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Abstract

Two Enumeration Problems About Aztec Diamonds

by

Bo-Yin Yang

Submitted to the Department of Mathematics
on May 20, 1991 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Abstract

An explicit enumeration of a class of figures called “Penta-Aztec Diamonds”, which are
related to the Aztec Diamond introduced by Elkies et al by a transformation, is given here. Also
derived is a generating function that contains all the information about these tilings. Along
the way, some previously known results about the tilings of the Aztec Diamond leading up to
Stanley’s multi-g-analog formula are rederived using the same general approach. Finally, the
centrally symmetric tilings of Aztec Diamonds are also enumerated using the essentially same
technique.

Thesis Supervisor: Richard P Stanley, Ph.D.
Title: Professor of Mathematics
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Chapter 0

Introduction

In this century combinatorists have studied at length the enumeration of certain tilings of
figures! ( or equivalently, matchings of graphs) and the transformation of other enumeration
problems into tiling problems. (A classical example of such work is that of the problem of the
tilings of the 2n x 2n chessboard as detailed by Lovasz in his classic work [8].)

G. Kuperberg’s recent study on the symmetry classes ([5]) used the the technique of the
method of Permanents and Determinants on the problem of enumerating symmetry classes of
plane partitions by treating them as figure-tiling or graph-matching problems. Here, these same
techniques are applied to several enumeration problems centered around the geometrical figure

introduced in Elkies et al [1] as the “Aztec Diamond”, defined below:

Definition 1 The Aztec Diamond f order n, which we will denote by AD(n), is the geometrical
figure in the Euclidean z-y plane obtained by taking all the lattice squares which fall completely
inside the boundaries

lz| +lyl < n+ 1.
(See Figure 0-1)

In the introductory Chapter 1, we will introduce most of our pertinent definitions and con-
cepts. Also included is a elegant derivation of Stanley’s formula for the generating function, or

the multi-g-analog for the tilings of the Aztec Diamond, via the “shuffle” manuever introduced

!Defined abstractly as a union of closed dimension 2 subsets of the plane, each of which called a component,
such that the intersection of any two component is of dimension at most one.
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Figure 0-1: Order-3 Aztec Diamond

by J Propp in [1] to prove Theorem 2.5 which states that ad(n), the number of dimer tilings of
AD(n), ic given by
ad(n) = on(nt1)/2

In Chapter 2, we introduce our general approach and use it on the Aztec Diamonds, re-

deriving Theorem 2.5 and culminating in Stanley’s formula, Theorem 1.2, reproduced here:

ad(n;z,y,2,w) = H(a’jwk + yjzk).
i<k

Here z,y, 2z, w are the weights of edges defined in Section 1.4. (cf. figures 1-14, 1-13)

In Chapter 3, we introduce the figure known as the Penta-Aztec Diamonds:

Definition 2 The Penta Aztec Diamond of order n, denoted PD(n), is ¢ geometrical figure on



the Euclidean plane defined as follows: take the collection of lattice squares U; x=y. .[J — 1,J] X
[k — 1,k] (a gridded n x n square) and subdivide each square into four right triangles by cutting
twice diagonally?. Furthermore, we attach to every other (quarter-sized) triagular tile on each
edge (of the original square) its mirror image with respect to the boundary of the square, with
the restriction that each of the corners must have both or neither of the possible add-on tiles.

See Figure 0-2

Figure 0-2: PD(5)

Note that it is immediately obvious that for odd-ordered Penta Aztec Diamond’s there are
two inequivalent forms. For the convenience of the discussion to follow, we will only consider
the version in which the left top corner always has the extra tiles attached.

With a trick we transform the problem of enumerating the tilings PD(n) into the problem

2;.¢. draw all the lines defined by z + y = j (where j =1,2...2n — 1) and z — y = k (where —n < k <n).



of enumerating the matchings of another graph related to the Aztec Diamonds. This is worked
out by the same general approach used in Chapter 2. As a final result, we obtain the number

of tilings of the figure PD(n) (denoted pd(n)) in Theorem 3.1, reproduced here:

2

pd(2n) = 5%, (0.1)
pd(4n+1) = 52n(2n+1), (0.2)
pd(4n—1) = 2x52Cn-1), (0.3)

In the rest of Chapter 3, we obtain a multi-q-analog generating function of this result in The-
orem 3.2.
In the last chapter, we will obtain ad,(n), the number of centrally symmetric tilings of

AD(n). The statement of the main result of the chapter is Theorem 4.1:

ady(2n) = 2"%ady(2n -1); (0.4)

_ o2n?—2ne1 Ha(4n + 3)Hy(4n — 1)(H(n)H(n — 1))?
ady(4n — 1) = 22" -2l 4 (Hy(2n — D Hy(2n + 1))° ; (0.5)
ady(4n+1) = 224 (Ha(4n + 3))(H(n))" (0.6)

(Hz(2n +1))°

Here H;(n), the step-factorial function, is defined as

Hj(n) = H (n— jk)!
1<k<n/j
and H(n) = Hy(n) (definition by Kuperberg in [5]).

It is certainly possible to try to enumerate the other symmetry classes of tilings using the
Hafnian-Pfaffian Method, an extension of the Permanent-Determinant Method to non-bipartite
graphs. However, since the answers do not seem to be integers of high factorizability, the result
would have to be obtained in terms of some sum of closed-form functions, which has eluded the
author so far. There are many related problems which merit further investigations and which

hopefully will provide more material for future publication.



Chapter 1

Preliminaries

1.1 The Aztec Diamond

We start out with a few definitions.

Definition 3 A dimer tiling of a planar figure,! is a partition of the set of components into
pairs each of whose components are in contact in the sense of sharing an edge (dimension I

boundary)

Definition 4 A weighted graph G is a triple (V, E,W), where V is a set called the vertices;
E € 2((‘;)), a set of 2 element multisets of V, called edges, and we call an edge whose two
vertices are identical a loop; and W : E — R is the weight function, where R is a commutative

ring, normally the real or complez numbers .

Definition 5 A (perfect) matching M of a weighted graph G = (V, E,W) that has no loops is
a collection of edges M C E such that all vertices in V are covered by ezactly one edge in the
coilection. The weight associated with the matching M, or more generally any set of edges, is

the product of the weight associated with every edge in the set, or

w(M) = [] w(e)

eeEM

Represented as a disjoint sum of components, as mentioned in the Introduction.



Figure 1-1: The 8 tilings of the order 2 Aztec Diamond

and the total weight of matchings of G is defined as M(G) = 3_p w(M), where M ranges over
all matching of G.

We will henceforth use the term the number of matchings® synonymously with the total weight
of matchings.

Note that for a bipartite graph to have any matchings at all the number of “black” vertices
must be the same as the number of “white” vertices. Therefore, when we talk about matchings

of bipartite graphs it is implicitly assumed that they satisfy this condition.

Definition 6 The connectivity graph of a planar figure T, is the graph G(T') whose vertez set
is the set of components of the figure, such that an edge (of weight 1) exists between two vertices
if and only if the two corresponding components are in contact, defined as intersecting in a set

of dimension 1.

Definition 7 A domino tiling, or simply tiling, of a lattice region(a union of lattice squares)

is a collection of dimer tiles or dominoes® whose mutual intersection is at most 1-dimensional

?Even though this is a misnomer when the edges are not all weighted one.
3defined as two lattice squares in contact.



Figure 1-2: The connectivity graph of order 3 Aztec Diamond.

and union of the squares in each tile contains the whole region. When contezt permits, we will

also identify the region by the tiling.

It is obvious from the above that there is a bijection between dimer tilings of a figure and
matchings of its connectivity graph. In fact, we will in the future use the two interchangeably.
Elkies et alin [1] has obtained the number of dimer tilings for AD(n). In fact, a generating
function was obtained that provided rather more information. The proof, a simplified version of
which we present below (it being short and elegant) uses the manuever known as the “shuffle”.
To envision the shuffle, picture the plane as being colored in black and white in a checker-
board pattern, with the diagonal line of squares on the NE or upper-right side of the diamond

being black as depicted above.



Definition 8 The shuffle is the operation on a tiling that moves each tile one unit length in
the direction parallel to the short sides of the tile such that the white square in the tile is on
the right if the move is horizontal and left when the move i3 vertical, considering each tile as a

unit. See Figure 1.2.

moves of the shuffle.

Figure 1-3: Shuffles and an Odd Block

Defiuition 9 A lattice point is an odd vertez if it lies on the upper-left corner of a white square

and an even vertez otherwise.

Definition 10 An odd block is a pair of tiles forming a 2% 2 square that has white squares
on the upper-right and lower-left. Equivalently, the region has an odd verter at the center.

Similarly define even blocks.

It is easily seen that a pair of tiles forming an odd block will simply exchange places under

the shuffle.

Definition 11 Anodd-deficient tiling of a (lattice) region is a collection of dimer tiles to which
(a finite number of) pairs of dimer tiles that form odd blocks can be added so as to form a tiling

of the region. An even-deficient tiling is defined similarly.



Here, we observe that a region covered by an odd-deficient tiling can have only odd vertices

on the corners of its boundary.

Lemma 1.1.1 The process of shuffling is a involution between odd-deficient tilings on the whole

checkerboarded plane.

Droof: (From [1]) Let T be a odd-deficient tiling on the plane, resulting from removing the
odd blocks from T, a true tiling. Let 77 be the collection of tiles obtained as the result of a
shuffle on the tiles of T', to be identified as a odd-deficient tiling.

First we show that all the tiles in T in fact stay disjoint after shuffling.

Proceeding by reductio ad absurdum, we consider, without loss of generality, a white square

s that has two tiles covering it after the shuffle. (Figure 1.4)

Figure 1-4:

Each of the possible tiles that cover s must also cover a black square adjacent to s so we
will characterize those tiles by those four squares, as labeled above by a through d. Consider

the six possible combination of tiles that cover the white square:
a,b Then the inverse images of the tiles overlap, contradiction.
¢,d As above.

a,c The tiling T must have a tile that covers s, but that tile cannot cover b or d since they

conflict with the original position of the two tiles that now covers s after the shuffle.

9



However, a tile covering a and s will form an odd block with the tile that shuffles to that

same position, and equivalently for ¢ and s. contradiction.
b,d As above.
a,d The geometry is different from above but the reasoning does not change.

b,c¢ Same.

Now we proceed to prove that T only has odd vertices on the corners. Suppose that v is a
vertex on the corner of T}. It is easily shown by the enumeration of cases that v must have an
unequal number of black and white squares around it that are in T;. Suppose that v is even;
then a tile may cover, of the four squares around v, one black, one white, or one of each. In
these three cases, the (inverse) image of the tile would cover one black square, one white square,
or none at all around v. Therefore, v can only be a corner of Ty if it is already a corner of T.

But since T is a odd deficient tiling, this is impossible. O

With the help of the preceeding lemma, we can prove the following:

Theorem 1.1 If we remove all odd blocks from a tiling of the Aztec Diamondof order n — 1
and shuffle, then we obtain a tiling of the Aztec Diamondof order n with holes in them that are

“even” blocks.

Proof: Using the same notation as above, we assume that T is an odd-deficient tiling of the
order AD(n — 1). So T lies completely inside AD(n). Consider the complement of the order
AD(n — 1) tiled in such a way that there are no odd blocks and added to T to obtain a odd-
deficient tiling T+ of the entire plane, the result of shuffling T* is another odd-deficient tiling of
the plane. Some of the missing odd-blocks would lie in the semi-infinite strips of width 2 around
AD(n) and the rest falls completely inside AD(n). Since none of these cross the boundary of
adding those inside to T; gets us a complete tiling of AD(n). O

Corollary 1.1.1 The number of tilings of AD(n), hereafter also referred to as ad(n), is an(n+1)/2

Proof: Consider a tiling T of AD(n — 1). Take out the odd blocks, storing their orientation
somewhere. Now shuffle to get an odd-deficient tiling of AD(n). Put the odd blocks taken out

10




before back in {by some set ordering, say from top to bottom, left to right). Now we have n
even? blocks still to fill in, which we can orient in 2" ways. It is easy to check that mapping
is injective, so that is the ratio of the number of tilings. The rest follows by mathematical

induction O

After we introduce a few other concepts we will prove a generating function relating to the
Aztec Diamond tilings as well as some pertinent facts about how the Aztec Diamond relates to

other combinatorial topics.

1.2 The Permanent-Determinant Method

The Permanent-Determinant Method is a method used to compute the number of matchings
of bipartite graphs, used by G. Kuperberg in [5] to prove certain formulas for the number of
plane partitions with various symmetries.

The simple gist of the method is as follows:

Definition 12 For a (weighted) graph Z that is bipartite, we build a matriz for which the rows
represent “black” vertices and the column represent “white” vertices. Each entry of the matriz
is the weight of the edge connecting the black vertez of its row and the row verter of its column.

This we call the bipartite connectivity matrix of Z and denote by B(Z).

Notice that since the definition deliberately uses the two partitions of vertices as labels of
rows and columns, the matrix so obtained is only unique up to the permutation of rows and
columns, corresponding to changing the labeling of the vertices in the graph. However, the

value of the permanent of the matrix is independent of the labeling used.

*Notice that by our coloring what’s even for AD(n) is odd for AD(n % 1), and vice versa.

11




Example 1.2.1

(101000000000\
111010000000
001001000000
010110100000
001011010000

B(AD(3)) = 000001001000
000100100000
000010110100
000001011010
000000100100
000000010111
\0 00000000101}

if we number all vertices top-to-bottom then left-to-right.

It is easily seen that this matrix has a simple connection to the number of matchings of the
graph, namely
M(Z) = Pex(B(2)),

where Per(A) is the permanent of A, defined in the same way as the determinant except that

there are no signatures on any term, i.e.

Per(A) = Y. [[4isq

0€Sm 1=1

where m is the size of the matrix (half the number of vert.ces). However, this in itself is not
of much use, since permanents are notoriously hard to calculate. However, there is a way to

simplify the calculation, as follows:

Definition 13 For any (weighted) planar bipartite graph T, an alternating modification T (not
unique, but all denoted by the same symbol) is a weighted graph with the same verter set and

edge set of T and a modified weight-function T(e) = w(e)T(e) such that if the edges e, €2, .. -€n

12



taken in order form a irreducible cycle (“face”) we have that

w(ey)w(es) ... w(en-1) = (=1)"=D/2y(eq)w(eq) . . . w(en)

cnneneee Welght -1 coceeeeee- Welighti —— Weight 1

Figure 1-5: Two Alternating Modifications of the Aztec Diamond of order 3

Lemma 1.2.1 If T is an alternating modification of T then the bipartite connectivity matrices

of the two graphs satisfy
Per(B(T)) = + det(B(T))

Proof: Take the two expressions term-by-term. Making an elementary move on a matching
(see Fig. 1-6) ® changes the signature of the permutation by (—=1)U+1) when the circuit is

composed of 2! edges. So terms in the determinant of B(T) that corresponds to matchings of

SIf the edges €1, €3, .. . €2n taken in order form a irreducible loop, then taking the edges €1, €, ... €2n-1 instead
of €2, €4, ...€2n in a matching is called an elementary move or face rotation. It is shown for example in (8] that
any two matchings of a graph can be modified into each other by a series of elementary moves.

13



Figure 1-6: An elementary move

T all have the correct signature, up to a negative sign for every term. O

It can be shown (see [6]) that for all planar bipartite graphs an alternating modification can
be found in a consistent manner. In the main text we will use this technique to solve several
tiling/matching problems heretofore unresolved.

Here we will also mention the fact that this method can be generalized to one that deals
with graphs that are not bipartite, called the “Hafnian-Pfaffian” transformation but since we

will not deal with any such graph we will omit the discussions here and refer readers to [5] and

[6].

1.3 The method of W-Z pairs for proving combinatorial iden-
tities

Oftentimes in solving combinatorial problems, it is far easier to prove a conjectured result than
to envision one. This is the case here as well.

One method of proving conjectured equalities is Proof by WZ Rational Certificates. This
is a general method of proving combinatorial identities of a certain form developed by Herbert
Wilf and Doron Zeilberger and summed up in [2].

The basic idea is as follows: We have a conjectured identity

Z F(n,k) < constant, independent of n > no,
k

14



where the summation over k is in theory over all integers® and n is also an argument with

integer value. (We denote by A, and Ay the forward differential operators in n and &, etc.)

If we can obtain a function G(n, k) such that

AnF(n,k) = AxG(n,k) (1.1)

i
o

Jim_G(n, k) (1.2)

then we see that

An Y F(n,k) = Y AnF(n,k)
k k

= Y AxG(n,k)
k
= G(n,+00) - G(n,-00) =0.

Hence the sum is in fact independent of n and we can say that the desired equality is in
fact true’.

Note that from the condition of the WZ pair, with the proviso

nlirgo F(n,k) = fi exists and is finite;

Lu/n}” znjc(n, -L) 0

we can deduce the relation

Z G(nsk) = Z(f] - F(Ooj)),

n>0 i<k
But we will not utilize this part of the theorem here.
Usua.liy, a combinatorial identity has some non-constant term as the right-hand side. Before
the WZ method is used, the whole equation should be divided through by its RHS so that the
prospective identity is a sum coming out constant. F(n, k) is then usually set to be the summand

of the left-hand-side.

SBut often F(n, k) is such that a finite number of (n, k) gives a nonzero F(n, k).
" After checking that it is true for some initial value of n, which would be trivial in ithe case of 2 equality
conjectured through empirical evidence.

15



In practice, we set
G(n,k)
F(n,k-1)

R(n,k) =
and solve for R. With the help of a symbolic mathematics computer program such as Math-
ematica, R can usually be obtained within a reasonably short time by trial-and-error. R. W.
Gosper has built an algorithm in MACSYMA which can be used to find (or prove the non-
existence of) closed-form-sums, and there probably are programs in existence® which can be
used to find these R’s in an automated manner.

If F is of closed form (F(n + 1,k)/F(n,k) and F(n,k 4+ 1)/ F(n;k) being rational functions
of n and k) then R(n,k) will normally be a rational function of reasonble simplicity. This R
is called a “certificate” of the equality and in essence it is all that is needed in a proof. Of
course, we also need to check an initial condition, since this is really just an advanced form of
mathematical induction, but that is relatively easy!

This is only the bare bones of the methods outlined by [2]. For a detailed description see
[2} or [3].

With this powerful tool, we immediately can prove many equalities. For example:

Example 1.3.1

Proof:
In-2k+3

B k) = -y

This is somewhat trivial and easily provable by more straightfoward means, but there are

less trivial ones:

®However, being less advanced, I carried out all the computations in this section by hand with some help from
Mathematica.

16



Example 1.3.2 (Dixon)

a+bfct+alfb+tec) (a+b+c)
zgc—nk(“+k)(0+k)(b+k>" a'blc! (1.3)

Proof: Here a,b, ¢ is symmetric, and we will take only one of them, a say, as the independent
variable n. As a matter of fact, we have

(c+1-a)b+1-a)

R(a,k) = 2a+k)a+b+c+1)

Example 1.3.3 (Vandermonde)

S(0-(2)

(a—k+1)
a+b41°

Proof:
R(b, k)= -

Notice that a and b are quite symmetric. O

Example 1.3.4

_ i 4n-i <2n -Jj+ 1) (2n — 25 — 1)NN(25 - )M

- T+ (2n+ DN

= ég%%%%, (1.5)
-E (e

: %gf%%T (1.6)

Proof: It is easily shown via mathematical induction that the two are equivalent. More

specifically, take Eqn. 1.5, substitute n — 1 for n, and substract four times the resulting
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equation from the original Equation 1.5 and we obtain Equation 1.6, which can then can be

proven by the certificate
452 -1

(4n+1)(4n+3)°

R(n,j)=

Example 1.3.3

2 jek[2n—J+1
ZZ(—I)“‘( it )

j=-1 k

(20— 25 - I(2j - 1)! (2n + 1) ( 2j +1 )

(2n 4+ 1)! k 2n —-2m —j—2k
= 0,Yn>m. (1.7)

Proof:
27(25 - 1)(2j +1)
2n+1)(2n-2m—j -2k +2)

R(n,j) =
Notice that using R(n, k) would not have worked.® O

This is just an outline of an extraordinarily powerful method. It has its limitations, but

with some help from Mathematica or the like can be extremely useful.

1.4 Alternating Sign Matrices and a Generating Function of

Aztec Diamond Tilings

Definition 14 An ASM (Alternating Sign Matrix) of order n, (the set of which henceforth is
denoted by ASM(n)), is a square matriz that has all entries being +1 or 0 with the property

that all rows and columns add up to 1 and the +’s and -’s alternate in each column and row.

Surprisingly, Alternating Sign Matrices, which have many interesting combinatorial prop-

erties, also have an interesting connection to Aztec Diamond tilings.

°Double sums in general must be treated case by case, and many sources such as [3] outlines ways to deal
with huge combinatorial equalities.
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The following result was proved in (1]

Lemma 1.4.1 We can obtain a many-to-one mapping of ASM(n) to the tilings of AD(n)
such that each ASM corresponds with 2* tilings where k is the number of +1’s in the ASM.
Alternately, we can say that there is a bijection from ASM(n) to even-deficient tilings of AD(n).

Proof: Let’s take any ASM (for demonstrative purposes, we will use the matrices

Figure 1-7: The ASM M; mapped to tilings of Aztec Diamond’s.
See the figures 1-7 and 1-8. The way to envision the mapping is to picture the n x n square

of the even vertices in the AD(n), and envision these as the entries of the ASM thusly:

e If the even vertex is the center of an even block in the tiling, then the corresponding entry
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Figure 1-8: M,, M3 mapped to Aztec Diamond’s.

is +1.

o If the even vertex is the intersection of four tiles, then the corresponding entry is -1.

e Otherwise, (i.e. the even vertex is the intersection of three tiles,) then the corresponding

entry is 0.

To see that this is indeed a bijection, consider any given tiling of an Aztec Diamond. Then

in order we have:

1. Between any even vertex with four intersecting tiles and the edge of the Aztec Diamond
there must be a even block. Suppose A is an even vertex with four incident tiles as above;
then two of them form a inward concave angle (the one which is the boundary of square
U in the figure). Since the square U cannot be tiled with either of the squares S and T
next to A, we can without loss of generality assume that U is tiled with V next to it.
Then the other two tiles next to that vertex B must either be tiled together (case 2) or
tiled separately (case 1). In the former case, we have a even block right there. In the
latter, we have formed another angle that is inward concave at B, and recursively we have

shown that there must be an end to the (case 1)’s we can encounter, so there must be a
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Figure 1-9:

even block somewhere along the way.

2. Between any two even blocks on the same line there must be a vertex with four incident

tiles. We look at the next figure:

Case 1: Case 2:

Figure 1-10:

Here, either we have that the next vertex B has four incident tiles (when square U is tiled
with S or T (case 2) or we get an angle facing the same way (case 1). And recursively we

can eventually find an even vertex with four incident tiles. As a result of the above, we
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have proved that this mapping is well-defined.

3. Two distinct even-deficient tilings of the Aztec Diamond will map to two different ASM’s:
Following the above, for every vertex we draw boundaries of tiles as above. Le. the
incident edges at an even vertex will run NE, NW, and SW if the partial row-sum and
partial column-sum of the ASM are both equal to 1, (see figure 1-11) etc. We have shown
that the mapping is bijective.

[Entry in ASM of same order] (Entry in ASM of one lower order)
(for the mapping of the lower-order ASM f£1lip colors)

(+1) 1]

[0: row.sum=9, coLsum=1} [0:row.sum=1, col.sum=1}
(0:row.sum=1, col.sum=0) (0:row.sum=0, col.sum=0)
{0:row.sum=0, col.sum=1) (0:row.sum=1, col.sum=1)

[8: row.sum=1, col.sum=9) [6:row.sum=6, coL.sum=9}

Figure 1-11: Entries in ASM mapping to even vertices of Aztec Diamond tiling.

In a completely identical fashion, we can show that the minue signs correspond to the
odd blocks removed from the previous Aztec Diamond from which the Aztec Diamond under

consideration can be shuffled; or, rather, we have the following.

Corollary 1.1.2 There is a bijection from ASM(n — 1) to odd-deficient tilings of AD(n) in a

completely analogous manner to the above.
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Figure 1-12: The ASM’s M3, M3 mapped to tilings of AD(3).

The immediate result of this is the following connection between two very fascinating com-

binatorial ob jects:
ed(n)= Y 22 (1.8)

o€EASM(n)
where s(o) is the number of minus signs in 0. As a matter of fact, a direct extension of the

above immediately gets us:

Theorem 1.2 (R. Stanley, 1989) If we give weighting to the tiles of a tiling of AD(n) in
the following manner: those located as to the eztreme upper-right are weighted z, (running NE)
and y; (running NW) and the nezt row z, and w;, and the nezt row z; and y; (see figure 1-13)

etc.; then the total weight of the tilings is

ad(n;z,y,2,w) = H(l’jﬂ)k + yj2k)
i<k
Proof: Consider the total weight corresponding to an odd-deficient tiling of AD(n). It will be

of this form:
H(xs 2, ‘ID) HOJ

Where O; = (wj_1z; + zj-1¥;) is the weight for the odd block removed in the shuffling. Now
consider the effects of the shuffie on AD(n), transforming t' e result into an even-deficient tiling
of AD(n + 1); we get some factors corresponding to the even blocks, as well as the factors

corresponding to shuffled tiles. Let’s look at the effect of the shutfle on those tiles (see figure 1-
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Figure 1-13: Odd-deficient tiling of AD(3) and weights of tiles.

14:
z; — Ij (1.9)
yi — Ui (1.10)
z; — fj.}.l (1.11)
w; — Wi (1.12)

Also for each even block we add in on row k, we get a factor of

Ey = ZxWk + JrZk

Looking at the formula for the transforms above, and calculating the transformed(shuffled)
image of O;, we know that for each odd block removed we remove with it (in the corresponding
term) a factor of

Zx Wk + JrZk = Eb.
But from the properties of the ASM, we know that the number of pluses in each row is exactly

one more plus than the number of minuses. This means that after we cancel the factors, we get
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Figure 1-14: Even-deficient tiling of AD(4), and weights of tiles.

that the result is a simple multiplication by []; E;.
The rest is a simple induction. We transform the forraula above for ad(n;z,y,z,w) and

multiply by []; E; to get exactly the same formula for ad(n + 1; 2,9, 2, w). O

So, this theorem is proved in an elegant manner( this particular proof is discovered inde-
pendently by several people, including the author and J Propp among others). Of course, the
original proof was obtained by a different method (see [7]). In the next chapter, we will arrive

at this generating function via a different method.
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Chapter 2

The Aztec Diamond Tilings

2.1 The Aztec Diamond tilings, by the Propp-Kuperberg method

To obtain a solution to the problem of enumerating Aztec Diamond tilings via the Permanent-
Determinant Method, it is necessary to obtain an alternating modification of the connectivity
graph. We will now do so. Before we proceed, we explain the conventions and notations used

in this chapter:
1. For clarity and convenience we have rotated the Aztec Diamond by forty-five degrees.

2. We have also identified the figure AD(n) with its connectivity graph G(AD(n)) through-

out where no confusion is likely .

3. We will refer to the bipartite connectivity matrix of the graph G(AD(n)) as B(AD(n))
or simply B(n), the number of tilings of AD(n) as ad(n), a function of n. !

4. We number the row-vertices as follows: start with number 1 at the top of the rightmost
row, and circle around in a clockwise fashion. After vertex 2n in the lower-left corner
has been reached, start again at the top right corner and repeat until all row-vertices has

been numbered.

1We henceforth will identify with lowercase letters the “total number of tiling/matching” where the same
upper-case letters would denote the graph or figure.
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5. The column-vertices are numbered in a way symmetric to the above, starting at left-

bottom and going counterclockwise. (See Figure 2-1.)

..‘ LY

..o..og ROW'WITOX r—— wl! Ibl
i.‘ Column-vertex = =eeee= welght=1
!“‘: !..l. !.‘.E
/ m.. ‘ "‘.' / .6.;“
":é /;. : * /‘:? '7‘.'5- }Zo‘
g‘iia 5;'. ;-.

Figure 2-1: G(AD(3)) and numbering of its vertices

Having done the above, now we need to give each edge a weight. For reasons of symmetry,
we do so in this manner: all edges running northeast(,/') will be given weighting 1 and those
running northwest(™\\) will be given weighting ¢.

This clearly forms an alternating modification of the original connectivity graph, since each

square “face” has two edges that have weighting 1 and the other two i.
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2.2 Solving the Enumeration problem of tiling AD(n)

Now we obtain the modified connectivity matrix B(AD(n)) =

1{:
1 1
10 ¢
t 1 1
1
1 ?
1 ¢ 11
: * |1
tl1]=*
[ | *
*
*
1 1 *
|

The entry above marked with O is (n,n); the one marked with a x (2n,2n); and the last
displayed row/column the (3n — 1)th; in the lower right corner, the stars stand for entries that
go into the B(AD(n - 1)).

Now, we attempt to reduce the determinant of the matrix to one that is related to the
matrix of AD(n — 1).

And so, we carry out the reduction in the follwing steps:
1. (—i)x (Row 2n — 1) is added to (Row 2n).
2. (=i)x (Column 2n — 1) is added to (Column 2n).
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3. (-1)x (Row 2n — 2) is added to (Row 2n).
4. (-1)x (Column 2n — 2) is added to (Column 2n).
5. (+i)x (Row 2n — 3) is added to (Row 2n).
6. (+i)x (Column 2n — 3) is added to (Column 2n).
(—i)¥x (Row 2n — k) is added to (Row 2n).
(-i)Fx (Column 2n — k) is added to {Column 2n).
2n — 1. (—i)"x (Row n) is added to (Row 2n).
2n. (-i)"x (Column n) is added to (Column 2n).

After this we do all elementary eliminations. And this is the result:

- . -
1
=2(-1)" |2 -2i ... 2(=i)*"% 0
2 *
-2 *
: *
2(-i)"2 *
0 *
L *

where the stars again denotes the entries in the order-(n — 1) Aztec Diamond. That the entries

in the above matrix is correct is easily verified.
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The idea is that we find co-efficients a; where j corresponds to the columns of B(n - 1)

such that
n(n-1)

3" e;R;=(2,-2i,-2,...,2(-)"%0,..]

=1
(R; being the row in B(n — 1) corresponding to the vertex numbered i).

And then we have (eliminating the residues in column 2n above)

ad(n)

=T " |-2(=1)" - (21 - 2ia; - 2a3... + 2(=i)"Fan_1))- (2.1)

....... Edge of weight 1
o— Edge of weight 1

"% Cotumnindex (unknown coefficient)

Seet
O Row-vertex ( flux relation)

I..‘ asn g,
T
asy
‘.

Figure 2-2: Original Propp-Kuperberg graph of AD(3)

To visualize the problem in another light, let’s lay out G(AD(n — 1)) with each coefficient
a; marked on the corresponding column-vertex and each number from the column 2n above

entered on the corresponding row-vertex. (see Figure 2-2)
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By the definition of the connectivity matrix, we can summarize the relation of the numbers
in the graph as follows: the entry on each row-vertex is related to its neighbors by what we will
call a “flux relation”: For each edge going into that row-vertex we calculate the product of the
weight of the edge edge (think of as transmission coefficient) and the entry on the column-vertex
on the other end (think of as source) and sum over all the edges to obtained the entry on the

row-vertex (total flux), i.e.

a, a,
W w, f= ayw+a)W
f + aB‘MJ + a4w4

Figure 2-3: A flux relation in a P-K diagram

We can make another amendment to the above: imagine another row of squares being
added to the right of G(AD(n — 1)) and its edges be given orientations as before, we find that
by putting in the numbers

-1,i,1,...— (=i)*!

on these vertices, we can eliminate all the non-zero row-vertices in the diagram.

(see Figure 2-4) The reason that this happens to work is the way the reduction functioned.
As a matter of fact, this manuever can be carried through in all the problems dealt with in this
thesis. This extension we will call the augmented Propp-Kuperberg diagram of AD(n).

As a result, the whole problem is reduced to one in which it is easy to obtain a solution via
generating functions.

To see that this is the case, consider two adjacent rows of the augmented P-K diagram,
below: Here we will introduce a convention that will be used throughout the rest of the text.
A row of numbers is regarded as equivalent to a polynomial function whose constant term is

the first (leftmost) one in the row, the linear term the second, etc. An independent variable,
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........ Rdge of weight i
nE— ldg.otmuhtl

E""i Column index  (unknown coefficient)
111

O Row-vertex ( flux relation)

Figure 2-4: Augmented Propp-Kuperberg graph of AD(3)

usually ¢, will be specified most of the time. In particular, the top row of an (augmented) P-K
diagram will be referred to as gn(t), where n is the order of the original figure.
In the diagram, we have

Ag = —-iBg
iAo+ A1 = —(Bo+iB)
iAy+ A2 = —(B1+iBy)
iAn-? + Apn1 = _(Bn—2 + iBn-l)
tAn.1 = —Bna
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A

/ .s.. / A 1‘:‘ .-.l..l..cll!-./ ‘.‘.

O.eeee0 0 0

" / B / / /
B0 Bl... Bn-l

‘.
'.
..
.I
.
..
Bn-z

Figure 2-5: Two rows of augmented K-P diagram

Set
n-1 .
A(t) = Z At
Jj=0
n-1 .
B(t) = Z B;t’.
Jj=0
We have
A(t)(1 + it) = —B(t)(t + 1),
or rather,
A(t) = iB(t)g (2.2)

In this instance, if we call the bottom row of the (extended) P-X graph f,,(t) then we have,

recursively

gn(t) = " fa(t) (z—f—:)"_l . (2.3)

Since f and g are polynomials of degree (n — 1), and we know that —g, is monic, we can

deduce that
falt) = —(—i)""(t ) (2.4)

33



But Equation 2.1 tells us that

AD n-1 s .
——-Ap(n(’_')l) = |2 e -2 = - 2l = 2 (2:5)

which means that
AD(n) = 2n(»+1)/2,

This is what shuffling did for us in the introductory chapter. If this is all this technique can do
then this is not worth much, but (in the next two chapters) we will demonstrate that this same

technique is useful for other problems, while shuffling has limited application.

2.3 A multi-Q-analog of the same result

This multi-g-analog, in the form of a generating function involving four sets of independent
variables, was first discovered by R. Stanley via the technique used in [7]. The proof by shuffling,
given earlier and discovered by (at least) this author and J Propp independently, is relatively
straightforward, but so is an extension of the last section.

Instead of having 1’s as edge weights, Stanley’s formula deals with an Aztec Diamond that

has as weights on the jth row of diamonds the four variables z;, y;, 2;, w;.
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rile gridbuso thagamva Py wing efceshices dhay woased da the last section, so the problem

is re(&iot chfpged exce iTor the dgibged edge-weights:
’.l /

\/ \/‘V;\/ \A! ..}Colum-Vertex
./\Vz/ \Y;/' \yz/ \yz ") Row-Vertex

&\A\A\A\A
i / \V; / \7.3 / \V; / \V.!

“\/\A\A\A
e N AN AN 2

‘\A\/\/\A

\’tf 5 l

Figure 2-6: The graph of the Q-analog of AD(4), modified



Here we write down the matrix B(AD{n;z,y, z, w)) for the (modified) graph:

- -
wy | in
we 1Yz
w,0 iy,
12, Tp tYn
Tn
Wn iyn
w, 12z, Yn Ty
12 * | Zn
izl z1 *
£22 T2 *
*
*
Zp—-1 Tn-1 *

In the above matrix again the entry marked with O is (n,n), the one marked with a x (2n,2n),
and the last displayed row/column the (3n — 1)th.
The reduction is similar to what we went through in the last section, so we will simply

enumerate the steps:
L. (-il)x (Row 2n — 1) added to (Row 2n).
2. (—iZ2)x (Column 2n — 1) added to (Column 2n).
3. (—L-)x (Row 2n — 2) added to (Row 2n).

4. (- (5‘:‘-)2 x (Column 2n — 2) added to (Column 2n).
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5. (1888 )% (Row 2n — 3) added to (Row 2n).

wy waws

6. (i (ﬁ:)a)x (Column 2n - 3) added to (Column 2n).

(—i)* o=k » (Row 2n — k) added to (Row 2n).

wywy.. Wi

k
(=i2)" x (Column 2n — k) added to (Column 2n).

wyul...Wn

2n. (—-1)" (-‘f}'l.-)n x(Column n) added to (Column 2n).

At the end of which we obtain:

-

2n — 1. (—i)r =¥y (Row n) added to (Row 2n).
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where we have

i-1
A; = (mn+y"z") (-if'l) ; (2.6)
w, wy,
Y;2 l
Bj = ( b J) )J IH Y
I<J

C = _(zn+yn2n) (_Z_n) (ylyg...y,._l )
Wn Wn wiwe... W1

In the same manner as before, we try to obtain a;,a3,--- such that

n(n-1)
3" ajR;=[B1,B3,B3...,B,1,0,.. 1,

=1
where R; is the row in B(n — 1; z,y, 2, w) corresponding to 1.

We will obtain our answer in

n-1

n|C - 2 Aa
1=1

ad(n; z,y, 2, w)
ad(n - 1;z,y,2,w)

=wwe...Wp W, (2.7)

We see that the Equations 2.6 means that

1. We can augment the P-K diagram as before with (—1) at the upper right corner (because

of B;’s properties). And the rest of the added vertices have weights

) ny2 yJ
V=1, U022 = ..,V n-l—"n —1
wy wywy’ j=1

2. If we identify the top and bottom rows of the (augmented) P-K diagram with g,(t) and

fn(t) respectively, then we have
ynzn _ .Z_nl
¢- ZA a; = ( Znt S — )fn( lwn) (2.8)

So, we can take a look at adjacent rows of the P-K diagram:
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Column-
vertices

Figure 2-T:

Here, similar arguments to those in the last section the last section results in
A(t)(z; +iy;t) + B(t)(izj + wit) =0

In almost the same way, we get

n-1 C1iys
L) =TI (—M) (2.9)

j=1 wj

Now we get from Equation 2.8,

ad(n;) _ n ( ynzn) ( ﬁ_)
ad(n—l;) - lwlwzﬂ'wn-—lwn zn+ Wo fﬂ i

n
= [I(zjwn +yjza). (2.10)
j=1
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Chapter 3

The Penta-Aztec-Diamond

3.1 The Description of the Penta-Aztec Diamond

The number of tilings of the Aztec Diamond of order n is a high power of 2. A inquisitive mind
is motivated to investigate the possible existence of other sequences of graphs whose number
of tilings relate to powers of other low primes. J Propp investigated the enumeration of dimer
tilings of the figure obtained by cutting the square [0, n] x [0, n] by all the lines z = k, y = k,
z+y=k,and z —y = k, ! and found factors of high powers of 5. A slight modification of
these figures yielded PD(n) as introduced in Chapter 0.

Following the previous chapter, the function pd(n) will be taken to mean the number of
tilings of PD(n).

Note that there are exactly 5 tilings of the Penta Aztec Diamond of order 2, which is a partial
figure that will appear many times when calculating the number of tilings for higher ordered
Penta Aztec Diamonds by hand and which appear to play the same role as the odd (even) block
in the Aztec Diamonds. The prefix “penta” came from this fact. Although attempts at a purely
combinatorial proof along the line of the “shuffle” proved fruitless, we can and will use a slight

modification of the procedure in the last chapter to show:

1This “Aztec Square” is an analogy to the 2n x 2n checkerboard tilings discussed in (8] and will be the object
of future investigation.
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Theorem 3.1

pd(2n) = 5
pd(4n+1) = 5O,

(3.1)
pd(dn—1) = 2x 5201,

Note that for the “other” version of PD(4n + 1) it can be shown via the identical chain of
attack that the number of tilings is equal to twice the answer shown above, which is reasonable

since each add-on actually cuts down the number of possible choices. Note the factor of 2 in

o
. @ --Crossing

o, o %,

o , o s, G
o %, 4 e, O --Gate
o, o 0 o
%, o e, o

% o %0 o

%o 0o®
,

"Quad”

Figure 3-1: The connectivity graph G(PD(5))

the last formula above. The last two formulas above, enumerating matchings of PD(4n % 1),
figures with C; (rotation by 90 degrees) symmetries around the center (see Figure 3-1), is in

accordance with the theorem of W. Jockusch which states that all planar graphs with a Cj
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symmetry will have as the number of matchings either a square (when the number of vertices

is divisible by 8) or twice a square.

3.2 Transformation of Cities

Here we borrow an idea from statistical mechanics and crystalline physics to transform the

problem into a more familiar form. In that setting:
Definition 15 A city C in a graph G = (V, E, w) is a triplet (S, V,, V.) satisfying
1. S is a set of connected edges (called streets).

2. The disjoint union of V, (the set of gates) and V_(the set of crossings) is the set of vertices
covered by the edges in S.

3. Any vertez v, € V. (called a crossing) satisfies

v € V.UV, V{v,v} € E.

We define an equivalence relation by treating two cities (S,V,, Vc) and (§',V, V), which may
possibly be in two different graphs, as equivalent if there ezist bijections ¢y : Vy « V, and
@e : Vo = V! such that the bijection ¢ : Vo U V. — V] U V/ they induce also induces a bijection

S « S’ that preserves the weight function in the original graphs.

Note that the terms “gate” is relative to the actual graph, and it is quite possible to have

a gate that leads nowhere?. A city is not merely a subgraph (e.g. Fig. 3.2).

Definition 18 A gate g in a city C = (S,V,,V,) is “closed” in a matching m when the edge
{g,v} € m covering g is in S and open if it is not (hence v g V;UV,). A quotient matching of
the graph with respect to the city C is an imperfect matching® my C E such that

1. Vv eV —(V,uV,),3e € my covering v;

2. Vv € V,, v is not covered by any edge in my;

2By definition a crossing cannot be exposed to the outside.
3Defined as a collection of disjoint edges, as used by L. Lovasz in [8].
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NOT

Crossings
@ --Crossing Does not contain
O --Gate "Spike"

"spikeli

Figure 3-2: A graph that does not contain “Spike”

3. the gates of C may or may not be covered (“open”) by m,. A gate g that is covered by (an

edge in) a quotient matching m, is called open, and g is called closed if g is not open.

It is easy to see from the above that if a gate is closed in a quotient matching which can
be extended to a (perfect) matching by adding a collection of edges E. the gate will be closed
in any such extension, and vice versa. We will define the (relative) weight , denoted r(m,) (or

r(myg; G) if necessary) as

> T (o),

Ec ceEc
where E. ranges over all possible extensions.

As a result of that, we can make the observation that

M(G) = 3_r(mq)uw(m,) 3:2)

Mmq

where m, ranges over all quotient matchings of G with respect to C.

In a graph G that contains a city C, we can perform the operation of substituting another
city C' for C (provided that the two cities have the same number of gates) in an intuitive manner.
It is easy to see there is an intuitively obvious bijection between the quotient matchings of the
two graphs under consideration.

After all the above definitions, we finally get this lemma:

Lemma 3.2.1 The number of matchings of any graph G that contains the “spiked” city S in
Figure 3-1 is twice that of a graph G that is the same except for the substitution for S with a
simple quadrangular city (“1/2 quad”) that has edge weights %
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Proof: We take any quotient matching of G and consider the possible extensions to complete
matchings of G and G (See Figure 3.2). Obviously this only depends on which gates of the

cities are open. We can see that according to the status of the gates there are these cases:

The extensions in "spike® The extensions in 1/2 quad

O.. “Q ‘”‘ ..'
o ., 0 o
o .. i.. \‘. .'0
o P—

. 0. ‘0
. . ..
. o'
. ..

Figure 3-3: Correspondence between cities
1. In case A, all 4 gates are closed. There is only one extension of mg, with weight 1, to G,
while there are two possible extensions to G each with weight .

2. In case C, all gates are open. There is are two extensions to G each with relative weight

1 and only one extension to G which also has relative weight 1.

3. In case B, there are two adjacent open gates and one possible extension each to G' and G,

but the extension to G has weight 1 while the extension to G has weight -;-

4. There no possible extensions if there is 1 or 3 open gates, or 2 open gates which are not

adjacent.
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So, since for all three pertinent cases r(my;G) = r(m,;G), according to Equation 3.2, we
have

M(G) = 2M(G).

We will define PAD(n), the Polymorphed (penta-)Aztec Diamond, to be the graph that is
identical to G(AD(n)) except that every other square has edges weighted 1 instead of 1 (see
Fig. 3.2). Going along with previous notation, pad(n) will be used to denote the number

Weight of
Edge=1

Weight of
Edge=1/2

Figure 3-4: Transformed Penta Aztec Diamond of order 5.

of matchings of PAD(n), and ®(n) the connectivity matrix (of an alternating modification)
C(PAD(n)).

So, with the above, we have:
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Lemma 3.2.2 The tiling problem for PD(n) can be converted as follows into the matching
problem for for the polymorphed Aztec diamond:

pd(2n) = 27**+pad(2n)
pd(2n+1) = 22"("+pad(2n + 1) (3.3)

For the rest of this chapter we will devote our attention to the problem of enumerating

matchings of PAD(n).

3.3 Reducing ®(n)

We will adhere to our notation and numbering of vertices as in the last chapter. However, the

matrix ®(n) have different forms depending on the parity of the order, so we give both here:

&(n) = (see next page)




Lalls ] *
colea] mlca *
“=lce * | ~dew
= e R (S |
-y ‘e
ce|CY  wmlON
O e
[l -
‘e
Ll ] (5]

| -

n=2m+ 1 (odd n),




113
1
2 2
10 @
T 1 1
1
1 i
2 2
1 . 1
1 3 i i
1 *|1
t{1]=*
£ 1
2 2 *
*
*
t 1 *

n = 2m (even n).

Here as before entry (n,n) is marked with the O; entry (2n,2n) is marked with the x, and the
last row (column) displayed is the (3n — 1)th.

Since it may not be clear to the reader what each entry is, we list the non-zero entries in

the matrices:

1 n+k=o0dd
Q(n)kﬂn—k = ,k =1...2n-1;
% n 4+ k = even
t n+k=odd
®(n)onp1-kk = ., Jk=1...n-1
3 n + k = even

= ®(n)k2n+1-k;



-;- n = odd
®(R)nt1nt1 = ;
1 n =even
. i n+k=o0dd
S(n)on-k2ntk = . ,k=1...n-1
3 n+ k = even

= ®(n)ansk2n—k;
1 n4k=o0dd

Q(n)2n+k,2ﬂ+l-k =
% n + k = even

= ®(n)an41-k2n+k-

Now we carry out the reduction of the matrix, in exactly the same manner as before:

1.

2.

2n - 1.

2n.

(=1)x (Row 2n — 1) is added to (Row 2n).
(=i)x (Column 2n — 1) is added to (Column 2n).

(-=1)x (Row 2n — 2) is added to (Row 2n).

. (=1)x (Column 2n — 2) is added to (Column 2n).

(+i)x (Row 2n — 3) is added to (Row 2n).

(+i)x (Column 2n — 3) is added to (Column 2n).
(-i)*x (Row 2n — k) is added to (Row 2n).
(=i)¥x (Column 2n — k) is added to (Column 2=).
(=1)*x (Row n) is added to (Row 2n).

(—=1)*x (Column n) is added to (Column 2n).

50



After these operations, we obtain the reduced matrix:

n odd (n=2m+1),
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1
1
2
1
2
1
1 1 -2t -1 2(-1)™: 0
1 *
-2 *
-1 *
2(-1)™i *
0 *




[N

1
2

-2 2 —i =2 ... 2(-1)™1 0
1 *

~2t *

-1 *

*
2(-1)m-1! *

0 *

n even (n = 2m).

3.4 The calculation of pad(n)

Now we will carry out largely the same manuevers as has been done before in the previous
chapter, although they are in general more complicated than before.

First let’s note that the (2n)th row, on which each number can be obtained from the one
before by multiplication of (—¢) or (—-%) (alternatingly), is consistent with an extension of the
Propp-Kuperberg diagram such that one can eliminate 21l the non-zero entries in the row-
vertices. Given the way our elimination worked this is to be expected; sometimes, as in the
next chapter, it is not possible to get a P-K diagram where there are no non-zero entries.

Our task is again to find numbers a;,as,... such that we can cancel out the numbers in
column 2n with multiples .f the other columns. Once we found these coefficients, we may find

the answer via

pad(n) ] 27"l - (a1 - 2iaz — a3 + 2ias + — .. )|, odd n;

= (3.4)
pad(n - 1) 2-(n=1)| _ 2 _ (2a, — ia; — 2a3 + iaq + —...)|, even n.
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Let’s look at two adjacent rows again in the extended P-K diagram of PAD(n) (see fig-
ure 3.4).

Case (a) "half" square on the left

0.‘.
sssevaseas ..."
", /
.0..
essesses 1,

{ >

Figure 3-5: Rows of the augmented PK graph.

Let’s consider case (a) as depicted above. This time, we will vary our approach a little bit.

For any function (power series) Fi(t) we define the even part F* and odd part F~ by
F(t) = (F(t) £ F(-1))/2,

so if F(t) = ¥, Fjt/ then we have F*(t) = T, F2;t¥ and F~(t) = T; Fpj t% .
Defining A(t) and B(t) to be the polynomials associated with the numbers A4; and B; in
Fig. 3.4, we have

AYOA+ 50+ A1+ i)+ BY@)(5+ 30+ B ()(+1) =0
This we can separate into odd and even parts to obtain

1A* +itA"+ §BY +tB~ = 0
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$tAY + A"+ Bt +iB” = 0 (3.5)

We can write the above equations in matrix form as

/

At -1 i(1-1t2) 4t B*
A" 1+22 t -1 )\ B-
Bt -1 [ -i(1 -2 4t At
= 132 ( : (3.6)
B- +i t —i(1 - 1?) A-
Similarly, for case (b):
At -1 ( i(1 - t%) t Bt
A- 4\ a ia-) )\ B
B* -1 ( —i(1 - t?) t At
= 1T (3.7)
B- T 4 —i(1 - 1?) A-

Now suppose that n is odd, that is, n = 2m + 1. We can identify the expression inside
the bars in Equation 3.4 as (— f*(~i) — 2f~(—1)). The center row in the K-P diagram we can
immediately guess to be (a constant multiple of) (1 + t?)™. This will insure that we can find a
consistent set of numbers to fill in all the nodes.

Let us digress for a moment. In the extended P-K diagram here, we have n? unknowns and
(n 4 1)(n — 1) = n? — 1 relations, so all the numbers in the diagram are, determined up to a
multiplicative constant. Since we know that the upper right corner is -1, we know that there
can be only one set of numbers that satisfy all the relations, so once we find one compatible set
of numbers it must be the one.

Returning to our calculation, we sce that we need not calculate all the numbers in the P-K

diagram immediately. Instead, we cancel out all the factors of (1 + t2) before substituting (i)
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for t. Using Equation 3.6 and Equation 3.7 we find that for the case n = 4m + 1 we have

2m
pad(4m + 1) 2i 1 2t 2t 4i 1 _ '
I il el Kt I el | B L GG i
pad(4m) 4 21 41 2 t 2

= 5™(1,2) L2 b a-emen
2 4 0

52m2-(4m+1) .

(3.8)
Similarly, for n = 4m + 3 we have
2m):1
pad(4m + 3) = l=1,-2) 2t i N 21 4 2: 1 2'(4m+3)(—(—i)2"‘+‘)
pad(4m +2) 4i 2 io2i )\ ai 2i
= 5™(1,2) L2 2] g-teme)
2 4 4
52m+19—(4m+3) (3.9)

Now suppose n is even, and n = 2m. We can thus identify the expression inside the bars in
Equation 3.4 we seek as (—=2f*(—i) — f~(—1)). Here the problem is slightly more complicated,
but we have the still relatively obvious first guess that the below-center row is (1+t2)™~!(a+bt),
for constants a, b.

So we have for n = 4m + 2

a(l 4 t2)?m -1 —-i(1 - t?) 4t a(l + t?)2m
--(—i)2m+lt(1 + t2)2m 14 ¢2 t —i(1- t2) —(—i)z"‘t(l + t2)2'"
(3.10)

This equation is easily solved to obtain

a = 2i(—i)™tY
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a = 2i(—-)™.
Now we make the substitution t = —i after factoring out the factors of (1 + t?), and use
Equations 3.6 and 3.7 to obtain
pad(4m + 2)
pad(4m + 1)
2m
= |(=2,-1) 21 4 2: 41 AR 21 2—(4m+l)(_(_i)2m+l)
i 2 i 2 41 2i i
m
2
= 5™(2,1) 2-(am+1)
1

= g5imtlg—(4m+1)

(3.11)

For the last case n = 4m, similar to Equation 3.10, we can get

a(l + t2)2m-l
_(_i)2mt(1 + t2)2m—l

This we can solve to get

&(1 + t2)2m-l

—i(1-1t%) t
1+ 4t —i(1 - 1?) —(=i)?™t(1 + £2)%m

a= %(_i)2m—l

Finally, similar to the case for n = 4m + 2 we get

pad(4m)
ped(4m - 1)
211—!
= l(=2,-1) 21 4 2t 1 21 4¢ 1 2—(4m—l)(_(_i)2m+l)
i 2 4i 2i i 2 ]
m-1
1
— sm ~(4m-~1)
= 5M(2,1) L 2
2
= §m-am, (3.12)
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Putting Equations 3.12, 3.8, 3.11, and 3.9 together, and using Lemma 3.2.2 we prove
Theorem 3.2.2 by mathematical induction.

3.5 A g-analog of the Penta Aztec Diamond tilings

It is not unnatural to attempt a generalization of enumerations to generating functions. Here
we construct a rather more general generating function which contains more of the information

given about the matchings of PAD(n).

We construct a new graph by modifying the weight of the edges in the connectivity graph

C(AD(n)), which is a n X n square arrangement of lozenges, as follows:

¢ The four edges of the (2k + 1)th lozenge in the jth row are weighted (clockwise from the

upperleft) z;,y;*, wj, 27!

e The four edges of the (2k)th lozenge in the jth row are weighted (clockwise from the

upperleft) zj" VUi wit, zj

See the next figure for an example (n = 4).

As before, we will adhere to the same orientation and numbering of vertices. We obtain

®(n;z,y,2,w) = (see next page)
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O Row-vertices D Column-vertices

-] 1 1 -1l 8
{‘ X 1 X, 1‘~ x 1
1 ] 9
w,! w; iz w, Wy
x:! 17] . X! 7 y
;1 2 -y2°l 2
(2 (R (a
X! 1 y 1 X! 6 y
y;l 3 x y3—1 3
1 D)
9 W' w;'iz; 11 ! 5 3
-1 -1
y4—1 X y4 X Y4—l X Y4
O] @) D! 4
. - i -
w4l W4‘]Z-; W, qu
3 4

-1 .
wl N
-1 .
w, 1y2
w;ID tYn
iz, z!
iYn
iy=! -1
Wn~ Zn
* zy
121 z,“ *
129 z;l *
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Even:n = 2m;

. ~1
wy | iyg
. -1
w2 Y,
a iy!
Wy, tYn
iz7! oz i
n n Yn
;!
-1 .
wy, tYn
w, iz, iy;! ozt
. -1
iz * Tn
. -1
iz] z *
. 1
123 z9 *
*
*
. -1
iz, Zn-1 *
Odd:n =2m + 1.

Again in the formulas above we mark the positions O =
row/column displayed is the (3n — 1)th.

We give the non-zero elements of ®(n):

W n = odd
®(n)kan-k = o hk=1...n-1
wy~ n=even
w, k=odd
Q(”)2»-—1:.!: = " k=1...n
w, k =even
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&(n)k2n+1-k

®(n)2nt1-kk

B(n)nt1,n41

Q(73)211.—16.2714»1:

®(n)2ntk2n—k

B(n)2ntk 2nt1-k

D(n)2nt1-k2n+k

|
|
|
|
|
|
|

iyr! n=odd
Ve Jhk=1...n-1
iYr N = even
iz7! k=odd
k=1...n-1
iz, k =even
2, n=odd
z;! n=even
iy7! k= odd
Yn ,k=1...n-1
iy, k =even
izk'l n = odd
yk=1...n-1
iz n =even
Tk n = odd
hk=1...n-1
a:;' n = even
Tn k = odd
hk=1...n-1

;! k =even

This is how we reduce the matrix when n is even:

1.

N

[

=

[<,)

[=2)

~)w;lz71x (Row 2n — 1) is added to (Row 2n).
n n

. (=1)wypr X (Column 2n — 1) is added to (Column 2n).

. (-1)x (Row 2n — 2) is added to (Row 2n).

. (-1)wywaz y2x (Column 2n — 2) is added to (Column 2n).

. (+)w;lz7 x (Row 2n — 3) is added to (Row 2n).

. (+1)wywawsyyay3x (Column 2n — 3) is added to (Column 2n).

(=i)fw wy ... wky1y2 ... Y& X (Column 2n — k) is added to (Column 2n).

k = odd:w;!z;!

k = even{—1)*

x (Row 2n — k) is added to (Row 2n).
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2n — 1. [Ii=;(—swiyk)x (Row n) is added to (Row 2n).
2n. (—i)*x (Column n) is added to (Column 2n).

This is how the reduction runs when =n is odd:

[e—y

. (=)wnzpx (Row 2n — 1) is added to (Row 2n).

N

. (-)w'yr ' x (Column 2n — 1) is added to (Column 2nr).

(2]

. (-1)x (Row 2n — 2) is added to (Row 2n).

>

. (-1)(wrwayny2) " x (Column 2n — 2) is added to (Column 2n).

[24]

. (+1)wpz, x (Row 2n — 3) is added to (Row 2n).

(=2}

. (+i)(w1ww3y1¥2y3) "' X (Column 2n - 3) is added to (Column 2n).

{ k = odd:(—1)Fw,z,

. } x (Row 2n — k) is added to (Row 2n).
k = even:(-1)

(=)*(wwz. .. weny2...¥x) " x (Column 2n — k) is added to (Column 2n).

2n — 1. [Tk=1(~iwkyk)~1x (Row n) is added to (Row 2n).

2n. (—-1)"wnpz, X (Column n) is added to (Columnr 2n).
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After all this row reduction, we obtain the result: if n is even,

Wn

ay az ag

Gn-1

0

where

bn—l

ij-1

aj = (27" +yizjw;) [T (—iwew),

k=1

bajmr = (=1Y(za+y7' 27 wih),
by = (—1Yi(yn+ 27 27 wyt),
n-1

¢ = —(yn+z3'z7 i) [T (wivs)
i=1
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if n is odd,

.

w

w2

Wy

Wy

where,

-1
a; = (zj+y; "z wih) [[(—iwg' i),

k=1

b; = (asabove),
n-1

¢ = (zatyy'z wh) [J(wityih).
Jj=1

We will simply note that the numbers a; make it possible for us to augment the resulting

P-K diagram and hence enter analysis as before:
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Here, we have, if we define f,(¢) as before (cf. sections 3.4, 2.2 and 2.3),

pad(n;) ) lwwz...wnl(za +y7t 27w ) (=) + (27 25w + yn ) f7 (<0)]] m = odd;
pad(n—1i) | Jotwz' .. cwpli[(2a + ¥t 0V (-0) + (22 5 w0t + ) S (<))l m = even,
(3.13)
Figure 3-7: Rows j-1 and j of the KP diagram of PAD(n)
For the two adjacent rows depicted in the figure above, we have:
z;AY +iyitA~ = —(iz7'B* +wi'B7), (3.14)
iyjt™'At + z;‘A' = —(wjtB* +iz;B™); (3.15)
or, written in matrix form:
Bt -1 —i(zjz; - yj‘lw-'ltz) t(yjz; + =} w'l) At
s =177 i . A= (3.16)
+ t(zjw; +y; 2 ) —-z(zj‘ zJ- - ijjtg)
So, for the case of odd n = 2m + 1 we can guess the middle row to be
( H( '1)) (—i(1 +3)™.
Hence, after cancelling factors of (1 + t?) and carrying out the substitution t = —1, (we
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define E; = 1+ zjy;zjw;, F; = 412 + wjyjn):

PAD(2m +1;)

-1 -1 -1 -1 -1 -1 -1
= wwa...w z z w I z w
PAD(2m;) 2m+41 2m+l(y2m+l 2m+1W2m4 1 T2m+1%2m+1 2m+1)
(m+1) -1, -1 _-1_.-1 m
yj w; ;W 1 -1
x [T |E; [ (vsw;)
. -1,-1 -1, -1 0/ !
j=2m yJ Zj Ij Zj 1=1

If we take into account that
-1 - -1 -1 - -
y; wjl zjle w; 1 _ 1
—1_-1 ~1_-1 ( J-l +zJ J-—l)
i %5 %% 2

we can simplify the last expression to give

pad(2m + 1;) 2t -1,-1 ] -1
—_————— = W41 .- Wom41 27, E; (w Yier T2 1z 7
pad(2m;) mt [ _I;IH ]___I;IH J+1 +1) m+1
2m+1 2m+1 2m+1 2m+1
= H E; H Fi H z;! H H L (3.17)
j=m+1 k=m+1 k=m+2 1=1 k=m+1

When the order is even (r = 2m) we can guess (as in the previous section) that the lower-

middle-row of the K-P diagram is

A= (A+) - (_ymzm [n;n:—]l(iyjzj)] (1 + t2)m—l)
A- [ﬂ;":l(zy,w,)] t(l + tg)m_l .

After we finish all our operations we will get

pad(2m;)
R st Sk Y S .1
pad(2m—l ) (3.18)
= "’11' w2m 1E2m22mw2m(y2m"’-' o
1 -1 - -1 - -
(m+1) £ yjlel zjlel Zm¥m ) ™ 1( N
H 3 ool —1.—-1 w H yiw;)
j=2m+1 yJ zj Ij Zj mYm j=1

=1, =1 -1 - -1,-1
= wm+lwm+2...w2m H Eiyxy...ymZmzgy H (yj - 1 + 272 »)
Jj=m+1 y=m-+1
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2m-1 2m 2m

2m
- O e a 5 0 e I 5 I @ie,

j=m+1 k=m j=m+1 k=m+1 y=m+1 k=m+1

Taking the last two together!, we get

n=2m+l n=2m

wssesnesces
cevovscoves

tesmcssacsncnsncas
sesmscsesencnossrnsna

eee
sesccecsaccnsccas

Figure 3-8: How the various terms change as order goes up

Theorem 3.2

)mnx(j,2m+l-j)

ZjWy

PAD(2miz,y 20) = H (1+zJ!szw1
2'f1

(3.19)

(Ik+12k + Yk+1 wk)"‘“""“2m"")

k=1 Tk+1Yk+1

Ysee next figure for a pictorial demonstration of how the exponents of various terms shift as we go up from
order to order.
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Imtl 1+ z;y;z;w;
PAD(2m + I;z,y,2,w) = [] |—2224
- vjzj

(zk-i-lzk + Yk+1 wk)mnx(k,2m+l—k)
Tk+1 Wk

) max(j,2m+2-3)

(3.20)

=3

k

An interesting fact about these numbers: for the analogous Stanley’s formula in the case of
Aztec Diamond tilings, all 4n variables z,, y;, z;, w; are independent, and essentially there are 4n
degrees of freedom in determining the generating function. In this formula, there are actually
only 2n — 1 independent variables corresponding to the factors between the big parentheses.
There are constructions with more degrees of freedom but they are not included here because
they have little symmetry to speak of.

(In case the reader have some trouble figuring out why these factors lead to factors of 5 in
the original problem, it is necessary to point out that when we put the graph for the transformed
version of the Penta Aztec Diamond into the form used in the generating function, some of the
variables will be /2 and some 1/,/2. As a result of all this, all the E;’s will be 2, and all the
Fi'’s %, hence the powers of 5.)

What this means is that there is less information available in a systemic manner from the
matchings of this family of graphs. This is not at all surprising, since it is quite in line with the
fact that this generating function come from a graph without the horizontal reflexive symmetry
in the graph associated with Stanley’s formula.

Thus concludes our little study of this family of tilings.

It is to be noted that attempted proofs by shuffling does not yield any useful results. Perhaps

it is possible, but it has so far eluded the author.
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Chapter 4

The Symmetric Tilings of the Aztec

Diamond

4.1 Overview

From the problem of enumerating plane partitions, combinatorists have gone on to the problems
of enumerations of partitions with certain symmetries. A systemic study of enumeration of the
symmetry classes of plane partitions using the same methodology of this paper can be found in
(5]. In an analogous manner, one immediate question to be asked after studying the tilings of
Aztec Diamonds is the following: What about tilings with certain symmetries? There are five

symmetry classes of Aztec Diamond tilings;
1. All tilings. (ad(n))

2. C;: Centrally Symmetric tilings (the number of the tilings will be hereafter referred to as
ady(n)).)

3. R3: Reflectively Symmetric tilings (to one of the coordinate axes). !

4. K4: Tilings invariant under reflections with respect to both coordinate axes.

[S)

. C4: Tilings invariant under rotation by 90 degrees.

'In crystography, R is used to denote reflective symmetries that change the parity of the coordinate system,
as opposed to C; which is a rotation and preserves the outer product.
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It happens that the last three cannot be represented as tilings of bipartite graphs, and
hence cannot be treated using only methods discussed here. As a matter of fact, if these last
three have express formulas, they will be of non-closed form construction. The second problem
however has a closed form solution and is the main subject of this chapter.

Let me acknowledge here that much of this material is obtained in collaboration with
William Jockusch.

The main result, is the following:

Theorem 4.1 (Conjectured by W. C. Jockusch, 1980) The number of centrally symmet-

ric tilings of the order n Aztec Diamond is given by:

ady(2n) = 2"ady(2n-1) (4.1)
1241 Ha(4n + 3)Hy(dn — 1)(H(n)H(n - 1))?
adyfdn—1) = 2" (Ha(2n — ) Hq(2n + 1)) (4.2)
an241 (Ha(4n + 3))*(H(n))*
adz(4n + 1) 2in'+ (Ha2n £ 1))° (4.3)
Here H;(n), the step-factorial function, is defined as
Hiin)= J[ (n-jk)
1<k<n/j
and H(n) = H,(n) (definition by G. Kuperberg in [5]).
Or, to phrase it a bit differently,
ady(4n+3) 22n(4n+ 3)!(n!)?
ad(4n+1) ((2n+ 1)1)3
_ 2n-1 (4n+3)'! . F
= 2 T (1.4)
ady(4n+1) 22n(4n - DY((n-1))2
ady(4n —1) ((2n = 1)1)3
_ o2n-1 (An—=1Y
= ((2n - 1)11)?
_,ady(4n—1)
= 4_———ad2(4n —3) (4.5)
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We begin with some generalities. As before, we seek to obtain a recursive formula for ad,(n)
by using the Permanent-Determinant method.

Consider the connectitivy graph G(AD(n)). Suppose we identify each vertex in the lower
half with its image under 180° rotation in the top half. We rotate the figure by 45° so that
the top of the resulting pyramid shape is on the upper-left corner, and number the vertices as
follows: the row-vertices start from the extreme upper-right tip, and go counter-clockwise on
the outside and repeat until all row-vertices are numbered. The column-vertices start from the
lower-left and go clockwise in symmetry to the above.

The alternating modification is a bit more awkward. The approach used for AD(n) is not
quite usable in the sense that there will be a problem with the symmetry. Therefore, we adopt

the following weights:
1. All edges running / or / are given weight 1.
2. All edges running "\ from row-vertex to column-vertex are given weight 1.
3. All edges running \, from row-vertex to column-vertex are given weight -1.

4. The two vertices in the center are connected by two edges of weight 1, with the other

edges running outside alternating in sign.

(See figure 4.1.)

Before we carry out the calculations, please notice that the Equation 4.1 is easily obtained
from a shuffling argument as set out in the preliminary chapter. However, further progress via
an shuffling argument proved impossible despite many attempts, because of the “singularity”
at the center of the Aztec Diamond. This also will be an important point later in the chapter.
We will from now on use the notation ADz(n) to denote the weighted graph we just obtained,

and ¥(n) its connectivity matrix.
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Figure 4-1: The alternating modificated graph AD,(6)
4.2 The preliminary calculations of reducing ¥(n)

As a result of the numbering made in the last section, we find that ¥(n) =

( (-1)+ 1
1] 1
11
-1 10 1
1
1 -1 11
1 -1 (=1)" | 1
-1 1 *
-1 1 *
.
.
\ -1 1




(In the matrix * is again position (2n — 1,2n~1)and Qis (r + 1, n + 1).)

And the reduction process (very similar to the ones used before) proceeds thus:
1. Add (-1)"x Row 1 to Row 2n — 1.

2. Add (—-1)"x Column 1 to Column 2n - 1.

3. Add Row 2n —~ 2 to Row 2n - 1.

4. Subtract Column 2n — 2 from Column 2n — 1.

5. Add Row 2n — 3 to Row 2n — 1

6. Add Column 2n — 3 to Column 2n - 1.

Add Row 2n — &k to Row 2n — 1.

Add Column 2n — k times (—1)**! to Column 2n — 1.

Add Row n to Row 2n — 1.

Add Column n times (—=1)*~! to Column 2n — 1.




After the reduction we obtain the reduced matrix

[ (-1)+ \
1
1
4-1)" 12 2 ... 20
2 =
-2 *
2(-—1)""3 *
0 *
\ 5 )

We can immediately make the following observation: to reduce this matrix, it is necessary,
as before (cf. section 2.2), to fill in the P-K diagram. We give a few examples in figure 4-2.
However, this diagram does not even come close to being easily worked on, so we are going to

modify it as follows:
1. A row of 1’s is extended on the left hand side.

2. The whole connectivity graph of AD(n) is drawn and the numbers from the P-K diagram

of ady(n) entered on the appropriate vertices.

3. The number on each column-vertex in the P-K diagram is copied on its image under 180°

rotation, differing by at most a sign.

4. In the extension, for even n, we make the top row anti-symmetric, the next row symmetric,

etc; and vice versa, that is top row symmetric, next row anti-symmetric, etc, for odd n.

Here, we observe that the main reason that so much symmetry exists in the extended P-K
diagram is that we could have re-written the relations in the (unextended) P-K diagram in

such a fashion that the numbers shown will be written on the vertices in the upper half of the
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Figure 4-2: P-K diagrams for symmetric tilings of Aztec Diamonds, order 4 to 7

Aztec Diamond, instead of the upper-left half, thus obtaining an transposed version of the same
diagram. (See figure 4-4 and 4.2 for an illustration of the process). It will then be clear then
that reflecting the whole diagram with respect to the middle vertical line followed by a little
shuffling of signs would get us the flux relations satisfied by (mostly?) the same numbers. The
same goes for vertical symmetries. Thus we can show that not only that all rows are symmetric
or anti-symmetric, we also have that all columns in the K-P diagram of an odd-ordered ad; will
be symmetric or antisymmetric, and that all columns in the K-P diagram of an even-ordered
ad, will either be symmetric or anti-symmetric except for the central element.

We can check that the diagram thus extended has zero flux on all row-vertices with very
few exceptions. More specifically, the exceptions are all restricted to the right-hand half of one
row(the middle row for odd orders and the lower-middle row for even orders), and then for the

odd-ordered ones only half of it, namely the vertices that are even-numbered counted from the

2There is a sign change for some entries.
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Figure 4-3: Transposed P-K graph for the symmetric tilings of Aztec Diamond order 7

left: See the figures 4-6 and 4-5.

It is easy to show that it is impossible to construct a diagram such that all flux relations

are zero since that will over-determine the diagram.

Also, we can check that the number of degrees of freedom is correct: there are always (3)

2

independent entries in the augmented diagram and liﬂ)i("_-?). relations and hence the diagram

is determined up to a constant factor. In this calculations, of course the upperleft corner is

always 1 since that’s how we extended it. Again we will call the polynomial corresponding to

the top row of the extended K-P diagram g,(t). And of course, we have:

ad(n)

el n=2) lga(=1)I.

If A(t) and B(t) correspond to two adjacent rows, we have

A

[y

-1
t,

~~~

t)
(t

jor
o
<+

(4.6)

unless the row of row-indices between A and B is the one where the exceptions to the flux
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Figure 4-4: The last graph with the extended rows on either side
relations occur.

Lemma 4.2.1 Forj =0,1,2 we have

Gan+i(t) = (1 — Y gan—1(t) (4.7)

Proof: We can simply enumerate the cases and see that when gm(t) leads to a consistent PK
diagram for adz(m), gm41(t) = gm(t)(1 —t) leads to a consistent diagram for ady(m + 1) except
when m = 4k + 2. When m is odd, it is easily seen as follows: we insert the row of numbers
corresponding to (1 — t) X gm(t) at the top and fill the rest of the upper half (down to and
including the middle row) of the extended P-K diagram for ady(m + 1) row by row, each time
using the equation above to determine the next row.

Now, using the symmetry of the columns, we know that the bottom row of the original

order m diagram corresponds to g, (—t). We fill in the bottom row with gnm(—t)(1 +¢t) and
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Figure 4-5: Augmented P-K diagrams or symmetric tilings of Aztec Diamonds, odd order

then proceed to fill in the rest of the rows upwards. Now all we have to do is check that the
flux relations in the left-hand side between the middle row and the below-middle rows hold.
Since these two rows correspond by construction to the two orignal center rows multiplied by
1+ ¢, we can deduce that the flux relations in question (which reduce to the flux relations in
the original graph) hold also.?

When m = 4k the same argument will cover everything except the one flux relation that
corresponds to the lower-central vertex in the original Aztec Diamond connectivity graph. This
flux relation is dealt with as follows: the column containing the left-center column-vertex is
anti-symmetric by our reasoning given above, so the number on this vertex is 0 and hence by

symmetry the number on the other central column-vertex. This gives us one extra flux relation,

3Consider the original relations as corresponding to a statement that certain terms of a polynomial, including
all the terms which are of degree no higher than haif the degree of the polynomisl, are zero. As a immediate
consequence, all the terms of this polynomial times (1 + t) which are of degree no higher than half the degree of
the original polynomial vanishes. This correspond to the flux relations in the “problem row” we are investigating.
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Figure 4-6: Augmented P-K diagrams for symmetric tilings of Aztec Diamonds, even order

and so the same reasoning will cover this case. O

As a result, our problem is to find g4,-1(t) or rather to find g4n_1(-1).

4.3 The Final Reduction

We define the above-center row of the P-K diagram for adz(4n + 3) to correspond to the

polynomial f,(t) of degree 4n + 2, and also make another definition

gak+1(t)

hi(t) = (1= 1)

It is an immediate consequence from the symmetry of the diagram that both f, and h, are

palindromic.
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Similar to what we had before we have (cf. Equation 2.3):

= ()

From the symmetry, we know that the below-center row corresponds to fn(—t).

It is seen that f,(t) satisfies the condition that

fn(t)(l + t) - fn("t)(l - t)

(which is a odd polynomial by definition) has no terms of degree lower than 2n + 1.
All these mean that we need to find a set of numbers agp = 1,az,a4...a2, (which are the
co-efficients of f,) such that
n-l . - - .
(1 + t)2n| Z agj(tz" _ t21+1 _ t4n—2J+l + t4n—21+2) + agn(ﬂn _ t2n+l + t2n+2) (4.8)
J=0
This leads to a set of very symmetric equations that is elegant but not a particularly nice
set of equations to solve at all!
Finally, it is seen that since f,, and hence h, is palindromic, it is advisable to look at
one of the possible explicitly palindromic expansions of hy(t). More precisely, the expansion

eventually considered is
n

ha(t) = Y raj(l - t)In-2gl+s,

—1

which would mean that

ad2(4n+3) — 92n n+1 = . n—j
ady(4n +1) 2= 3 rs(=4)

j=1

And then we computed numerically that

Tpn-~-1 = 1
mo = -1
r n
il 2n+ 1
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2n+1

Tan = 1 (4.9)

along with other special values of ry, &.

After a lot of guesswork, it was guessed* that

f2n -+ 1\ (27 - 1)"(2n-25-1)!
ai=(—1) . )
Please note that under the usual convention that (—=1)!' = 1 and (-3)!! = -1 the formula

does agree with the equations 4.9.

We showed in the preliminary chapter using the WZ technique(see Section 3, Equation 1.7)

(O£ ()(1 + 1))
- [tQ(n—m)-}-l] Z rn,j(l _ t)2n-—2jtl+j(l+ t)2n+l

j==1
_ m—j+1\ (25 - 1)M2n -2 - 1) .. 2 :
t2(n m)+1 ' tl+] l_t2 2n—-2j 1 t21+l
[ IE_,"};( i1 ) (2n+ DN (=820 4+ 1)
_ 2’—‘: (- 1y 2n — j+ 1\ (2 - 1)!N(2n — 25 — 1) (2n - 2j 2j + 1
ity i+l (2n + 1) k) \on—om—2k - j

= 0

Finally, it was found that

n

(=)t Y (=4

j=-1

is equal to
(4n + )M

((2n + 1)1)2
which was Equation 1.6, also proved in the same section.

Thus our theorem is established.

‘Unfortunately, the cbvious conjecture that leaps to one’s mind was wrong! Normally, in these cases it is a
lot harder to come up with an answer than to prove it. And so it proved here.
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