥, 𝑦).
Then,

𝑘3(𝑥, 𝑦) = ⟨Σ
1
2
3Φ2(𝑥),Σ

1
2
3Φ2(𝑦)⟩ s.t. Σ3 = diag(𝑎(1) ⊙ 𝑎(1) + 𝑎(2) ⊙ 𝑎(2)). (B.1)

Proof. By the sum property of kernels,

𝑘1(𝑥, 𝑦) + 𝑘2(𝑥, 𝑦) = ⟨[𝑎1 𝑎2]⊙ [Φ2(𝑥) Φ2(𝑥)], [𝑎1 𝑎2]⊙ [Φ2(𝑦) Φ2(𝑦)]⟩
= ⟨𝑎(1) ⊙ Φ2(𝑥), 𝑎

(1) ⊙ Φ2(𝑦)⟩+ ⟨𝑎(2) ⊙ Φ2(𝑥), 𝑎
(2) ⊙ Φ2(𝑦)⟩

= ⟨𝑎(1) ⊙ 𝑎(1) ⊙ Φ2(𝑥),Φ2(𝑦)⟩+ ⟨𝑎(2) ⊙ 𝑎(2) ⊙ Φ2(𝑥),Φ2(𝑦)⟩
= ⟨𝑎(1) ⊙ 𝑎(1) ⊙ Φ2(𝑥) + 𝑎(2) ⊙ 𝑎(2) ⊙ Φ2(𝑥),Φ2(𝑦)⟩
= ⟨(𝑎(1) ⊙ 𝑎(1) + 𝑎(2) ⊙ 𝑎(2))⊙ Φ2(𝑥),Φ2(𝑦)⟩
= Φ𝑇

2 (𝑥) diag((𝑎(1) ⊙ 𝑎(1) + 𝑎(2) ⊙ 𝑎(2)) Φ2(𝑦)

= 𝑘3(𝑥, 𝑦).

(B.2)

133

By Lemma B.2.1, it suffices to write out the feature map of each kernel in Defini-
tion 3.4.2. The induced feature maps of each respective kernel term in Definition 3.4.2
are given by 𝑎𝑖 ⊙ Φ2(𝑥), 1 ≤ 𝑖 ≤ 4 for

𝑎1 := ((𝜆
(𝑚)
1)2, · · · , (𝜆(𝑚)

𝑝)2,
√
2𝜆

(𝑚)
1 𝜆

(𝑚)
2 , · · · ,

√
2𝜆

(𝑚)
𝑝−1𝜆

(𝑚)
𝑝 ,
√
2𝜆

(𝑚)
1 , · · · ,

√
2𝜆(𝑚)

𝑝 , 1)

𝑎2 := (0, · · · , 0, 0, · · · , 0, 𝛼1, · · · , 𝛼𝑝,
√
𝐴)

𝑎3 := (𝜓1, · · · , 𝜓𝑝, 0, · · · , 0, 0, · · · , 0, 0)

𝑎4 := (0, · · · , 0, 0, · · · , 0,
√
𝜈(𝑚), 0, · · · , 0, 0, · · · , 0, 0)

(B.3)

The first claim follows from Eq. (B.3) and Lemma B.2.1.
To prove the second claim, take an arbitrary diagonal prior covariance matrix

𝑆 ∈ Rdim(Φ2)×dim(Φ2). It suffices to show that there exists a solution of,

diag(𝑆)(𝑖) = 𝛼2
𝑖 + 2

𝑀1∑︁
𝑚=1

[︁
𝜆
(𝑚)
𝑖

]︁2
diag(𝑆)(𝑖𝑗) = 2

𝑀1∑︁
𝑚=1

[︁
𝜆
(𝑚)
𝑖 𝜆

(𝑚)
𝑗

]︁2
+

𝐾2∑︁
𝑚:𝑖𝑚=𝑖,𝑗𝑚=𝑗

𝜈(𝑚)

diag(𝑆)(𝑖𝑖) = 𝜓2
𝑖 +

𝑀1∑︁
𝑚=1

[︁
𝜆
(𝑚)
𝑖

]︁4
diag(𝑆)(0) =𝑀2 + 𝐴.

for some choice of 𝑀1,𝑀2 ∈ N, 𝛼, 𝜓, 𝜆(𝑚) ∈ R𝑝
+ (𝑚 = 1, . . . ,𝑀1), 𝜈(𝑚) ∈ R+ (𝑚 =

1, . . . ,𝑀2), and 𝐴 ∈ R. Take 𝛼2
𝑖 = diag(𝑆)(𝑖) and 𝜓2

𝑖 = diag(𝑆)(𝑖𝑖), for 𝑖 = 1, · · · , 𝑝.
Take 𝜆(𝑚) = 0. Let 𝑀2 = 𝑝(𝑝−1)

2
and 𝜈(1) = diag(𝑆)(12), · · · , 𝜈(𝑀2) = diag(𝑆)((𝑝−1)𝑝).

Finally, letting 𝐴 = diag(𝑆)(0) −𝑀2 solves the system.

Remark. While we have shown one of the many ways to solve the above system for an
arbitrary 𝑆, the strategy taken above is not practically useful; computing the kernel in
this fashion will take Θ(𝑝2) time because 𝑀2 = Θ(𝑝2). In practice, we must leverage
the polynomial kernels (i.e., those in the 𝑀1 sum) to avoid making 𝑀2 large. We show
how such a strategy works in Appendix B.3.

B.2.3 Proof of Theorem 3.5.1

Define 𝑔(𝐴𝑖𝑗) := (𝑔(𝑒𝑖), 𝑔(−𝑒𝑖), 𝑔(𝑒𝑗), 𝑔(𝑒𝑖𝑗)). Then,

𝑔(𝐴𝑖𝑗) | 𝐷, 𝜏 ∼ 𝒩 (𝜇𝑔𝑖𝑗 ,Σ𝑖𝑗) s.t. 𝜇𝑔𝑖𝑗 := 𝐾𝜏 (𝐴
𝑖𝑗, 𝑋)𝐻𝜏𝑌,

Σ𝑖𝑗 :=
[︁
𝐾𝜏 (𝐴

𝑖𝑗, 𝐴𝑖𝑗)−𝐾𝜏 (𝐴
𝑖𝑗, 𝑋)𝐻𝜏𝐾𝜏 (𝑋,𝐴

𝑖𝑗)
]︁
,

(B.4)

134

which follows directly from Rasmussen and Williams [2006, Equation 2.21]. Notice
that,

𝜃𝑥𝑖
=
𝑔(𝑒1)

2
−𝑔(−𝑒1)

2
= 𝑎𝑇𝑖 𝑔(𝐴

𝑖𝑗) and 𝜃𝑥𝑖𝑥𝑗
=
𝑔(𝑒1)

2
−𝑔(−𝑒1)

2
−𝑔(𝑒𝑗)+𝑔(𝑒𝑖𝑗) = 𝑎𝑇𝑖𝑗𝑔(𝐴

𝑖𝑗),

(B.5)
where 𝑎𝑖 = (1/2,−1/2, 0, 0) and 𝑎𝑖𝑗 = (−1/2, 1/2,−1, 1). Furthermore, 𝜃𝑥2

𝑖
= 𝑎𝑇𝑖𝑖𝑔(𝐴

𝑖𝑗) for
𝑎𝑖𝑖 = (1/2, 1/2, 0, 0). The proof follows from Eq. (B.4), Eq. (B.5), and recalling that an
affine transformation ℎ : 𝑥 ↦→ 𝐴𝑥 of a multivariate Gaussian distribution 𝑍 ∼ 𝒩 (𝜇,Σ)
is given by ℎ(𝑍) ∼ 𝒩 (𝐴𝜇,𝐴Σ𝐴𝑇).

B.2.4 Proof of Corollary 3.5.2

Corollary 3.5.2 follows immediately once we can show that 𝐾𝜏 (𝐴𝑖𝑗, 𝑋) takes 𝑂(1)
time. It suffices to show 𝑘𝜏 (𝑥

(𝑛), 𝑒𝑖) and 𝑘𝜏 (𝑥
(𝑛), 𝑒𝑖 + 𝑒𝑗) take 𝑂(1) time. Since 𝑘𝜏 is

a sum of polynomial kernels, 𝑘𝜏 (𝑥, 𝑦) only depends on 𝑥, 𝑦 ∈ R𝑝 through the inner
product 𝑥𝑇𝑦. Hence, for vectors 𝑥̃, 𝑦 ∈ R𝑀 , 𝑘𝜏 (𝑥̃, 𝑦) is well-defined and just depends
on 𝑥̃𝑇𝑦. Now, 𝑘𝜏 (𝑥(𝑛), 𝑒𝑖) = 𝑘𝜏 (𝑥

(𝑛)
𝑖 , 1) and 𝑘𝜏 (𝑥

(𝑛), 𝑒𝑖 + 𝑒𝑗) = 𝑘𝜏 ((𝑥
(𝑛)
𝑖 , 𝑥

(𝑛)
𝑗), (1, 1)).

Since 𝑘𝜏 (𝑥
(𝑛)
𝑖 , 1) and 𝑘𝜏 ((𝑥

(𝑛)
𝑖 , 𝑥

(𝑛)
𝑗), (1, 1)) do not depend on 𝑝, these terms each take

𝑂(1) time to compute.

B.2.5 The General Kernel Interaction Trick

In this section, we generalize the kernel interaction trick, namely show how to access
the distribution of arbitrary components of 𝜃. First, we require some new notation.
For 𝐸 ⊆ {1, · · · , 𝑝}, |𝐸| =𝑀 , define

𝜃𝐸 := (𝜃𝑥𝑖1
, · · · , 𝜃𝑥𝑖𝑀

, 𝜃𝑥𝑖1
𝑥𝑖2
, · · · , 𝜃𝑥𝑖𝑀−1

𝑥𝑖𝑀
), 𝑖𝑗 ∈ 𝐸. (B.6)

We show how to compute 𝜃𝐸 | 𝜏,𝐷 from the GP posterior predictive distribution.
Without any lost of generality, we may assume 𝐸 = {1, · · · ,𝑀} by relabeling the
covariates.

Theorem B.2.2. (General kernel interaction trick) Let 𝐻𝜏 := (𝐾𝜏 + 𝜎2𝐼𝑁)
−1 and

𝐴𝑀 := [𝑒1,−𝑒1, · · · 𝑒𝑀 ,−𝑒𝑀 , 𝑒1 + 𝑒2, · · · , 𝑒𝑀−1 + 𝑒𝑀]𝑇 .

Let 𝐾𝜏 (𝐴𝑀 , 𝑋) = 𝐾𝜏 (𝑋,𝐴𝑀)𝑇 be the matrix formed by taking the kernel between each
row of 𝐴𝑀 with each row of 𝑋. Let

𝑎𝑖 := (0, 0, · · · , 1/2, −1/2, · · · , 0, 0, · · · , 0) ∈ R2𝑀+
𝑀(𝑀−1)

2

𝑎𝑖𝑗 := (0, 0, · · · , 1/2, −1/2, · · · ,−1, · · · , 0, 0, · · · , 1, · · · , 0) ∈ R2𝑀+
𝑀(𝑀−1)

2

(B.7)

for 𝑖 < 𝑗. That is, 𝑎𝑖 has non-zero entries at 𝑒𝑖 and −𝑒𝑖 and 𝑎𝑖𝑗 has non-zero entries

135

at 𝑒𝑖, −𝑒𝑖, −𝑒𝑗, and 𝑒𝑖 + 𝑒𝑗. Let

𝑅𝑀 := [𝑎1 · · · 𝑎𝑀 𝑎12 · · · 𝑎(𝑀−1)𝑀]𝑇 . (B.8)

Then, 𝜃𝐸 | 𝜏,𝐷 is a multivariate Gaussian distribution with mean 𝑅𝑀𝐾𝜏 (𝐴𝑀 , 𝑋)𝐻𝜏𝑌
and covariance matrix

𝑅𝑀

[︀
𝐾𝜏 (𝐴𝑖𝑗, 𝐴𝑖𝑗)−𝐾𝜏 (𝐴𝑖𝑗, 𝑋)𝐻𝜏𝐾𝜏 (𝑋,𝐴𝑖𝑗)

]︀
𝑅𝑇

𝑀 .

Proof. Following the proof of Theorem 3.5.1,

𝑔(𝐴𝑀) | 𝐷, 𝜏 ∼ 𝒩 (𝜇𝑔𝑀 ,Σ𝑀) s.t. 𝜇𝑔𝑀 := 𝐾𝜏 (𝐴
𝑀 , 𝑋)𝐻𝜏𝑌,

Σ𝑀 :=
[︁
𝐾𝜏 (𝐴

𝑀 , 𝐴𝑀)−𝐾𝜏 (𝐴
𝑀 , 𝑋)𝐻𝜏𝐾𝜏 (𝑋,𝐴

𝑀)
]︁
.

(B.9)

Similar to Eq. (B.5),

𝜃𝑥𝑖
=
𝑔(𝑒1)

2
−𝑔(−𝑒1)

2
= 𝑎𝑇𝑖 𝑔(𝐴

𝑀) and 𝜃𝑥𝑖𝑥𝑗
=
𝑔(𝑒1)

2
−𝑔(−𝑒1)

2
−𝑔(𝑒𝑗)+𝑔(𝑒𝑖𝑗) = 𝑎𝑇𝑖𝑗𝑔(𝐴

𝑀).

(B.10)
The proof follows from Eq. (B.9), Eq. (B.10), and recalling that an affine transformation
ℎ : 𝑥 ↦→ 𝑅𝑇

𝑀𝑥 of a multivariate Gaussian distribution 𝑍 ∼ 𝒩 (𝜇,Σ) is given by
ℎ(𝑍) ∼ 𝒩 (𝑅𝑀𝜇,𝑅𝑀Σ𝑅𝑇

𝑀).

Corollary B.2.3. Given 𝐾𝜏 , the distribution 𝜃𝐸 | 𝜏,𝐷 takes 𝑂(𝑀2) time and memory
to compute.

Proof. The proof is identical to the one provided in Appendix B.2.4.

B.2.6 Proof of Proposition 3.6.1

See Appendix B.3.2.

B.3 Example Bayesian Interaction Models
In the following subsections, we show how to solve Eq. (3.9) for several classes of
models.

136

B.3.1 Block-Degree Priors

Suppose we would like to set the prior variance of all terms with the same degree
equal. That is, we would like to use a prior of the form

𝜂 ∈ R3 ∼ 𝑝(𝜂)

𝜃𝑥𝑖
| 𝜂 ∼ 𝒩 (0, 𝜂21)

𝜃𝑥𝑖𝑥𝑗
| 𝜂 ∼ 𝒩 (0, 𝜂22)

𝜃𝑥2
𝑖
| 𝜂 ∼ 𝒩 (0, 𝜂23)

𝜃0 | 𝑐2 ∼ 𝒩 (0, 𝑐2).

(B.11)

To find the corresponding kernel, let 𝜆 = (1
4√2

√
𝜂2, · · · , 1

4√2

√
𝜂2), 𝑀1 = 1 and 𝑀2 = 0.

Then, diag(𝑆)(𝑖𝑗) = 𝜂22. Setting 𝜓2
𝑖 = 𝜂23 − 1

2
𝜂22, implies that diag(𝑆)(𝑖𝑖) = 𝜂23. Finally,

letting 𝛼2
𝑖 = 𝜏 21 −

2𝜂2√
2

and 𝐴 = 𝑐2 − 1 implies that diag(𝑆)(𝑖) = 𝜂21 and diag(𝑆)(0) = 𝑐2

as desired. We may equivalently re-write the induced kernel as

𝑘𝑏𝑙𝑜𝑐𝑘,𝜂(𝑥, 𝑦) =
𝜂22
2
𝑘1poly,2(𝑥, 𝑦)+(𝜂23−

𝜂22
2
)𝑘0poly,1(𝑥⊙𝑥, 𝑦⊙𝑦)+

(︀
𝜂21 − 𝜂22

)︀
𝑘0poly,1(𝑥, 𝑦)+𝑐

2−𝜂
2
2

2
.

(B.12)
Hence, Eq. (B.11) admits a kernel that only takes 𝑂(𝑝) time to compute.

B.3.2 Sparsity Priors

By Lemma B.2.1, the sparsity prior model provided in Eq. (3.11) equals 𝑘𝑏𝑙𝑜𝑐𝑘,𝜂(𝜅⊙
𝑥, 𝜅⊙ 𝑦).

B.4 SKIM Model Details
We provide the full hierarchical form of SKIM next. SKIM is based closely on the
regularized horseshoe prior Piironen and Vehtari [2017] and the model proposed in

137

Griffin and Brown [2017]:

𝑚2 ∼ InvGamma(𝛼1, 𝛽1) 𝜉2 ∼ InvGamma(𝛼2, 𝛽2) 𝑐2 ∼ InvGamma(𝛼3, 𝛽3)

𝜓2 ∼ InvGamma(𝛼4, 𝛽4) 𝜑 :=
𝑠

𝑝− 𝑠
𝜎√
𝑁

𝜎 ∼ 𝒩+(0, 𝛼5)

𝜅𝑖 =
𝑚𝜆𝑖√︀

𝑚2 + 𝜂21𝜆
2
𝑖

𝜆𝑖 ∼ 𝐶+(0, 1)

𝜂1 ∼ 𝐶+(0, 𝜑) 𝜂2 =
𝜂21
𝑚2

𝜉 𝜂3 =
𝜂21
𝑚2

𝜓

𝜃𝑥𝑖
| 𝜂, 𝜅 ∼ 𝒩 (0, 𝜂21𝜅

2
𝑖)

𝜃𝑥𝑗
| 𝜂, 𝜅 ∼ 𝒩 (0, 𝜂21𝜅

2
𝑗)

𝜃𝑥𝑖𝑥𝑗
| 𝜂, 𝜅 ∼ 𝒩 (0, 𝜂22𝜅

2
𝑖𝜅

2
𝑗)

𝜃𝑥2
𝑖
| 𝜂, 𝜅 ∼ 𝒩 (0, 𝜂23𝜅

4
𝑖)

𝜃0 | 𝑐2 ∼ 𝒩 (0, 𝑐2),

where 𝑠, 𝛼𝑖, and 𝛽𝑖 are user-specified hyperparameters, 𝐶+(0, 1) is a half-Cauchy
distribution, and 𝒩+ is a half-normal distribution. More details, such as selecting
the hyperparameters, desirable properties, and interpretations of SKIM, are provided
below.

B.4.1 SKIM Details

Recall that we are primarily interested in the case when 𝜃 is sparse and satisfies
strong-hierarchy. In order to promote sparsity in the main effects, we require two
ingredients: (1) a prior on the global shrinkage parameter 𝜂1 and (2) a prior on the
local shrinkage parameters contained in 𝜅 ∈ R𝑝 Carvalho et al. [2009], Piironen and
Vehtari [2017]. Conditional on 𝜂1 and 𝜅,

𝜃𝑥𝑖
| 𝜅, 𝜂1 ∼ 𝒩 (0, 𝜂21𝜅

2
𝑖), 𝑖 = 1, · · · , 𝑝. (B.13)

𝜂1 controls the overall sparsity level of the model; in particular, the model becomes
sparser as 𝜂1 decreases. If we expect 𝑠 non-zero main effects, then setting 𝜂1 = 𝑠

𝑝−𝑠
𝜎√
𝑁

will yield an expected prior sparsity level of 𝑠 by Piironen and Vehtari [2017, Equation
3.12]. However, we often do not know exactly how to select 𝑠. Hence, Piironen and
Vehtari [2017] instead draw,

𝜑 :=
𝑠

𝑝− 𝑠
𝜎√
𝑁

𝜂1 ∼ 𝐶+(0, 𝜑), (B.14)

to express the uncertainty of not knowing the true main effect sparsity level.
The prior variance of 𝜃𝑥𝑖

is non-negligible only when 𝜅𝑖 is large enough to escape
the global shrinkage of 𝜂1. Hence, we draw 𝜅𝑖 from a heavy-tailed distribution so that
certain main effects can escape global shrinkage. Carvalho et al. [2009] suggest drawing
𝜅𝑖 from a half-Cauchy distribution since this distribution has fat tails and desirable

138

shrinkage properties. However, such a prior often leads to undesirable numerical
stability issues when using gradient-based MCMC methods such as NUTS [Piironen
and Vehtari, 2017]. As a result, Piironen and Vehtari [2017] instead propose the
regularized horseshoe prior, which truncates the half-Cauchy distribution to have
support only on [0,𝑚) instead of [0,∞). This truncation (empirically) leads to better
mixing properties, and is achieved by setting

𝜅𝑖 =
𝑚𝜆𝑖√︀

𝑚2 + 𝜂21𝜆
2
𝑖

, 𝜆𝑖 ∼ 𝐶+(0, 1). (B.15)

As 𝜆𝑖 → ∞, 𝜅𝑖 → 𝑚
𝜂1

. Hence, as 𝜆𝑖 → ∞, the prior variance of 𝜃𝑥𝑖
equals 𝑚. Since

we might not know the scale 𝑚 of the non-zero main effects, we place a prior on 𝑚,
namely,

𝑚2 ∼ InvGamma(𝛼1, 𝛽1) (B.16)

for hyperparameters 𝛼1 and 𝛼2.
Next, we model the interactions. If strong-hierarchy holds, sparsity comes for free;

if there are only 𝑠 ≪ 𝑝 non-zero main effects, then there are at most 𝑠(𝑠−1)
2
≪ 𝑝2

possible pairwise interactions. We must be careful, however, because strong-hierarchy
trivially holds; our main effect estimates will, with probability one, never equal zero
because the prior variances of the main effects are greater than 0 with probability
one by Eq. (B.13) and our choice of priors. Instead, we aim for a relaxed version of
strong-hierarchy. Namely, that the prior variance of an interaction 𝜃𝑥𝑖𝑥𝑗

is large only
if 𝜃𝑥𝑖

and 𝜃𝑥𝑗
are both large. Notice that the prior variances on 𝜃𝑥𝑖

and 𝜃𝑥𝑗
are large

only when 𝜅𝑖 and 𝜅𝑗 are sufficiently far from zero. Hence, it suffices to make the prior
variance of 𝜃𝑥𝑖𝑥𝑗

large only when 𝜅𝑖 and 𝜅𝑗 are both large.
Let 𝜅̃2𝑖 =

𝜂21
𝑚2𝜅

2
𝑖 . Then, 0 ≤ 𝜅̃2𝑖 ≤ 1 and 𝜅̃𝑖 approaches 1 as 𝜆𝑖 → ∞. Since, 𝜅̃2𝑖

and 𝜅̃2𝑗 are bounded by 1, 𝜅̃2𝑖 𝜅̃2𝑗 will only be close to 1 when each term is close to one.
That is, when both 𝜆𝑖 and 𝜆𝑗 are large, or equivalently when 𝜅𝑖 and 𝜅𝑗 are both large.
Hence, it suffices to let

𝜃𝑥𝑖𝑥𝑗
| 𝜂1, 𝜅 ∼ 𝒩 (0, 𝜉2𝜅̃2𝑖 𝜅̃

2
𝑗)

= 𝒩 (0, 𝜂22𝜅
2
𝑖𝜅

2
𝑗) for 𝜂2 :=

𝜂21
𝑚2

𝜉,
(B.17)

to promote strong-hierarchy, where 𝜉 has the interpretation of the scale of the non-zero
interaction effects; as 𝜆𝑖 and 𝜆𝑗 tend to infinity, the prior variance of 𝜃𝑥𝑖𝑥𝑗

approaches
𝜉2. Since we might not know this scale, we draw

𝜉2 ∼ InvGamma(𝛼2, 𝛽2), (B.18)

for some choice of hyperparameters 𝛼2 and 𝛽2. Our choice of prior for 𝜃𝑥2
𝑖

is analogous
to the above reasoning for the choice of prior on 𝜃𝑥𝑖𝑥𝑗

.

Main difference between SKIM and the model proposed in Griffin and
Brown [2017]: Unlike in the model proposed in Griffin and Brown [2017], SKIM

139

does not assume sparsity between the interactions once the main effects are known.
In particular, suppose, without any loss of generality, that the first 𝑠 components of
𝜆 are large, while the remaining 𝑝− 𝑠 components are very close to zero. Then, the
only interactions with non-negligible prior variance are the interactions between the
first 𝑠 variables. The number of such interactions is 𝑂(𝑠2).

Unlike in Griffin and Brown [2017], SKIM does not assume sparsity among these
𝑂(𝑠2) interactions. We do not assume such sparsity because the true sparsity level 𝑠
is often very small (e.g., as in genome-wide association studies), which means that
𝑠2 is small. Hence, once we have identified which of the 𝑠 variables have non-zero
main effects, estimating 𝑂(𝑠2) interactions from 𝑁 datapoints is not statistically
difficult relative to actually identifying the 𝑠 non-zero main effects. In particular, the

mean-squared error of estimating 𝑂(𝑠2) parameters from 𝑁 datapoints is 𝑂
(︂√︁

𝑠2

𝑁

)︂
by standard Bernstein-von Mises results and a union bound. Thus, if 𝑠 = 𝑜(

√
𝑁), we

can accurately estimate 𝑂(𝑠2) parameters.

B.5 Variable Selection Procedure
Suppose we sample 𝜏 (𝑡) ∼ 𝑝(𝜏 | 𝐷) via our kernel interaction sampler. Then, we use
these 𝜏 (𝑡) samples to perform variable selection in the following way. Without any loss
of generality, suppose we are deciding whether or not to include the main effect 𝜃𝑥𝑖

.
Below we will show how to construct an interval (𝑐lower, 𝑐upper) for 𝜃𝑥𝑖

. If this interval
does not contain zero, we select 𝜃𝑥𝑖

. This interval is constructed by averaging the
posterior means and standard deviations of 𝜃𝑥𝑖

associated with each sampled 𝜏 (𝑡):

𝜇𝑇 :=
1

𝑇

𝑇∑︁
𝑡=1

E𝑝(𝜃𝑥𝑖 |𝐷,𝜏 (𝑡))[𝜃𝑥𝑖
] 𝜎𝑇 :=

1

𝑇

𝑇∑︁
𝑡=1

SD𝑝(𝜃𝑥𝑖 |𝐷,𝜏 (𝑡))[𝜃𝑥𝑖
]

𝑐lower := 𝜇𝑇 − 𝑧𝜎𝑇 𝑐upper := 𝜇𝑇 + 𝑧𝜎𝑇 . (B.19)

Here, SD𝑞(𝜃)[𝜃] denotes the standard deviation of 𝜃 with respect to 𝑞(𝜃). In our
experiments, we set 𝑧 = 2.59 which corresponds to the 99.5th percentile of a standard
normal distribution.

Heuristic justification of our variable selection procedure. We might expect
that the posterior 𝑝(𝜃𝑥𝑖

| 𝐷) has two modes: one mode near zero when the prior
variance of 𝜃𝑥𝑖

is small and another mode when the prior variance is large. Thus, the
posterior mean 𝜇𝑇 will “shrink” the estimate of 𝜃𝑥𝑖

towards zero, where the amount of
shrinkage depends on the posterior mass of each mode. To understand the variability
of the posterior mean, we effectively average the variability within each mode in
Eq. (B.19). This averaging of variability within modes has the advantage of not
artificially increasing the variance (due to the modes being separated by regions of low-
probability) but has the disadvantage of potentially underestimating our uncertainty.
For example, suppose 𝜃𝑥𝑖

| 𝐷 𝑑
= .5𝒩 (0, .1) + .5𝒩 (2, .1). Then, E𝑝(𝜃𝑥𝑖 |𝐷)[𝜃𝑥𝑖

] = 1

140

and SD𝑝(𝜃𝑥𝑖 |𝐷)[𝜃𝑥𝑖
] = 1. In this case, we would not select 𝜃𝑥𝑖

if we required that the
posterior mean is further than twice the posterior standard deviation. If we instead
averaged the variance within the modes (which would equal .1), we would select 𝜃𝑥𝑖

as
we do in Eq. (B.19).

While we found good empirical performance of our variable selection procedure
in Section 6.5 (e.g., based on FDR) we nevertheless think that variable selection in
multimodal posteriors is challenging, and an area of active research. An interesting
future research direction would be to develop even better variable selection strategies
for sparse interaction models or to rigorously understand the tradeoffs between different
variable selection procedures.

B.6 Woodbury Identity and the Matrix Determinant
Lemma

To compute the determinant in Eq. (3.5), one can perform a Cholesky decomposition of
Σ𝑁,𝜏 ∈ Rdim(Φ2)×dim(Φ2). Computing Σ𝑁,𝜏 takes 𝑂(𝑝4𝑁) time and 𝑂(𝑝2𝑁+𝑝4) memory.
Computing the Cholesky decomposition of Σ𝑁,𝜏 takes 𝑂(𝑝6) time and requires 𝑂(𝑝4)
memory. This factorization can be avoided through the Woodbury matrix lemma and
matrix determinant lemma.

The Woodbury matrix identity implies that

(𝐴−1 + 𝑈𝑈𝑇)−1 = 𝐴− 𝐴𝑈(𝐼𝐾 + 𝑈𝑇𝐴𝑈)−1𝑈𝑇𝐴, (B.20)

where 𝐴 ∈ R𝑀×𝑀 , 𝑈 ∈ R𝑀×𝐾 , and 𝐼𝐾 is the 𝐾 × 𝐾 identity matrix. The matrix
determinant lemma implies that

det(𝐴−1 + 𝑈𝑈𝑇) = det(𝐼 + 𝑈𝑇𝐴𝑈) det(𝐴−1). (B.21)

Then, by the Woodbury identity,

Σ𝜏,𝑁 = (Σ−1
𝜏 +

1

𝜎2
Φ2(𝑋)𝑇Φ2(𝑋))−1 = Σ𝜏−Σ𝜏Φ2(𝑋)𝑇 (𝐼𝑁+Φ2(𝑋)Σ𝜏Φ2(𝑋)𝑇)−1Φ2(𝑋)Σ𝜏 .

(B.22)
Computing 𝑝(𝐷 | 𝜏) requires computing det(Σ𝜏,𝑁). By the matrix determinant lemma,

det(Σ𝜏,𝑁) = (det(𝐼𝑁 + Φ2(𝑋)Σ𝜏Φ2(𝑋)𝑇) det(Σ−1
𝜏))−1. (B.23)

When Σ𝜏 is diagonal, the determinant equals the product of the diagonal, and its
inverse equals one over the diagonal. Both of these quantities can be computed in
𝑂(𝑝2) time. Hence, the time complexity for computing det(Σ𝜏,𝑁) is dominated by
computing det(𝐼𝑁 + Φ2(𝑋)Σ𝜏Φ2(𝑋)𝑇), which takes 𝑂(𝑁2𝑝2 +𝑁3) time and 𝑂(𝑁𝑝2)
memory to store Φ2(𝑋).

141

B.7 Standard Polynomial Kernel
The feature map induced by the standard degree two polynomial kernel is given by

Φ𝑐
poly,2(𝑥) := (𝑥21, · · · , 𝑥2𝑝,

√
2𝑥1𝑥2, · · · ,

√
2𝑥𝑝−1𝑥𝑝,

√
2𝑐𝑥1, · · · ,

√
2𝑐𝑥𝑝, 𝑐)

= 𝑎𝑝𝑜𝑙𝑦,2 ⊙ Φ2(𝑥), 𝑎𝑝𝑜𝑙𝑦,2 := (1, · · · , 1,
√
2, · · · ,

√
2,
√
2𝑐, · · · ,

√
2𝑐, 𝑐).

(B.24)

Hence, Eq. (B.24) implies that

diag(Σ𝑝𝑜𝑙𝑦,2) = 𝑎𝑝𝑜𝑙𝑦,2 ⊙ 𝑎𝑝𝑜𝑙𝑦,2. (B.25)

Eq. (B.25) shows that the prior covariance of the interaction terms are given higher prior
variance than the main effects when 𝑐 ≤ 1, which is often undesirable. Furthermore,
this prior does not promote sparsity, which is typically expected in high-dimensional
problems.

142

Appendix C

Appendix for “The SKIM-FA Kernel:
High-Dimensional Variable Selection
and Non-Linear Interaction Discovery
in Linear Time”

C.1 Proofs

C.1.1 Proof of Proposition 4.3.2

It suffices to prove that ℋ𝑜
𝑉 is an RKHS. First we prove that ℋ𝑜

𝑉 is a Hilbert space.
Since ℋ𝑜

𝑉 ⊂ ℋ𝑉 , it suffices to show that ℋ𝑜
𝑉 is a vector space and complete. To show

that ℋ𝑜
𝑉 is a vector space, take arbitrary 𝑓, 𝑔 ∈ ℋ𝑜

𝑉 and 𝛼, 𝛽 ∈ 𝑅. We want to show
𝛼𝑓 + 𝛽𝑔 ∈ ℋ𝑜

𝑉 . Take an arbitrary 𝑓𝐴 ∈ ℋ𝐴, 𝐴 (𝑉 . Then,

⟨𝛼𝑓 + 𝛽𝑔, 𝑓𝐴⟩𝜇 = 𝛼⟨𝑓, 𝑓𝐴⟩𝜇 + 𝛽⟨𝑔, 𝑓𝐴⟩𝜇
= 0

since 𝑓, 𝑔 ∈ ℋ𝑜
𝑉 . Hence, ℋ𝑜

𝑉 is a vector space.
Suppose towards a contradiction that ℋ𝑜

𝑉 is not complete. Then, since ℋ𝑉 is
complete, there exists an 𝑓 ′ ∈ ℋ𝑉 ∖ ℋ𝑜

𝑉 and Cauchy sequence {𝑓𝑛}∞𝑛=1 such that
lim𝑛→∞ ‖𝑓 ′− 𝑓𝑛‖ℋ𝑉

= 0, where 𝑓𝑛 ∈ ℋ𝑜
𝑉 and ‖ · ‖ℋ𝑉

denotes the induced RKHS norm
for ℋ𝑉 . Then, there exists an 𝜖 > 0 and 𝑓𝐴 ∈ ℋ𝐴, 𝐴 (𝑉 such that

𝜖 = ⟨𝑓 ′, 𝑓𝐴⟩𝜇
= ⟨𝑓 ′ + 𝑓𝑚 − 𝑓𝑚, 𝑓𝐴⟩𝜇
= ⟨𝑓 ′ − 𝑓𝑚, 𝑓𝐴⟩𝜇 + ⟨𝑓𝑚, 𝑓𝐴⟩𝜇
= ⟨𝑓 ′ − 𝑓𝑚, 𝑓𝐴⟩𝜇
≤ ‖𝑓 ′ − 𝑓𝑚‖𝜇‖𝑓𝐴‖𝜇 (by Cauchy-Schwarz).

(C.1)

To reach a contraction, it suffices to show that there exists an 𝑚 < ∞ such that

143

‖𝑓 ′ − 𝑓𝑚‖𝜇 < 𝜖
‖𝑓𝐴‖𝜇 . To obtain this inequality, we upper bound ‖ · ‖𝜇 in terms of

‖ · ‖ℋ𝑉
. Let 𝑟𝑉 be the reproducing kernel for ℋ𝑉 . Then, for 𝑓 ∈ ℋ𝑉 ,

|𝑓(𝑥)|2 = |⟨𝑓, 𝑟𝑉 (𝑥, ·)⟩ℋ𝑉
|2 (by the reproducing property)

≤ ‖𝑓‖2ℋ𝑉
𝑟𝑉 (𝑥, 𝑥)

2 (by Cauchy-Schwarz).
(C.2)

Then,

‖𝑓‖2𝜇 =

∫︁
|𝑓(𝑥)|2𝑑𝜇

≤ ‖𝑓‖2ℋ𝑉

∫︁
𝑟𝑉 (𝑥, 𝑥)

2𝑑𝜇

(C.3)

Sinceℋ𝑉 belongs to the space of square integrable functions,
∫︀
𝑟𝑉 (𝑥, 𝑥)

2𝑑𝜇 =𝑀𝑉 <∞.
Hence,

‖𝑓 ′ − 𝑓𝑚‖𝜇 ≤𝑀𝑉 ‖𝑓 ′ − 𝑓𝑚‖2ℋ𝑉
<∞. (C.4)

Since ‖𝑓 ′ − 𝑓𝑚‖2ℋ𝑉
→ 0, there exists an 𝑚 such that ‖𝑓 ′ − 𝑓𝑚‖𝜇 < 𝜖

‖𝑓𝐴‖𝜇 . Hence, ℋ𝑜
𝑉

is complete.
To complete the proof it suffices to show that the evaluation functional on ℋ𝑜

𝑉 is a
bounded operator. Since ℋ𝑉 is an RKHS there exists an 𝑀𝑥 <∞ such that for all
𝑓 ∈ ℋ𝑉

|𝑓(𝑥)| ≤𝑀𝑥‖𝑓‖ℋ𝑉
. (C.5)

Since ℋ𝑜
𝑉 ⊂ ℋ𝑉 , then for all 𝑔 ∈ ℋ𝑜

𝑉 ,

|𝑔(𝑥)| ≤𝑀𝑥‖𝑔‖ℋ𝑉
. (C.6)

C.1.2 Proof of Lemma 4.3.5

𝑓 (𝑀)(𝑥) =
𝑀∑︁

𝑚=1

𝛼𝑚𝑘𝜃(𝑥𝑚, 𝑥)

=
𝑀∑︁

𝑚=1

⎛⎝ ∑︁
𝑉 :|𝑉 |≤𝑄

𝜃𝑉 𝑘𝑉 (𝑥𝑚, 𝑥)

⎞⎠
=

∑︁
𝑉 :|𝑉 |≤𝑄

𝜃𝑉

⎛⎝ 𝑀∑︁
𝑚=1

𝑘𝑉 (𝑥𝑚, 𝑥)

⎞⎠
=

∑︁
𝑉 :|𝑉 |≤𝑄

𝑓𝑉 (𝑥).

(C.7)

It remains to show that 𝑓𝑉 ∈ ℋ𝑜
𝑉 . For all 𝑚 ∈ [𝑀], 𝑘𝑉 (𝑥𝑚, ·) ∈ ℋ𝑜

𝑉 . Hence,
𝜃𝑉
∑︀𝑀

𝑚=1 𝑘𝑉 (𝑥𝑚, 𝑥) ∈ ℋ𝑜
𝑉 since ℋ𝑜

𝑉 is a Hilbert space.

144

C.1.3 Proof of Proposition 4.4.1

We prove the claim using a constructive proof with 𝑝 = 2 variables. Consider the
function

𝑓(𝑥1, 𝑥2) = 1 + (𝑥1 − 𝑥2)2𝑘𝐼(|𝑥1| ≤𝑀)𝐼(|𝑥2| ≤𝑀). (C.8)

Suppose the joint distribution of (𝑥1, 𝑥2) under 𝜇 equals(︃
𝑥1
𝑥2

)︃
∼ 𝑁

⎛⎝(︃0
0

)︃
,

(︃
1 𝜌
𝜌 1

)︃⎞⎠ .

Then, the joint distribution of (𝑥1, 𝑥2) under 𝜇⊗ equals(︃
𝑥1
𝑥2

)︃
∼ 𝑁

⎛⎝(︃0
0

)︃
,

(︃
1 0
0 1

)︃⎞⎠ .

By symmetry,

E𝜇⊗ [𝑓(𝑥1, 𝑥2)] = 2𝜇2(𝑥2 < 0)E𝜇⊗ [𝑓(𝑥1, 𝑥2) | 𝑥2 < 0]

≥ 2𝜇1(𝑥1 > 𝑐)𝜇2(𝑥2 < 0)E𝜇⊗ [𝑓(𝑥1, 𝑥2) | 𝑥1 > 𝑐, 𝑥2 < 0]

= 𝜇1(𝑥1 > 𝑐)E𝜇⊗ [𝑓(𝑥1, 𝑥2) | 𝑥1 > 𝑐, 𝑥2 < 0]

≥ 𝜇1(𝑥1 > 𝑐)𝑐2𝑘𝐼(|𝑐| < 𝑀).

(C.9)

Under 𝜇, we may assume without loss of generality that

𝑥1 ∼ 𝒩 (0, 1)

𝜖 ∼ 𝒩 (0, 1) s.t. 𝜖 ⊥⊥ 𝑥1

𝑥2 = 𝜌𝑥1 +
√︀

1− 𝜌2𝜖.

Then,

lim
𝜌→1

E𝜇𝑓(𝑥1, 𝑥2) = 1 + lim
𝜌→1

∫︁
(𝑥1 − 𝑥2)2𝑘𝐼(|𝑥1| ≤𝑀)𝐼(|𝑥2| ≤𝑀)𝑑𝜇(𝑥1, 𝑥2)

= 1 + lim
𝜌→1

∫︁
(𝑥1 − 𝜌𝑥1 −

√︀
1− 𝜌2𝜖)2𝑘𝐼(|𝑥1| ≤𝑀)𝐼(|𝑥2| ≤𝑀)𝑑𝜇⊗(𝑥1, 𝜖)

= 1 +

∫︁
lim
𝜌→1

(𝑥1 − 𝜌𝑥1 −
√︀

1− 𝜌2𝜖)2𝑘𝐼(|𝑥1| ≤𝑀)𝐼(|𝑥2| ≤𝑀)𝑑𝜇⊗(𝑥1, 𝜖)

= 1,

(C.10)

where the second to last line follows from he Dominated Convergence Theorem since
𝑓(𝑥1, 𝑥2) is uniformly bounded by (2𝑀)2𝑘. Since E𝜇𝑓(𝑥1, 𝑥2) > 1 for 0 ≤ 𝜌 < 1,
there exists a sequence {𝜌𝑘}∞𝑘=1 such that for all 𝑘 ∈ N, 1 < E𝜇𝑘

𝑓(𝑥1, 𝑥2) < 2 and
0 < 𝜌𝑘 < 1, where 𝜇𝑘 sets 𝜌 = 𝜌𝑘. Pick 𝑘′ large enough so that 𝑓𝜇⊗

{∅} > 2. Then, for

145

𝑘 ≥ 𝑘′,

|𝑓𝜇⊗
{∅} − 𝑓

𝜇𝑘

{∅}|
|𝑓𝜇𝑘

{∅}|
≥
|𝑓𝜇⊗

{∅} − 𝑓
𝜇𝑘

{∅}|
2

=
𝑓
𝜇⊗
{∅} − 𝑓

𝜇𝑘

{∅}

2

>
𝑓
𝜇⊗
{∅} − 2

2

(C.11)

Let 𝑘* = max

(︃
𝑘′,

⌈︂
.5 𝑐

√︁
2(Δ+1)
𝜇1(𝑥1>𝑐

⌉︂)︃
. Then, by Eq. (C.9) and Eq. (C.11),

|𝑓𝜇⊗
{∅}−𝑓

𝜇𝑘*
{∅} |

|𝑓𝜇𝑘*
{∅} |

> Δ.

C.1.4 Proof of Lemma 4.3.4

By equation 2.25 of Rasmussen and Williams [2006, Chapter 2], Eq. (4.6) equals the
posterior predictive mean of the following Bayesian model:

𝑓 ∼ 𝐺𝑃 (0, 𝑘𝜃)

𝑦 | 𝑓, 𝑥 ∼ 𝒩 (𝑓(𝑥), 𝜎2
noise = 𝜆).

We may re-write 𝑘𝜃 as,

𝑘𝜃(𝑥, 𝑥̃) =
∑︁

𝑉 :|𝑉 |≤𝑄

𝜃𝑉Φ
𝑇
𝑉 (𝑥)Φ

𝑇
𝑉 (𝑥̃)

=
∑︁

𝑉 :|𝑉 |≤𝑄

Φ𝑇
𝑉 (𝑥)[𝜃𝑉 𝐼𝐵𝑉 ×𝐵𝑉]Φ𝑇

𝑉 (𝑥̃)

=
∑︁

𝑉 :|𝑉 |≤𝑄

Φ𝑇
𝑉 (𝑥)Σ𝑉Φ

𝑇
𝑉 (𝑥̃),

where Σ𝑉 = 𝜃𝑉 𝐼𝐵𝑉 ×𝐵𝑉 . Then, by Rasmussen and Williams [2006, Chapter 2.1.2] and
the additive property of kernels, 𝑓 ∼ 𝐺𝑃 (0, 𝑘𝜃) has the same distribution as drawing
a set of regression coefficients Θ𝑉 ∼ 𝒩 (0,Σ𝑉) and setting 𝑓 =

∑︀
𝑉 :|𝑉 |≤𝑄Θ𝑇

𝑉Φ𝑉 (·).
Hence, the posterior predictive mean of the Gaussian process at a point 𝑥 equals∑︀

𝑉 :|𝑉 |≤𝑄 Θ̂𝑇
𝑉Φ𝑉 (𝑥).

146

C.1.5 Proof of Theorem 4.3.9

𝑘SKIM-FA(𝑥, 𝑥̃) =
∑︁

𝑉 :|𝑉 |≤𝑄

⎡⎣𝜂2|𝑉 |

∏︁
𝑖∈𝑉

𝜅2𝑖

⎤⎦ 𝑘𝑉 (𝑥, 𝑥̃)
=

∑︁
𝑉 :|𝑉 |≤𝑄

⎡⎣𝜂2|𝑉 |

∏︁
𝑖∈𝑉

𝜅2𝑖

⎤⎦∏︁
𝑖∈𝑉

𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)

=
∑︁

𝑉 :|𝑉 |≤𝑄

⎡⎣𝜂2|𝑉 |

∏︁
𝑖∈𝑉

𝜅2𝑖 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)

⎤⎦
=

𝑄∑︁
𝑞=1

∑︁
𝑉 :|𝑉 |=𝑄

⎡⎣𝜂2|𝑉 |

∏︁
𝑖∈𝑉

𝜅2𝑖 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)

⎤⎦
=

𝑄∑︁
𝑞=1

𝜂2𝑞
∑︁

𝑉 :|𝑉 |=𝑞

⎡⎣∏︁
𝑖∈𝑉

𝜅2𝑖 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)

⎤⎦

(C.12)

Let 𝑘𝑖(·, ·) = 𝜅2𝑖 𝑘𝑖(·, ·). Then, Vapnik [1995, pg. 199] shows that

𝑘𝑞 :=
∑︁

𝑉 :|𝑉 |=𝑞

∏︁
𝑖∈𝑉

𝑘𝑖 =
1

𝑞

𝑞∑︁
𝑠=1

(−1)𝑠+1𝑘𝑞−𝑠𝑘
𝑠, (C.13)

where 𝑘𝑠(𝑥, 𝑥̃) =
∑︀𝑝

𝑖=1[𝑘𝑖(𝑥𝑖, 𝑥̃𝑖)]
𝑠 and 𝑘0(𝑥, 𝑥̃) = 1. The result follows from Eq. (C.12)

and Eq. (C.13).

C.1.6 Proof of Corollary 4.3.10

Computing and storing 𝑘1(𝑥, 𝑥̃), · · · , 𝑘𝑄(𝑥, 𝑥̃) takes 𝑂(𝑝𝑄) time and requires 𝑂(𝑄)
memory, respectively. After computing and storing 𝑘1(𝑥, 𝑥̃), · · · , 𝑘𝑞(𝑥, 𝑥̃), 𝑘𝑞+1(𝑥, 𝑥̃)
takes 𝑂(𝑞 + 1) time. Hence, computing all 𝑘1(𝑥, 𝑥̃), · · · , 𝑘𝑄(𝑥, 𝑥̃) terms takes 𝑂(𝑄2)
time given 𝑘1(𝑥, 𝑥̃), · · · , 𝑘𝑄(𝑥, 𝑥̃). Since 𝑄 < 𝑝, computing 𝑘SKIM-FA(𝑥, 𝑥̃) takes 𝑂(𝑝𝑄)
time.

C.1.7 Proof of Proposition 4.5.1

𝜕𝐿

𝜕𝑈̃
(𝑡)
𝑖

=
𝜕𝐿

𝜕𝜅
(𝑡)
𝑖

𝜕𝜅𝑖

𝜕𝑈
(𝑡)
𝑖

𝜕𝑈
(𝑡)
𝑖

𝜕𝑈̃
(𝑡)
𝑖

=
𝜕𝐿

𝜕𝜅
(𝑡)
𝑖

𝐼(𝑈
(𝑡)
𝑖 > 𝑐)

2𝑈̃
(𝑡)
𝑖

(𝑈̃
(𝑡)
𝑖 + 1)2

.

147

Since 𝜅(𝑡)𝑖 = 0, that implies 𝑈 (𝑡)
𝑖 ≤ 𝑐. Hence, 𝜕𝐿

𝜕𝑈̃
(𝑡)
𝑖

= 0. Consequently,

𝑈̃
(𝑡+1)
𝑖 = 𝑈̃

(𝑡)
𝑖 − 𝛾

𝜕𝐿

𝜕𝑈̃
(𝑡)
𝑖

= 𝑈̃
(𝑡)
𝑖 .

(C.14)

By Eq. (C.14), 𝜅(𝑡
′)

𝑖 = 0 for all 𝑡′ ≥ 𝑡.

C.1.8 Proof of Lemma 4.4.4

It suffices to prove that any 𝑓𝑉 ∈ ℋ𝑉 is square-integrable with respect to any
probability measure. Since 𝜑𝑖𝑏 is a continuous function on a compact set, there exists
a 0 < 𝑀𝑖𝑏 <∞ such that |𝜑𝑖𝑏| is bounded by 𝑀𝑖𝑏. Without loss of generality, assume
𝑉 = {1, · · · , 𝑞}. Then, there exists coefficients 𝑐𝑏1,··· ,𝑏𝑞 ∈ R such that

𝑓𝑉 (𝑥𝑉) =
∑︁

𝑏1∈[𝐵1]

· · ·
∑︁

𝑏𝑞∈[𝐵𝑞]

𝑐𝑏1,··· ,𝑏𝑞

𝑞∏︁
𝑖=1

𝜑𝑖𝑏𝑖(𝑥𝑖)

≤
∑︁

𝑏1∈[𝐵1]

· · ·
∑︁

𝑏𝑞∈[𝐵𝑞]

𝑐𝑏1,··· ,𝑏𝑞𝑀
𝑞
*

<∞

for all 𝑥𝑉 , where 𝑀* = max𝑖∈[𝑝] max𝑏∈[𝐵𝑖]𝑀𝑖𝑏 < ∞ since 𝐵𝑖 < ∞. Hence, for any
probability measure 𝜇,

∫︁
|𝑓𝑉 (𝑥𝑉)|2𝑑𝜇 <

∫︁ ⎛⎝ ∑︁
𝑏1∈[𝐵1]

· · ·
∑︁

𝑏𝑞∈[𝐵𝑞]

𝑐𝑏1,··· ,𝑏𝑞𝑀
𝑞
*

⎞⎠2

𝑑𝜇

=

⎛⎝ ∑︁
𝑏1∈[𝐵1]

· · ·
∑︁

𝑏𝑞∈[𝐵𝑞]

𝑐𝑏1,··· ,𝑏𝑞𝑀
𝑞
*

⎞⎠2

<∞.

(C.15)

C.1.9 Proof of Theorem 4.4.5

Let

𝑓𝑖𝑗 = 𝑓
𝜇⊗
{𝑖,𝑗} − [Ψ𝑖

𝑖𝑗Φ𝑖 +Ψ𝑗
𝑖𝑗Φ𝑗 +Ψ0

𝑖𝑗]

𝑓𝑖 = 𝑓
𝜇⊗
{𝑖} +

∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗Φ𝑖 +

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ

𝑇
𝑖 (𝑥𝑖)

𝑓∅ = 𝑓
𝜇⊗
∅ +

∑︁
𝑖<𝑗

Ψ0
𝑖𝑗.

(C.16)

148

We start by proving that 𝑓 = 𝑓∅ +
∑︀𝑝

𝑖=1 𝑓𝑖 +
∑︀𝑝

𝑖,𝑗=1 𝑓𝑖𝑗. Expanding each component,

𝑓∅ +
∑︁
𝑖

𝑓𝑖 +
∑︁
𝑖<𝑗

𝑓𝑖𝑗 = 𝑓∅ +
∑︁
𝑖

𝑓𝑖 +
∑︁
𝑖<𝑗

[︁
𝑓
𝜇⊗
{𝑖,𝑗} − [Ψ𝑖

𝑖𝑗Φ𝑖 +Ψ𝑗
𝑖𝑗Φ𝑗 +Ψ0

𝑖𝑗]
]︁

= 𝑓
𝜇⊗
∅ +

∑︁
𝑖

𝑓𝑖 +
∑︁
𝑖<𝑗

[︁
𝑓
𝜇⊗
{𝑖,𝑗} − [Ψ𝑖

𝑖𝑗Φ𝑖 +Ψ𝑗
𝑖𝑗Φ𝑗]

]︁

= 𝑓
𝜇⊗
∅ +

∑︁
𝑖

⎡⎣𝑓𝜇⊗
{𝑖} +

∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗Φ𝑖 +

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖

⎤⎦+

∑︁
𝑖<𝑗

[︁
𝑓
𝜇⊗
{𝑖,𝑗} − [Ψ𝑖

𝑖𝑗Φ𝑖 +Ψ𝑗
𝑖𝑗Φ𝑗]

]︁
= 𝑓

𝜇⊗
∅ +

∑︁
𝑖

𝑓
𝜇⊗
{𝑖} +

∑︁
𝑖<𝑗

𝑓
𝜇⊗
{𝑖,𝑗}+∑︁

𝑖

∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗Φ𝑖 +

∑︁
𝑖

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖 −

∑︁
𝑖<𝑗

[︁
Ψ𝑖

𝑖𝑗Φ𝑖 +Ψ𝑗
𝑖𝑗Φ𝑗

]︁
= 𝑓 +

∑︁
𝑖

∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗Φ𝑖 +

∑︁
𝑖

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖 −

∑︁
𝑖

∑︁
𝑗>𝑖

[︁
Ψ𝑖

𝑖𝑗Φ𝑖 +Ψ𝑗
𝑖𝑗Φ𝑗

]︁
= 𝑓 +

∑︁
𝑖

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖 −

∑︁
𝑖

∑︁
𝑗>𝑖

Ψ𝑗
𝑖𝑗Φ𝑗

= 𝑓 +
∑︁
𝑖

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖 −

∑︁
𝑗

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑗

= 𝑓.

We now prove that there exists unique coefficients, Ψ𝑖
𝑖𝑗 ∈ R1×𝐵𝑖 ,Ψ𝑗

𝑖𝑗 ∈ R1×𝐵𝑗 ,Ψ0
𝑖𝑗 ∈ R,

such that 𝑓𝑖𝑗 belongs to the orthogonal complement of the Hilbert space ℋ𝑖𝑗
add :=

span{1, {𝜑𝑖𝑏}𝐵𝑖
𝑏=1, {𝜑𝑗𝑏}

𝐵𝑗

𝑏=1}. Letℋ𝑖𝑗 := span{1, {𝜑𝑖𝑏}𝐵𝑖
𝑏=1, {𝜑𝑗𝑏}

𝐵𝑗

𝑏=1}, {𝜑𝑖𝑏𝜑𝑗𝑏′}𝑏∈[𝐵𝑖],𝑏′∈[𝐵𝑗]}.
Then, 𝑓𝜇⊗

{𝑖,𝑗} ∈ ℋ𝑖𝑗 and ℋ𝑖𝑗
add is a closed convex subspace of ℋ𝑖𝑗. Therefore, by the

Hilbert Projection Theorem, there exists unique 𝑓𝑖𝑗 ∈ ℋ𝑖𝑗
add and 𝑓⊥

𝑖𝑗 ∈ ℋ𝑖𝑗 such that

𝑓
𝜇⊗
{𝑖,𝑗} = 𝑓𝑖𝑗 + 𝑓⊥

𝑖𝑗 s.t.

⟨𝑔, 𝑓⊥
𝑖𝑗 ⟩𝜇 = 0 ∀𝑔 ∈ ℋ𝑖𝑗

add.
(C.17)

Since span{1, {𝜑𝑖𝑏}𝐵𝑖
𝑏=1, {𝜑𝑗𝑏}

𝐵𝑗

𝑏=1} is a linearly independent basis of ℋ𝑖𝑗
add, there exists

unique coefficients,Ψ𝑖
𝑖𝑗 ∈ R1×𝐵𝑖 ,Ψ𝑗

𝑖𝑗 ∈ R1×𝐵𝑗 ,Ψ0
𝑖𝑗 ∈ R, such that 𝑓𝑖𝑗 = Ψ𝑖

𝑖𝑗Φ
𝑇
𝑖 (𝑥𝑖) +

Ψ𝑗
𝑖𝑗Φ

𝑇
𝑗 (𝑥𝑗) + Ψ0

𝑖𝑗.
To complete the proof, we need to show that 𝑓𝑖𝑗 = 𝑓𝜇

{𝑖,𝑗}, 𝑓𝑖 = 𝑓𝜇
{𝑖}, 𝑓∅ = 𝑓𝜇

∅ . It

149

suffices to show that ∫︁
𝑥𝑖

𝑓𝑖 𝑑𝜇𝑖 = 0∫︁
𝑥𝑖,𝑥𝑗

𝑓𝑖𝑗 𝑑𝜇𝑖 = 0∫︁
𝑥𝑖,𝑥𝑗

𝑓𝑖𝑓𝑖𝑗 𝑑𝜇(𝑥𝑖, 𝑥𝑗) = 0.

(C.18)

The last two equalities in Eq. (C.18) follow directly from Eq. (C.17). For the first
equality in Eq. (C.18), notice that∫︁

𝑥𝑖

𝑓𝑖 𝑑𝜇𝑖 = E𝜇𝑖
𝑓𝑖

= E𝜇𝑖

⎡⎣𝑓𝜇⊗
{𝑖} +

∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗Φ𝑖 +

∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖Φ𝑖

⎤⎦
= E𝜇𝑖

𝑓
𝜇⊗
{𝑖} +

∑︁
𝑗>𝑖

E𝜇𝑖
[Ψ𝑖

𝑖𝑗Φ𝑖] +
∑︁
𝑗<𝑖

E𝜇𝑖
[Ψ𝑖

𝑗𝑖Φ𝑖]

=
∑︁
𝑗>𝑖

Ψ𝑖
𝑖𝑗E𝜇𝑖

[Φ𝑖] +
∑︁
𝑗<𝑖

Ψ𝑖
𝑗𝑖E𝜇𝑖

[Φ𝑖]

= 0,

where the last equation follows from the fact that the components of Φ𝑖 span ℋ𝑜
𝑖 (and

hence are all zero mean).

C.1.10 Proof of Proposition 4.5.2

As shown in the proof of Theorem 4.4.5, Ψ𝑖
𝑖𝑗 ∈ R1×𝐵𝑖 ,Ψ𝑗

𝑖𝑗 ∈ R1×𝐵𝑗 ,Ψ0
𝑖𝑗 ∈ R equal

the unique set of coefficients such that 𝑓𝑖𝑗 = Ψ𝑖
𝑖𝑗Φ𝑖 + Ψ𝑗

𝑖𝑗Φ𝑗 + Ψ0
𝑖𝑗 for 𝑓𝑖𝑗 defined in

Eq. (C.17) and also shown below:

𝑓
𝜇⊗
{𝑖,𝑗} = 𝑓𝑖𝑗 + 𝑓⊥

𝑖𝑗 s.t.

⟨𝑔, 𝑓⊥
𝑖𝑗 ⟩𝜇 = 0 ∀𝑔 ∈ ℋ𝑖𝑗

add.

Let 𝑦(𝑤)
𝑖𝑗 = 𝑓

𝜇⊗
{𝑖,𝑗}(𝑥

(𝑚)
𝑖 , 𝑥

(𝑤)
𝑗) and 𝜖(𝑤)

𝑖𝑗 = 𝑓⊥
𝑖𝑗 (𝑥

(𝑤)
𝑖 , 𝑥

(𝑤)
𝑗), where 𝑥(𝑤) iid∼ 𝜇. Then,

𝑦
(𝑤)
𝑖𝑗 = Ψ𝑖

𝑖𝑗Φ𝑖(𝑥
(𝑤)
𝑖) + Ψ𝑗

𝑖𝑗Φ𝑗(𝑥
(𝑤)
𝑗) + Ψ0

𝑖𝑗 + 𝜖
(𝑤)
𝑖𝑗 𝑥(𝑤) iid∼ 𝜇. (C.19)

Then, Eq. (C.19) is a special case of the random design linear model under misspecifi-
cation studied in Hsu et al. [2014]. Hence, by Hsu et al. [2014, Theorem 11] we can
consistently recover Ψ𝑖

𝑖𝑗, Ψ
𝑗
𝑖𝑗, Ψ0

𝑖𝑗 by using ordinary least-squares. Hence Algorithm 5
recovers Ψ𝑖

𝑖𝑗, Ψ
𝑗
𝑖𝑗, Ψ0

𝑖𝑗 as 𝑊 →∞.

150

C.2 Literature Review
Finite Basis Expansion Methods. Stone [1994] introduced the hierarchical func-
tional decomposition and derived statistical rates of convergence by approximating ℋ
using a finite B-spline tensor product basis. Huang [1998] later extended this result to
general tensor product families such as wavelets, polynomials, etc. There have been a
number of specific Bayesian and frequentist methods that fall within the general class
of models described in Huang [1998]; see, for example, Wei et al. [2019], Scheipl et al.
[2012], Curtis et al. [2014]. Unfortunately, since these methods explicitly generate the
tensor product basis, they are computationally intractable for even moderately sized
problems.

Linear models trivially fall within this class as well. For 𝑄 = 1, the Lasso and
the many related techniques provide fast variable selection and estimation in high-
dimensional linear models [Chen et al., 1998, Candes and Tao, 2007, Nakagawa et al.,
2016]. For 𝑄 = 2, the hierarchical Lasso [Bien et al., 2013] extends the Lasso to model
interactions, and there have been many variants of this model; see, for example, Lim
and Hastie [2015], Shah [2016]. However, these methods take at least 𝑂(𝑝2) time since
they explicitly model all main and interaction effects.

Two-Stage & Forward-Stage Approaches. Instead of modeling interactions
jointly, a common heuristic (similar in spirit to forward stepwise regression) is greedily
adding interactions such as in multivariate additive regression splines (MARS) or
GA2M [Lou et al., 2013]. Another common approach is performing computationally
cheap variable selection methods designed for generalized additive models (e.g., Lasso or
SpAM [Liu et al., 2008]) to identify a sparse set of relevant variables. By restricting to
a small set of variables, one can then apply more computationally intensive interactions
techniques such as RKHS ANOVA methods.

Either of the two approaches above requires some form of strong-hierarchy, namely
that all interactions have non-zero main effects, to consistently identify the correct
set of variables. While some problems have strong main effects, in other applications
this may not be the case. For example, in genome-wide associate studies, fitting an
additive-only model to predict an individual’s height from genetics only has an 𝑅2

of about 5% even though height is well-predicted by parents’ heights (thought to
be between 80%− 90%) [Maher, 2008]. This discrepancy, more generally called the
problem of missing heritability, remains an open challenge in biology for understanding
complex diseases based on genetics. One explanation for missing heritability is not
modeling genetic interactions [Maher, 2008, Aschard, 2016, Slim et al., 2018, Greene
et al., 2010]. In other words, the main effects might be weak, or in the extreme case
some genes might only have interaction effects. Hence, from a purely variable selection
standpoint, modeling interactions could help better identify genes that are risk-factors
for certain diseases.

In the orthogonal 𝜇 case, the statistical benefit from modeling interactions can
be easily seen from the decomposition in Eq. (4.4). Suppose 𝑄 = 2 and that main
effects total signal variance equals 5, the pairwise signal variance equals equals 90,
and the noise variance equals 5. Then, the 𝑅2 for an additive-only model is 5%

151

while the 𝑅2 for interaction model is 90%. Since the achievable signal increases (and
necessarily the effective noise variance decreases), performing variable selection in
a lower signal-to-noise regime might offset the statistical price of modeling more
parameters.

C.3 Zero Mean Kernels and Finite-Basis Functions
In this section, we show how we construct 𝑘𝑖, i.e., the reproducing kernel for ℋ𝑜

𝑖 . We
construct 𝑘𝑖 by first generating a finite-dimensional basis for ℋ𝑖. Then, we normalize
each basis function to be zero mean and unit variance so that the normalized basis
functions span ℋ𝑜

𝑖 . For a more general approach to construct zero mean kernels (e.g.,
even when ℋ𝑖 is infinite-dimensional) see Durrande et al. [2013].

Construction. For each covariate dimension 𝑖, consider a set of linearly independent
basis functions {𝜑𝑖𝑏}𝐵𝑖

𝑏=1 such that

ℋ𝑖 = span{1, 𝜑𝑖1, · · · , 𝜑𝑖𝐵𝑖
}.

Let 𝜑𝑖𝑏 =
𝜑𝑖𝑏−E𝜇[𝜑𝑖𝑏]√

Var𝜇[𝜑𝑖𝑏]
. Then,

ℋ𝑜
𝑖 = span{𝜑𝑖1, · · · , 𝜑𝑖𝐵𝑖

}, Φ𝑖 := [𝜑𝑖1, · · · , 𝜑𝑖𝐵𝑖
].

Hence, 𝑘𝑖(𝑥𝑖, 𝑥̃𝑖) = Φ𝑖(𝑥𝑖)
𝑇Φ𝑖(𝑥̃𝑖) is the reproducing kernel for ℋ𝑜

𝑖 . In many instances,
we do not actually know the joint distribution of the covariates. In this case, we
approximate 𝜇 with the empirical distribution 𝜇̂ of the datapoints:

𝜑𝑖𝑏 =
𝜑𝑖𝑏 − E ^̂𝜇[𝜑𝑖𝑏]√︀

Var𝜇̂[𝜑𝑖𝑏]
s.t.

𝜇̂ =
1

𝑁

𝑁∑︁
𝑛=1

𝛿𝑥(𝑛)

E ^̂𝜇[𝜑𝑖𝑏] =
1

𝑁

𝑁∑︁
𝑛=1

𝜑𝑖𝑏(𝑥
(𝑛)
𝑖)

Var𝜇̂[𝜑𝑖𝑏] =
1

𝑁

𝑁∑︁
𝑛=1

𝜑2
𝑖𝑏(𝑥

(𝑛)
𝑖)− E ^̂𝜇[𝜑𝑖𝑏].

C.4 MARS ANOVA Procedure
We show how to perform the functional ANOVA decomposition of 𝑓 with respect to
𝜇̂⊗ = 𝜇̂1 ⊗ · · · ⊗ 𝜇̂𝑝, where 𝑓 denotes the regression function fit from MARS and 𝜇𝑖

the empirical distribution of covariate 𝑖: 𝜇̂𝑖 =
1
𝑁

∑︀𝑁
𝑛=1 𝛿𝑥(𝑛)

𝑖
. Under 𝜇̂⊗, the functional

152

ANOVA decomposition of 𝑓 equals

𝑓∅ = E𝜇̂⊗ [𝑓]

𝑓{𝑖}(𝑥𝑖) = E𝜇̂⊗ [𝑓 | 𝑥𝑖 = 𝑥𝑖]− 𝑓∅
𝑓{𝑖,𝑗}(𝑥𝑖, 𝑥𝑗) = E𝜇̂⊗ [𝑓 | 𝑥𝑖 = 𝑥𝑖, 𝑥𝑗 = 𝑥𝑗]− 𝑓{𝑖}(𝑥𝑖)− 𝑓{𝑗}(𝑥𝑖)− 𝑓∅,

(C.20)

which is also shown in Durrande et al. [2013, Equation 5]. We show how to compute
each of the expectations in Eq. (C.20). The intercept 𝑓∅ equals the sample average of
the fitted values (i.e., 𝑓 applied to each of the 𝑁 training datapoints). Let 𝑋 denote
the 𝑁 × 𝑝 matrix of training data. Let 𝑋 𝑖 equal the matrix obtained by setting all
values in the 𝑖th column of 𝑋 equal to 𝑥𝑖 and the remaining columns unchanged.
Then,

E𝜇̂⊗ [𝑓 | 𝑥𝑖 = 𝑥𝑖] =
1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝑋 𝑖
𝑛),

where 𝑋 𝑖
𝑛 is the 𝑛th row of 𝑋 𝑖

𝑛. Similarly, let 𝑋 𝑖𝑗 equal the matrix obtained by setting
all values in the 𝑖th and 𝑗th columns of 𝑋 equal to 𝑥𝑖 and 𝑥𝑗 respectively, and the
remaining columns unchanged. Then,

E𝜇̂⊗ [𝑓 | 𝑥𝑖 = 𝑥𝑖, 𝑥𝑗 = 𝑥𝑗] =
1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝑋 𝑖𝑗
𝑛).

C.5 Additional Experimental Results

153

Table C.1: Variable Selection Performance for Main Effects Only Setting.

Method # Covariates # Correct Selected # Wrong Selected # Correct Not Selected

HierLasso 250 4 0 1
SKIM -FA 250 4 0 1
Pairs Lasso 250 4 5 1

SPAM-2Stage 250 5 52 0
MARS 250 5 58 0

SKIM-FA 500 5 13 0
SPAM-2Stage 500 5 28 0
Pairs Lasso 500 4 39 1
HierLasso 500 4 48 1
MARS 500 5 64 0

SKIM-FA 1000 3 0 2
HierLasso 1000 4 5 1

Pairs Lasso 1000 4 6 1
SPAM-2Stage 1000 5 15 0

MARS 1000 5 70 0

154

Ta
bl

e
C

.2
:

E
st

im
at

io
n

P
er

fo
rm

an
ce

fo
r

M
ai

n
E

ffe
ct

s
O

nl
y

Se
tt

in
g.

M
et

h
od

p

C
or

re
ct

S
el

ec
te

d
S
S
E

(M
ai

n
)

C
or

re
ct

N
ot

S
el

ec
te

d
S
S
E

(M
ai

n
)

W
ro

n
g

S
el

ec
te

d
S
S
E

(M
ai

n
)

C
or

re
ct

S
el

ec
te

d
S
S
E

(P
ai

r)

C
or

re
ct

N
ot

S
el

ec
te

d
S
S
E

(P
ai

r)

W
ro

n
g

S
el

ec
te

d
S
S
E

(P
ai

r)

T
ot

al
S
S
E

T
ot

al
S
S
E

÷
S
ig

n
al

V
ar

ia
n
ce

M
A

R
S-

E
M

P
25

0
0.

31
0.

00
2.

11
0.

00
0.

00
2.

24
4.

66
0.

23
SP

A
M

-2
St

ag
e

25
0

2.
77

0.
00

1.
99

0.
00

0.
00

0.
08

4.
84

0.
24

SK
IM

-F
A

25
0

2.
75

4.
02

0.
00

0.
00

0.
00

0.
39

7.
16

0.
36

M
A

R
S-

VA
N

IL
LA

25
0

73
.1

7
0.

00
2.

37
0.

00
0.

00
9.

89
85

.4
3

4.
27

SP
A

M
-2

St
ag

e
50

0
2.

82
0.

00
1.

25
0.

00
0.

00
0.

04
4.

11
0.

21
SK

IM
-F

A
50

0
2.

75
0.

00
0.

49
0.

00
0.

00
1.

40
4.

64
0.

23
M

A
R

S-
E

M
P

50
0

0.
38

0.
00

2.
37

0.
00

0.
00

2.
19

4.
95

0.
25

M
A

R
S-

VA
N

IL
LA

50
0

35
.6

7
0.

00
3.

62
0.

00
0.

00
9.

22
48

.5
1

2.
43

SP
A

M
-2

St
ag

e
10

00
2.

67
0.

00
0.

78
0.

00
0.

00
0.

02
3.

46
0.

17
M

A
R

S-
E

M
P

10
00

0.
45

0.
00

2.
68

0.
00

0.
00

2.
39

5.
51

0.
28

SK
IM

-F
A

10
00

2.
70

8.
10

0.
00

0.
00

0.
00

0.
24

11
.0

3
0.

55
M

A
R

S-
VA

N
IL

LA
10

00
16

.1
4

0.
00

1.
56

0.
00

0.
00

10
.3

3
28

.0
2

1.
40

155

Table C.3: Variable Selection Performance for Equal Main and Interaction Effects
Setting.

Method # of Covariates # Correct Selected # Wrong Selected # Correct Not Selected

SKIM-FA 250 5 1 0
HierLasso 250 5 25 0

SPAM-2Stage 250 5 37 0
MARS 250 5 84 0

Pairs Lasso 250 5 89 0

SKIM-FA 500 5 0 0
SPAM-2Stage 500 5 29 0

HierLasso 500 5 30 0
MARS 500 5 69 0

Pairs Lasso 500 5 182 0

SKIM-FA 1000 5 0 0
SPAM-2Stage 1000 5 15 0

HierLasso 1000 5 40 0
MARS 1000 5 71 0

Pairs Lasso 1000 5 213 0

156

Ta
bl

e
C

.4
:

E
st

im
at

io
n

P
er

fo
rm

an
ce

fo
r

E
qu

al
M

ai
n

an
d

In
te

ra
ct

io
n

E
ffe

ct
s

Se
tt

in
g.

M
et

h
od

p

C
or

re
ct

S
el

ec
te

d
S
S
E

(M
ai

n
)

C
or

re
ct

N
ot

S
el

ec
te

d
S
S
E

(M
ai

n
)

W
ro

n
g

S
el

ec
te

d
S
S
E

(M
ai

n
)

C
or

re
ct

S
el

ec
te

d
S
S
E

(P
ai

r)

C
or

re
ct

N
ot

S
el

ec
te

d
S
S
E

(P
ai

r)

W
ro

n
g

S
el

ec
te

d
S
S
E

(P
ai

r)

T
ot

al
S
S
E

T
ot

al
S
S
E

÷
S
ig

n
al

V
ar

ia
n
ce

SK
IM

-F
A

25
0

1.
62

0.
00

0.
08

0.
52

0.
00

0.
17

2.
39

0.
12

SP
A

M
-2

St
ag

e
25

0
1.

63
0.

00
1.

72
8.

84
0.

00
0.

11
12

.3
0

0.
62

M
A

R
S-

E
M

P
25

0
0.

71
0.

00
4.

44
2.

17
0.

00
5.

69
13

.0
1

0.
65

M
A

R
S-

VA
N

IL
LA

25
0

24
.9

1
0.

00
5.

28
17

.1
3

0.
00

18
.0

3
65

.3
5

3.
27

SK
IM

-F
A

50
0

1.
52

0.
00

0.
00

0.
41

0.
00

0.
00

1.
93

0.
10

SP
A

M
-2

St
ag

e
50

0
1.

62
0.

00
3.

74
2.

16
0.

00
5.

47
12

.9
9

0.
65

M
A

R
S-

E
M

P
50

0
0.

71
0.

00
4.

69
1.

63
0.

96
6.

57
14

.5
6

0.
73

M
A

R
S-

VA
N

IL
LA

50
0

11
.3

6
0.

00
13

.2
2

15
.6

2
0.

96
23

.5
5

64
.7

1
3.

24

SK
IM

-F
A

10
00

1.
54

0.
00

0.
00

0.
29

0.
00

0.
00

1.
82

0.
09

SP
A

M
-2

St
ag

e
10

00
1.

67
0.

00
1.

07
0.

41
0.

00
2.

16
5.

31
0.

27
M

A
R

S-
E

M
P

10
00

0.
61

0.
00

3.
84

1.
70

0.
00

2.
52

8.
67

0.
43

M
A

R
S-

VA
N

IL
LA

10
00

45
4.

88
0.

00
3.

16
21

.4
6

0.
00

13
.2

2
49

2.
72

24
.6

4

157

Table C.5: Variable Selection Performance for Weak Main Effects Setting.

Method # Covariates # Correct Selected # Wrong Selected # Correct Not Selected

SKIM-FA 250 5 6 0
MARS 250 5 75 0

SPAM-2Stage 250 4 77 1
Pairs Lasso 250 5 123 0
HierLasso 250 5 160 0

SKIM-FA 500 5 16 0
SPAM-2Stage 500 1 21 4

HierLasso 500 5 62 0
Pairs Lasso 500 5 85 0

MARS 500 2 132 3

SKIM-FA 1000 5 9 0
SPAM-2Stage 1000 1 41 4

MARS 1000 5 75 0
HierLasso 1000 5 120 0

Pairs Lasso 1000 5 144 0

158

Ta
bl

e
C

.6
:

E
st

im
at

io
n

P
er

fo
rm

an
ce

fo
r

W
ea

k
M

ai
n

E
ffe

ct
s

Se
tt

in
g.

M
et

h
od

p

C
or

re
ct

S
el

ec
te

d
S
S
E

(M
ai

n
)

C
or

re
ct

N
ot

S
el

ec
te

d
S
S
E

(M
ai

n
)

W
ro

n
g

S
el

ec
te

d
S
S
E

(M
ai

n
)

C
or

re
ct

S
el

ec
te

d
S
S
E

(P
ai

r)

C
or

re
ct

N
ot

S
el

ec
te

d
S
S
E

(P
ai

r)

W
ro

n
g

S
el

ec
te

d
S
S
E

(P
ai

r)

T
ot

al
S
S
E

T
ot

al
S
S
E

÷
S
ig

n
al

V
ar

ia
n
ce

SK
IM

-F
A

25
0

0.
45

0.
00

0.
95

0.
73

0.
00

0.
77

2.
89

0.
14

M
A

R
S-

E
M

P
25

0
1.

46
0.

00
4.

02
4.

83
0.

00
4.

67
14

.9
7

0.
75

SP
A

M
-2

St
ag

e
25

0
0.

09
0.

05
2.

22
10

.7
2

7.
73

0.
42

21
.2

3
1.

06
M

A
R

S-
VA

N
IL

LA
25

0
22

49
7.

35
0.

00
7.

31
14

80
73

.2
9

0.
00

18
.5

5
17

05
96

.5
0

85
29

.8
3

SK
IM

-F
A

50
0

0.
69

0.
00

2.
05

1.
50

0.
00

1.
37

5.
61

0.
28

SP
A

M
-2

St
ag

e
50

0
0.

27
0.

20
4.

09
0.

00
19

.4
6

0.
08

24
.1

1
1.

21
M

A
R

S-
E

M
P

50
0

0.
41

0.
15

21
.9

2
0.

00
19

.4
6

15
.5

6
57

.5
1

2.
88

M
A

R
S-

VA
N

IL
LA

50
0

0.
10

0.
15

32
37

88
.6

5
0.

00
19

.4
6

32
45

88
.3

3
64

83
96

.7
0

32
41

9.
83

SK
IM

-F
A

10
00

0.
72

0.
00

1.
37

0.
61

0.
00

0.
63

3.
33

0.
17

M
A

R
S-

E
M

P
10

00
0.

67
0.

00
5.

86
3.

37
0.

00
5.

63
15

.5
2

0.
78

SP
A

M
-2

St
ag

e
10

00
0.

16
0.

20
6.

69
0.

00
18

.3
3

0.
31

25
.6

9
1.

28
M

A
R

S-
VA

N
IL

LA
10

00
23

.6
2

0.
00

3.
18

23
.1

6
0.

00
15

.4
3

65
.3

9
3.

27

159

Table C.7: Proxy Ground Truth Effects and Signal Variances for the Bike Sharing
Dataset.

Effect Signal Variance

Hour 0.382
Air Temp. 0.104
Humidity 0.024

Windspeed 0.002
Hour x Air Temp. 0.047
Hour x Humidity 0.01

Hour x Windspeed 0.002
Air Temp. x Humidity 0.012

Air Temp. x Windspeed 0.005
Humidity x Windspeed 0.003

Table C.8: Variable Selection Performance for the Bike Sharing Dataset.

Method # Covariates # Original Selected # Wrong Selected

SKIM-FA 250 2 0
HierLasso 250 3 7

Pairs Lasso 250 3 29
MARS 250 3 96

SPAM-2Stage 250 4 97

SKIM-FA 500 2 0
HierLasso 500 3 8

SPAM-2Stage 500 3 22
Pairs Lasso 500 3 39

MARS 500 4 109

SKIM-FA 1000 3 0
HierLasso 1000 3 5

SPAM-2Stage 1000 3 8
Pairs Lasso 1000 3 76

MARS 1000 3 119

160

Table C.9: Estimation Performance for the Bike Sharing Dataset.

Method # Noise

Correct
Selected

SSE
(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected

SSE
(Main)

Correct
Selected

SSE
(Pair)

Correct
Not

Selected
SSE

(Pair)

Wrong
Selected

SSE
(Pair)

Total
SSE

SKIM-FA 250 0.15 0.027 0 0.019 0.038 0 0.233
SPAM-2Stage 250 0.149 0 0.172 0.091 0 0.01 0.422
MARS-EMP 250 0.209 0.002 0.476 0.052 0.026 0.344 1.11

MARS-Vanilla 250 6.522 0.002 1.644 1.036 0.026 2.2 11.431

SKIM-FA 500 0.148 0.027 0 0.019 0.038 0 0.231
SPAM-2Stage 500 0.15 0.002 0.057 0.081 0.009 0.002 0.302
MARS-EMP 500 0.225 0 0.529 0.052 0.026 0.3 1.131

MARS-Vanilla 500 5.564 0 0.5 1.037 0.026 2.085 9.212

SKIM-FA 1000 0.145 0.002 0 0.107 0.009 0 0.263
SPAM-2Stage 1000 0.149 0.002 0.027 0.081 0.009 0.000 0.269
MARS-EMP 1000 0.214 0.002 0.485 0.054 0.026 0.245 1.026

MARS-Vanilla 1000 6.556 0.002 0.796 0.947 0.026 1.882 10.209

161

Appendix D

Appendix for “The DeCAMFounder:
Non-Linear Causal Discovery in the
Presence of Hidden Variables”

D.1 Proofs

D.1.1 Proof of Proposition 5.2.1

Proof. Let 𝑂 = {𝑥1, · · · , 𝑥𝑝} and P(𝑥, ℎ) be Markov with respect to a DAG 𝐺. Then,
there exist functions 𝑔𝑗 and 𝑓𝑗 such that

ℎ𝑖 = 𝑔𝑖(Pa𝐺(ℎ𝑖), ℎ′𝑖) ∀𝑖 ∈ [𝐾]

𝑥𝑗 = 𝑓𝑗(Pa𝐺(𝑥𝑖), 𝜖𝑗) ∀𝑗 ∈ [𝑝],
(D.1)

where the noises ℎ′ ⊥⊥ 𝜖. We prove the claim by inducting on the number of confounders
𝐾. For 𝐾 = 1, Pa𝐺(ℎ1) ⊂ 𝑂. Hence, ℎ1 is only a function of ℎ′1 and the observed
nodes. Consider the graph 𝐺′ formed by removing node ℎ1 (and all corresponding
incoming and outgoing arrows) in 𝐺 and adding a new node ℎ′1. Let Pa𝐺′(ℎ′1) = ∅
and Ch𝐺′ (ℎ

′
1) = Ch𝐺(ℎ1), where Ch𝐺(ℎ1) denotes the children of node ℎ in the graph

𝐺. For every 𝑥𝑖 ∈ Ch𝐺(ℎ1), add Pa𝐺(ℎ1) to the parent set of 𝑥𝑖 in 𝐺′. Then, 𝐺′ is
a DAG and ℎ′ is a source. Furthermore, the partial order induced by 𝐺′ equals the
partial order induced by 𝐺 on the subset of observed nodes {𝑥1, · · · , 𝑥𝑝}. It suffices
to show that P(𝑥, ℎ′) is Markov with respect to 𝐺′. Then, for any 𝑥𝑗 ∈ Ch𝐺′(ℎ′),

𝑥𝑗 = 𝑓𝑗(Pa𝐺(𝑥𝑗) ∖ ℎ1, ℎ1, 𝜖𝑗)
= 𝑓𝑗(Pa𝐺(𝑥𝑗) ∖ ℎ1, 𝑔1(Pa𝐺(ℎ1), ℎ′1), 𝜖𝑗).

(D.2)

Hence, 𝑥𝑗 functionally only depends on the parent set specified by 𝐺′. Since the parent
sets of 𝐺′ agree with 𝐺 on the remaining set of observed nodes, the claim holds for
𝐾 = 1.

Assume that for any set of 𝑝 observed nodes and 𝐾− 1 confounders, we can always
construct such a DAG 𝐺′. Suppose that there are 𝐾 total confounders. Without

162

loss of generality, suppose that Pa𝐺(ℎ1) ⊂ 𝑂 (i.e., ℎ1 comes before ℎ2, · · · , ℎ𝐾 in the
causal ordering). Treat 𝑥1, · · · , 𝑥𝑝, ℎ2, · · · , ℎ𝐾 as the set of observed nodes. Then, ℎ1
is the only confounder. Hence, by the inductive hypothesis, there exists a DAG 𝐺′

and exogenous ℎ′1 such that 𝑥1, · · · , 𝑥𝑝, ℎ′1, ℎ2, · · · , ℎ𝐾 factorizes according to 𝐺′. To
complete the proof, treat 𝑥1, · · · , 𝑥𝑝, ℎ′1 as the set of observed nodes, and ℎ2, · · · , ℎ𝐾
as the set of confounders. Then, there are 𝐾 − 1 total confounders. Applying the
inductive hypothesis again, there exists a DAG 𝐺′′ such that 𝑥1, · · · , 𝑥𝑝, ℎ′1, ℎ′′2, · · · , ℎ′′𝐾
factorizes according to 𝐺′′ and ℎ′′2, · · · , ℎ′′𝐾 are sources. Since we picked ℎ1 to come
before ℎ2, · · · , ℎ𝑝 in the causal ordering in 𝐺, ℎ′1 remains a source in 𝐺′′. Hence,
ℎ′1, ℎ

′′
2, · · · , ℎ′′𝐾 are all sources as desired.

D.1.2 Proof of Lemma 5.4.4

Proof. By Eq. (5.2),
𝑥 = (𝐼 −𝐵)−1𝜖+ (𝐼 −𝐵)−1Θℎ. (D.3)

Hence,

𝑥𝑗 =
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗𝑥𝑖 +Θ𝑇
𝑖 ℎ

=
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗[(𝐼 −𝐵)−1𝜖+ (𝐼 −𝐵)−1Θℎ]𝑖 +Θ𝑇
𝑗 ℎ.

(D.4)

Taking expectations with respect to ℎ gives

𝑠𝑗 = E[𝑥𝑗 | ℎ]

= E

⎡⎣ ∑︁
𝑖∈Pa𝐺* (𝑥𝑗)

𝐵𝑖𝑗[(𝐼 −𝐵)−1𝜖+ (𝐼 −𝐵)−1Θℎ]𝑖 +Θ𝑇
𝑗 ℎ | ℎ

⎤⎦
=

∑︁
𝑖∈Pa𝐺* (𝑥𝑗)

E
[︀
𝐵𝑖𝑗[(𝐼 −𝐵)−1𝜖+ (𝐼 −𝐵)−1Θℎ]𝑖 | ℎ

]︀
+Θ𝑇

𝑗 ℎ

=
∑︁

𝑖∈Pa𝐺* (𝑥𝑗)

[(𝐼 −𝐵)−1Θℎ]𝑖 +Θ𝑇
𝑗 ℎ (since 𝜖 ⊥⊥ ℎ),

(D.5)

which completes the proof.

D.1.3 Proof of Theorem 5.4.1

Lemma D.1.1. For every 𝑗 ∈ [𝑝], there exists an 𝑓𝑗 such that

𝑥𝑗 = 𝜖𝑗 + 𝑑𝑗 + 𝑓𝑗(𝜖1, 𝑑1, · · · , 𝜖𝑗−1, 𝑑𝑗−1) (D.6)

for the SEM in Eq. (5.1).

163

Proof. The proof follows by inducting on the number of nodes in 𝐺*. For 𝑝 = 1,
𝑥1 = 𝑑1 + 𝜖, and Eq. (D.6) trivially holds. For 𝑝 = 2,

𝑥2 = 𝑑2 + 𝜖2 + 𝑓12(𝑥1)

= 𝑑2 + 𝜖2 + 𝑓12(𝑑1 + 𝜖1).
(D.7)

The claim holds by setting 𝑓2(𝜖1, 𝑑1) = 𝑓12(𝑑1 + 𝜖1). Suppose that Eq. (D.6) holds for
all DAGs with at most 𝑝− 1 nodes. Then it suffices to prove that Eq. (D.6) holds for
all DAGs with 𝑝 nodes. For this, note that

𝑥𝑝 = 𝑑𝑝 + 𝜖𝑝 +
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝑥𝑖)

= 𝑑𝑝 + 𝜖𝑝 +
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝜖𝑖 + 𝑑𝑖 + 𝑓𝑗(𝜖1, 𝑑1, · · · , 𝜖𝑖−1, 𝑑𝑖−1)),
(D.8)

where the last line follows from the inductive hypothesis. Thus by setting

𝑓𝑝(𝜖1, 𝑑1, · · · , 𝜖𝑗−1, 𝑑𝑝−1) =
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝜖𝑖 + 𝑑𝑖 + 𝑓𝑗(𝜖1, 𝑑1, · · · , 𝜖𝑖−1, 𝑑𝑖−1)),

the claim follows.

Corollary D.1.2. For an SEM in the form of Eq. (5.1), it holds that

E[𝑥𝑗 | ℎ] = E[𝑥𝑗 | 𝑑1, · · · , 𝑑𝑗].

We prove Theorem 5.4.1 below using Corollary D.1.2.

Proof. By Eq. (5.1), it suffices to show that there exists an 𝑟𝑗 such that 𝑑𝑗 = 𝑠𝑗 −
𝑟𝑗(𝑠1, · · · , 𝑠𝑗−1) for every 𝑗 ∈ [𝑝]. We prove this claim by inducting on the number of
nodes in 𝐺*. For 𝑝 = 1, 𝑥1 = 𝑑1 + 𝜖1. Since ℎ ⊥⊥ 𝜖, 𝑠1 = 𝑑1, and the claim holds by
setting 𝑟1 = 0. For 𝑝 = 2, 𝑥2 = 𝜖2 + 𝑑2 + 𝑓12(𝑥1), where 𝑓12 may equal 0 if 𝑥1 is not a
parent of 𝑥2. Then,

𝑠2 = E[𝑥2 | ℎ]
= E[𝑥2 | 𝑑1, 𝑑2] (by Corollary D.1.2)
= E[𝑑2 + 𝜖2 + 𝑓12(𝑥1) | 𝑑1, 𝑑2]
= 𝑑2 + E[𝑓12(𝑥1) | 𝑑1]
= 𝑑2 + E[𝑓12(𝑥1) | 𝑠1] (since 𝑠1 = 𝑑1).

(D.9)

Hence, 𝑑2 = 𝑠2 − E[𝑓12(𝑥1) | 𝑠1]. The claim holds by setting 𝑟2(𝑠1) = E[𝑓12(𝑥1) | 𝑠1].
Suppose that 𝑑𝑗 = 𝑠𝑗 − 𝑟𝑗(𝑠1, · · · , 𝑠𝑗−1) for all SEMs in the form of Eq. (5.1) with
at most 𝑝 − 1 nodes. It suffices to show that that there exists an 𝑟𝑝 such that
𝑑𝑝 = 𝑠𝑝 − 𝑟𝑝(𝑠1, · · · , 𝑠𝑝−1) for an arbitrary SEM in the form of Eq. (5.1) with 𝑝 nodes.

For this, consider the subgraph formed from 𝑥1, · · · , 𝑥𝑝−1. Since 𝑥𝑝 is a sink node,
P(𝑥1, · · · , 𝑥𝑝−1) factorizes according to a DAG. Hence, by the inductive hypothesis,

164

there exists {𝑟𝑗}𝑝−1
𝑗=1 such that

𝑑𝑗 = 𝑠𝑗 − 𝑟𝑗(𝑠1, · · · , 𝑠𝑗−1) ∀𝑗 = 1, · · · , 𝑝− 1. (D.10)

Now, note that

𝑠𝑝 = E[𝑥𝑝 | ℎ]
= E[𝑥𝑝 | 𝑑1, 𝑑2, · · · , 𝑑𝑝] (by Corollary D.1.2)

= E[𝑑𝑝 + 𝜖𝑝 +
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝑥𝑖) | 𝑑1, 𝑑2, · · · , 𝑑𝑝]

= 𝑑𝑝 + E[
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝑥𝑖) | 𝑑1, 𝑑2, · · · , 𝑑𝑝−1]

= 𝑑𝑝 + E[
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝑥𝑖) | {𝑠𝑖 − 𝑟𝑖(𝑠1, · · · , 𝑠𝑖−1)}𝑝−1
𝑖=1] (by Eq. (D.10)).

(D.11)

Thus by setting

𝑟𝑝(𝑠1, · · · , 𝑠𝑝−1) = E[
∑︁

𝑥𝑖∈Pa𝐺* (𝑥𝑝)

𝑓𝑖𝑗(𝑥𝑖) | {𝑠𝑖 − 𝑟𝑖(𝑠1, · · · , 𝑠𝑖−1)}𝑝−1
𝑖=1], (D.12)

the result follows.

D.1.4 Proof of Proposition 5.4.7

We follow Friedman and Nachman [2000] to compute the marginal likelihood. By
Theorem 5.4.1, the marginal likelihood decomposes as

P(𝑋 | 𝐺,𝑆) =
∫︁

P(𝑋 | 𝐺,Ω𝐺)𝑑P(Ω𝐺)

=

∫︁ 𝑝∏︁
𝑗=1

P(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗
,Ω𝐺)𝑑P(Ω𝐺)

=

∫︁ 𝑝∏︁
𝑗=1

P(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗
, {𝑓𝑖𝑗}𝑖∈Pa𝐺(𝑥𝑗), 𝑟𝑗)𝑑P({𝑓𝑖𝑗}𝑖∈Pa𝐺(𝑥𝑗), 𝑟𝑗)

=

𝑝∏︁
𝑗=1

∫︁
P(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗

, {𝑓𝑖𝑗}𝑖∈Pa𝐺(𝑥𝑗), 𝑟𝑗)𝑑P({𝑓𝑖𝑗}𝑖∈Pa𝐺(𝑥𝑗), 𝑟𝑗)

=

𝑝∏︁
𝑗=1

P(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗
).

Hence,

logP(𝑋 | 𝐺,𝑆) =
𝑝∑︁

𝑗=1

logP(𝑋𝑗 − 𝑆𝑗 | 𝑋Pa𝐺(𝑥𝑗), 𝑆𝐶𝑗
).

165

The proof now follows from Equation 2.30 of Rasmussen and Williams [2006].

D.2 Score Fuction Details
In our experiments, we used an RBF kernel for the 𝑘𝜂𝑗 and 𝑘𝜃𝑖𝑗 . The kernel hy-
perparameters 𝜂𝑗 and 𝜃𝑖𝑗 refer to the unknown lengthscales in an RBF kernel. We
implemented this model using the Gaussian process package GPyTorch [Gardner et al.,
2018] to fit the kernel hyperparameters (i.e., by maximizing the log marginal likelihood
via gradient ascent). We used a total of 100 iterations using the Adam optimizer with a
learning rate of 0.01. See the scores.py file in the “decamfound” folder on the Github
repository for our python code.

D.3 Generating Simulated Data
For node 𝑥𝑗 with sampled trend types 𝑓𝑖𝑗 and 𝑔𝑘𝑗 and weights 𝜃𝑖𝑗 and 𝜃′

𝑘𝑗, let

𝑂𝑗 =
∑︁

𝑖∈Pa𝐺* (𝑥𝑗)

𝜃𝑖𝑗𝑓𝑖𝑗(𝑥𝑖) 𝐶𝑗 =
𝐾∑︁
𝑘=1

𝜃′𝑘𝑗𝑔𝑘𝑗(ℎ𝑘)

represent the (unnormalized) variation explained by the observed and confounder
nodes, respectively. We wish to find normalization constants 𝑐par,𝑗 and 𝑐confound,𝑗 such
that

Cov(𝑐par,𝑗𝑂𝑗 + 𝑐confound,𝑗𝐶𝑗) = 1− 𝜎2
noise

and
Cov(𝑐confound,𝑗𝐶𝑗) = 𝜎2

confound.

Since it may be difficult to analytically solve for these normalization constants,
we find them inductively using a Monte Carlo approach. In particular, suppose we
have computed the normalization constants 𝑐par,𝑖 and 𝑐confound,𝑗 for 𝑖 < 𝑗. Then, we
take many Monte Carlo samples (we use 10,000 in the experiments) from the marginal
distribution over ℎ, 𝑥1, 𝑥2, . . . , 𝑥𝑗−1. This allows us to estimate Cov(𝐶𝑗) and solve for
𝑐confound,𝑗. Similarly, we may use these samples to estimate Cov(𝑂𝑗, 𝐶𝑗), which along
with the value of 𝑐confound,𝑗 and the estimate of Var(𝐶𝑗), allows us to solve for 𝑐par,𝑗 in
the first equation. There are several edge cases depending on if 𝑥𝑗 has no observed
and/or confounder parents:

1. If 𝑥𝑗 has no observed or confounder parents (i.e., is a source), then set 𝑐par,𝑗 = 0
and 𝑐confound,𝑗 = 0. Set the noise variance for 𝑥𝑗 equal to 1.

2. If 𝑥𝑗 has no confounder parents but at least one observed node parent, then set
the signal variance for 𝑥𝑗 equal to 𝜎2

signal + 𝜎2
confound.

3. If 𝑥𝑗 has at least one confounder parents but no observed node parents, then set
the noise variance for 𝑥𝑗 equal to 𝜎2

noise + 𝜎2
signal.

166

See the generate_synthetic_data.py file in our Github repository for the code.

D.4 Additional Figures and Experiments

D.4.1 Synthetic Data Experiments

In Section 6.5, we reported on the proportion of times the incorrect parent set was
selected over the true parent set. We report on the following additional metric to
understand how confidently wrong (or correct) each method is:

1. Log Odds (Wrong vs. True): each score equals the log marginal likelihood
(technically an approximation for BIC) of the parent set. Assuming a uniform
prior over the set of all parent sets, the log odds (LO) between the wrong and
true parent set reduces into the difference between scores:

LO𝑖 = log
P(𝑋 | 𝑃𝑖)P(𝑃i)

P(𝑋 | 𝑃correct)P(𝑃correct)

= score(𝑃𝑖)− score(𝑃correct).

(D.13)

We report max𝑖∈[𝑀] LO𝑖 for the Wrong Parent Addition task in Fig. D-1 and for
the Correct Parent Deletion task in Fig. D-2. A higher value is worse (i.e., it
indicates that a method places higher confidence in an incorrect parent set than
the true parent set).

Scoring Candidate DAG Results. We score a candidate set of 𝑀 = 100 incorrect
DAGs 𝒢, built from randomly adding or deleting edges multiple times, starting from
the true DAG (i.e., the natural extension of our two parent set evaluation tasks).
Since scoring a single graph takes 𝑂(𝑝𝑁3) for the non-linear methods, we consider
fewer settings (i.e., fix the confounding variance to be equal to the signal variance),
and only do 10 total simulations instead of 25. These results are shown in Fig. D-3.
We report on two metrics:

1. Avg. Posterior SHD: equals
∑︀𝑀

𝑚=1 SHD(𝐺𝑚, 𝐺
*)P(𝐺 | 𝑋), where SHD de-

notes the structural hamming distance to the true graph, and P(𝐺 | 𝑋) equals the
posterior probability of a graph computed from renormalizing the log marginal
likelihood scores. Lower is better.

2. SHD Between MAP and True DAG: reports the SHD from the true DAG
for the highest scoring graph (i.e., the maximum a posteriori estimate). Lower
is better.

Fig. D-3 shows that linear methods, even if they account for confounding, suffer in the
non-linear setting. This advantage of modeling non-linearities agrees with the results,
for example, in Bühlmann et al. [2014]. Fig. D-3 also shows that, as in the Correct
Parent Deletion Task, LRPS suffers even in the linear setting because the induced
undirected graph is very sparse (and hence often favors deleting true edges). FInally,
Fig. D-3 shows that both CAM-OBS (trivially) and our method are robust to both
non-linearities and confounding.

167

D.4.2 Ovarian Cancer Dataset

Scree Plot. Analyzing the spectrum of the data matrix consisting of the 486 observed
genes in Fig. D-4 shows that there are about 7 spiked eigenvalues.

Pervasive TF Gene Correlations. 7/15 TFs have edges with more than 75 genes
according to NetBox (i.e., these TFs might play the role of pervasive confounders).
We summarize the absolute value of the correlations between these 7 TFs and the 486
genes in Fig. D-5.

Removing the Effect of a Latent TF via PCSS. See Fig. D-7.

168

(a
)

Li
ne

ar
SE

M
(b

)
Li

ne
ar

SE
M

(c
)

N
on

-L
in

ea
r

SE
M

(d
)

N
on

-L
in

ea
r

SE
M

F
ig

ur
e

D
-1

:
R

es
ul

ts
fo

r
th

e
W

ro
ng

P
ar

en
t

A
dd

it
io

n
ta

sk
.

25
to

ta
ls

im
ul

at
io

ns
pe

r
da

ta
se

t
co

nfi
gu

ra
ti

on
w

er
e

pe
rf

or
m

ed
.

Se
e

Se
ct

io
n

5.
5.

1.
2

an
d

A
pp

en
di

x
D

.4
.1

fo
r

a
de

sc
ri

pt
io

n
of

th
e

pe
rf

or
m

an
ce

m
et

ri
cs

.

169

(a
)

Li
ne

ar
SE

M
(b

)
Li

ne
ar

SE
M

(c
)

N
on

-L
in

ea
r

SE
M

(d
)

N
on

-L
in

ea
r

SE
M

F
ig

ur
e

D
-2

:
R

es
ul

ts
fo

r
th

e
C

or
re

ct
P
ar

en
t

D
el

et
io

n
ta

sk
.

25
to

ta
ls

im
ul

at
io

ns
pe

r
da

ta
se

t
co

nfi
gu

ra
ti

on
w

er
e

pe
rf

or
m

ed
.

Se
e

Se
ct

io
n

5.
5.

1.
2

an
d

A
pp

en
di

x
D

.4
.1

fo
r

a
de

sc
ri

pt
io

n
of

th
e

pe
rf

or
m

an
ce

m
et

ri
cs

.

170

(a) SHD

(b) Average SHD

Figure D-3: Results for the candidate DAG scoring task. 10 total simulations per
dataset configuration (i.e., linear / non-linear) were performed.

171

Figure D-4: PCA scree plot when the input data matrix consists of the 486 observed
genes. Based on this scree plot, we select 𝐾 = 7 components for the spectral methods.

Figure D-5: Absolute value of correlations between TFs and the 486 observed genes.
Only TFs with at least 75 edges are shown.

172

Figure D-6: Out of the 15 latent TFs, BIRC3 has the highest absolute correlation
with NFKB1 and the smallest absolue correlation with JUN. BIRC3-pcss refers to the
total latent confounding variation estimated for that gene via PCSS. BIRC3 refers to
the actual observed values of the gene. BIRC3-pcss is correlated with NFKB1 (which
is correlated with BIRC3) and not correlated with JUN.

173

Figure D-7: Top left: scatterplot of two genes that are conditionally independent given
each parents’ gene neighborhood sets and TFs but dependent when removing the
TFs. Top right: scatter plot of each gene for the TF that has the highest correlation
with both genes. Bottom left: correlation with the transcription factor after removing
the estimated confounder sufficient statistics from each gene. Bottom right: weaker
correlation after removing the confounder sufficient statistics from each gene. Since
both genes are still marginally dependent given the TFs without conditioning on the
parent sets, the genes are still correlated in the bottom right figure.

174

Appendix E

Appendix for “ABCD-Strategy:
Budgeted Experimental Design for
Targeted Causal Structure Discovery”

E.1 Proofs

E.1.1 Proof of Proposition 6.3.2

Given infinite samples per intervention 𝐼 ∈ ℐ, 𝐺* is recovered up to its ℐ-Markov
equivalence class. Hence, the resulting entropy after placing an infinite number of
samples at each intervention is equal to log2 |Essℐ(𝐺)| when the true DAG is 𝐺. Since
the true DAG is unknown, this entropy must be averaged over our prior distribution
on 𝒢, which is uniform. Hence, the entropy after observing an infinite number of
samples per intervention in ℐ equals 1

|𝒢|
∑︀

𝐺∈𝒢 log2 |Essℐ(𝐺)|. Minimizing this entropy
over all possible interventions sets of size at most 𝐾 completes the proof.

E.1.2 Proof of Theorem 6.3.4

Let

ℐ∞ := {𝐼 ∈ ℐ* :
∞∑︁
𝑏=1

|𝐼 ∈ 𝜉𝑏 : 𝐼 = 𝐼| =∞ 𝜇*𝑎.𝑠.},

where 𝜉𝑏 denotes the interventions selected at batch 𝑏 by 𝑈 𝑓
M.I. Since ℐ* is finite, ℐ∞

is non-empty. When |ℐ∞| > 1, ℐ∞ is a conservative family of targets since ℐ* is a
family of single-node interventions. Hence, we identify the ℐ∞-MEC of 𝐺* in the limit
of an infinite number of batches and samples [Hauser and Bühlmann, 2012]. Assume
|ℐ∞| > 1. If 𝑓(𝐺) is identifiable in Essℐ

∞
(𝐺*), then

P
(︀
𝑓(𝐺) | 𝐷𝐵

)︀ 𝜇* a.s.−−−→ 1(𝑓(𝐺) = 𝑓(𝐺*)).

Hence, it suffices to show that the interventions 𝑈 𝑓
M.I selects infinitely often identifies

𝑓(𝐺) in the limiting interventional essential graph Essℐ
∞
(𝐺*). Suppose towards a

175

contradiction that 𝑓(𝐺) were not fully identifiable in Essℐ
∞
(𝐺*). By definition of

almost sure convergence, there exists some 𝑏* <∞ such that any 𝐼 ∈ ℐ* ∖ ℐ∞ is never
selected again after batch 𝑏* with probability one since ℐ* is finite. Maximizing 𝑈 𝑓

M.I.
is equivalent to minimizing the conditional entropy,

𝐻𝑏
𝜉(𝑓 | 𝑌𝜉) := E𝑦∼P(𝑦|𝐷𝑏,𝜉) 𝐻(𝑓 | 𝐷𝑏, 𝑌 = 𝑦). (E.1)

If 𝑏 > 𝑏*, then

argmin 𝜉 ∈ Zℐ* ∩ 𝐶𝑏 𝐻
𝑏
𝜉(𝑓 | 𝑌𝜉) = argmin 𝜉 ∈ Zℐ∞ ∩ 𝐶𝑏 𝐻

𝑏
𝜉(𝑓 | 𝑌𝜉) (E.2)

since any batch 𝑏 after 𝑏* never selects an intervention in 𝐼 ∈ ℐ* ∖ ℐ∞. Since 𝑓 is not
identifiable in Essℐ

∞
(𝐺*), that implies

lim
𝑏→∞

𝐻𝑏
𝜉∞(𝑓 | 𝑌𝜉∞)→ 𝐿 > 0.

Since ℐ* consists of all single-node interventions, ℐ* can identify 𝑓(𝐺) [Hauser and
Bühlmann, 2012]. Hence, there must be some 𝐼 ∈ ℐ* ∖ ℐ∞ and 𝜖 > 0 such that

lim
𝑏→∞

𝐻𝑏
𝜉∞∪𝐼∞(𝑓) < 𝐿− 𝜖, (E.3)

where 𝐼∞ denotes selecting 𝐼 infinitely many times. But Eq. (E.3) implies that there
must exist some batch 𝑏 > 𝑏* such that the conditional entropy of the design 𝜉 = {𝐼}
is uniformly smaller than the conditional entropy of any 𝜉 ∈ Zℐ∞ . But this is a
contradiction because then 𝐼 would be selected again after some batch 𝑏 > 𝑏* and
Eq. (E.2) would no longer hold.

For |ℐ∞| = 1, we no longer have a conservative family of targets. However, a nearly
identical argument works by noting that, in the limit, we learn the observational
equivalence class of the ℐ∞ mutilated graph of 𝐺*.

E.1.3 Consistency Counterexample

Suppose we know the Markov equivalence class of 𝐺* and the goal is to fully recover 𝐺*.
Suppose 𝐶𝑏 = {𝜉 : ‖𝜉‖0 = 𝐾}, where ‖·‖0 counts the number of unique interventions in
𝜉. Since there is no constraint on the number of samples, only on the number of unique
interventions, we may allocate an infinite number of samples per intervention within
each batch. This constraint is equivalent to the one examined in Ghassami et al. [2018].
The scores in both Ness et al. [2018] and Ghassami et al. [2018] select interventions
by maximizing the expected number of oriented edges in the interventional Markov
equivalence classes. In particular, the utility function in Ness et al. [2018] is equivalent
to maximizing,

𝑈(ℐ;𝐷) =
∑︁
𝐺∈𝒢

𝐴(Essℐ(𝐺))P(𝐺), (E.4)

where 𝐴(Essℐ(𝐺)) equals the additional number of edges oriented relative to the
observational Markov equivalence class. Suppose 𝐺* equals the graph in Fig. E-1

176

Figure E-1: Each box represents the members of the interventional Markov equivalence
classes. For 𝐺* given in the bottom left box, the observational Markov equivalence
class has no edges oriented. The top box represents the essential graph of the
observational Markov equivalence class. The interventional Markov equivalence class
for an intervention at node one consists of two DAGs given in the bottom box.

and that 𝐾 = 1 unique interventions are allowed within each batch. Assume that
ℐ* = {{1}, · · · , {4}} and that we start with a uniform prior over 𝒢. Then, since
all arrows are undirected in the observational Markov equivalence class, symmetry
implies 𝑈({𝑗}; ∅) = 𝑈({𝑗}; ∅) for all 𝑖, 𝑗 ∈ 1, · · · , 4. Without any loss of generality
suppose intervention one is selected in batch one. We show that every subsequent
batch will select intervention {1}. If only {1} were selected, 𝑈(ℐ;𝐷) would not be
consistent since the {∅, {1}}-MEC(𝐺*) contains two graphs, as shown at the bottom
of Fig. E-1. After batch one, the posterior is supported on these two graphs since an
infinite number of samples are allocated to the intervention at node one.

The utility function in Eq. (E.4) scores interventions relative to the observational
equivalence class, which causes the consistency issue. In particular, the posterior in
batch two is only supported on the two DAGs given in the bottom box of Fig. E-1.
The score of {1} equals 5 in batch two while the scores of interventions {2}, {3}, {4}
equal 4, 3, 4, respectively. Hence, in batch two, intervention {1} will be selected
again, but the posterior will remain the same since the {∅, {1}} interventional Markov
equivalence class of 𝐺* is already known.

An easy way to fix Eq. (E.4) (for this given counterexample) would be to only
select interventions not selected in previous batches. This modification would fix the
issue with the counterexample, namely prevent intervention one from being selecting
infinitely often. However, when one can only allocate a finite number of samples per
batch, this modification would not lead to a consistent estimator. In particular, if a
certain intervention is done in some batch, and that intervention must be conducted
in order to identify 𝑓 , then only placing finitely many samples to that intervention in
that batch and never placing any more samples in subsequent batches will not lead to
a consistent method.

177

E.1.4 Proof of Theorem 6.4.1

Definition E.1.1. [Soma and Yoshida, 2016] Let 𝐸 be a finite set. A function
𝑓 : Z𝐸 → R is diminishing returns submodular (DR-submodular) if for 𝑥 ≤ 𝑦

𝑓(𝑥+ 𝜒𝑒)− 𝑓(𝑥) ≥ 𝑓(𝑦 + 𝜒𝑒)− 𝑓(𝑦), 𝑥, 𝑦 ∈ Z𝐸 (E.5)

where 𝑒 ∈ 𝐸 and 𝜒𝑒 is the ith unit vector.

Lemma E.1.2. 𝑈̃ 𝑓
M.I.(𝜉;𝐷) is DR-submodular.

Proof. 𝑓(𝐺) = 𝐺 so we omit 𝑓 in 𝑈̃ 𝑓
M.I. to simplify notation. Since the sum of

submodular functions is submodular, it suffices to show

E𝑦|𝐺,𝜃𝐺MLE,𝜉
𝑈̃M.I.(𝑦, 𝜉;𝐷) = 𝐻(𝐺)−𝐻(𝐺 | 𝑌𝜉)

= 𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝜉)
(E.6)

is DR-submodular, where 𝐼 is the mutual information. Consider an 𝐴 ⊆ 𝐵 ∈ Zℐ* .
Take any 𝐶 ∈ ℐ*. Since entropy decreases with more conditioning,

𝐻(𝑌𝐶 | 𝑌𝐴)−𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE)) ≥
𝐻(𝑌𝐶 | 𝑌𝐵)−𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE)).

(E.7)

By conditional independence,

𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE)) = 𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE), 𝑌𝐴)

= 𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE), 𝑌𝐵).
(E.8)

Hence, Eq. (E.7) may be rewritten as,

𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝐶 | 𝑌𝐴) =
𝐻(𝑌𝐶 | 𝑌𝐴)−𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE), 𝑌𝐴) ≥
𝐻(𝑌𝐶 | 𝑌𝐵)−𝐻(𝑌𝐶 | (𝐺, 𝜃𝐺MLE), 𝑌𝐵) =

𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝐶 | 𝑌𝐵).

(E.9)

Eq. (E.9) implies

𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝐴 + 𝑌𝐶)− 𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝐴)

≥ 𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝐵 + 𝑌𝐶)− 𝐼((𝐺, 𝜃𝐺MLE), 𝑌𝐵)
(E.10)

as desired.

The proof of Theorem 6.4.1 then follows directly from Lemma E.1.2 and Soma
et al. [2014, Theorem 2.4].

178

E.1.5 Proof of Proposition 6.4.2

For each graph 𝐺 ∈ 𝒢𝑇 , compute the associated edge weights 𝜃𝐺MLE. Computing each
𝜃𝐺MLE takes 𝑂(𝑝𝜅3) time using the formula given in Hauser and Bühlmann [2012, pg.
17]. Since there are 𝑇 DAGs, the total time to compute the MLE estimates of the
edge weights of each DAG is 𝑂(𝑇𝑝𝜅3). Sampling from a multivariate Gaussian with
bounded indegree with known adjacency matrix takes 𝑂(𝑝𝜅) time. 𝑈̂ 𝑓

M.I. requires a
total of |ℐ*|𝑀𝑁𝑏𝑇

2 samples. Hence, the total computation time of sampling all the
𝑦𝑚𝑡 in Eq. (6.14) is 𝑂(|ℐ*|𝑀𝑁𝑏𝜅𝑝𝑇

2). Evaluating 𝑈̂ 𝑓
M.I. takes 𝑂(𝑀𝑇 2) time using

these samples, which is of lower computational complexity than computing 𝑈̂ 𝑓
M.I..

Hence, the total runtime is 𝑂(𝑝𝜅3 + |ℐ*|𝑀𝑁𝑏𝜅𝑝𝑇
2).

E.1.6 Constraint on the Number of Unique Interventions

If we are only allowed to allocate at most 𝐾 unique interventions per batch, we
modify Algorithm 10 by allocating 𝑁𝑏

𝐾
samples per intervention in Algorithm 9. Once

an intervention is selected, that intervention is removed from 𝐼* and another one
is greedily selected from the remaining set. With this strategy, Algorithm 9 will
terminate after 𝐾 iterations. Hence, there will be at most 𝐾 unique interventions as
desired.

E.1.7 DREAM4 Supplementary Figures

We applied our targeted experimental design strategy towards learning the downstream
pathways of select genes from a 10-node network from the DREAM4 challenge. We
observed a modest improvement over the random strategy for some central genes
in the network (Fig. E-2, top). However, the results are subject to high variations
(Fig. E-2, bottom), which we surmise to be due to the small size of the observational
dataset. Nevertheless, these preliminary results illustrate the promise of applying
targeted experimental design to real, large-scale biological datasets.

179

Figure E-2: Performance of intervention strategies on predicting the descendants of
genes 6 (top) and 8 (bottom).

180

Bibliography

C. 1000 Genomes Project. A global reference for human genetic variation. Nature,
526:68–74, 2015.

A. Agarwal, D. Shah, D. Shen, and D. Song. On robustness of principal component
regression. In Advances in Neural Information Processing Systems, volume 32, 2019.

R. Agrawal and T. Broderick. High-dimensional variable selection and non-linear
interaction discovery in linear time. In Preparation, 2021.

R. Agrawal, T. Broderick, and C. Uhler. Minimal I-MAP MCMC for scalable structure
discovery in causal DAG models. In International Conference on Machine Learning,
2018.

R. Agrawal, T. Campbell, J. Huggins, and T. Broderick. Data-dependent compression
of random features for large-scale kernel approximation. In International Conference
on Artificial Intelligence and Statistics, 2019a.

R. Agrawal, J. Huggins, B. Trippe, and T. Broderick. The kernel interaction trick:
Fast Bayesian discovery of pairwise interactions in high dimensions. In International
Conference on Machine Learning, 2019b.

R. Agrawal, C. Squires, K. Yang, K. Shanmugam, and C. Uhler. ABCD-strategy: Bud-
geted experimental design for targeted causal structure discovery. In International
Conference on Artificial Intelligence and Statistics, 2019c.

R. Agrawal, B. Trippe, J. Huggins, and T. Broderick. The kernel interaction trick:
Fast Bayesian discovery of pairwise interactions in high dimensions. In International
Conference on Machine Learning, 2019d.

R. Agrawal, U. Roy, and C. Uhler. Covariance matrix estimation under total positivity
for portfolio selection. Journal of Financial Econometrics, 2021a.

R. Agrawal, C. Squires, N. Prasad, and C. Uhler. The DeCAMFounder: Non-linear
causal discovery in the presence of hidden variables. Under Review, 2021b.

M. Amjad, D. Shah, and D. Shen. Robust synthetic control. Journal of Machine
Learning Research, 19(22):1–51, 2018.

181

S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov
equivalence classes for acyclic digraphs. Annals of Statistics, 25(2):505–541, 1997.

H. Aschard. A perspective on interaction effects in genetic association studies. Genetic
Epidemiology, 2016.

H. Avron, V. Sindhwani, J. Yang, and M. W. Mahoney. Quasi-Monte Carlo feature
maps for shift-invariant kernels. Journal of Machine Learning Research, pages 1–38,
2016.

H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh. Random
Fourier features for kernel ridge regression: Approximation bounds and statistical
guarantees. In International Conference on Machine Learning, 2017.

M. Balcan, A. Blum, and S. Vempala. On kernels, margins, and low-dimensional
mappings. In Algorithmic Learning Theory, pages 1–12, 2008.

R. F. Barber and E. J. Candès. Controlling the false discovery rate via knockoffs. The
Annals of Statistics, 43(5):2055–2085, 10 2015.

Y. Benjamini and T. P. Speed. Summarizing and correcting the GC content bias in
high-throughput sequencing. Nucleic Acids Research, 40(10), 2012.

D. Bernstein, B. Saeed, C. Squires, and C. Uhler. Ordering-based causal structure
learning in the presence of latent variables. Proceedings of Machine Learning
Research, 108:4098–4108, 2020.

A. Beskos, N. Pillai, G. Roberts, J. Sanz-Serna, and A. Stuart. Optimal tuning of the
hybrid Monte Carlo algorithm. Bernoulli, 19(5A):1501–1534, 11 2013.

J. Bien, J. Taylor, and R. Tibshirani. A Lasso for hierarchical interactions. The
Annals of Statistics, 41(3):1111–1141, 2013.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.
In Workshop on Computational Learning Theory, pages 144–152, 1992.

P. Bühlmann, J. Peters, and J. Ernest. CAM: Causal additive models, high-dimensional
order search and penalized regression. Annals of Statistics, 42(6):2526–2556, 12
2014.

J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, Mar. 2010.

T. Campbell and T. Broderick. Bayesian coreset construction via greedy iterative
geodesic ascent. In International Conference on Machine Learning, 2018.

T. Campbell and T. Broderick. Automated scalable Bayesian inference via Hilbert
coresets. Journal of Machine Learning Research, 2019.

182

E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much
larger than n. The Annals of Statistics, pages 2313–2351, 2007.

B. Carpenter, D. Lee, M. A. Brubaker, A. Riddell, A. Gelman, B. Goodrich, J. Guo,
M. Hoffman, M. Betancourt, and P. Li. Stan: A probabilistic programming language,
2019.

C. Carvalho, N. Polson, and J. Scott. Handling sparsity via the horseshoe. In
International Conference on Artificial Intelligence and Statistics, 2009.

E. Cerami, E. Demir, N. Schultz, B. S. Taylor, and C. Sander. Automated network
analysis identifies core pathways in glioblastoma. PLOS ONE, 5:1–10, 02 2010.

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical
Science, 10:273–304, 1995.

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Sparse and
low-rank matrix decompositions. In 2009 47th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 962–967, 2009.

V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical model
selection via convex optimization. Annals of Statistics, 40(4):1935–1967, 08 2012.

W. Chang, C. Li, Y. Yang, and B. Poczos. Data-driven random Fourier features
using Stein effect. In International Joint Conference on Artificial Intelligence, pages
1497–1503, 2017.

S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, pages 33–61, 1998.

D. M. Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3:507–554, 2002.

H. Chipman. Bayesian variable selection with related predictors. The Canadian
Journal of Statistics, 24(1):17–36, 1996.

H. Cho, B. Berger, and J. Peng. Reconstructing causal biological networks through
active learning. PLoS ONE, 2016.

S. Choy and C. Chan. Scale mixtures distributions in insurance applications. Journal
of the IAA, 33:93–104, 2003.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit. In
International Conference on Machine Learning, 2016.

D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson. Learning high-
dimensional directed acyclic graphs with latent and selection variables. Annals of
Statistics, 40(1):294–321, 02 2012.

183

C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation
on learning accuracy. In International Conference on Artificial Intelligence and
Statistics, 2010.

S. M. Curtis, S. Banerjee, and S. Ghosal. Fast bayesian model assessment for non-
parametric additive regression, 2014.

A. Daniely, R. Frostig, V. Gupta, and Y. Singer. Random features for compositional
kernels. arXiv:1703.07872, 2017.

C. Davis and W. Kahan. The rotation of eigenvectors by a perturbation III. SIAM J.
Numer. Anal, 7:1–46, 1970.

A. Dixit, O. Parnas, B. Li, J. Chen, C. Fulco, L. Jerby-Arnon, N. Marjanovic,
D. Dionne, T. Burks, R. Raychowdhury, B. Adamson, T. Norman, E. Lander,
J. Weissman, N. Friedman, and A. Regev. Perturb-seq: dissecting molecular
circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell, pages
1853–1866, 2016.

P. Drineas and M. Mahoney. On the Nyström method for approximating a gram
matrix for improved kernel-based learning. Journal of Machine Learning Research,
pages 2153–2175, 2005.

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro. ANOVA kernels and
RKHS of zero mean functions for model-based sensitivity analysis. Journal of
Multivariate Analysis, 115(C):57–67, 2013.

A. El Alaoui and M. Mahoney. Fast randomized kernel methods with statistical
guarantees. In Advances in Neural Information Processing Systems, 2015.

B. Ellis and W. H. Wong. Learning causal Bayesian network structures from ex-
perimental data. Journal of the American Statistical Association, 103:778–789,
2008.

J. Fan, Y. Liao, and M. Mincheva. Large covariance estimation by thresholding
principal orthogonal complements. Journal of the Royal Statistical Society Series B,
75(4):603–680, September 2013.

J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19(1):
1–67, 03 1991.

N. Friedman and D. Koller. Being Bayesian about network structure. A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50:95–125,
2003.

N. Friedman and I. Nachman. Gaussian process networks. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, page 211–219, 2000.

184

N. Friedman, M. Goldszmidt, and A. J. Wyner. Data analysis with Bayesian networks:
A bootstrap approach. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, 1999.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. Journal of Computational Biology, 7(3-4):601–620, 2000a.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. In Proceedings of the Fourth Annual International Conference on
Computational Molecular Biology, pages 127–135, 2000b.

B. Frot, P. Nandy, and M. H. Maathuis. Robust causal structure learning with some
hidden variables. Journal of the Royal Statistical Society: Series B, 81(3):459–487,
2019.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In
Advances in Neural Information Processing Systems. 2018.

D. Geiger and D. Heckerman. Parameter priors for directed acyclic graphical models
and the characterization of several probability distributions. In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999.

A. Gelman, J. Hill, and M. Yajimam. Why we (usually) don’t have to worry about
multiple comparisons. Journal of Research on Educational Effectiveness, pages
189–211, 2012.

E. George and R. McCulloch. Variable selection via Gibbs sampling. Journal of the
American Statistical Association, 88(423):881–889, 1993.

A. Ghassami, S. Salehkaleybar, N. Kiyavash, and E. Bareinboim. Budgeted experiment
design for causal structure learning. In International Conference on Machine
Learning, 2018.

S. B. Gillispie and M. D. Perlman. Enumerating Markov equivalence classes of acyclic
digraph models. In Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence, 2001.

C. Greene, N. Sinnott-Armstrong, D. S. Himmelstein, P. Park, J. Moore, and B. Harris.
Multifactor dimensionality reduction for graphics processing units enables genome-
wide testing of epistasis in sporadic ALS. Bioinformatics, 26(5):694–695, 2010.

A. Gretton, K. Fukumizu, C. H., L. Song, B. Schölkopf, and A. Smola. A kernel
statistical test of independence. In Advances in Neural Information Processing
Systems, pages 585–592, 2008.

A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample
test. Journal of Machine Learning Research, pages 723–773, 2012.

185

J. Griffin and P. Brown. Hierarchical shrinkage priors for regression models. Bayesian
Analysis, 12:135–159, 2017.

M. Grzegorczyk and D. Husmeier. Improving the structure MCMC sampler for
Bayesian networks by introducing a new edge reversal move. Machine Learning, 71:
265–305, 2008.

C. Gu and G. Wahba. Smoothing spline ANOVA with component-wise bayesian
“confidence intervals”. Journal of Computational and Graphical Statistics, 2(1):
97–117, 1993.

S. Gunn and J. Kandola. Structural modelling with sparse kernels. Machine Learning,
48:137–163, 2004.

L. Gyorfi, M. Kohler, A. K. Krzyzak, and H. Walk. A distribution-free theory of
nonparametric regression. Journal of the American Statistical Association, 98(464):
1084–1084, 2003.

N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, pages 217–288, 2011.

H. Hamdan, J. Nolan, M. Wilson, and K. Dardia. Using scale mixtures of normals
to model continuously compounded returns. Journal of Modern Applied Statistical
Methods, 2005.

R. Hamid, Y. Xiao, A. Gittens, and D. DeCoste. Compact random feature maps. In
International Conference on International Conference on Machine Learning, 2014.

B. S. Harrington and C. M. Annunziata. NF-kB signaling in ovarian cancer. Cancers
(Basel), 8, 08 2019.

A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning
Research, 13(1):2409–2464, 2012.

A. Hauser and P. Bühlmann. Two optimal strategies for active learning of causal
models from interventional data. International Journal of Approximate Reasoning,
55:926–939, 2014.

A. Hauser and P. Bühlmann. Jointly interventional and observational data: estimation
of interventional Markov equivalence classes of directed acyclic graphs. Journal of
the Royal Statistical Society Series B, 77(1):291–318, 2015.

D. Heckerman, C. Meek, and G. Cooper. A Bayesian approach to causal discovery.
Technical report, Microsoft Research, 1997.

M. Hoffman and A. Gelman. The No-U-turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):
1593–1623, 2014.

186

T. Hofmann, B. Schölkopf, and A. Smola. Kernel methods in machine learning. The
Annals of Statistics, pages 1171–1220, 2008.

J. Honorio and Y.-J. Li. The error probability of random Fourier features is dimen-
sionality independent. arXiv:1710.09953, 2017.

G. Hooker. Generalized functional anova diagnostics for high-dimensional functions
of dependent variables. Journal of Computational and Graphical Statistics, 16(3):
709–732, 2007.

T. Horel, T. Campbell, L. Masoero, R. Agrawal, A. Papachristos, and D. Roithmayr.
The contagiousness of police violence. In Preparation.

P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal
discovery with additive noise models. In Advances in Neural Information Processing
Systems, volume 21, 2009.

C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In International Conference on Machine
Learning, pages 408–415, 2008.

D. Hsu, S. M. Kakade, and T. Zhang. Random design analysis of ridge regression.
Foundations of Computational Mathematics, 14(3):569–600, 2014.

J. Z. Huang. Projection estimation in multiple regression with application to functional
anova models. Annals of Statistics, 26(1):242–272, 02 1998. doi: 10.1214/aos/
1030563984.

P. Huang, H. Avron, T. Sainath, V. Sindhwani, and B. Ramabhadran. Kernel methods
match deep neural networks on TIMIT. In International Conference on Acoustics,
Speech and Signal Processing, pages 205–209, May 2014.

J. Huggins, M. Kasprzak, T. Campbell, and T. Broderick. Practical bounds on the error
of bayesian posterior approximations: A nonasymptotic approach. arXiv:1809.09505,
2018.

W. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions of Lipschitz maps into
Banach spaces. Israel Journal of Mathematics, pages 129–138, 1986.

S. Kakade and G. Shakhnarovich. Lecture notes in large scale learning, 2009.
URL http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/
lectures/jl.pdf.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

P. Kar and H. Karnick. Random feature maps for dot product kernels. In International
Conference on Artificial Intelligence and Statistics, pages 583–591, 2012.

187

http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/lectures/jl.pdf
http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/lectures/jl.pdf

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks.
Journal of Machine Learning Research, 5:549–573, 2004.

J. Kuipers and G. Moffa. Partition MCMC for inference on acyclic digraphs. Journal
of the American Statistical Association, 112:282–299, 2017.

J. Kuipers, G. Moffa, and D. Heckerman. Addendum on the scoring of Gaussian
directed acyclic graphical models. The Annals of Statistics, 42:1689–1691, 2014.

M. Kusner, J. Loftus, C. Russell, and R. Silva. Counterfactual fairness. In Advances
in Neural Information Processing Systems. 2017a.

M. J. Kusner, J. Loftus, C. Russell, and R. Silva. Counterfactual fairness. In Advances
in Neural Information Processing Systems, volume 30, 2017b.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan.
Learning the kernel matrix with semidefinite programming. Journnal of Machine
Learning Research, page 27–72, 2004.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

Q. Le, T. Sarlos, and A. Smola. Fastfood - approximating kernel expansions in loglinear
time. In International Conference on Machine Learning, 2013.

J. T. Leek and J. D. Storey. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLOS Genetics, 3(9), September 2007.

P. Li, T. Hastie, and K. Church. Very sparse random projections. In International
Conference on Knowledge Discovery and Data Mining, pages 287–296, 2006.

M. Lim and T. Hastie. Learning interactions via hierarchical group-lasso regularization.
Journal of Computational and Graphical Statistics, 24(3):627–654, 2015.

W. Lim, R. Du, B. Dai, K. Jung, L. Song, and H. Park. Multi-scale Nystrom method.
In International Conference on Artificial Intelligence and Statistics, 2018.

Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate non-
parametric regression. Annals of Statistics, 34(5):2272–2297, 10 2006.

I. Lipkovich, A. Dmitrienko, and R. D’Agostino. Tutorial in biostatistics: data-driven
subgroup identification and analysis in clinical trials. Statistics in Medicine, 36:
136–196, 2017.

H. Liu, L. Wasserman, J. D. Lafferty, and P. K. Ravikumar. Spam: Sparse additive
models. In Advances in Neural Information Processing Systems, pages 1201–1208.
2008.

Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 623–631. ACM, 2013.

188

D. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, 2002.

D. J. C. MacKay. Introduction to Monte Carlo Methods, pages 175–204. Springer
Netherlands, 1998.

D. Madigan and J. York. Bayesian graphical models for discrete data. International
Statistical Review, 63:215–232, 1995.

B. Maher. Personal genomes: The case of the missing heritability. Nature, pages
18–21, 2008.

C. Margossian, A. Vehtari, D. Simpson, and R. Agrawal. Hamiltonian Monte Carlo
using an embedded Laplace approximation. In Neural Information Processing
Systems, 2020.

F. Marguerite and W. Philip. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, pages 95–110, 1956.

S. Mendelson. On the performance of kernel classes. Journal of Machine Learning
Research, pages 759–771, 2003.

J. M. Mooij, D. Janzing, J. Peters, and B. Schölkopf. Regression by dependence
minimization and its application to causal inference in additive noise models. In
Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, volume 382, pages
745–752, 2009.

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing
cause from effect using observational data: Methods and benchmarks. Journal of
Machine Learning Research, 17(32):1–102, 2016.

G. Morota and D. Gianola. Kernel-based whole-genome prediction of complex traits:
a review. Frontiers in Genetics, 5:363, 2014.

K. Murphy. Active learning of causal Bayes net structure. Technical report, 2001.

C. Musco and C. Musco. Recursive sampling for the Nyström method. In Advances
in Neural Information Processing Systems, 2017.

K. Nakagawa, S. Suzumura, M. Karasuyama, K. Tsuda, and I. Takeuchi. Safe pattern
pruning: An efficient approach for predictive pattern mining. In International
Conference on Knowledge Discovery and Data Mining, 2016.

R. O. Ness, K. Sachs, P. Mallick, and O. Vitek. A Bayesian active learning experimental
design for inferring signaling networks. Journal of Computational Biology, 25(7):
709–725, 2018.

189

T. Niinimaki, P. Parviainen, and M. Koivisto. Structure discovery in Bayesian networks
by sampling partial orders. Journal of Machine Learning Research, 17:2002–2048,
2016.

J. Pearl. Causality: Models, reasoning, and inference. Econometric Theory, 19
(675-685):46, 2003.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press,
2nd edition, 2009.

J. Pennington, F. Yu, and S. Kumar. Spherical random features for polynomial kernels.
In Advances in Neural Information Processing Systems, pages 1846–1854, 2015.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous
additive noise models. Journal of Machine Learning Research, 15(1):2009–2053,
2014. ISSN 1532-4435.

J. Piironen and A. Vehtari. Sparsity information and regularization in the horseshoe
and other shrinkage priors. Electronic Journal of Statistics, 11:5018–5051, 2017.

N. S. Pillai, A. M. Stuart, and A. H. Thiéry. Optimal scaling and diffusion limits for
the Langevin algorithm in high dimensions. The Annals of Applied Probability, 22
(6):2320–2356, 12 2012.

A. Price, N. Patterson, R. Plenge, M. Weinblatt, N. Shadick, and D. Reich. Principal
components analysis corrects for stratification in genome-wide association studies.
Nature Genetics, 2006.

J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959,
2005.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Neural
Information Processing Systems, 2007.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, pages 1177–1184, 2008.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

T. Richardson and P. Spirtes. Ancestral graph markov models. Annals of Statistics,
30(4):962–1030, 08 2002.

D. Risso, K. Schwartz, G. Sherlock, and S. Dudoit. GC-content normalization for
RNA-seq data. BMC Bioinformatics, 12(1):480, Dec 2011.

J. Robins, M. A. Hernan, and B. Brumback. Marginal structural models and causal
inference in epidemiology. Epidemiology, 11:550–60, 2000a.

190

J. M. Robins, M. A. Hernan, and B. Brumback. Marginal structural models and
causal inference in epidemiology, 2000b.

A. Rudi and L. Rosasco. Generalization properties of learning with random features.
In Advances in Neural Information Processing Systems, 2017.

A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational
regularization. In Advances in Neural Information Processing Systems, 2015.

W. Rudin. Functional Analysis. International series in pure and applied mathematics.
Tata McGraw-Hill, 1974.

W. Rudin. Fourier Analysis on Groups, chapter The Basic Theorems of Fourier
Analysis. Wiley, 1994.

Y. Samo and S. Roberts. Generalized spectral kernels. arXiv:1506.02236, 2015.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in
dual variables. In International Conference on Machine Learning, pages 515–521,
1998.

T. Schaffter, D. Marbach, and D. Floreano. GeneNetWeaver: in silico benchmark
generation and performance profiling of network inference methods. Bioinformatics,
27:2263–2270, 2011.

F. Scheipl, L. Fahrmeir, and T. Kneib. Spike-and-slab priors for function selection
in structured additive regression models. Journal of the American Statistical
Association, 107(500):1518–1532, 2012.

B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, 2001.

B. Schölkopf, A. Smola, and K. Müller. Kernel principal component analysis. In
Artificial Neural Networks, pages 583–588, 1997.

R. Shah. Modelling interactions in high-dimensional data with backtracking. Journal
of Machine Learning Research, 17(207):1–31, 2016.

R. D. Shah, B. Frot, G.-A. Thanei, and N. Meinshausen. Right singular vector
projection graphs: fast high dimensional covariance matrix estimation under la-
tent confounding. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(2):361–389, 2020.

W. Shen, Z. Yang, and J. Wang. Random features for shift-invariant kernels with
moment matching. In Association for the Advancement of Artificial Intelligence
Conference, 2017.

L. Slim, C. Chatelain, C. Azencott, and J. Vert. Novel methods for epistasis detection
in genome-wide association studies. bioRxiv:325993, 2018.

191

L. Solus, Y. Wang, L. Matejovicova, and C. Uhler. Consistency guarantees for
permutation-based causal inference algorithms. Biometrika, page asaa104, 2020.

T. Soma and Y. Yoshida. Maximizing monotone submodular functions over the integer
lattice. In International Conference on Integer Programming and Combinatorial
Optimization, pages 325–336. Springer, 2016.

T. Soma, N. Kakimura, K. Inaba, and K. Kawarabayashi. Optimal budget allocation:
Theoretical guarantee and efficient algorithm. In International Conference on
International Conference on Machine Learning, 2014.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The
MIT Press, 2nd edition, 2000.

B. Sriperumbudur and N. Sterge. Approximate kernel PCA using random features:
Computational vs. statistical trade-off. arXiv:1706.06296, 2017.

B. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. Lanckriet. Hilbert
space embeddings and metrics on probability measures. Journal of Machine Learning
Research, pages 1517–1561, 2010.

C. J. Stone. The use of polynomial splines and their tensor products in multivariate
function estimation. Annals of Statistics, 22(1):118–171, 03 1994. doi: 10.1214/aos/
1176325361.

G. Su, O. F. Christensen, T. Ostersen, M. Henryon, and M. S. Lund. Estimating
additive and non-additive genetic variances and predicting genetic merits using
genome-wide dense single nucleotide polymorphism markers. PLOS ONE, 7(9):1–7,
09 2012.

D. Sutherland and J. Schneider. On the error of random Fourier features. In Conference
on Uncertainty in Artificial Intelligence, pages 862–871, 2015.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014.

A. Talwalkar. Matrix Approximation for Large-scale Learning. PhD thesis, New York
University, 2010.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, pages 267–288, 1994.

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In International Conference on Artificial Intelligence and Statistics, pages 567–574,
2009.

S. Tong and D. Koller. Active learning for structure in Bayesian networks. In
International Joint Conference on Artificial Intelligence, 2001.

192

B. Trippe, J. Huggins, R. Agrawal, and T. Broderick. LR-GLM: High-dimensional
Bayesian inference using low-rank data approximations. In International Conference
on Machine Learning, 2019.

R. Turner and M. Sahani. Two problems with variational expectation maximisation
for time-series models. In Bayesian Time series models, pages 109–130. Cambridge
University Press, 2011.

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press,
2000.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approxima-
tion, regression estimation and signal processing. In Advances in Neural Information
Processing Systems, pages 281–287, 1997.

V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag, 1995.

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Uncertainty
in Artificial Intelligence, volume 6, page 255, 1991.

T. S. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies
has a causal explanation. In Uncertainty in Artificial Intelligence, 1992.

M. Wainwright and E. Simoncelli. Scale mixtures of Gaussians and the statistics
of natural images. In International Conference on Neural Information Processing
Systems, 1999.

W. Wang and J. Fan. Asymptotics of empirical eigenstructure for high dimensional
spiked covariance. Annals of Statistics, 45(3):1342–1374, 06 2017.

Y. Wang and D. M. Blei. The blessings of multiple causes. Journal of the American
Statistical Association, 114(528):1574–1596, 2019.

Y. Wang, L. Solus, K. Yang, and C. Uhler. Permutation-based causal inference
algorithms with interventions. In Advances in Neural Information Processing
Systems, pages 5824–5833, 2017.

R. Wei, B. Reich, J. Hoppin, and S. Ghosal. Sparse Bayesian additive nonparametric
regression with application to health effects of pesticides mixtures. Statistica Sinica,
01 2019.

O. Weissbrod, D. Geiger, and S. Rosset. Multikernel linear mixed models for complex
phenotype prediction. Genome Research, 2016.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.
In Advances in Neural Information Processing Systems, pages 682–688, 2001.

193

T. Wu, Y. Chen, T. Hastie, E. Sobel, and K. Lange. Genome-wide association analysis
by Lasso penalized logistic regression. Bioinformatics, 25(6):714–721, 2009.

K. D. Yang, A. Katcoff, and C. Uhler. Characterizing and learning equivalence
classes of causal DAGs under interventions. In International Conference on Machine
Learning, 2018.

T. Yang, Y. Li, M. Mahdavi, R. Jin, and Z. Zhou. Nyström method vs random
Fourier features - a theoretical and empirical comparison. In Advances in Neural
Information Processing Systems, 2012.

Y. Yang, M. Pilanci, and M. J. Wainwright. Randomized sketches for kernels: Fast
and optimal nonparametric regression. The Annals of Statistics, pages 991–1023,
2017.

F. Yu, A. Suresh, K. Choromanski, D. Holtmann-Rice, and S. Kumar. Orthogonal
random features. In Advances in Neural Information Processing Systems, pages
1975–1983, 2016.

K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-based conditional indepen-
dence test and application in causal discovery. In Conference on Uncertainty in
Artificial Intelligence, pages 804–813, 2011.

194

	Introduction
	Prediction and Association
	Causality
	Targeted Experimental Design

	Data-Dependent Compression of Random Features for Large-Scale Kernel Approximation
	Introduction
	Preliminaries and related work
	Random feature compression via coresets
	Algorithm derivation
	Theoretical results

	Experiments
	Conclusion

	The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions
	Introduction
	Preliminaries and Related Work
	Bayesian Models with Interactions
	The Kernel Interaction Sampler
	The Kernel Interaction Trick: Recovering Posterior Marginals
	SKIM: Sparse Kernel Interaction Model
	Experiments

	The SKIM-FA Kernel: High-Dimensional Variable Selection and Non-Linear Interaction Discovery in Linear Time
	Introduction
	A framework for non-linear interactions and sparsity
	Problem Statement
	Our contributions: an overview
	Interactions and identifiability for nonlinear functions
	How to achieve sparsity for nonlinear functions

	Using two kernel tricks to reduce computation cost
	Trick one: How to represent and access sparsity without incurring the cost of a basis expansion
	Trick two: A recursion to avoid a combinatorially large summation over interactions in the presence of covariate independence

	How to get sparsity, interactions, and fast inference when covariates are dependent
	Practical problems that arise when assuming independent covariates
	 A change of basis to handle covariate dependence

	Final algorithm and implementation details
	Related Work
	Experiments
	Benchmark Methods
	Evaluation Metrics
	Synthetic Data Evaluation
	Evaluation on Real Data
	Impact of Correlated Predictors on the Functional ANOVA

	Concluding Remarks

	The DeCAMFounder: Non-Linear Causal Discovery in the Presence of Hidden Variables
	Introduction
	Problem Statement: Causal Discovery in the Presence of Confounding
	Existing Causal Discovery Methods
	Our Method
	Sufficient Statistics for Recovering the DAG
	Asymptotically Exact Estimates of the Sufficient Statistics
	The DeCAMFounder Score Function

	Experiments
	Simulated Data
	Real Data: Ovarian Cancer Dataset

	Conclusion

	ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery
	Introduction
	Preliminaries
	Optimal Bayesian Experimental Design
	Budget Constraints

	Tractable Algorithm
	Expectation over (G,)
	Approximating Mutual Information
	Greedy Optimization

	Experiments
	Concluding Remarks

	Appendix for "Data-Dependent Compression of Random Features for Large-Scale Kernel Approximation"
	Proof of thm:asymcompcoef
	Proof of thm:approxnorm
	Runtime analysis of methods
	Impact of kernel approximation
	Kernel ridge regression
	Kernel SVM
	Kernel PCA

	Additional Experiments

	Appendix for "The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions"
	Modeling Multi-Way Interactions
	Proofs
	Proof of prop:explicitkernel
	Proof of thm:inducedprior
	Proof of prop:formulamarginal
	Proof of cor:geteffectstime
	The General Kernel Interaction Trick
	Proof of prop:pairwisesparsekern

	Example Bayesian Interaction Models
	Block-Degree Priors
	Sparsity Priors

	SKIM Model Details
	SKIM Details

	Variable Selection Procedure
	Woodbury Identity and the Matrix Determinant Lemma
	Standard Polynomial Kernel

	Appendix for "The SKIM-FA Kernel: High-Dimensional Variable Selection and Non-Linear Interaction Discovery in Linear Time"
	Proofs
	Proof of prop:kernexist
	Proof of lem:kernselect
	Proof of lem:arbfarintercept
	Proof of prop:modelselectbayes
	Proof of thm:skimfastform
	Proof of corr:skimkerntime
	Proof of prop:graddescent
	Proof of eq:universalspace
	Proof of thm:theoproj
	Proof of prop:changebasiscorrect

	Literature Review
	Zero Mean Kernels and Finite-Basis Functions
	MARS ANOVA Procedure
	Additional Experimental Results

	Appendix for "The DeCAMFounder: Non-Linear Causal Discovery in the Presence of Hidden Variables"
	Proofs
	Proof of lem:reparam
	Proof of lem:linears
	Proof of thm:superdag
	Proof of eq:gpgenformula

	Score Fuction Details
	Generating Simulated Data
	Additional Figures and Experiments
	Synthetic Data Experiments
	Ovarian Cancer Dataset

	Appendix for "ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery"
	Proofs
	Proof of prop:infinitesamps
	Proof of thm:mutalconsistent
	Consistency Counterexample
	Proof of thm:greedygaurantee
	Proof of prop:totalruntime
	Constraint on the Number of Unique Interventions
	DREAM4 Supplementary Figures

