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Abstract

Graphical models are a general-purpose tool for modeling complex distributions in
a way which facilitates probabilistic reasoning, with numerous applications across
machine learning and the sciences. This thesis deals with algorithmic and statistical
problems of learning a high-dimensional graphical model from samples, and related
problems of performing inference on a known model, both areas of research which
have been the subject of continued interest over the years. Our main contributions
are the first computationally efficient algorithms for provably (1) learning a (possibly
ill-conditioned) walk-summable Gaussian Graphical Model from samples, (2) learning
a Restricted Boltzmann Machine (or other latent variable Ising model) from data,
and (3) performing naive mean-field variational inference on an Ising model in the
optimal density regime. These different problems illustrate a set of key principles,
such as the diverse algorithmic applications of “pinning” variables in graphical models.
We also show in some cases that these results are nearly optimal due to matching
computational/cryptographic hardness results.
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Chapter 1

Introduction

In this thesis, we present new algorithms and theoretical results for some basic al-

gorithmic problems of learning and inference in high-dimensional graphical models.

Graphical models are a powerful framework for modelling high-dimensional distri-

butions in a way that is interpretable and enables sophisticated forms of inference

and reasoning. One of the key tools for reasoning in graphical models is the Markov

property, which allows us to formally reason about conditional independencies be-

tween different random variables in a way that plays a crucial role in applications

(e.g. causal inference [153, 155]).

They are extensively used in a variety of disciplines including the natural and

social sciences where, besides originating as fundamental models of magnets and

statistical field theories (e.g. [151, 74]), they have been used in a vast number of

other settings such as models for the structure of gene regulatory networks (e.g. [196,

137, 164, 18]), of connectivity and learning in the brain (e.g. [139, 95, 187]), and the

flocking behavior of birds (e.g. [20]). In many contexts, the structure of interactions

between different observed variables is unknown a priori and the goal is to infer this

structure in a sample-efficient way from data. There has been decades of research on

various formulations of this problem, both theoretically and empirically: for example,

provable algorithms have been developed for learning tree-structured graphical models

[44], for learning models on graphs of bounded tree-width [103], for learning Ising

models on general graphs of bounded degree [34, 29, 189, 108] and in a variety of
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other contexts like Gaussian graphical models (e.g. [135]). For the most part, the

main interest has been on learning under the assumption that the underlying model

is sparse. Sparsity is a natural assumption since many applications are in a sample-

starved regime where the learning problem is information-theoretically impossible

without sparsity. Sparse models are generally considered to be more interpretable

than their dense counterparts since they satisfy conditional independence relations

which make probabilistic reasoning easier.

In this thesis, we largely focus on two fundamental classes of graphical mod-

els: multivariate Gaussian distributions (referred to as a Gaussian Graphical Model

(GGM) in this context), and their precise analogues on the hypercube, known as Ising

models and long studied in statistical physics. We focus on two related problems: (1)

learning a graphical model from data in a sample-efficient way, and (2) estimating

the partition function (and related quantities) of a known model. For Gaussian dis-

tributions, the normalizing constant has a well-known exact formula (
√

2𝜋 det Σ) so

we focus on the problem (1): in Chapter 1, we give the first efficient algorithms

which, for the large class of walk-summable GGMs, succeed in recovering the model

from few samples regardless of the condition number of the model. For Ising models,

the fully-observed learning problem has been extensively studied but relatively little

was known about the situation when there are latent variables1: we establish general

results for learning in the latent variable setting in Chapters 2 and Chapter 6. Meth-

ods for estimating the partition function (e.g. of the learned model, in order to do

inference) are discussed in Chapters 2,3, and 4.

One of the goals of of this thesis is to illustrate some common themes which appear

throughout sometimes seemingly unrelated problems in graphical models. We state

a few of these themes explicitly here:

1. Pinning as a way to tame strong correlations. One tool used in the analysis of

variational methods in Chapter 3 is a convenient Lemma used in the analysis of

1For a Gaussian distribution, latent variables do not significantly change the difficulty of learning
because marginalizing out a coordinate in a Gaussian results again in a Gaussian; this is very much
not true in an Ising model, where arbitrarily complex higher order interactions can in fact be created
— see Chapter 2.
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“correlation rounding” [141, 12, 156]. This Lemma is a particular instantiation

of the following general principle: if many vectors (or random variables) are

highly correlated, then selecting out a few of them and projecting orthogonal

to them may greatly reduce the size (or correlation) of these vectors. We see

the same kind of idea appear in a very different technical form in Chapter 5,

where one of the key conceptual ideas is that conditioning on (or “pinning”) a

single variable in the graphical model can tame the correlations in nearby nodes

dramatically, and in Chapter 2, where we see a similar effect when pinning a set

of variables to plus. This idea is also one natural way to motivate the all-ones

initialization used in Chapter 4.

2. Inference as a tool in learning. The problems of learning a graphical model

and performing inference (in the sense of e.g. computing marginals) are often

treated separately. Of course, there are exceptions like in Maximum-Likelihood

Estimation where the problem of estimating the normalizing constant naturally

appears. In this thesis we see a few applications of a different flavor: in Chap-

ter 2, we see how ideas from “influence maximization” (in the sense of e.g. [106])

in social networks actually can be used for learning, by running a version of an

influence maximization algorithm directly on data; in Chapter 6 we see how

belief propagation can be a valuable tool for the analysis of a natural node-wise

regression approach, and in Chapter 5 we see how some technical ideas used

in the analysis of Gaussian belief propagation and Bayesian active learning can

be applied to the structure learning problem. A trick used in Chapter 6 based

on an idea in [90] goes in the reverse direction: using access to data to avoid

having to compute a normalizing constant, by performing a logistic regression

instead.

3. Conditional correlation as a canonical measure of edge strength. In order to

learn a combinatorial structure like the graph of a graphical model from data,

there usually needs to be a cutoff which lets us drop edges with interactions too

weak to be seen from a reasonable amount of data; otherwise, even estimating

13



a two-variable graphical model will be impossible, because we cannot test from

data if two random variables are exactly uncorrelated vs. very weakly corre-

lated. For some parametric models, it’s possible to specify the notion of edge

nondegeneracy in terms of the parameters of the model, but for more complex

situations like latent variable models, where there are multiple ways to param-

eterize the same distribution (see Chapter 2) this does not always make sense.

The Markov property suggests a natural way to handle this issue: if the the

conditional mutual information 𝐼(𝑋𝑖;𝑋𝑗|𝑋∼𝑖,𝑗) ̸= 0 (or conditional covariance

Cov(𝑋𝑖, 𝑋𝑗|𝑋∼𝑖,𝑗) ̸= 0 related by Pinsker’s inequality [47]) then an edge must

be present between nodes 𝑖 and 𝑗 to satisfy the Markov property, so requiring

a quantitative lower bound on this quantity is a natural way to define nonde-

generacy of an edge, and this is used in both Chapter 5 and Chapter 6. The

conditional mutual information also appears naturally in the aforementioned

correlation rounding Lemma used in Chapter 3, where we use small average

conditional mutual information as a proxy for the measure being well approxi-

mated by a product measure (i.e. a graphical model with no edges).

4. Combinatorial algorithms as a statistical aid to convex programs. In Chapter 5,

we see that the standard convex program for sparse linear regression, the Lasso,

performs poorly in some examples but that this can be helped by preprocess-

ing with a single step of a combinatorial method (forward selection/Orthogonal

Matching Pursuit); in Chapter 3 we see that the convex program analyzed

can sometimes be made more efficient (computationally, and in terms of vertex

query complexity) by simple subsampling of the graphical model. In Chapters 2

and Chapter 6 we see natural combinations of regression methods and combina-

torial pruning methods used together. In Chapter 5 we see also an application

in the reverse direction: by proving that Lasso succeeds with an appropriate

preconditioning step, we morally obtain the corresponding result for the natural

greedy forward-backward method by comparison to the Frank-Wolfe algorithm

applied to the Lasso convex program.
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1.1 Graphical Models: A Crash Course

In this section, we quickly overview the definition of the Markov property and discuss

some relevant background in graphical models; the focus of this thesis is undirected

graphical models, but we also explain their connection to, and how they can arise from,

directed models. We have made this section largely self-contained but also relatively

concise: the interested reader may want to refer to a more in-depth treatment of the

material such as [118, 22, 113].

Undirected graphical models. Suppose that 𝐺 = (𝑉,𝐸) is an undirected graph

and for every 𝑣 ∈ 𝑉 , we attach a random variable 𝑋𝑣. The random variable 𝑋𝑣 can

be valued in an arbitrary space; usually it will be a number, vector, or matrix. We

let 𝑋 without a subscript denote the collection (𝑋𝑣)𝑣∈𝑉 : for example, if each 𝑋𝑣 is a

real-valued random variable, then 𝑋 is a random vector in R𝑉 ; in the general setting,

we can think of 𝑋 as a random function mapping 𝑣 ↦→ 𝑋𝑣. Given a set 𝐴 ⊂ 𝑉 , we

will let 𝑋𝐴 denote (𝑋𝑣)𝑣∈𝐴.

In this setup, we say that 𝑋 is a Markov Random Field (MRF) over 𝐺 if it satisfies

the following Markov Property : for any triple of sets 𝐴,𝐵, 𝑆 ⊂ 𝑉 such that all paths

starting from a vertex in 𝐴 and ending in a vertex in 𝐵 pass through a vertex in 𝑆,

we have that 𝑋𝐴 is conditionally independent of 𝑋𝐵 given 𝑋𝑆. In other words, the

graph condition is that 𝑆 is a separator between 𝐴 and 𝐵 in the graph 𝐺; we also

note that this property is equivalent to the version where we only consider maximal

𝐴 and 𝐵 so that 𝑆 ∪𝐴∪𝐵 = 𝑉 . The pair (𝑋,𝐺) is also referred to as an undirected

graphical model, and we refer to 𝐺 by itself as the structure graph of the MRF. This

general definition encapsulates a large number of probabilistic models of interest:

1. A discrete-time Markov chain is a Markov random field over the infinite path

graph with vertex set 𝑉 = Z≥0 and an edge between each adjacent number

(𝑡, 𝑡+1). In this context, we think of the vertex set 𝑉 as representing time. For
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example, a simple random walk with Rademacher steps is the process

𝑋𝑡 =
∞∑︁
𝑡=1

𝜖𝑡

where 𝜖1, 𝜖2, . . . is an infinite sequence of independent Rademacher random vari-

ables, i.e. random coin flips valued in {±1}.

2. An Ising model over a graph 𝐺 is a random vector 𝑋 ∈ {±1}𝑉 such that

Pr(𝑋 = 𝑥) ∝ exp (⟨𝑥, 𝐽𝑥⟩/2 + ⟨ℎ, 𝑥⟩)

where 𝐽 : R𝑛×𝑛 is the interaction matrix and the interactions respect the graph

structure, i.e. there is an edge between 𝑖 and 𝑗 iff 𝐽𝑖𝑗 ̸= 0. Here the notation ∝

indicates equality up to a constant normalizing factor, so that the probabilities

sum to 1: this normalizing factor is also referred to as the partition function of

the model, and can be explicitly written as

𝑍 =
∑︁

𝑥∈{±1}𝑛
exp (⟨𝑥, 𝐽𝑥⟩/2 + ⟨ℎ, 𝑥⟩) .

We note that this general definition of an Ising model captures both classical

lattice Ising models and also spin glass models like the Edwards-Anderson (EA)

and Sherrington-Kirkpatrick (SK) model.

3. A Gaussian Graphical Model over 𝐺 is a non-degenerate Gaussian distribution

𝑁(𝜇,Σ) which respects the graph structure in the sense that the precision matrix

Θ = Σ−1 respects the graph structure, i.e. there is an edge between 𝑖 and 𝑗 iff

Θ𝑖𝑗 ̸= 0. This is completely analogous to the Ising model as the density is of

the form

𝑝(𝑥) ∝ exp (−⟨(𝑥− 𝜇),Θ(𝑥− 𝜇)⟩/2) .
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In fact, if we adopt measure theoretic notation and write

𝑑𝑝

𝑑𝑞
(𝑥) ∝ exp (−⟨(𝑥− 𝜇),Θ(𝑥− 𝜇)⟩/2) (1.1)

then if the base measure 𝑞 is the Lebesgue measure on R𝑛, we get for 𝑝 a

general Gaussian distribution and if the base measure 𝑞 is the uniform measure

on {±1}𝑛 we get for 𝑝 a general Ising model.

The fact that the Ising model and Gaussian Graphical Model are both Markov random

fields can be seen from the fact that their densities can be written in terms of clique

potentials on the graph, i.e. in the form (1.2) which we discuss below.

With appropriate generalization, this definition can also encompass fields over a

non-discrete vertex set 𝑉 . For example, the continuous analogue/limit of the simple

random walk is a Brownian motion which is field over R, and there are higher-

dimensional examples such as Gaussian Free Fields [167] and other statistical field

theories, like the 𝜙4-field theory [74, 151]. However, these settings involve some

considerable technical complications: for example, the two-dimensional Gaussian free

field does not exist as a function 𝑣 ↦→ 𝑋𝑣 but instead as a distribution which test

functions can be integrated against.

Equivalent characterizations: Markov blanket and Hammersley-Clifford

Theorem. An equivalent description of a Markov Random Field is in terms of the

following local version of the Markov property: 𝑋𝑣 is conditionally independent of

all other nodes 𝑋∼(𝒩 (𝑣)∪{𝑣}) given its neighbors 𝑋𝒩 (𝑣) where 𝒩 (𝑣) := {𝑢 : 𝑢 ∼ 𝑣} is

the graph-theoretic neighborhood of node 𝑣. This fact is implied from the (global)

Markov property since the neighborhood separates 𝑣 from the rest of the graph.

The equivalence of these properties can be seen through a third and very useful

characterization called the Hammersley-Clifford Theorem (see e.g. [19]), which for

simplicity we state for 𝑋 valued in a finite set with Pr(𝑋 = 𝑥) ̸= 0 for all 𝑥. The

Theorem says that 𝑋 is a Markov random field over 𝐺 iff there exist potentials 𝑓𝐾
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on the cliques 𝐾 of 𝐺 such that

Pr(𝑋 = 𝑥) ∝ exp

(︃∑︁
𝐾∈𝐺

𝑓𝐾(𝑥𝐾)

)︃
. (1.2)

A simple proof of this fact from the local Markov property proceeds by decomposing

log Pr(𝑋 = 𝑥) according to the Efron-Stein decomposition [148], which is closely

related to the inclusion-exclusion proofs of this result in the literature [19]. Concretely,

in the case of 𝑥 ∈ {±1}𝑛, the proof proceeds by writing log Pr(𝑋 = 𝑥) out as a

polynomial, i.e. writing 𝑓(𝑥) := log Pr(𝑋 = 𝑥) =
∑︀

𝑆⊂[𝑛] 𝑓(𝑆)
∏︀

𝑖∈𝑆 𝑥𝑖 for some

𝑓(𝑆) ∈ R, using that the parities
(︀∏︀

𝑖∈𝑆 𝑥𝑖
)︀
𝑆⊂𝑛

form a basis for the space of functions

on the hypercube {±1}𝑛 → R, which follows from the orthogonality relation for

1

2𝑛

∑︁
𝑥∈{±1}𝑛

(︃∏︁
𝑖∈𝑆

𝑥𝑖

)︃(︃∏︁
𝑗∈𝑇

𝑥𝑗

)︃
= 1(𝑆 = 𝑇 ),

which follows from the fact that for any 𝑗 ∈ (𝑇 ∖𝑆)∪ (𝑆 ∖ 𝑇 ) that the sumand is odd

in 𝑥𝑗; see [148] for a more detailed discussion. Then by Bayes rule

Pr(𝑋𝑖 = 𝑥𝑖|𝑋∼𝑖 = 𝑥∼𝑖) =
Pr(𝑋 = 𝑥)

Pr(𝑋∼𝑖 = 𝑥∼𝑖)
=

exp
(︁
𝑥𝑖
∑︀

𝑆:𝑖∈𝑆 𝑓(𝑆)
∏︀

𝑗∈𝑆∖{𝑖} 𝑥𝑗

)︁
∑︀

𝑥′
𝑖
exp

(︁
𝑥′𝑖
∑︀

𝑆:𝑖∈𝑆 𝑓(𝑆)
∏︀

𝑗∈𝑆∖{𝑖} 𝑥𝑗

)︁
and the local Markov property says that this must be a function only of 𝑥𝑖 and 𝑥𝒩 (𝑖).

Hence the function on {±1}𝑛−1 defined by

𝑔𝑖(𝑥∼𝑖) :=
∑︁
𝑆:𝑖∈𝑆

𝑓(𝑆)
∏︁

𝑗∈𝑆∖{𝑖}

𝑥𝑗

can only depend on 𝑥𝑖, 𝑥𝒩 (𝑖), so for any other 𝑆 with 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆, and 𝑗 /∈ 𝑖∪{𝑖}𝒩 (𝑖)

we have

𝑓(𝑆) =
1

2𝑛−1

∑︁
𝑥∈{±1}𝑛−1

𝑥𝑆𝑔𝑖(𝑥) = 0

as the summand is odd in 𝑥𝑗. Hence we get that for all 𝑆 with 𝑖 ∈ 𝑆 and 𝑆 ̸⊂ 𝑖∪𝒩 (𝑖)

that 𝑓(𝑆) = 0. Applying this argument for every node in the graph, we see that
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𝑓(𝑆) = 0 unless the set of vertices in 𝑆 is a clique of𝐺 and this proves the Hammersley-

Clifford Theorem by taking potentials 𝑓𝑆(𝑥𝑆) := 𝑓(𝑆)
∏︀

𝑖∈𝑆 𝑥𝑖.

Finally, from the Hammersley-Clifford characterization (1.2) we can prove the

global Markov property because if removing separator 𝑆 splits the graph 𝐺 into two

sets of nodes 𝐴 and 𝐵, then

Pr(𝑋 = 𝑥|𝑋𝑆 = 𝑥𝑆) ∝ exp

⎛⎝ ∑︁
𝐾:|𝐴∩𝐾|>0

𝑓𝐾(𝑥)

⎞⎠ · exp

⎛⎝ ∑︁
𝐾:|𝐵∩𝐾|>0

𝑓𝐾(𝑥)

⎞⎠ ,

the first term on the rhs involves only 𝑥𝐴 and 𝑥𝑆, the second term on the rhs in-

volves on 𝑥𝐵 and 𝑥𝑆, and so the conditional density factorizes proving conditional

independence.

Directed graphical models and moralization. The Markov Random Fields we

described above naturally live on an undirected graph. There are also natural notions

of graphical models living on a directed graph which play an important role in some

applications. The most common class of directed models are called Bayes Networks,

which live on a Directed Acyclic Graph (DAG); they are characterized by an appro-

priate version of the Markov property: for any nodes 𝑣 and 𝑢 not a descendant of

𝑣 in the DAG, we have that 𝑋𝑣 is conditionally independent of 𝑋𝑢 given its parents

𝑋pa(𝑣). Here pa(𝑣) is the set of nodes which have an arc pointing into node 𝑣. This

property is called the local Markov property ; there is also an equivalent definition of

Bayes networks in terms of a more global characterization involving the concept of 𝑑-

separation, see [118, 153]. See also [118] for some other versions of directed graphical

models, including versions which combine both directed and undirected edges.

The key connection between undirected and directed models is a process called

moralization, which takes as input a directed graphical model (𝑋,𝐻) where 𝑋 is a

Bayes network over the directed graph 𝐻, and produces a corresponding undirected

𝐺 such that 𝑋 is a Markov random field over 𝐺. The process is simple: node 𝑣 is

connected to 𝑢 in the undirected model if in the directed graph 𝐻 either: (1) 𝑢 is a

parent of 𝑣, (2) 𝑢 is a child of 𝑣, or (3) 𝑢 is the parent of a child of 𝑣. We describe
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the reason for this informally: including only the neighbors of (1) would make 𝑣

independent of everything but its descendants, so we need to include nodes of type

(2), i.e. the children as well; this separates 𝑣 from the descendants of those children,

but now the parents of the children may be indirectly useful in predicting 𝑋𝑣 so we

need to add the nodes of type (3).

We now make this precise. First observe that a directed graphical model admits

the following factorization:

Pr(𝑋 = 𝑥) =
∏︁
𝑣

Pr(𝑋𝑣 = 𝑥𝑣 | 𝑋pa(𝑣)=𝑥pa(𝑣)
)

which follows by picking a topological ordering 𝑣(1), . . . , 𝑣(𝑛) of the nodes in the

directed graph, applying the the chain rule Pr(𝑋 = 𝑥) =
∏︀𝑛

𝑖=1 Pr(𝑋𝑣(𝑖) | 𝑋𝑣(<𝑖)) and

using the local Markov property stated above. Now let 𝒩 (𝑣) be the union of (1) the

parents of node 𝑣, (2) the children of node 𝑣, and (3) the parents of the children of

node 𝑣. By Bayes rule (abbreviating Pr(·|𝑋𝑆) = Pr(·|𝑋𝑆 = 𝑥𝑆) where the fixing of

𝑋𝑆 is clear from context) we can compute the conditional law

Pr(𝑋𝑢 = 𝑥𝑢 | 𝑋∼𝑢 = 𝑥∼𝑢)

=
Pr(𝑋 = 𝑥)∑︀

𝑥′
𝑢

Pr(𝑋∼𝑢 = 𝑥∼𝑢, 𝑋𝑢 = 𝑥′𝑢)

=

(︃ ∏︀
𝑣 Pr(𝑋𝑣 = 𝑥𝑣|𝑋pa(𝑣))∏︀

𝑣:𝑢/∈pa(𝑣) Pr(𝑋𝑣 = 𝑥𝑣|𝑋𝑝𝑎(𝑣))

)︃
(︃

1∑︀
𝑥′
𝑢

Pr(𝑋𝑢 = 𝑥′𝑢|𝑋𝑝𝑎(𝑢))
∏︀

𝑣:𝑢∈pa(𝑣) Pr(𝑋𝑣 = 𝑥𝑣|𝑋𝑢 = 𝑥′𝑢, 𝑋pa(𝑣)∖𝑢)

)︃

=
Pr(𝑋𝑢 = 𝑥𝑢|𝑋𝑝𝑎(𝑢))

∏︀
𝑣:𝑢∈pa(𝑣) Pr(𝑋𝑣 = 𝑥𝑣|𝑋𝑝𝑎(𝑣))∑︀

𝑥′
𝑢

Pr(𝑋𝑢 = 𝑥′𝑢|𝑋𝑝𝑎(𝑢))
∏︀

𝑣:𝑢∈pa(𝑣) Pr(𝑋𝑣 = 𝑥𝑣|𝑋𝑢 = 𝑥′𝑢, 𝑋pa(𝑣)∖𝑢)

and see that Pr(𝑋𝑢 = 𝑥𝑢 | 𝑋∼𝑢 = 𝑥∼𝑢) depends only on 𝑥𝑢 and (1) 𝑥pa(𝑢) i.e. the

value of the parents of 𝑢, (2) 𝑥𝑣 for 𝑢 ∈ pa(𝑣) i.e. the value of the children of 𝑢, and

(3) 𝑥pa(𝑣)∖𝑢 for 𝑣 with 𝑢 ∈ pa(𝑣), i.e. the value of the parents of the children of 𝑢.

Unlike for undirected graphical models, it usually is not possible to recover the

directed graph structure of a Bayes network given samples from the distribution. (In
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other words, the directed graph structure is not identifiable from observational data.)

For example, the distribution of a pair of random variables (𝑋1, 𝑋2) can be presented

by a Bayes network with a single edge from 𝑋1 to 𝑋2, or with a single edge in the

reverse direction. One solution to this problem is to perform list recovery, in the

sense of finding all DAGs consistent with the observed data (see e.g. [8]). Another

solution is to assume that the Bayes network is causal, in the sense that it describes

not only the joint distribution of the random variables but also the behavior under

interventions, where a random variable is forced to a particular value (this is different

from conditioning). In this case, given the ability to observe the results of arbitrary

interventions the network can be recovered, see [153, 155]. Since interventions are

often expensive, it is desirable to minimize the number of interventions performed

and one method used in practice is to learn the undirected structure first, see e.g.

[125].

Conditional Laws and Related Approximations. An important role through-

out this thesis is played by the condition law 𝑝(𝑋𝑖|𝑋∼𝑖) for 𝑝 a Markov random field.

For simplicity, we again consider the case of discrete MRFs, though the following

discussion generalizes straightforwardly to continuous ones. When 𝑝(𝑥) ∝ exp(𝑓(𝑥))

we know by the local Markov property that

𝑝(𝑋𝑖 = 𝑥𝑖|𝑋∼𝑖 = 𝑥∼𝑖) =
exp(𝑓(𝑥))∑︀

𝑥′
𝑖
exp(𝑓(𝑥′𝑖, 𝑥∼𝑖))

(1.3)

where the notation 𝑓(𝑥′𝑖, 𝑥∼𝑖) means to apply 𝑓 to the vector (𝑥1, . . . , 𝑥𝑖−1, 𝑥
′
𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛).

One of the most important aspects of (1.3) is that the right hand side can be evalu-

ated efficiently (i.e. in polynomial time), as long as we can compute 𝑓 in polynomial

time and the state space of 𝑥′𝑖 is polynomial size. This is generally not true of the

overall pmf 𝑝(𝑥𝑖), which is very often computationally hard to compute, since the

normalizing constant involves a sum over exp(𝑂(𝑛)) many states (see e.g. [171] for

a strong computational hardness result). Because of this distinction, learning algo-

rithms based on pseudolikelihood methods or node-wise regression (i.e. trying to
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predict one node in a graphical model from the others) are often nicer to work with

than their “global” alternatives like Maximum-Likelihood Estimation, which may be

computationally intractable.

The equation (1.3) also motivates some approximations to 𝑝. In particular, making

an approximation that the rhs of (1.3) is a function only of 𝑥𝑖 (which should be valid

if it concentrates in the randomness over 𝑥∼𝑖 ∼ 𝑝) suggests that 𝑝 will behave roughly

as a product measure and leads to the well-known naive mean-field approximation

analyzed in Chapter 3. The failure of that approximation in some models leads to the

consideration of alternatives; one such alternative, which is exact on tree models (and

can be thought of as a natural generalization of (1.3) to subsets of nodes which form

a tree), is the combination of the Bethe approximation and the corresponding belief

propagation algorithm which plays a key role in Chapter 6; it also implicitly appears in

Chapter 3 where we use that the partition function of the SK model is approximated

by a corrected mean-field approximation called the TAP free energy [181]. In Gaussian

Graphical Models, belief propagation ends up to be an iterative algorithm for solving

linear systems and its convergence is guaranteed under a criterion known as walk-

summability [131]: the analysis of such walk-summable GGMs (in our case, using

electrical methods) plays a key role in Chapter 5.

Other technical preliminaries. Throughout this thesis, we make use of funda-

mental tools from high-dimensional probability like concentration inequalities — see

[188] for a reference. Otherwise, we generally introduce the needed background (e.g.

from electrical flows, statistical learning theory, approximation algorithms, statistics,

information theory) where it is needed, inside of the relevant Chapter(s).

1.2 Overview of Chapters

In the first Section of the introduction, we gave a high-level description of the con-

tents of this thesis (i.e. what is it about?). Here we give a more detailed overview

of the chapter-by-chapter contents of this thesis, which is partly based on published
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works [33, 97, 111, 105, 79]. First, we define a couple important terms more carefully.

In this thesis, we will focus on two related problems in graphical models: learning

and inference. In learning, our goal will generally be to estimate the structure graph

𝐺 given 𝑚 samples 𝑋1, . . . , 𝑋𝑚 which are i.i.d. (independent and identically dis-

tributed) copies of the random variable 𝑋. In inference, our goal will be to efficiently

determine properties (e.g. marginals, conditional laws) of a graphical model given

a description of it. (This should not be confused with the term statistical inference

which encompasses learning as well.) The chapters of this work mostly focus on one

or the other but often involve both tasks.

Chapter 2: Learning Latent Variable Models via Influence Maximization.

In this chapter, we study how to learn Ising models when there are latent variables,

i.e. we are given access to samples where only a fixed subset of observable nodes are

revealed. A particular subcase of interest is the Restricted Boltzmann Machine [90]

which lives on a bipartite graph. In the latent variable setting, recovering the graph

structure of the entire model is not possible (there is not enough information), but we

can learn the induced Markov random field on the revealed variables. We give some

hardness results for this problem, based on a cryptographically hard problem known

as learning a sparse parity with noise, and give positive results when the model is

ferromagnetic, i.e. the external field and interaction parameters are nonnegative. We

also discuss how methods for estimating the partition function based on algorithmic

diagrammatic expansions [16] can be applied in this setting.

Chapter 3: Convex Hierarchies, Naive Mean-field Approximation, and

Correlation Rounding. We consider a different approach to estimating the par-

tition function, known as variational methods2. We strengthen results of [159, 17] by

showing how to round from (a convex relaxation of) the Gibbs measure of an Ising

model to a product measure with similar free energy, under the natural mean-field

condition ‖𝐽‖2𝐹 = 𝑜(𝑛) from [17]. As a consequence, we resolve a question about

2For a connection between variational methods and the aforementioned diagramatic expansions,
see e.g. [181].
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correlation rounding from the approximation algorithms literature [3] using rigorous

results in spin glass theory [2]. We also generalize the results in a natural way to

models with higher-order interactions.

Chapter 4: Landscape Analysis of Naive Mean-Field Approximation in

Ferromagnetic Models. We continue the analysis of the naive mean-field approx-

imation from the previous chapter, proving that in ferromagnetic models (as con-

sidered in Chapter 2) the standard heuristic method for maximizing the variational

free energy provably succeeds given all-ones initialization, despite the fact that it is

a first-order optimization method (like gradient descent) on a nonconvex objective.

Chapter 5: Learning GGMs without a Well-Condition Assumption. We

return to the problem of learning graphical models, but this time focus on the most

popular class of continuous models: Gaussian Graphical Models (GGMs). We ob-

serve that many graphical models with interesting large-scale behavior are not well-

conditioned (i.e. their covariance matrices are not well-conditioned), and hence previ-

ous theoretical guarantees for learning GGMs are either not computationally efficient

or are statistically suboptimal in the number of samples they require; we also confirm

this in simulations. We show two different ways to resolve the problem: either by

using a combinatorial forward-backward method to learn the model (in the spirit of

Chapter 2), or by preconditioning the Lasso with a greedy pinning operation (in the

spirit of Chapter 3).

Chapter 6: Learning RBMs with Bounded Weights. We return to the prob-

lem of learning Restricted Boltzmann Machines (RBMs) from samples. We study

the algorithmic difficulty of this problem when we parameterize the complexity of

the model by its weights, as is commonly done in e.g. generalization bounds [13].

We show nearly matching upper and lower bounds in this setting: a key insight in

the proof of the upper bounds is a connection between RBM learning and feedfor-

ward neural network learning which comes from the belief propagation algorithm in

probabilistic inference, a close relative of the mean-field iterative method analyzed in
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Chapter 4. This also suggests that RBMs and related models could serve as natural

distributional settings to study learning of feedforward networks, and we explore the

consequences of this in a setting similar to Chapter 2, revisiting some classical ideas

for using RBMs in supervised learning from [90].
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Chapter 2

Learning Latent Variable Models via

Influence Maximization

2.1 Introduction

2.1.1 Background

The presence of unobserved (or latent) variables is of fundamental importance in a

wide range of applications. Latent variable models can capture much more complex

dependencies among the observed variables than fully observed models, because the

variables can influence each other through unobserved mechanisms. In this way, such

models allow scientific theories that explain data in a more parsimonious way to be

learned and tested. They can also be used to perform dimensionality reduction [91]

and feature extraction [45] and thus serve as a basis for a variety of other machine

learning tasks.

Despite their practical importance, the problem of learning graphical models with

latent variables has seen much less progress than the fully-observed setting. In one

application domain, phylogenetic reconstruction, there has been a lot of activity, e.g.

[63, 49, 175, 176, 144], however these results are all quite specific to the setting of

tree graphical models. Otherwise, the only works we are aware of are the following:

Chadrasekaran et al. [42] studied Gaussian graphical models with latent variables
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and sparsity and incoherence constraints. The marginal distribution on the observed

variables is also a Gaussian graphical model, so it is straightforward to learn its

distribution. However their focus was on discovering latent variables whose inclusion

in the model “explains away" many of the observed dependencies. Anandkumar and

Valluvan [5] were the first to give provable algorithms for learning discrete graphical

models with latent variables, although they need rather strong conditions to do so.

They require both that the graphical model is locally treelike and that it exhibits

correlation decay.

In this Chapter (and also Chapter 6) we study Restricted Boltzmann Machines

(or RBMs), a widely-used class of graphical models with latent variables that were

popularized by Geoffrey Hinton in the mid 2000s. In fact, our results will extend

straightforwardly to general Ising models with latent variables. An RBM has 𝑛1

observed (or visible) variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 𝑛2 latent (or hidden) variables

𝐻1, 𝐻2, . . . , 𝐻𝑚 and is described by

(1) an 𝑛1 × 𝑛2 interaction matrix 𝑊

(2) a length 𝑛 vector 𝑏(1) and a length 𝑚 vector 𝑏(2) of external fields/biases

Then for any 𝑥 ∈ {±1}𝑛1 and ℎ ∈ {±1}𝑛2 , the probability that the model assigns to

this configuration is given by:

Pr(𝑋 = 𝑥,𝐻 = ℎ) =
1

𝑍
exp

(︃
𝑥𝑇𝐽ℎ+

𝑛1∑︁
𝑖=1

𝑏
(1)
𝑖 𝑥𝑖 +

𝑛2∑︁
𝑖=1

𝑏
(2)
𝑗 ℎ𝑗

)︃

where 𝑍 is the partition function. We sometimes write 𝑛 = 𝑛1 + 𝑛2 for the total

number of nodes, consistent with our notation for general Ising models. It is often

convenient to think about an RBM as a weighted bipartite graph whose nodes repre-

sent variables and whose weights are given by 𝑊 . This family of models has found a

number of applications including in collaborative filtering [162], topic modeling [92]

and in deep learning where they are layered on top of each other to form deep belief

networks [89]. As the number of layers grows, they can capture increasingly complex

hierarchical dependencies among the observed variables.
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We focus on the problem of learning RBMs from i.i.d. samples of the observed

variables, with particular emphasis on the practically relevant case where the latent

variables have low degree. What makes this challenging is that even though the

variables in the RBM have only pairwise interactions, when the latent variables are

marginalized out we can (and usually do) get higher-order interactions. Indeed, for

general graphical models with latent variables and pairwise interactions, Bogdanov,

Mossel and Vadhan [25] proved learning is hard (assuming 𝑁𝑃 ̸= 𝑅𝑃 ) by showing

how the distribution on observed variables can simulate the uniform distribution on

satisfying assignments of any given circuit. We note that this construction requires

a large number (at least one for each gate) of interconnected latent variables and

that the hard instances are highly complex because they come from a series of circuit

manipulations. Beyond learning, Long and Servedio [126] proved that for RBMs a

number of other related problems are hard, including approximating the partition

function within an exponential factor and approximate inference and sampling.

The previous work leaves the following question unresolved: Are there natural and

well-motivated families of Ising models with latent variables that can be efficiently

learned? We will answer this question affirmatively in the case of ferromagnetic

RBMs and (more generally) ferromagnetic Ising models with latent variables, which

are defined as follows: A ferromagnetic RBM is one in which the interaction matrix

and the vectors of external fields are nonnegative. On the other hand, we give a

negative result showing that without ferromagneticity, even in the highly optimistic

case when there are only a constant number of latent variables with bounded degree

the problem is as hard as sparse parity with noise. This establishes a dichotomy that

is just not present in the fully-observed setting.

Historically, ferromagneticity is a natural and well-studied property that plays a

key role in many classic results in statistical physics and theoretical computer science.

For example, the Lee-Yang theorem [121] shows that the complex zeros of the partition

function of a ferromagnetic Ising model all lie on the imaginary axis — this property

does not hold for general Ising models. Ferromagnetic Ising models are also one of the

largest classes of graphical models for which there are efficient algorithms for sampling
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and inference, which follows from the seminal work of Jerrum and Sinclair [100]. This

makes them an appealing class of graphical models to be able to learn. In contrast,

without ferromagneticity it is known that sampling and inference are computationally

hard when the Gibbs measure on the corresponding infinite 𝑑-regular tree becomes

non-unique [171].

2.1.2 Our Results

First we focus on learning ferromagnetic Restricted Boltzmann Machines with bounded

degree. The idea behind our algorithm is simple: the observed variables that exert

the most influence on some variable 𝑋𝑖 ought to be 𝑋𝑖’s two-hop neighbors. While

this may seem intuitive, the most straightforward interpretation of this statement

is false — the variable with the largest correlation with 𝑋𝑖 may actually not be a

two-hop neighbor. In addition, even if we correct the statement (e.g. by stating

instead that there should be a neighbor with large influence), such facts about graph-

ical models are often subtle and challenging to prove. Ultimately, we make use of the

famous Griffiths-Hurst-Sherman correlation inequality [83] to prove that the discrete

influence function

𝐼𝑖(𝑆) = E
[︀
𝑋𝑖|𝑋𝑆 = {+1}|𝑆|

]︀
is submodular (see Theorem 5). The GHS inequality has found many applications

in mathematical physics where it is an important ingredient in determining critical

exponents at phase transitions. By recognizing that the concavity of magnetization

is analogous to the properties of the multilinear extension of a submodular function

[40], we are able to bring to bear tools from submodular maximization to learning

graphical models with latent variables.

More precisely, we show that any set 𝑇 that is sufficiently close to being a max-

imizer of 𝐼𝑖 must contain the two-hop neighbors of 𝑋𝑖. We can thus use the greedy

algorithm for maximizing a monotone submodular function [147] to reduce our prob-

lem of finding the two-hop neighbors of 𝑋𝑖 to a set of constant size, where the con-

stant depends on the maximum degree and upper and lower bounds on the strength
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of non-zero interactions. It is information theoretically impossible to learn 𝑊 , 𝑏(1)

and 𝑏(2) uniquely, but we do something almost as good and learn a description of

the distribution of the observed variables as a Markov Random Field (or MRF, see

Definition 6):

Theorem 1 (Informal). There is a nearly quadratic time algorithm with logarithmic

sample complexity for learning the distribution of observed variables (expressed as a

Markov Random Field) for ferromagnetic Restricted Boltzmann Machines of bounded

degree and upper and lower bounded interaction strength.

The key part of this Theorem is the structure recovery guarantee, which learns the

2-hop neighborhoods of a node and is formalized in Theorem 9. Given this struc-

ture, learning the parameters of the model is straightforward from an algorithmic

standpoint; we actually defer the discussion of this step to Chapter 6, because it is

more related to the other material in that Chapter and in part because it uses tools

which are also introduced in Chapter 5. We note that unlike earlier greedy algorithms

for learning Ising models [29, 87] our dependence on the maximum degree is singly

exponential and hence is nearly optimal [163]. In independent work, Lynn and Lee

[127] also considered the problem of maximizing the influence but in a known Ising

model. They gave a (conjecturally optimal) algorithm for solving this problem given

an ℓ1-constraint on the external field.

Our algorithm extends straightforwardly to general ferromagnetic Ising models

with latent variables. In this more general setting, the two-hop neighborhood of a

node 𝑖 is replaced by an induced Markov blanket (i.e. neighborhood in the Markov

Random Field), which informally corresponds to the set of observed nodes that sep-

arate 𝑖 from the other observed nodes. We prove:

Theorem 2 (Informal). There is a nearly quadratic time algorithm with logarithmic

sample complexity for learning the distribution of observed variables (expressed as a

Markov Random Field) for ferromagnetic Ising model with latent variables, under the

conditions that the interaction strengths are upper and lower bounded, the induced

Markov blankets have bounded size and that the distance between any node 𝑖 and any

31



other node in its Markov blanket is bounded.

See Theorem 11 for the precise statement of the structure recovery guarantee, and

again we defer to Chapter 6 for how to analyze learning the model given the structure.

We remark that in our setting, the maximal Fourier coefficients of the induced MRF

can be arbitrarily small, which is a serious obstacle to directly applying existing

algorithms for learning MRFs (see Example 4). Our method also has the advantage

of running in near-quadratic time whereas existing MRF algorithms would require

runtime 𝑛𝑑𝐻+1, where 𝑑𝐻 is the maximum hidden degree1. We also show how Lee-

Yang properties that hold for ferromagnetic Ising models [124] carry over to the

induced MRFs in the presence of latent variables, which allows us to approximate the

partition function and perform inference efficiently. See Theorem 14 for the precise

statement. Compared to the previous settings where provable guarantees were known,

ours is the first to work even when there are long range correlations.

As we alluded to earlier, being ferromagnetic turns out to be the key property

in avoiding computational intractability. More precisely, we show a rather surprising

converse to the well-known fact that marginalizing out a latent variable produces

a higher-order interaction among its neighbors. We show that marginalizing out a

collection of latent variables can produce any desired higher-order interaction among

their neighbors.

Theorem 3 (Informal). Every binary Markov Random Field of order 𝑑𝐻 can be

expressed as the distribution on observed variables of a Restricted Boltzmann Machine,

where the maximum degree of any latent node is at most 𝑑𝐻 .

See Theorem 6 for the precise statement. Our approach to showing the equivalence

between RBMs and MRFs is to show a non-zero correlation bound between the soft

absolute value function that arises from marginalizing out latent variables and a parity

function. We accomplish this through estimates of the Taylor expansion of special

functions. With this in hand, we can match the largest degree terms in the energy

function of an MRF and recurse.
1The induced MRF has order 𝑑𝐻 , so these methods (e.g. [108]) need to solve regression problems

on polynomials of degree 𝑑𝐻 .
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Apart its usefulness in proving hardness, this result also resolves a basic question

about the representational power of RBMs. Towards the goal of understanding deep

learning, a number of recent works have shown depth separations in feed-forward

neural networks [180, 161, 60]. They explicitly construct (or show that there exists)

a function that can be computed by a depth 𝑑 + 1 feed-forward neural network of

small size, but with depth 𝑑 would require exponential size. In fact, RBMs are the

building block of another popular paradigm in deep learning: deep belief networks

[89]. Towards understanding the representational power of RBMs, Martens et al.

[133] showed that it is possible to approximately represent the uniform distribution

on satisfying inputs to the parity function, and more generally any predicate depend-

ing only on the number of 1s, using a dense RBM. In practice, sparse RBMs are

desirable because their dependencies are easier to interpret. The above theorem ex-

actly characterizes what distributions can be represented this way: They are exactly

the bounded order MRFs.

In any case, what this means for our lower bound is that without ferromagneticity,

even RBMs with a constant number of latent variables of constant degree inherits the

hardness results of learning MRFs [32, 108], that in turn follow from the popular

assumption that learning sparse parities with noise is hard. For comparison, the

technique used in [133] seems insufficient for this reduction — their method can only

build certain noiseless functions.

Corollary 1 (Informal). If 𝑘-sparse noisy parity on 𝑛 bits is hard to learn in time

𝑛𝑜(𝑘), then it is hard to learn a representation of the distribution on 𝑛 observed vari-

ables (as any unnormalized function that can be efficiently computed) that is close

to within total variation distance 1/3 of a Restricted Boltzmann Machine where the

maximum degree of any latent node is 𝑑𝐻 in time 𝑛𝑜(𝑑𝐻). This is true even if the

number of hidden nodes in the RBM is promised to be constant w.r.t. 𝑛.

See Theorem 8 for the precise statement. Recall that it is impossible to learn the

parameters of an RBM uniquely. Our result shows that learning merely a description

of the distribution on the observed variables — i.e. a form of improper learning —
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is hard too, even for RBMs with only a constant number of hidden variables. In

contrast, previous lower bounds were for graphical models with many more latent

variables than observed variables [25]. At the time it seemed plausible that there

were large classes of graphical models with latent variables that could be efficiently

learnable. But in light of how simple our hard examples are, it seems difficult to

imagine any other natural and well-motivated class of graphical models with latent

variables (without ferromagneticity) that is also easy to learn.

2.1.3 Further Discussion

There is an intriguing analogy between our results and the problem of learning juntas

[143, 184]. While the general problem of learning 𝑘-juntas seems to be hard to solve in

time 𝑛𝑜(𝑘) there are some special cases that can be solved much faster. Most notably,

if the junta is monotone then there is a simple algorithm that works: Find all the

coordinates with non-zero influence and solve the junta learning problem restricted

to those coordinates. We can think of ferromagneticity as the natural analogue of

monotonicity in the context of RBMs, since this property also prevents certain types

of cancellations. Are there other contraints that one can impose on RBMs, perhaps

inspired by ones that work for juntas, that make the problem much easier?

Another enticing question for future work is to study “deeper" versions of the

problem, such as ferromagnetic deep belief networks. Are there new provable algo-

rithms for classes of deep networks to be discovered? There is a growing literature on

learning deep networks under various assumptions [9, 99, 200, 78], but the ability of

ferromagnetic RBMs to express long-range correlations seems to make it a potentially

more challenging problem to tackle.
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2.2 Preliminaries

Recall from Chapter 1 that an Ising model is a probability distribution 𝜇(𝐽, ℎ) on the

hypercube {±1}𝑛 under which

Pr(𝑋 = 𝑥) = 𝜇(𝑥) =
1

𝑍
exp

(︁1

2

∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑥𝑖𝑥𝑗 +
∑︁
𝑖

ℎ𝑖𝑥𝑖

)︁
.

Definition 1. A ferromagnetic Ising model with consistent external fields is an Ising

model such that 𝐽𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 and such that ℎ𝑖 ≥ 0. We will refer to this just

as a ferromagnetic Ising model from now on. We will also refer to such a 𝐽 as a

ferromagnetic interaction matrix.

We are particularly interested in Ising models with hidden variables ; thus we

introduce the well-known concept of a Restricted Boltzmann Machine. We will focus

on the case of RBMs in the sequel, though everything can be generalized to Ising

models with arbitrary sets of hidden nodes without much effort, as long as there are

no large connected components of hidden nodes.

Definition 2. Fix a vertex set 𝑉 which is split into two disjoint parts as 𝑉 = 𝑉1∪𝑉2,

and let 𝑛1 = |𝑉1| and 𝑛2 = |𝑉2|. A Restricted Boltzmann Machine (or RBM) is a

probability distribution on {±1}𝑛1 × {±1}𝑛2 under which

Pr(𝑋 = 𝑥,𝐻 = ℎ) =
1

𝑍
exp

(︃
𝑥𝑇𝑊ℎ+

𝑛∑︁
𝑖=1

𝑏
(1)
𝑖 𝑥𝑖 +

𝑚∑︁
𝑖=1

𝑏
(2)
𝑗 ℎ𝑗

)︃

where 𝑊 : R𝑛1×𝑛2 is the interaction matrix, 𝑋 is referred to as the observed/visible

nodes, 𝑌 is referred to as the latent/hidden nodes, 𝑏(1) is the vector of external

fields/biases of the observed nodes and 𝑏(2) is the vector of external fields for the

hidden nodes.

Clearly the joint distribution of a Restricted Boltzmann Machine is just a special

case of a general Ising model. Therefore we say a Restricted Boltzmann Machine

is ferromagnetic if 𝑊𝑖𝑗 ≥ 0, 𝑏
(1)
𝑖 ≥ 0, 𝑏

(2)
𝑖 ≥ 0 which is consistent with our previous

terminology.
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2.3 Submodularity of Influence in Ising models

Definition 3. Fix a ferromagnetic interaction matrix 𝐽 . We define the smooth in-

fluence function for 𝑋𝑖 to be

ℐ𝑖(ℎ) = E𝑋∼𝜇(𝐽,ℎ)[𝑋𝑖]

Definition 4. Suppose 𝑓 : R𝑛
≥0 → R is a 𝒞2 function, i.e. it has continuous second

partial derivatives. We say that 𝑓 is a smooth monotone submodular function if

1. 𝜕𝑖𝑓 ≥ 0 everywhere, and

2. 𝜕𝑖𝜕𝑗𝑓 ≤ 0 everywhere.

We will see that smooth monotone submodularity of ℐ𝑖 in ferromagnetic Ising

models follows from the following correlation inequality of Griffiths, Hurst and Sher-

man [83]:

Theorem 4 (GHS inequality, [83]). Let 𝐽 be the interaction matrix of a ferromagnetic

Ising model on 𝑛 nodes without external field. Then for any (not necessarily distinct)

1 ≤ 𝑖, 𝑗, 𝑘, ℓ ≤ 𝑛 we have

E[𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ] − E[𝑋𝑖𝑋𝑗]E[𝑋𝑘𝑋ℓ] − E[𝑋𝑖𝑋𝑘]E[𝑋𝑗𝑋ℓ] − E[𝑋𝑖𝑋ℓ]E[𝑋𝑗𝑋𝑘]

+2E[𝑋𝑖𝑋ℓ]E[𝑋𝑗𝑋ℓ]E[𝑋𝑘𝑋ℓ] ≤ 0 ,

where the expectations are taken with respect to the Boltzmann distribution.

Corollary 2. Let 𝐽 be a ferromagnetic interaction matrix, i.e. 𝐽𝑖𝑗 ≥ 0. Then for

any 𝑖 ∈ [𝑛], ℐ𝑖(ℎ) : R𝑛
≥0 → R is a smooth monotone submodular function.

Proof. The equivalence of correlation inequalities and partial derivative inequalities

is well-known (and is used in [83]); we include a proof only for completeness, since

this precise statement does not appear in [83].
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Let 𝑍(ℎ) denote the partition function of the Ising model with interaction matrix

𝐽 and external field ℎ. Then observe that

ℐ𝑖(ℎ) =

∑︀
𝑥 𝑥𝑖 exp(𝑥𝑇𝐽𝑥+ ℎ · 𝑥)

𝑍(ℎ)
= 𝜕𝑖 log𝑍(ℎ) ,

so it suffices to prove that 𝜕𝑗𝜕𝑖 log𝑍(ℎ) ≥ 0 for all 𝑖, 𝑗 and 𝜕𝑘𝜕𝑗𝜕𝑖 log𝑍(ℎ) ≤ 0 for all

𝑖, 𝑗, 𝑘. First observe by computing partial derivatives that

𝜕𝑗𝜕𝑖 log𝑍(ℎ) = Cov(𝑋𝑖, 𝑋𝑗) ≥ 0 ,

where the covariance is taken with respect to 𝜇(𝐽, ℎ) and the inequality follows from

Griffiths inequality. One can similarly observe that

𝜕𝑘𝜕𝑗𝜕𝑖 log𝑍(ℎ) =

E[𝑋𝑖𝑋𝑗𝑋𝑘] − E[𝑋𝑖𝑋𝑘]E[𝑋𝑗] − E[𝑋𝑖]E[𝑋𝑗𝑋𝑘] − E[𝑋𝑖𝑋𝑗]E[𝑋𝑘] + 2E[𝑋𝑖]E[𝑋𝑗]E[𝑋𝑘] ,

where the expectation is taken with respect to 𝜇(𝐽, ℎ). We now eliminate the external

field by the introduction of a ghost vertex 𝑋𝑛+1 such that in the new Ising model,

𝐽𝑖(𝑛+1) = ℎ𝑖, 𝐽𝑖𝑗 is otherwise the same as before and there is no external field. In

this new Ising model the marginal of 𝑋1, . . . , 𝑋𝑛 given 𝑋𝑛+1 = 1 is the same as their

distribution in the first Ising model, and the marginal given 𝑋𝑛+1 = −1 is the same

but with flipped signs. Letting E𝜈 denote expectation with respect to this new Ising

model, we see that

E[𝑋𝑖𝑋𝑗𝑋𝑘] − E[𝑋𝑖𝑋𝑘]E[𝑋𝑗] − E[𝑋𝑖]E[𝑋𝑗𝑋𝑘] − E[𝑋𝑖𝑋𝑗]E[𝑋𝑘] + 2E[𝑋𝑖]E[𝑋𝑗]E[𝑋𝑘]

= E𝜈 [𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ] − E𝜈 [𝑋𝑖𝑋𝑗]E𝜈 [𝑋𝑘𝑋ℓ] − E𝜈 [𝑋𝑖𝑋𝑘]E𝜈 [𝑋𝑗𝑋ℓ] − E𝜈 [𝑋𝑖𝑋ℓ]E𝜈 [𝑋𝑗𝑋𝑘]

+ 2E𝜈 [𝑋𝑖𝑋ℓ]E𝜈 [𝑋𝑗𝑋ℓ]E𝜈 [𝑋𝑘𝑋ℓ] ,

where ℓ = 𝑛 + 1. Thus it suffices to verify that this last expression is at most zero,

which follows from Theorem 4.

Definition 5. Fix a ferromagnetic Ising model (𝐽, ℎ). We define the discrete influence
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function for 𝑋𝑖 to be a function from 𝑆 ⊂ [𝑛] to R given by

𝐼𝑖(𝑆) = E𝑋∼𝜇(𝐽,ℎ)

[︀
𝑋𝑖|𝑋𝑆 = {+1}|𝑆|

]︀
= E𝑋∼𝜇(𝐽,ℎ+∞1𝑆)[𝑋𝑖] .

Theorem 5. Fix a ferromagnetic Ising model (𝐽, ℎ). Then for every 𝑖, the discrete

influence function 𝐼𝑖(𝑆) is a monotone submodular function.

Proof. Since 𝐼𝑖(𝑆) = E𝜇(𝐽,ℎ+∞1𝑆)[𝑋𝑖], monotonicity follows immediately from Corol-

lary 2. Similarly, submodularity follows because if 𝑆 ⊂ 𝑇 and we let ℎ𝑆 = ℎ+∞· 1𝑆

and likewise for ℎ𝑇 , then we obtain

𝐼𝑖(𝑆∪{𝑗})−𝐼𝑖(𝑆) =

∫︁ ∞

ℎ′
𝑗=0

𝜕𝑗ℐ𝑖(ℎ𝑆+ℎ′𝑗𝑒𝑗) ≥
∫︁ ∞

ℎ′
𝑗=0

𝜕𝑗ℐ𝑖(ℎ𝑇 +ℎ′𝑗𝑒𝑗) = 𝐼𝑖(𝑇∪{𝑗})−𝐼𝑖(𝑇 ) ,

where the inequality follows point-wise, by integrating the inequality 𝜕𝑘𝜕𝑗ℐ𝑖 ≤ 0 along

any coordinate-wise non-decreasing path from ℎ𝑆 + ℎ′𝑗𝑒𝑗 to ℎ𝑇 + ℎ′𝑗𝑒𝑗.

This submodularity has the following standard consequence, which will be very

useful later.

Lemma 1. Fix a ferromagnetic Ising model (𝐽, ℎ). Suppose 𝑖 ∈ [𝑛] and 𝑆, 𝑇 ⊂ [𝑛],

and 𝐼𝑖(𝑇 ) > 𝐼𝑖(𝑆). Then there exists 𝑗 ∈ 𝑇 such that

𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆) ≥ 𝐼𝑖(𝑇 ) − 𝐼𝑖(𝑆)

|𝑇 ∖ 𝑆|

Proof. This follows because

𝐼𝑖(𝑆 ∪ 𝑇 ) − 𝐼𝑖(𝑆) ≥ 𝐼𝑖(𝑇 ) − 𝐼𝑖(𝑆)

and by submodularity, since we can go from 𝑆 to 𝑆∪𝑇 by adjoining elements of 𝑇 ∖𝑆

one-by-one,

𝐼𝑖(𝑆 ∪ 𝑇 ) − 𝐼𝑖(𝑆) ≤
∑︁

𝑗∈𝑇∖𝑆

𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆) ≤ |𝑇 ∖ 𝑆| max
𝑗∈𝑇∖𝑆

(𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆))

which completes the proof.
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2.4 Interreducibility Between RBMs and MRFs

First we recall the definition of (binary) Markov Random Fields from Chapter 1 and

introduce some terminology for the order of the MRF:

Definition 6. A Markov Random Field (or MRF) of order 𝑟 is a probability distri-

bution on {±1}𝑛 such that

Pr(𝑋 = 𝑥) =
1

𝑍
exp(𝑓(𝑥))

where 𝑓 is a multivariate polynomial of degree 𝑟 such that 𝑓(0) = 0, referred to as

the potential. The structure graph of a Markov random field has vertices 1, . . . , 𝑛

and connects vertex 𝑖 and 𝑗 if there is a monomial in 𝑓(𝑥) with non-zero coefficient

involving both 𝑥𝑖 and 𝑥𝑗.

We will mostly be interested in Markov random fields where the structure graph

has bounded degree, i.e. the size of the Markov blanket of each node is bounded. Now

we observe that the marginal distribution on the observable variables of a Restricted

Boltzmann machine is a Markov Random Field, of order at most the max degree of

a hidden node. This is well known and was used for instance in [133], but we state

and prove it for completeness:

Lemma 2. Fix a Restricted Boltzmann Machine (𝐽, 𝑏(1), 𝑏(2)). Let 𝑤𝑗 be the 𝑗𝑡ℎ

column of 𝑊 , i.e. the edge weights into hidden unit 𝑗. Then

𝑃 (𝑋 = 𝑥) =
1

𝑍
exp

(︃
𝑛2∑︁
𝑗=1

𝜌(𝑤𝑗 · 𝑥+ 𝑏
(2)
𝑗 ) +

𝑛1∑︁
𝑖=1

𝑏
(1)
𝑖 𝑥𝑖

)︃

where 𝑍 is the same as the partition function of the original RBM and 𝜌(𝑥) = log(𝑒𝑥+

𝑒−𝑥) (this can be thought of as a “soft absolute value” function).

Proof. We show a slightly more general fact. Consider a general Markov Random

Field of the form Pr(𝑋 = 𝑥) = 1
𝑍

exp(𝑓(𝑥)) where 𝑢 is a vertex with only pairwise

interactions, i.e.

𝑓(𝑥) = ℎ𝑢𝑥𝑢 +
∑︁
𝑣∼𝑢

𝑤𝑢𝑣𝑥𝑢𝑥𝑣 + 𝑔(𝑥∼𝑢).
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We now compute the marginal distribution on the model when 𝑢 is hidden. Observe

that

Pr(𝑋∼𝑢 = 𝑥∼𝑢) = exp(𝑔(𝑥∼𝑢))

∑︀
𝑥𝑢

exp(ℎ𝑢𝑥𝑢 +
∑︀

𝑣∼𝑢𝑤𝑢𝑣𝑥𝑢𝑥𝑣)

𝑍

so if we let 𝑈 denote the neighborhood of 𝑢 and let

𝑓𝑈(𝑥𝑈) = log
∑︁
𝑥𝑢

exp(ℎ𝑢𝑥𝑢 +
∑︁
𝑣∼𝑢

𝑤𝑢𝑣𝑥𝑢𝑥𝑣) = 𝜌(ℎ𝑢 +
∑︁
𝑣

𝑤𝑢𝑣 · 𝑥𝑣)

where 𝜌(𝑥) = log(𝑒𝑥 + 𝑒−𝑥) then

Pr(𝑋∼𝑢 = 𝑥∼𝑢) =
exp(𝑔(𝑥∼𝑢) + 𝑓𝑈(𝑥𝑈))

𝑍

Applying this inductively gives the result of the lemma.

Our main result in this section is a reduction in the other direction: We show that

every MRF can be converted to an equivalent Restricted Boltzmann Machine. This

is more difficult and to our knowledge was not known before. The key technical fact

underlying the result is the following lemma, which shows that we can build an RBM

with hidden nodes connected to the observed nodes in the set 𝑆 with any desired

correlation with a parity on 𝑆 as long as the desired correlation is small. Then by

building many of these hidden units we can capture the MRF potential exactly.

Lemma 3. Fix 𝑘 ≥ 0 and let 𝜌(𝑥) = log(𝑒𝑥 + 𝑒−𝑥). Then there exist constants

𝛿 = 𝛿(𝑘) > 0 and 𝛾 = 𝛾(𝑘) ∈ (0, 𝜋/2) such that for any 𝛿′ with |𝛿′| < 𝛿 and 𝑆 ⊂ [𝑛]

with |𝑆| = 𝑘, there exist 𝑤, ℎ with |𝑤|1 + ℎ ≤ 𝛾 such that

E𝑋∼{±1}𝑛 [𝜌(𝑤 ·𝑋𝑆 + ℎ)𝜒𝑆(𝑋)] = 𝛿′

where the expectation is with respect to uniform measure.

Proof. This will follow by using the explicit formula for the taylor expansion of 𝜌(𝑥),

which we will now derive. Recall 𝜌′(𝑥) = tanh(𝑥) and that tanh has an explicit power
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series expansion with radius 𝜋/2 around 0:

tanh(𝑥) =
∞∑︁
𝑛=1

22𝑛(22𝑛 − 1)𝐵2𝑛

(2𝑛)!
𝑥2𝑛−1

with radius of convergence 𝜋/2, where 𝐵2𝑛 = (−1)𝑛+12(2𝑛!)
(2𝜋)2𝑛

𝜁(2𝑛) are the even Bernoulli

numbers. By integrating, we see

𝜌(𝑥) = log 2 +
∞∑︁
𝑛=1

22𝑛(22𝑛 − 1)𝐵2𝑛

(2𝑛)!(2𝑛)
𝑥2𝑛

with the same radius of convergence.

We will need the standard fact that 𝐵2𝑛 ̸= 0 for any 𝑛 ≥ 1, which follows immedi-

ately from the equation 𝐵2𝑛 = (−1)𝑛+12(2𝑛!)
(2𝜋)2𝑛

𝜁(2𝑛) and the fact that 𝜁(𝑠) =
∑︀∞

𝑚=1
1
𝑚𝑠 >

0 for 𝑠 > 1.

Now we use that the Fourier expansion of 𝜌(𝑤 ·𝑋𝑆 +ℎ) can be found by taking the

power series expansion of 𝜌, plugging in 𝑥 = 𝑤 ·𝑋𝑆 +ℎ and using the identity 𝑋2
𝑖 = 1

to reduce to the parity basis. Let 𝑚 = ⌈ |𝑆|
2
⌉ and take 𝛾 ∈ (0, 𝜋/2). By restricting to

𝑤, ℎ such that |𝑤|1 + |ℎ| < 𝛾 we can write

𝜌(𝑤 ·𝑋𝑆 + ℎ) = log 2 +
𝑚∑︁

𝑛=1

22𝑛(22𝑛 − 1)𝐵2𝑛

(2𝑛)!(2𝑛)
(𝑤 ·𝑋𝑆 + ℎ)2𝑛 +𝑂(𝛾2𝑚+2).

Note that in the sum, only the top 𝑛 = 𝑚 term contributes to the coefficient of 𝜒𝑆.

Observe that when |𝑆| is even2,

[𝜒𝑆](𝑤 ·𝑋𝑆 + ℎ)2𝑚 = |𝑆|!
∏︁
𝑠∈𝑆

𝑤𝑆

and when |𝑆| is odd

[𝜒𝑆](𝑤 ·𝑋𝑆 + ℎ)2𝑚 = |𝑆|!ℎ
∏︁
𝑠∈𝑆

𝑤𝑆.

In the case where |𝑆| is even, first consider the case where 𝑤𝑠 = 𝛾/|𝑆| for 𝑠 ∈ 𝑆. We

2We use the notation [𝜒𝑆 ]𝑓 to denote the Fourier coefficient of 𝜒𝑆 in the Fourier expansion of 𝑓 .
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then see that

[𝜒𝑆]𝜌(𝑤 ·𝑋𝑆 + ℎ) =
22𝑚(22𝑚 − 1)𝐵2𝑚|𝑆|!

(2𝑚)!(2𝑚)|𝑆|2𝑚
𝛾2𝑚 +𝑂(𝛾2𝑚+2)

and so as long as 𝛾 is sufficiently small, the coefficient is positive. Next observe that

if we flip the sign of 𝑤𝑠* for a single 𝑠* ∈ 𝑆, then the sign of [𝜒𝑆](𝑤 ·𝑋𝑆 + ℎ)2𝑚 flips

and so the sign of 𝜌(𝑤 ·𝑋𝑆 + ℎ) must also flip when 𝛾 is sufficiently small. Since this

coefficient varies continuously as a function of 𝑤𝑠* , we see by the intermediate value

theorem we see that we can get the coefficient of 𝜒𝑆 to be any value in [−𝛿, 𝛿] for

some 𝛿 > 0.

The case when |𝑆| is odd is the same, except that we take 𝑤𝑠 = 𝛾/(|𝑆| + 1) and

vary ℎ in [−𝛾/(|𝑆| + 1), 𝛾/(|𝑆| + 1)].

Theorem 6. Consider an arbitrary order 𝑟 Markov random field on the hypercube

{±1}𝑛, i.e. a probability distribution of the form Pr(𝑋 = 𝑥) = (1/𝑍) exp(𝑓(𝑥)) where

𝑓 is a polynomial of degree 𝑟. Suppose that the structure graph of the MRF has degree

𝑑 and the coefficients of 𝑓 are bounded by a constant 𝑀 . There is an RBM with 𝑛

observable nodes and parameters (𝐽, 𝑏(1), 𝑏(2)) with the following properties:

(1) The induced MRF of the RBM equals the original MRF, i.e. the marginal law

of the observed variables is the same as the distribution of the original MRF.

(2) There are at most 𝑂𝑑,𝑀(𝑛) hidden units3.

(3) The degree of every vertex in the hidden layer is at most 𝑟.

(4) The two-hop neighborhood of every observed node equals its original MRF-

neighborhood. In particular the two-hop degree 𝑑2 equals the degree 𝑑 of the

structure graph of the MRF.

Proof. By Lemma 2 this reduces to rewriting the MRF potential in term of a summa-

tion of 𝜌(·) terms coming from hidden units. We use the building block of Lemma 3

3This is a general upper bound; from the construction we see that if few Fourier coefficients are
nonzero, then few hidden units are used.
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and build the potential of the MRF in a top-down fashion. More precisely we can

build any boolean function with Fourier mass supported on the first 𝑟 Fourier levels

as follows:

(a) For each of the degree 𝑟 coefficients, use several copies of the parity building

block to build a boolean function with the correct degree 𝑟 Fourier coefficients.

(b) Now recurse to the lower level coefficients — if we use only the building block

for |𝑆| ≤ 𝑟 − 1 we will not affect the degree 𝑟 coefficients.

The end result is that any Markov random field of order 𝑟 can be converted into a

Restricted Boltzmann distribution with hidden nodes of degree at most 𝑟, such that

the observed nodes have the same distribution as the same Markov random field. If

all of the Fourier coefficients of the potential of the original MRF are bounded by

𝑀 , then the number of hidden units we need to introduce is 𝑂𝑑,𝑀(𝑛), because given

the upper bound on 𝑑 each visible unit is involved in only a constant number of

hyperedges, and given the upper bound on 𝑑 and 𝑀 it takes only a constant number

of copies of the building block to build each Fourier coefficient.

2.5 The Learning Problem for RBMs

We consider the problem of learning a Restricted Boltzmann Machine given samples

from its marginal distribution on the observed nodes 𝑋. Note that if we were also

given samples from the joint distribution on (𝑋, 𝑌 ), then this would be the standard

learning problem for Ising models as considered in e.g. [29, 108]. However, in our

setting it is impossible to recover the underlying interaction matrix 𝑊 because it is

not uniquely determined, i.e. Restricted Boltzmann Machines are unidentifiable as

the following examples illustrate:

Example 1. Consider the Restricted Boltzmann machine with two observable nodes

{1, 2} and two hidden nodes labeled {3, 4} such that 𝑊13 = 1,𝑊23 = 1 and 𝑊14 =

−1,𝑊24 = 1. Then the marginal distribution on the observables is just independent

43



Rademachers, so this Restricted Boltzmann machine is not distinguishable from a

model with no connections at all.

The previous example used non-ferromagnetic interactions to demonstrate the

nonidentifability of RBMs. However, even when the RBM is ferromagnetic the model

remains highly nonidentifiable:

Example 2. Consider a model with two observable nodes {1, 2}, no external fields,

and any number of hidden units/connections. Since the marginal distribution on 𝑋1

and 𝑋2 each must be Rademacher by symmetry, the observable distribution is specified

just by a single parameter, the covariance between 𝑋1 and 𝑋2. However even in the

simplest case, where there is only a single hidden unit connected to both 𝑋1 and 𝑋2,

there are two parameters in the model, the two edge weights and we clearly see that

these edge weights are not uniquely determined by the distribution.

Example 3 (Hidden Structure is Undetermined). Consider an RBM with three ob-

servable nodes {1, 2, 3}, a single hidden node connected to all of them with positive

edge weights, and no external field. We know the observable distribution is an MRF

so it is of the form

Pr(𝑋 = 𝑥) =
1

𝑍
exp(𝑊12𝑥1𝑥2 +𝑊13𝑥1𝑥3 +𝑊23𝑥2𝑥3 +𝑊123𝑥1𝑥2𝑥3).

Perhaps surprisingly, in this model 𝑊123 = 0. This can be seen from Lemma 2 and

Taylor-expanding 𝜌, or simply by symmetry: the observable distribution is symmetric

under the sign flip 𝑥 ↦→ −𝑥 and so necessarily 𝑊123 = 0. However, since there are

only pairwise interactions in the potential it is easy to see (or we can apply Theorem 6)

that there exists another RBM with only degree-2 hidden nodes that has exactly the

same observable distribution.

These examples illustrate (even in restricted setting) that we cannot hope to

reconstruct 𝐽 . Instead we consider the natural objectives from the perspective of

viewing the observable distribution as a Markov Random Field: structure learning

and learning the parameters of the Markov random field. We start with structure
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learning, which can be viewed as the problem of learning the two-hop neighborhoods

of the observed random variables — i.e. learning the square of the adjacency matrix

of the bipartite structure graph.

Definition 7. Suppose 𝑖 is an observed node in an RBM (𝐽, 𝑏(1), 𝑏(2)). The two-

hop neighborhood of 𝑖, denoted 𝒩2(𝑖), is the smallest set 𝑆 ⊂ [𝑛] ∖ {𝑖} such that

conditioned on 𝑋𝑆, 𝑋𝑖 is conditionally independent of 𝑋𝑗 for all 𝑗 ∈ [𝑛] ∖ (𝑆 ∪ {𝑖}).

Note that 𝑆 is uniquely determined, because it is just the neighborhood of 𝑖 when

we view the observable distribution as a Markov Random Field.

Definition 8. The two-hop degree 𝑑2 of an RBM is the maximum size of 𝒩2(𝑖) over

all observed nodes 𝑖.

Observe that 𝒩2(𝑖) is always a subset of the graph-theoretic two-hop neighborhood

of 𝑖, i.e. the smallest set 𝑆 such that vertex 𝑖 is separated from the other observable

nodes in the structure graph of the RBM. However it may be a strict subset, as

in Example 1. We will later show in Lemma 6 that the graph-theoretic two-hop

neighborhood always agrees with 𝒩2(𝑖) in ferromagnetic RBMs.

In order to learn the two-hop structure of an RBM it will be necessary to have lower

and upper bounds on the edge weights of the model, so we introduce the following

notion of degeneracy. This is a standard assumption in the literature on learning Ising

models [29, 189, 108]. In particular, a lower bound is needed because otherwise it

would be impossible to distinguish a non-edge from an edge with an arbitrarily weak

interaction. An upper bound is needed to ensure the distribution of any variable is

not arbitrarily close to being deterministic.

Definition 9. We say that an Ising model is is (𝛼, 𝛽)-nondegenerate4 if both:

(1) For every 𝑖, 𝑗 such that |𝐽𝑖𝑗| ≠ 0, we have |𝐽𝑖𝑗| > 𝛼.

(2)
∑︀

𝑗 |𝐽𝑖𝑗| + |ℎ𝑖| ≤ 𝛽 for every node 𝑖.

We say that an RBM is (𝛼, 𝛽)-nondegenerate if it is (𝛼, 𝛽)-nondegenerate as an Ising

model.
4Observe that the notational convention follows [108] instead of [29], where 𝛽 denotes the maxi-

mum edge weight.
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2.5.1 Maximal Coefficients Can be Arbitrarily Small

In this subsection, we discuss some important obstacles to directly using regression-

based methods (in particular [108]) for learning the parameters of a ferromagnetic

RBM. By Lemma 2, we can cast the problem of learning 𝒩2(𝑖) for each node 𝑖 as a

structure learning problem on the induced MRF. In order to use the results of Klivans

and Meka [108], we need to get bounds on the potential

𝑝(𝑥) =

𝑛2∑︁
𝑗=1

𝜌(𝑤𝑗 · 𝑥+ 𝑏
(2)
𝑗 ) +

𝑛1∑︁
𝑖=1

𝑏
(1)
𝑖 𝑥𝑖.

In particular we need a bound on the size of the coefficients of 𝜕𝑖𝑝. For a function 𝑝 :

{±1}𝑛1 → R, let ‖𝑝‖1 denote the sum of the absolute values of its Fourier coefficients.

Observe that⃒⃒⃒⃒
E𝑋∼{±1}𝑛

[︂
𝜕𝑖𝑝
∏︁
𝑖∈𝑆

𝑋𝑖

]︂⃒⃒⃒⃒
≤
⃒⃒
𝑏
(1)
𝑖

⃒⃒
+

⃒⃒⃒⃒
E𝑋∼{±1}𝑛

[︂ ∑︁
𝑗:𝑤𝑖𝑗 ̸=0

𝜌(𝑤𝑗 ·𝑋 + 𝑏
(2)
𝑗 )
∏︁
𝑖∈𝑆

𝑋𝑖

]︂⃒⃒⃒⃒
≤
⃒⃒
𝑏
(1)
𝑖

⃒⃒
+ 2𝛽deg(𝑖)

≤ 2𝛽(deg(𝑖) + 1)

which follows from Holder’s inequality, since |𝜌(𝑤𝑗 · 𝑋 + 𝑏
(2)
𝑗 )| ≤ 2𝛽 and |𝑏(1)𝑖 | ≤ 𝛽.

Furthermore the coefficient of 𝑋𝑆 in 𝜕𝑖𝑝 can be non-zero only when 𝑆 is a subset of

the two-hop neighborhood of 𝑖, which follows from the Markov property. Thus we

conclude that

‖𝜕𝑖𝑝‖1 ≤ 2𝑑2+1𝛽(deg(𝑖) + 1)

where 𝑑2 is the maximum size of a node’s two-hop neighborhood.

With this calculation in hand, the algorithm of Klivans and Meka [108] is able to

estimate the maximal of the potential 𝑝(𝑥) to within 𝜖 additive error using roughly

𝑒𝑂(𝑑𝐻2𝑑2+1𝛽(𝑑𝑉 +1))

𝜖4
log 𝑛

samples where 𝑑𝐻 is the maximum degree of any hidden node and 𝑑𝑉 is the maximum

degree of any observed node. We could then apply Theorem 7.2 of [108] to learn the
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two-hop neighborhoods in the RBM if we had an additional assumption that the

induced MRF was 𝜂-identifiable:

Definition 1. A Markov Random Field is 𝜂-identifiable if every maximum Fourier

coefficent of its potential 𝑝 has magnitude at least 𝜂.

Unfortunately, even for MRFs induced by ferromagnetic RBMs and even under the

assumption of (𝛼, 𝛽)-nondegeneracy, 𝜂 can be made to be arbitrarily small, as the

following example shows:

Example 4 (Failure of 𝜂-identifiability in ferromagnetic RBMs). Consider an RBM

on three observed nodes with spins 𝑋1, 𝑋2, 𝑋3 and a single hidden node with spin 𝐻1

connected to all of the observed nodes with edge weight 1/4. On the hidden node let

there be an external field 𝑏(2)1 = 𝜖. When 𝜖 = 0, we see (as in Example 3) that

Pr(𝑋 = 𝑥) =
1

𝑍
exp(𝐽𝑋1𝑋2 + 𝐽𝑋1𝑋3 + 𝐽𝑋2𝑋3)

for some constant 𝐽 that is bounded away from zero. Hence the model is 𝜂-identifiable.

However, for a small 𝜖 > 0, one can see by Taylor series expansion that the coefficient

of 𝑋1𝑋2𝑋3 is nonzero, and by continuity it can be made arbitrarily small by decreasing

𝜖. This does not affect the (𝛼, 𝛽)-nondegeneracy of the model, but clearly the parameter

𝜂 in 𝜂-identifiability goes to zero.

Thus existing guarantees for regression-based methods do not seem to be strong

enough for our purposes. Moreover they would even require time 𝑛𝑑𝐻+1 to run, where

𝑑𝐻 is the hidden degree, since they solve a high-dimensional regression problem in

the basis of all size 𝑑𝐻 monomials. In contrast our approach for learning the two-hop

neighborhoods not only works in spite of the fact that the maximal Fourier coefficients

can be arbitrarily small, it also runs in nearly quadratic time (see Theorem 9).

2.5.2 Hardness for Improperly Learning RBMs

In this subsection we show that structure learning for general (i.e. possibly non-

ferromagnetic) RBMs takes time 𝑛Ω(𝑑𝐻) under the conjectured hardness for learning
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sparse parity with noise.

Definition 10. The 𝑘-sparse parity with noise distribution is the following distribu-

tion on (𝑋, 𝑌 ) parameterized by a constant 𝜂 ∈ (0, 1/2) and an unknown subset 𝑆 of

size at most 𝑘:

1. Sample 𝑋 ∼ Unif({−1,+1}𝑛).

2. With probability 1/2 + 𝜂, set 𝑌 =
∏︀

𝑠∈𝑆 𝑋𝑠, and with probability 1/2 − 𝜂, set

𝑌 = (−1)
∏︀

𝑠∈𝑆 𝑋𝑠.

The learning problem for 𝑘-sparse parity with noise is to learn 𝑆 in polynomial time

with high probability, given access to an oracle which generates samples of (𝑋, 𝑌 ).

The important point is that the joint distribution of an (𝑟− 1)-sparse parity with

noise (𝑋, 𝑌 ) is a Markov Random Field with order 𝑟 interactions, and by Theorem 6 it

is also the marginal distribution on the observables of an MRF with maximum hidden

degree 𝑑𝐻 , where the two-hop neighborhood of 𝑌 is exactly the set 𝑆. This means if

we could learn the two-hop neighborhoods of an RBM in time 𝑛𝑜(𝑑𝐻) this would yield a

𝑛𝑜(𝑘) algorithm for learning 𝑘-sparse parities with noise, which is a long-standing open

question in theoretical computer science and conjectured to be impossible. The best

known algorithm of Valiant [184] runs in time 𝑛0.8𝑘. We summarize this observation

in the following observation:

Observation 1. If 𝑘-sparse parity with noise on 𝑛 bits cannot be learned in time 𝑛𝑜(𝑘),

then there is no algorithm which runs in time 𝑛𝑜(𝑑𝐻) and learns the two-hop neigh-

borhood structure of a general RBM from samples of the distribution on its observed

nodes.

We will now furthermore show that this result applies even in the case of improper

learning, where we do not aim to learn the structure but instead aim to learn a

different distribution close to the RBM. For this purpose it is useful to recall the

following equivalent5 formulation of learning sparse parities as a hypothesis testing

problem:
5It is clear that if we have an algorithm for the learning problem, we can use it for the hypothesis
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Definition 11. The hypothesis testing problem for 𝑘-sparse parity with noise is to

distinguish with high probability6 between the cases where (𝑋, 𝑌 ) is drawn from the

uniform distribution on {±1}𝑛+1 and where (𝑋, 𝑌 ) is drawn from the 𝑘-sparse parity

with noise distribution for an unknown 𝑆.

We now use this to show hardness for improper learning. First we show hardness in

the case of algorithms returning a distribution 𝒬 with an (approximately) computable

probability mass function.

Theorem 7. If 𝑘-sparse parity with noise on 𝑛 bits cannot be learned in time 𝑛𝑜(𝑘),

then there is no algorithm that runs in time 𝑛𝑜(𝑑𝐻) ·𝑝𝑜𝑙𝑦(1/𝜖) and returns a probability

distribution 𝒬 such that:

(1) It is possible to (approximately) compute the pmf 𝒬(𝑥, 𝑦) for 𝑥, 𝑦 ∈ {±1}𝑛 ×

{±1} in polynomial time.

(2) ‖𝒬 − 𝒫‖TV < 𝜖 where 𝒫 is the distribution on the observables of an RBM with

hidden degree 𝑑𝐻 .

Proof. We show how to use 𝒬 to solve the hypothesis testing problem for sparse

parity with noise. Recall that for any distributions 𝒫1,𝒫2

‖𝒫1 − 𝒫2‖TV = E𝑋∼𝒫1

[︂
𝒫1(𝑋) − 𝒫2(𝑋)

𝒫1(𝑋)
1[𝒫1(𝑋) ≥ 𝒫2(𝑋)]

]︂

and observe that the quantity inside the expectation is always valued in [0, 1]. There-

fore, with 𝒫1 = Unif({±1}n+1) and 𝒫2 = 𝑄, we may use 𝑚 samples from 𝒫1 and

the above formula to approximate the TV between 𝒬 and the uniform distribution

on {±1}𝑛+1 within error 𝑂(1/
√
𝑚) with high probability (by Hoeffding’s inequality).

Since the TV distance between the uniform distribution and any particular sparse

parity with noise is Ω(𝜂) (consider the tester that looks at whether 𝑌 =
∏︀

𝑠∈𝑆 𝑋𝑠),

testing problem (the algorithm will return some set 𝑆 and we just have to test if the parity of 𝑋𝑆

is correlated with 𝑌 ). In the other direction, observe that if we pick a particular 𝑖 and look at
the marginal distribution on (�̸�=𝑖, 𝑌 ) then if 𝑖 ∈ 𝑆 this marginal distribution becomes uniform on
{±1}𝑛, whereas if 𝑖 /∈ 𝑆 this is just a sparse parity with noise on a smaller number of variables, so
if we can hypothesis test we can efficiently determine for every 𝑖 whether 𝑖 lies in 𝑆.

6i.e. with probability of Type I and Type II error going to 0 sufficiently fast.
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this lets us solve the hypothesis testing problem for sparse parity with noise. Thus, if

the algorithm can find 𝒬 in time 𝑛𝑜(𝑑𝐻), then this violates the conjectured hardness

of learning sparse parity with noise.

Remark 1. We see from the proof of Theorem 6 that only a constant number of

hidden nodes (in terms of 𝑛) are used in the construction of the sparse parity RBM,

so the above result holds even if the RBM is promised to have 𝑂𝑑𝐻 (1) many hidden

nodes.

In fact, the hardness result extends even to the case when we have access only to

an unnormalized probability distribution function.

Theorem 8. If 𝑘-sparse parity with noise on 𝑛 bits cannot be learned in time 𝑛𝑜(𝑘),

then there is no algorithm which runs in time 𝑛𝑜(𝑑𝐻)·𝑝𝑜𝑙𝑦(1/𝜖) and returns a probability

distribution 𝒬 such that:

(1) ‖𝒬 − 𝒫‖TV < 𝜖 where 𝒫 is the distribution on the observables of an RBM with

hidden degree 𝑑𝐻 .

(2) There exists a function 𝑞(𝑥, 𝑦) such that 𝒬(𝑥, 𝑦) = 1
𝐶𝑞
𝑞(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) is

efficiently computable.

Proof. We again reduce from the hypothesis testing problem for sparse parity with

noise. As before suppose 𝑍(1), . . . , 𝑍(𝑚) are iid samples from the uniform distribution

on {±1}𝑛+1; we will look at the statistics of 𝑞(𝑍). Observe that if 𝒬 were the uniform

distribution, then we would have 𝑞(𝑍) = 𝐶𝑞1/2
𝑛+1, whereas if 𝒬 were a sparse parity

with noise we would have 𝑞(𝑍) ∝ 𝑒𝐽𝜂
∏︀

𝑠∈𝑆 𝑍𝑠 where 𝐽𝜂 is a constant that corresponds

to 𝜂.

Let 𝑞1/3 be such that the number of 𝑧(𝑖) with 𝑞(𝑍(𝑖)) ≤ 𝑞1/3 is at most 𝑚/3,

and define 𝑞2/3 similarly. Consider the quantity 𝑉 :=
𝑞2/3−𝑞1/3
𝑞1/3+𝑞2/3

. Under the uniform

distribution 𝑉 is concentrated around zero, whereas under a sparse parity distribution

𝑉 is concentrated about 𝑒𝐽𝜂−𝑒−𝐽𝜂

𝑒𝐽𝜂+𝑒−𝐽𝜂 . The same is true under distributions which are close

in TV to either distribution, since 𝑉 is defined in terms of cumulative distribution

function statistics. Therefore we can distinguish between independent bits and sparse

parity with noise efficiently given access to 𝑞.
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2.6 A Greedy Algorithm for Learning Ferromagnetic

RBMs

We describe a simple and efficient greedy algorithm for learning the two-hop neigh-

borhood of an observed node 𝑖 from samples, if the RBM is ferromagnetic. This

algorithm is much faster than is possible for general RBMs according to the lower

bound of the previous subsection. Let ̃︀E denote the empirical expectation, and define

the empirical influence ̃︀𝐼𝑖(𝑆) = ̃︀E[𝑋𝑖|𝑋𝑆 = {1}𝑆] .

Let 𝜂 > 0 be a real-valued parameter and 𝑘 ≥ 1 an integer parameter to be specified

later.

Algorithm 1: GreedyNbhd(𝑖)

1. Set 𝑆0 := ∅.

2. For 𝑡 from 0 to 𝑘 − 1:

(a) Let 𝑗𝑡+1 := argmax𝑗 ̃︀𝐼𝑖(𝑆𝑡 ∪ {𝑗}), where 𝑗 ranges over all observed nodes.

(b) Set 𝑆𝑡+1 := 𝑆𝑡 ∪ {𝑗𝑡+1}

3. Let ̃︀𝒩2 := {𝑗 ∈ 𝑆𝑘 : ̃︀𝐼𝑖(𝑆𝑘)− ̃︀𝐼(𝑆𝑘 ∖ {𝑗}) ≥ 𝜂}.

4. Return ̃︀𝒩2.

(𝛼, 𝛽)-nondegeneracy has the following useful consequences:
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Lemma 4. Suppose 𝑋𝑖 is the spin at vertex 𝑖 in an (𝛼, 𝛽)-nondegenerate Ising model.

Then min(Pr(𝑋𝑖 = +),Pr(𝑋𝑖 = −)) ≥ 𝜎(−2𝛽), where 𝜎(𝑥) = 1
1+𝑒−𝑥 .

Proof. We show the lower bound for Pr(𝑋𝑖 = +) since the two cases are symmetrical.

By the law of total expectation, it suffices to show that for any fixing 𝑥 ̸=𝑖 of the other

spins 𝑋 ̸=𝑖 that Pr(𝑋𝑖 = +|𝑋 ̸=𝑖 = 𝑥 ̸=𝑖) ≥ 𝜎(−2𝛽), and this follows because

Pr(𝑋𝑖 = +|𝑋 ̸=𝑖 = 𝑥 ̸=𝑖) =
exp(

∑︀
𝑗:𝑗 ̸=𝑖 𝐽𝑖𝑗𝑥𝑗)

exp(
∑︀

𝑗:𝑗 ̸=𝑖 𝐽𝑖𝑗𝑥𝑗) + exp(−
∑︀

𝑗:𝑗 ̸=𝑖 𝐽𝑖𝑗𝑥𝑗)
= 𝜎

(︁
2
∑︁
𝑗:𝑗 ̸=𝑖

𝐽𝑖𝑗𝑥𝑗

)︁
≥ 𝜎(−2𝛽).

Lemma 5. Suppose 𝑋𝑖 is the spin at vertex 𝑖 in an (𝛼, 𝛽)-nondegenerate Ising model

and 𝑗 is a neighbor of 𝑖. Then for any fixing 𝑥 ̸=𝑖,𝑗 of the other spins 𝑋𝑖 ̸=𝑗 of the Ising

model, we have

⃒⃒
E[𝑋𝑖|𝑋𝑗 = 1, �̸�=𝑖,𝑗 = 𝑥 ̸=𝑖,𝑗] − E[𝑋𝑖|𝑋𝑗 = −1, �̸�=𝑖,𝑗 = 𝑥 ̸=𝑖,𝑗]

⃒⃒
≥ 2𝛼(1 − tanh2(𝛽)) .

Proof. Observe that

E[𝑋𝑖|𝑋 ̸=𝑖] = tanh
(︁ ∑︁

𝑘:𝑘 ̸=𝑖

𝐽𝑖𝑘𝑥𝑘

)︁
.

Since tanh′(𝑥) = 1 − tanh2(𝑥) and tanh is a monotone function, we see that if we let

𝑥 = −𝐽𝑖𝑗 +
∑︀

𝑘:𝑘/∈{𝑖,𝑗} 𝐽𝑖𝑘𝑥𝑘, then since 𝑥 ∈ [−𝛽, 𝛽] we have

| tanh(𝑥+ 2𝐽𝑖𝑗) − tanh(𝑥)| ≥ 2|𝐽𝑖𝑗| inf
𝑥∈[−𝛽,𝛽]

(1 − tanh2(𝑥)) ≥ 2𝛼(1 − tanh2(𝛽)) .

The following lemma shows quantitatively that in a nondegenerate ferromagnetic

RBM, the graph-theoretic two-hop neighborhood of a vertex 𝑖 always equals 𝒩2(𝑖), the

two-hop Markov blanket. It is immediate from the Markov property for the RBM as

an Ising model that 𝒩2(𝑖) is contained in the graph-theoretic two-hop neighborhood,

and the lemma implies the reverse inclusion.

Lemma 6. Suppose node 𝑖 is an observed node in a ferromagnetic (𝛼, 𝛽)-nondegenerate

RBM and denote by 𝑇 the graph-theoretic two-hop neighborhood of 𝑖. If 𝑆 ⊂ [𝑛] is a
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set of nodes such that 𝑇 ̸⊂ 𝑆, then for any 𝑗 ∈ 𝑇 ∖ 𝑆, we have

𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆) ≥ 2𝛼2𝜎(−2𝛽)(1 − tanh(𝛽))2 .

Proof. Fix 𝑗 ∈ 𝒩∈(𝑖) ∖ 𝑆 and let 𝑘 be a hidden node which is a mutual neighbor

of 𝑖, 𝑗. Now observe by submodularity it suffices to prove the lower bound when

𝑆 = [𝑛] ∖ {𝑖, 𝑗, 𝑘}. Then

𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆) = E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − E[𝑋𝑖|𝑋𝑆 = 1𝑆]

= E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] Pr(𝑋𝑗 = 1|𝑋𝑆 = 1𝑆)

− E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1] Pr(𝑋𝑗 = −1|𝑋𝑆 = 1𝑠)

= Pr(𝑋𝑗 = −1|𝑋𝑆 = 1𝑆)(E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1])

≥ 𝜎(−2𝛽)(E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1]) .

Furthermore when 𝑆 = [𝑛] ∖ {𝑖, 𝑗, 𝑘} we know that 𝑋𝑖 and 𝑋𝑗 are independent condi-

tioned on 𝑘, so

E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1]

= E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑘 = 1](Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1])

+ E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑘 = −1](Pr(𝑋𝑘 = −1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − Pr(𝑋𝑘 = −1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1])

= E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑘 = 1](Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1])

− E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑘 = −1](Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1])

= (E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑘 = 1] − E[𝑋𝑖|𝑋𝑆 = 1𝑆, 𝑋𝑘 = −1])

· (Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = 1] − Pr(𝑋𝑘 = 1|𝑋𝑆 = 1𝑆, 𝑋𝑗 = −1])

≥ 2𝛼2(1 − tanh(𝛽))2 ,

where the last inequality is by Lemma 5.

As the first step in analyzing our algorithm, we first determine a sufficient number

of samples to compute ̃︀𝐼𝑖(𝑆) to a specified precision for all small sets 𝑆.
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Lemma 7. Let 𝛿, 𝜖 > 0 and 𝑘 ≥ 0. If we are given 𝑀 samples from a ferromagnetic

Restricted Boltzmann Machine and 𝑀 ≥ 22𝑘+1(1/𝜖2)(log(𝑛) + 𝑘 log(𝑒𝑛/𝑘)) log(4/𝛿),

then with probability at least 1 − 𝛿, for all 𝑆 ⊂ [𝑛] such that |𝑆| ≤ 𝑘

|𝐼𝑖(𝑆) − ̃︀𝐼𝑖(𝑆)| < 𝜖.

Proof. First observe that

Pr(𝑋𝑆 = 1𝑆) ≥ 2−|𝑆|

because in a ferromagnetic model (which by our definition has nonnegative external

fields), 𝑋𝑆 = 1𝑆 is the most likely state to observe for 𝑋𝑆. This inequality can also

be proved by applying Griffith’s inequality iteratively. Also observe that the total

number of sets 𝑆 we consider is
∑︀𝑘

𝑗=0

(︀
𝑛
𝑗

)︀
≤ (𝑒𝑛/𝑘)𝑘. For each 𝑆, let 𝑀𝑆 be the

number of samples where 𝑋𝑆 = 1𝑆. Then by Hoeffding’s inequality,

Pr(𝑀𝑆 − E𝑀𝑆 < −𝑡) ≤ 𝑒−2𝑡2/𝑀 .

In particular, since E𝑀𝑆 ≥ 2−𝑘𝑀 as long as |𝑆| ≤ 𝑘,

Pr(𝑀𝑆 < 2−𝑘−1𝑀) ≤ 𝑒−2𝑀2−2𝑘−2

Now by the usual rejection sampling argument, those samples which have 𝑋𝑆 = 1𝑆

are independent and identically distributed samples from the conditional law. (One

way to see this is that we can think of each sample as equivalently being generated by

first sampling 𝑋𝑆, then sampling the rest of the spins conditioned on 𝑋𝑆). Therefore,

by another application of Hoeffding’s inequality, for a particular choice of 𝑖, 𝑆 we have

Pr(|̃︀𝐼𝑖(𝑆) − 𝐼𝑖(𝑆)| ≥ 𝜖|𝑀𝑆) ≤ 2𝑒−2𝑀𝑆𝜖
2

.

Now by the law of total expectation

Pr(|̃︀𝐼𝑖(𝑆) − 𝐼𝑖(𝑆)| ≥ 𝜖) = E[Pr(|̃︀𝐼𝑖(𝑆) − 𝐼𝑖(𝑆)| ≥ 𝜖|𝑀𝑆)]
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≤ 2E[𝑒−2𝑀𝑆𝜖
2

]

= 2E[(1𝑀𝑆<2−𝑘−1𝑀 + 1𝑀𝑆≥2−𝑘−1𝑀)𝑒−2𝑀𝑆𝜖
2

]

≤ 2𝑒−2𝑀2−2𝑘−2

+ 2𝑒−2(2−𝑘−1𝑀)𝜖2

≤ 4𝑒−𝑀2−2𝑘−1𝜖2 .

And by the union bound, the probability that |̃︀𝐼𝑖(𝑆) − 𝐼𝑖(𝑆)| ≥ 𝜖 for some 𝑖, 𝑆 is at

most

𝑛(𝑒𝑛/𝑘)𝑘4𝑒−𝑀2−2𝑘−1𝜖2 .

Therefore if we take 𝑀 ≥ 22𝑘+1(1/𝜖2)(log(𝑛)+𝑘 log(𝑒𝑛/𝑘)) log(4/𝛿) the result follows.

We also analyze the standard greedy algorithm for submodular maximization un-

der noise; this corresponds to Steps 1-2 of the algorithm.

Lemma 8. Suppose 𝑡 ≥ 0 is an integer, 𝑓(𝑆) is a monotone submodular function and̃︀𝑓(𝑆) is an approximation to 𝑓 such that |𝑓(𝑆) − ̃︀𝑓(𝑆)| < 𝜖 for some uniform 𝜖 > 0

and all 𝑆 such that |𝑆| ≤ 𝑡. Let 𝑆0 = ∅ and suppose 𝑆𝑖+1 is formed by greedily adding

to 𝑆𝑖 the element 𝑗 which maximizes ̃︀𝑓(𝑆𝑖 ∪ {𝑗}). Then for any set 𝑇 , we have

𝑓(𝑇 ) − 𝑓(𝑆𝑡) ≤ (1 − 1/|𝑇 |)𝑡𝑓(𝑇 ) + |𝑇 |𝜖 .

Proof. Consider going from 𝑆𝑡 to 𝑆𝑡+1. By Lemma 1, there exists some 𝑗* such that

𝑓(𝑆𝑡 ∪ {𝑗*}) − 𝑓(𝑆𝑡) ≥
𝑓(𝑇 ) − 𝑓(𝑆𝑡)

|𝑇 |
.

Therefore for the 𝑗 which is chosen to form 𝑆𝑡+1, we know

(𝑓(𝑇 )−𝑓(𝑆𝑡))−(𝑓(𝑇 )−𝑓(𝑆𝑡+1)) = 𝑓(𝑆𝑡+1)−𝑓(𝑆𝑡) = 𝑓(𝑆𝑡∪{𝑗})−𝑓(𝑆𝑡) ≥
𝑓(𝑇 ) − 𝑓(𝑆𝑡)

|𝑇 |
−𝜖 .

Rearranging, we see that

𝑓(𝑇 ) − 𝑓(𝑆𝑡+1) ≤ (1 − 1/|𝑇 |)(𝑓(𝑇 ) − 𝑓(𝑆𝑡)) + 𝜖
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and the result follows by iterating this inequality (note that the sum of the epsilon

terms forms a geometric series).

Theorem 9. Let 𝛿 > 0. Suppose 𝑋(1), . . . , 𝑋(𝑀) are samples from the observ-

able distribution of a ferromagnetic Restricted Boltzmann machine which is (𝛼, 𝛽)-

nondegenerate, and has two-hop degree 𝑑2. Then if

𝑀 ≥ 22𝑘+3(𝑑2/𝜂)2(log(𝑛) + 𝑘 log(𝑒𝑛/𝑘)) log(4/𝛿)

where we set

𝜂 = 𝛼2𝜎(−2𝛽)(1 − tanh(𝛽))2, 𝑘 = 𝑑2 log(4/𝜂),

for every 𝑖 algorithm GreedyNbhd returns 𝒩2(𝑖), with probability at least 1 − 𝛿.

Furthermore the total runtime is 𝑂(𝑀𝑘𝑛2) = 𝑒𝑂(𝛽𝑑2−log(𝛼))𝑛2 log(𝑛).

Proof. Apply Lemma 7 with 𝜖 = 𝜂/(4𝑑2); then for our choice of 𝑀 we have that

|̃︀𝐼𝑖(𝑆) − 𝐼𝑖(𝑆)| < 𝜂/(4𝑑2) for all 𝑆 with |𝑆| ≤ 𝑘. Then applying Lemma 8 and using

our choice of 𝑘 with the inequality 1 + 𝑥 ≤ 𝑒𝑥, we have

𝐼𝑖(𝒩2(𝑖)) − 𝐼𝑖(𝑆𝑘) ≤ (1 − 1/𝑑2)
𝑘 + 𝜂/4 ≤ 𝜂/2. (2.1)

Suppose 𝑆𝑘 does not contain the two-hop neighborhood of 𝑖. then we can take any of

the two-hop neighbors 𝑗 ∈ 𝒩2(𝑖) ∖ 𝑆𝑘 and see that

𝐼𝑖(𝒩2(𝑖)) − 𝐼𝑖(𝑆𝑘) ≥ 𝐼𝑖(𝑆𝑘 ∪ {𝑗}) − 𝐼𝑖(𝑆𝑘) ≥ 2𝛼2𝜎(−2𝛽)(1 − tanh(𝛽))2 = 2𝜂

where the first inequality follows since 𝒩2(𝑖) is the global maximizer of 𝐼𝑖 among all

subsets of the observed nodes (by monotonicity and the Markov property), and the

second inequality is Lemma 6. This contradicts (2.1), therefore 𝑆𝑘 does contain the

entire two-hop neighborhood of 𝑖.

It remains to show that Step 3 of the algorithm leaves in ̃︀𝒩2 exactly the elements

of 𝑆 which are in the two-hop neighborhood. Since |̃︀𝐼𝑖(𝑆) − 𝐼𝑖(𝑆)| < 𝜂/(4𝑑2) for
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every set 𝑆 with |𝑆| ≤ 𝑘, this is straightforward: if 𝑗 is a two-hop neighbor, then by

Lemma 6 and triangle inequality we see that

|̃︀𝐼𝑖(𝑆𝑘) − ̃︀𝐼𝑖(𝑆𝑘 ∖ {𝑗})| ≥ 2𝜂 − 𝜂/2 > 𝜂

If 𝑗 is not a two-hop neighbor, then 𝐼𝑖(𝑆𝑘)− 𝐼𝑖(𝑆𝑘 ∖ {𝑗}) = 0 by the Markov property,

so by triangle inequality |̃︀𝐼𝑖(𝑆𝑘) − ̃︀𝐼𝑖(𝑆𝑘 ∖ {𝑗})| ≤ 𝜂/2 < 𝜂. Thus for each 𝑖, the

returned ̃︀𝒩2 is the true two-hop neighborhood of vertex 𝑖.

To analyze the runtime, observe that the loop goes through at most 𝑘 steps,

and each iteration of the loop takes time 𝑂(𝑛𝑀) to consider each 𝑗 and computẽ︀𝐼(𝑆𝑡∪{𝑗}) from samples, and we run GreedyNbhd from each of the 𝑛 vertices.

2.6.1 Improving the Sample Complexity

We consider the following algorithm for learning the two-hop neighborhood of an

RBM, which is inspired by the approach of [34] for learning Ising models and MRFs

(without hidden nodes). As we will show this algorithm has better sample complex-

ity than the previous one, but sacrifices speed in order to achieve this: it runs in

time 𝑂(𝑛𝑑2+1 log(𝑛)). This leaves open the question of whether there is a statistical-

computational gap inherent in the RBM-learning problem. As before, 𝜂 > 0 is a

parameter we will specify later.

Algorithm 2: SearchNbhd(𝑖)

1. Let ℱ be the family of subsets of 𝑛 of size at most 𝑑2 such that 𝑆 ∈ ℱ when for every

𝑗, ̃︀𝐼𝑖(𝑆 ∪ {𝑗})− ̃︀𝐼𝑖(𝑆) ≤ 𝜂.

2. Return argmin𝑆∈ℱ |𝑆|.
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Theorem 10. Algorithm SearchNbhd returns the correct neighborhood with prob-

ability at least 1 − 𝛿 given

𝑀 ≥ 22𝑑2+3(1/𝜂)2(log(𝑛) + 𝑑2 log(𝑒𝑛/𝑑2)) log(4/𝛿)

samples, when 𝜂 = 𝛼2𝜎(−2𝛽)(1− tanh(𝛽))2. The algorithm runs in time 𝑂(𝑛𝑑2+1𝑀).

Proof. Apply Lemma 7 with 𝜖 = 𝜂/4 and 𝑘 = 𝑑2; then for our choice of 𝑀 we have

with probability at least 1−𝛿 that |̃︀𝐼𝑖(𝑆)−𝐼𝑖(𝑆)| < 𝜂/4 for all 𝑆 with |𝑆| ≤ 𝑑2. Then,

as in the proof of Theorem 9 we can apply the triangle inequality and Lemma 6 to

show that ℱ contains only supersets of the two-hop neighborhood, and that 𝒩2 lies

in ℱ ; hence 𝒩2 is the unique smallest set in ℱ and so the output of SearchNbhd(𝑖)

is correct for every 𝑖.

Note that the sample complexity is 𝑒𝑂(𝛽+𝑑2−log𝛼) log 𝑛. This straightforwardly

implies a bound for the special case of learning Ising models of bounded degree 𝑑

without hidden nodes (which can be built as RBMs using a single vertex for each

edge of the original model) which also has sample complexity 𝑒𝑂(𝛽+𝑑−log𝛼) log 𝑛 in

terms of the edge weights of the original Ising model. Then we see by the result of

[163] that for the special case of learning Ising models, this algorithm is essentially

information-theoretically optimal (up to constants).

2.6.2 Learning Ferromagnetic Ising Models with Arbitrary La-

tent Variables

In this subsection we show how our learning algorithms can be generalized beyond

the RBM setting to ferromagnetic Ising models with an arbitrary set of hidden nodes

— i.e. the interaction matrix can connect pairs of observed nodes and pairs of hidden
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nodes too. The marginal distribution on the observed nodes still induces a Markov

Random Field, although it no longer has as simple a closed form as in Lemma 2.

In this setting, our goal is to learn the (induced) Markov blanket of every observed

node 𝑖, which we continue to denote by 𝒩2(𝑖), and we let 𝑑2 denote the maximum

size of 𝒩2(𝑖) among all observed nodes 𝑖. The only new ingredient we need is the

following generalization of Lemma 6:

Lemma 9. Suppose 𝑖 and 𝑗 are nodes in an (𝛼, 𝛽)-nondegenerate ferromagnetic Ising

model. Suppose 𝑆 ⊂ [𝑛] is a set of nodes which do not separate 𝑖 and 𝑗: then

𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆) ≥ 2𝜎(−2𝛽)𝛼𝑘(1 − tanh2(𝛽))𝑘.

where 𝑘 is the length of the shortest path from 𝑖 to 𝑗 which does not go through 𝑆.

Proof. Suppose that 𝑣1, . . . , 𝑣𝑘 is the path from 𝑖 to 𝑗 so 𝑣1 = 𝑖 and 𝑣𝑘 = 𝑗. Then by

submodularity it suffices to prove the lower bound when 𝑆 = [𝑛] ∖ {𝑣1, . . . , 𝑣𝑘}. Since

Pr(𝑋𝑖 = 1|𝑋𝑆 = 1𝑆) = Pr(𝑋𝑖 = 1|𝑋𝑗 = 1, 𝑋𝑆 = 1𝑆) Pr(𝑋𝑗 = 1|𝑋𝑆 = 1𝑆)

+ Pr(𝑋𝑖 = 1|𝑋𝑗 = −1, 𝑋𝑆 = 1𝑆) Pr(𝑋𝑗 = −1|𝑋𝑆 = 1𝑆)

and 𝐼𝑖(𝑆) = 2 Pr(𝑋𝑖 = 1|𝑋𝑆 = 1𝑆) − 1 and 𝐼𝑖(𝑆 ∪ {𝑗}) = 2 Pr(𝑋𝑖 = 1|𝑋𝑗 = 1, 𝑋𝑆 =

1𝑆) − 1, we see

1

2
(𝐼𝑖(𝑆 ∪ {𝑗}) − 𝐼𝑖(𝑆))

= Pr(𝑋𝑗 = −1|𝑋𝑆 = 1𝑆)(Pr(𝑋𝑖 = 1|𝑋𝑗 = 1, 𝑋𝑆 = 1𝑆) − Pr(𝑋𝑖 = 1|𝑋𝑗 = −1, 𝑋𝑆 = 1𝑆))

≥ 𝜎(−2𝛽)(Pr(𝑋𝑖 = 1|𝑋𝑗 = 1, 𝑋𝑆 = 1𝑆) − Pr(𝑋𝑖 = 1|𝑋𝑗 = −1, 𝑋𝑆 = 1𝑆))

by Lemma 55. Conditioned on 𝑋𝑆 = 1𝑆, the Ising model we are considering reduces

to an Ising model on a linear graph, so applying the below Lemma 10 proves the

result.

Lemma 10. Let 𝑋1, . . . , 𝑋𝑛 be the spins on an (𝛼, 𝛽)-nondegenerate ferromagnetic
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Ising model on a linear graph with vertices labeled in order as 1 to 𝑛. Then

Pr(𝑋1 = 1|𝑋𝑛 = 1) − Pr(𝑋1 = 1|𝑋𝑛 = −1) ≥ (𝛼(1 − tanh2(𝛽)))𝑛−1

Proof. We prove this by induction on 𝑛. When 𝑛 = 1 the difference is clearly 1. In

general, using that 𝑋1, 𝑋𝑛 are conditionally independent given 𝑋𝑛−1 we see

Pr(𝑋1 = 1|𝑋𝑛 = 1) − Pr(𝑋1 = 1|𝑋𝑛 = −1)

= Pr(𝑋1 = 1|𝑋𝑛−1 = 1)(Pr(𝑋𝑛−1 = 1|𝑋𝑛 = 1) − Pr(𝑋𝑛−1 = 1|𝑋𝑛−1 = −1))

+ Pr(𝑋1 = 1|𝑋𝑛−1 = −1)(Pr(𝑋𝑛−1 = −1|𝑋𝑛 = 1) − Pr(𝑋𝑛−1 = −1|𝑋𝑛−1 = −1))

= (Pr(𝑋1 = 1|𝑋𝑛−1 = 1) − Pr(𝑋1 = 1|𝑋𝑛−1 = −1))

· (Pr(𝑋𝑛−1 = 1|𝑋𝑛 = 1) − Pr(𝑋𝑛−1 = 1|𝑋𝑛−1 = −1))

≥ (𝛼(1 − tanh2(𝛽)))𝑛−1

by the induction hypothesis and Lemma 5

As in the RBM case, Lemma 9 shows in particular that 𝒩2(𝑖) equals its obvious

graph-theoretic analogue: the set of nodes 𝑗 such that 𝑖 and 𝑗 are connected by

a path whose intermediate nodes are all latent. We also get the following natural

generalization of Theorem 9 for recovering 𝒩2(𝑖):

Theorem 11. Let 𝛿 > 0. Suppose 𝑋(1), . . . , 𝑋(𝑀) are samples from the observable

distribution of an Ising model with hidden nodes which is (𝛼, 𝛽)-nondegenerate. Sup-

pose also that 𝑑2 is known such that 𝑑2 ≥ |𝒩2(𝑖)| for all observed nodes 𝑖 and that for

every 𝑖 and 𝑗 ∈ 𝒩2(𝑖), there is a path of length at most ℓ from 𝑖 to 𝑗. Then if

𝑀 ≥ 22𝑘+3(𝑑2/𝜂)2(log(𝑛) + 𝑘 log(𝑒𝑛/𝑘)) log(4/𝛿)

where we set

𝜂 = 𝛼ℓ𝜎(−2𝛽)(1 − tanh(𝛽))ℓ, 𝑘 = 𝑑2 log(4/𝜂),

for every 𝑖 algorithm GreedyNbhd returns 𝒩2(𝑖), with probability at least 1 − 𝛿.
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Furthermore the total runtime is 𝑂(𝑀𝑘𝑛2) = 𝑒𝑂(𝛽ℓ𝑑2−ℓ log(𝛼))𝑛2 log(𝑛).

Proof. This is the same as proof of Theorem 9, except that we replace the use of

Lemma 6 by Lemma 9.

The corresponding analogue of Theorem 10 follows as well by using Lemma 9.

2.7 Inference on the Induced MRF via the Lee-Yang

Property

We first recall various results from [124], whose approach is based on Barvinok’s

approach [15] for approximating the log-partition function. The basic idea is to

Taylor expand log𝑍 around the point of infinite external field, where log𝑍 is easy to

compute because only one spin configuration contributes. A Lee-Yang property7 can

be used to prove that the Taylor expansion is accurate.

Definition 12 (Lee-Yang property). Let 𝑃 (𝑧1, . . . , 𝑧𝑛) be a multilinear polynomial

with real coefficients. 𝑃 has the Lee-Yang property if for any choice of complex

numbers 𝜆1, . . . , 𝜆𝑛 such that |𝜆𝑖| ≤ 1 for all 𝑖 and |𝜆𝑖| < 1 for at least one 𝑖, we have

that 𝑃 (𝜆1, . . . , 𝜆𝑛) ̸= 0.

Typically the polynomial 𝑃 arises as the partition function of a Markov Random

Field, where the 𝜆𝑖 are a re-parameterization of the external field. This is illustrated

in the classical Lee-Yang theorem [121]:

Theorem 12 (Lee-Yang Theorem [121]). Suppose 𝐽𝑖𝑗 ≥ 0 and

𝑃 (𝜆1, . . . , 𝜆𝑛) :=
∑︁

𝑥∈{±1}𝑛
exp(

1

2

∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑥𝑖𝑥𝑗)
∏︁

𝑖:𝑥𝑖=1

𝜆𝑖,

so that
(︁∏︀𝑛

𝑖=1 𝜆
−1/2
𝑖

)︁
𝑃 (𝜆1, . . . , 𝜆𝑛) for positive real 𝜆𝑖 is the partition function of a

ferromagnetic Ising model with external field ℎ𝑖 = 1
2

log 𝜆𝑖. Then 𝑃 extends to complex

𝜆𝑖 as a multilinear polynomial with the Lee-Yang property.
7Here we are following the terminology of [124]. There is an unrelated “Lee-Yang property” which

appears in the literature on Lee-Yang for general real-valued spins.
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The Lee-Yang property translates back to the following statement about the par-

tition function:

Corollary 3. Suppose 𝑍(ℎ) =
∑︀

𝑥∈{±1}𝑛 exp(1
2

∑︀
𝑖,𝑗 𝐽𝑖𝑗𝑥𝑖𝑥𝑗 +

∑︀
𝑖 ℎ𝑖𝑥𝑖) is the partition

function of a ferromagnetic Ising model with consistent non-positive external fields,

i.e. ℎ𝑖 ≤ 0 for all 𝑖. If we extend 𝑍 to complex ℎ, then 𝑍(ℎ) ̸= 0 for any ℎ with

ℜ(ℎ𝑖) ≤ 0 for all 𝑖 and ℜ(ℎ𝑖) < 0 for at least one 𝑖.

Proof. This follows from the by taking 𝜆𝑖 = 𝑒2ℎ𝑖 so

𝑍(ℎ) =

(︃
𝑛∏︁

𝑖=1

𝜆
−1/2
𝑖

)︃
𝑃 (𝜆1, . . . , 𝜆𝑛) = 𝑒−

∑︀𝑛
𝑖=1 ℎ𝑖𝑃 (𝜆1, . . . , 𝜆𝑛),

and using the non-vanishing of 𝑃 by the previous Theorem.

As we see the 𝜆𝑖 with |𝜆𝑖| ≤ 1 correspond to non-positive external fields, whereas

previously we assumed the external fields were non-negative. However the partition

function is invariant to the global sign flip 𝑥 ↦→ −𝑥 so this is equivalent; this choice

is made so we expand 𝑃 around 0 instead of ∞. The following Lemma bounds the

error made when we do this Taylor expansion.

Lemma 11 (Lemma 2.1 of [124]). Suppose that

𝑍(𝜆) = 𝐶
∑︁

𝑥∈{±1}𝑛
exp

(︃∑︁
𝑒∈𝐸

𝑓𝑒(𝑥𝑒)

)︃
𝜆#{𝑣:𝑥𝑣=1} (2.2)

where 𝐸 is the set of edges of a hypergraph and each 𝑓𝑒 is a real-valued function.

Suppose 0 < 𝜖 < 1
4

and

𝑚 ≥ |𝜆|
1 − |𝜆|

(︂
log(4𝑛/𝜖) + log(

1

1 − |𝜆|
)

)︂

and the values of 𝑑𝑗

𝑑𝜆𝑗
𝑍(𝜆)|𝜆=0 are given for 𝑗 = 0, . . . ,𝑚. Finally, suppose the Lee-

Yang property holds for 𝑍(𝜆) as a univariate polynomial. Then for any 𝜆 with |𝜆| < 1,

there is an algorithm which computes an additive 𝜖/4-approximation to log𝑍(𝜆) in

polynomial time.

62



This lemma does not specify a way to compute the needed values of 𝑑𝑗

𝑑𝜆𝑗𝑍(𝜆)|𝜆=0.

However, for 𝑗 = 0 this is easy to compute, because the only non-zero in the sum

is when 𝑥 is the all-1s vector. For 𝑗 ≥ 1, this is provided by Theorem 3.1 of [124]

(building on the work of [152]) as long as the underlying hypergraph of the MRF has

bounded degree. Recall that the degree of a vertex in a hypergraph is the number of

hyperedges containing it.

Theorem 13 (Theorem 3.1 of [124]). Fix 𝐶 > 0, 𝑑 ∈ N. Suppose we are given as

input an 𝑛-vertex hypergraph with edge set 𝐸 of maximum degree 𝑑 and maximum

hyperedge size 𝑟, and 𝑍(𝜆) is defined as in (2.2). Then for any 𝜖 > 0 there exists a

deterministic 𝑝𝑜𝑙𝑦𝐶,𝑑,𝑟(𝑛/𝜖) time algorithm to compute 𝑑𝑗

𝑑𝜆𝑗𝑍(𝜆)|𝜆=0 for 𝑗 = 1, . . . ,𝑚

where 𝑚 = ⌈𝐶 log(𝑛/𝜖)⌉.

Finally, we describe how to apply these results to sample from the MRF induced

by an RBM. The key is that, from the proof of Lemma 2, we see that the induced

MRF has the same partition function as the original Ising model, so it inherits the

Lee-Yang property guaranteed by Theorem 12:

Lemma 12. Fix a ferromagnetic RBM with consistent non-positive external fields on

the hidden nodes (i.e. 𝑏(2)𝑖 ≤ 0) and with external field 𝑏(1)𝑖 := 𝑠0𝑖 + 𝑠𝑖 with 𝑠0𝑖 , 𝑠𝑖 ≤ 0

on observed node 𝑖. Hence (by Lemma 2) the induced MRF has potential 𝑔(𝑥) + 𝑠 · 𝑥

for some polynomial 𝑔 : {±1}𝑛1 → R not depending on 𝑠, such that

Pr(𝑋 = 𝑥) =
1

𝑍(𝑠0 + 𝑠)
exp(𝑔(𝑥) + 𝑠 · 𝑥)

for 𝑥 ∈ {±1}𝑛1 where 𝑍(ℎ0 + ℎ) is the partition function of the RBM. Let

𝑃 (𝜆1, . . . , 𝜆𝑛) :=
∑︁

𝑥∈{±1}𝑛1

exp(𝑔(𝑥))
∏︁

𝑖:𝑥𝑖=1

𝜆𝑖.

Then 𝑃 has the Lee-Yang property.
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Proof. As before, we see that if 𝜆𝑖 = 𝑒2𝑠𝑖 then

𝑍(𝑠0 + 𝑠) =

(︃
𝑛1∏︁
𝑖=1

𝜆
−1/2
𝑖

)︃
𝑃 (𝜆1, . . . , 𝜆𝑛1) = 𝑒−

∑︀
𝑖=1𝑛1𝑠𝑖𝑃 (𝜆1, . . . , 𝜆𝑛1).

We prove the theorem by induction on 𝑛1, the number of observed nodes. If all of

the 𝜆𝑖 equal 0 then it is clear that 𝑃 ̸= 0 as the sum is over only a single non-zero

term. If there is at least one 𝜆𝑖 such that 𝜆𝑖 = 0, then 𝑃 (𝜆1, . . . , 𝜆𝑛1) agrees with the

𝑃 associated to the smaller RBM formed by conditioning 𝑋𝑖 = −1, hence the non-

vanishing follows by the induction hypothesis. Otherwise if all of the 𝜆𝑖 are non-zero,

then we know by Corollary 3 that 𝑍(𝑠0 + 𝑠) ̸= 0 and we deduce that 𝑃 (𝜆) ̸= 0.

Combining these results, we obtain the following theorem:

Theorem 14. Fix 𝐶 > 0 and a maximum degree 𝑑2. Then for any ferromagnetic

RBM in which 𝑏(1)𝑖 ≤ −𝐶 for all 𝑖, there is a deterministic polynomial time algorithm

which given any 0 < 𝜖 < 1/4 and the description of the induced MRF, computes log𝑍

within additive error 𝜖/4 where 𝑍 is the partition function of the induced MRF.

Proof. By assumption we know a function 𝑓 such that

Pr(𝑋 = 𝑥) =
1

𝑍𝑓

exp(𝑓(𝑥)).

If we take 𝜔* such that 1
2

log𝜔* = −𝐻, we see

𝑍𝑓 =

(︃
𝑛1∏︁
𝑖=1

𝜔*

)︃−1/2

𝑄(𝜔*, . . . , 𝜔*)

where

𝑄(𝜔𝑖) =
∑︁

𝑥∈{±1}𝑛1

exp(𝑓(𝑥) +𝐻
∑︁

𝑥𝑖)
∏︁

𝑖:𝑥𝑖=1

𝜔𝑖.

Comparing 𝑓 and 𝑄 to 𝑔 and 𝑃 from Lemma 12, which we apply with 𝑠0 = 𝑏(1)+𝐶, we

see that𝑄 differs from 𝑃 only by a multiplicative constant (corresponding to 𝑒𝑔(∅)−𝑓(∅))

so 𝑄 also has the Lee-Yang property. Therefore we can compute 𝑄(𝜔*, . . . , 𝜔*) and

so 𝑍𝑓 efficiently by the results of Lemma 12 and Theorem 13.
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The significance of accurately estimating log𝑍 is that it allows for the performance

of various inference tasks which are otherwise computationally intractable. For ex-

ample, we can estimate to high precision the likelihood of observing any particular

output from the MRF, since

log Pr(𝑋 = 𝑥) = 𝑝(𝑥) − log𝑍,

where 𝑝(𝑥) is the potential of the MRF. Hence the 𝜖/4 approximation to log𝑍 from

Theorem 14 implies an 𝜖/4 approximation to log Pr(𝑋 = 𝑥), i.e. a PTAS for estimat-

ing Pr(𝑋 = 𝑥).
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Chapter 3

Convex Hierarchies, Naive Mean-field

Approximation, and Correlation

Rounding

From Chapter 1, we recall that of the most widely studied probabilistic models in

statistical physics and machine learning is the Ising model, which is a probability

distribution on the hypercube {±1}𝑛 of the form

𝑃 [𝑋 = 𝑥] :=
1

𝑍
exp

(︃∑︁
𝑖<𝑗

𝐽𝑖,𝑗𝑥𝑖𝑥𝑗

)︃
=

1

𝑍
exp

(︂
1

2
𝑥𝑇𝐽𝑥

)︂
,

where {𝐽𝑖,𝑗}𝑖,𝑗∈{1,...,𝑛} are the entries of an arbitrary real, symmetric matrix with zeros

on the diagonal. The distribution 𝑃 is also referred to as the Boltzmann distribution

or Gibbs measure. The key quantity of interest is the normalizing constant

𝑍 :=
∑︁

𝑥∈{±1}𝑛
exp

(︃∑︁
𝑖<𝑗

𝐽𝑖,𝑗𝑥𝑖𝑥𝑗

)︃
,

known as the partition function of the Ising model, and its logarithm, ℱ := log𝑍,

known as the free energy. The reason these are important is that one can easily

extract from them many other quantities of interest, most notably the values of the
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marginals (probabilities like 𝑃 [𝑋𝑖 = 𝑥𝑖]), phase transitions in the behavior of the

distribution (e.g. existence of long-range correlations), and many others.

Although originally introduced in statistical physics, Ising models and their gen-

eralizations have also found a wide range of applications in many different areas

like statistics, computer science, combinatorics and machine learning (see the refer-

ences and discussion in [17, 28, 191]). Consequently, various different algorithmic and

analytic approaches to computing and/or approximating the free energy have been

developed.

We should note at the outset that the partition function is both analytically and

computationally intractable: closed form expressions for the partition function are

extremely hard to derive (even for the Ising model on the standard 3-dimensional

lattice), and approximating the partition function multiplicatively is NP-hard, even

in the case of graphs with degrees bounded by a small constant (see [171]).

Nevertheless, there are a plethora of approaches to approximating the partition

function – both for the purposes of deriving structural results, and for designing

efficient algorithms. A major group of approaches consists of the so-called variational

methods, which proceed by writing a variational expression for the free energy, and

then modifying the resulting optimization problem in some way so as to make it

tractable. More concretely, one can write the free energy using the Gibbs variational

principle as

ℱ = max
𝜇

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗] +𝐻(𝜇)

]︃
, (3.1)

where 𝜇 ranges over all probability distributions on the Boolean hypercube. This can

be seen by noting that

KL(𝜇||𝑃 ) = ℱ −
∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗] −𝐻(𝜇) (3.2)

and recalling that KL(𝜇||𝑃 ) ≥ 0 with equality if and only if 𝜇 = 𝑃 .

Of course, the polytope of distributions 𝜇 is intractable to optimize over. Two

popular approaches for handling this are:
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• (Naive) Mean-field approximation: instead of optimizing over all distributions,

one optimizes over product distributions, thereby obtaining a lower bound on

ℱ . In other words, we define the (naive mean-field) variational free energy by

ℱ* := max
𝑥∈[−1,1]𝑛

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗𝑥𝑖𝑥𝑗 +
∑︁
𝑖

𝐻

(︂
𝑥𝑖 + 1

2

)︂]︃
.

Indeed, if �̄� = (�̄�1, . . . , �̄�𝑛) is the optimizer in the above definition, then the

product distribution 𝜈 on the Boolean hypercube with the 𝑖𝑡ℎ coordinate having

expectation �̄�𝑖 minimizes KL(𝜇||𝑃 ) among all product distributions 𝜇.

This approach originated in the physics literature where it was used to great

success in several cases, but from the point of view of algorithms it is a priori

problematic: it’s not clear this problem is any easier to solve, as the resulting

optimization problem is highly non-convex.

• Moment-based convex relaxations : instead of optimizing over distributions,

one optimizes over a “relaxation” (enlarging) of the polytope of distributions,

thereby obtaining an upper bound on ℱ . There are systematic ways to do this,

giving rise to hierarchies of convex relaxations (see, e.g. [12]). This approach

is very natural and common in theoretical computer science, since the opti-

mization problem is convex, hence efficiently solvable, although quantifying the

quality of the relaxation is usually more difficult.

A priori these two approaches seem unrelated – indeed, the way they modify the

variational problem is almost opposite. In this paper, we provide a unified perspective

on these two approaches: for example, we show that the tight parameter regime where

mean-field approximation and Sherali-Adams based approaches (even for classical

MAX-𝑘-CSP) give nontrivial guarantees is identical.

More precisely, we prove the following results:

1. Simple and optimal mean-field bounds via rounding: We obtain the

optimal bounds on the quality of the mean-field approximation in a simple and

elegant way. In particular, we show that there is a simple rounding procedure
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which directly extracts a product distribution from the true Gibbs measure,

and whose output is easy to analyze. More precisely, a recent result due to [97]

proves that the mean-field approximation to ℱ is within an additive error1 of

𝑂(𝑛2/3‖𝐽‖2/3𝐹 log1/3(𝑛‖𝐽‖𝐹 )). We improve this and show:

Theorem 15. Fix an Ising model 𝐽 on 𝑛 vertices. Then,

ℱ − ℱ* ≤ 3𝑛2/3‖𝐽‖2/3𝐹 .

We note that [97] prove this inequality is tight up to constants. This also

recovers the result of [17] which shows the error is 𝑜(𝑛) when ‖𝐽‖2𝐹 = 𝑜(𝑛).

The technique also gives a structural result showing that certain conditional

marginals are approximate fixpoints of the mean-field equations. The full results

are in Section 3.3.

2. Subexponential algorithms for approximating ℱ up to the computa-

tional intractability limit: Our proof of the above theorem is algorithmic,

except that it assumes access to the true Gibbs measure. To fix this, we instead

apply our rounding scheme to a convex relaxation proposed by [159] based on

the Sherali-Adams hierarchy. The algorithm we get as a result runs in subex-

ponential time so long as ‖𝐽‖2𝐹 = 𝑜(𝑛); this condition for subexponentiality is

tight under Gap-ETH. More precisely:

Theorem 16. We can approximate ℱ up to an additive factor of 𝑜(𝑛) in time

2𝑜(𝑛) if ‖𝐽‖2𝐹 = 𝑜(𝑛). Moreover, we can also output a product distribution

achieving this approximation. On the other hand, for ‖𝐽‖2𝐹 = Θ(𝑛), it is Gap-

ETH-hard to approximate ℱ up to an additive factor of 𝑜(𝑛) in subexponential

time.

We also describe how to accelerate the algorithm on dense graphs using random

subsampling. The full results are in Section 3.6.

1Here, ‖𝐽‖𝐹 :=
√︁∑︀

𝑖,𝑗 𝐽
2
𝑖,𝑗 is the Frobenius norm of the matrix 𝐽 .
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3. Optimality of correlation rounding: The rounding we use in the proof of the

above theorems relies crucially on the correlation rounding technique introduced

in [12]. This procedure was designed specifically to tackle dense and spectrally

well-behaved instances of constraint satisfaction problems, as well as to derive

subexponential algorithms for unique games. In order to better understand the

efficacy of correlation rounding, Allen, O’Donnell, and Zhou [3] introduced a

conjecture on the number of variables one needs to condition on in an arbitrary

distribution, in order to guarantee that the remaining pairs of variables have

average covariance at most 𝜖. The current best result of [156] gives a bound of

𝑂(1/𝜖2); [3] conjectured that this can be decreased to 𝑂(1/𝜖). We refute this

conjecture in essentially the strongest possible sense. Namely, we show:

Theorem 17. There exists an absolute constant 𝐶 > 0, a sequence of pairs

(𝑡𝑛, 𝑛) going to infinity, and a family of probability distributions (the SK spin

glass) such that for any set 𝑇 with |𝑇 | ≤ 𝑡𝑛,

E
(𝑖,𝑗)∼([𝑛]

2 ) [|Cov(𝑋𝑖, 𝑋𝑗)| |(𝑋𝑘)𝑘∈𝑇 ] ≥ 𝐶√
𝑡𝑛
.

We prove this theorem by combining our techniques with rigorous results on

the Sherrington-Kirkpatrick spin glass. The full results are in Section 3.4.

4. Generalization of all results to 𝑘-MRFs: We give natural and tight

generalizations of these results to order 𝑘 Markov Random Fields. In general,

we show that the tight regime for 𝑜(𝑛) additive error for both mean-field and

sub-exponential time algorithms (under Gap-ETH) is ‖𝐽‖2𝐹 = 𝑜(𝑛3−𝑘), and show

tightness of the higher-order correlation rounding guarantee. The full results

are in Section 3.5.
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3.1 Background and related work

3.1.1 The mean-field approximation

Owing to its simplicity, the mean field approximation has long been used in statistical

physics (see [151] for a textbook treatment) and also in Bayesian statistics [7, 101,

191], where it is one of the prototypical examples of a variational method. It has the

attractive property that it always gives a lower bound for the free energy.

The critical points of ℱ* have a fixpoint interpretation as the solutions to the

mean-field equation, 𝑥 = tanh⊗𝑛(𝐽𝑥). However, iterating this equation is known to

converge to the mean-field solution only in high-temperature regimes such as Do-

brushin uniqueness; as soon as we leave this regime, the iteration may fail to con-

verge to the optimum even in simple models (Curie-Weiss) – see [97]. In contrast,

[59] established a structural result, without relying on a high-temperature assumption,

showing that the Gibbs measure can be decomposed into approximate fixpoints of the

mean-field equations. In Section 3.3.1 we derive a similar result using the correlation

rounding decomposition.

It is well known [62] that the mean field approximation is very accurate for the

Curie-Weiss model (the Ising model on the complete graph) at all temperatures. On

the other hand, it is also known [52] that for very sparse graphs like trees of bounded

arity, this is not the case. In recent years, considerable effort has gone into bounding

the error of the mean-field approximation on more general graphs; we refer the reader

to [17, 97] for a detailed discussion and comparison of results in this direction. If

one only wishes to show that the mean-field approximation asymptotically gives the

correct free energy density ℱ/𝑛 and does not care about the rate of convergence, then

the breakthrough result is due to [17], who provided an exponential improvement over

previous work of [28] to identify the regime where this happens.

Theorem 18 ([17]). Let (𝐽𝑛)∞𝑛=1 be a sequence of Ising models indexed by the number

of vertices. if ‖𝐽𝑛‖2𝐹 = 𝑜(𝑛), then ℱ𝐽𝑛 −ℱ*
𝐽𝑛

= 𝑜(𝑛).

This result is tight – there are simple examples of models with ‖𝐽𝑛‖2𝐹 = Θ(𝑛)
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where ℱ𝐽𝑛 − ℱ*
𝐽𝑛

= Ω(𝑛). On the other hand, if one also cares about the rate of

convergence, then this result is not the best known. Here, improving on previous

bounds of [28], [17], and [57], it was shown by [97] that:

Theorem 19 ([97]). Fix an Ising model 𝐽 on 𝑛 vertices. Then,

ℱ − ℱ* ≤ 200𝑛2/3‖𝐽‖2/3𝐹 log1/3(𝑛‖𝐽‖𝐹 + 𝑒).

As stated earlier, our first main result Theorem 15 removes the logarithmic term

in Theorem 19, thereby completely subsuming both of the theorems stated above. A

more general version of this theorem, valid for higher-order Markov random fields on

arbitrary finite alphabets, is Theorem 25 below.

3.1.2 Algorithms for dense CSPs

At first glance, the condition that ‖𝐽‖2𝐹 = 𝑜(𝑛) may seem a little odd. To demystify

it, consider the anti-ferromagnetic Ising model corresponding2 to MAX-CUT on a

graph with 𝑚 edges which has 𝐽𝑖𝑗 = −𝛽𝑛
𝑚

for each (𝑖, 𝑗) ∈ 𝐸. If 𝑀 is the optimum

fraction of edges cut, then

1

𝑛𝛽
log𝑍 ∈

[︂
M − 1

𝛽
,M +

1

𝛽

]︂
, ‖𝐽‖2𝐹 = Θ

(︂
𝛽2𝑛

2

𝑚

)︂
, (3.3)

so the requirement that ‖𝐽‖2𝐹 = 𝑜(𝑛) is the same as requiring 𝑚 = 𝜔(𝑛). In other

words, our algorithms operate in the regime where the average degree is super-

constant and the objective is to approximate MAX-CUT within factor (1− 𝜖). Thus,

they can be viewed as free-energy generalizations of optimization problems on dense

graphs.

We briefly survey relevant work on approximation algorithms for dense graphs.

The main emphasis in the literature has been on the case when 𝑚 = Θ(𝑛2) for which

PTASs have been developed, for instance the weak regularity lemma based algorithm

2The scaling here is chosen so that if the MAX-CUT is 𝛾𝑛 edges with 𝛾 > 1/2, then the two
terms in (3.1) are of the same scale.
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of [68], the greedy algorithms of [134], and the Sherali-Adams based approach of [51].

On the other hand, if 𝑚 = Θ(𝑛2−𝜖) for any 𝜖 > 0 then no PTAS for even MAX-CUT

is possible [50].

The work most relevant to ours is the improved analysis of the Sherali-Adams

relaxation due to [199] based on correlation rounding. Surprisingly, although there

are many methods to approximate MAX-CUT when 𝑚 = Θ(𝑛2) as mentioned above,

to our knowledge none of the algorithms except for Sherali-Adams are guaranteed to

give sub-exponential time algorithms down to 𝑚 = 𝜔(𝑛); for example, the method of

[68] is only sub-exponential time for 𝑚 = 𝜔(𝑛 log 𝑛) and this is a fundamental barrier

with their technique. This sub-exponential time guarantee for Sherali-Adams in this

regime is not explicitly stated in [199] or anywhere else, as far as we are aware, but is

straightforward to show even from the older correlation rounding guarantee of [156]

(see Section 3.6). The correct generalization of this guarantee for MAX-𝑘-CSP was

essentially pointed out in [65] but once again, their algorithm misses the tight regime

(achievable by Sherali-Adams) by poly-logarithmic factors. Our result recovers the

tight regime (i.e. 𝜔(𝑛𝑘−1) constraints) in this setting as well, while also generalizing

to the free energy (see Section 3.6).

For computing the free energy, the two most relevant works are [159] and [97]: the

first work does not make any connection to mean-field approximation and proves a

slightly weaker guarantee for Sherali-Adams than the current work; the second work

uses a regularity based approach to compute the mean-field approximation, and gets

similar guarantees to the algorithm of this work but misses the correct sub-exponential

time regime by log factors.

3.1.3 Correlation rounding, and a refutation of the Allen-

O’Donnell-Zhou conjecture

Let 𝑋1, . . . , 𝑋𝑛 be a collection of jointly distributed random variables, each of which

takes values in {±1}. There are two possibilities for such a collection:

• The average covariance of the collection, defined to be E
(𝑖,𝑗)∼([𝑛]

2 )|Cov(𝑋𝑖, 𝑋𝑗)|,
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is small.

• The average covariance of the collection is not small: in this case, we expect

a random coordinate 𝑋𝑗 to contain significant information about many of the

other random variables in 𝑋1, . . . , 𝑋𝑛, so that we might intuitively conjecture

that conditioning on the random variables𝑋𝑗 for all 𝑗 in a ‘small’ random subset

𝑇 of [𝑛] makes the average covariance sufficiently small.

This intuition is indeed true and has been quantitatively formalized by several works

in the theoretical computer science community, including [12, 85, 156, 199]. We note

that similar ideas have appeared independently in the statistical physics literature

under the name of ‘pinning’; for example, see [96] and references therein, as well as

recent work [46]. To the best of our knowledge, the historically first statement of

(essentially) the Theorem below was given in [141].

Theorem 20 ([156, 12, 141]). Let 𝑋1, . . . , 𝑋𝑛 be a collection of {±1}-valued random

variables, and let 0 < 𝜖 ≤ 1. Then, for some integer 0 ≤ 𝑡 ≤ 𝑂(1/𝜖2):

E𝑇∼(𝑉
𝑡 )
E

(𝑖,𝑗)∼([𝑛]
2 ) [|Cov(𝑋𝑖, 𝑋𝑗)| |(𝑋𝑘)𝑘∈𝑇 ] ≤ 𝜖.

The above theorem is at the heart of the so-called correlation rounding technique

for the Sherali-Adams and SOS convex relaxation hierarchies, which has been used to

provide state-of-the-art approximation algorithms for many classic NP-hard problems

and their variants; we refer the reader to the references above for much more on this.

As we will see below, it will also be key to our proof of Theorem 15.

Recently, it was conjectured by Allen, O’Donnell and Zhou [3] that the upper

bound on 𝑡 in Theorem 20 can be improved significantly. More precisely, they con-

jectured that:

Conjecture 1 (Conjecture A in [3]). Theorem 20 holds with 0 ≤ 𝑡 ≤ 𝑂(1/𝜖).

Their motivation for this conjecture was twofold:
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• On a technical level, the proof of Theorem 20 in [156] proceeds by first showing

that for some integer 0 ≤ 𝑡 ≤ 𝑂(1/𝜖2)

E𝑇∼(𝑉
𝑡 )
E

(𝑖,𝑗)∼([𝑛]
2 ) [|𝐼(𝑋𝑖, 𝑋𝑗)| |(𝑋𝑘)𝑘∈𝑇 ] ≤ 𝜖2,

where 𝐼(𝑋, 𝑌 ) denotes the mutual information between 𝑋 and 𝑌 , and then

using the standard inequality |Cov(𝑋, 𝑌 )| ≤
√︀

2𝐼(𝑋, 𝑌 ); we will present a gen-

eralized version of this proof from [132, 199] later. Essentially, they conjectured

that one could surmount the quadratic loss without passing through mutual

information.

• From a complexity-theoretic point of view, the best known lower bounds for

dense MAX-CSP problems (such as [1, 132]) leave open the possibility that

MAX-CUT on 𝑛 vertices can be computed to within 𝜖𝑛2 additive error in time

𝑛𝑂(1/𝜖), whereas the best known algorithms all require time at least 2𝑂(1/𝜖2). If

Conjecture 1 were true, the running time of the Sherali-Adams based approach

would have improved to 𝑛𝑂(1/𝜖) time for 𝜖𝑛2‖𝐽‖∞ error (which, for dense graphs,

is close to matching the lower bound of [132]).

[3] prove Conjecture 1 for the special case when the random variables 𝑋1, . . . , 𝑋𝑛

are the leaves of a certain type of information flow tree known as the caterpillar

graph. In addition, [132] showed a similar improvement for correlation rounding in

the MAX 𝑘-CSP problem, when promised that there exists an assignment satisfying

all of the constraints. As described in the introduction (Theorem 17), we use ideas

from statistical physics to refute Conjecture 1 in essentially the strongest possible

form by showing that Theorem 20 does not hold with 0 ≤ 𝑡 ≤ 𝑜(1/𝜖2).
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3.2 Technical tools

3.2.1 Hierarchies of convex relaxations

Computing the free energy of an Ising model has as a special case the problem MAX-

QP/MAX-2CSP, because if we let 𝐽𝛽 = 𝛽𝐽 then

lim
𝛽→∞

1

𝛽
log𝑍(𝐽𝛽) = lim

𝛽→∞
sup
𝜇

(︂
1

2
E[𝑋𝑇𝐽𝑋] +

1

𝛽
𝐻(𝜇)

)︂
= max

𝑥∈{±1}𝑛
𝑥𝑇𝐽𝑥. (3.4)

As with many other problems in combinatorial optimization, this is a maximization

problems on the Boolean hypercube, i.e. as a problem of the form

max
𝑥∈{±1}𝑛

𝑓(𝑥).

These problems are often NP-hard to solve exactly, but convex hierarchies give a

principled way to write down a natural family of convex relaxations which are effi-

ciently solvable and give increasingly better approximations to the true value. First,

one re-expresses the problem as an optimization problem over the convex polytope of

probability distributions using that

max
𝑥∈{±1}𝑛

𝑓(𝑥) = max
𝜇∈𝒫({±1}𝑛)

E𝜇[𝑓(𝑥)];

the advantage of this reformulation is that the objective is now linear in the variable

𝜇. Second, one relaxes 𝒫({±1}𝑛) to a larger convex set of pseudo-distributions which

are more tractable to optimize over. The tightness of relaxation is controlled by

a parameter 𝑟 (known as the level or number of rounds of the hierarchy); as the

parameter 𝑟 increases, the relaxation becomes tighter with the level 𝑛 relaxation

corresponding to the original optimization problem.

Different hierarchies correspond to different choices of the space of pseudo-

distributions; two of the most popular are the Sherali-Adams (SA) hierarchy and the

Sum-of-Squares (SOS)/Laserre hierarchy. In the Sherali-Adams hierarchy, we define

a level 𝑟-pseudodistribution to be given by the following variables and constraints:
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1. For every 𝑆 ⊂ [𝑛] with |𝑆| = 𝑟, a valid joint distribution 𝜇𝑆 over {±1}𝑆.

2. Compatability conditions, which require that for every 𝑈 ⊆ [𝑛] with |𝑈 | ≤ 𝑟

and every 𝑆, 𝑆 ′ ⊆ [𝑛] with |𝑆| = |𝑆 ′| = 𝑟 and 𝑈 ⊂ 𝑆 ∩ 𝑆 ′, 𝜇𝑆|𝑈 = 𝜇𝑆′|𝑈 .

Observe that, by linearity, this data defines a unique pseudo-expectation operator 3 Ẽ

from real polynomials of degree at most 𝑟 to R.

Let 𝑆𝐴𝑟 denote the set of level 𝑟-pseudodistributions on the hypercube. Then for

𝑟 ≥ deg(𝑓), we can write down max𝜇∈𝑆𝐴𝑟 Ẽ𝜇[𝑓(𝑥)] as a linear program with 2𝑟
(︀
𝑛
𝑟

)︀
many variables and a number of constraints which is polynomial in the number of

variables. By strong duality for linear programs, we can also think of the value of

the level 𝑟 𝑆𝐴 relaxation as corresponding to the best upper bound derivable on

sup𝜇 E𝜇[𝑓(𝑥)] in a limited proof system, which captures e.g. case analysis on sets of

size at most 𝑟.

In addition to this standard setup, since the variational formulation for log𝑍

has an entropy term, we will need a proxy for it when we use the Sherali-Adams

hierarchy. The particular proxy we will use was introduced by [159] – further details

are in Section 3.6.

3.2.2 The correlation rounding lemma

As mentioned in the introduction, our proof of Theorem 15 will depend crucially on

the correlation rounding lemma. Here, we present a general higher-order version of

this lemma due to [132], building on previous work of [156] and [199].

Definition 2. The multivariate total correlation of a collection of random variables

𝑋1, . . . , 𝑋𝑛 is defined to be

𝐶(𝑋1; · · · ;𝑋𝑛) = KL (𝜇(𝑋1,...,𝑛)||𝜇(𝑋1) × · · · × 𝜇(𝑋𝑛)) .

3This operator may behave very differently from a true expectation. For example, it’s possible
that Ẽ[𝑓2] < 0 for some 𝑓 . The SOS hierarchy is formed by additionally requiring Ẽ[𝑓2] ≥ 0 for all
low-degree 𝑓 .
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From the definition of KL divergence, it follows that

𝐶(𝑋1; · · · ;𝑋𝑛) =

(︃
𝑛∑︁

𝑖=1

𝐻(𝑋𝑖)

)︃
−𝐻(𝑋1, . . . , 𝑋𝑛).

By using conditional distributions/ conditional entropies, we may define the condi-

tional multivariate total correlation in the obvious way. Note that in the two-variable

case, the total correlation is the same as the mutual information 𝐼(𝑋1;𝑋2).

Theorem 21 (Correlation rounding lemma, [132]). Let 𝑋1, . . . , 𝑋𝑛 be a collection of

{±1}-valued random variables. Then, for any 𝑘, ℓ ∈ [𝑛], there exists some 𝑡 ≤ ℓ such

that:

E𝑆∼(𝑉
𝑡 )
E𝐹∼(𝑉

𝑘)[𝐶(𝑋𝐹 |𝑋𝑆)] ≤ 𝑘2 log(2)

ℓ
.

Remark 2. The same conclusion holds for general random variables 𝑋1, . . . , 𝑋𝑛 with

the factor log 2 replaced by
∑︀𝑛

𝑖=1 𝐻(𝑋𝑖)

𝑛
. Also, the guarantee holds for general level

(ℓ+ 𝑘)-pseudodistributions.

For the reader’s convenience, we provide a complete proof of this result in Sec-

tion 3.8, correcting certain errors which have been persistent in the literature.

3.2.3 The Sherrington-Kirkpatrick model

The famous Sherrington-Kirkpatrick (SK) spin glass model was introduced in the

work [107] as a solvable model of disordered systems. The Gibbs measure of the SK

spin glass on 𝑛 vertices (without external field) is a random probability distribution

on {±1}𝑛 given by:

Pr(𝑋 = 𝑥) :=
1

𝑍𝑛(𝛽)
exp

(︃
𝛽√
𝑛

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝑋𝑖𝑋𝑗

)︃
,

where 𝐽𝑖𝑗 ∼ 𝑁(0, 1) are i.i.d. standard Gaussians and 𝛽 is a fixed parameter referred

to as the inverse temperature. In [107], a prediction, now known as the replica-

symmetric prediction, was made for the limiting value of 1
𝑛

log𝑍𝑛(𝛽) as 𝑛 → ∞.

It was soon realized that this prediction could not be correct for all values of 𝛽;
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finding and understanding the correct prediction led physicists to the development

of a sophisticated theory of (mean-field) spin glasses [139]. In particular, physicists

discovered that the SK spin glass exhibits two phases depending on the value of 𝛽

(here we are only considering the ℎ = 0 case of no external field):

1. Replica Symmetry (RS, 𝛽 < 1). This is the regime where the original prediction

for the limiting value of 1
𝑛

log𝑍𝑛(𝛽) is correct. Moreover, the Gibbs measure

exhibits a number of unusual properties: for example, the marginal law on any

small subset of the coordinates converges to a product distribution as 𝑛 → ∞

([178]).

2. (Full) Replica Symmetry Breaking (fRSB, 𝛽 > 1). In this phase, the limit of
1
𝑛

log𝑍𝑛(𝛽) does not have a simple closed form; however, there is a remarkable

variational expression for the limiting value known as the Parisi formula. More-

over, the Gibbs measure is understood to be shattered into multiple clusters with

the geometry of an ultrametric space. (We leave a more precise description of

this complex situation to the references.)

In the replica symmetric phase (with no external field), the prediction for the limiting

value of 1
𝑛

log𝑍𝑛(𝛽) was rigorously confirmed by the work of [2]. Furthermore, they

proved their result for general distributions of the disorder 𝐽𝑖𝑗, giving what is known

as a universality result.

Theorem 22 ([2]). Let 𝜖 > 0. For the SK spin glass at inverse temperature 𝛽 < 1,

Pr

(︂⃒⃒⃒⃒
1

𝑛
log𝑍𝑛(𝛽) − (log 2 + 𝛽2/4)

⃒⃒⃒⃒
≥ 𝜖

)︂
→ 0

as 𝑛→ ∞. Moreover, this also holds if the 𝐽𝑖𝑗 are i.i.d. samples from any distribution

with finite moments, mean 0 and variance 1.

This is the only result we will need from the spin glass literature. For an ac-

count of more recent developments, including the proofs of the Parisi formula and

ultrametricity conjecture, we refer the reader to the books [149, 178, 179].
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3.3 Mean-field approximation via correlation round-

ing: proof of Theorem 15

First we recall a couple of lemmas which are essentially used in all works on correlation

rounding. Recall that for two probability distributions 𝑃 and 𝑄 on the same finite

space Ω, the total variation distance between 𝑃 and 𝑄 is defined by TV(𝑃,𝑄) :=

sup𝐴⊆Ω

⃒⃒∑︀
𝑎∈𝐴 (𝑃 (𝑎) −𝑄(𝑎))

⃒⃒
.

Lemma 13 (Lemma 5.1, [12]). Let 𝑋 and 𝑌 be jointly distributed random variables

valued in {±1}. Let 𝑃𝑋 , 𝑃𝑌 denote the marginal distributions of 𝑋 and 𝑌 , and let

𝑃𝑋,𝑌 denote their joint distribution. Then,

|Cov(𝑋, 𝑌 )| = 2TV(𝑃𝑋,𝑌 , 𝑃𝑋 × 𝑃𝑌 ).

From this, one can observe the following consequence of correlation rounding:

Lemma 14. Let 𝑋1, . . . , 𝑋𝑛 be a collection of {±1}-valued random variables. Then,

for any ℓ ∈ [𝑛], there exists some 𝑆 ⊂ [𝑛] with |𝑆| ≤ ℓ such that:

E𝑋𝑆
E{𝑢,𝑣}∈(𝑉

2)
[︀
Cov(𝑋𝑢, 𝑋𝑣|𝑋𝑆)2

]︀
≤ 8 log 2

ℓ
.

Proof. This is standard and we include the proof for completeness. We begin by

applying Theorem 21 with ℓ; let 𝑆 denote the resulting set of size at most ℓ. By

Pinsker’s inequality, we have

2TV2 (𝜇(𝑋𝑢,𝑣|𝑋𝑆 = 𝑥𝑠), (𝜇(𝑋𝑢|𝑋𝑆 = 𝑥𝑠) × 𝜇(𝑋𝑣|𝑋𝑆 = 𝑥𝑠))) ≤ 𝐶(𝑋𝑢;𝑋𝑣|𝑋𝑆 = 𝑥𝑠),

for any 𝑥𝑠 ∈ {±1}|𝑆|. Therefore, by taking the expectation on both sides, we get:

2E𝑋𝑆
TV2 (𝜇(𝑋𝑢,𝑣|𝑋𝑆), (𝜇(𝑋𝑢|𝑋𝑆) × 𝜇(𝑋𝑣|𝑋𝑆))) ≤ 𝐶(𝑋𝑢;𝑋𝑣|𝑋𝑆).
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By averaging over the choice of {𝑢, 𝑣} ∈
(︀
𝑉
2

)︀
, we get

E𝐸={𝑢,𝑣}∼(𝑉
2)
E𝑋𝑆

[︀
TV2 (𝜇(𝑋𝑢,𝑣|𝑋𝑆), (𝜇(𝑋𝑢|𝑋𝑆) × 𝜇(𝑋𝑣|𝑋𝑆)))

]︀
≤ E𝐸∼(𝑉

2)

[︂
𝐶(𝑋𝐸|𝑋𝑆)

2

]︂
≤ 2 log 2

ℓ
,

where the second inequality follows by the choice of 𝑆 and Theorem 21. Finally,

Lemma 13 shows that for any 𝑥𝑠 ∈ {±1}|𝑆|,

|Cov(𝑋𝑢, 𝑋𝑣|𝑋𝑆 = 𝑥𝑆)| ≤ 2TV (𝜇(𝑋𝑢,𝑣|𝑋𝑆 = 𝑥𝑆), (𝜇(𝑋𝑢|𝑋𝑆 = 𝑥𝑆) × 𝜇(𝑋𝑣|𝑋𝑆 = 𝑥𝑆))) ,

from which we obtain our desired conclusion:

E𝑋𝑆
E{𝑢,𝑣}∈(𝑉

2)
[︀
Cov(𝑋𝑢, 𝑋𝑣|𝑋𝑆)2

]︀
≤ 8 log 2

ℓ
. (3.5)

Finally, we recall the maximum-entropy principle characterizing product distribu-

tions:

Lemma 15. Let 𝜇 denote a probability distribution on the finite space Ω1× · · ·×Ω𝑛.

Let 𝜈 denote the product distribution on Ω1 × · · · × Ω𝑛 whose marginal distribution

on Ω𝑖 is the same as that of 𝜇 for all 𝑖 ∈ [𝑛]. Then, 𝐻(𝜇) ≤ 𝐻(𝜈).

Proof. This is a direct application of the chain rule and tensorization for entropy.

Indeed, let 𝑋 := (𝑋1, . . . , 𝑋𝑛) ∼ 𝜇. Then,

𝐻(𝜇) = 𝐻(𝑋) ≤ 𝐻(𝑋1) + · · · +𝐻(𝑋𝑛) = 𝐻(𝜈).

We are now ready to prove Theorem 15.

Proof of Theorem 15. Let 𝜖 > 0 be some parameter which will be optimized later.

We begin by applying Lemma 14 with ℓ = 1/(𝜖2 log 2) (for clarity of exposition, we

82



will omit floors and ceilings since they do not make any essential difference); let 𝑆

denote the resulting set of size at most ℓ. Let 𝜇 denote the Boltzmann distribution,

and recall that the Gibbs variational principle Eq. (3.1) states that

ℱ = E𝜇

[︀
𝑋𝑇𝐽𝑋

]︀
+𝐻𝜇(𝑋).

Let 𝜈𝑥𝑆
denote the product distribution on {±1}𝑛 for which E𝜈𝑥𝑆

[𝑋𝑖] = E[𝑋𝑖|𝑋𝑆 =

𝑥𝑆]. Then, using the chain rule for entropy, we see that

ℱ =
∑︁
𝑖<𝑗

𝐽𝑖,𝑗E𝜇[𝑋𝑖𝑋𝑗] +𝐻𝜇(𝑋)

=
∑︁
𝑖<𝑗

𝐽𝑖,𝑗E𝜇[𝑋𝑖𝑋𝑗] +𝐻𝜇(𝑋|𝑋𝑆) +𝐻𝜇(𝑋𝑆)

= E𝑥𝑆

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗|𝑋𝑆 = 𝑥𝑆] +𝐻𝜇(𝑋|𝑋𝑆 = 𝑥𝑆)

]︃
+𝐻𝜇(𝑋𝑆)

≤ E𝑥𝑆

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗|𝑋𝑆 = 𝑥𝑆] +𝐻𝜇(𝑋|𝑋𝑆 = 𝑥𝑆)

]︃
+ 1/𝜖2

≤ E𝑥𝑆

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗|𝑋𝑆 = 𝑥𝑆]] +𝐻𝜈𝑥𝑠 (𝑋)

]︃
+ 1/𝜖2,

where in the fourth line, we have used that |𝑆| ≤ ℓ = 1/(𝜖2 log 2), and in the last

line, we have used Lemma 15. From Lemma 14 and the Cauchy-Schwarz inequality,

it follows that

E𝑋𝑆

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗|𝑋𝑆]

]︃
= E𝑥𝑆

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗 (Cov(𝑋𝑖, 𝑋𝑗|𝑋𝑆 = 𝑥𝑆) + E𝜇[𝑋𝑖|𝑋𝑆 = 𝑥𝑆][𝑋𝑗|𝑋𝑆 = 𝑥𝑆])

]︃

=
∑︁
𝑖<𝑗

𝐽𝑖,𝑗E𝑋𝑆
[Cov(𝑋𝑖, 𝑋𝑗|𝑋𝑆)] + E𝑋𝑆

∑︁
𝑖,𝑗

𝐽𝑖,𝑗E𝜈𝑋𝑆
[𝑋𝑖𝑋𝑗]

≤
√︃∑︁

𝑖<𝑗

𝐽2
𝑖,𝑗

√︃
2

(︂
|𝑉 |
2

)︂
E𝑋𝑆

E𝐸∈(𝑉
2)

[Cov(𝑋𝑢, 𝑋𝑣|𝑋𝑆)2] + E𝑋𝑆

∑︁
𝑖<𝑗

𝐽𝑖,𝑗E𝜈𝑋𝑆
[𝑋𝑖𝑋𝑗]

≤ 2𝜖𝑛‖𝐽‖𝐹 + E𝑋𝑆

∑︁
𝑖<𝑗

𝐽𝑖,𝑗E𝜈𝑋𝑆
[𝑋𝑖𝑋𝑗].
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To summarize, we have shown that

ℱ ≤ E𝑥𝑆

[︃∑︁
𝑖<𝑗

𝐽𝑖,𝑗E𝜈𝑥𝑆
[𝑋𝑖𝑋𝑗] +𝐻𝜈𝑥𝑆

(𝑋)

]︃
+ 2𝜖𝑛‖𝐽‖𝐹 +

1

𝜖2
.

In particular, there exists some choice of 𝑥𝑆, such that with 𝜈 := 𝜈𝑥𝑆
, we have

ℱ ≤

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗E𝜈 [𝑋𝑖𝑋𝑗] +𝐻𝜈(𝑋)

]︃
+ 2𝜖𝑛‖𝐽‖𝐹 + 1/𝜖2.

Finally, by setting 𝜖 = 1

𝑛1/3‖𝐽‖1/3𝐹

we get the desired conclusion:

ℱ ≤ 𝐸𝜈

[︃∑︁
𝑖<𝑗

𝐽𝑖𝑗𝑋𝑖𝑋𝑗 +𝐻(𝑋)

]︃
+ 3𝑛2/3‖𝐽‖2/3𝐹 .

Remark 3. For the choice of 𝜖 in the above proof to make sense, we require that ℓ =

1/(𝜖2 log 2) ≤ 𝑛, which translates to ‖𝐽‖2/3𝐹 ≤ 𝑛1/3 log 2. However, the above bound

also holds if ‖𝐽‖2/3𝐹 > 𝑛1/3 log 2 since in this case, our error term equals 3 log 2𝑛 > 2𝑛,

whereas there is a trivial upper bound of 𝑛 log 2 on ℱ − ℱ*, obtained by considering

the product distribution supported at the point arg max𝑥∈{±1}𝑛{
∑︀

𝑖𝑗 𝐽𝑖𝑗𝑥𝑖𝑥𝑗}.

3.3.1 Aside: correlation rounding and the mean-field equation

The above proof shows that for the product measure 𝜈 := 𝜈𝑥𝑆
, ℱ𝜈 is close to ℱ . This

shows indirectly, by considering the maximizer of ℱ*, that there exists a product

distribution with marginals that are an exact solution to the mean-field equation

𝑥 = tanh⊗𝑛(𝐽𝑥) which is close to the Gibbs distribution in KL distance. In this

subsection, we show that the marginals output by correlation rounding are already

an approximate solution to the mean-field equation, given an additional assumption

on 𝐽 . It will be easier to prove the result if we generalize to Ising models with external

field ℎ, in which case Pr(𝑋 = 𝑥) = 1
𝑍

exp(1
2
𝑥𝑇𝐽𝑥+ ℎ · 𝑥) and the mean-field equation

is 𝑥 = tanh⊗𝑛(𝐽𝑥+ ℎ). We recall the following lemma:
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Lemma 16 ([59]). Let 𝑍 be an arbitrary random variable such that |𝑍| ≤ 𝐿 almost

surely for 𝐿 ≥ 1. Then

| tanh(E𝑍) − E tanh(𝑍)| ≤ 20𝐿 · E| tanh(𝑍) − E tanh(𝑍)|

Lemma 17. Let 𝑋1, . . . , 𝑋𝑛 be the spins of an Ising model with interaction matrix 𝐽

and external field ℎ and let 𝐿 = max𝑖(‖𝐽𝑖‖1 + |ℎ𝑖|). Then

1

𝑛

∑︁
𝑖

| tanh(𝐽𝑖 ·𝑋 + ℎ𝑖) − tanh(E𝐽𝑖 ·𝑋 + ℎ𝑖)|2 ≤ 400𝐿2‖𝐽‖𝐹
√︁

E𝑗,𝑘Cov(𝑋𝑗, 𝑋𝑘)2

Proof. Since E[𝑋𝑖|𝑋∼𝑖] = tanh(𝐽𝑖 ·𝑋), we find by Lemma 16 that

| tanh(𝐽𝑖 ·𝑋 + ℎ𝑖) − tanh(E𝐽𝑖 ·𝑋 + ℎ𝑖)|2 ≤ 400𝐿2(E| tanh(𝐽𝑖 ·𝑋 + ℎ𝑖) − E| tanh(𝐽𝑖 ·𝑋 + ℎ𝑖)|)2

≤ 400𝐿2Var(tanh(𝐽𝑖 ·𝑋 + ℎ𝑖))

≤ 400𝐿2Cov(tanh(𝐽𝑖 ·𝑋 + ℎ𝑖), 𝐽𝑖 ·𝑋)

= 400𝐿2
∑︁
𝑗

𝐽𝑖𝑗Cov(𝑋𝑖, 𝑋𝑗)

where the second inequality is by Jensen’s inequality, the third inequality follows

because tanh is increasing and 1-lipschitz and ℎ𝑖 is deterministic, and the final equality

follows because Cov(E[𝑋|𝑌 ], 𝑌 ) = Cov(𝑋, 𝑌 ). Summing over 𝑖, we find

1

𝑛

∑︁
𝑖

| tanh(𝐽𝑖 ·𝑋 + ℎ𝑖) − tanh(E𝐽𝑖 ·𝑋 + ℎ𝑖)|2 ≤
1

𝑛
400𝐿2

∑︁
𝑖,𝑗

𝐽𝑖𝑗Cov(𝑋𝑖, 𝑋𝑗)

≤ 400𝐿2‖𝐽‖𝐹
√︁

E𝑗,𝑘Cov(𝑋𝑗, 𝑋𝑘)2

where the last inequality is Cauchy-Schwarz.

Finally, correlation rounding controls the average covariance, giving us our de-

sired result – after conditioning, the marginals approximately satisfy the mean-field

equation.

Theorem 23. Let 𝑋1, . . . , 𝑋𝑛 be the spins of an Ising model with interaction matrix
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𝐽 and external field ℎ, and let 𝐿 = max𝑖(‖𝐽𝑖‖1 + |ℎ𝑖|). Fix ℓ and let 𝑆 with |𝑆| ≤ ℓ

be the set given by Lemma 14. Let 𝑌𝑖 = E[𝑋𝑖|𝑋𝑆]. Then

E𝑋𝑆

[︃
1

𝑛

𝑛∑︁
𝑖=1

|𝑌𝑖 − tanh(𝐽𝑖 · 𝑌 + ℎ𝑖)|2
]︃

= 𝑂

(︂
ℓ

𝑛
+

1√
ℓ
𝐿2‖𝐽‖𝐹

)︂

Proof. We split the sum as

𝑛∑︁
𝑖=1

|𝑌𝑖 − tanh(𝐽𝑖 · 𝑌 + ℎ𝑖)|2 =
∑︁
𝑖∈𝑆

|𝑌𝑖 − tanh(𝐽𝑖 · 𝑌 + ℎ𝑖)|2 +
∑︁
𝑖/∈𝑆

|𝑌𝑖 − tanh(𝐽𝑖 · 𝑌 + ℎ𝑖)|2

≤ ℓ+
∑︁
𝑖/∈𝑆

|𝑌𝑖 − tanh(𝐽𝑖 · 𝑌 + ℎ𝑖)|2

To bound the latter sum, recall that conditioning on 𝑋𝑆 = 𝑥𝑆 gives an Ising model

on the remaining spins 𝑋𝑆 ̸= 𝑥𝑆. Therefore the result follows from Lemma 17 by

taking the expectation over 𝑋𝑆 and applying Jensen’s inequality, which lets us we

bound the covariance by Lemma 14.

To interpret this, suppose that 𝐿 = 𝑂(1). Then (as in our previous uses of

correlation rounding) we see that if ‖𝐽‖2𝐹 = 𝑜(𝑛), then there exists an ℓ such that

the error is 𝑜(1). The proof of this result generalizes in a straightforward way to

𝑘-MRFs. When the alphabet is binary we have (in the notation of Section 3.5) that if

(∇𝑓)𝑖 = 𝜕𝑖𝑓 is the discrete derivative, then the same result holds where the mean-field

equation is 𝑥 = tanh⊗𝑛(∇𝑓(𝑥) + ∇ℎ(𝑥)), and where 𝐿 = max𝑖(‖𝜕𝑖𝑓‖∞ + ‖ℎ𝑖‖∞).

3.4 Correlation rounding is tight for spin glasses:

proof of Theorem 17

We define the following universal constant, which we already know an upper bound

on by Theorem 20:

𝜅* := lim sup
𝑡→∞

sup
𝜇∈𝒫({±1}𝑛)

𝑛≥𝑡

min
𝑆:|𝑆|≤𝑡

√
𝑡 E

(𝑖,𝑗)∼([𝑛]
2 )[|Cov(𝑋𝑖, 𝑋𝑗|𝑋𝑆)|].
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If Conjecture 1 were true, then we would have 𝜅* = 0 – indeed, the conjecture says

that the expected conditional covariance decays like 𝑂(1/𝑡), even for a random choice

of the conditioning set 𝑆. We will instead show an explicit positive lower bound on

𝜅*, thereby disproving the conjecture.

We begin by proving a variant of Theorem 15, which gives a bound on the error

of the mean-field approximation in terms of the constant 𝜅*.

Lemma 18. Let {𝐽𝑛}𝑛≥1 be a sequence of Ising models indexed by the number of

vertices. Let ℱ𝑛 (resp. ℱ*
𝑛) denote the free energy (resp. variational free energy) of

𝐽𝑛. Suppose that 𝜅2* lim sup𝑛→∞ 𝑛‖𝐽𝑛‖2∞ < 16. Then,

lim sup
𝑛→∞

ℱ𝑛 −ℱ*
𝑛

𝑛4/3‖𝐽𝑛‖2/3∞
≤ 3

3
√

4
𝜅2/3* .

Proof. Let {𝑡𝑛}𝑛≥1 be a sequence of natural numbers going to infinity, which will be

specified later; our choice will be such that 𝑡𝑛 ≤ 𝑛 for all 𝑛. For the Ising model 𝐽𝑛,

let

𝑆𝑛 := arg min
𝑆⊆[𝑛],|𝑆|≤𝑡𝑛

√
𝑡𝑛 E

(𝑖,𝑗)∼([𝑛]
2 )[|Cov(𝑋𝑖, 𝑋𝑗|𝑋𝑆)|],

and let 𝜅𝑛 denote the minimum value i.e. the value of the objective corresponding to

𝑆𝑛. By repeating the first part of the proof of Theorem 15, we get

ℱ𝑛 ≤ E𝑥𝑆𝑛

[︃∑︁
𝑖𝑗

(𝐽𝑛)𝑖𝑗E𝜇[𝑋𝑖𝑋𝑗|𝑋𝑆𝑛 = 𝑥𝑆𝑛 ]] +𝐻𝜈𝑥𝑆𝑛
(𝑋)

]︃
+ 𝑡𝑛

≤
∑︁
𝑖,𝑗

(𝐽𝑛)𝑖,𝑗[Cov(𝑋𝑖, 𝑋𝑗|𝑋𝑆𝑛)] + E𝑥𝑆𝑛

[︃∑︁
𝑖,𝑗

(𝐽𝑛)𝑖,𝑗E𝜈𝑥𝑆𝑛
[𝑋𝑖𝑋𝑗] +𝐻𝜈𝑥𝑆𝑛

(𝑋)

]︃
+ 𝑡𝑛.

As opposed to the proof of Theorem 15 where we used the Cauchy-Schwarz inequality,

here we simply estimate the first term by

∑︁
𝑖,𝑗

(𝐽𝑛)𝑖,𝑗[|Cov(𝑋𝑖, 𝑋𝑗|𝑋𝑆𝑛)|] ≤ 2

(︂
𝑛

2

)︂
𝜅𝑛‖𝐽𝑛‖∞√

𝑡𝑛
.
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Finally, set

𝑡𝑛 = min

{︃
𝑛4/3𝜅

2/3
𝑛 ‖𝐽𝑛‖2/3∞

3
√

4
, 𝑛

}︃
;

note that 𝑡𝑛 < 𝑛 for all sufficiently large 𝑛 by assumption, along with the fact that

lim sup𝑛→∞ 𝜅𝑛 ≤ 𝜅*. It follows that for all 𝑛 sufficiently large,

ℱ𝑛 −ℱ*
𝑛 ≤ 3

3
√

4
𝑛4/3‖𝐽𝑛‖2/3∞ 𝜅2/3𝑛 ;

dividing both sides by 𝑛4/3‖𝐽𝑛‖2/3∞ , taking the lim sup as 𝑛 → ∞, and using

lim sup𝑛→∞ 𝜅𝑛 ≤ 𝜅* yields the desired conclusion.

To complete the proof of Theorem 17, we will exhibit a sequence of Ising models

𝐽𝑛 for which lim sup𝑛→∞ 𝑛‖𝐽𝑛‖2∞ is finite and lim sup𝑛→∞ (ℱ𝑛 −ℱ*
𝑛) /

(︁
𝑛4/3‖𝐽𝑛‖2/3∞

)︁
is positive. Specifically, we will show that this is true for a ‘typical’ growing sequence

of the Rademacher SK-spin glass. First, we need the following lemma, which formal-

izes that the naive mean-field approximation fails in the SK model; in the physics

literature, this was already argued in the original paper of Thouless, Anderson and

Palmer [181] (and their argument is similar to the proof of the following Lemma, so

it is essentially rigorous).

Lemma 19. Fix 𝛽 ∈ [0, 1/2). Let ℱ𝑛(𝛽) denote the (random) free energy of the SK

spin glass on 𝑛 vertices with parameter 𝛽, and let ℱ*
𝑛(𝛽) denote its variational free

energy. Then,

ℱ𝑛(𝛽) −ℱ*
𝑛(𝛽) ≥ 𝑛𝛽2/4 − 𝑜(𝑛)

asymptotically almost surely (a.a.s) i.e. with probability going to 1 as 𝑛 → ∞. This

holds under the same universality regime as Theorem 22.

Proof. We prove this by calculating ℱ𝑛(𝛽) and ℱ*
𝑛(𝛽). Since 𝛽 < 1, we know from

Theorem 22 that a.a.s.
ℱ𝑛(𝛽)

𝑛
= log 2 +

𝛽2

4
+ 𝑜𝑛(1).

88



It remains to compute ℱ*
𝑛(𝛽). By definition,

ℱ*
𝑛(𝛽) = sup

𝑥∈[−1,1]𝑛

(︃
𝛽

2
𝑥𝑇𝐽𝑥+

∑︁
𝑖

𝐻

(︂
1 + 𝑥𝑖

2

)︂)︃
.

We claim that a.a.s., this optimization problem is concave – indeed, direct calcu-

lation shows that for all 𝑥 ∈ [−1, 1]

𝑑2

𝑑𝑥2
𝐻

(︂
1 + 𝑥

2

)︂
≤ −1,

whereas the random matrix theory [6] of Wigner matrices shows

‖𝐽‖ ≤ 2 + 𝑜𝑛→∞(1)

a.a.s. Since the Hessian of first term is 𝐽 , this proves the claim since 0 ≤ 𝛽 < 1/2.

Finally, since the gradient of the objective function

𝛽

2
𝑥𝑇𝐽𝑥+

∑︁
𝑖

𝐻

(︂
1 + 𝑥𝑖

2

)︂

clearly vanishes at the point 𝑥𝑖 = 0 for all 𝑖 ∈ [𝑛], it follows that this point is the

global maximizer a.a.s, so that ℱ*
𝑛(𝛽) = 𝑛 log 2 a.a.s.

By combining the previous two lemmas, we can prove the following theorem which,

in particular, implies Theorem 17.

Theorem 24. Let 𝜅* be the universal constant defined at the start of this section.

𝜅* ≥
√

27

16
.

Proof. From Lemma 19 applied to the Rademacher SK spin glass with parameter

𝛽 ∈ [0, 1/2) i.e. (𝐽𝑛)𝑖𝑗 = ±𝛽/
√
𝑛 independently with probability 1/2, we obtain a

sequence of Ising models {𝐽𝑛}𝑛≥1 indexed by the number of vertices for which the

following holds:
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• ‖𝐽𝑛‖∞ = 𝛽√
𝑛

i.e. lim sup𝑛→∞ 𝑛‖𝐽𝑛‖2∞ = 𝛽2

• lim sup𝑛→∞
ℱ𝑛−ℱ*

𝑛

𝑛𝛽2 ≥ 1
4

i.e. lim sup𝑛→∞
ℱ𝑛−ℱ*

𝑛

𝑛4/3‖𝐽𝑛‖2/3∞
≥ 𝛽4/3

4
.

In view of Lemma 18, there are two possibilities:

• 𝜅2*𝛽
2 ≥ 16 for some 𝛽 ∈ [0, 1/2), so that 𝜅* ≥ 4, or

• 𝜅2*𝛽
2 < 16 for all 𝛽 ∈ [0, 1/2], in which case we have

𝛽4/3

4
≤ 3

3
√

4
𝜅2/3*

for all 𝛽 ∈ [0, 1/2), so that 𝜅* ≥
√

27/16.

3.5 Mean-field approximation for 𝑘-MRFs

In this section, we prove a much more general bound for mean-field approximation,

extending our result Theorem 15 to order 𝑘 Markov random fields (MRFs) over general

finite alphabets. Our bound has only a mild dependence on the alphabet size 𝑞 and

is tight for every fixed 𝑘, 𝑞.

Definition 3. An order 𝑘 Markov random field (𝑘-MRF) on 𝑛 vertices over the finite

alphabet Σ is a probability distribution on the space Σ𝑛 of the form

Pr(𝑋 = 𝑥) =
1

𝑍
𝑒𝑓(𝑥)+ℎ(𝑥),

where the interaction term 𝑓(𝑥) can be written as a sum of hyperedge potentials on

hyperedges of size 𝑘 i.e.

𝑓(𝑥) =
∑︁

𝐸⊆[𝑛],|𝐸|=𝑘

𝑓𝐸(𝑥𝐸),

and the external field ℎ(𝑥) is the sum of the external fields at each vertex i.e.

ℎ(𝑥) =
𝑛∑︁

𝑖=1

ℎ𝑖(𝑥𝑖).
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In analogy with the Ising model case, we will denote sup𝑥𝐸
|𝑓𝐸(𝑥𝐸)| by ‖𝑓𝐸‖∞

and
∑︀

𝐸⊆[𝑛],|𝐸|=𝑘 ‖𝑓𝐸‖2∞ by ‖𝐽‖2𝐹 . The exact same proof as the Ising case gives the

following variational principle for the free energy ℱ := log𝑍:

ℱ = sup
𝜇

[E𝜇[𝑓(𝑥) + ℎ(𝑥)] +𝐻(𝜇)] , (3.6)

where the supremum ranges over all probability distributions on Σ𝑛. By restricting

the variational problem to product distributions over Σ𝑛, we obtain the variational

free energy ℱ* as before.

Theorem 25. For any 𝑘-MRF on 𝑛 vertices over an alphabet of size 𝑞,

ℱ − ℱ* ≤ 3

(︂
𝑘 log 𝑞√

𝑘!
𝑛𝑘/2‖𝐽‖𝐹

)︂2/3

.

The proof of this theorem is essentially the same as that of Theorem 15 with

appropriate modifications. We will need the following simple lemma.

Lemma 20. Let 𝜇 and 𝜈 are two probability distributions on the same space Ω. Then

for any function 𝑓 : Ω → R such that |𝑓(𝑋)| ≤𝑀 a.s. under both 𝜇 and 𝜈, we have

|E𝑋∼𝜇[𝑓(𝑋)] − E𝑌∼𝜈 [𝑓(𝑌 )]| ≤ 2𝑀TV(𝜇, 𝜈).

Proof. By a standard characterization of TV, we can couple 𝑋 and 𝑌 so that Pr(𝑋 ̸=

𝑌 ) = TV(𝜇, 𝜈). Since |𝑓(𝑋) − 𝑓(𝑌 )| ≤ 2𝑀 a.s, we are done.

Proof of Theorem 25. Let 𝜖 > 0 be some parameter which will be optimized later. We

begin by applying Theorem 21 with ℓ = 1/(𝜖2 log 𝑞); let 𝑆 be the resulting set of size

at most ℓ. Let 𝜇 denote the Boltzmann distribution. For each assignment 𝑥𝑆 ∈ Σ|𝑆|

to the variables in 𝑆, let 𝜈𝑥𝑆
denote the product measure on Σ𝑛 for which E𝜈𝑥𝑆

[𝑋𝑖] =

E[𝑋𝑖|𝑋𝑆 = 𝑥𝑆]. Then, using the variational principle, the same computation as in

the binary Ising model case shows that

ℱ ≤ E𝑥𝑆

[︀
E𝜇[𝑓(𝑋)|𝑋𝑆 = 𝑥𝑆] + E𝜈𝑥𝑆

[ℎ(𝑋)] +𝐻𝜈𝑥𝑆
(𝑋)

]︀
+ ℓ log 𝑞.
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As before, we decompose the first term as

E𝑥𝑆
[E𝜇[𝑓(𝑋)|𝑋𝑆 = 𝑥𝑆] = E𝑥𝑆

[︀
E𝜈𝑥𝑆

[𝑓(𝑋)] +
[︀
E𝜇[𝑓(𝑋)|𝑋𝑆 = 𝑥𝑆] − E𝜈𝑥𝑆

[𝑓(𝑋)]
]︀]︀
.

Since 𝑓(𝑋) =
∑︀

𝐸∈([𝑛]
𝑘 ) 𝑓(𝑋𝐸), it follows by Lemma 20 that

E𝑥𝑆

⃒⃒
E𝜇[𝑓(𝑋)|𝑋𝑆 = 𝑥𝑆] − E𝜈𝑥𝑆

[𝑓(𝑋)]
⃒⃒
≤ 2

(︂
𝑛

𝑘

)︂
E𝑥𝑆

E
𝐸∼([𝑛]

𝑘 ) [‖𝑓𝐸‖∞TV ((𝜇|𝑋𝑆 = 𝑥𝑆)|𝑋𝐸
, 𝜈𝑥𝑆

|𝑋𝐸
)] .

By the Cauchy-Schwarz inequality, the right hand side is bounded by

2

√︃(︂
𝑛

𝑘

)︂
‖𝐽‖𝐹

√︁
E𝑥𝑆

E
𝐸∼([𝑛]

𝑘 )TV2 ((𝜇|𝑋𝑆 = 𝑥𝑆)|𝑋𝐸
, 𝜈𝑥𝑆

|𝑋𝐸
),

whereas by Pinsker’s inequality and the choice of 𝑆, we have

√︁
E𝑥𝑆

E
𝐸∼([𝑛]

𝑘 )TV2 ((𝜇|𝑋𝑆 = 𝑥𝑆)|𝑋𝐸
, 𝜈𝑥𝑆

|𝑋𝐸
) ≤

√︁
E

𝐸∼([𝑛]
𝑘 )𝐶 ((𝜇|𝑋𝑆)|𝑋𝐸

, 𝜈𝑋𝑆
|𝑋𝐸

)

≤ 𝑘
√

log 𝑞√
ℓ

.

To summarize, there exists some 𝑥𝑆 such that the associated product distribution

𝜈 := 𝜈𝑥𝑆
satisfies

ℱ ≤ E𝜈 [𝑓(𝑥) + ℎ(𝑥)] +𝐻(𝜈) + 2𝑘𝜖

√︃(︂
𝑛

𝑘

)︂
‖𝐽‖𝐹 log 𝑞 +

1

𝜖2
. (3.7)

Using
(︀
𝑛
𝑘

)︀
≤ 𝑛𝑘/𝑘! and optimizing the value of 𝜖 completes the proof.

3.5.1 Tightness of Theorem 25

In our formulation, there is a natural way to lift a 𝑘-MRF to an ℓ-MRF for any 𝑘 ≤ ℓ

by the following averaging procedure. Given a 𝑘-MRF specified by the collection
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(𝑓𝐸)
𝐸∈([𝑛]

𝑘 ), we define the collection of functions (𝑔𝐹 )
𝐹∈([𝑛]

ℓ ) by

𝑔𝐹 (𝑥𝐹 ) :=
1(︀

𝑛−𝑘
ℓ−𝑘

)︀ ∑︁
𝐸⊂𝐹,|𝐸|=𝑘

𝑓𝐸(𝑥𝐸).

This scaling is chosen so that for any 𝑥,

∑︁
𝐹∈([𝑛]

ℓ )

𝑔𝐹 (𝑥𝐹 ) =
∑︁

𝐹∈([𝑛]
ℓ )

1(︀
𝑛−𝑘
ℓ−𝑘

)︀ ∑︁
𝐸⊂𝐹,|𝐸|=𝑘

𝑓𝐸(𝑥𝐸) =
∑︁

𝐸∈([𝑛]
𝑘 )

𝑓𝐸(𝑥𝐸).

Hence, both the 𝑘-MRF and the ℓ-MRF correspond to the same distribution over

Σ𝑛, and thus have the same mean-field error. On the other hand, it follows from the

triangle inequality that

∑︁
𝐹∈([𝑛]

ℓ )

‖𝑔𝐹 (𝑥𝐹 )‖2∞ ≤

(︃ (︀
ℓ
𝑘

)︀(︀
𝑛−𝑘
ℓ−𝑘

)︀)︃2 ∑︁
𝐹∈([𝑛]

ℓ )

∑︁
|𝐸|=𝑘,𝐸⊂𝐹

‖𝑓𝐸(𝑥𝐸)‖2∞ =

(︀
ℓ
𝑘

)︀2(︀
𝑛−𝑘
ℓ−𝑘

)︀ ∑︁
𝐸∈([𝑛]

𝑘 )

‖𝑓𝐸(𝑥𝐸)‖2∞

In particular, denoting
∑︀

𝐹∈([𝑛]
ℓ ) ‖𝑔𝐹 (𝑥𝐹 )‖2∞ by ‖𝐽ℓ‖2𝐹 and

∑︀
𝐸∈([𝑛]

𝑘 ) ‖𝑓𝐸(𝑥𝐸)‖2∞ by

‖𝐽𝑘‖2𝐹 , we see that for 𝑘 and ℓ fixed,

‖𝐽ℓ‖2/3𝐹 ≤ 𝐶𝑘,ℓ

𝑛ℓ−𝑘
‖𝐽𝑘‖2𝐹 ,

so that

𝑛ℓ/3‖𝐽ℓ‖2/3𝐹 ≤ 𝐶𝑘,ℓ𝑛
𝑘/3‖𝐽𝑘‖2/3𝐹 .

Therefore by lifting any of the tight examples for Theorem 15, we get a corresponding

tightness result for 𝑘-MRFs:

Theorem 26. For fixed 𝑘 and 𝑞, Theorem 25 is tight up to constants. In other words,

there exists an absolute constant 𝑐𝑘,𝑞 > 0 such that for infinitely many 𝑘-MRFs on an

alphabet of size 𝑞,

ℱ − ℱ* ≥ 𝑐𝑘,𝑞
(︀
𝑛𝑘/2‖𝐽‖𝐹

)︀2/3
.

Remark 4. This tightness guarantee for mean-field also shows that Theorem 21 is

tight up to constants for any fixed 𝑘. No more general form of Conjecture 1 was

93



given for higher-order models, but combining the lifting result with the construction

from Theorem 17 gives an analogous tightness result in terms of average TV-distance

between product and joint distributions, ruling out improved bounds.

3.6 Algorithmic results: proof of Theorem 16

We now show how to go from the proof of our bounds on the quality of mean-field

approximation to concrete algorithms; this is a relatively straightforward application

of the Sherali-Adams relaxation. The only serious difficulty is to find a good proxy

for the entropy that is suitable for use with pseudo-distributions; this was solved in

[159] by introducing the following pseudo-entropy functional for level (𝑟+ 1) pseudo-

distributions:

�̃�𝑟(𝜇) = min
𝑆:|𝑆|≤𝑟

[︃
𝐻(𝑋𝑆) +

∑︁
𝑖

𝐻(𝑋𝑖|𝑋𝑆)

]︃
. (3.8)

By the chain rule for entropy, we see that for any 𝑟 and for any true probability distri-

bution 𝜇, 𝐻(𝜇) ≤ �̃�𝑟(𝜇). Moreover, essentially the standard proof of the concavity of

entropy shows that for any 𝑟, �̃�𝑟(𝜇) is a concave function of the pseudo-distribution

𝜇 (Lemma 8 of [159]). Then, we can write the Sherali-Adams relaxation to Eq. (3.6)

as

ℱ𝑆𝐴,𝑟+𝑘 := max
𝜇∈𝑆𝐴𝑟+𝑘

�̃�[𝑓(𝑋) + ℎ(𝑋)] + �̃�𝑟(𝜇). (3.9)

Note that by considering the Boltzmann distribution 𝜇 in the above optimization

problem, and using that 𝐻(𝜇) ≤ �̃�𝑟(𝜇), it follows that ℱ𝑆𝐴,𝑟+𝑘 ≥ ℱ .

Combining this relaxation with correlation rounding gives Algorithm SA-

MeanField for finding good mean-field solutions.

Remark 5. Instead of searching over all 𝑆 ⊆ [𝑛] with |𝑆| ≤ 𝑟, we may greedily

select 𝑆 vertex by vertex, stopping when the average total correlation E𝐸[𝐶(𝑋𝐸|𝑋𝑆)]

satisfies the guarantee of Theorem 21. That this works follows from a slightly modified

analysis of correlation rounding.

Theorem 27. Let 𝐻(𝑝) denote the entropy of Ber(𝑝). We have the following running

time and performance guarantees for Algorithm SA-MeanField.
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Algorithm 1 SA-MeanField

1. Find a pseudo-distribution 𝜇 maximizing Eq. (3.9) within 𝜖 additive error. This
can be done efficiently using (for example) the ellipsoid method.

2. For every 𝑆 ⊆ [𝑛] with |𝑆| ≤ 𝑟 and for every 𝑥𝑆 ∈ Σ𝑆, let 𝜈𝑆,𝑥𝑆
be the product

distribution given by matching the first moments of 𝜇 conditioned on 𝑋𝑆 = 𝑥𝑆.

3. Return the 𝜈𝑆,𝑥𝑆
which maximizes E𝜈 [𝑓(𝑋) + ℎ(𝑋)] +𝐻(𝜈).

1. The running time is

2𝑂(𝑛𝐻((𝑟+𝑘)/𝑛)+(𝑟+𝑘) log 𝑞) + poly log(1/𝜖).

2. The product distribution 𝜈 returned by the algorithm satisfies

0 ≤ ℱ − ℱ𝜈 ≤
√︂

4 log 𝑞

𝑟

𝑘𝑛𝑘/2‖𝐽‖𝐹√
𝑘!

+ 𝑟 log 𝑞 + 𝜖,

where

ℱ𝜈 := E𝜈 [𝑓(𝑋) + ℎ(𝑋)] +𝐻(𝜈).

3. We also have the following guarantee for the pseudo-distribution 𝜇 computed in

the first step:

0 ≤ ℱ𝑆𝐴,𝑟+𝑘(𝜇) −ℱ ≤
√︂

4 log 𝑞

𝑟

𝑘𝑛𝑘/2‖𝐽‖𝐹√
𝑘!

+ 𝜖,

where

ℱ𝑆𝐴,𝑟+𝑘(𝜇) := �̃�𝜇[𝑓(𝑋) + ℎ(𝑋)] + �̃�𝑟(𝜇).

Proof. The runtime is dominated by the first step, where we solve a convex program

with at most 𝑞𝑟+𝑘
(︀

𝑛
𝑟+𝑘

)︀
many variables and poly

(︀
𝑞𝑟+𝑘

(︀
𝑛

𝑟+𝑘

)︀)︀
many LP constraints.

Therefore, by standard guarantees for the ellipsoid method [84] we can solve Eq. (3.9)

within 𝜖 additive error in time poly
(︀
𝑞𝑟+𝑘

(︀
𝑛

𝑟+𝑘

)︀
, log(1/𝜖)

)︀
. Using the standard bound
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(which follows from sub-additivity of entropy)

log

(︂
𝑛

𝑟 + 𝑘

)︂
≤ 𝑛𝐻

(︂
𝑟 + 𝑘

𝑛

)︂
,

this quantity is at most poly
(︀
2𝑂(𝑛𝐻((𝑟+𝑘)/𝑛)+(𝑟+𝑘) log 𝑞), log(1/𝜖)

)︀
. Finally, we use the

AM-GM inequality to separate the 2𝑂(𝑛𝐻((𝑟+𝑘)/𝑛)+(𝑟+𝑘) log 𝑞) term in the bound.

For 2., note that 0 ≤ ℱ − ℱ𝜈 follows from the Gibbs variational principle, so we

only need to show the right inequality. We will deduce this from the stronger (since

ℱ𝑆𝐴,𝑟+2 ≥ ℱ) statement

ℱ𝑆𝐴,𝑟+2 −ℱ𝜈 ≤
√︂

4 log 𝑞

𝑟

𝑘𝑛𝑘/2‖𝐽‖𝐹√
𝑘!

+ 𝑟 log 𝑞 + 𝜖, (3.10)

which itself follows from

ℱ𝑆𝐴,𝑟+2(𝜇) −ℱ𝜈 ≤
√︂

4 log 𝑞

𝑟

𝑘𝑛𝑘/2‖𝐽‖𝐹√
𝑘!

+ 𝑟 log 𝑞, (3.11)

where 𝜇 is the 𝑟 + 2 pseudo-distribution returned in the first step. Now, note

that Eq. (3.11) follows by exactly the same proof as for Theorem 25 (in particu-

lar, Eq. (3.7)) using the fact that an 𝑟 + 𝑘 pseudo-distribution suffices to give the

correlation rounding guarantee on sets of size at most 𝑟, and recalling that in Eq. (3.7),

𝜖 = 1/
√
𝑟 log 𝑞.

Finally, 3. follows from Eq. (3.11), noting additionally that we can avoiding losing

the term 𝑟 log 𝑞 (equivalently, the term 1/𝜖2 in Eq. (3.7)), if we round instead to the

mixture of product distributions given by
∑︀

𝑥𝑆
𝑃 (𝑥𝑆)𝜈𝑆,𝑥𝑆

.

In particular, we obtain the following more general and precise version of Theo-

rem 16.

Corollary 4. Fix 𝑘 and 𝑞. If ‖𝐽𝑛‖𝐹 ≤ 𝑐𝑘,𝑞𝑓(𝑛)𝑛3/2−𝑘/2, where 𝑓(𝑛) → 0 as 𝑛 → ∞

and 𝑐𝑘,𝑞 > 0 is some constant depending only on 𝑘 and 𝑞, then ℱ𝑛 can be approximated

to within
√︀
𝑓(𝑛)𝑛 additive error in (sub-exponential) time 2

−𝑂
(︁
𝑛
√

𝑓(𝑛) log 𝑓(𝑛)
)︁

by Al-

gorithm SA-MeanField. Moreover, the algorithm outputs a product distribution
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achieving this approximation.

3.6.1 Faster algorithms using random subsampling

Until now, the algorithms we considered have been deterministic. However, in dense

instances there is a major advantage to using randomness: we can accurately estimate

ℱ by looking at a vanishingly small portion of the entire input instance. In [98]

the following structural guarantee is given, relating the free energy of small random

induced subgraphs to that of the original model: Fix a 𝑘-MRF on the vertex set [𝑛]

with interaction functions (𝑓𝐸)
𝐸∈([𝑛]

𝑘 ), and denote its free energy by ℱ . Consider a

random subset 𝑄 of [𝑛] of size |𝑄| = 𝑠. Consider also the 𝑘-MRF on the vertex set 𝑄

whose interaction functions are given by

(︂
𝑛𝑘−1𝑓𝐸
𝑠𝑘−1

)︂
𝐸∈(𝑄

𝑘)
.

We will denote the free energy of this 𝑘-MRF by ℱ𝑄.

Theorem 28 (Theorem 4, [98]). Let 𝜖 > 0 and suppose 𝑠 ≥ 106𝜔, where 𝜔 :=

𝑘7 log(1/𝜖)/𝜖8. Then, with probability at least 39/40:

⃒⃒⃒
ℱ − 𝑛

𝑠
ℱ𝑄

⃒⃒⃒
≤ 𝐶𝑞𝑘

4𝜖
(︀
𝑛𝑘/2‖𝐽‖𝐹 + 𝜖𝑛𝑘‖𝐽‖∞ + 𝜔𝑛/𝑠

)︀
,

where ‖𝐽‖∞ := sup𝐸 ‖𝑓𝐸‖∞.

Note that for the (rescaled) sampled 𝑘-MRF, it follows from Markov’s inequality

that

‖𝐽𝑄‖2𝐹 ≤ 10
𝑛2𝑘−2

(︀
𝑠
𝑘

)︀
𝑠2𝑘−2

(︀
𝑛
𝑘

)︀‖𝐽‖2𝐹 ≤ 10𝑒𝑘
(︁𝑛
𝑠

)︁𝑘−2

‖𝐽‖2𝐹

with probability at least 9/10. Whenever this happens, Theorem 27 shows that we

can estimate 𝑛ℱ𝑄/𝑠 to within additive error

√︂
40 log 𝑞

𝑟

𝑘𝑒𝑘/2𝑛𝑘/2‖𝐽‖𝐹√
𝑘!

+
𝑛𝜀

𝑠
≤ 10

√︂
log 𝑞

𝑟
𝑛𝑘/2‖𝐽‖𝐹 +

𝑛𝜀

𝑠
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in time 2𝑂(𝑠𝐻((𝑟+𝑘)/𝑠)+(𝑟+𝑘) log 𝑞) + poly log(1/𝜀). Taking 𝑟 = 1/(𝜖2 log 𝑞) and 𝜀 = 𝜖, it

follows that with probability at least 7/8, we can find an estimate ℱ̂ to ℱ in constant

time 2𝑂𝑘,𝑞( 1
𝜖2

log( 1
𝜖
)) such that

⃒⃒⃒
ℱ − ℱ̂

⃒⃒⃒
≤ 𝐶𝑞𝑘

4𝜖
(︀
𝑛𝑘/2‖𝐽‖𝐹 + 𝜖𝑛𝑘‖𝐽‖∞ + 𝜔𝑛/𝑠

)︀
.

Given an error probability 𝛿 > 0, by repeating the above procedure independently

𝑂(log(1/𝛿)) many times and returning the median estimate, the standard Chernoff

bound allows us to obtain the following.

Theorem 29. Let 𝛿, 𝜖 > 0 and suppose 𝑠 ≥ 106𝜔, where 𝜔 := 𝑘7 log(1/𝜖)/𝜖8. Then,

the above algorithm runs in time 2𝑂𝑘,𝑞( 1
𝜖2

log( 1
𝜖
)) log(1/𝛿) and returns an estimate ℱ̂

such that: ⃒⃒⃒
ℱ − ℱ̂

⃒⃒⃒
≤ 𝐶𝑞𝑘

4𝜖
(︀
𝑛𝑘/2‖𝐽‖𝐹 + 𝜖𝑛𝑘‖𝐽‖∞ + 𝜔𝑛/𝑠

)︀
with probability at least 1 − 𝛿.

3.6.2 Algorithmic tightness under Gap-ETH

It’s natural to ask if the tradeoff between graph density (more precisely, ‖𝐽‖𝐹 ) and

runtime in our algorithm is optimal. It turns out that under a variant of the Expo-

nential Time Hypothesis, this is indeed true. The variant we need is the following

conjecture known as ETHA or Gap-ETH [132]:

Conjecture 2 (Gap-ETH). There exist constants 𝜖, 𝑐 > 0 such that no algorithm

running in time 𝑂(2𝑐𝑛) can distinguish between a satisfiable 3-SAT formula and a

3-SAT formula with at most 1 − 𝜖 fraction of satisfiable clauses. Here, 𝑛 denotes the

number of clauses.

One of the motivations for this conjecture is that under the ordinary ETH, the

quasilinear-length PCP of Dinur [55] shows that there exists some 𝜖 > 0 such that no

algorithm running in time Ω(2𝑛/poly log(𝑛)) can distinguish between a satisfiable 3-SAT

formula and one with at most 1 − 𝜖 fraction of satisfiable clauses; if this PCP were
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of linear-length, then one could deduce Gap-ETH from ETH. Under Gap-ETH, one

immediately finds that ‖𝐽‖2𝐹 = 𝑜(𝑛) is the tight regime for approximating ℱ/𝑛 with

sub-exponential time algorithms.

Proposition 1. Under Gap-ETH, the following holds for some 𝜖 > 0:

1. There exist a constant 𝑐 > 0 and an infinite family of graphs with Θ(𝑛) many

edges on which it takes time at least 2𝑐𝑛 to approximate MAX-CUT within mul-

tiplicative error (1 − 𝜖).

2. There exist a constant 𝑐 > 0 and an infinite family of Ising models with ‖𝐽‖2𝐹 =

Θ𝜖(𝑛) on which it takes time at least 2𝑐𝑛 to approximate ℱ within additive error

𝜖𝑛.

Proof. 1. This follows directly from the statement of Gap-ETH and the existence of

an 𝐿-reduction from MAX-3SAT to MAX-CUT [150].

2. This follows from (1) by defining the corresponding anti-ferromagnetic Ising

model and sufficiently high inverse temperature 𝛽, which gives an approximation

guarantee for MAX-CUT as in Eq. (3.3).

Remark 6. Complexity-theoretic bounds straightforwardly imply lower bounds on the

number of Sherali-Adams rounds needed; for example Proposition 1 implies that for

these graphs Ω(𝑛) rounds of Sherali-Adams are needed to approximate MAX-CUT;

if, on the contrary, only 𝑜(𝑛) rounds sufficed, then solving the LP would give a

2𝑛𝐻(𝑜(𝑛)/𝑛) = 2𝑜(𝑛) time algorithm (see Theorem 27).

We can further apply reductions from [65] to get additional tightness results; they

originally stated their results under the assumption of ETH, but the same reductions

can be applied from Gap-ETH as well and give the following cleaner results.

Theorem 30 ([65]). Under Gap-ETH, there is some 𝜖 > 0 for which the following

holds.

1. Consider an arbitrary sequence 𝑑𝑛 with 𝑑𝑛 = 𝑜(𝑛). Then there does not exist

any algorithm which approximates MAX-CUT within multiplicative error (1−𝜖)

in time 2𝑜(𝑛/𝑑𝑛) on all graphs of average degree at least 𝑑𝑛.

99



2. There exist a constant 𝑐 > 0 and an infinite family of 𝑘-SAT instances with

Θ𝑘(𝑛𝑘−1) many clauses (all of which are distinct) on which it takes time at least

2𝑐𝑛 to approximate MAX-𝑘-SAT within multiplicative error (1 − 𝜖).

As with Proposition 1, these translate immediately to lower bounds for computing

partition functions by picking a sufficiently large inverse temperature 𝛽:

Corollary 5. Under Gap-ETH, there is some 𝜖 > 0 such that

1. Fix any sequence 𝑑𝑛 = 𝑜(𝑛). There is no algorithm which computes ℱ within

additive 𝜖𝑛 error in time 2𝑜(𝑑𝑛) on Ising models where ‖𝐽‖2𝐹 ≤ 𝑑𝑛.

2. For any fixed 𝑘 ≥ 2, there exist a constant 𝑐 > 0 and an infinite family of

binary 𝑘-MRFs with ‖𝐽‖𝐹 = Θ𝑘(𝑛3/2−𝑘/2) on which it takes time at least 2𝑐𝑛 to

approximate ℱ within 𝜖𝑛 additive error.

Proof. (1) follows directly from Theorem 30 using the same reduction as in Proposi-

tion 1. A slight generalization of this argument also shows (2): consider 𝜖 > 0 and a

family of 𝑘-SAT instances on 𝑛 variables and 𝑚𝑛 = Θ𝑘(𝑛𝑘−1) (distinct) clauses as in

part (2) of Theorem 30. For the reduction, we start from the 𝑘-SAT instance with 𝑛

variables and 𝑚 distinct clauses, and define for each 𝐸 ∈
(︀
[𝑛]
𝑘

)︀
𝑓𝐸(𝑥𝐸) :=

𝛽𝑛

𝑚
#{clauses depending only on the variables in 𝐸 which are satisfied by 𝑥𝐸},

where 𝛽 is a sufficiently large constant (depending on 𝜖) to be specified later. Hence,

‖𝐽‖2𝐹 :=
∑︁
𝐸

‖𝑓𝐸‖2∞ ≤ 𝛽2𝑛2

𝑚
22𝑘

since there are at most 2𝑘 distinct clauses supported on 𝑥𝐸 and at most 𝑚 subsets 𝐸

which support a clause. Therefore, if we assume that (2) is false, then for any 𝑐 > 0,

we can compute the free energy of this model within additive error 𝑛 in time at most

2𝑐𝑛 as long as
𝛽2𝑛2

𝑚
22𝑘 = Θ𝑘(𝑛3−𝑘),
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which is true since 𝑚 = Θ𝑘(𝑛𝑘−1) by assumption. On the other hand, since

∑︁
𝐸

𝑓𝐸(𝑥𝐸) =
𝛽𝑛

𝑚
#{satisfied clauses for assignment 𝑥},

and since there is at least one assignment 𝑥 for which the number of clauses satis-

fied is at least 𝑚(1 − 2−𝑘), it follows that if we take 𝛽 = 1/4𝜖, then an 𝑛-additive

approximation for the partition function gives an 𝜖𝑛-additive approximation for the

𝑘-SAT instances (by returning the approximation to the partition function multiplied

by 𝑚/𝑛𝛽), thereby contradicting part (2) of Theorem 30.

3.7 Conclusion

We presented a unified perspective on two major variational approaches to calculating

the free energy that hitherto seemed completely disparate: mean-field approximations

and convex relaxations. This view has both analytic benefits (we derived bounds

on the quality of mean-field approximations) and algorithmic benefits (we derived

algorithms for approximating the free energy up to the intractability limit).

We conclude with several open problems, and discuss some recent related devel-

opments which occurred after the original publication of this work:

1. As mentioned earlier, there is a straightforward example showing that up to a

constant, the exponent 2
3

is optimal in Theorem 15 for the natural univariate

quantity (𝑛‖𝐽‖𝐹 ). However, this example does not rule out other bounds of the

form 𝑂(𝑛1−𝛼‖𝐽‖2𝛼𝐹 ) for 𝛼 ∈ [0, 1]. As there is always a trivial bound 𝑂(𝑛) for

the mean-field approximation (consider the optimal point-mass distribution),

we may assume that ‖𝐽‖𝐹 = 𝑜(𝑛1/2) and ask about the supremum of all 𝛼

such that an upper bound of this form holds. The Curie-Weiss model at critical

temperature shows that we cannot take 𝛼 to be 0 without introducing additional

logarithmic factors in the upper bound. Progress in this direction has (since

the original publication of this work) been made in [10, 58] though the precise
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answer is not known.

2. It’s possible that the fRSB phase of the SK spin glass is more difficult to

correlation-round than the RS phase. Is one of these spin glass models ex-

tremal, in the sense that they can be used to get the optimal value of 𝜅*? If

not, what do the extremal distributions look like?

3. How many rounds do convex hierarchies (Sherali-Adams, Sum-of-Squares) need

to correctly estimate the value of the free energy and ground state of the SK

spin glass? (By computing the ground state, we mean to drop the entropy and

just consider the MAX-QP problem.) Are Ω(𝑛) rounds required? The question

of optimizing the zero-temperature SK model was previously asked by Andrea

Montanari and (since the original publication of this work) the recent work

[73] shows that a super-constant number of rounds are needed for SOS to solve

that problem (see also previous works cited there). The work [11] gave initial

evidence based on low-degree polynomials that a nearly-linear number of rounds

may be needed.

3.8 Appendix: Proof of Theorem 21

We will make use of the following information theoretic notion:

Definition 4. The multivariate mutual information of a collection of random vari-

ables 𝑋1, . . . , 𝑋𝑛 is defined to be

𝐼(𝑋1; · · · ;𝑋𝑛) =
𝑛∑︁

𝑚=1

(−1)𝑚−1
∑︁

𝑆⊂(𝑛
𝑚)

𝐻(𝑋𝑆).

Note that when 𝑛 = 2, this corresponds to the usual notion of mutual information

between two random variables. We may also define the conditional multivariate mu-

tual information by using the conditional entropy in the above equation; note that

102



the chain rule for entropy shows immediately that

𝐼(𝑋1; · · · ;𝑋𝑛) = 𝐼(𝑋1; · · · ;𝑋𝑛−1) − 𝐼(𝑋1; · · · ;𝑋𝑛−1|𝑋𝑛).

We will deduce Theorem 21 from the following lemma, which is slightly stronger.

Our statement and proof correct two errors found in [132, 199]: missing sign terms

in the relation between 𝐶(𝑋𝑆) and 𝐼(𝑋𝑆), and use of an invalid version of identity

Eq. (3.12) below which sums over tuples instead of sets.

Lemma 21. Let 𝑋1, . . . , 𝑋𝑛 be a collection of {±1}-valued random variables. Then,

for any 𝑘, ℓ ∈ [𝑛], there exists some 𝑡 ≤ ℓ such that:

E𝑆∼(𝑉
𝑡 )
E𝐹∼(𝑉 −𝑆

𝑘 )[𝐶(𝑋𝐹 |𝑋𝑆)] ≤ 𝑘2 log(2)

ℓ
.

Proof. We begin by showing that

E𝐹∼(𝑉
𝑘)[𝐶(𝑋𝐹 |𝑋𝑆)] =

𝑘∑︁
𝑟=2

(︂
𝑘

𝑟

)︂
(−1)𝑟E𝑅∼(𝑉

𝑟)
[𝐼(𝑋𝑅|𝑋𝑆)]. (3.12)

For simplicity, we will prove the unconditional version of this identity. The same

proof gives the conditional version as well. We start by noting that:

𝐶(𝑋1; · · · ;𝑋𝑛) =
∑︁

𝑅⊂[𝑛],|𝑅|≥2

(−1)|𝑅|𝐼(𝑋𝑅).

Therefore,

∑︁
𝐹⊆(𝑉

𝑘)

𝐶(𝑋𝐹 ) =
∑︁

𝑆⊆(𝑉
𝑘)

∑︁
𝑅⊆𝐹,|𝑅|≥2

(−1)|𝑅|𝐼(𝑋𝑅)

=
𝑘∑︁

𝑟=2

∑︁
𝑅⊆(𝑉

𝑟)

(︂
|𝑉 | − 𝑟

|𝑉 | − 𝑘

)︂
(−1)𝑟𝐼(𝑋𝑅),
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and dividing both sides by
(︀|𝑉 |

𝑘

)︀
gives:

E𝐹∼(𝑉
𝑘)[𝐶(𝑋𝐹 )] =

𝑘∑︁
𝑟=2

(︂
|𝑉 | − 𝑟

𝑘 − 𝑟

)︂(︂
|𝑉 |
𝑟

)︂(︂
|𝑉 |
𝑘

)︂−1

(−1)𝑟E𝑅∼(𝑉
𝑟)

[𝐼(𝑋𝑅)]

=
𝑘∑︁

𝑟=2

(︂
𝑘

𝑟

)︂
(−1)𝑟E𝑅∼(𝑉

𝑟)
[𝐼(𝑋𝑅)],

as desired.

Next, we consider the key quantity:

𝑄 :=
ℓ∑︁

𝑡=0

E𝑆∼(𝑉
𝑡 )
E𝐹∼(𝑉 −𝑆

𝑘 )[𝐶(𝑋𝐹 |𝑋𝑆)] =
𝑘∑︁

𝑟=2

(︂
𝑘

𝑟

)︂
(−1)𝑟

ℓ∑︁
𝑡=0

E𝑆∼(𝑉
𝑡 )
E𝑅∼(𝑉 −𝑆

𝑟 )[𝐼(𝑋𝑅|𝑋𝑆)],

where the second equality follows from Eq. (3.12). By the chain rule for mutual

information, we have the telescoping sum:

ℓ∑︁
𝑡=0

E𝑆∼(𝑉
𝑡 )
E𝑅∼(𝑉 −𝑆

𝑟 )[𝐼(𝑋𝑅|𝑋𝑆)] =
ℓ∑︁

𝑡=0

(︁
E𝑆∼(𝑉

𝑡 )
E𝐸∼(𝑉 −𝑆

𝑟−1 )[𝐼(𝑋𝐸|𝑋𝑆)] − E𝑆∼( 𝑉
𝑡+1)

E𝐸∼(𝑉 −𝑆
𝑟−1 )[𝐼(𝑋𝐸|𝑋𝑆)]

)︁
= E𝐸∼( 𝑉

𝑟−1)
[𝐼(𝑋𝐸)] − E𝑆∼( 𝑉

ℓ+1)
E𝐸∼(𝑉 −𝑆

𝑟−1 )[𝐼(𝑋𝐸|𝑋𝑆)],

so that

𝑄 =
𝑘∑︁

𝑟=2

(︂
𝑘

𝑟

)︂
(−1)𝑟

(︁
E𝐸∼( 𝑉

𝑟−1)
[𝐼(𝑋𝐸)] − E𝑆∼( 𝑉

ℓ+1)
E𝐸∼(𝑉 −𝑆

𝑟−1 )[𝐼(𝑋𝐸|𝑋𝑆)]
)︁

≤
(︂
𝑘

2

)︂
E𝑖∼𝑉 [𝐻(𝑋𝑖)] +

𝑘∑︁
𝑟=3

(︂
𝑘

𝑟

)︂
(−1)𝑟

(︁
E𝐸∼( 𝑉

𝑟−1)
[𝐼(𝑋𝐸)] − E𝑆∼( 𝑉

ℓ+1)
E𝐸∼(𝑉 −𝑆

𝑟−1 )[𝐼(𝑋𝐸|𝑋𝑆)]
)︁
,

where in the second line, we have separated out the 𝑟 = 2 term, and dropped the

nonpositive term −
(︀
𝑘
2

)︀
E𝑆∼( 𝑉

ℓ+1)
E𝑖∼𝑉−𝑆[𝐻(𝑋𝑖|𝑋𝑆)].

Now, recall that

(︂
𝑘

𝑟

)︂
=

(︂
𝑘 − 1

𝑟 − 1

)︂
+

(︂
𝑘 − 2

𝑟 − 1

)︂
+ · · · +

(︂
𝑟 − 1

𝑟 − 1

)︂
.
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Hence,

𝑄 ≤
(︂
𝑘

2

)︂
E𝑖∼𝑉 [𝐻(𝑋𝑖)] −

𝑘−1∑︁
𝑑=2

𝑑+1∑︁
𝑟=3

(−1)𝑟−1

(︂
𝑑

𝑟 − 1

)︂(︁
E𝐸∼( 𝑉

𝑟−1)
[𝐼(𝑋𝐸)] − E𝑆∼( 𝑉

ℓ+1)
E𝐸∼(𝑉 −𝑆

𝑟−1 )[𝐼(𝑋𝐸|𝑋𝑆)]
)︁

=

(︂
𝑘

2

)︂
E𝑖∼𝑉 [𝐻(𝑋𝑖)] −

𝑘−1∑︁
𝑑=2

(︁
E𝐹∼(𝑉

𝑑)[𝐶(𝑋𝐹 )] − E𝑆∼( 𝑉
ℓ+1)

E𝐹∼(𝑉 −𝑆
𝑑 )[𝐶(𝑋𝐹 |𝑋𝑆)]

)︁
≤
(︂
𝑘

2

)︂
E𝑖∼𝑉 [𝐻(𝑋𝑖)] +

𝑘−1∑︁
𝑑=2

E𝑆∼( 𝑉
ℓ+1)

E𝐹∼(𝑉 −𝑆
𝑑 )[𝐶(𝑋𝐹 )]

≤
(︂
𝑘

2

)︂
E𝑖∼𝑉 [𝐻(𝑋𝑖)] +

𝑘−1∑︁
𝑑=2

E𝑆∼( 𝑉
ℓ+1)

E𝐹∼(𝑉 −𝑆
𝑑 )

[︃∑︁
𝑖∈𝐹

𝐻(𝑋𝑖)

]︃

≤

(︃(︂
𝑘

2

)︂
+

𝑘−1∑︁
𝑑=2

𝑑

)︃
E𝑖∼𝑉 [𝐻(𝑋𝑖)]

≤ 𝑘2 log(2),

where we have used Eq. (3.12) in the second line. Recalling the definition of 𝑄, we

see that there exists some 𝑡 ∈ {0, 1, . . . , ℓ} such that

E𝑆∼(𝑉
𝑡 )
E𝐹∼(𝑉 −𝑆

𝑘 )[𝐶(𝑋𝐹 |𝑋𝑆)] ≤ 𝑘2 log(2)

ℓ
.

In order to deduce Theorem 21 from this lemma, we need the following two simple

properties of the total correlation.

• For any 𝐹, 𝑆 ⊆ [𝑛], 𝐶(𝑋𝐹 |𝑋𝑆) = 𝐶(𝑋𝐹∩𝑆𝑐|𝑋𝑆). This follows since by the chain

rule for entropy

𝐶(𝑋𝐹 |𝑋𝑆) =
∑︁
𝑗∈𝐹

𝐻(𝑋𝑗|𝑋𝑆) −𝐻(𝑋𝐹 |𝑋𝑆)

=
∑︁

𝑗∈𝐹∩𝑆𝑐

𝐻(𝑋𝑗|𝑋𝑆) −𝐻(𝑋𝐹∩𝑆|𝑋𝑆) −𝐻(𝑋𝐹∩𝑆𝑐 |𝑋𝑆)

=
∑︁

𝑗∈𝐹∩𝑆𝑐

𝐻(𝑋𝑗|𝑋𝑆) −𝐻(𝑋𝐹∩𝑆𝑐 |𝑋𝑆)

= 𝐶(𝑋𝐹∩𝑆𝑐|𝑋𝑆).
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• For any 𝑆 ⊆ [𝑛] and 𝐹 ⊆ 𝐸 ⊆ [𝑛], 𝐶(𝑋𝐹 |𝑋𝑆) ≤ 𝐶(𝑋𝐸|𝑋𝑆). Indeed, by the

chain rule for entropy, and since conditioning decreases entropy

𝐶(𝑋𝐸|𝑋𝑆) =
∑︁
𝑖∈𝐸

𝐻(𝑋𝑖|𝑋𝑆) −𝐻(𝑋𝐸|𝑋𝑆)

=

[︃∑︁
𝑖∈𝐹

𝐻(𝑋𝑖|𝑋𝑆) −𝐻(𝑋𝐹 |𝑋𝑆)

]︃
+

⎡⎣ ∑︁
𝑖∈𝐸∖𝐹

𝐻(𝑋𝑖|𝑋𝑆) −𝐻(𝑋𝐸∖𝐹 |𝑋𝑆∪𝐹 )

⎤⎦
≥ 𝐶(𝑋𝐹 |𝑋𝑆) + 𝐶(𝑋𝐸∖𝐹 |𝑋𝑆∪𝐹

).

Proof of Theorem 21. Fix an arbitrary 𝑆 ∈
(︀
𝑉
𝑡

)︀
. We will show that

E𝐹∼(𝑉
𝑘)[𝐶(𝑋𝐹 |𝑋𝑆)] ≤ E𝐸∼(𝑉 −𝑆

𝑘 )[𝐶(𝑋𝐸|𝑋𝑆)], (3.13)

which combined with Lemma 21 proves the claim. To prove Eq. (3.13), consider a

coupling where we first sample 𝐹 ∼
(︀
𝑉
𝑘

)︀
and then choose 𝐸 uniformly at random from

those subsets 𝑇 ∈
(︀
𝑉−𝑆
𝑘

)︀
for which 𝐹 ∩𝑆𝑐 ⊂ 𝑇 . Then by symmetry, the marginal law

on 𝐸 is uniform on
(︀
𝑉−𝑆
𝑘

)︀
. Under this coupling, using the above two properties of the

total correlation, we have

𝐶(𝑋𝐹 |𝑋𝑆) = 𝐶(𝑋𝐹∩𝑆𝐶 |𝑋𝑆) ≤ 𝐶(𝑋𝐸|𝑋𝑆);

taking the expectation over 𝐹 and 𝐸 proves Eq. (3.13), and hence the result.
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Chapter 4

Landscape Analysis of Naive

Mean-field Approximation in

Ferromagnetic Models

In this chapter, we continue the discussion of the naive mean-field free energy intro-

duced in Chapter 3. Here we analyze the behavior of the natural first-order method

for computing the naive mean-field free energy in ferromagnetic (a.k.a. attractive)

models on arbitrary graphs — the same class of models considered in Chapter 2. The

main result is that in ferromagnetic models, iterating the naive mean field equations

from all-ones initialization provably solves the variational problem, even though it is

nonconvex. Iterating the equations is the standard heuristic for solving such varia-

tional problems in general; we note that this problem can also provably be solved

in polynomial time using submodular optimization, see e.g. [115] for this and more

general results. We also note that a well-studied optimization method related to the

TAP free energy is called “approximate message passing” (AMP) and it applies to

quite different situations from the ones considered here (e.g. to the SK model and

similar dense random models); see [43] and references within. A longer discussion of

the above, as well as a related result for belief propagation which builds upon the

work of [52], is given in [111].
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Definition 13. An Ising model is ferromagnetic (with consistent field) if 𝐽𝑖𝑗 ≥ 0 for

all 𝑖 and ℎ𝑖 ≥ 0 for every 𝑖. (We also can allow ℎ𝑖 ≤ 0 for all 𝑖, but this is equivalent

after flipping signs.)

As above, we recall the (naive) mean-field approximation to the free energy is

given by maximizing the functional

Φ𝑀𝐹 (𝑥) :=
1

2
𝑥𝑇𝐽𝑥+ ℎ · 𝑥+

∑︁
𝑖

𝐻

(︂
𝐵𝑒𝑟

(︂
1 + 𝑥𝑖

2

)︂)︂
(4.1)

where 𝐻(𝐵𝑒𝑟(𝑝)) = −𝑝 log 𝑝− (1− 𝑝) log(1− 𝑝) is the entropy of a Bernoulli random

variable. By considering the first-order optimality conditions for (4.1), one arises at

the mean-field equations

𝑥 = tanh⊗𝑛(𝐽 · 𝑥+ ℎ) (4.2)

where tanh⊗𝑛 denotes entry-wise application of tanh. The mean-field iteration is the

natural iterative algorithm which starts with some 𝑥0 and applies (4.2) iteratively to

search for a fixed point; it is a natural variant of gradient descent for this problem.

Theorem 31. Fix an arbitrary ferromagnetic Ising model parameterized by 𝐽, ℎ

and let 𝑥* be a global maximizer of Φ𝑀𝐹 . Initializing with 𝑥(0) = 1⃗ and defining

𝑥(1), 𝑥(2), . . . by iterating the mean-field equations, we have that1 for every 𝑡 ≥ 1,

0 ≤ Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥(𝑡)) ≤ min

{︃
‖𝐽‖1 + ‖ℎ‖1

𝑡
, 2

(︂
‖𝐽‖1 + ‖ℎ‖1

𝑡

)︂4/3
}︃
.

This result cannot hold for arbitrary Ising models, as even approximating the mean-

field free energy is NP-hard in general Ising models with anti-ferromagnetic interac-

tions [97].

1In this theorem and throughout, we use the notation ‖𝐽‖1, ‖𝐽‖∞ to refer to the corresponding
ℓ1, ℓ∞ norms of 𝐽 when viewed as a vector of entries.
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4.1 Convergence of Mean-Field Iteration

In this section, we give the proof of Theorem 31 by analyzing the mean-field iteration.

Organizationally, we split this theorem into two (corresponding to the two seperate

bounds implied by the min): we prove the first bound in the theorem as Theorem 32

and the second 𝑂(1/𝑡4/3) bound as Theorem 33.

4.1.1 Main convergence bound

In this section we prove the first (𝑂(1/𝑡)) bound appearing in Theorem 31, the bound

which is better for small 𝑡; we consider this to be the more significant bound because

it gives a meaningful convergence result even when 𝑡 = 𝑂(1). A key observation in

the proof is that the functional Φ𝑀𝐹 is actually concave on a certain subset of the

space of product distributions, and that the iteration stays in this region because

the iteration is monotone w.r.t. the partial order structure; this allows us to show

progress at each step.

For the analysis of mean-field iteration, it will be very helpful to split the updates

up into two steps:

𝑦(𝑡+1) := 𝐽𝑥(𝑡) + ℎ

𝑥(𝑡+1) := tanh⊗𝑛(𝑦(𝑡+1)).

Lemma 22. A global maximizer of Φ𝑀𝐹 is in [0, 1]𝑛.

Proof. For any 𝑥, if |𝑥| denotes the coordinate wise absolute value then we observe

Φ𝑀𝐹 (𝑥) ≤ Φ𝑀𝐹 (|𝑥|) since 𝐽, ℎ are entrywise nonnegative and the entropy term is

preserved. Therefore if 𝑥 is a global maximizer then so is |𝑥|, and by compactness of

[−1, 1]𝑛 there exists at least one global maximizer.

Lemma 23. There exists at most one critical point of Φ𝑀𝐹 in (0, 1]𝑛.

Proof. Suppose there exist two critical points 𝑦 and 𝑧. Recall that being a critical

point is equivalent to solving the mean-field equation 𝑦 = tanh⊗𝑛(𝐽𝑦 + ℎ). Consider
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the line through 𝑦 and 𝑧; this line intersects the boundary region [0, 1]𝑛 ∖ (0, 1]𝑛 at

some point; we parameterize the line as 𝑥(𝑡) so that 𝑥(0) is on this boundary, i.e.

𝑥(0)𝑖 = 0 for some 𝑖, 𝑥(𝑡1) = 𝑦 and 𝑥(𝑡2) = 𝑧. Without loss of generality we assume

that 𝑡1 < 𝑡2. Now we consider the behavior of the function

𝑔(𝑡) := tanh(𝐽𝑖 · 𝑥(𝑡) + ℎ𝑖) − 𝑥(𝑡)𝑖

on this line. Observe that by definition 𝑔(0) = tanh(𝐽𝑖 · 𝑥(0) + ℎ𝑖) − 0 ≥ 0 and

𝑔(𝑡1) = 0. It follows from strict concavity that 𝑔(𝑡2) < 0 since 𝑡2 > 𝑡1, so 𝑧 cannot be

a fixed point, which gives a contradiction.

Based on these lemmas, we define 𝑥* to be the global maximizer of Φ𝑀𝐹 in [0, 1]𝑛.

Define 𝑆 := {𝑥 ∈ (0, 1]𝑛 : 𝑥𝑖 ≥ 𝑥*𝑖 }.

Lemma 24. The mean-field free energy functional Φ𝑀𝐹 is concave on 𝑆.

Proof. First we claim that Φ𝑀𝐹 is concave at 𝑥*. If 𝑥* is on the interior of [0, 1]𝑛,

then this follows from the second-order optimality condition. From the mean-field

equations (first order optimality condition) we see that it’s impossible that there are

any coordinates such that 𝑥*𝑖 = 1, and that if the graph is connected and there is a

single coordinate such that 𝑥*𝑖 = 0, that the entire vector 𝑥* = 0. If 𝑥* = 0, then the

maximum eigenvalue of 𝐽 must be 1, so the free energy functional is globally concave

– otherwise, by the Perron-Frobenius theorem there exists a eigenvector of 𝐽 with

all nonnegative entries and with eigenvalue greater than 1, from which we see that

𝑥* = 0 cannot be the global optimum.

Now, it is easy to see that Φ𝑀𝐹 is concave on all of 𝑆, becuase if 0 ≤ 𝑥 ≤ 𝑦

coordinate-wise then ∇2Φ𝑀𝐹 (𝑥) ⪰ ∇2Φ𝑀𝐹 (𝑦), which follows because

∇2Φ𝑀𝐹 (𝑥) −∇2Φ𝑀𝐹 (𝑦) = (1/4)
∑︁
𝑖

(𝐻 ′′((1 + 𝑥)/2) −𝐻 ′′((1 + 𝑦)/2))𝑒𝑖𝑒
𝑇
𝑖 ⪰ 0.

since 𝐻 ′′((1 + 𝑥)/2) = −2
1−𝑥2 .
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Theorem 32 (Main bound in Theorem 31). Suppose that 𝑥0 ∈ 𝑆 and define

(𝑥(𝑡), 𝑦(𝑡))∞𝑡=1 by iterating the mean-field equations. Then for every 𝑡, 𝑥(𝑡) ∈ 𝑆. Fur-

thermore

Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥(𝑡)) ≤ ‖𝐽‖1 + ‖ℎ‖1
𝑡

.

Proof. To show that 𝑥(𝑡) ∈ 𝑆, observe that the mean-field iteration is monotone: if

𝑥 ≤ 𝑥′, then tanh⊗𝑛(𝐽𝑥 + ℎ) ≤ tanh⊗𝑛(𝐽𝑥′ + ℎ). Therefore, because 𝑥* ≤ 𝑥0 we see

that 𝑥* = tanh⊗𝑛(𝐽𝑥* + ℎ) ≤ tanh⊗𝑛(𝐽𝑥(0) + ℎ) = 𝑥(1) and so on iteratively.

To prove the convergence bound, first note that 𝜕
𝜕𝑥𝑖

Φ𝑀𝐹 (𝑥) = 𝐽𝑖·𝑥+ℎ𝑖−tanh−1(𝑥𝑖)

and then observe by Lemma 24 and concavity that

Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥(𝑡)) ≤ ⟨∇Φ𝑀𝐹 (𝑥(𝑡)), 𝑥* − 𝑥𝑡⟩

≤ ‖∇Φ𝑀𝐹 (𝑥(𝑡))‖1

=
∑︁
𝑖

| tanh−1(𝑥
(𝑡)
𝑖 ) − (𝐽𝑥(𝑡) + ℎ)𝑖| =

∑︁
𝑖

𝑦
(𝑡)
𝑖 − 𝑦

(𝑡+1)
𝑖

where the second inequality was by Hölder’s inequality and ‖𝑥*−𝑥(𝑡)‖∞ ≤ 1, and the

last equality follows from the definition of 𝑦(𝑡) and because 𝑦(𝑡+1) ≤ 𝑦(𝑡) coordinate-

wise. We can also see that Φ𝑀𝐹 (𝑥(𝑡)) is a monotonically increasing function of 𝑡 by

considering the path between 𝑥(𝑡) and 𝑥(𝑡+1) which updates one coordinate at a time,

as the gradient always has non-positive entries along this path. Therefore if we sum

over 𝑡 we find that

Φ𝑀𝐹 (𝑥*)−Φ𝑀𝐹 (𝑥(𝑇 )) ≤ 1

𝑇

𝑇∑︁
𝑡=1

(Φ𝑀𝐹 (𝑥*)−Φ𝑀𝐹 (𝑥(𝑡))) ≤ 1

𝑇

𝑛∑︁
𝑖=1

(𝑦
(1)
𝑖 −𝑦(𝑇+1)

𝑖 ) ≤ ‖𝐽‖1 + ‖ℎ‖1
𝑇

since 𝑦(𝑇+1)
𝑖 ≥ 0 and 𝑦(1)𝑖 ≤

∑︀
𝑗 𝐽𝑖𝑗 + ℎ𝑖 ≤ ‖𝐽𝑖‖1 + ℎ𝑖.

The following simple example shows that the above result is not too far from

optimal, in the sense that an asymptotic rate of 𝑜(1/𝑡2) is impossible. We take

advantage of the fact that when the model is completely symmetrical, the behavior

of the update can be reduced to a 1-dimensional recursion, which is a standard trick

(see e.g. [138, 151]).
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Example 5. Consider any 𝑑-regular graph with no external field and edge weight 𝛽 =

1/𝑑, which corresponds to the naive mean field prediction for the critical temperature.

By symmetry, analyzing the mean field iteration reduces to the 1d recursion 𝑥 ↦→

tanh(𝑥) which behaves like 𝑥 ↦→ 𝑥 − 𝑥3/3 near the fixed point 𝑥 = 0. Solving this

recurrence, we see that 𝑥 converges to 0 at rate Θ(1/
√
𝑡). In terms of 𝑥, the estimated

mean field free energy is (𝑛/2)𝑥2+𝑛𝐻(1+𝑥
2

), so by expanding we see that the estimated

free energy converges at a Θ(1/𝑡2) rate in this example.

4.1.2 Faster Asymptotic Rate

The above theorem and lower bound leave a gap between 𝑂(1/𝑡) and Ω(1/𝑡2) for the

asymptotic rate of the mean-field iteration. This section is devoted to showing that

for large 𝑡, we can obtain an improved asymptotic rate of 𝑂(1/𝑡4/3) for the mean-field

iteration using a slightly more involved variant of the argument from the previous

section. The key insight is that we can obtain some control of ‖𝑥− 𝑥*‖∞ by consider

the behavior of higher-order terms when expanding around 𝑥*, and this can be used

to get better bounds on the convergence in objective.

Lemma 25. Suppose that 𝑥 ∈ 𝑆. Then

‖∇Φ𝑀𝐹 (𝑥)‖1 ≥
‖𝑥− 𝑥*‖44
‖𝑥− 𝑥*‖∞

where 𝑥* is as above, the global maximizer of Φ𝑀𝐹 in [0, 1]𝑛.

Proof. Recall that

∇Φ𝑀𝐹 (𝑥) = 𝐽𝑥+ ℎ−
∑︁
𝑖

tanh−1(𝑥𝑖)𝑒𝑖.

Since 𝑥* is a critical point and local maximum, so ∇Φ𝑀𝐹 (𝑥*) = 0 and ∇2Φ𝑀𝐹 (𝑥*) ⪯

0, then using that 𝑑2

𝑑𝑥2 tanh−1(𝑥) = 2𝑥
(1−𝑥2)2

, we see that by applying the fundamental
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theorem of calculus twice that

∇Φ𝑀𝐹 (𝑥) = 𝐽(𝑥− 𝑥*) −
∑︁
𝑖

𝑒𝑖(tanh−1(𝑥𝑖) − tanh−1(𝑥*𝑖 ))

= ∇2Φ𝑀𝐹 (𝑥*)(𝑥− 𝑥*) −
∑︁
𝑖

𝑒𝑖

∫︁ 𝑥𝑖

𝑥*
𝑖

∫︁ 𝑧

𝑥*
𝑖

2𝑦

(1 − 𝑦2)2
𝑑𝑦𝑑𝑧

and so

⟨𝑥* − 𝑥,∇Φ𝑀𝐹 (𝑥)⟩ ≥
∑︁
𝑖

(𝑥𝑖 − 𝑥*𝑖 )

∫︁ 𝑥𝑖

𝑥*
𝑖

∫︁ 𝑧

𝑥*
𝑖

2𝑦

(1 − 𝑦2)2
𝑑𝑦𝑑𝑧

≥
∑︁
𝑖

(𝑥𝑖 − 𝑥*𝑖 )

∫︁ 𝑥𝑖

𝑥*
𝑖

∫︁ 𝑧

𝑥*
𝑖

2𝑦𝑑𝑦𝑑𝑧

=
∑︁
𝑖

(𝑥𝑖 − 𝑥*𝑖 )(𝑥
3
𝑖 /3 − (𝑥*𝑖 )

3/3 − (𝑥𝑖 − 𝑥*𝑖 )(𝑥
*
𝑖 )

2)

=
∑︁
𝑖

(𝑥𝑖 − 𝑥*𝑖 )
2(𝑥2𝑖 + 𝑥𝑖𝑥

*
𝑖 ) ≥

∑︁
𝑖

(𝑥𝑖 − 𝑥*𝑖 )
4

where in the last inequality we used 𝑥𝑖 ≥ 𝑥*𝑖 ≥ 0. Finally the result follows combining

the above with ⟨𝑥*−𝑥,∇Φ𝑀𝐹 (𝑥)⟩ ≤ ‖𝑥*−𝑥‖∞‖∇Φ𝑀𝐹‖1 by Hölder’s inequality.

Theorem 33 (Second bound in Theorem 31). Suppose that 𝑥0 ∈ 𝑆 and define

(𝑥𝑡, 𝑦𝑡)
∞
𝑡=1 by iterating the mean-field equations. Then for every 𝑡, 𝑥𝑡 ∈ 𝑆. Fur-

thermore for any 𝑡 ≥ 1,

‖𝑥𝑡 − 𝑥*‖3∞ ≤ ‖𝐽‖1 + ‖ℎ‖1
𝑡

and

Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥2𝑡) ≤
(︂
‖𝐽‖1 + ‖ℎ‖1

𝑡

)︂4/3

.

Proof. From Lemma 25 we see that

‖𝑥− 𝑥*‖3∞ ≤ ‖𝑥− 𝑥*‖44
‖𝑥− 𝑥*‖∞

≤ ‖∇Φ𝑀𝐹 (𝑥)‖1

and so as in the proof of Theorem 32 we see that for any 𝑇 ,

‖𝑥𝑇−𝑥*‖3∞ ≤ 1

𝑇

𝑇∑︁
𝑡=1

‖𝑥𝑡−𝑥*‖3∞ ≤ 1

𝑇

𝑇∑︁
𝑡=1

‖∇Φ𝑀𝐹 (𝑥𝑡)‖1 =
1

𝑇

𝑛∑︁
𝑖=1

(𝑦1,𝑖−𝑦𝑇+1,𝑖) =
‖𝐽‖1 + ‖ℎ‖1

𝑇
.
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Therefore for any 𝑡′ > 𝑇 we see by convexity and Hölder’s inequality

Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥𝑡) ≤ ⟨∇Φ𝑀𝐹 (𝑥𝑡), 𝑥
* − 𝑥𝑡⟩ ≤

(︂
‖𝐽‖1 + ‖ℎ‖1

𝑇

)︂1/3

‖∇Φ𝑀𝐹 (𝑥𝑡)‖1

=

(︂
‖𝐽‖1 + ‖ℎ‖1

𝑇

)︂1/3∑︁
𝑖

| tanh−1(𝑥𝑡,𝑖) − (𝐽𝑥𝑡 + ℎ)𝑖|

=

(︂
‖𝐽‖1 + ‖ℎ‖1

𝑇

)︂1/3∑︁
𝑖

(𝑦𝑡,𝑖 − 𝑦𝑡+1,𝑖)

and summing this over 𝑡′ = 𝑇 + 1 to 2𝑇 and telescoping we see that

Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥2𝑇 ) ≤ 1

𝑇

2𝑇∑︁
𝑡′=𝑇+1

(Φ𝑀𝐹 (𝑥*) − Φ𝑀𝐹 (𝑥𝑡′)) ≤
(︂
‖𝐽‖1 + ‖ℎ‖1

𝑇

)︂1/3∑︁
𝑖

(𝑦𝑇,𝑖 − 𝑦2𝑇,𝑖)

≤
(︂
‖𝐽‖1 + ‖ℎ‖1

𝑇

)︂4/3

which proves the result.
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Chapter 5

Learning GGMs without a

Well-Conditioning Assumption

5.1 Introduction

A Gaussian Graphical Model (GGM) in 𝑛 dimensions is a probability distribution

with density

𝑝𝑋(𝑥) =
1√︀

(2𝜋)𝑛 det Σ
exp

(︀
− (𝑥− 𝜇)𝑇Σ−1(𝑥− 𝜇)/2

)︀
where 𝜇 is the mean and Σ is the covariance matrix. In other words, it is just a

multivariate Gaussian. What makes the Gaussian interesting as a graphical model

is that its Markov Random Field structure, in the sense of Chapter 1, is encoded

entirely by the support of the precision matrix Θ = Σ−1, and so it is very useful to

recover this graphical structure.

GGMs have wide-ranging applications in machine learning and the natural and

social sciences where they are one of the most popular ways to model statistical

relationships between observed variables — see e.g. [196, 137, 95, 187] among many

other references. It is important to note that in most of the settings in which GGMs

are applied, the number of observed samples is small compared to the dimensionality

of the data. This means that in practice, it is only possible to learn the GGM
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in a meaningful sense under some sort of sparsity assumption. We will make the

assumption that the rows and columns of Θ are 𝑑-sparse – i.e., the case where the

dependency graph 𝐺 has maximum degree at most 𝑑.

From a theoretical standpoint, there is vast literature on learning sparse GGMs

under various assumptions. Many approaches focus on sparsistency – where the goal

is to learn the sparsity pattern of Θ assuming some sort of lower bound on the strength

of non-zero interactions. This is a natural objective because once the sparsity pattern

is known, estimating the entries of Θ is straightforward (e.g. one can use ordinary

least squares); because of this, the problems of learning GGMs and sparse linear

regression are very closely related. A popular approach to learning GGMs is the

Graphical Lasso1 [67] which solves the following convex program:

max
Θ≻0

(︁
log det(Θ) − ⟨̂︀Σ,Θ⟩ − 𝜆‖Θ‖1

)︁
where ̂︀Σ is the empirical covariance matrix and ‖Θ‖1 is the ℓ1 norm of the matrix as

a vector.

It is known that if Θ satisfies various conditions, which typically include an as-

sumption similar to or stronger than the restricted eigenvalue (RE) condition (a

condition which, in particular, lower bounds the smallest eigenvalue of any 2𝑑 × 2𝑑

principal submatrix of Σ) then Graphical Lasso and related ℓ1 methods can succeed

in recovering the graph structure (see e.g. [135, 203]). For the Graphical Lasso itself,

under some incoherence assumptions on the precision matrix (stronger than RE), it

has been shown [157] that the sparsity pattern of the precision matrix can be accu-

rately recovered from 𝑂((1/𝛼2)𝑑2 log(𝑛)) samples; here 𝛼 is an incoherence parameter

and we are omitting the dependence on some additional terms. We emphasize that

this is only the best known theoretical guarantee — the performance in real life often

seems better than this pessimistic bound.

Another popular approach to learning GGMs is the CLIME estimator which solves

1We note that [67] did not introduce this objective (see discussion there), but rather an op-
timization procedure used to maximize it, and Graphical Lasso technically refers to this specific
optimization procedure.

116



the following linear program:

min
Θ

‖Θ‖1 s.t. ‖̂︀ΣΘ − 𝐼‖∞ ≤ 𝜆

The analysis of CLIME assumes a bound 𝑀 on the maximum ℓ1-norm of any row of

the inverse covariance (given that the 𝑋𝑖’s are standardized to unit variance). This

is also a type of condition number assumption, although with respect to a different

geometry than RE: more precisely, since

𝑀 = max
‖𝑢‖∞≤1

‖Θ𝑢‖∞

it can be thought of as the condition number of Σ when viewed as an operator mapping

ℓ∞ → ℓ∞; this can be smaller than the normal Euclidean condition number. CLIME

succeeds at structure recovery when given

𝑚 & 𝐶𝑀4 log 𝑛

samples (here for simplicity we are assuming the entries Θ𝑖𝑗 are either zero or bounded

away from zero by an absolute constant 𝑐 so that 𝑀 = Ω(𝑑)).

While these works show that sparse GGMs can be estimated when the number of

samples is logarithmic in the dimension, there is an important caveat in their guar-

antees. They all need to assume that Θ is well-conditioned, and differ mainly in the

strength of their assumption: roughly speaking, one of the stronger assumptions2 used

in this literature is that Θ is well-conditioned in the usual sense, and the weakest is the

ℓ∞ → ℓ∞ condition number bound assumed by CLIME. This is often heuristically jus-

tified by the belief that a small condition number is information-theoretically required

for structure recovery to be possible. However, and as we will discuss later, recent

works have pointed out that this is actually not the case — the correct information-

theoretic condition is significantly weaker than even the assumption which CLIME

2Indeed, there are even stronger assumptions such as quantitative versions of faithfulness which
we do not discuss but are needed to prove the correctness of the popular PC algorithm [102].
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makes. Indeed, the fact that bounded condition number is not the right assumption

for structure recovery is hinted at by the fact that it does not behave nicely under

benign operations like rescaling individual variables. In the high-dimensional setting,

bounded condition number can be a somewhat strong condition: in particular, this

assumption is violated by simple and natural models (e.g. a graphical model on a

path such as a time series), where these bounds turn out to be polynomial in the

dimension.

In this paper, we study some fundamental classes of GGMs and show how to learn

them efficiently in the low-sample regime under the correct information-theoretic as-

sumption, even when they are ill-conditioned. We also complement our results with

examples that break both previous algorithms and our own algorithms for learning

general sparse GGMs. This leaves open the interesting question (raised in [140], and

closely related to similar questions about sparse linear regression [201]) of whether

some sparse GGMs may be computationally hard to learn with so few samples. Fi-

nally, we show experimentally that popular approaches, like the Graphical Lasso and

CLIME, do in fact need a polynomial in 𝑛 number of samples even in some relatively

benign examples (and where our algorithm does succeed).

Our work was motivated by a recent paper of Misra, Vuffray and Lokhov [140]

which studied the question of how many samples are needed information-theoretically

to learn sparse GGMs in the ill-conditioned case. They required only the following

natural non-degeneracy condition (which also appeared in [4, 192]): that for every 𝑖, 𝑗

with Θ𝑖𝑗 ̸= 0, we have a lower bound on the conditional partial correlation3 below:

𝜅 ≤ |Θ𝑖𝑗|√︀
Θ𝑖𝑖Θ𝑗𝑗

=
|Cov(𝑋𝑖, 𝑋𝑗 | 𝑋∼𝑖,𝑗)|√︀

Var(𝑋𝑖|𝑋∼𝑖,𝑗)Var(𝑋𝑗|𝑋∼𝑖,𝑗)
.

Intuitively, this assumption means that if we have already observed all of the coordi-

nates of 𝑋 except for 𝑋𝑖 and 𝑋𝑗, then the remaining randomness over 𝑋𝑖 and 𝑋𝑗 has

a correlation coefficient of at least 𝜅. This condition is the correct one because: (1)

3Here 𝑋∼𝑖 (resp. 𝑋∼𝑖,𝑗) denotes the random vector formed by deleting coordinate 𝑖 (resp. 𝑖, 𝑗)
of 𝑋; please see Preliminaries for further details and formal definitions of conditional variances,
covariances.
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the absence of an edge in the GGM exactly corresponds to zero partial correlation in

the above sense, (2) it has the correct symmetries — it is not affected by rescaling

of any coordinate, and (3) it is the same condition which is needed in the classical,

low-dimensional OLS regression 𝑡-test [104] to successfully reject the null hypothesis

that the true coefficient of 𝑋𝑗 is zero when regressing 𝑋𝑖 off of 𝑋∼𝑖.

Crucially, this assumption could be much weaker than any condition number

bound, because it allows for the random variables to be strongly correlated. Here

is a basic example (from [140]): suppose we have three Gaussians 𝑋1, 𝑋2 and 𝑋3

where 𝑋1 is heavily correlated with 𝑋2. In this case, the condition number of Σ will

explode as 𝑋1 and 𝑋2 become more correlated. Nevertheless, it remains possible to

test if there is a 𝜅-nondegenerate edge between 𝑋1 and 𝑋3, as long as we correctly

adjust for the effect of 𝑋2. In contrast, if we were unaware of the value of 𝑋2, it

would be very difficult to test for the same edge between 𝑋1 and 𝑋3, because the 𝑋1

and 𝑋2 edge contributes a very large amount of variance to 𝑋1.

The work of [140] exhibited an algorithm achieving this requirement — more

precisely, they showed that it is always possible to estimate the graph structure with

𝑚 ≥ 𝐶
𝑑

𝜅2
log 𝑛

samples without requiring any additional assumptions, clarifying that further con-

dition number assumptions are indeed unnecessary. On the other hand, the result

of [192] gives an information-theoretic lower bound4 of Ω((1/𝜅2) log 𝑛) on the sam-

ple complexity for structure recovery. To summarize, the upper bound of [140] differs

from the lower bound of [192] by exactly a factor of 𝑑 (it is unknown what the optimal

dependence is) and otherwise is optimal.

However, the algorithm of [140] runs in time 𝑛𝑂(𝑑), making it impossible to run

except for small instances. This is because their algorithm is based on a reduction to

a sequence of sparse linear regression problems that can all be ill-conditioned. It is

4A subtle point arises when interpreting this bound, because 𝑑 and 𝜅 are closely related quantities
(see e.g. Lemma 31 below). In the lower bound constructions of [192] they have 𝑑 = 𝑂(1/𝜅) and
the term dominating their bound depends only on 𝜅.
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believed that such problems exhibit wide gaps between what is possible information

theoretically and what is possible efficiently. For instance, it is known that the general

sparse linear regression problem under fixed design is NP-hard5 [146, 201]. Misra

et al. solve the sparse linear regression problems using exhaustive search over 𝑑-size

neighborhoods (hence the 𝑛𝑂(𝑑) time). This leads to the main question we study:

Can we get efficient and practical algorithms for learning GGMs (run-time ≪

𝑛𝑜(𝑑)) in some natural, but still ill-conditioned, cases?

5.2 Results and Technical Overview

We show that for some popular and widely-used classes of GGMs—attractive GGMs

and walk-summable GGMs — it is possible to achieve both logarithmic sample com-

plexity (the truly high-dimensional setting) and computational efficiency, even when

Θ is ill-conditioned.

Attractive GGMs

First we study the class of attractive GGMs, in which the off-diagonal entries of Θ

are non-positive. In terms of the correlation structure, this means that all partial

correlations are nonnegative. There are several practical motivations for studying at-

tractive GGMs: in phylogenetic applications, observed variables are often positively

dependent because of shared ancestry [206]; in various copula models that are pop-

ular in finance, we posit a latent global market variable that also leads to positive

dependence [145]; see also [193] for more discussion.

A well-studied special case (which essentially captures all attractive GGMs —

see Lemma 40) is the discrete Gaussian Free Field (GFF), in which case Θ is the

generalized Laplacian associated to a weighted graph. This is a natural model because

the Laplacian encourages “smoothness” with respect to the graph structure: see e.g.

[167]; for this reason, the GFF is an important modeling tool in active and semi-

supervised learning (see [205, 204, 128]); the GFF also arises in nature from a number

5For proper learning, where the algorithm is required to output a 𝑑-sparse estimator.
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of diverse phenomena in random walks, statistical physics, and random surfaces [54,

66, 167].

In the GFF setting, Θ will be ill-conditioned, even in the weak ℓ∞ → ℓ∞ sense,

whenever some pair of vertices have large effective resistance between them (e.g.,

paths, rectangular grids, etc.,); informally, it happens when the graph has many

sparse cuts.

We show experimentally (in Appendix 5.11) that simple examples, like the union

of a long path and some small cliques, do indeed foil the Graphical Lasso and other

popular methods. Intuitively, this is because GFFs on a path exhibit long-range

correlations that violate the assumptions used in current works — our examples show

that the assumptions made in the literature are to some extent necessary for these

algorithms. This analysis reveals a blind spot of the Graphical Lasso: It performs

poorly in the presence of long dependency chains, which could lead to missing some

important statistical relationships in applications.

We propose the following simple algorithm and show that it succeeds in learning

the graph structure of attractive GGMs. This algorithm, called GreedyAndPrune,

does the following to learn the neighborhood of node 𝑖:

1. Set 𝑆 = ∅ and let 𝜈 > 0 be a thresholding parameter.

2. (Greedy/OMP step) Repeat the following 𝑇 times: set 𝑗 to be the the minimizer

of ̂︂Var(𝑋𝑖|𝑋𝑆, 𝑋𝑗) and add 𝑗 to 𝑆.

3. (Pruning step) For each 𝑗 ∈ 𝑆: if ̂︂Var(𝑋𝑖|𝑋𝑆) > (1 − 𝜈)̂︂Var(𝑋𝑖|𝑋𝑆∖{𝑗}), remove

𝑗 from 𝑆.

4. Return 𝑆 as the neighborhood of node 𝑖.

where ̂︂Var indicates the variance is estimated from sample, using Ordinary Least

Squares. A more detailed description of the algorithm is given in the Appendix. In

the literature, this is called a forward-backward method [118].
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Theorem 34 (Informal version of Theorem 40). Fix a 𝜅-nondegenerate attrac-

tive GGM. The GreedyAndPrune algorithm runs in polynomial time and re-

turns the true neighborhood of every node 𝑖 with high probability with 𝑚 ≥

𝐶(𝑑/𝜅2) log(1/𝜅) log(𝑛) samples, where 𝐶 is a universal constant.

Our algorithm matches the sample complexity of the previous best (inefficient) algo-

rithms for this setting [4, 140] and obtains, up to log factors, the optimal dependence

on 𝜅 for fixed 𝑑.

Analysis for Attractive GGMs The main intuition behind the algorithm and

the crux of our analysis is the following: For attractive GGMs the conditional vari-

ance of a variable 𝑋𝑖 when we condition on a set 𝑋𝑆 is a monotonically decreasing

and supermodular function of 𝑆. This fact was previously observed in the GFF

setting (independently in [128, 129]) with relatively involved proofs; we give a new,

short proof of this fact using just basic linear algebra. Other works such as [30, 48]

have considered supermodularity in somewhat related regression settings, but with

important differences (see Further Discussion).

Given the supermodularity result, we next need to address the issue that we don’t

have access to actual conditional variances, but only their empirical estimates. To

achieve the efficient sample complexity of Theorem 34 we carefully analyze the align-

ment between the true decrement of conditional variance in one step, Var(𝑋𝑖|𝑋𝑆) −

Var(𝑋𝑖|𝑋𝑆∪{𝑗}) and the noisy empirical decrement ̂︂Var(𝑋𝑖|𝑋𝑆) −̂︂Var(𝑋𝑖|𝑋𝑆∪{𝑗}). A

subtle obstacle is that we need to control the differences ̂︂Var(𝑋𝑖|𝑋𝑆)−̂︂Var(𝑋𝑖|𝑋𝑆∪{𝑗})

without assuming too much accuracy on the estimates ̂︂Var(𝑋𝑖|𝑋𝑆) themselves. For-

tunately, this can be shown using matrix concentration, combined with some tools

from classical low-dimensional regression tests [104].

To complete the analysis, we need a new structural result for attractive GGMs

which bounds the conditional variance after the first step of greedy, so that only

a bounded number of iterations of greedy are required to learn a superset of the

neighborhood. We prove this by reducing to the setting of discrete GFFs, where we

can use an electrical argument based on effective resistances. Formally, we prove the
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following new structural result for walk-summable GGMs:

Lemma 26 (Lemma 34 of the Appendix). Suppose that 𝑖 is a node with 𝑑 ≥ 1

neighbors in an attractive or walk-summable GGM. Then there exists a neighbor 𝑗

such that

Var(𝑋𝑖|𝑋𝑗) ≤
4𝑑

Θ𝑖𝑖

= 4𝑑 · Var(𝑋𝑖|𝑋∼𝑖).

Previous work on Learning Attractive GGMs. Some prior work on learning

attractive GGMs have focused on the Maximum Likelihood Estimator (MLE). This

was shown to exist and be unique using connections to total positivity in [170, 117],

but we are not aware of any sample complexity guarantees in the context of structure

learning. It also is likely broken by the same examples (see Section 5.11) as the

Graphical Lasso (since the constrained MLE is the same as the Graphical Lasso with

zero regularization and a non-negativity constraint). Finally, the recent work [193]

studied adaptive estimators for learning GGMs, but only for the case where the model

is well-conditioned.

Optimal Information-Theoretic Bounds. The previous literature leaves open

the information-theoretically optimal sample complexity for learning attractive

GGMs. We resolve this question: a simple estimator based on ℓ0-constrained least

squares, which we refer to as SearchAndValidate, achieves sample complexity

matching the information-theoretic lower bounds of [192] (whose instances can easily

be made attractive) up to constants:

Theorem 35 (Informal version of Theorem 44). In a 𝜅-nondegenerate attractive

GGM, as long as 𝑚 = Ω((1/𝜅2) log(𝑛)), with high probability Algorithm SearchAnd-

Validate returns the true neighborhood of every node 𝑖. This algorithm runs in time

𝑂(𝑛𝑑+1).

The results of [192] imply that Ω((1/𝜅2) log(𝑛)) samples are required even to dis-

tinguish the empty graph from a graph with a single 𝜅-nondegenerate edge in an

unknown location. This bound does not depend on 𝑑, which may appear surpris-

ing. This is possible because 𝑑 ≤ 1/𝜅2 in 𝜅-nondegenerate attractive GGMs — see
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Lemma 31. We also give a version of the above result for general models with sample

complexity 𝑂(𝑑 log(𝑛)/𝜅2) and time complexity 𝑂(𝑛𝑑+1), giving a faster alternative

to [140] with the same sample complexity guarantee.

Theorem 35 is proved by a careful analysis of the signal-vs-entropy tradeoff be-

tween choosing the correct support (which is best in expectation) and an incorrect

support with 𝑘 disagreements for each 𝑘. To do this we again need to study struc-

tural properties of the GGM; we establish something similar to a “margin condition”

in empirical process theory [186]. Precisely analyzing the differences in empirical risk

again builds upon some classical ideas in regression testing [104].

This result also identifies an important barrier to improving the information the-

oretic lower bound of [192], as their lower-bound instances can easily be made at-

tractive. If this bound is not tight for general GGMs, it appears significantly new

ideas will be needed to separate the sample complexity of learning attractive and

non-attractive GGMs — they must rely upon the ability of negative correlations to

create nontrivial cancellations.

Walk-Summable GGMs

While attractive GGMs are natural in some contexts, in others they are not. For

example, in Genome Wide Association Schemes (GWASs), genes typically have in-

hibitory effects too. This leads us to another popular and well-studied class of GGMs:

the walk-summable models. These were originally introduced by Maliutov, Johnson,

and Willsky [131] to explain the convergence properties of Gaussian Belief Propaga-

tion observed in practice (see also [194]).

All attractive GGMs are walk-summable, as are other important classes of GGMs

like pairwise normalizable and non-frustrated models [131]. A number of equivalent

definitions are known for walk-summability. The following definition is perhaps the

easiest to work with: Θ is walk-summable if making all off-diagonal entries of Θ

negative preserves the fact that Θ is positive definite. Perhaps less well known, walk-

summable models are exactly those GGMs with Symmetric Diagonally Dominant

(SDD, see Preliminaries) precision matrices under a rescaling of the coordinates —
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see e.g. [27, 160]. In the linear algebra literature [27], a walk-summable matrix Θ is

referred to as a symmetric 𝐻-matrix with nonnegative diagonal.

Analysis for learning Walk-Summable GGMs. The analysis of learning walk-

summable models is considerably different from the attractive case, because super-

modularity (and even weak supermodularity [48]) of the conditional variance fails to

hold – see Section 5.10.1. Regardless, we are still able to prove that GreedyAnd-

Prune learns all walk-summable models with sample complexity that scales logarith-

mically with 𝑛. We also propose a variant HybridMB that achieves better sample

complexity.

The key idea in this analysis is that a single greedy step can serve as a kind of

sparse weak preconditioner, roughly in terms of the ℓ∞ → ℓ∞ geometry considered

in CLIME. More precisely, we show that after a single step of greedy, the unknown

sparse regression vector has small ℓ1-norm (independent of 𝑛 and scaling correctly

with the noise level). This is shown in the proof of Theorem 49, based on effective

resistance arguments relatd to Lemma 26. The ℓ1-norm bound not only implies that

greedy works, but also that appropriate invovations of ℓ1-based methods (like the

Lasso) can now be guaranteed to work. We emphasize that such bounds do not hold

without our “weak preconditioning” step.

Concretely, we propose an algorithm called HybridMB based on this idea and

show that it learns walk-summable GGMs without any condition number dependence.

This algorithm does the following to learn the neighborhood of node 𝑖, where some

technical details are left to the full algorithm description given in the Appendix:

1. (Greedy step) Set 𝑗 to be the minimizer of ̂︂Var(𝑋𝑖|𝑋𝑗).

2. (Lasso with implicit weak preconditioning) Solve for 𝑤, 𝑎 in

min
𝑤,𝑎:‖𝑤‖1≤𝜆

Ê

⎡⎣⎛⎝𝑋𝑖 −
∑︁

𝑘/∈{𝑖,𝑗}

𝑤𝑘
𝑋𝑘√︁̂︂Var(𝑋𝑘|𝑋𝑗)

− 𝑎𝑋𝑗

⎞⎠2⎤⎦ .
We detail the selection of 𝜆 in the full version of the algorithm — see the
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Appendix.

3. (Pruning step) We perform a pruning step similar to GreedyAndPrune to

zero out some of the entries of 𝑤, and to test if 𝑗 is an actual neighbor.

4. Return 𝑗 (if it passed the test) and the remaining support of 𝑤 as the neigh-

borhood of 𝑖.

The analysis of HybridMB uses the aforementioned structural results for walk-

summable models and a statistical analysis for the regression problem arising after

the greedy step. The regression analysis is similar in spirit to the usual generalization

bounds for ℓ1-constrained regression but slightly more subtle. The key insight is that

the output of the algorithm is the same if we replace 𝑋𝑘 by 𝑋𝑘 − E[𝑋𝑘|𝑋𝑗]; this

change of basis is unknown to the algorithm, but the analysis is much easier because

𝑋𝑗 becomes independent of the other regressors.

Theorem 36 (Informal version of Theorem 50). Fix a walk-summable, 𝜅-

nondegenerate GGM. Algorithm HybridMB runs in polynomial time and returns

the true neighborhood of every node 𝑖 with high probability given 𝑚 ≥ 𝐶(𝑑/𝜅4) log(𝑛)

samples, where 𝐶 is a universal constant.

We can also prove a similar (but slightly weaker) guarantee for Algo-

rithm GreedyAndPrune — see Theorem 51. For context, we note that prior to

our work, Anandkumar, Tan, Huang and Willsky [4] gave an inefficient 𝑛𝑂(𝑑) time

algorithm for learning walk-summable models with similar guarantees and requiring

some additional assumptions.

The above structure learning result requires 𝜅-nondegeneracy and sparsity of the

entire model. However, it is proved using the following general result for sparse linear

regression, which requires only a joint walk-summability assumption:

Theorem 37 (Informal version of Theorem 49). Suppose that 𝑌 = 𝑤 ·𝑋+ 𝜉 where 𝑤

is 𝑑-sparse, 𝜉 ∼ 𝑁(0, 𝜎2) is independent of multivariate Gaussian r.v. 𝑋 ∼ 𝑁(0,Σ),

and suppose that the joint distribution of (𝑋1, . . . , 𝑋𝑛, 𝑌 ) is a walk-summable GGM.
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Given 𝑚 samples from this model, WS-Regression runs in polynomial time and

returns �̂� such that

E[(𝑤 ·𝑋 − �̂� ·𝑋)2] = 𝑂(𝜎2
√︀
𝑑 log(𝑛)/𝑚)

with high probability.

Although this result gives a “slow rate” of
√︀

1/𝑚, it is quite different from the

usual slow rate guarantee for the Lasso. The latter guarantees an upper bound on

the prediction error of the form 𝑂(𝜎𝑅𝑊
√︀

log(𝑛)/𝑚+ 𝑅𝑊 log(𝑛)/𝑚) where 𝑅 is an

ℓ1 norm bound on 𝑤 and 𝑊 is an ℓ∞ bound on 𝑋, see e.g. [158, 174]. To interpret

this, we can rescale the problem so that 𝑅,𝑊 = Θ(1). Then Theorem 49 guarantees

error on the order of the noise level 𝜎2 using 𝑂(𝑑 log(𝑛)) samples – in comparison, the

standard slow rate result only guarantees error on the order of 𝜎 plus an additional

term. This difference is the key to achieving structure recovery from 𝑂(log 𝑛) samples:

𝜎 can be orders of magnitude smaller compared to 𝑅𝑊 in our applications. Compared

to ℓ0-constrained least squares, which requires runtime 𝑂(𝑛𝑑), the above result is

computationally efficient and still has the correct dependence on 𝑑 and 𝜎2.

General Models. There do exist some well-conditioned GGMs which are

not walk-summable. However, our analysis actually shows that our methods

(GreedyAndPrune, HybridMB) also recover similar sample complexity bounds to

[38] under their assumptions (the aforementioned ℓ∞ → ℓ∞ condition number bound)

— see Theorem 52. Therefore, our results are a strict extension of the situation

considered in prior work.

Non-Gaussian Models. It’s well-known that many results for Gaussian Graphical

Models can be generalized to other distributions in the following sense: if we can

learn a GGM with precision matrix Θ = Σ−1, then the result will generally extend

to estimating Θ = Σ−1 for 𝑋 with sufficiently strong concentration assumptions.

The reason is that for any result which depends only on the first two moments of

𝑋 (i.e. any quantity definable in terms of Σ, 𝜇), we can generalize it to such an 𝑋
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by considering the Gaussian with matching first and second moments, and higher

moments are generally needed only for concentration purposes.

We briefly note that the guarantees for our algorithms will also extend in this

sense if, for any 𝑤 ∈ R𝑛, the sub-Gaussian constant of 𝑤 · 𝑋 is upper bounded by

𝐶Var(𝑤 ·𝑋) for a fixed constant 𝐶, as the needed concentration estimates generalize

[188]. On the other hand, for non-Gaussian distributions the connection between Θ

and conditional independence will not generally hold.

5.2.1 Further Discussion

GGMs vs Ising Models. There exist parallels but also surprisingly significant

differences between learning GGMs and Ising models. For Ising models, Bresler [30]

gave a greedy algorithm that builds a superset of the neighborhood around each node

and then prunes to learn the true graph structure using 𝑂(𝑓(𝑑) log 𝑛) samples and

under some relatively mild assumptions. This greedy algorithm is able to perform

structure learning in Ising models even when they exhibit long range correlations,

which was previously considered a difficult case to analyze. However in our setting,

and unlike the previously described situation for Ising models, variables have real

values and can have arbitrarily small or large variance. It turns out this changes the

problem dramatically, as it means that the inter-node fluctuations in the random field

(which contribute to Var(𝑋𝑖)) may be orders of magnitude larger than the per-node

fluctuations (corresponding to Var(𝑋𝑖|𝑋∼𝑖)). This is exactly the setting 𝜎 ≪ 𝑅𝑊

discussed in the context of sparse linear regression. Related problems can also arise

in Ising models when the ℓ1 norm is large, as in (for example) the Sherrington-

Kirkpatrick model [107].

As a result of this difference, greedy methods fail to learn general GGMs from

𝑂(polylog(𝑛)) samples (see Section 5.12), so any analysis of greedy methods must rely

on structural results for a subclass of models. The same issue comes up when learning

the model directly from ℓ1-constrained regression guarantees as in [190, 109] — in fact,

we will see in Section 5.11 that natural methods based only on ℓ1 regularization fail

even in some relatively simple attractive GGMs (where greedy works).
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Sparse Linear Regression and Submodularity. As previously mentioned, Das

and Kempe [48] studied the problem of sparse regression without assuming the re-

stricted eigenvalue condition. While in sparse regression, in order to learn the param-

eters accurately (in additive error) some bound on the condition number is needed,

they studied the problem of selecting a subset of columns that maximizes squared

multiple correlation (a.k.a. minimizes mean squared error). They then gave ap-

proximation guarantees for greedy algorithms under an approximate submodularity

condition; however, they did not address the natural random design setting where

submodularity is assumed in the infinite-sample limit, but we need to analyze the be-

havior in a finite-sample setting (essentially, they studied this as a purely algorithmic

problem).

Our algorithm for attractive models follows the same supermodularity-based strat-

egy, but has no knowledge of the true model satisfying weak supermodularity except

for the samples it sees. Therefore it requires a careful analysis of the interaction be-

tween the greedy iteration and noise. In the more general setting of walk-summable

GGMs, we show the conditional variance does not satisfy an approximate supermod-

ularity condition with any constant submodularity ratio. (See Remark 13.)

Some other Related Work on Sparse Linear Regression. In the literature

on sparse regression, it is well known that the analyses of the Lasso which work

well in a compresssed sensing style setting (i.e. with restricted eigenvalues, incoher-

ent columns, etc.) is not always the correct tool to use when the coordinates of 𝑋

(columns of the design matrix) are highly correlated — see e.g. [185, 88, 41]. For

example, the work of Koltchinskii and Minsker [114] discusses this issue in the con-

text of Brownian motion and other situations and develops general new guarantees

for ℓ1-penalized regression which apply under correlated design (as well as infinite

dimensional settings). They consider the case where the response is a linear combina-

tion of well-separated measurements in time, which is incomparable to the situation

we analyze. It would be interesting to see if the ideas used in Algorithms HybridMB

and GreedyAndPrune can be used in some of these other settings.
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5.3 Organization

Here we briefly outline the structure of the remainder of this section, which contains

the proofs of the main Theorems as well as some simple simulations and experiments

validating the theory. Each item below corresponds to a single section below.

1. Preliminaries: we explain some fundamental facts about GGMs and fix the

notation we use throughout the rest of the paper.

2. Structural results for walk-summable models: In this section, we use the con-

nection between walk-summability, SDD matrices, and electrical circuits to es-

tablish a number of new structural results about walk-summable GGMs that

will be useful for learning them. As mentioned earlier, the fundamental fact

we establish in this section which is needed in all of our algorithms is that a

single step of a greedy method (Orthogonal Matching Pursuit) can serve as a

“weak preconditioner” for sparse linear regression, in terms of ℓ1/ℓ∞ geometry.

In particular, we establish the key Lemma 26 stated above.

3. Estimating changes in conditional variance: In this section, we recall the various

facts we will need about ordinary least squares regression and prove a useful

quantitative estimate for estimating changes in conditional variance.

4. Learning all attractive GGMs efficiently: we use further structural results about

supermodularity in attractive GGMs and the results developed in the previous

two sections to prove Theorem 34.

5. Information-theoretic optimal learning of attractive GGMs: In this section, we

show how the result of the previous section can be improved as far as sample

complexity if we are willing to sacrifice runtime, by giving a very precise analysis

of a natural algorithm using ℓ0-constrained squares, proving Theorem 35.

6. Hybrid ℓ1-regression guarantees: In this section, in preparation for proving our

results about learning general walk-summable models, we develop the needed

statistical guarantees for a variant of the LASSO where a single coordinate
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in the regression is left unregularized and also give an analysis of Orthogonal

Matching Pursuit in essentially the same setup.

7. Regression and structure learning in walk-summable models: In this section, we

first show that supermodularity fails in walk-summable models, even if we ask

for supermodularity to only hold approximately. We then proceed to establish

Theorem 37 for sparse linear regression in general walk-summable models and

use this result to derive Theorem 36 for structure recovery in 𝜅-nondegenerate

walk-summable models.

8. Simulations and Experiments: In this section, we compare the methods pro-

posed in this paper to those in a number of previous works on both simulated

and real data. The simulations show that all previous methods indeed fail to

achieve competitive sample complexity in simple settings where the precision

matrix is not well-conditioned.

9. Some difficult examples: In this short final section, we give some examples

which are not walk-summable and which break both the algorithms proposed

previous to this paper and in this paper as well. We show that these examples

are, however, not computationally hard to learn.

5.4 Preliminaries

In this section we set out some notation and basic facts about GGMs which will be

used throughout.

Notations. Given a GGM with precision matrix Θ, 𝑑 will always denote the max-

imum degree of the underlying graph. Thus, Θ has at most 𝑑 + 1 nonzero entries

in each row. For a vector 𝑥 and index 𝑖, 𝑋∼𝑖 = ((𝑋𝑗) : 𝑗 ̸= 𝑖). For a square matix

𝑆 ∈ R𝑘×𝑘 and 𝐼 ⊆ [𝑘], 𝑆𝐼 denotes the 𝐼 × 𝐼 principal submatrix of 𝑆. We will say

a symmetric matrix 𝑀 is SDD (Symmetric Diagonally Dominant) if its diagonal is

nonnegative and for every row 𝑖, 𝑀𝑖𝑖 ≥
∑︀

𝑗 ̸=𝑖 |𝑀𝑖𝑗|. We often use the notation Ê to
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denote the empirical expectation, i.e. expectation taken over the sample of data given

to the algorithm.

We recall that conditioning on 𝑋𝑖 = 𝑥𝑖 for any 𝑥𝑖 yields a new GGM with the

precision matrix having row 𝑖 and column 𝑖 deleted. In particular, the conditional

precision matrix does not depend on the value of 𝑥𝑖 chosen. Similarly, the value of

the mean 𝜇 does not affect the covariance structure at all — so 𝜇 does not play an

interesting role in the structure learning problem and we assume 𝜇 = 0 without loss

of generality in what follows; handling 𝜇 ̸= 0 just requires adding a constant term to

every regression problem. We summarize the facts that we use the most below.

Fact 1 ([119]). Let 𝑋 be drawn from a mean 0 GGM with precision matrix Θ. Then,

for any 𝑖, 𝑋𝑖|𝑋∼𝑖 = 𝑥∼𝑖 is distributed as 𝑁(⟨𝑤(𝑖), 𝑥∼𝑖⟩, 1/Θ𝑖𝑖) where 𝑤(𝑖) is the vector

with 𝑤(𝑖)
𝑗 = −Θ𝑖𝑗/Θ𝑖𝑖.

Thus, if we fix an index 𝑖, then samples 𝑋 from the GGM can be interpreted as

a linear regression problem as (𝑋∼𝑖, 𝑋𝑖) where 𝑋𝑖 = ⟨𝑤(𝑖), 𝑋𝑖⟩ + 𝑁(0, 1/Θ𝑖𝑖). This

establishes the basic connection between learning GGMs and linear regression: if we

can solve the above regression problem well, perhaps we can recover the non-zero

entries of Θ from the coefficients. But as is well known in the literature, just fitting

the coefficients using ordinary least squares is not sufficient (or necessarily possible)

as we have very few samples.

By positive definiteness, we have Θ𝑖,𝑖 ≥ 0 and Θ𝑖,𝑖Θ𝑗,𝑗 − Θ2
𝑖,𝑗 ≥ 0, or equivalently

0 ≤ |Θ𝑖,𝑗 |√
Θ𝑖,𝑖Θ𝑗,𝑗

≤ 1. To identify the graph we need the present edges to not be too

weak. So it makes sense to assume (following the notation of [4, 140]) there is a 𝜅 > 0

such that

𝜅 ≤ |Θ𝑖,𝑗|√︀
Θ𝑖,𝑖Θ𝑗,𝑗

≤ 1 (5.1)

Definition 14 ([4, 140]). We say a GGM is 𝜅-nondegenerate if it satisfies (5.1) for

all 𝑖, 𝑗 such that Θ𝑖𝑗 ̸= 0.

Conditional Variance. Conditional variances of the form Var(𝑋𝑖|𝑋𝑆) play a cen-

tral role in all our algorithms. We first review the basic definition and some of their
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properties.

Definition 15 (Conditional Variance). For 𝑋 an arbitrary real-valued random vari-

able and 𝑌 an arbitrary random variable or collection of random variables on the

same probability space, let6

Var(𝑋|𝑌 ) := E[(𝑋 − E[𝑋|𝑌 ])2].

By the Pythagorean Theorem, conditional variance obeys the law of total variance

[23]:

Var(𝑋) = Var(𝑋|𝑌 ) + Var(E[𝑋|𝑌 ]).

and more generally, Var(𝑋|𝑌 ) = Var(𝑋|𝑌, 𝑍) + Var(E[𝑋|𝑌, 𝑍]|𝑌 ). The last identity

is also sometimes referred to as the law of total conditional variance.

The 𝜅-nondegeneracy assumption implies a quantitative lower bound on condi-

tional variances Var(𝑋𝑖|𝑋𝑆) when the conditioning set does not include all of 𝑖’s

neighbors.

Lemma 27. Fix a node 𝑖 in a 𝜅-nondegenerate GGM, and let 𝑆 be set of nodes not

containing all neighbors of 𝑖. Then

Var(𝑋𝑖|𝑋𝑆) ≥ 1 + 𝜅2

Θ𝑖𝑖

Proof. Let 𝑗 /∈ 𝑆 be a neighbor of 𝑖. By the law of total conditional variance, we have

Var(𝑋𝑖|𝑋𝑆) = Var(𝑋𝑖|𝑋∼𝑖) + Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆) =
1

Θ𝑖𝑖

+ Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆),

where in the last equality we used Fact 1. Thus, as E[𝑓 2] ≥ Var(𝑓), and the definition

of 𝜅-nondegeneracy

Var(𝑋𝑖|𝑋𝑆) − 1

Θ𝑖𝑖

= Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆)

6In an alternate convention which we do not use, Var(𝑋|𝑌 ) is defined to be the random variable
E[(𝑋 − E[𝑋|𝑌 ])2|𝑌 ] and our definition is the same as EVar(𝑋|𝑌 ).
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= E[(E[𝑋𝑖|𝑋∼𝑖] − E[𝑋𝑖|𝑋𝑆])2]

≥ Var(E[𝑋𝑖|𝑋∼𝑖] − E[𝑋𝑖|𝑋𝑆]|𝑋∼𝑗) =
Θ2

𝑖𝑗

Θ2
𝑖𝑖Θ𝑗𝑗

≥ 𝜅2

Θ𝑖𝑖

where the last equality follows from Fact 1 and the last inequality is by the definition

of 𝜅. The Lemma follows by rearranging.

The following basic fact about Gaussians will be useful:

Lemma 28. If 𝑋 and 𝑌 are jointly Gaussian random variables then E[𝑋|𝑌 ] =

E[𝑋] + Cov(𝑋,𝑌 )
Var(𝑌 )

(𝑌 − E[𝑌 ]) and Var(𝑋) − Var(𝑋|𝑌 ) = Cov(𝑋,𝑌 )2

Var(𝑌 )
.

Proof. Because the random variables are jointly Gaussian, we know that E[𝑋|𝑌 ] must

be an affine function of 𝑌 . From E[E[𝑋|𝑌 ]] = E[𝑋] and Cov(E[𝑋|𝑌 ], 𝑌 ) = Cov(𝑋, 𝑌 )

the coefficients are determined, proving the first formula. Then the second formula

follows from the law of total variance, Var(𝑋) − Var(𝑋|𝑌 ) = Var(E[𝑋|𝑌 ]).

We will also use the following concentration inequality often. Recall that a 𝜒2-

random variable with 𝐷 degrees of freedom is a random variable with the law of∑︀𝐷
𝑖=1 𝑍

2
𝑖 , where 𝑍𝑖 ∼ 𝑁(0, 1) are independent standard Gaussians.

Lemma 29 (Lemma 1, [116]). Suppose 𝑈 is 𝜒2-distributed with 𝐷 degrees of freedom.

Then Pr(𝑈−𝐷 ≥ 2
√︀
𝐷 log(1/𝛿)+2 log(1/𝛿)) ≤ 𝛿 and Pr(𝐷−𝑈 ≥ 2

√︀
𝐷 log(1/𝛿)) ≤

𝛿. In particular, 𝑈 ≤ 2𝐷 with probability at least 1 − 𝛿 as long as 𝐷 ≥ 8 log(1/𝛿).

5.5 Structural results for walk-summable models

5.5.1 Background: Walk-Summable Models are SDD after

rescaling

Definition 16 ([131]). A Gaussian Graphical Model with invertible precision matrix

Θ ≻ 0 is walk-summable if 𝐷−𝐴 ≻ 0 where Θ = 𝐷−𝐴 decomposes Θ into diagonal

and off-diagonal components, and 𝐴 is the matrix with 𝐴𝑖𝑗 = |𝐴𝑖𝑗|.

134



It is well-known (and immediate) that the class of walk-summable matrices in-

cludes the class of SDD matrices. Indeed, the motivation for introducing walk-

summable matrices was to generalize the notion of SDD matrices.

Definition 17. A matrix 𝑀 is symmetric diagonally dominant (SDD) if it is sym-

metric and 𝑀𝑖𝑖 ≥
∑︀

𝑗:𝑗 ̸=𝑖 |𝑀𝑖𝑗| for every 𝑖.

Perhaps less well-known, a natural converse holds: all walk-summable matrices

are simply rescaled SDD matrices, where the rescaling is in the natural sense for a

bilinear form. Furthermore, this rescaling is easy to find algorithmically (if we have

access to Θ), requiring just a top eigenvector computation. This result can be found

explicitly in [160]; it also appears in [27] and closely related results for 𝑀 -matrices

appear in [64].

Theorem 38 (Theorem 4.2 of [160]). Suppose Θ is walk-summable. Then there exists

a diagonal matrix 𝐷 with positive entries such that 𝐷Θ𝐷 is an SDD matrix.

Proof. We include the proof for completeness — it is the same as in [160].

First, we observe that we can reduce to the case diag(Θ) = 1⃗ by replacing Θ

by 𝐷1Θ𝐷1 where 𝐷1 is the diagonal matrix with (𝐷1)𝑖𝑖 = 1/
√

Θ𝑖𝑖. Next, let Θ =

𝐼 − 𝐴 and note that when we write the decomposition 0 ≺ Θ = 𝐼 − 𝐴 that 𝐴

has all nonnegative entries, so we can apply the Perron-Frobenius Theorem to find

an eigenvector 𝑣 with positive entries and eigenvalue 𝜆 = ‖𝐴‖ < 1. Now define

𝐷2 = diag(𝑣), and we claim that 𝐷2Θ𝐷2 is an SDD matrix. It suffices to check

that 0 ≤ 𝐷2Θ𝐷21⃗ = 𝐷2Θ𝑣 entry-wise, and because 𝐷2 is diagonal with nonnegative

entries it suffices to check that Θ𝑣 ≥ 0. This follows as

Θ𝑣 = (𝐼 − 𝐴)𝑣 = (1 − 𝜆)𝑣 ≥ 0

entrywise.
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Example 6. In Example 1 of [131] it was observed that the matrix

⎡⎢⎢⎢⎢⎢⎢⎣
1 −𝑟 𝑟 𝑟

−𝑟 1 𝑟 0

𝑟 𝑟 1 𝑟

𝑟 0 𝑟 1

⎤⎥⎥⎥⎥⎥⎥⎦
itself stops being SDD when 𝑟 > 1/3, but remains walk-summable until a little past

𝑟 = 0.39. When 𝑟 = 0.39, the corresponding Perron-Frobenius eigenvector for 𝐴 is

roughly (0.557, 0.435, 0.557, 0.435) and applying the rescaling from Theorem 38 we get

⎡⎢⎢⎢⎢⎢⎢⎣
0.310634 −0.0945889 0.121147 0.0945889

−0.0945889 0.189366 0.0945889 0.

0.121147 0.0945889 0.310634 0.0945889

0.0945889 0. 0.0945889 0.189366

⎤⎥⎥⎥⎥⎥⎥⎦
which is an SDD matrix.

The SDD rescaling given by Theorem 38 will play a key role in our analysis.

Conceptually, converting a walk-summable matrix to its SDD form is a way to take

the extra degrees of freedom in the model specification (arbitraryness in the scaling

of the 𝑋𝑖) and fix them in a way that is useful in the analysis – i.e. a gauge fixing.

In particular, under the SDD rescaling there are meaningful relations between the

different rows of Θ which fail to hold in general.

5.5.2 Background: SDD systems, Laplacians, and electrical

flows

Definition 18. A matrix 𝐿 is a generalized Laplacian if it is SDD and for every 𝑖 ̸= 𝑗,

𝐿𝑖𝑗 ≤ 0. We think of this graph theoretically as the Laplacian of the weighted graph

with edge weights −𝐿𝑖𝑗 between distinct 𝑖 and 𝑗 and self loops of weight 𝐿𝑖𝑖−
∑︀

𝑗 ̸=𝑖 |𝐿𝑖𝑗|

at vertex 𝑖.
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We review the standard reduction between solving SDD systems and Laplacian

systems. Suppose Θ is an SDD matrix. Then we can write Θ = 𝐿 − 𝑃 where 𝐿

is a (generalized) Laplacian having positive entries on the diagonal and nonnegative

entries off the diagonal, and 𝑃 has negative off-diagonal entries and corresponds to

the positive off-diagonal entries of Θ. Now we observe that⎡⎣𝐿 𝑃

𝑃 𝐿

⎤⎦⎡⎣ 𝑥

−𝑥

⎤⎦ =

⎡⎣ Θ𝑥

−Θ𝑥

⎤⎦ (5.2)

and the left matrix is itself a (generalized) Laplacian matrix on a weighted graph

which we will refer to as the “lifted graph”.

The inverse of a Laplacian has a natural interpretation in terms of electrical flows,

where the edge weights are interpreted as conductances of resistors. In this case the

self loops can be thought of as resistors connected directly to electrial ground. In

the next Lemma we summarize the relevant facts about this interpretation, as can be

found in e.g. [26]

Lemma 30. Suppose that 𝐿 is a (generalized) Laplacian matrix. Then if 𝐿+ is

the pseudo-inverse of 𝐿, and we define the effective resistance 𝑅eff(𝑖, 𝑗) := (𝑒𝑖 −

𝑒𝑗)
𝑇𝐿+(𝑒𝑖 − 𝑒𝑗) then 𝑅eff satisfies:

• (Nonnegativity) 𝑅eff(𝑖, 𝑗) ≥ 0.

• (Monotonicity) 𝑅eff(𝑖, 𝑗) ≤ 1
|𝐿𝑖𝑗 | , and more generally 𝑅eff decreases when adding

edges to the original adjacency matrix.

• (Triangle inequality) 𝑅eff(𝑖, 𝑘) ≤ 𝑅eff(𝑖, 𝑗) +𝑅eff(𝑗, 𝑘) for any 𝑖, 𝑗, 𝑘.

In the generalized Laplacian case, we can think of Var(𝑋𝑖|𝑋𝑆) as being the effective

resistance from node 𝑖 to ground when all of the nodes in 𝑆 are connected by wires

(without resistance) to ground.
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5.5.3 Key structural results for Walk-Summable GGM

First we prove a fundamental fact about 𝜅-nondegeneracy in walk-summable mod-

els, mentioned earlier: the maximum degree 𝑑 always satisfies 𝑑 = 𝑂(1/𝜅2) in 𝜅-

nondegenerate walk-summable models. This result is tight for star graphs.

Lemma 31. In a 𝜅-nondegenerate walk-summable GGM, the maximum degree of any

node is at most 1/𝜅2.

Proof. Rescale the coordinates so that the diagonal of Θ is all-1s, and reorder them

so that 𝑋1 corresponds to the node of maximum degree 𝑑 with neighbors 2, . . . , 𝑑+ 1.

Define Θ to be the sign-flipped version of Θ such that all off-diagonal entries are

negative; by the definition of walk-summability we know Θ is still PSD. Let 𝑣 =

(1, 𝜅, . . . , 𝜅) ∈ R𝑑+1 and 𝑆 = {1, . . . , 𝑑 + 1}; then using that the off-diagonals are

negative, 𝜅-nondegeneracy we find that Θ𝑑+1,𝑑+1𝑣 ≤ (1 − 𝑑𝜅2, 0, . . . , 0) coordinate-

wise, hence using Θ ⪰ 0 we find

0 ≤ 𝑣𝑇Θ𝑑+1,𝑑+1𝑣 ≤ 𝑣𝑇 (1 − 𝑑𝜅2, 0, . . . , 0) = 1 − 𝑑𝜅2.

Rearranging we see that 𝑑 ≤ 1/𝜅2.

In the remainder of this subsection we prove some key structural results about

walk-summable/SDD GGM using the SDD to Laplacian reduction and the electrical

interpretation of the inverse Laplacian; these results will be crucial for analyzing the

algorithms for both attractive and general walk-summable GGMs.

The following key Lemma, which shows that the variance between two adjacent

random variables in the SDD GFF cannot differ by too much, will be crucial in the

analysis of our algorithm in non-attractive models. Why is this useful? Informally,

this is because for the greedy method to significantly reduce the variance of node 𝑖, at

least one neighbor of 𝑖 needs to provide a good “signal-to-noise ratio” for estimating

𝑋𝑖, and under the SDD scaling, this inequality shows that the neighbors do not have

too much extra noise (compared to |Θ𝑖𝑗| which roughly corresponds to the level of

signal between nodes 𝑖 and 𝑗).
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Lemma 32. Suppose that Θ is an invertible SDD matrix. Let Σ = Θ−1. If Θ𝑖𝑗 ̸= 0,

then

Σ𝑖𝑖 ≤ 1/|Θ𝑖𝑗| + Σ𝑗𝑗.

Proof. Let 𝑀 be the generalized Laplacian matrix resulting from applying the SDD

to Laplacian reduction from Σ, i.e. 𝑀 is the left hand-side of (5.2). Let the standard

basis for R2𝑛 be denoted 𝑒1, . . . , 𝑒𝑛, 𝑒′1, . . . , 𝑒′𝑛. Observe from (5.2) that

Σ𝑖𝑖 = 𝑒𝑇𝑖 Θ−1𝑒𝑖 = 𝑒𝑇𝑖 𝑀
+(𝑒𝑖 − 𝑒′𝑖) =

1

2
(𝑒𝑖 − 𝑒′𝑖)

𝑇𝑀+(𝑒𝑖 − 𝑒′𝑖).

Let node label 𝑖 be the node corresponding to 𝑒𝑖 in the graph corresponding to

𝑀 , and label 𝑖′ be that corresponding to 𝑒′𝑖. Observe that in the graph corresponding

to 𝑀 , either 𝑖 is adjacent to 𝑗 and 𝑖′ is adjacent to 𝑗′, or 𝑖 is adjacent to 𝑗′ and 𝑖′

is adjacent to 𝑗. Let 𝑟 = 𝑅eff(𝑖, 𝑗) in the first case and 𝑟 = 𝑅eff(𝑖, 𝑗′) in the second

case. By the triangle inequality (Lemma 30) and monotonicity of effective resistance

(Lemma 30),

2Σ𝑖𝑖 = 𝑅eff(𝑖, 𝑖′) ≤ 2𝑟 +𝑅eff(𝑗, 𝑗′) ≤ 2/|Θ𝑖𝑗| + 2Σ𝑗𝑗

which proves the result.

Remark 7. Note that the above Lemma is for Θ under the true SDD scaling. It

would not make sense for general Θ, because the left hand and right hand sides do

not behave the same way when we rescale 𝑋𝑖 and 𝑋𝑗.

The following two lemmas show that in a SDD GGM, the variance of a single node

can be bounded as long as we condition on any of its neighbors. In comparison, if we

don’t condition on anything then the variance can be arbitrarily large: consider the

Laplacian of any graph plus a small multiple of the identity.

Lemma 33. Suppose that 𝑖 is a non-isolated node in an SDD GGM. Then for any

neighbor 𝑗 it holds that

Var(𝑋𝑖|𝑋𝑗) ≤
1

|Θ𝑖𝑗|
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Proof. This result can be obtained from the previous Lemma 32 by taking an appro-

priate limit which sends Σ𝑗𝑗 → 0. We give an alternate and direct proof below.

Apply the SDD to Laplacian reduction to the precision matrix (with row and

column 𝑗 eliminated) as in Lemma 32 to get a generalized Laplacian 𝐿, and then

form the standard Laplacian 𝑀 by adding an additional row and column 𝑛+ 1 with

𝑀𝑖,𝑛+1 = 𝐿𝑖𝑖 −
∑︀𝑛

𝑗=1 𝐿𝑖𝑗 and 𝑀𝑛+1,𝑛+1 =
∑︀𝑛

𝑗=1𝑀𝑗,𝑛. Then 𝑢 = 𝐿𝑣 iff there exists 𝑧

s.t. (𝑢, 𝑧) = 𝑀(𝑣, 0) where (𝑣, 0) denotes the vector in R𝑛+1 given by adding final

coordinate 0. Furthermore it must be that
∑︀

𝑖 𝑢𝑖 + 𝑧 = 0 because (𝑢, 𝑧) lies in the

span of 𝑀 . Using the relation between 𝐿 and 𝑀 and the triangle inequality and

monotonicity (Lemma 30) through the added node 𝑛+ 1 we observe

Var(𝑋𝑖|𝑋𝑗) =
1

2
(𝑒𝑖 − 𝑒′𝑖)

𝑇𝐿−1(𝑒𝑖 − 𝑒′𝑖)

=
1

2
(𝑒𝑖 − 𝑒′𝑖)

𝑇𝑀+(𝑒𝑖 − 𝑒′𝑖)

≤ 1

2
(𝑒𝑖 − 𝑒𝑛+1)

𝑇𝑀+(𝑒𝑖 − 𝑒𝑛+1) +
1

2
(𝑒′𝑖 − 𝑒𝑛+1)

𝑇𝑀+(𝑒′𝑖 − 𝑒𝑛+1)

≤ 1

2

1

𝑀𝑖,𝑛+1

+
1

2

1

𝑀𝑖′,𝑛+1

≤ 1

|Θ𝑖𝑗|
.

Lemma 34. Suppose that 𝑖 is a non-isolated node with 𝑑 neighbors in an SDD GGM.

Then for at least one neighbor 𝑗 it holds that

Var(𝑋𝑖|𝑋𝑗) ≤
4𝑑

Θ𝑖𝑖

Proof. We establish the following dichotomy: either Var(𝑋𝑖) is already small, or if

it is large then there is a 𝑗 s.t. 1/|Θ𝑖𝑗| is small so Var(𝑋𝑖|𝑋𝑗) is small. Observe by

Cauchy-Schwartz that

Θ𝑖𝑖Var(E[𝑋𝑖|𝑋∼𝑖]) = Θ𝑖𝑖Cov(E[𝑋𝑖|𝑋∼𝑖],E[𝑋𝑖|𝑋∼𝑖]) =
∑︁
𝑗

−Θ𝑖𝑗Cov(E[𝑋𝑖|𝑋∼𝑖], 𝑋𝑗)

≤
∑︁
𝑗

|Θ𝑖𝑗|
√︁

Var(E[𝑋𝑖|𝑋∼𝑖])Var(𝑋𝑗)
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so

Θ𝑖𝑖

√︀
Var(E[𝑋𝑖|𝑋∼𝑖]) ≤

∑︁
𝑗

|Θ𝑖𝑗|
√︁

Var(𝑋𝑗) ≤
∑︁
𝑗

|Θ𝑖𝑗|
√︁

Var(𝑋𝑖) + 1/|Θ𝑖𝑗|

≤
√︀

Var(𝑋𝑖)
∑︁
𝑗

|Θ𝑖𝑗| +
∑︁
𝑗

√︁
|Θ𝑖𝑗|

≤
√︀

Var(𝑋𝑖)
∑︁
𝑗

|Θ𝑖𝑗| +
√︀
𝑑Θ𝑖𝑖

where in the second inequality we used Lemma 32, in the third inequality we used
√
𝑎+ 𝑏 ≤

√
𝑎 +

√
𝑏, and in the fourth inequality we used Cauchy-Schwartz and the

SDD assumption.

Suppose that Var(E[𝑋𝑖|𝑋∼𝑖]) > 4𝑑/Θ𝑖𝑖. Then by subtracting 𝑑
√

Θ𝑖𝑖 from both

sides we see

1

2
Θ𝑖𝑖

√︀
Var(E[𝑋𝑖|𝑋∼𝑖]) ≤

√︀
Var(𝑋𝑖)

∑︁
𝑗

|Θ𝑖𝑗| ≤
√︀

Var(𝑋𝑖)𝑑max
𝑗

|Θ𝑖𝑗|

so using that Var(E[𝑋𝑖|𝑋∼𝑖]) = Var(𝑋𝑖) − 1/Θ𝑖𝑖 ≥ Var(𝑋𝑖)/2 under our assumption,

we find
Θ𝑖𝑖

4𝑑
≤ Θ𝑖𝑖

2𝑑

√︃
Var(E[𝑋𝑖|𝑋∼𝑖])

Var(𝑋𝑖)
≤ max

𝑗
|Θ𝑖𝑗|.

Let 𝑗 be the maximizer, then from Lemma 33 we find Var(𝑋𝑖|𝑋𝑗) ≤ 1
|Θ𝑖𝑗 | ≤ 4𝑑

Θ𝑖𝑖
,

assuming that Var(𝑋𝑖) > 4𝑑/Θ𝑖𝑖. Otherwise, by the law of total variance we know

Var(𝑋𝑖|𝑋𝑗) ≤ Var(𝑋𝑖) ≤ 4𝑑/Θ𝑖𝑖.

Remark 8 (Electrical intuition for Lemma 34). We explain the electrical intuition

behind Lemma 34 in the case of attractive GGMs. First w.l.o.g. we rescale Θ to be a

generalized Laplacian (Theorem 38). By the electrical interpretation, we think of the

edges of the graph are a collection of resistors connecting the nodes, and we imagine

connecting the plus end of a 1-volt battery to node 𝑖, so the effective resistance between

the plus and minus end of the battery is the reciprocal of the total current which flows.

Then 1/Θ𝑖𝑖 is the effective resistance when we connect all of the neighbors of node 𝑖

directly to the negative end of the battery.
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When we do this experiment, we know that a lot of the current is either (1) going

directly from node 𝑖 to ground or (2) going from node 𝑖 to one of its neighbors 𝑗. In

case (1), Var(𝑋𝑖) is already small. Otherwise, we are in case (2). In this case, we

would expect that if we only grounded node 𝑗, then the resulting effective resistance

Var(𝑋𝑖|𝑋𝑗) should already be quite small; more precisely, within a 𝑂(𝑑) factor of

grounding all of them, and this is exactly what Lemma 34 says.

The following example shows that the assumption that the matrix is SDD (or

walk-summable) is necessary for the previous Lemmas to be true:

Example 7 (Failure of Lemma 33 in Non-SDD GGM). Consider for 𝜅 fixed and 𝐶

large

Θ :=

⎡⎢⎢⎢⎣
1 𝐶 −𝐶

𝐶 𝐶2/𝜅2 −𝐶2/𝜅2 + 1

−𝐶 −𝐶2/𝜅2 + 1 𝐶2/𝜅2

⎤⎥⎥⎥⎦
We can verify that as 𝐶 → ∞ that the variances (i.e. diagonal of Θ−1) remain

Θ(1) and the matrix is positive definite; furthermore this model is 𝜅-nondegenerate.

However, even after conditioning out the first node, the variance of the second (and

third) node remains Ω(1) ≫ 1/𝐶.

5.6 Estimating changes in conditional variance

As alluded to before, our algorithms rely on estimating (differences of) conditional

variances Var(𝑋𝑖|𝑋𝑆). The classical approach for estimating them is to solve a linear

regression problem trying to predict 𝑋𝑖 from 𝑋𝑆. As we are working in a sample-

starved regime and deal with ill-conditioned matrices, we require very fine grained

results about such estimates. We collect such results in this section.

For the analysis of Algorithm HybridMB we only need the basic facts from

Section 4.1; for the analysis of Algorithm GreedyAndPrune the key additional fact

we need is encapsulated as Lemma 39 in Section 4.3 below; finally, for the analysis of

the Algorithm SearchAndValidate we will also directly use the results stated in

Section 4.2.
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5.6.1 Background: Fixed Design Linear Regression

In this section we recall the standard model for linear regression with Gaussian noise

and the usual ordinary least squares estimator and some classical facts about it. See

Chapter 14 of [104] for a reference.

Definition 19 (Fixed design regression with Gaussian noise). The (well-specified)

fixed design regression model is specified by an unknown parameter 𝑤 ∈ R𝑘, known

design matrix X : 𝑚× 𝑘 with 𝑚 > 𝑘 and observations

Y = X𝑤 + Ξ

where Ξ ∼ 𝑁(0, 𝜎2𝐼). In other words, Y ∼ 𝑁(X𝑤, 𝜎2𝐼).

Definition 20 (Ordinary Least Squares (OLS) Estimator). The OLS estimator for

𝑤 in the fixed design regression model is the minimizer of

min
𝑤

‖Y −X𝑤‖22

explicitly given by

�̂� := (X𝑇
X)−1

X
𝑇
Y

assuming that X has maximal column rank. The corresponding estimator for 𝜎 is

given by

�̂�2 :=
1

𝑚− 𝑘
‖Y −X�̂�‖22.

Fact 2 ([104]). Under the fixed design regression model with Gaussian noise, �̂� ∼

𝑁(𝑤, 𝜎2(X𝑇
X)−1) and (𝑚−𝑘)�̂�2

𝜎2 ∼ 𝜒2
𝑚−𝑘 where 𝜒2

𝑚−𝑘 denotes a 𝜒2-distribution with

𝑚− 𝑘 degrees of freedom. Furthermore, �̂� and �̂� are independent.

Lemma 35. For any 𝛿 ∈ (0, 1),

Pr

(︃⃒⃒⃒⃒
�̂�2

𝜎2
− 1

⃒⃒⃒⃒
> 2

√︂
log(2/𝛿)

𝑚− 𝑘
+ 2

log(2/𝛿)

𝑚− 𝑘

)︃
≤ 𝛿.

Proof. Combine Fact 2 and and the concentration inequality from Lemma 29.
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We end with a geometric interpretation of the OLS coordinates which is analogous

to Lemma 28. In statistics this is known as the equivalence of the regression 𝑡-test

and the 1-variable regression 𝐹 -test [104].

Lemma 36.

min
𝑤

‖Y −X𝑤‖22 − min
𝑤:𝑤𝑖=0

‖Y −X𝑤‖22 =
�̂�2

𝑖

[(X𝑇X)−1]𝑖𝑖

Proof sketch. Let X𝑖 be the 𝑖’th column of X. By the definition of the OLS esti-

mate �̂� and the Pythagorean theorem, the left hand side is equal to min𝑤:𝑤𝑖=0 ‖X�̂�−

X𝑤‖22. By another application of the Pythagorean theorem, this equals ‖X𝑖�̂�𝑖 −

Proj𝑉𝑖
X𝑖�̂�𝑖‖22 = �̂�2

𝑖 ‖X𝑖−Proj𝑉𝑖
X𝑖‖22 where 𝑉𝑖 is the subspace spanned by the columns

of X except for 𝑖. Finally ‖X𝑖 − Proj𝑉𝑖
X𝑖‖22 = 1

[(X𝑇X)−1]𝑖𝑖
by applying Schur comple-

ment formulas.

5.6.2 Background: Wishart Matrices

Under fixed design, the matrix X was considered to be a deterministic quantity.

Random design (see e.g. [94] for references) corresponds to the case where the rows

of X are i.i.d. samples from some distribution, which fits the usual setup in statistical

learning theory.

Definition 21 (Random design linear regression with Gaussian covariates). The

random design linear regression model with Gaussian covariates with 𝑚 samples

is given by a (typically unknown) covariance matrix Σ : 𝑘 × 𝑘, i.i.d. samples

𝑋(1), . . . , 𝑋(𝑚) ∼ 𝑁(0,Σ) and corresponding observations

𝑌 (𝑖) = ⟨𝑋(𝑖), 𝑤⟩ + 𝜉(𝑖), 𝑖 = 1, . . . ,𝑚 (5.3)

where each 𝜉(𝑖) ∼ 𝑁(0, 𝜎2) is independent noise. (The assumption that 𝜉(𝑖) is inde-

pendent is referred to as the model being well-specified.)

The OLS estimator is defined as before in Definition 20 where the rows of the

design matrix X are the samples 𝑋1, . . . , 𝑋𝑚 and Y = (𝑌 (𝑖))𝑚𝑖=1. From (2) we still
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have that for fixed 𝑋1, . . . , 𝑋𝑚 (i.e. considering only the randomness over 𝜉1, . . . , 𝜉𝑚)

�̂�𝑂𝐿𝑆 ∼ 𝑁(𝑤, 𝜎2(X𝑇
X)−1).

Therefore reasoning about the OLS estimator under random design can be reduced

to understanding the random matrix X𝑇
X, which is referred to as a Wishart matrix

(with 𝑚 degrees of freedom). We recall here a standard concentration inequality for

Wishart matrices when Σ = 𝐼. (This inequality generalizes to the sub-Gaussian case

and we have specialized it for simplicity.)

Theorem 39 (Theorem 4.6.1, [188]). Suppose that 𝑋(1), . . . , 𝑋(𝑚) ∼ 𝑁(0, 𝐼) are

independent Gaussian random vectors in R𝑘, then⃦⃦⃦⃦
⃦ 1

𝑚

𝑚∑︁
𝑖=1

𝑋(𝑖)(𝑋(𝑖))𝑇 − 𝐼𝑑

⃦⃦⃦⃦
⃦ ≤ 𝐶1

(︃√︂
𝑘

𝑚
+

√︂
log(2/𝛿)

𝑚

)︃

for some absolute constant 𝐶1 > 0, with probability at least 1 − 𝛿.

This leads to a multiplicative guarantee for general Wishart matrices:

Lemma 37. Suppose 𝜖 ∈ (0, 1/2) and 𝛿 > 0. Then for any 𝑚 such that 𝜖 ≤

𝐶1

(︂√︁
𝑘
𝑚

+
√︁

log(2/𝛿)
𝑚

)︂
and 𝑋(1), . . . , 𝑋(𝑚) ∼ 𝑁(0, 𝐼) we have that

(1 − 𝜖)Σ ⪯ 1

𝑚

∑︁
𝑖

𝑋𝑖𝑋
𝑇
𝑖 ⪯ (1 + 𝜖)Σ

with probability at least 1 − 𝛿.

Proof. This is equivalent to showing that

(1 − 𝜖)𝐼 ⪯ 1

𝑚

∑︁
𝑖

Σ−1/2𝑋(𝑖)(Σ−1/2𝑋(𝑖))𝑇 ⪯ (1 + 𝜖)𝐼

since the PSD ordering is preserved under matrix congruence. The above follows from

applying Theorem 39 to �̄�(𝑖) = Σ−1/2𝑋(𝑖).
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Definition 22. Given i.i.d. mean-zero random vectors 𝑋(1), . . . , 𝑋(𝑚) the empirical

covariance matrix is ̂︀Σ :=
1

𝑚

∑︁
𝑖

𝑋(𝑖)(𝑋(𝑖))𝑇 .

5.6.3 Estimating changes in conditional variance

We are now ready to state what we need for estimating changes in conditional vari-

ance. Recall the basic setup: Given samples from 𝑋 from a GGM at various stages in

our algorithm we use estimates for conditional variances of the form Var(𝑋𝑖|𝑋𝑆) by

regressing 𝑋𝑖 against 𝑋𝑆. What we really we need are not actual values of Var(𝑋𝑖|𝑋𝑆)

but to find a variable 𝑗 /∈ 𝑆 that gives non-trivial (or even themost) advantage in

predicting 𝑋𝑖|𝑋𝑆∪{𝑗}. So we need to quantify the relative advantage of including an

additional variable 𝑗 on top of 𝑆.

We can abstract the above in the regression setting as follows: Given samples for

regression (𝑋, 𝑌 ), and an index 𝑗 check if Var(𝑌 |𝑋) = Var(𝑌 |𝑋∼𝑗). That is, whether

including feature 𝑥𝑗 gives non-trivial advantage in regression. This is akin to the

classical regression 𝑡-test in statistics (see [104]) used to test the null hypothesis that

𝑤𝑖 = 0 in a linear regression problem.

In the greedy steps in our learning algorithm, we will need to not only find a

feature which has a nonzero value for predicting 𝑌 , but in fact we want to find one of

the most predictive features. We do so by exploiting what is known as a non-central

𝐹 -statistic [104]. The following lemma quantifies the usefulness of a particular coordi-

nate for estimating 𝑌 . Crucially, this Lemma shows we can estimate the (normalized)

change in conditional variance much more accurately than we can actually estimate

the individual conditional variances. Note that by Lemma 36 that the term which

appears in the Lemma, |�̂�𝑗 |2

(Σ̂−1)𝑗𝑗
, also equals the difference in squared loss over the

data between the OLS estimator constrained to 𝑤𝑗 = 0 and the unconstrained OLS

estimator.

Lemma 38. Consider the Gaussian random design regression setup (5.3), fix 𝑗 ∈
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{1, . . . , 𝑘} and let

𝛾 :=
Var(𝑌 |𝑋∼𝑗) − Var(𝑌 |𝑋)

Var(𝑌 |𝑋)

where 𝑋∼𝑗 = (𝑋𝑖)𝑖 ̸=𝑗. We have⃒⃒⃒⃒
⃒⃒ |�̂�𝑗|

�̂�
√︁

(Σ̂−1)𝑗𝑗

−√
𝛾

⃒⃒⃒⃒
⃒⃒ ≤

√︂
4 log(4/𝛿)

𝑚
+

√︂
𝛾

64

and ⃒⃒⃒⃒
⃒⃒ |�̂�𝑗|

𝜎
√︁

(Σ̂−1)𝑗𝑗

−√
𝛾

⃒⃒⃒⃒
⃒⃒ ≤

√︂
2 log(4/𝛿)

𝑚
+

√︂
𝛾

64

with probability at least 1 − 𝛿 as long as 𝑚 ≥ 𝑚0 = 𝑂(𝑘 + log(4/𝛿)).

Proof. We prove this result directly. Alternatively and essentially equivalently, one

could derive a similar result by using classical results in the fixed design regression

setting for non-central F-statistics (Theorem 14.11 of [104], see also Section 5.8 below)

and then analyzing their behavior under random design using matrix concentration.

A benefit of this direct analysis is that it generalizes more straightforwardly to sub-

gaussian settings.

Recall from Lemma 28 (applied for fixed 𝑋𝑆 and then taking expectations) that

E[𝑌 |𝑋] = E[𝑌 |𝑋∼𝑗] +
Cov(𝑌,𝑋𝑗|𝑋∼𝑗)

Var(𝑋𝑗|𝑋∼𝑗)
(𝑋𝑗 − E[𝑋𝑗|𝑋∼𝑗])

and that

Var(𝑌 |𝑋∼𝑗) − Var(𝑌 |𝑋) =
Cov(𝑌,𝑋𝑗|𝑋∼𝑗)

2

Var(𝑋𝑗|𝑋∼𝑗)

so

𝑤2
𝑗Var(𝑋𝑗|𝑋∼𝑗) = Var(𝑌 |𝑋∼𝑗) − Var(𝑌 |𝑋). (5.4)

i.e. 𝑤2
𝑗

𝜎2(Σ−1)𝑗𝑗
= 𝛾. We know that for fixed 𝑋, over the randomness of 𝜉 we have
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�̂�𝑂𝐿𝑆 ∼ 𝑁(𝑤, 𝜎
2

𝑚
Σ̂−1) by Fact 2, so

�̂�𝑗

𝜎
√︁

(Σ̂−1)𝑗𝑗

∼ 𝑁

⎛⎝ 𝑤𝑗

𝜎
√︁

(Σ̂−1)𝑗𝑗

,
1

𝑚

⎞⎠ .

Using that (Σ−1)𝑗𝑗 = 1
Var(𝑋𝑗 |𝑋𝑆)

, 𝜎 =
√︀

Var(𝑌 |𝑋), and 𝛾 =
Var(𝑌 |𝑋∼𝑗)−Var(𝑌 |𝑋)

Var(𝑌 |𝑋)
and

(5.4) we find
�̂�𝑗

𝜎
√︁

(Σ̂−1)𝑗𝑗

∼ 𝑁

(︃
±

√︃
𝛾

(Σ−1)𝑗𝑗

(Σ̂−1)𝑗𝑗
,

1

𝑚

)︃

where the sign is the sign of 𝑤𝑗. Applying ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏| and the Gaussian tail

bound over the randomness of �̂� we find

Pr

⎛⎝⃒⃒⃒⃒⃒⃒ |�̂�𝑗|

𝜎
√︁

(Σ̂−1)𝑗𝑗

−

√︃
𝛾

(Σ−1)𝑗𝑗

(Σ̂−1)𝑗𝑗

⃒⃒⃒⃒
⃒⃒ > 𝑡

⎞⎠ ≤ Pr

⎛⎝⃒⃒⃒⃒⃒⃒ �̂�𝑗

𝜎
√︁

(Σ̂−1)𝑗𝑗

∓

√︃
𝛾

(Σ−1)𝑗𝑗

(Σ̂−1)𝑗𝑗

⃒⃒⃒⃒
⃒⃒ > 𝑡

⎞⎠ ≤ 2𝑒−𝑚𝑡2/2.

Applying Lemma 35 gives

⃒⃒⃒⃒
�̂�

𝜎
− 1

⃒⃒⃒⃒
≤ 2

√︂
log(4/𝛿)

𝑚− 𝑘 − 1
+ 2

log(4/𝛿)

𝑚− 𝑘 − 1

with probability at least 1− 𝛿/2. Therefore as long as 𝑚 ≥ 𝑚1 = 𝑂(𝑘+ log(4/𝛿)) we

have �̂�
𝜎
∈ (7/8, 9/8). Taking 𝑡 =

√︀
2 log(4/𝛿)/𝑚 we have

⃒⃒⃒⃒
⃒⃒ |�̂�𝑗|

�̂�
√︁

(Σ̂−1)𝑗𝑗

−√
𝛾

⃒⃒⃒⃒
⃒⃒ ≤√︂𝜎

�̂�

⃒⃒⃒⃒
⃒⃒ |�̂�𝑗|

𝜎
√︁

(Σ̂−1)𝑗𝑗

−
√︂
𝛾
�̂�

𝜎

⃒⃒⃒⃒
⃒⃒+

√
𝛾

⃒⃒⃒⃒
⃒⃒1 −

√︃
(Σ̂−1)𝑗𝑗
(Σ−1)𝑗𝑗

⃒⃒⃒⃒
⃒⃒

≤
√︂

4 log(4/𝛿)

𝑚
+

√︂
𝛾

64

applying Lemma 37 and requiring 𝑚 ≥ 𝑚2 = 𝑂(𝑘 + log(4/𝛿)), with probability at

least 1 − 𝛿. A simpler variant of this argument gives the result for |�̂�𝑗 |
𝜎
√

(Σ̂−1)𝑗𝑗
as

well.

In our analysis we will often need to estimate multiplicative changes in a quantity

of the form Var(𝑌 |𝑋∼𝑗) − 𝑉 (where e.g. 𝑉 = Var(𝑌 |𝑋,𝑋 ′) for some 𝑋 ′) so we will
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use the following variant of the previous Lemma:

Lemma 39. Consider the Gaussian random design regression setup (5.3), fix 𝑗 ∈

{1, . . . , 𝑘}, let 𝑉 > 0 be arbitrary s.t. 𝑉 < Var(𝑌 |𝑋) and let

𝛾′ :=
Var(𝑌 |𝑋∼𝑗) − Var(𝑌 |𝑋)

Var(𝑌 |𝑋∼𝑗) − 𝑉

where 𝑋∼𝑗 = (𝑋𝑖)𝑖 ̸=𝑗. We have⃒⃒⃒⃒
⃒⃒
√︃

1

Var(𝑌 |𝑋∼𝑗) − 𝑉

|�̂�𝑗|√︁
(Σ̂−1)𝑗𝑗

−
√︀
𝛾′

⃒⃒⃒⃒
⃒⃒ ≤

√︃
Var(𝑌 |𝑋)

Var(𝑌 |𝑋∼𝑗) − 𝑉
· 2 log(4/𝛿)

𝑚
+

√︂
𝛾′

64

with probability at least 1 − 𝛿 as long as 𝑚 ≥ 𝑚0 = 𝑂(𝑘 + log(4/𝛿)).

Proof. This follows from Lemma 38 after multiplying through in the guarantee by√︀
𝛾′/𝛾, using that 𝜎 =

√︀
Var(𝑌 |𝑋).

5.7 Learning all attractive GGMs efficiently

Definition 23. We say that a GGM is attractive (or ferromagnetic) if Θ𝑖𝑗 ≤ 0 for

all 𝑖 ̸= 𝑗. (This is the same as requiring that Θ is an 𝑀-matrix.)

Lemma 40. If Θ is the precision matrix of an attractive GGM, then there exists an

invertible diagonal matrix 𝐷 with nonnegative entries such that 𝐷Θ𝐷 is a generalized

Laplacian.

Proof. This follows immediately from Theorem 38.

A particularly important example of an attractive GGM is the discrete Gaussian

free field — see [167] for a reference to this and the closely related literature on the

continuum Gaussian free field.

Definition 24. The discrete Gaussian free field on a weighted graph 𝐺 with zero

boundary conditions on 𝑆 is the GGM with Θ the Laplacian of 𝐺, after eliminating

the rows and columns corresponding to the nodes in 𝑆.
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Without boundary conditions, the GFF should be translation invariant and so

it does not exist as a probability distribution. One can approach the free boundary

situation by taking the Laplacian and adding 𝜖𝐼 to make it invertible, which gives a

learnable model that is arbitrarily poorly conditioned.

Example 8 (Gaussian simple random walk). Consider the discrete Gaussian free

field on a path of length 𝑛 with zero boundary condition on the first node. This

process is the same as a simple random walk with 𝑁(0, 1) increments. That is the

resulting distribution is of the form (𝑋1, . . . , 𝑋𝑛) where 𝑋𝑖 =
∑︀

𝑗≤𝑖 𝜂𝑗 for independent

and identical 𝜂𝑗 ∼ 𝑁(0, 1). From the GFF perspective, we can think of this as a

discretization of Brownian motion (the one-dimensional (continuum) Gaussian free

field).

Remark 9. Every attractive GGM can be realized from a Gaussian Free Field on

a weighted graph in the following way: given an attractive GGM, first rescale the

coordinates using the above Lemma so that it is a generalized Laplacian. Then, by

adding one node to the model we can make the precision matrix into a standard

Laplacian on some weighted graph, and conditioning out the added node recovers the

original precision matrix.

Our main theorem of this section is a sample-efficient algorithm for learning at-

tractive GGMs:

Theorem 40. Fix a 𝜅-nondegenerate attractive GGM. Algorithm GreedyAnd-

Prune returns the true neighborhood of every node 𝑖 with probability at least 1 − 𝛿

for 𝜈 = 𝜅2/
√

32, 𝐾 = 64𝑑 log(4/𝜅2) + 1 as long as the number of samples 𝑚 ≥ 𝑚1 for

𝑚1 = 𝑂((1/𝜅2)(𝐾 log(𝑛) + log(4/𝛿))). The combined run-time (over all nodes) of the

algorithm is 𝑂(𝐾3𝑚𝑛2).

Note that the above immediately implies Theorem 34.

As mentioned in the introduction, Algorithm GreedyAndPrune learns the

neighborhood of a node by doing greedy forward selection to minimize the condi-

tioned variance, and then doing pruning to remove non-neighbors from the candidate
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Algorithm OrthogonalMatchingPursuit(𝑇,X,Y):

1. Set 𝑆0 := {}.

2. For 𝑡 from 1 to 𝑇 :

(a) Choose 𝑗 which minimizes

min
𝑤 : supp(𝑤)⊂𝑆𝑡−1∪{𝑗}

‖Y −X𝑤‖22

(b) Set 𝑆𝑡 := 𝑆𝑡−1 ∪ {𝑗}

3. Return 𝑆𝑇 .

Algorithm GreedyAndPrune(𝑖, 𝜈, 𝑇 ):

1. Run OrthogonalMatchingPursuit for 𝑇 steps to predictX𝑖 from the other
columns of X, i.e. setting Y = X𝑖 and X′ = X∼𝑖.

2. Define Θ̂𝑖𝑖 by 1/Θ̂𝑖𝑖 = ̂︂Var(𝑋𝑖|𝑋𝑆).

3. For 𝑗 ∈ 𝑆:

(a) Let 𝑆 ′ := 𝑆 ∖ {𝑗} and �̂� := �̂�(𝑖, 𝑆 ′).

(b) If ̂︂Var(𝑋𝑖|𝑋𝑆′) −̂︂Var(𝑋𝑖|𝑋𝑆) < 𝜈/Θ̂𝑖𝑖, set 𝑆 := 𝑆 ′.

4. Return 𝑆.

neighborhood. The greedy forward selection step is known in the compressed sensing

literature as Orthogonal Matching Pursuit7 (OMP) (see e.g. [183]). We give a de-

scription of the OMP algorithm in the general setting of Section 5.6.1 below, along

with pseudocode for GreedyAndPrune.

Remark 10 (Implementation: Merging neighborhoods). In order to return an ac-

tual estimate for the inverse precision matrix, we add in our implementation of

GreedyAndPrune a merging step which includes an edge (𝑖, 𝑗) iff it is in the com-

puted neighborhood of node 𝑖 and in the computed neighborhood of node 𝑗. Then to

estimate the entries, we use OLS to predict node 𝑋𝑖 from its neighbors and estimate

7The terms forward selection and OMP are not always used for the exact same algorithm. In the
language of [48], the algorithm we consider would be called forward selection and not OMP.
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the conditional variance of 𝑋𝑖. We define Θ̂𝑖𝑖 to be the inverse of the estimated con-

ditional variance, and −Θ̂𝑖𝑗/Θ̂𝑖𝑖 to be the OLS coefficient. Finally, we symmetrize Θ̂

by picking the smaller of absolute norm between Θ̂𝑖𝑗 and Θ̂𝑗𝑖; the same step is used

in CLIME [39].

5.7.1 Combinatorial proof of supermodularity

As a first step toward proving Theorem 40, we first show that the conditional variance

function is supermodular.

Definition 25. Given a universe 𝑈 , a function 𝑓 : 2𝑈 → R is supermodular if for

any 𝑆 ⊂ 𝑇 ,

𝑓(𝑆) − 𝑓(𝑆 ∪ {𝑗}) ≥ 𝑓(𝑇 ) − 𝑓(𝑇 ∪ {𝑗}).

(This is the same as saying −𝑓 is submodular.)

Supermodularity of the conditional variance of a node in the GFF (and hence,

by using the reduction from Remark 9, all attractive GGMs) was previously shown

independently in [128, 129] using two different methods. The proof in [128] is algebraic

using the Schur complement formula, whereas the proof in [129] converts the problem

into one about electrical flows and argues via Thomson’s principle. We give a third

different proof which has the benefit of being transparent and combinatorial in nature.

Theorem 41. For any node 𝑖 in a ferromagnetic GGM, Var(𝑋𝑖|𝑋𝑆) is a monotoni-

cally decreasing, supermodular function of 𝑆.

Proof. By rescaling we may assume w.l.o.g. that Θ𝑖𝑖 = 1 for all 𝑖. Define Θ𝑆 to be

the precision matrix corresponding to conditioning 𝑆 out (i.e. Θ with the rows and

columns of 𝑆 removed), and Σ𝑆 = Θ−1
𝑆 . Then, if we write Θ𝑆 = 𝐼 −𝐴𝑆, by Neumann

series formula (as Θ𝑆 ≻ 0, ‖𝐴𝑆‖ < 1 using Perron-Frobenius), we see

Σ𝑆 = (𝐼 − 𝐴𝑆)−1 =
∞∑︁
𝑘=0

𝐴𝑘
𝑆. (5.5)
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Writing this out explicitly for (Σ𝑆)𝑖,𝑖 gives

Var(𝑋𝑖|𝑋𝑆) =
∞∑︁
𝑘=0

∑︁
𝑣1,...,𝑣𝑘 /∈𝑆

(−Θ𝑖𝑣1) · · · (−Θ𝑣𝑘𝑖), (5.6)

where the 𝑘 = 0 term in the sum is interpreted to be 1, so Var(𝑋𝑖|𝑋𝑆) is a nonnegative

weighted sum over walks avoiding 𝑆 and returning to 𝑖 in the final step. The above

expression is clearly monotonically increasing in 𝑆 as all off-diagonal entries of Θ are

negative (and also follows from law of total variance); to verify supermodularity, we

just need to check that

Var(𝑋𝑖|𝑋𝑆) − Var(𝑋𝑖|𝑋𝑆∪{𝑗}) =
∞∑︁
𝑘=0

∑︁
𝑣1,...,𝑣𝑘 /∈𝑆,
𝑗∈{𝑣1,...,𝑣𝑘}

(−Θ𝑖𝑣1) · · · (−Θ𝑣𝑘𝑖)

is a monotonically decreasing function of 𝑆 ⊆ [𝑛] ∖ {𝑖, 𝑗}, but this is clear once we

apply (5.6) as the set of cycles that are eliminated from the sum by adding 𝑗 only

shrinks as we increase 𝑆.

Supermodularity of the conditional variance has the following consequence which

will later be useful in showing that the greedy algorithm makes non-trivial progress

in each step.

Lemma 41. For any node 𝑖 in a ferromagnetic GGM, if 𝑆 is a set of nodes that does

not contain 𝑖 or all neighbors of 𝑖, and 𝑇 is the set of neighbors of 𝑖 not in 𝑆, then

there exists some node 𝑗 ∈ 𝑇 such that

Var(𝑋𝑖|𝑋𝑆) − Var(𝑋𝑖|𝑋𝑆∪{𝑗}) ≥
Var(𝑋𝑖|𝑋𝑆) − 1/Θ𝑖𝑖

|𝑇 |
.

Proof. This is a standard consequence of supermodularity – we include the proof for

completeness.

Consider adjoining the elements of 𝑇 to 𝑆 one at a time, and then apply super-
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modularity to show

Var(𝑋𝑖|𝑋𝑆) − Var(𝑋𝑖|𝑋𝑆∪𝑇 ) ≤
∑︁
𝑗∈𝑇

(Var(𝑋𝑖|𝑋𝑆) − Var(𝑋𝑖|𝑋𝑆∪{𝑗}))

≤ |𝑇 |max
𝑗∈𝑇

(Var(𝑋𝑖|𝑋𝑆) − Var(𝑋𝑖|𝑋𝑆∪{𝑗})).

Rearranging and using Var(𝑋𝑖|𝑋𝑆∪𝑇 ) = 1/Θ𝑖𝑖 (by the Markov property) gives the

result.

From (5.5) we see immediately that the entries of the covariance Σ of an attractive

GGM are always nonnegative (this is why they are called attractive/ferromagnetic);

we record this fact for future use.

Lemma 42 (Griffith’s inequality). In an attractive GGM, Cov(𝑋𝑖, 𝑋𝑗) ≥ 0 for any

𝑖, 𝑗.

This fact is very well-known, holds for arbitrary ferromagnetic graphical models

(i.e. not just Gaussian) and is referred to as Griffith’s inequality. See [82] for a more

general proof.

5.7.2 Greedy Subset Selection in Attractive Models

In this section we give a guarantee for subset selection using OMP, by showing that

after a small number of rounds OMP finds a set 𝑆 such that Var(𝑋𝑖|𝑋𝑆) is close

to minimal. The sample complexity analysis is complicated by the fact that super-

modularity holds at the level of the population loss (i.e. for an infinite amount of

data) whereas it would be more convenient if it held for the empirical conditional

variance, so we have to deal with both the regression noise and the randomness of

the regressors. First we prove the following lemma which gives a stronger version of

Lemma 27 for ferromagnetic GGMs:

Lemma 43. Fix 𝑖 a node in a 𝜅-nondegenerate ferromagnetic GGM, and let 𝑆 be set
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of nodes and let 𝑇 be the set of neighbors of 𝑖 not in 𝑆. Then

Var(𝑋𝑖|𝑋𝑆) ≥ 1 + |𝑇 |𝜅2

Θ𝑖𝑖

Proof. By the law of total variance, Griffith’s inequality (Lemma 42), and the law of

total variance again

Var(𝑋𝑖|𝑋𝑆) − 1

Θ𝑖𝑖

= Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆)

= Var(
∑︁
𝑗∈𝑇

−Θ𝑖𝑗

Θ𝑖𝑖

𝑋𝑗|𝑋𝑆)

≥
∑︁
𝑗∈𝑇

Θ2
𝑖𝑗

Θ2
𝑖𝑖

Var(𝑋𝑗|𝑋𝑆) ≥ 1

Θ𝑖𝑖

∑︁
𝑗∈𝑇

Θ2
𝑖𝑗

Θ𝑖𝑖Θ𝑗𝑗

≥ |𝑇 |𝜅2

Θ𝑖𝑖

.

Lemma 44. Suppose that 𝑋 is distributed according to an 𝜅-nondegenerate ferro-

magnetic GGM and 𝑖 is a node of degree at most 𝑑. Let 𝜎2 := 1
Θ𝑖𝑖

and 𝑤*
𝑗 =

−Θ𝑖𝑗

Θ𝑖𝑖

for all 𝑗 ̸= 𝑖. Then using 𝑇 rounds of OMP to predict 𝑋𝑖 given 𝑋∼𝑖 from 𝑚 i.i.d.

samples, we have that Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆) ≤ (1− 1/2𝑑)𝑇−1 8𝑑
Θ𝑖𝑖

with probability at least

1 − 𝛿 provided that 𝑚 = Ω((𝑑+ 1/𝜅2)(𝑇 log(𝑛) + log(2/𝛿))).

Proof. We prove by induction that for every 1 ≤ 𝑡 ≤ 𝑇 that

Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆𝑡) ≤ (1 − 1/2𝑑)𝑡−1 8𝑑

Θ𝑖𝑖

.

Note that by Lemma 34 there exists a node 𝑗 such that Var(𝑋𝑖|𝑋𝑗) ≤ 4𝑑
Θ𝑖𝑖

. By taking

a union bound, we may assume that:

1. Var(𝑋𝑖|𝑋𝑆1) ≤ 8𝑑
Θ𝑖𝑖

using the above fact combined with Lemma 35 assuming

that 𝑚 = Ω(log(𝑛/𝛿)) to guarantee that the estimated conditional variances

have small multiplicative error.

2. For all subsets 𝑈 of [𝑛] of size at most 𝑇 and 𝑗 ∈ [𝑛], applying Lemma 39 we
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have ⃒⃒⃒⃒
⃒ 1√︀

Var(𝑋𝑖|𝑋𝑈∖{𝑗}) − 1/Θ𝑖𝑖

�̂�(𝑈, 𝑗) −
√︀
𝛾′

⃒⃒⃒⃒
⃒

≤

√︃
Var(𝑋𝑖|𝑋𝑈)

Var(𝑋𝑖|𝑋𝑈∖{𝑗}) − 1/Θ𝑖𝑖

√︂
4(𝑇 log(𝑛) + log(12/𝛿))

𝑚
+

√︂
𝛾′

64

where

𝛾′ = 𝛾′(𝑈, 𝑗) :=
Var(𝑋𝑖|𝑋𝑈∖{𝑗}) − Var(𝑋𝑖|𝑋𝑈)

Var(𝑋𝑖|𝑋𝑈∖{𝑗}) − 1/Θ𝑖𝑖

and

�̂�(𝑈, 𝑗) :=
(�̂�𝑈)𝑗

((Σ̂𝑈,𝑈)−1)𝑗𝑗
=
√︁

‖X𝑖 −X�̂�𝑈‖22 − ‖X𝑖 −X�̂�𝑈∖{𝑗}‖22

using Lemma 36 in the last equality where �̂�𝑈 is the OLS estimate using only

the coordinates in 𝑈 . This holds assuming that 𝑚 = Ω(𝑇 log(4𝑛) + log(1/𝛿)).

Before proceeding, we observe that

√︃
Var(𝑋𝑖|𝑋𝑈)

Var(𝑋𝑖|𝑋𝑈∖{𝑗}) − 1/Θ𝑖𝑖

≤

√︃
Var(𝑋𝑖|𝑋𝑈∖{𝑗})

Var(𝑋𝑖|𝑋𝑈∖{𝑗}) − 1/Θ𝑖𝑖

≤ max(
√

2,
√︀

2/𝑑′𝜅2) (5.7)

where 𝑑′ is the degree of node 𝑖 in the graph with the nodes in 𝑈 ∖ {𝑗} removed,

by the law of total variance (first inequality) and the following case analysis: either

Var(𝑋𝑖|𝑋𝑈∖{𝑗}) ≥ 2/Θ𝑖𝑖, in which case Var(𝑋𝑖|𝑋𝑈∖𝑗})

Var(𝑋𝑖|𝑋𝑈∖{𝑗})−1/Θ𝑖𝑖
≤ 2, or Var(𝑋𝑖|𝑋𝑈∖{𝑗}) ≤

2/Θ𝑖𝑖 in which case Var(𝑋𝑖|𝑋𝑈∖{𝑗})

Var(𝑋𝑖|𝑋𝑈∖{𝑗})−1/Θ𝑖𝑖
≤ 2/𝑑′𝜅2 by Lemma 43.

The first point above gives the base case for the induction. By Lemma 41, if

Var(E[𝑋𝑖|𝑋∼𝑖]|𝑆𝑡) ̸= 0 then there exists a 𝑘 such that

𝛾′(𝑆𝑡 ∪ {𝑘}, 𝑘) =
Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆𝑡) − Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆𝑡∪{𝑘})

Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆𝑡∪{𝑘}})
≥ 1

𝑑′

where (as above) 𝑑′ is the degree of 𝑖 in the set of non-neighbors of 𝑆𝑡. Combined with

(5.7) and 𝑑′ ≤ 𝑑 we now see that the second guarantee above ensures that at every time

𝑡, the 𝑗 selected by OMP (i.e. 𝑗 where 𝑆𝑡+1 = 𝑆𝑡∪{𝑗}) satisfies 𝛾′(𝑆𝑡∪{𝑗}, 𝑗) ≥ 1/2𝑑
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as long as 𝑚 = Ω((𝑑+ 1/𝜅2)(𝑇 log(𝑛) + log(12/𝛿))). We therefore have that

Var(𝑋𝑖|𝑋𝑆𝑡) − 1/Θ𝑖𝑖 ≤ (1 − 1/2𝑑)(Var(𝑋𝑖|𝑋𝑆𝑡−1) − 1/Θ𝑖𝑖)

for all 1 < 𝑡 ≤ 𝑇 , which combined with the induction hypothesis gives the result

(using that Var(𝑋𝑖|𝑋𝑆𝑡) − 1/Θ𝑖𝑖 = Var(E[𝑋𝑖|𝑋∼𝑖]|𝑋𝑆𝑡) by law of total variance).

5.7.3 Structure Recovery for Attractive GGMs

To give a final result for structure recovery, we show how to combine the previous

analysis of greedy forward selection with a simple analysis of pruning (backward

selection).

Lemma 45. Let 𝑖 be a node of degree at most 𝑑 in a 𝜅-nondegenerate attractive

GGM. Fix 𝛿 > 0 and suppose that 𝑚 = Ω((𝑑 + 1/𝜅2)(𝑇 log(𝑛) + log(2/𝛿))) where

𝑇 = Θ(𝑑 log(2𝑑/𝜅2)). Then with probability at least 1 − 𝛿, the neighborhod of node 𝑖

is correctly recovered by Algorithm GreedyAndPrune with 𝜈 = Θ(𝜅2).

Proof. By Lemma 44 with 𝑇 = 1 + 2𝑑 log(16𝑑/𝜅2), with probability at least 1 − 𝛿/2

we have that Var(E[𝑋𝑖|𝑋∼𝑖] | 𝑋𝑆) ≤ 𝜅2/2 where 𝑆 is the set returned by OMP as

long as 𝑚 = Ω((𝑑+ 1/𝜅2)(𝑇 log(𝑛) + log(24/𝛿))). From Lemma 27 we see this implies

that 𝑆 contains the true neighborhood of node 𝑖.

We now analyze the pruning step for any 𝑆 which is a superset of the true neigh-

borhood of size at most 𝑇 . By Lemma 27 and the Markov property, we know that

if 𝑗 is a true neighbor then 𝛾(𝑆, 𝑗) ≥ 𝜅2, and otherwise 𝛾(𝑆, 𝑗) = 0. Applying

Lemma 38 and taking the union bound over the at most 𝑛𝑇 possible sets, we find

that exactly the true edges are kept with probability at least 1 − 𝛿/2 as long as

𝑚 = Ω((𝑇 log(𝑛) + log(8/𝛿))/𝜅2). Therefore the entire neighborhood recovery suc-

ceeds with probability at least 1 − 𝛿.

Theorem 42. Let 𝑋 be distributed according to a 𝜅-nondegenerate GGM on 𝑛

nodes with maximum degree 𝑑. Fix 𝛿 > 0, then with probability at least 1 − 𝛿

Algorithm GreedyAndPrune run at every node with 𝑇 = Θ(𝑑 log(2𝑑/𝜅2)) and
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𝜈 = Θ(𝜅2) successfully recovers the true graph as long as 𝑚 = Ω((1/𝜅2)(𝑑 log(2𝑑/𝜅2)+

log(2/𝛿)) log(𝑛)).

Proof. This follows from Lemma 45 by taking the union bound over the 𝑛 nodes and

recalling from Lemma 31 the bound 𝑑 ≤ 1/𝜅2.

Remark 11 (Input specification). In the description of the algorithms throughout this

paper, we assume we have access to i.i.d. samples from the distribution. However, it is

straightforward to verify that the algorithms only depend on the empirical covariance

matrix, and can be run given only the empirical covariance matrix in polynomial time.

5.8 Information-theoretic optimal learning of attrac-

tive GGMs

In this section we give an 𝑂(𝑛𝑑) time algorithm for recovering attractive GGMs which

matches the information-theoretic lower bounds up to constants, improving the result

of the previous section at the cost of computational efficiency.

5.8.1 Background: Noncentral F-statistics

In the analysis of the 𝑂(𝑛𝑑) time algorithm, we will need to compare empirical vari-

ances between predictors supported on very different sets of variables. In comparison,

in the analysis of greedy methods we only needed to consider adding or removing a

single variable at a time. In order to handle the new setting, we recall the definition

of noncentral F-statistics and their connection to fixed design regression.

Definition 26. Suppose 𝑍1 ∼ 𝑁(𝛿, 1) and for 𝑗 > 1, 𝑍𝑗 ∼ 𝑁(0, 1) with 𝑍1, . . . , 𝑍𝑚

independent. Then we write
∑︀

𝑖 𝑍𝑖 ∼ 𝜒2
𝑚(𝛿2) where 𝜒2

𝑚(𝛿2) is the noncentral chi-

square distribution with noncentrality parameter 𝛿2 and 𝑚 degrees of freedom.

Definition 27. If 𝑉 ∼ 𝜒2
𝑘(𝛿2) and 𝑊 ∼ 𝜒2

𝑚 is independent of 𝑉 , then we write

𝑉/𝑘

𝑊/𝑚
∼ 𝐹𝑘,𝑚(𝛿2)
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where 𝐹𝑘,𝑚(𝛿2) is the noncentral F-distribution with degrees of freedom 𝑘 and 𝑚 and

noncentrality parameter 𝛿2.

Theorem 43 (Theorem 14.11 of [104]). In the (Gaussian) fixed design regression

model (Section 5.6.1), let 𝐻 be a 𝑞-dimensional subspace of R𝑘. Define

𝑇 :=
𝑚− 𝑘

𝑘 − 𝑞

‖Y −X�̂�0‖2 − ‖Y −X�̂�‖2

‖Y −X�̂�‖2
=
𝑚− 𝑘

𝑘 − 𝑞

‖X�̂� −X�̂�0‖2

‖Y −X�̂�‖2

where �̂� is the unrestricted OLS estimator and �̂�0 is the least squares estimator con-

strained to be inside of subspace 𝐻. (The second equality holds by the Pythagorean

theorem.) Then 𝑇 ∼ 𝐹𝑘−𝑞,𝑚−𝑘(𝛾) where

𝛾 :=
min𝑤0∈𝐻0 ‖X(𝑤 − 𝑤0)‖2

𝜎2
.

More specifically, 1
𝜎2‖Y − X�̂�‖2 ∼ 𝜒2

𝑚−𝑘 and 1
𝜎2‖X�̂� − X�̂�0‖2 ∼ 𝜒2

𝑘−𝑞(𝛾) and these

random variables are independent.

We also recall a convenient concentration inequality for noncentral 𝜒2-distributed

random variables:

Lemma 46 (Lemma 8.1 of [21]). Suppose that 𝑉 ∼ 𝜒2
𝑚(𝛿2). Then

Pr(𝑉 ≥ (𝑚+ 𝛿2) + 2
√︀

(𝑚+ 2𝛿2)𝑡+ 2𝑡) ≤ 𝑒−𝑡

and

Pr(𝑉 ≤ (𝑚+ 𝛿2) − 2
√︀

(𝑚+ 2𝛿2)𝑡) ≤ 𝑒−𝑡.

5.8.2 Structure learning by ℓ0-constrained least squares

We perform structure recovery by, for every node 𝑖, performing several ℓ0-constrained

regressions and pruning the result. In the context of learning Gaussian graphical

models, some algorithms in a similar spirit referred to as SLICE and DICE were pro-

posed in [140] and they proved a sample complexity bound of 𝑂(𝑑/𝜅2 log(𝑛)) for the

more sample-efficient method, DICE. We show our estimator SearchAndValidate
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Algorithm SearchAndValidate(i,d,𝜈):

1. We assume the data has been split into two equally sized sample sets 1 and 2.
Let Ê1 and Ê2 denote the empirical expectation over these two sets and definê︂Var2 similarly.

2. For 𝑑′ in 0 to 𝑑:

(a) Find 𝑤𝑑′ minimizing

min
𝑤:𝑤𝑖=0,| supp(𝑤)|≤𝑑′

Ê1[(𝑋𝑖 − 𝑤𝑑′ ·𝑋)2]

3. For 𝑑′ in 0 to 𝑑 (outer loop):

(a) For 𝑑′′ in 0 to 𝑑 except 𝑑′ (inner loop):

i. Let 𝑆𝑑′,𝑑′′ := supp(𝑤𝑑′) ∪ supp(𝑤𝑑′′).
ii. For 𝑗 in supp(𝑤𝑑′′) ∖ supp(𝑤𝑑′)

A. If ̂︂Var2(𝑋𝑖|𝑋𝑆𝑑′,𝑑′′∖{𝑗})−̂︂Var2(𝑋𝑖|𝑋𝑆𝑑′,𝑑′′
) > 𝜈̂︂Var2(𝑋𝑖|𝑋𝑆𝑑′,𝑑′′

), con-
tinue to next iteration of outer loop.

(b) Return supp(𝑤𝑑′).

actually achieves optimal sample complexity 𝑂((1/𝜅2) log(𝑛)) in the setting of attrac-

tive GGMs, and always achieves a sample complexity of 𝑂((𝑑/𝜅2) log(𝑛)) which gives

a faster algorithm with the same sample complexity as DICE from [140], which has

a slower runtime of 𝑂(𝑛2𝑑+1). (It matches the runtime guarantee for SLICE in [140],

which has a worse sample complexity guarantee.)

In Algorithm SearchAndValidate, the key step is performing ℓ0-constrained

regression to predict 𝑋𝑖; the loop in step 2 is required only because we do not know

a priori the exact degree of node 𝑖, only an upper bound. With high probability,

the support of one of the 𝑤𝑑′ will equal the exact neighborhood of node 𝑖, and then

a straightforward validation procedure in step 3 (which uses a similar idea to Al-

gorithm DICE in [140]) allows us to identify the correct 𝑤𝑑′ successfully. For the

purposes of the analysis, for every pair of sets 𝑆0 ⊂ 𝑆 not containing 𝑖 define (as in
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Theorem 43)

𝑇 (𝑆0, 𝑆) :=
𝑛− |𝑆|
|𝑆| − |𝑆0|

‖X𝑖 −X�̂�0‖2 − ‖X𝑖 −X�̂�‖2

‖X𝑖 −X�̂�‖2
=

𝑛− |𝑆|
|𝑆| − |𝑆0|

‖X�̂� −X�̂�0‖2

‖X𝑖 −X�̂�‖2

where �̂�0 is the OLS estimator restricted to supp(𝑤0) ⊂ 𝑆0 and �̂� is the OLS estimator

restricted to supp(𝑤) ⊂ 𝑆.

The following Lemma analyzes the key step in the above algorithm; it shows that

when 𝑑′ equals the true degree of node 𝑖, the true support is returned. The crucial

part which requires that the GGM is attractive is the application of Lemma 43, which

guarantees that candidate supports which are far away from the true neighborhood

perform much worse than the true neighborhood. This is crucial because there are

many candidate neighborhoods far away from the true neighborhood, which means

we need an improved bound to handle them and overcome the cost of taking the

union bound.

Lemma 47. In a 𝜅-nondegenerate attractive GGM, if 𝑖 is a node of degree 𝑑 then

ℓ0 constrained regression over vectors with support size at most 𝑑 returns the true

neighborhood of node 𝑖 with probability at least 1 − 𝛿 as long as 𝑚 = Ω(log(𝑛)/𝜅2 +

log(2/𝛿)/𝜅2).

Proof. First we consider the randomness over the samples of 𝑋∼𝑖, i.e. over X with

column 𝑖 removed. By Lemma 37 and the union bound over all subsets 𝑆 of [𝑛] ∖ {𝑖}

with |𝑆| ≤ 2𝑑, it holds with probability at least 1 − 𝛿/2 that for all 𝑤 with 𝑤𝑖 = 0

and | supp(𝑤)| ≤ 2𝑑,

1

2
E[(𝑤𝑇𝑋)2] ≤ 1

2
𝑤𝑇

(︂
1

𝑚
X

𝑇
X

)︂
𝑤 ≤ E[(𝑤𝑇𝑋)2] (5.8)

as long as 𝑚 = Ω(𝑑 log(𝑛) + log(2/𝛿)). (Recall from Lemma 31 that 𝑑 ≤ 1/𝜅2, so this

holds under the hypothesis of the theorem.) We condition on this event and consider

the remaining randomness over X𝑖. Let 𝑆* be the set of true neighbors of node 𝑖 and

let 𝑆0 be any other subset of size at most 𝑑. Define 𝑆 := 𝑆* ∪ 𝑆0. Since the OLS

estimators are defined by projection onto spans of the columns of X, we can apply
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the Pythagorean theorem to get

‖X𝑖 −X�̂�𝑆*‖2 = ‖X𝑖 −X𝑤𝑆‖2 + ‖X�̂�𝑆* −X�̂�𝑆‖2

and

‖X𝑖 −X�̂�𝑆0‖2 = ‖X𝑖 −X𝑤𝑆‖2 + ‖X�̂�𝑆0 −X�̂�𝑆‖2.

Subtracting, we get that

‖X𝑖 −X�̂�𝑆0‖2 − ‖X𝑖 −X�̂�𝑆*‖2 = ‖X�̂�𝑆0 −X�̂�𝑆‖2 − ‖X�̂�𝑆* −X�̂�𝑆‖2.

To prove the result, it suffices to show with high probability that for any 𝑆0 which

does not contain 𝑆* that the leftmost term is positive — then no such 𝑆0 can be

the minimizer of the ℓ0-constrained regression, since 𝑆* corresponds to a feasible

point with smaller objective value. We achieve this by showing the right hand side is

positive. Observe

‖X�̂�𝑆0 −X�̂�𝑆‖2 − ‖X�̂�𝑆* −X�̂�𝑆‖2 =
𝑑− 𝑞

𝑛− |𝑆|
‖Y −X�̂�𝑆‖2(𝑇 (𝑆0, 𝑆) − 𝑇 (𝑆*, 𝑆)).

where 𝑞 = |𝑆0| = |𝑆*| so it suffices to show that 𝑇 (𝑆0, 𝑆) − 𝑇 (𝑆*, 𝑆) ≥ 0. In fact,

canceling out denominators, dividing by 𝜎2 and rearranging it suffices to show

1

𝜎2
‖X�̂�𝑆 −X�̂�𝑆0‖2 ≥

1

𝜎2
‖X�̂�𝑆 −X�̂�𝑆*‖2

where by Theorem 43 the left hand side is according to 𝜒2
𝑑−𝑞(𝛾) with 𝛾 :=

minsupp(𝑤0)⊂𝑆 ‖X(𝑤0−𝑤*)‖2

𝜎2 and the right hand side is distributed according to 𝜒2
𝑑−𝑞, where

𝜎2 := 1/Θ𝑖𝑖. Observe by (5.8) that

𝛾 ≥ 𝑚

2

minsupp(𝑤0)⊂𝑆 E[(𝑋𝑇 (𝑤0 − 𝑤*))2]

𝜎2
=
𝑚

2

minsupp(𝑤0)⊂𝑆 Var(𝑋𝑇 (𝑤0 − 𝑤*))]

𝜎2
≥ 𝑚𝜅2(𝑑− 𝑞)

2
(5.9)

where the last inequality is by Lemma 43, since 𝑤0 is supported on 𝑆0 which is missing
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𝑑− 𝑞 of the neighbors of node 𝑖. Applying Lemma 46

Pr(
1

𝜎2
‖X�̂�𝑆 −X�̂�𝑆0‖2 ≤ (𝑑− 𝑞 + 𝛾) − 2

√︀
(𝑑− 𝑞 + 2𝛾)𝑡) ≤ 𝑒−𝑡

and applying Lemma 29

Pr(
1

𝜎2
‖X�̂�𝑆 −X�̂�𝑆*‖2 ≥ (𝑑− 𝑞) + 2

√︀
(𝑑− 𝑞)𝑡+ 2𝑡) ≤ 𝑒−𝑡.

Letting 𝑡 = log(4𝑑𝑛𝑑−𝑞/𝛿), and taking the union bound over the at most 𝑛𝑑−𝑞 possible

values of 𝑆0 and then over the at most 𝑑 possible values of 𝑞, we find that with

probability at least 1 − 𝛿/2 for all possible 𝑆0 and 𝑞 that

1

𝜎2
‖X�̂�𝑆 −X�̂�𝑆0‖2 −

1

𝜎2
‖X�̂�𝑆 −X�̂�𝑆*‖2 ≥ 𝛾 − 2

√︀
(𝑑− 𝑞 + 2𝛾)𝑡− 2

√︀
(𝑑− 𝑞)𝑡

≥ 𝛾 − 4
√︀

(𝑑− 𝑞 + 2𝛾)𝑡.

Finally, we see this is nonnegative as long as 𝛾 = Ω(𝑡) = Ω((𝑑− 𝑞) log(𝑛) + log(2/𝛿)),

which by (5.9) holds as long as 𝑚 = Ω( log(𝑛)+log(2/𝛿)
𝜅2 ). Therefore the desired result

holds with total probability at least 1 − 𝛿, completing the proof.

Theorem 44. Fix 𝛿 > 0. In a 𝜅-nondegenerate attractive GGM, as long as

𝑚 = Ω((1/𝜅2) log(𝑛) + log(2/𝛿)/𝜅2) it holds with probability at least 1 − 𝛿 that Algo-

rithm SearchAndValidate with 𝜈 = 𝜅2/2 returns the true neighborhood of every

node 𝑖.

Proof. By applying Lemma 47 and taking the union bound over nodes 𝑖, we know that

as long as 𝑚 = Ω((1/𝜅2) log(𝑛) + log(2/𝛿)/𝜅2) then with probability at least 1 − 𝛿/2

for every node 𝑖, for 𝑑′ equal to the true degree of node 𝑖 that 𝑤𝑑′ returned in step 2

of Algorithm SearchAndValidate is supported on exactly the true neighborhood

of node 𝑖.

Furthermore, conditioned on the previous event (which only involves sample set

1), it holds with probability at least 1 − 𝛿/2 by taking the union bound over the

possible values of 𝑑′, 𝑑′′ that (similar to the pruning argument used in analysis of
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Algorithm GreedyAndPrune):

1. in step 3(a).ii, for every 𝑑′ less than the true degree of node 𝑖 and for 𝑑′′ equal

to the true degree of node 𝑖 that the outer loop continues to the next step by

applying Lemma 38, Lemma 36, and Lemma 27 and considering any 𝑗 in the

true neighborhood and missing from the support of 𝑤𝑑′ .

2. In step 3 when 𝑑′ equals the true degree of node 𝑖, step 3(b) is reached and the

true support of node 𝑖 is returned by applying Lemma 38 and Lemma 36.

as long as 𝑚 = Ω((𝑑+1/𝜅2) log(𝑛)+log(2/𝛿)/𝜅2). Using that 𝑑 ≤ 1/𝜅2 by Lemma 31,

we see the requirement on 𝑚 holds and as desired, the algorithm succeeds with total

probability at least 1 − 𝛿.

A simplified argument in the general (non-attractive) case, using the weaker bound

from Lemma 27 instead of Lemma 43, yields the following result in the general case.

Theorem 45. Fix 𝛿 > 0. In a 𝜅-nondegenerate (not necessarily attractive) GGM

with maximum degree 𝑑, as long as 𝑚 = Ω((𝑑/𝜅2) log(𝑛) + log(2/𝛿)/𝜅2) it holds with

probability at least 1−𝛿 that Algorithm SearchAndValidate with 𝜈 = 𝜅2/2 returns

the true neighborhood of every node 𝑖.

5.9 Hybrid ℓ1 regression guarantees

In the next section, we will discuss algorithms for regression and structure learning

in general walk-summable models. Since (as we will see) the conditional variance is

not supermodular in these models, we need some fundamentally new tools to analyze

this setting. It turns out that we will need to analyze a variant of ℓ1-constrained least

squares regression, which we do in this section as preparation.

Definition 28. We define the hybrid ℓ1-regression model to be given by

𝑌 = ⟨𝑤*, 𝑋 − E[𝑋|𝑍]⟩ + 𝑎*𝑍 + 𝜉
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where ‖𝑤‖1 ≤ 𝑊 and conditioned on 𝑍, 𝑋 − E[𝑋|𝑍] ∼ 𝑁(0,Σ) with Σ : 𝑛 × 𝑛,

Σ𝑖𝑖 ≤ 𝑅2 for all 𝑖, E𝑍2 = 1 (w.l.o.g.), and E𝜉2 = 𝜎2 with the noise 𝜉 independent of

𝑋,𝑍.

The corresponding function class is

ℱ := {(𝑥, 𝑧) ↦→ ⟨𝑤, 𝑥− E[𝑋|𝑍 = 𝑧]⟩ + 𝑎𝑧 : ‖𝑤‖1 ≤ 𝑊}

= {(𝑥, 𝑧) ↦→ ⟨𝑤, 𝑥⟩ + 𝑎′𝑧 : ‖𝑤‖1 ≤ 𝑊}.

and the Empirical Risk Minimizer (ERM) is given by taking the minimizer of

min
‖𝑤‖1≤𝑊,𝑎′

Ê[(𝑌 − ⟨𝑤,𝑋⟩ − 𝑎′𝑍)2].

As mentioned in the introduction, it will be crucial in the analysis to look at the

parameterization with 𝑎 instead of 𝑎′ even though algorithmically the ERM will be

computed using the variable 𝑎′ (as the change of basis given by subtracting off the

conditional expectations is unknown and could only be approximated from data).

5.9.1 Guarantees for Empirical Risk Minimization (ERM)

There is a vast literature on generalization bounds for empirical risk minimization

(and natural variants) using tools such as (local) Rademacher complexity, stability,

etc. (see e.g. [14, 174, 165] and many related references). In the present context,

many of these methods are not well-optimized because the noise and covariates are

drawn from unbounded distributions and the squared loss is not uniformly Lipschitz

(see e.g. the discussion in [136]). Fortunately, the framework developed in [136] avoids

these issues and we are able to use it directly to give a good bound on the excess risk

of the empirical risk minimizer.

Background: Learning without Concentration Framework

We recall the main result of [136]. In this framework, as with many results in statisti-

cal learning, the empirical process is controlled by a localized measure of complexity:
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more precisely, fixpoints of local Rademacher averages defined below. See e.g. [14]

for more context. In the present context, this is important both to get a better rate

for the “realizable” part of the generalization bound (the term which doesn’t depend

on the noise level 𝜎, which dominates in the realizable setting 𝜎 = 0), and also to

handle the fact that the class ℱ we consider is unbounded.

Let ℱ be a class of (measurable) functions. Let 𝑋, 𝑌 be arbitrary random vari-

ables, suppose that 𝑓 * is a minimizer of E[(𝑌 −𝑓(𝑋))2] over 𝑓 ∈ ℱ (which we assume

exists) and define 𝜉 := 𝑌 − 𝑓 *(𝑋). Let ‖𝑓‖𝐿2 =
√︀

E[𝑓 2] and let 𝐷2(𝑓) be the 𝐿2 ball

of radius 1 around 𝑓 , i.e. 𝐷2(𝑓) = {𝑔 : E[(𝑔(𝑋) − 𝑓(𝑋))2] = 1}. The following two

quantities, defined by fixed point equations, appear in the generalization bound: the

intrinsic parameter (which does not depend on the noise model)

𝛽*
𝑚(𝛾) = inf

{︃
𝑟 > 0 : E sup

𝑓∈ℱ∩𝑟𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑚

𝑚∑︁
𝑖=1

𝜖𝑖(𝑓 − 𝑓 *)(𝑋𝑖)

⃒⃒⃒⃒
⃒ ≤ 𝛾𝑟

√
𝑚

}︃

and the noise-sensitive/extrinsic parameter

𝛼*
𝑚(𝛾, 𝛿) = inf

{︃
𝑠 > 0 : Pr

(︃
sup

𝑓∈ℱ∩𝑠𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑚

𝑚∑︁
𝑖=1

𝜖𝑖𝜉𝑖(𝑓 − 𝑓 *)(𝑋𝑖)

⃒⃒⃒⃒
⃒ ≤ 𝛾𝑠2

√
𝑚

)︃
≥ 1 − 𝛿

}︃
.

Theorem 46 (Theorem 3.1, [136]). Suppose ℱ is a closed, convex class of functions

and 𝑓 *, 𝑋, 𝑌, 𝛼*, 𝛽* are defined as above. Let 𝜏 > 0, define

𝑞 := inf
𝑓∈ℱ−ℱ

Pr(|𝑓 | ≥ 2𝜏‖𝑓‖𝐿2)

and assume that 𝑞 > 0 (this is called the small-ball condition). Then for any 𝛾 <

𝜏 2𝑞/16 and for every 𝛿 > 0 it holds that for any 𝑓 which is an empirical risk minimizer

for i.i.d. samples {(𝑋(𝑖), 𝑌 (𝑖))}𝑚𝑖=1,

‖𝑓 − 𝑓 *‖𝐿2 ≤ 2 max {𝛼*
𝑚(𝛾, 𝛿/4), 𝛽*

𝑚(𝜏𝑞/16)}

with probability at least 1 − 𝛿 − 𝑒−𝑚𝑞/2.
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ERM Risk Bound

We return to the specific setting of hybrid ℓ1-constrained regression and prove our

desired bound.

Theorem 47. As long as 𝑚 = Ω(log(𝑛/𝛿)), if �̂�, �̂�′ is the empirical risk minimizer

for hybrid L1 regression from 𝑚 i.i.d. samples then

E[(E[𝑌 |𝑋,𝑍]−⟨�̂�,𝑋⟩−�̂�′𝑍)2] = 𝑂

(︃
𝑅𝑊𝜎

√︂
log(2𝑛/𝛿)

𝑚
+
𝜎2 log(4/𝛿)

𝑚
+
𝑅2𝑊 2 log(𝑛)

𝑚

)︃

with probability at least 1 − 𝛿.

Proof. We first deal with the small-ball condition. Let 𝜏 = 1/2. Observe that for any

𝑓1, 𝑓2 ∈ ℱ that 𝑓1(𝑋,𝑍) − 𝑓2(𝑋,𝑍) has a univariate Gaussian distribution, therefore

𝑞 := Pr(|𝑓 | ≥ 2𝜏‖𝑓‖𝐿2) = 1 − 1√
2𝜋

∫︁ 2𝜏

−2𝜏

𝑒−𝑥2/2𝑑𝑥 ≥ 1/4.

We take 𝛾 = 1/300 < 𝜏 2𝑞/32.

We now bound 𝛽*. We have

E sup
𝑓∈ℱ∩𝑟𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑚

𝑚∑︁
𝑖=1

𝜖𝑖(𝑓 − 𝑓 *)(𝑋𝑖)

⃒⃒⃒⃒
⃒

= E sup
𝑓∈ℱ∩𝑟𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑚

𝑚∑︁
𝑖=1

𝜖𝑖(⟨𝑤 − 𝑤*, 𝑋𝑖 − E[𝑋𝑖|𝑍𝑖]⟩ + (𝑎− 𝑎*)𝑍)

⃒⃒⃒⃒
⃒

≤ 2𝑅𝑊E

⃦⃦⃦⃦
⃦ 1√

𝑚

𝑛∑︁
𝑖=1

𝜖𝑖
𝑋𝑖 − E[𝑋𝑖|𝑍𝑖]

𝑊

⃦⃦⃦⃦
⃦
∞

+ sup
𝑓∈ℱ∩𝑟𝐷𝑓*

|𝑎− 𝑎*|E|𝑍|

≤ 𝐶(𝑅𝑊
√︀

log(𝑛) + sup
𝑓∈ℱ∩𝑟𝐷𝑓*

|𝑎− 𝑎*|)

where the first inequality is by Holder’s inequality and the triangle inequality, and

the second is by the standard Gaussian tail bound combined with the union bound.

To complete the bound observe that

E[(⟨𝑤 − 𝑤*, 𝑋 − E[𝑋|𝑍]⟩ + (𝑎− 𝑎*)𝑍)2] ≥ (𝑎− 𝑎*)2
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so 𝑎− 𝑎* ≤ 𝑟 and

E sup
𝑓∈ℱ∩𝑟𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑛

𝑚∑︁
𝑖=1

𝜖𝑖(𝑓 − 𝑓 *)(𝑋𝑖)

⃒⃒⃒⃒
⃒ ≤ 𝐶(𝑅𝑊

√︀
log(𝑛) + 𝑟).

This is smaller than 𝛾𝑟
√
𝑚 as long as 𝑟 = Ω(𝑅𝑊

𝛾

√︁
log𝑛
𝑚

) so 𝛽*
𝑚 = 𝑂(𝑅𝑊

𝛾

√︁
log𝑛
𝑚

).

We proceed to bound 𝛼* similarly.

sup
𝑓∈ℱ∩𝑠𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑚

𝑚∑︁
𝑖=1

𝜖𝑖𝜉𝑖(𝑓 − 𝑓 *)(𝑋𝑖)

⃒⃒⃒⃒
⃒

= sup
𝑓∈ℱ∩𝑠𝐷𝑓*

⃒⃒⃒⃒
⃒ 1√
𝑚

𝑚∑︁
𝑖=1

𝜖𝑖𝜉𝑖(⟨𝑤 − 𝑤*, 𝑋𝑖 − E[𝑋𝑖|𝑍𝑖]⟩ + (𝑎− 𝑎*)𝑍)

⃒⃒⃒⃒
⃒

≤ 𝐶(𝑅𝑊𝜎
√︀

log(2𝑛/𝛿) + 𝜎𝑠
√︀

log(4/𝛿))

with probability at least 1−𝛿 as long as 𝑚 ≥ 𝑚1 = 𝑂(log(𝑛/𝛿)), where the inequality

is by Holder’s inequality and |𝑎−𝑎*| ≤ 𝑠 (as before), Bernstein’s inequality (Theorem

2.8.2 of [188]) using that the product of sub-Gaussian r.v. (𝜉𝑖 and 𝑋𝑖 − E[𝑋𝑖|𝑍𝑖]) is

sub-exponential (Lemma 2.7.7 of [188]), and the union bound. The last quantity is

upper bounded by 𝛾𝑠2
√
𝑚 as long as 𝑠2 = Ω(𝜎

𝛾

√︁
log(2𝑛/𝛿)

𝑚
) and 𝑠 = Ω(𝜎

𝛾

√︁
log(4/𝛿)

𝑚
).

Therefore

(𝛼*)2 = 𝑂

(︃
𝑅𝑊𝜎

𝛾

√︂
log(2𝑛/𝛿)

𝑚
+
𝜎2 log(4/𝛿)

𝛾2𝑚

)︃
.

Combining our estimates, it follows from Theorem 46 that

E[(𝑓−𝑓 *)2] = 𝑂((𝛼*
𝑚)2+(𝛽*

𝑚)2) = 𝑂

(︃
𝑅𝑊𝜎

𝛾

√︂
log(2𝑛/𝛿)

𝑚
+
𝜎2 log(4/𝛿)

𝛾2𝑚
+
𝑅2𝑊 2 log(𝑛)

𝛾𝑚

)︃

with probability at least 1 − 𝛿 − 𝑒−𝑚/8 ≥ 1 − 2𝛿 as long as 𝑚 = Ω(log(1/𝛿) +𝑚1) =

Ω(log(𝑑/𝛿)). Since 𝛾 is just a constant, this gives the result.

5.9.2 Guarantees for Greedy Methods

In this section we show that a simple greedy method can also solve this high-

dimensional regression problem with the correct dependence on 𝑛, albeit with slightly
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worse dependence on the other parameters. This is conceptually important as it shows

that examples breaking greedy algorithms (in the sense of requiring 𝜔(log(𝑛)) sample

complexity) also suffice to break analyses based on bounded ℓ1-norm.

Lemma 48. In the hybrid ℓ1-regression model, there exists an input coordinate 𝑗 such

that

Var(E[𝑌 |𝑋,𝑍] | 𝑍,𝑋𝑗) ≤ Var(E[𝑌 |𝑋,𝑍] | 𝑍)

(︂
1 − Var(E[𝑌 |𝑋,𝑍] | 𝑍)

𝑅2𝑊 2

)︂
.

Proof. By expanding, applying Holder’s inequality and using the assumption on 𝑅

we have

Var(E[𝑌 |𝑋,𝑍] | 𝑍) =
∑︁
𝑗

𝑤𝑗Cov(E[𝑌 |𝑋,𝑍], 𝑋𝑗 | 𝑍)

≤ 𝑊 max
𝑗

|Cov(E[𝑌 |𝑋,𝑍], 𝑋𝑗 | 𝑍)|

≤ 𝑅𝑊 max
𝑗

⃒⃒⃒⃒
⃒Cov

(︃
E[𝑌 |𝑋,𝑍],

𝑋𝑗√︀
Var(𝑋𝑗|𝑍)

⃒⃒⃒
𝑍

)︃⃒⃒⃒⃒
⃒ .

Let 𝑗 be the maximizer. Then by Lemma 28,

Var(E[𝑌 |𝑋,𝑍] | 𝑍)−Var(E[𝑌 |𝑋,𝑍] | 𝑍,𝑋𝑗) =
Cov(E[𝑌 |𝑋,𝑍], 𝑋𝑗 | 𝑍)2

Var(𝑋𝑗 | 𝑍)
≥ Var(E[𝑌 |𝑋,𝑍] | 𝑍)2

𝑅2𝑊 2
.

Rearranging gives that

Var(E[𝑌 |𝑋,𝑍] | 𝑍,𝑋𝑗) ≤ Var(E[𝑌 |𝑋,𝑍] | 𝑍)

(︂
1 − Var(E[𝑌 |𝑋,𝑍] | 𝑍)

𝑅2𝑊 2

)︂
.

The above bound naturally leads to analyzing the recursion 𝑥 ↦→ 𝑥 − 𝑐𝑥2, which

we do in the next Lemma.

Lemma 49. Suppose that 𝑥1 ≤ 1/2𝑐 and 𝑥𝑡+1 ≤ (1 − 𝑐𝑥𝑡)𝑥𝑡 for some 𝑐 < 1. Then

𝑥𝑡 ≤
1

𝑐(𝑡+ 1)
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Proof. We prove this by induction. Observe that 𝑥(1 − 𝑐𝑥) is an increasing function

in 𝑥 for 𝑥 ≤ 1
2𝑐

since 1/2𝑐 corresponds to the vertex of the parabola, so using the

assumption and the induction hypothesis,

𝑥𝑡 ≤ 𝑥𝑡−1(1 − 𝑐𝑥𝑡−1) ≤ 1/𝑐𝑡− 1/𝑐𝑡2 =
𝑡− 1

𝑐𝑡2
≤ 𝑡− 1

𝑐(𝑡2 − 1)
≤ 1

𝑐(𝑡+ 1)
.

Lemma 50. In the hybrid ℓ1-regression model,

Var(E[𝑌 |𝑋,𝑍] | 𝑍) ≤ 𝑅2𝑊 2.

Proof. By expanding, using Holder’s inequality and Cauchy-Schwartz

Var(E[𝑌 |𝑋,𝑍] | 𝑍) =
∑︁
𝑗

𝑤𝐽Cov(E[𝑌 |𝑋,𝑍], 𝑋𝑗 | 𝑍)

≤ 𝑊 max
𝑗

|Cov(E[𝑌 |𝑋,𝑍], 𝑋𝑗 | 𝑍)

≤ 𝑊 max
𝑗

√︁
Var(E[𝑌 |𝑋,𝑍] | 𝑍)Var(𝑋𝑗 | 𝑍) ≤ 𝑅𝑊

√︀
Var(E[𝑌 |𝑋,𝑍] | 𝑍)

so Var(E[𝑌 |𝑋,𝑍] | 𝑍) ≤ 𝑅2𝑊 2.

Remark 12 (Connection to Approximate Caratheodory). From the previous two

lemmas, we can give a “matching pursuit” proof of the approximate Caratheodory

theorem, which says that vectors of bounded ℓ1-norm are well approximated in ℓ2 by

sparse vectors [188]. The standard proof of this result is probabilistic. Another proof,

in a similar spirit, is given by using the guarantees of the Frank-Wolfe algorithm (see

[36]).

The remaining task is to analyze the behavior of the iteration under noise, which

gives the main result:

Theorem 48. For any 𝜖 ∈ (0, 1), iterate 𝑡 of OMP in the hybrid regression model

satisfies

Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡) ≤ 𝜖𝜎2
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as long as 𝑡 = Ω(𝑅2𝑊 2/𝜖𝜎2) and 𝑚 = Ω(𝑅
2𝑊 2

𝜖2𝜎2 (𝑡 log(4𝑛) + log(4/𝛿))).

Proof. The argument is structured similarly to the proof of Lemma 44. Fix 𝜖 ∈

(0, 1) to be optimized later: we bound the number of steps of OMP during which

Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡) ≥ 𝜖𝜎2. Note that once this bounds holds for some 𝑡, it holds

for all larger 𝑡 by the law of total variance. Fix an integer 𝑇 > 0 to be optimized

later.

First observe from Lemma 48 (applied after conditioning out𝑋𝑆𝑡) that there exists

a node 𝑗* such that

Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑗* , 𝑋𝑆𝑡) ≤ Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡)(1 − Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡)

𝑅2𝑊 2
).

From Lemma 39 and taking the union bound over all sets 𝑆 of size |𝑆| ≤ 𝑇 we have⃒⃒⃒⃒
⃒⃒
√︃

1

Var(𝑌 |𝑋𝑆∖𝑗) − 𝜎2

|�̂�𝑗|√︁
(Σ̂−1)𝑗𝑗

−
√︀
𝛾′

⃒⃒⃒⃒
⃒⃒ ≤

√︃
Var(𝑌 |𝑋𝑆)

Var(𝑌 |𝑋𝑆∖𝑗) − 𝜎2
· 2 log(𝑛𝑇/𝛿)

𝑚
+

√︂
𝛾′

64

≤
√︂

1 + 𝜖

𝜖
· 2 log(𝑛𝑇/𝛿)

𝑚
+

√︂
𝛾′

64

using that (1 + 𝑥)/𝑥 = 1/𝑥+ 1 is monotone decreasing, where

𝛾′ = 𝛾′(𝑆, 𝑗) :=
Var(𝑋𝑖|𝑍,𝑋𝑆∖{𝑗}) − Var(𝑋𝑖|𝑍,𝑋𝑆)

Var(𝑋𝑖|𝑍,𝑋𝑆∖{𝑗}) − 𝜎2
.

Note that 𝛾′(𝑆, 𝑗*) ≥ 𝜖𝜎2/𝑅2𝑊 2. Therefore as long as 𝑚 = Ω(𝑅
2𝑊 2

𝜖2𝜎2 (𝑇 log(4𝑛) +

log(4/𝛿))) then OMP chooses a node 𝑗 s.t.

Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑗, 𝑋𝑆𝑡) ≤ Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡)(1 − Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡)

2𝑅2𝑊 2
)

as long as |𝑆𝑡| ≤ 𝑇 . Applying Lemma 50 and Lemma 49 we find that

Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡) ≤
2𝑅2𝑊 2

𝑡+ 1

for 𝑡 ≤ 𝑇 . Therefore if 𝑇 ≥ 𝑡 ≥ 2𝑅2𝑊 2/𝜖𝜎2 we are guaranteed that
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Var(E[𝑌 |𝑋,𝑍]|𝑍,𝑋𝑆𝑡) ≤ 𝜖𝜎2. Taking 𝜖 = 2𝑅2𝑊 2/𝑇𝜎2 gives the result.

5.10 Regression and Structure Learning in Walk-

Summable Models

5.10.1 Failure of (weak) supermodularity in SDD models

The following example shows that the conditional variance is not supermodular in

the SDD case, unlike in the attractive/ferromagnetic case.

Example 9. Consider the GGM given by SDD precision matrix

Θ =

⎡⎢⎢⎢⎣
1 −1/2 −1/2

−1/2 1 1/2

−1/2 1/2 1

⎤⎥⎥⎥⎦
and label the nodes (in order) by 𝑖, 𝑗, 𝑘. One can see (e.g. by computing effective

resistances in the lifted graph) that 2Var(𝑋𝑖) = 3, that 2Var(𝑋𝑖|𝑋𝑗) = 2Var(𝑋𝑖|𝑋𝑘) =

8/3, and 2Var(𝑋𝑖|𝑋𝑗, 𝑋𝑘) = 2. Since 3 − 8/3 = 1/3 < 2/3 = 8/3 − 2 this violates

supermodularity.

The above example alone does not rule out the possibility that (negative) condi-

tional variances in SDD models always have submodularity ratio introduced by [48]

lower bounded by a constant. We recall the definition next:

Definition 29 ([48]). The submodularity ratio 𝛾(𝑘) of a function on subsets of a

universe 𝑈 , 𝑓 : 2𝑈 → R≥0 is defined to be

𝛾(𝑘) := min
𝐿⊂𝑈,|𝑆|≤𝑘,𝐿∩𝑆=∅

∑︀
𝑥∈𝑆 𝑓(𝐿 ∪ {𝑥}) − 𝑓(𝐿)

𝑓(𝐿 ∪ 𝑆) − 𝑓(𝐿)

Note that 𝛾(𝑘) ≥ 1 for a submodular function.

The significance of this ratio for a function 𝑓 is that if the ratio is lower bounded

by a constant then similar guarantees for submodular maximization follow ([48]); for
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this reason such an 𝑓 is sometimes called weakly submodular (as in e.g. [61]). Now,

we give a counterexample showing that for general SDD matrices, this ratio can be

arbitrarily small.

Example 10. Fix 𝑀 > 0 large. Let 𝜖 > 0 be a parameter to be taken small, and

consider the following precision matrix, which is SDD as long as 𝜖 < 1/2 < 𝑀 :

Θ =

⎡⎢⎢⎢⎣
1 −𝜖 𝜖

−𝜖 𝑀 𝜖−𝑀

𝜖 𝜖−𝑀 𝑀

⎤⎥⎥⎥⎦ .

This has inverse Θ−1 equaling⎡⎢⎢⎣
(𝜖− 2𝑀)/(𝜖+ 2𝜖2 − 2𝑀) −(𝜖/(𝜖+ 2𝜖2 − 2𝑀)) 𝜖/(𝜖+ 2𝜖2 − 2𝑀)

−(𝜖/(𝜖+ 2𝜖2 − 2𝑀)) (𝜖2 −𝑀)/(𝜖2 + 2𝜖3 − 2𝜖𝑀) (𝜖+ 𝜖2 −𝑀)/(𝜖2 + 2𝜖3 − 2𝜖𝑀)

𝜖/(𝜖+ 2𝜖2 − 2𝑀) (𝜖+ 𝜖2 −𝑀)/(𝜖2 + 2𝜖3 − 2𝜖𝑀) (𝜖2 −𝑀)/(𝜖2 + 2𝜖3 − 2𝜖𝑀)

⎤⎥⎥⎦
so

Var(𝑋1) −
1

Θ11

=
−2𝜖2

𝜖+ 2𝜖2 − 2𝑀

and (by computing the inverse of the top-left 2x2 submatrix of Θ) we find

Var(𝑋1|𝑋3) −
1

Θ11

=
𝑀

𝑀 − 𝜖2
− 1 =

𝜖2

𝑀 − 𝜖2

and the difference is

Var(𝑋1) − Var(𝑋1|𝑋3) =
𝜖3

(𝑀 − 𝜖2)(2𝑀 − 2𝜖2 − 𝜖)

Therefore the submodularity ratio 𝛾 = 𝛾(2) for 𝑓(𝑆) = Var(𝑋1) − Var(𝑋1|𝑋𝑆) is

upper bounded by (taking 𝐿 = ∅)

𝛾 ≤ 𝑓({2}) + 𝑓({3})

𝑓({2, 3})
= Θ

(︂
𝜖3/𝑀2

𝜖2/𝑀

)︂
= Θ(𝜖/𝑀)

which is clearly arbitrarily small.
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Remark 13 (Submodularity ratio and 𝜅). It’s possible to show, based on Lemma 48

and the bounds in the proof of Theorem 49 to derive a partial lower bound for the

submodularity ratio when we consider 𝑆 ⊂ 𝑇 and restrict to 𝑗 which are neighbors of

𝑖, by showing:

𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆) ≥ 𝜅2

4𝑑
(𝑓(𝑈) − 𝑓(𝑆)) ≥ 𝜅2

4𝑑
(𝑓(𝑇 ∪ {𝑗}) − 𝑓(𝑇 ))

using the monotonicity of 𝑓 (which follows from the law of total variance) in the last

step, and under the assumption that the model is 𝜅-nondegenerate and 𝑑-sparse. The

above example shows that this dependence on 𝜅 is tight: by taking a fixed small 𝜖 and

sending 𝑀 → ∞, the submodularity ratio can be as small as 𝑂(𝜅2) since 𝜅 = 𝜖/
√
𝑀

in this model. It remains unclear if the submodularity ratio can be lower bounded in

general in 𝜅-nondegenerate models; even if such a bound did hold it could not be used

to prove Theorem 49 since that result holds without a 𝜅-nondegeneracy assumption.

5.10.2 Sparse regression

In this section we describe an algorithm to find a good predictor of node 𝑋𝑖 with

bounded degree 𝑑 in a walk-summable GGM. To simplify the analysis, we assume the

data has been split into 3 equally sized sample sets, each of size 𝑚; when there is no

explicit mention, averages are taken over sample set 1.

The algorithm is conceptually straightforward: it does a single greedy step and

then sets up an ℓ1-constrained regression. The only complication is that we do not

know 1/Θ𝑖𝑖 a priori, but this appears in the ℓ1-norm of the obvious regression we want

to setup. Since we have multiplicative estimates for 1/Θ𝑖𝑖, we can deal with this by

searching over the possible values on a log scale.

We show this algorithm gives a result for sparse linear regression under the walk-

summability assumption which (1) depends on sparsity only, not on norms (unlike

the slow rate bound for LASSO) and (2) is computationally efficient (unlike brute

force ℓ0-constrained regression).
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Algorithm WS-Regression(𝛾, 𝑑):

1. Choose 𝑗 to minimize ̂︂Var(𝑋𝑖|𝑋𝑗).

2. Let 𝑠20 := exp(⌊log(̂︂Var(𝑋𝑖|𝑋𝑗)/8𝑑)⌋ − 1).

3. For ℓ in 0 to ⌈log(8𝑑) + 3⌉:

(a) Let 𝑠2ℓ := 𝑠0𝑒
ℓ

(b) Solve for 𝑤, 𝑎 in

min
𝑤,𝑎:‖𝑤‖1≤𝜆

Ê2

⎡⎣⎛⎝𝑋𝑖 −
∑︁

𝑘/∈{𝑖,𝑗}

𝑤𝑘
𝑋𝑘√︁̂︂Var(𝑋𝑘|𝑋𝑗)

− 𝑎𝑋𝑗

⎞⎠2⎤⎦
where 𝜆 =

√
2𝑑𝑠ℓ and Ê2 is empirical expectation over sample set 2.

(c) Let �̂�2 := Ê3

[︃(︂
𝑋𝑖 −

∑︀
𝑘/∈{𝑖,𝑗}𝑤𝑘

𝑋𝑘√̂︂Var(𝑋𝑘|𝑋𝑗)
− 𝑎𝑋𝑗

)︂2
]︃

where Ê3 is empiri-

cal expectation over sample set 3. If 𝜆2 ≥ 2𝑑𝛾2�̂�2 (equivalently, 𝑠2ℓ ≥ 𝛾2�̂�2),
then exit the loop.

4. Return 𝑤, 𝑎, 𝑗, �̂�2.
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Theorem 49. Let 𝑖 be a node of degree 𝑑 in an SDD GGM and 𝜎2 := 1/Θ𝑖𝑖. Then

WS-Regression(𝛾) with 𝛾2 = 2 returns 𝑤, 𝑎 such that

E

⎡⎣⎛⎝E[𝑋𝑖|𝑋∼𝑖] −
∑︁

𝑘/∈{𝑖,𝑗}

𝑤𝑘
𝑋𝑘√︁̂︂Var(𝑋𝑘|𝑋𝑗)

− 𝑎𝑋𝑗

⎞⎠2⎤⎦ = 𝑂

(︃
𝜎2

√︂
𝑑 log(2𝑛/𝛿)

𝑚

)︃

and �̂�2 s.t. 1/2 ≤ Θ𝑖𝑖�̂�
2 ≤ 2 with probability at least 1−𝛿, as long as 𝑚 = Ω(log(𝑛/𝛿)).

Proof. By Lemma 33, for any 𝑘 ∼ 𝑖 we have Var(𝑋𝑖|𝑋𝑗) ≤ 1/|Θ𝑖𝑘| therefore if we

take 𝑗* which minimizes Var(𝑋𝑖|𝑋𝑗*) then

Var(𝑋𝑖|𝑋𝑗*) ≤ 1/|Θ𝑖𝑗|

for all 𝑗. Similarly, applying Lemma 34 we know that

Var(𝑋𝑖|𝑋𝑗*) ≤ 4𝑑

Θ𝑖𝑖

By using Lemma 35 and taking the union bound over the randomness of sample set 1,

we may assume that for every 𝑗, 𝑘, Var(𝑋𝑘|𝑋𝑗)/
√

2 ≤̂︂Var(𝑋𝑘|𝑋𝑗) ≤
√

2Var(𝑋𝑘|𝑋𝑗),

with probability at least 1 − 𝛿/3 as long as 𝑚 = Ω(log(𝑛/𝛿)). We condition on this

event. Then for the 𝑗 chosen in step 1 of the algorithm, we have that

Var(𝑋𝑖|𝑋𝑗) ≤
√

2̂︂Var(𝑋𝑖|𝑋𝑗) ≤
√

2̂︂Var(𝑋𝑖|𝑋𝑗*) ≤ 2Var(𝑋𝑖|𝑋𝑗*) ≤ 2/|Θ𝑖𝑘|

for all 𝑖 ∼ 𝑘, and similarly

Var(𝑋𝑖|𝑋𝑗) ≤
8𝑑

Θ𝑖𝑖

. (5.10)

Furthermore,

Var

⎛⎝ 𝑋𝑘√︁̂︂Var(𝑋𝑘|𝑋𝑗)

⃒⃒⃒⃒
⃒⃒𝑋𝑗

⎞⎠ ≤
√

2
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and

∑︁
𝑘

|Θ𝑖𝑘|
Θ𝑖𝑖

√︁̂︂Var(𝑋𝑘|𝑋𝑗) ≤
∑︁
𝑘

|Θ𝑖𝑘|
Θ𝑖𝑖

√︁
2Var(𝑋𝑘|𝑋𝑗)

≤
∑︁
𝑘

|Θ𝑖𝑘|
Θ𝑖𝑖

√︁
2(1/|Θ𝑖𝑘| + Var(𝑋𝑖|𝑋𝑗))

≤
∑︁
𝑘

|Θ𝑖𝑘|
Θ𝑖𝑖

√︀
2(3/|Θ𝑖𝑘|) =

√
6

Θ𝑖𝑖

∑︁
𝑘

√︀
|Θ𝑖𝑘| ≤

√︀
6𝑑/Θ𝑖𝑖

using Lemma 32 in the second inequality and Cauchy-Schwartz and the SDD property

in the final inequality. Given (5.10) we know that for one of the values of ℓ satisfies

𝑒/Θ𝑖𝑖 ≤ 𝑠2ℓ ≤ 𝑒2/Θ𝑖𝑖; call this ℓ*. By Theorem 47 we have that with probability at

least 1−𝛿/3 that for all of the loop iterations where 1/Θ𝑖𝑖 ≤ 𝑠2ℓ (so the global optimal

𝑤*, 𝑎 is in the constraint set) and ℓ ≤ ℓ*

E

⎡⎣⎛⎝𝑋𝑖 −
∑︁

𝑘/∈{𝑖,𝑗}

𝑤𝑘
𝑋𝑘√︀

Var(𝑋𝑘|𝑋𝑗)
− 𝑎𝑋𝑗

⎞⎠2⎤⎦ = 𝑂

(︃√︀
1/Θ𝑖𝑖

√︀
24𝑑/Θ𝑖𝑖

√
2

√︂
log(𝑛2/𝛿)

𝑚

)︃
(5.11)

as long as 𝑚 = Ω(log(𝑛/𝛿)), using that 𝑑 ≤ 𝑛 in the union bound. Condition on

this and consider only the randomness over sample set 3. By Bernstein’s inequality

and the union bound over the loop iterations, with probability at least 1 − 𝛿/3 as

long as 𝑚 = Ω(log(𝑛/𝛿)), for the above value of ℓ = ℓ* we have that the test in

3(c) succeeds and the loop exits, and that if the loop exited in a previous iteration

then 1
Θ𝑖𝑖

= Var(𝑋𝑖|𝑋∼𝑖) ≤ 𝑠2ℓ so we can apply the above guarantee (5.11), giving the

result.

5.10.3 Structure learning

Theorem 50. For an SDD, 𝜅-nondegenerate GGM the following is true. Algorithm

HybridMB with 𝜏 = 𝜅2/8, 𝛾 = 2 returns the true neighborhood of every node 𝑖 with

probability at least 1 − 𝛿 as long as 𝑚 ≥ 𝑚′
1, where 𝑚′

1 = 𝑂((𝑑/𝜅4) log(𝑛/𝛿)) where 𝑑

is the max degree in the graph.

Proof. By Theorem 49 and the union bound, we may assume with probability at least
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Algorithm HybridMB(𝜏, 𝛾, 𝑑):

1. We suppose the samples are split into 3 equally sized sets as in the description
of WS-Regression.

2. For every node 𝑖, apply WS-Regression which returns 𝑤(𝑖), 𝑎(𝑖), 𝑗(𝑖), �̂�2(𝑖).

3. Define 𝑢(𝑖)𝑗(𝑖) = 𝑎(𝑖) and 𝑢(𝑖)𝑘 = 𝑤(𝑖)𝑘√̂︂Var(𝑋𝑘|𝑋𝑗)
.

4. Let 𝐸 = {}.

5. For every pair of nodes 𝑎, 𝑏:

(a) If 𝑢(𝑎)2𝑏 �̂�
2(𝑏) ≥ 𝜏 �̂�2(𝑎) and 𝑢(𝑏)2𝑎�̂�

2(𝑎) ≥ 𝜏 �̂�2(𝑏): add (𝑖, 𝑗) to 𝐸.

6. Return edge set 𝐸.

1− 𝛿, as long as 𝑚 = Ω((𝑑/𝜅4) log(𝑛/𝛿)) that for every node 𝑖 we have 𝑢(𝑖) such that

E

⎡⎣(︃E[𝑋𝑖|𝑋∼𝑖] −
∑︁
𝑘 ̸=𝑖

𝑢(𝑘)𝑋𝑘

)︃2
⎤⎦ ≤ 𝜅2

16Θ𝑖𝑖

and �̂�2(𝑖) which is within a factor of 2 of 1/Θ𝑖𝑖. Applying the law of total variance

and the conditional law of a single variable in the GGM, we find that

(︂
𝑢(𝑘)√

Θ𝑘𝑘

+
Θ𝑖𝑘

Θ𝑖𝑖

√
Θ𝑘𝑘

)︂2

=

(︂
𝑢(𝑘) +

Θ𝑖𝑘

Θ𝑖𝑖

)︂2

Var(𝑋𝑘|𝑋∼𝑘) ≤ 𝜅2

64Θ𝑖𝑖

so if 𝑖 and 𝑘 are not neighbors, then Θ𝑖𝑘 = 0 so

𝑢(𝑘)2�̂�2(𝑘) ≤ 2𝑢(𝑘)2/Θ𝑘𝑘 ≤
𝜅2�̂�2

𝑖

16

and if they are then |Θ𝑖𝑘| ≥ 𝜅
√

Θ𝑖𝑖Θ𝑘𝑘 so using the reverse triangle inequality

𝑢(𝑘)2�̂�2(𝑘) ≥ (1/2)𝑢(𝑘)2/Θ𝑘𝑘 ≥ (1/2)(𝜅2/
√︀

Θ𝑖𝑖 − 𝜅/8
√︀

Θ𝑖𝑖) ≥ (7/16)𝜅2/
√︀

Θ𝑖𝑖

≥ (7/32)𝜅2�̂�2(𝑖).

From these inequalities we see that in step 5 (a) exactly the correct edges are chosen.
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Theorem 51. For any SDD, 𝜅-nondegenerate GGM the following is true. Algorithm

GreedyAndPrune with 𝜏 = 𝜅2/8 and 𝑇 = Θ(𝑑/𝜅2) returns the true neighborhood

of every node 𝑖 with probability at least 1 − 𝛿 as long as 𝑚 = Ω((𝑑2/𝜅6) log(𝑛/𝛿))

where 𝑑 is the max degree in the graph.

Proof. The proof is the same as for Theorem 50 except that we use Theorem 48

instead of Theorem 47, and use the slightly different pruning analysis from the proof

of Theorem 40.

Remark 14 (Implementation). In experiments, to reduce the number of free param-

eters in HybridMB we define 𝛾′ = 2𝑑𝛾2 and note that using 𝛾′ instead of 𝛾 actually

allows 𝑑 to be eliminated as a parameter. We also use a single sample set instead of

sample splitting; we expect that the algorithm can still be proved correct without the

splitting, at the cost of a more lengthy analysis.

For completeness, we state a result for HybridMB under the ℓ1-bounded assump-

tion used in previous work like [39, 38]. The proof follows the proof of our main result,

except that we can ignore the analysis of the first greedy step and simply use the a

priori estimate for the ℓ1 norm, which only shrinks under conditioning.

Theorem 52. For any 𝜅-nondegenerate GGM with precision matrix Θ : 𝑛 × 𝑛

such that max𝑖

∑︀𝑛
𝑗=1 |Θ𝑖𝑗| ≤ 𝑀 , Algorithm HybridMB with 𝜏 = 𝑂(𝜅2) returns

the true neighborhood of every node 𝑖 with probability at least 1 − 𝛿 as long as

𝑚 = Ω(𝑀2 log(𝑛/𝛿)/𝜅4).

This guarantee matches [38], which itself improves on the guarantee in [39]. In the

same setting, GreedyAndPrune achieves a sample complexity of 𝑂(𝑀
4 log(𝑛/𝛿)

𝜅6 ).

5.11 Simulations and Experiments

In this section, we will compare our proposed method (GreedyAndPrune) with

popular methods previously introduced in the literature: the Graphical Lasso [67],

the Meinhausen-Bühlmann estimator (based on the LASSO) [135], CLIME [39], and
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ACLIME [38] (an adaptive version of CLIME). In the first subsection, we consider

simple attractive GGMS and show that our method always performs well compared

to previous methods and sometimes outperforms them considerably. In the second

subsection, we compare the performance on a real dataset (from [37]) and show that

our methods HybridMB and GreedyAndPrune again compare favorably. Our

experiment also gives evidence that walk-summability is a reasonable assumption in

practice.

5.11.1 Simple attractive GGMs where previous methods per-

form poorly

Three of the most popular methods for recovering a sparse precision matrix in practice

are the Graphical Lasso (glasso) [67], the Meinhausen-Bülhmann estimator (MB)

based on the Lasso [135], and the CLIME estimator [39]. The graphical lasso is the

ℓ1-penalized variant of the MLE (Maximum Likelihood Estimator) for the covariance

matrix; CLIME minimizes the ℓ1-norm of the recovered precision matrix Θ̂, given an

ℓ∞ constraint |ΣΩ− 𝐼𝑑|∞ ≤ 𝜆 (where |𝑀 |∞ = ‖𝑀‖1→∞ is the entrywise max-norm).

For Meinhausen-Bühlmann, we let the estimated Θ̂ have its rows be given by the

appropriate lasso estimate, scaled appropriately by the corresponding estimate for

the conditional variance. The current theoretical guarantees of these methods have

very high sample complexity for general GFFs and we find simple examples in which

the scaling of their sample complexity with 𝑛 is poor. One example (which breaks

the Meinhausen-Bühlmann estimator) is simply based off of a simple random walk

observed at large times; the other examples we use are simple combinations of a path

and cliques:

Example 11 (Path and cliques). Fix 𝑑 and suppose 𝑛/2 is a multiple of 𝑑. Let 𝐵 be a

standard Brownian motion in 1 dimension, and let 𝑋1, . . . , 𝑋𝑛/2 be the values of the 𝐵

at equally spaced points in the interval [1/2, 3/2], i.e. 𝑋1 = 𝐵(1/2), 𝑋2 = 𝐵((1/2) +

1/(𝑛− 1)), . . . Equivalently, let the covariance matrix of this block be Cov(𝑋𝑖, 𝑋𝑗) =

1/2 + min(𝑖, 𝑗)/𝑛, or take the Laplacian of the path and add the appropriate constant
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to the top-left entry.

Let the variables 𝑋𝑛/2+1,...,𝑋𝑛 be independent of the Brownian motion, and let

their precision matrix be block-diagonal with 𝑑× 𝑑 blocks of the form Θ1 where Θ1 is

a rescaling of Θ0 so that the coordinates have unit variance, and Θ0 = 𝐼 − (𝜌/𝑑)⃗1⃗1𝑇

where 𝜌 ∈ (0, 1). In all experiments, we finally standardize the variables to have unit

variance, following the usual recommendation (although the variances in this example

are already bounded between 0.5 and 1.5).

The results of running all methods8 on samples from this model are shown in

Figure 5-1 for the Frobenius error with a fixed number of samples (𝑚 = 150) where

the clique degree is 𝑑 = 4 and the edge strength is 𝜌 = 0.95. In Figure 5-2 we show

the number of samples needed to recover the true edge structure for the same example

with 𝑑 = 4 in two cases, 𝜌 = 0.7 and 𝜌 = 0.95. We note that our definition of structure

recovery is fairly generous — we apply a thresholding operation to the returned Θ

matrix using the true value of 𝜅/2, so the algorithms are not penalized for returning

matrices with many small nonzero entries (which happens in practice at the optimal

tuning of parameters, even though in the theory of e.g. [135] neighborhood estimates

are made just from the support of the lasso estimate).

Note in particular that from Figure 5-2, we see the sample complexity of

GreedyAndPrune scales like 𝑂(log(𝑛)), the information-theoretic optimal scal-

ing which is in agreement with Theorem 40, while in the first example (𝜌 = 0.7) the

sample complexity of the Graphical Lasso scales roughly like Θ(𝑛) and in the second

example (𝜌 = 0.95) the same is true for CLIME.

Recall that these examples are well-outside of the regime where the theoretical

guarantees for methods like CLIME and Graphical Lasso can guarantee accurate

reconstruction from 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)) sammples, which is one reason we might expect

them to be hard in practice. For example, the analysis of CLIME requires a bound on

the entries of the inverse covariance (after rescaling the coordinates to have variance

8For the Graphical Lasso we used the standard R packages recommended in the original papers.
For CLIME, we originally tested the standard R package but it was unable to reconstruct a path,
presumably due to numerical issues. To fix this, we reimplemented CLIME using Gurobi and used
a similar implementation for ACLIME.
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Θ(1)), but for the path Laplacian the entries of the precision matrix are of order

Θ(𝑛).

We describe one additional intuition as to why the Graphical Lasso should fails

on this example: for the penalty 𝜆‖Θ̂‖1 to respect the structure of the path (where

conditional variances are small) 𝜆 should be chosen small, but then the nodes in the

cliques may gain spurious edges to the path and other cliques. With CLIME there

is a similar concern that the ℓ1 penalty for the two types of nodes does not scale

properly. Different regularization parameters for the different types of edges could

help in this particular example — however, it is typically difficult know beforehand

which nodes have small and big conditional variances without effectively learning

the GGM, as the way to show a node has low conditional variance almost always

involves finding a good predictor of it from the other nodes. Concretely, in the case

of ACLIME, it performed significantly worse than CLIME in most of our tests. On

the other hand, the rescaling performed by our proposed algorithm HybridMB does

resolve this issue in a principled way.

In the above two examples we tried, the (thresholded) Meinhausen-Bühlmann es-

timator successfully achieved similar sample complexity to our proposed methods,

despite the fact that this example is again well outside of the regime where its theo-

retical guarantees are good. However, as we see in Figure 5-3 the sample complexity

of this estimator is poor in another very simple example: a simple random walk with

Gaussian steps run from times 𝑛 to 2𝑛. (As before, this is the description of the model

before standardizing coordinates to variance 1.) This is again not so surprising, as

we know the Lasso (which the MB method is based upon) can only be guaranteed

to obtain its “slow rate” guarantee when the coordinates of the input are highly de-

pendent, and the slow rate guarantee for Lasso depends on norm parameters that are

not sufficiently small in our example for good recovery guarantee.

5.11.2 Results for Riboflavin dataset

In this section we analyze the behavior of recovery algorithms on a popular dataset

provided in [37]. This dataset has 𝑚 = 71 samples and describes (log) expression
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Figure 5-1: Normalized error (measured by ‖Θ̂ − Θ‖1/𝑛 where ‖ · ‖1 denotes the ℓ1
norm viewing the matrix as a vector) in the precision matrix returned in Example 11
with 𝜌 = 0.95. We note that this quantity should be expected to scale at least
linearly, because some entries of Θ grow with 𝑛. Errors were averaged over 8 trials
for each 𝑛 and hyperparameters were chosen by grid search minimizing the recovery
error in a separate trial, for each value of 𝑛. The tested parameters for 𝜆 in glasso
were chosen from a log grid with 15 points from 0.0005 to 0.4, similarly for 𝜆 in MB,
from 8 points from 1 to 32 for 𝛾′ in HybridMB (we set 𝜏 = 0 for a more direct
comparison to MB), for CLIME from a log grid with 15 points from 0.01 to 0.8, and
for GreedyAndPrune 𝑘 from a rounded log grid with 7 points from 3 to 24 and 𝜈
from a log grid with 8 points from 0.001 to 0.1.

levels for 𝑛 = 100 genes in B. subtilis. We compared all of the methods listed above;

our tables do not list the ACLIME results because it did not achieve nontrivial

reconstruction (it’s CV error as defined below was 0.98, which is essentially the same

as the score for returning the identity matrix). We selected parameters using a 5-fold

crossvalidation with the following least-squares style crossvalidation objective9, after

standardizing the coordinates to each have empirical variance 1 and mean 0:

𝐸(Θ̂) :=
1

𝑛𝑚ℎ𝑜𝑙𝑑𝑜𝑢𝑡

𝑛∑︁
𝑖=1

𝑚ℎ𝑜𝑙𝑑𝑜𝑢𝑡∑︁
𝑘=1

(𝑋
(𝑘)
𝑖 +

∑︁
𝑗 ̸=𝑖

Θ̂𝑖𝑗 + Θ̂𝑗𝑖

2Θ̂𝑖𝑖

𝑋
(𝑘)
𝑖 )2.

Note that the true Θ minimizes this objective as 𝑚ℎ𝑜𝑙𝑑𝑜𝑢𝑡 → ∞, making it equal

to the sum of conditional variances; when the initial variances are set to 1, this

objective simply measures the average amount of variance reduction achieved over

9An alternative which is sometimes used is the likelihood objective Tr(Σ̂Θ̂)− log det(Θ̂), but this
objective is not very smooth due to the log det term and may equal ∞ even for entry-wise “good”
reconstructions; since only glasso aims to return a positive definite matrix, we chose the simple
least-squares objective instead.
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Figure 5-2: (a) 𝑑 = 4 and 𝜌 = 0.7, (b) 𝑑 = 4 and 𝜌 = 0.95. Number of samples
needed to approximately recover true edge structure after thresholding using the test

|Θ̂𝑖𝑗 |√
Θ̂𝑖𝑖Θ̂𝑗𝑗

> 𝜅/2, where 𝜅 is the 𝜅 for the true precision matrix from the information-

theoretic assumption (5.1). Samples are drawn from the model in Example 11 with
two different values for the edge strength 𝜌. Note that the sample complexity of
GreedyAndPrune is consistent with the 𝑂(log(𝑛)) bound established in Theo-
rem 40, whereas the graphical lasso and CLIME have sample complexity that appears
to be roughly Θ(𝑛) in the left and right examples respectively. The 𝑚 shown is the
minimal number of samples needed for the average number of incorrect edges per
node (counting both insertions and deletions) to be at most 1. Trials and parameter
selection was performed the same way as in the experiment for Figure 5-1, except
that the parameters were chosen to minimize the number of incorrect edges, instead
of error in the ℓ1 norm.
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Figure 5-3: Large initial time simple random walk example: the setup is the same as
in Figure 5-2, except that the ground truth model is a Gaussian simple random walk
observed from times 𝑛 to 2𝑛. We observe in this example that the sample complexity
of ACLIME and the Lasso-based Meinhausen-Bühlmann estimator appear to scale
roughly linearly in 𝑛, whereas the sample complexity of GreedyAndPrune and
HybridMB is in fact constant over the observed values of 𝑛.
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Method CV Error CV Parameters # NNZ Cond. No. 𝑀 Δ𝑊𝑆

Graphical Lasso 0.13 𝜆 = 0.01 4378 968.6 54.8 8.7 %
CLIME 0.41 𝜆 = 0.21 806 193.8 232.2 0.0 %
GreedyAndPrune 0.27 𝑘 = 13, 𝜈 = 0.01 476 389.4 224 1.1 %
MB 0.17 𝜆 = 0.05 1854 21439 156 1.1 %
HybridMB 0.19 𝛾′ = 21 2758 1080843 324 2.2 %

Table 5.1: Results for precision matrix selected via 5-fold CV on Riboflavin dataset.
The last 4 columns give summary statistics for the final recovered Θ̂ using the CV
parameters on the entire dataset: 𝑀 is the maximum ℓ1 row norm for any row
of Θ, the same as in the guarantee for CLIME cited earlier. The walk-summable
relative error is ∆𝑊𝑆 := ‖Θ̃−Θ̂‖𝐹

‖Θ̂‖𝐹
where Θ̃ is the closest walk-summable matrix to Θ̂

in Frobenius norm. This shows that all of the estimated precision matrices are either
walk-summable or close to walk-summable.

Method Runtime (seconds)
Graphical Lasso 0.74

CLIME 2.12
GreedyAndPrune 0.19

MB 0.48
HybridMB 1.84

Table 5.2: Sequential runtime of methods on Riboflavin dataset with CV parameters,
averaged over 10 runs. In all experiments, the graphical lasso implementation was
from the glasso R package, CLIME was implemented by calling Gurobi from R (due
to numerical limitations of the standard package), MB and HybridMB were imple-
mented using the glmnet package, and for GreedyAndPrune we used a naive R
implementation.

the coordinates.

The results of the cross-validation process10 are shown in Table 5.1. As we see

from the first 2 columns of the table, Graphical Lasso achieved the greatest amount of

variance reduction but returned the densest estimate for Θ, MB and HybridMB had

slightly less variance reduction, GreedyAndPrune had the sparsest estimate and

achieved significantly more variance reduction that CLIME. We see that the chosen

precision matrices have large condition number and row ℓ1-norm𝑀 , comparable to the

number of nodes 𝑛, which is significant in that known guarantees for Graphical Lasso,

10Essentially the same as before, parameters for Graphical Lasso were chosen from a log-scale
grid from 0.001 to 0.5 with 15 points, for CLIME similarly from 0.01 to 0.8 with 20 points, and for
GreedyAndPrune from a rounded log-scale grid from 3 to 26 with 7 points and from 0.001 to 0.1
with 8 points.
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MB, CLIME and ACLIME are only interesting when these quantities are small

(e.g. constant or 𝑂(log 𝑛)). (Equivalently, the gap between variance and conditional

variance is large; we note that the true gap may be even larger if we had access

to more data, since we might be able to find even better estimators for each 𝑋𝑖

given the other coordinates.) On the other hand, the recovered matrices are not far

from walk-summable in Frobenius norm, suggesting that this is indeed a reasonable

assumption.

In Table 5.2 we record the sequential runtimes of all of the methods on this

dataset using the CV parameters. GreedyAndPrune was the fastest method. For

larger datasets it is important to use parallelism, and we note we note that CLIME,

MB, Hybrid.MB and GreedyAndPrune are “embarassingly parallelizable”, as

each node can be solved independently, but this is not the case for the Graphical

Lasso. In practice, on our synthetic datasets and using 24 cores, CLIME becomes

faster than the Graphical Lasso and GreedyAndPrune stays the fastest. In our

experiment, we did not test our proposed method SearchAndValidate or the

methods of [140], although they have good sample complexity guarantees, due to

computational limitations; in [140], they report their methods requires on the order

of days to run on this example.

We also performed a “semi-synthetic” experiment on this dataset, by taking the

recovered (dense) Θ from Graphical Lasso, thresholding it to have 𝜅 = 0.15 and

computing the sample complexity to recover the edges of the graphical model from

sampled data (as in the synthetic experiments, with error of at most 0.25 incorrect

edges per node, after thresholding at 𝜅/2). All methods performed similarly on this

test: the results are shown in Table 5.3.

Remark 15. Several papers have been written on faster implementations of the graph-

ical lasso, e.g. the Big & Quic estimator of [93]. However, these methods have mostly

been developed/tested in the regime where 𝜆 is quite large: e.g. the documentation

for the R package BigQuic implementing Big & Quic suggests using 𝜆 ≥ 0.4 and that

𝜆 = 0.1 is too small to run in a reasonable time on large datasets. In practice, these

methods may even fail to return the true optimum when given small 𝜆; however, the
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Method Number of Samples Needed Optimal Parameters
Graphical Lasso 500 𝜆 = 0.005

CLIME 550 𝜆 = 0.04
GreedyAndPrune 550 𝑘 = 6, 𝜈 = 0.01

MB 550 𝜆 = 0.01
HybridMB 525 𝛾′ = 21

Table 5.3: Number of samples needed to achieve error of at most 0.25 incorrect edges
per node after thresholding in the semi-synthetic experiment: samples were drawn
from a Θ given by thresholding the graphical lasso estimate from the Riboflavin
dataset. The details of the thresholding, etc. are the same as in the synthetic exper-
iment of Figure 5-2.

Figure 5-4: Left: thresholded graph from graphical lasso output on riboflavin data,
used in semisynthetic experiment (see Table 5.3). Right: unthresholded graph output
by GreedyAndPrune on Riboflavin data.

above experiment suggests this is an important regime in practice.

5.12 Some Difficult Examples

A natural question, given our results, is whether the GreedyAndPrune algorithm

could possibly learn all sparse 𝜅-nondegenerate GGMs with 𝑂(log 𝑛) sample com-

plexity (without requiring walk-summability). Here we answer this question in the

negative. Note by the analysis from Section 5.9.2 that if our GreedyAndPrune

fails to succeed with 𝑂(log 𝑛) samples, then any analysis based on bounded ℓ1-norm

must also fail, since greedy methods always succeed if the ℓ1-norm is small.

It is not too hard to find examples which break the greedy method when run once
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from a single node, with the goal of recovering just that node’s neighborhood. For

example, if we take 𝑛 pairs of near-duplicate variables (𝑋𝑖, 𝑋
′
𝑖) with Var(𝑋𝑖) = Θ(𝑛)

and Var(𝑋𝑖 − 𝑋 ′
𝑖) = Θ(1) and define 𝑌 = 𝑋𝑖 − 𝑋 ′

𝑖 for some 𝑖, then using OMP to

find a predictor of 𝑌 will fail to find the edge from 𝑋𝑖 to 𝑌 with 𝑂(log 𝑛) samples.

However, if we run a greedy method to find a predictor of 𝑋𝑖, then we actually will

discover this edge. In the following example, we see there are edges which are not

discovered from either direction:

Example 12 (Example breaking GreedyAndPrune). Fix 𝑑 > 2 and let 𝑍1, . . . , 𝑍𝑑

be the result of taking 𝑑 i.i.d. Gaussians and conditioning on
∑︀

𝑖 𝑍𝑖 = 0. Define

𝑋𝑖 = 𝑍𝑖 + 𝛿𝑊𝑖 and 𝑌𝑖 = 𝑍𝑖 + 𝛿𝑊 ′
𝑖 where 𝑊𝑖,𝑊

′
𝑖 ∼ 𝑁(0, 1) independently. Let

Σ0 be the covariance matrix of 𝑋1, . . . , 𝑋𝑑, 𝑌1, . . . , 𝑌𝑑 (so the 𝑍 are treated as latent

variables).

It can be checked that the GGM with covariance matrix Σ0 remains 𝜅 nondegener-

ate for a fixed 𝜅 even as 𝛿 is taken arbitrarily small. Now consider the GGM which is

block diagonal with first block Σ0 and the second block the identity matrix, and suppose

𝑛 is large. If we try to learn the neighbors of 𝑋𝑖, greedy will with high probability fail

to find a superset of the correct neighborhood of node 𝑋𝑖, because after conditioning

on 𝑌𝑖, the angles between the residual of 𝑋𝑖 and all of the other random variables are

all near 90 degrees (going to 90 as 𝛿 → 0).

To summarize, this example is sparse and 𝜅 = Θ(1) nondegenerate but

GreedyAndPrune fails to learn this GGM from 𝑂(log 𝑛) samples.

Remark 16. Part of the motivation for the use of nearly-duplicated random variables

is that one can prove (using essentially a modified version of Lemma 48)) that in a

general sparse GGM there always exists at least one node 𝑖 with at least one neighbor

𝑗 such that Var(𝑋𝑖|𝑋𝑗) is noticeably smaller than Var(𝑋𝑖). In this example, this is

trivially true but is not useful for discovering connections between unpaired variables.

Example 13 (Harder Example). The previous example, while it breaks

GreedyAndPrune, cannot be a hard example in general because the edge structure

is easy to determine from the covariance matrix. (The covariance matrix is roughly
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block diagonal and each block corresponds to a clique). The following variant seems

significantly harder: start with Σ0 from the previous example, and then Schur com-

plement (i.e. condition) out 𝑑/4 many of the nodes to yield Σ′
0. Then the covariance

matrix of the whole model is block diagonal with Σ′
0 repeated 𝑛/(𝑑/4) times. Finally,

we randomly permute the rows/columns.

Experimentally, it seems that Example 13 breaks the methods considered in our

experiments in the high-dimensional regime where the number of samples is much

less than the dimension 𝑛. However, this example itself cannot be computationally

hard to learn: a simple algorithm to learn it thresholds the covariance matrix to find

the sub-blocks made up of the paired nodes from a block, then picks a sub-block,

conditions it out, and finds the remaining nodes from this block as the nodes whose

conditional variance went down significantly.

The following important problem, first posed in [140], remains open: are 𝜅-

nondegenerate GGMs learnable from 𝑂(log 𝑛) samples with polynomial time algo-

rithms?

189



190



Chapter 6

Learning RBMs with Bounded

Weights

6.1 Introduction

In Chapter 2, we gave the first provable algorithms for learning RBMs, under the

assumptions that the model is (1) sparse and (2) ferromagnetic. On the other hand,

we also showed that learning general sparse RBMs is computationally intractable in

general, because the conjecturally hard problem of learning a sparse parity with noise

[184] can be embedded into a sparse RBM with a constant number of hidden units.

The assumption of ferromagneticity (that variables are only positively correlated, not

negatively correlated) rules out this example and plays a crucial role in the analysis

of these works. Without ferromagneticity, viewing the marginal on 𝑋 as a general

Markov Random Field allows for using prior work [108] to give learning algorithms

with runtime 𝑛𝑂(𝑑𝐻) where 𝑑𝐻 is the maximum degree of a hidden node. This matches

the lower bound of learning sparse parity with noise mentioned previously.

To summarize, the best previous results for learning RBMs either (1) make the

assumption of ferromagneticity which makes building sparse parities impossible or

(2) ignore all of the structure of the RBM except the max hidden degree, and pay

the price of a 𝑛Θ(𝑑𝐻) runtime. This leaves open the question of developing algorithms

whose runtime depends on some natural notion of a complexity measures of the RBM.
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Our Results. In this chapter, we design an algorithm that is adaptive to a norm

based complexity measure of the RBM, and often outperforms approach (2) above

significantly, while not eliminating the possibility of negative correlation completely

as in (1). This kind of complexity measure is often considered to be superior to al-

ternatives like parameter-counting in practice, e.g. in the context of generalization

bounds [13]. The key idea of our approach is to develop a novel connection between

learning RBMs and their historical relative, feedforward neural networks. This con-

nection allows us to establish new results for learning RBMs, by proving new results

about learning feedforward neural networks (Section 6.2).

Our connection also validates the idea of so-called supervised RBMs as a natural

distributional setting for classification with feedforward networks. Supervised RBMs,

proposed by Hinton [90], treat one visible unit of the RBM as the label and the

other visible units as the input to the classifier. This allows us to use the connec-

tion in the “reverse” direction — using natural structural assumptions on the RBM

(like ferromagneticity) to give better results for solving supervised prediction tasks

in an interesting distributional setting. Along these lines, we show that an assump-

tion related to ferromagneticity, but allowing for some amount of negative correlation

in the RBM, allows us to learn the induced feedforward network faster than would

be possible without distributional assumptions (Section 6.3). Lastly, we present an

experimental evaluation of our "supervised RBM" algorithm on MNIST and Fash-

ionMNIST to highlight the applicability of our techniques in practice (Section 6.5).

We note that in independent work, Bresler and Buhai [31] gave a new result for

learning RBMs under a very different assumption: that there are few latent variables.

Their algorithm uses a forward selection procedure which is more similar in spirit to

the approach in Chapter 2 and [75, 30, 87] than the approach here.
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6.2 Learning RBMs via New Results for Feedfor-

ward Networks

Relationship between RBMs and Feedforward Networks Our first result

characterizes the relationship between RBMs and Feedforward networks. We show

that there is a natural self-supervised prediction task in RBMs, of predicting the spin

at node 𝑖 given all other observed nodes, for which the Bayes-optimal predictor is

exactly given by a two-layer feedforward network with a special family of tanh-like

activations.

Theorem 53. For any visible unit 𝑖 in an arbitrary RBM,

E[𝑋𝑖|𝑋∼𝑖] = tanh

(︃
𝑏
(1)
𝑖 +

∑︁
𝑗

tanh(𝑊𝑖𝑗)𝑓𝛽𝑖𝑗

(︁
𝑏
(2)
𝑗 +

∑︁
𝑘 ̸=𝑖

𝑊𝑘𝑗𝑋𝑘

)︁)︃
(6.1)

where 𝛽𝑖𝑗 = | tanh(𝑊𝑖𝑗)| and 𝑓𝛽(𝑥) := 1
𝛽

tanh−1(𝛽 tanh(𝑥)).

Proof. Observe that the conditional distribution of (𝑋𝑖, 𝐻) given 𝑋∼𝑖 = 𝑥∼𝑖 is given

by

Pr(𝑋𝑖 = 𝑥𝑖, 𝐻 = ℎ|𝑋∼𝑖 = 𝑥∼𝑖) ∝ exp

(︃
𝑥𝑖(𝑏

(1)
𝑖 +

∑︁
𝑗

𝑊𝑖𝑗ℎ𝑗) + ⟨𝑊 𝑡
∼𝑖𝑥∼𝑖 + 𝑏(2), ℎ⟩

)︃
(6.2)

where 𝑊∼𝑖 denotes the (𝑛1−1)×𝑛2 dimensional matrix given by deleting row 𝑖. Since

the only quadratic terms left in the potential are between the remaining visible unit

𝑋𝑖 and the hidden units ℎ𝑗, this conditional distribution is exactly an Ising model

on a star graph, i.e. a tree of depth 1 with root node corresponding to 𝑋𝑖. For all

tree-structured graphical models, the conditional distribution of the root given the

leaves can be computed exactly by Belief Propagation (see e.g. [138, 154]); in the case

of Ising models it’s known the general BP formula can be written with hyperbolic

functions as above1.

1For the readers convenience, we include a self-contained derivation of (6.1) from (6.2) in Ap-
pendix 6.7.1.
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Remark 17. An analogous result can be proved in the more general setting where

the spins do not have to be binary; for example in a Potts model version of the RBM

where each spin is valued in a set of size 𝑞, the conditional law of 𝑋𝑖 given the others

would be given again by a two-layer network where the last layer is a softmax. In this

paper we focus on the binary case for simplicity.

Remark 18. The family of activation functions 𝑓𝛽(𝑥) naturally interpolates between

the identity activation (𝛽 = 1 where 𝑓𝛽(𝑥) = 𝑥) and tanh activation at 𝛽 = 0, since

lim
𝛽→0

1

𝛽
tanh−1(𝛽 tanh(𝑥)) =

𝜕

𝜕𝛽
tanh−1(𝛽 tanh(𝑥))

⃒⃒⃒
𝛽=0

= tanh(𝑥).

The exact structure of this prediction function is crucial in what follows and does

not seem to have been known in the RBM literature, though some related ideas have

been used to develop better heuristics for performing inference and training in RBMs

(see discussion in Appendix 6.7).

Given this connection, we show that if we can solve the problem of learning such

a neural network within sufficiently small error, then we can successfully learn the

RBM. This reduces our RBM learning problem to that of learning feedforward neural

networks in the setting that the input is bounded in ℓ∞ norm.

Improved Results for Learning Feedforward Networks Subsequently, we give

results for the feedforward network problem which are nearly optimal both in the

terms of sample complexity (in the regime where 𝜆 is bounded) and in terms of

computational complexity under the hardness of learning sparse parity with noise;

some aspects of this result are new even for the well-studied case of learning neural

networks with tanh activations (see Further Discussion).

Theorem 54 (Informal version of Corollary 6). Suppose that 𝑌 is a random variable

valued in {±1}, 𝑋 is a random vector such that ‖𝑋‖∞ ≤ 1 almost surely and

E[𝑌 |𝑋] = tanh

(︃
𝑏(1) +

∑︁
𝑗

𝑤𝑗𝑓𝛽𝑗

(︁
𝑏
(2)
𝑗 +

∑︁
𝑘

𝑊𝑗𝑘𝑋𝑘

)︁)︃
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where 𝑏(1) ∈ R, 𝛽𝑗 ∈ [0, 1], 𝑤 is an arbitrary real vector and 𝑊 is an arbitrary real

matrix. Let 𝑊𝑗 denote column 𝑗 of 𝑊 and suppose ‖𝑊𝑗‖1 ≤ 𝜆 for every 𝑗 and some

𝜆 ≥ 2. Then if we run ℓ1-constrained regression on the degree 𝐷 monomial feature

map 𝜙𝐷(𝑥) ↦→
(︀∏︀

𝑖∈𝑆 𝑋𝑖

)︀
|𝑆|≤𝐷

with appropriate ℓ1 constraint, the result �̂� satisfies

with high probability

E[ℓ(�̂� · 𝜙𝑑(𝑋), 𝑌 )] ≤ 𝑂𝑃𝑇 + 𝜖

where 𝑂𝑃𝑇 is the minimum logistic loss for any measurable function of 𝑋, as

long as the number of samples 𝑚 satisfies 𝑚 = Ω((|𝑏(1)|2𝜆𝑂(𝐷)) log(2𝑛)) where

𝐷 = 𝑂(𝜆 log(‖𝑤‖1𝜆/𝜖)) and the runtime of the algorithm is 𝑝𝑜𝑙𝑦(𝑛𝐷).

We also show, under the standard assumption for hardness of learning sparse

parity with noise, the following lower bound which shows that the runtime guarantee

in our result is close to tight even in the usual setting of tanh neural networks (𝛽𝑗 = 0)

— it is optimal up to log log factors in the exponent in its dependence on 𝜖 and ‖𝑤‖1,

and we also show that at least a subexponential dependence (essentially 2
√
𝜆) on 𝜆 is

unavoidable (assuming the dependence on other parameters in the statement is fixed,

since there are e.g. trivial algorithms that run in time 2𝑛).

Theorem 55 (Informal version of Theorem 63). There exists families of models (one

with 𝜖 a constant, one with ‖𝑤‖1 a constant) where a runtime of 𝑛Ω
(︁

log(‖𝑤‖1/𝜖)
log log(‖𝑤‖1/𝜖)

)︁
is

needed for any algorithm to achieve 𝜖 error with high probability, regardless of its

sample complexity. Even in the case of tanh activations (𝛽𝑗 = 0 for all 𝑗), there

exists a sequence of models with 𝜆 = Θ(𝑛 log(𝑛)) and ‖𝑤‖1 = 𝑂(
√
𝑛) which requires

runtime 𝑛Ω(
√

𝜆/ log2(𝜆) log(𝑛) log ‖𝑤‖1) to achieve error 𝜖 = 0.01 with high probability.

To our knowledge, the fact that 𝑛log(‖𝑤‖1/𝜖)/ log log(‖𝑤‖1/𝜖) runtime is required to learn

this class even for 𝜆 = 1, and by the above upper bound is tight up to the log log term,

was not known before even for standard tanh networks. As far as the dependence on

𝜆, a similar problem was studied in [166] where they proved the dependence cannot be

polynomial using the result of [110] for intersection of halfspaces, based on a different

assumption, though our lower bound seems to be somewhat stronger in the present

context.
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In particular the lower bounds on the runtime show that methods like the kernel

trick cannot significantly improve the runtime compared to the simple method of

writing out the feature map explicitly used in Theorem 54; however, writing out the

feature map lets us use ℓ1 regularization2 instead of ℓ2 which can give significant

sample complexity advantages (e.g. 𝑂(log 𝑛) vs 𝑂(𝑛) for the usual sparse linear

regression setups).

Structure Learning of RBMs As explained above, our reduction based on Theo-

rem 53 lets us use the above feedforward network learning result to learn the structure

of RBMs. By structure learning, we mean learning the Markov blanket of the each vis-

ible unit in the marginal distribution of the RBM over visible units, i.e. the minimal

set of nodes 𝑆 such that 𝑋𝑖 is conditionally independent of all other 𝑋𝑗 conditionally

on 𝑋𝑆. We will also refer to the Markov blanket as the (two-hop) neighborhood of

node 𝑖. This is a natural objective as other tasks such as distribution learning are

straightforward in sparse models if the Markov blankets are known. As in the previ-

ous work on structure learning in other undirected graphical models (e., we will need

some kind of quantitative nondegeneracy condition to guarantee nodes in the Markov

blanket of node 𝑖 are information-theoretically discoverable; it is not hard to see (e.g.

using the bounds from [163]) that if two nodes are neighbors but their interaction is

extremely weak then it becomes impossible to distinguish the model from the same

model with the edge removed without a very large number of samples.

In Ising models and in ferromagnetic RBMs, there are simple conditions on the

weight matrices which can ensure neighbors are information-theoretically discover-

able. In a general RBM, there is no natural way to place constraints on the weights

of the RBM to ensure this: the issue is that two nodes 𝑋𝑖 and 𝑋𝑗 can be indepen-

dent even though they have two neighboring hidden units with non-negligible edge

weights, since the effect of those hidden units can exactly cancel out so that 𝑋𝑖 and

𝑋𝑗 are independent or indistinguishably close to independent (a number of examples

are given in the earlier Chapter). For this reason, we will instead make the following
2Interestingly, recent work [197] has shown in a special case connections between the implicit bias

of gradient descent in feedforward networks and ℓ1 regularization in function space.
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assumption on the behavior of the model itself instead of on its weight matrix:

Definition 30. We say that visible nodes 𝑖, 𝑗 are 𝜂-nondegenerate two-hop neighbors

if

𝐼(𝑋𝑖;𝑋𝑗|𝑋∼𝑖,𝑗) = E[ℓ(E[𝑋𝑖|𝑋∼{𝑖,𝑗}], 𝑋𝑖)] − E[ℓ(E[𝑋𝑖|𝑋∼𝑖], 𝑋𝑖)] ≥ 𝜂

or if the same inequality holds with 𝑖 and 𝑗 interchanged. Here 𝐼(𝑋𝑖;𝑋𝑗|𝑋∼𝑖,𝑗) is

the conditional mutual information between 𝑋𝑖 and 𝑋𝑗 conditional on 𝑋∼𝑖,𝑗, and the

equality follows from Fact 3 in the Appendix and the definition of mutual information

in terms of KL [47].

Information-theoretically, this condition says that nontrivial information is gained

about 𝑋𝑖 by observing 𝑋𝑗, even after we have already observed 𝑋∼𝑖,𝑗. The fact that

𝑋𝑗 is in the Markov blanket of node 𝑋𝑖 exactly means that this quantity is nonzero.

By Pinsker’s inequality [47], 𝜂-nondegeneracy is also implied by a lower bound on the

partial correlation Cov(𝑋𝑖, 𝑋𝑗|𝑋∼𝑖,𝑗).

Example 14. It is not hard to see that Ising models are equivalent to the marginal

distribution of RBMs with maximum hidden node degree equal to 2. Consider an

Ising model with minimum edge weight 𝛼 and such that the maximum ℓ1-norm into

every node is upper bounded by 𝜆 and the external field is upper bounded by 𝐵, then

𝜂 ≥ 𝑒−𝑂(𝜆+𝐵)/𝛼, see e.g. [29].

Example 15. In a ferromagnetic RBM with minimum edge weight 𝛼 and maximum

external field 𝐵, it can be shown that 𝜂 ≥ 𝑒−𝑂(𝜆1+𝜆2+𝐵)/𝛼2 (see Chapter 2 and [75]).

In order for the RBM to be learnable with a reasonable number of samples (since

general RBMs can represent arbitrary distributions with full support on the hyper-

cube, which we saw in Chapter 2), we need to assume it has low complexity in the

following sense:

Definition 31. We say that an RBM is (𝜆1, 𝜆2)-bounded if for any 𝑖,∑︀
𝑗 | tanh(𝑊𝑖𝑗)| + |𝑏(1)𝑖 | ≤ 𝜆1 and the columns of 𝑊 are bounded in ℓ1 norm by 𝜆2.
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Note that 𝜆1 and 𝜆2 bound the ℓ1 norm into the visible and hidden units, re-

spectively. Based on our upper bounds and lower bounds for the learnability of

feedforward networks, it should be less surprising that these parameters play a very

different role in the computational learnability of RBMs.

Theorem 56 (Informal version of Theorem 64). Suppose all two-neighbors in a

(𝜆1, 𝜆2)-bounded RBM are 𝜂-nondegenerate. Given 𝑚 = Ω(𝜆
𝑂(𝐷)
2 log(2𝑛)) i.i.d. sam-

ples from the RBM, where 𝐷 = 𝑂(𝜆2 log(𝜆1𝜆2/𝜂)), we can recover its structure with

high probability in time 𝑝𝑜𝑙𝑦(𝑛𝐷).

Based on this result we also give a result for learning the RBM in TV distance

under the same assumption: see Theorem 65: the sample complexity of this method is

essentially the above sample complexity plus 𝑛2(1−tanh(𝜆1))
−𝑑2 where 𝑑2 is the max-

imum 2-hop degree; the 𝑝𝑜𝑙𝑦(𝑛) dependence is required as even learning 𝑛 bernoullis

in TV requires Ω(𝑛) sample complexity. Our algorithm encodes the distribution as

a sparse Markov Random Field, but (if desired) this can easily be converted into a

sparse RBM using an algorithm in Chapter 2. Therefore we learn the distribution

properly, except that the learned RBM typically has more hidden units than the

original RBM (i.e. it is overparameterized).

When interpreting these result, it is crucial not to confuse the ℓ1 norm parameters

𝜆1, 𝜆2 of visible and hidden units with the maximum degrees of these units. Typically

in Ising models, we should think of the weight of a typical edge as shrinking as 𝑑

grows so that units stay near the sensitive region of their activation and the behavior

of the model does not become trivial — this means that 𝜆1 and 𝜆2 may be much

smaller than 𝑑. This is consistent with practical advice in the RBM literature, see

e.g. [90]. Probably the most well known sufficient condition for being able to sample

in an Ising model (or RBM) is Dobrushin’s uniqueness criterion which is equivalent

to the requirement that 𝜆1, 𝜆2 ≤ 1 and this condition is actually tight for Glauber

dynamics to mix quickly in the Ising model on the complete graph (Curie-Weiss

Model) [122]. We discuss this further in Remark 21; in Dobrushin’s uniqueness regime

and under some mild nondegeneracy conditions we expect that 𝜂 = Ω(1/𝑑2) so the
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above algorithm has runtime 𝑛log(𝑑), which is an exponential improvement in the

exponent compared to the best previously known result (𝑂(𝑛𝑑) runtime by viewing

the RBM as an MRF).

We also give lower bound results showing that the computational complexity of

the above algorithm is essentially optimal in terms of 𝜆1 and 𝜂 (based upon the

hardness of learning sparse parity with noise) and nearly optimal in terms of 𝜆2 for

an SQ (Statistical Query) algorithm, in the sense that any SQ algorithm needs at least

sub-exponential dependence on 𝜆2 (given that the dependence on other parameters

is not changed — e.g. obviously there is a 2𝑛 time algorithm to learn this problem).

In particular, this shows that our results for learning feedforward networks under ℓ∞

are close to tight even in this application, where the input distribution is related to

the label.

Theorem 57 (Informal version of Theorem 71). As before, 𝜆2 refers to the maximum

ℓ1-norm into any hidden unit and we choose parameters so that 𝜆2 = 𝑝𝑜𝑙𝑦(𝑛) and

𝜆1 = 𝑝𝑜𝑙𝑦(𝑛). There exists 𝜖 > 0 so that no SQ algorithm with tolerance 𝑛−𝜆𝜖
2 and

access to 𝑛𝜆𝜖
2 queries can structure learn an 𝛼 = Ω(1)-nondegenerate (𝜆1, 𝜆2)-bounded

RBM.

We also show (Theorem 68) that the 𝜂-nondegeneracy condition is required to

achieve nontrivial guarantees even if we are only interested in distribution learning

(i.e. in TV), assuming the hardness of learning sparse parity with noise.

6.3 Supervised RBMs

Since in many applications the input data to a classifier is clearly very structured (e.g.

images, natural language corpuses, data on networks, etc.), it is interesting to consider

the behavior of classification algorithms under structural assumptions on the data.

RBMs are one (relatively simple) generative model which can generate interesting

structured data. This suggests the idea of learning “supervised RBMs”, as proposed

by Hinton [90], where we assume the input and label are drawn from an RBM joint
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distribution, so that predicting the label is a feedforward network by Theorem 53; in

this model the label is just a special visible unit in the RBM. Based on the previous

discussion about computational lower bounds, we know that assuming the input to

a feedforward network comes from the corresponding RBM does not in general make

learning easier, but we know that in RBMs there are very natural assumptions we

can make to avoid these computational issues. Our final result is of exactly this

flavor, showing how we can learn the supervised RBM under a ferromagneticity-

related condition faster than is possible if we did not have a distributional assumption.

In order to emphasize the special role of the node which we want to predict, we will

adopt a modified notation where the visible unit which we want to learn to predict is

labeled 𝑌 and all other visible units are still labeled 𝑋. More precisely, we model the

joint distribution over input features 𝑋 valued in {±1}𝑛1 , latent features 𝐻 valued

in {±1}𝑛2 and label 𝑌 ∈ {±1} as,

Pr[𝑋 = 𝑥,𝐻 = ℎ, 𝑌 = 𝑦] ∝ exp
(︀
⟨𝑥,𝑊ℎ⟩ + ⟨ℎ,𝑤⟩𝑦 + ⟨𝑏(1), 𝑥⟩ + ⟨𝑏(2), ℎ⟩ + 𝑏(3)𝑦

)︀
where the weight matrix 𝑊 is a non-negative 𝑛1 × 𝑛2 matrix, 𝑤 is an arbitrary 𝑛1

dimensional vector and 𝑏(1) ∈ R𝑛2 , 𝑏(2) ∈ R𝑛2 and 𝑏(3) ∈ R are arbitrary. Given the

latent variables 𝐻, 𝑤 can be seen as the linear predictor for 𝑌 .

Theorem 58 (Informal Version of Theorem 73). Suppose the interaction matrix 𝑊

is ferromagnetic with minimum edge weight 𝛼. Further suppose one of the RBMs

induced by conditioning on 𝑌 = 1 or 𝑌 = −1 is a (𝜆, 𝜆)-RBM. Then there exists an

algorithm that learns the predictor 𝑌 that minimizes logistic loss up to error 𝜖. The

algorithm has sample complexity 𝑚 = 𝑛2
1 exp(𝜆)exp(𝑂(𝜆))(1/𝛼)𝑂(1) log(𝑛1/𝛿)/𝜖

2 and has

runtime 𝑝𝑜𝑙𝑦(𝑚).

Our main algorithm can be broken down into three main steps: (1) Use greedy

maximization of conditional covariance CovAvg to first learn the two-hop neighborhood

𝒩 (𝑖) of each observed variable 𝑖 w.r.t. the hidden layer conditioned on the label

(see Algorithm 2), (2) For each observed variable 𝑋𝑖, learn the conditional law of

𝑋𝑖 | 𝑋𝒩 (𝑖), 𝑌 using regression, and (3) Use the estimated distribution to compute
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E[𝑌 |𝑋]. Step (1) leverages tools from [75] but considers a setting where the RBM

may in fact have some amount of negative correlation, as 𝑤 has arbitrary signs and

is allowed to have large norm. Step (2) can be achieved by simply looking at the

conditional law under the empirical distribution; this is efficient as we learn small

neighborhoods.

In step (3), we can make use of the following useful trick (a version of which can

be found in [90]): we already have enough information to derive the law of 𝑌 | 𝑋

since we know the marginal law of 𝑌 (the fraction of + and − labels) and the law of

𝑋 | 𝑌 . However, naively carrying out the Bayes law calculation is difficult because

it involves partition functions (which are in general NP-hard to approximate, see e.g.

[172]). We avoid computing the partition function by observing that if we define 𝑓1, 𝑓2

such that Pr(𝑋, 𝑌 ) ∝ exp(𝑓1(𝑋)1(𝑌 = 1) + 𝑓2(𝑋)1(𝑌 = −1) + 𝑏𝑦), then the law of

𝑌 | 𝑋 follows a logistic regression model where

E[𝑌 | 𝑋] = tanh

(︂
𝑓1(𝑋) − 𝑓2(𝑋)

2
+ 𝑏

)︂

for some constant 𝑏 ∈ R. Therefore if we know 𝑓1, 𝑓2 up to additive constants (which

we can derive from the Fourier coefficients learned in (2)), we can simply fit a logistic

regression model from data to learn ℎ plus the missing constants, and we can prove

this works using fundamental tools from generalization theory. We refer the reader

to Appendix 6.10 for additional details.

Algorithm 2 LearnSupervisedRBMNbhd(𝑢, 𝜏,𝒮) (Adapted from [75])
1: Set 𝑆 := 𝜑

2: Set 𝑖* = arg max𝑣
̂︂Cov

Avg

𝒮 (𝑢, 𝑣|𝑆, 𝑌 ), and 𝜂* = max𝑣
̂︂Cov

Avg

𝒮 (𝑢, 𝑣|𝑆, 𝑌 )
3: if 𝜂* ≥ 𝜏 then
4: 𝑆 = 𝑆 ∪ {𝑖*}
5: else
6: Go to Step 8
7: Go to Step 2
8: For each 𝑣 ∈ 𝑆, if ̂︂Cov

Avg

𝒮 (𝑢, 𝑣|𝑆∖{𝑣}, 𝑌 ) < 𝜏 , remove 𝑣 (Pruning step)
9: Return 𝑆

Observe that under the given distributional assumptions, our algorithm has run-
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time complexity polynomial in the input dimension in contrast to Theorem 54 where

the run time scales as 𝑛Ω(𝜆). A simple example which shows the algorithm from

this Theorem will outperform any algorithm without distributional assumptions (like

Theorem 54) is given in Remark 24.

6.4 Discussion: Comparison to Prior work on Learn-

ing Neural Networks

In the neural network learning literature, various works prove positive results that

either (1) work for any distribution with norm assumptions or (2) require strong

distributional assumptions. The result of Theorem 54 falls into the category (1) and

the result of Theorem 58 falls into category (2).

We first discuss the relation of Theorem 54 to other previous works of type (1).

Perhaps the most closely related works are [166, 200, 76, 80]. All of these works assume

the input is bounded in ℓ2 norm and give learning results based on kernel methods;

of course, these results could be applied under the assumption of ℓ∞-bounded input,

by using the inequality ‖𝑥‖2 ≤
√
𝑛‖𝑥‖∞ and rescaling the input to have norm 1.

For comparison, the best result in the ℓ2 setting with tanh activation is given in

[80], but this result (as is essentially necessary based on the known computational

hardness results) has exponential dependence on the ℓ2 norm of the weights in the

hidden units, so doing such a reduction just using norm comparison bounds gives a

runtime sub-exponential in dimension. Therefore it is indeed crucial for us to give a

new analysis adapting to learning with input bounded in ℓ∞. An interesting feature

of this setting (as mentioned above) is that the kernel trick does not seem to be as

useful for improving the runtime as the ℓ2 setting, where it seems genuinely better

than writing out the feature map [76, 80].

Due to the generality of direction (1), it is hard to design efficient algorithms. This

further motivates direction (2), however, making the right distributional assumptions

which allow for efficient learning while being well-motivated in context of real world
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Figure 6-1: Five i.i.d. samples for each FashionMNIST class, drawn from the trained
model by Gibbs sampling.

data can be very challenging. Most prior work has been limited to the Gaussian input

[182, 173, 35, 202, 123, 56] or symmetric input [80, 72] assumptions which are not

satisfied by real world data. The works of [142, 130] gave results for some simple

tree-structured generative models. There has been some work in defining data based

notions such as eigenvalue decay [77] and score function computability [71] to get

efficient results. Our assumption for Theorem 58 in contrast exploits sparsity and

nonnegative correlations among the input features conditional on the output label.

6.5 Experiments

In this section we present some simple experiments on MNIST and FashionMNIST

to confirm that our method performs reasonably well in practice. In these exper-

iments, we implemented the supervised RBM learning algorithm from Theorem 58

which makes use of the classification labels provided in the training data set. This

algorithm outputs both a classifier (which predicts the label given the image) and

also a generative model (which can sample images given a label).

For classification, we allowed the logistic regression (described as “step (3)” above)
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to fit not just the bias term but also coefficients on the sum of Fourier coefficients for

each pixel (an input of dimension 768 × 10 = 7680), since the runtime of the logistic

regression step is almost negligible anyway. This is useful because it allows greater

dynamic range in the influence of each pixel.

We observed a test accuracy of 97.22 ± 0.16% on MNIST; the training accuracy

was 99.9% and we trained the logistic regression for 30 epochs (same as steps) of L-

BFGS with line search enabled. For FashionMNIST, we obtained a test accuracy of

88.84±0.31%; the training accuracy was 92.19% and we trained the logistic regression

for 45 epochs with L-BFGS as before. Overall training took a bit less than an hour

each on a Kaggle notebook with a P100 GPU. Both datasets have 60, 000 training

points and 10, 000 test; in both experiments we used a maximum neighborhood size

of 12, and stopped adding neighbors if the conditional variance shrunk by less than

1%.

For context, we note that our accuracy on MNIST is better than what we would

get using standard training methods for RBMs and logistic regression for classifica-

tion; [69] reports accuracies of approximately 95% for CD and 96% using a more

sophisticated TAP-based training method. The results are also around as good or

better than what is achieved using many classical machine learning methods on these

datasets [198]; for example, logistic regression achieves error 91.7% and 84.2% and

polynomial kernel SVM achieves error 89.7% and 97.6% [198]. Of course, none of

these results are as good as specialized deep convolutional networks (over 99% on

MNIST). In contrast to other approaches using linear models such as kernel SVM,

our approach also learns a generative model. Being able to sample from the generative

model can give some insight into how the model classifies.

To evaluate the performance of the learned RBM as a generative model, we gen-

erated samples using Gibbs sampling starting from random initialization and run for

6000 steps. As is common practice, we output the probabilities generated in the last

step instead of the sampled binary values, so that the result is a normal greyscale

image. We display the resulting samples in Figures 6-1 and 6-2 (for reference, see

randomly sampled training datapoints in Appendix 6.11): we note that the model
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successfully generates samples with diversity, as in Figure 6-1 the model generates

handbags both with and without handles, and in Figure 6-2 it renders both common

styles for drawing the number 4.

It is clear that the model fails to generate as detailed of patterns exhibited in real

FashionMNIST images since in our training algorithm, we represent a gray pixel as

a random combination of black and white, so a checkerboard pattern of black and

white and a patch of grey are not well-distinguished. We do this to ensure that our

setup is comparable to classic RBM training [90]. It is potentially possible to fix this

by adding spins over larger alphabets (e.g. real-valued) to the model.

6.6 Organization

Here we briefly outline the contents of each remaining section; each bold heading in

the text below corresponds to a new section.

Section 6.7. Connections between Distribution Learning and Prediction

in RBMs In this section we show that if you have learned the distribution of an

RBM, then you have also in principle learned how to predict the output of cor-

responding feedforward networks. These feedforward networks are induced from a

“self-supervised” prediction task: predicting the spin at node 𝑖 given observations of

all other spins. This connection leverages a classical observation in probabilistic in-

ference: inference in all tree-structured graphical models has an exact solution known

as Belief Propagation (see e.g. [154, 138]); perhaps surprisingly, this observation is

useful even though the RBM itself is not tree structured. Conversely, in the next

subsection we give quantitative bounds showing that sufficiently good predictors for

this self-supervised objective for every node 𝑖 allows us to recover the distribution of

the corresponding RBM.

Section 6.8. Guarantees for Learning Feedforward Networks (with arbi-

trary distribution). In this section we prove upper and lower bounds for learning

205



one-layer feedforward networks with 𝑓𝛽 activations in the hidden units and inputs 𝑋

drawn from an arbitrary distribution such that ‖𝑋‖∞ ≤ 1.

In the first two subsections, we prove the needed approximation-theoretic results

about our class of activations 𝑓𝛽, giving approximation results with uniform guaran-

tees over the entire interval 𝛽 ∈ [0, 1]. In the special case of 𝛽 = 0, 𝑓𝛽 = tanh and the

needed result has essentially already been proved in the work of [166]. As explained

in the first subsection, by a classical result of Bernstein (Theorem 59 below) it turns

out that analyzing approximation theory for functions analytic on [−1, 1] is equiva-

lent to analyzing the function’s extension into the complex plane. We develop the

needed complex-analytic estimates (which crucially are uniform in 𝛽) in the following

subsection. We note that the authors of [166] did not use Bernstein’s result to prove

their bound; their analysis of the 𝛽 = 0 case is longer because they more or less

reproduce the steps from the proof of the upper bound of Bernstein’s Theorem.

After solving the approximation-theoretic question, we use them in an ℓ1-

regression based algorithm for learning feedforward networks, using an explicit poly-

nomial feature map and the logistic version of the Lasso with its corresponding non-

parametric generalization bounds. We derive the needed ℓ1-norm bound in a clean

way from the approximation-theoretic results using in part a Lemma of [168], previ-

ously used in [76]. This proves Theorem 54. In the last subsection, we prove that

this result is nearly optimal under the hardness of sparse parity with noise, even in

the case of tanh networks, using two different ways to construct a parity out of tanh

units: one is a well-known construction from [86], the other is based on Taylor se-

ries expansion and is related to the MRF-to-RBM embedding result established in

Chapter 2.

Section 6.9. Learning RBMs by Learning Feedforward Networks. In this

section, we show how to derive structure recovery results (i.e. recovery of Markov

blankets) for RBMs by using the feedforward network learning results developed in

the previous section. Assuming 𝜂-nondegeneracy, we show how to learn the structure

of the network by doing simple regression tests, e.g. comparing the minimal logistic

206



loss achieved predicting node 𝑖 from all other nodes to the loss when node 𝑗 is excluded

from the input. This proves Theorem 56. We explain in more detail in Remark 21 how

this result is a significant improvement over previous results in interesting regimes

where we know that the RBM can actually be sampled from in polynomial time.

Based on this, we prove a result for learning the distribution: by Theorem 56 this

reduces to the case where the structure is known, so by proving a good estimate

(Lemma 62) on the convergence of the natural predictor of 𝑋𝑖 given its neighbors, the

empirical conditional expectation and using the tools developed in Section 6.7.3 gives

the result. A key point here is that the empirical conditional expectation converges

at a much faster rate than e.g. relying on Theorem 62, which gives better sample

complexity guarantees.

Finally, we again prove some computational hardness results. We establish that

the algorithm’s dependence is essentially optimal in terms of 𝜂 and ‖𝑤‖1 by using

the Taylor-series based sparse parity construction from Chapter 2, related to the

construction used above for tanh networks. For the dependence on 𝜆2, the hidden

unit ℓ1-norm, we use a third, different construction of parity from [133] for the RBM

setting; this construction is not amenable to adding noise, but we are able to prove a

lower bound on the runtime in terms of 𝜆2 for all SQ (Statistical Query) algorithms

(see e.g. [24]).

Section 6.10. Learning a Feedforward Network by Learning RBMs. In this

section, we prove Theorem 58, which lets us learn to predict in supervised RBMs under

a natural conditional ferromagneticity condition in a provably more computationally

efficient way than applying distribution-agnostic methods for learning feedforward

networks like Theorem 54. In Remark 24 we give a simple example where the gap

is provable and explain the (in this case) simple intuition as to how the approach of

Theorem 58 uses the structure of the input data in a favorable way.

The idea of this learning algorithm is essentially to use Bayes rule to reduce

computing the posterior on the label (i.e. Pr(𝑌 |𝑋)) to computing the conditional

likelihood of the observed 𝑋 under the two possible values of the label. In some
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situations where the conditional law of 𝑌 |𝑋 is very simple, this approach may be

overkill as it requires to model the law of 𝑋; however, we are interested in the setting

where the label 𝑌 may have a large, complicated effect on 𝑋 so this approach seems

perfectly reasonable. An obvious issue with using Bayes rule in this way is that even

if the the RBM is already known perfectly, computing the normalizing constant for

the conditional distribution under 𝑌 = + or 𝑌 = − in such a model is #BIS-Hard

[81]. Fortunately, for our application we show that we can estimate the needed ratio

of normalizing constants from the data using a simple variant of logistic regression.

What remains is to learn how to estimate the conditional log-likelihoods i.e.

Pr(𝑋|𝑌 ). Fortunately, even though under our assumptions the original RBM was

not ferromagnetic, the conditional models we get by applying Bayes rule are indeed

ferromagnetic so we can apply the methods developed in [75] for learning such a

model. Here we need the results of [75], which applies to a more general setting than

the results in Chapter 2 (at the cost of higher sample complexity), as we expect the

external fields in the resulting model to be inconsistent (have differing signs depend-

ing on the site). Once the structure is recovered, we can learn the coefficients of

the log-likelihood using the results established in the previous section based on fast

convergence of the empirical condition expectation, and using these coefficients we

can accurately estimate Pr(𝑋|𝑌 ) for the application of Bayes rule.

Section 6.11. Additional Experimental Data. In this section we include ref-

erence images from both datasets along with samples generated by our algorithm

trained on MNIST.

6.7 Connections between Distribution Learning and

Prediction in RBMs

To our knowledge, Theorem 53 has not been previously noted in the literature on

RBMs. However, this is not the first time connections between RBMs and message

passing algorithms for inference has been investigated: for example, the work of [195]
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extensively studied the use of message passing algorithms (i.e. Belief Propagation

and related algorithms) for estimating the mean and covariance matrix of nodes in

an RBM, and the work of [69] used the related TAP approximation to derive better

alternatives to constrastive divergence for training RBMs in practice. The key con-

ceptual difference is that in these works, their goal is to solve a much harder problem

(e.g. estimating marginals and log𝑍) which is well-known to be NP-hard in general.

In contrast, for our application to learning the relevant task ends up being predicting

one node from the others, which it turns out is not computationally difficult if we

know the model — conditioning on the other nodes breaks all cycles in the graph,

which is the obstacle that makes inference difficult in general.

6.7.1 Conditional Law Derivation

In this Section we give, for the reader’s convenience, a self-contained derivation of the

conditional law (6.1) described in Theorem 53 for E[𝑋𝑖|𝑋∼𝑖] from (6.2). As described

in the proof of the Theorem, the result is obtained as a special case of the Belief

Propagation algorithm as described in a number of references, including [138, 154],

which is derived by performing a more general version of this calculation. First recall

that the joint conditional law on 𝑋𝑖, 𝐻 condiditioned on 𝑋∼𝑖 is given by (6.2):

Pr(𝑋𝑖 = 𝑥𝑖, 𝐻 = ℎ|𝑋∼𝑖 = 𝑥∼𝑖) ∝ exp

(︃
𝑥𝑖(𝑏

(1)
𝑖 +

∑︁
𝑗

𝑊𝑖𝑗ℎ𝑗) + ⟨𝑊 𝑡
∼𝑖𝑥∼𝑖 + 𝑏(2), ℎ⟩

)︃
.

The computation proceeds by rewriting this measure with respect to a “cavity” mea-

sure where all terms involving 𝑋𝑖 are removed. For each hidden unit 𝑗, define a

corresponding probability measure

𝜇𝐻𝑗→𝑋𝑖
(ℎ𝑗) ∝ exp

(︃∑︁
𝑘 ̸=𝑖

𝑊𝑘𝑗𝑥𝑗ℎ𝑗 + 𝑏
(2)
𝑗 ℎ𝑗

)︃
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under which
∑︀

𝑗 ℎ𝑗𝜇𝐻𝑗→𝑋𝑖
(ℎ𝑗) = tanh(

∑︀
𝑘𝑊𝑘𝑗𝑥𝑗 + 𝑏

(2)
𝑗 ) and rewrite the joint proba-

bility over 𝑋,𝐻 as

Pr(𝑋𝑖 = 𝑥,𝐻 = ℎ|𝑋∼𝑖 = 𝑥∼𝑖) ∝ exp

(︃
𝑥𝑖(𝑏

(1)
𝑖 +

∑︁
𝑗

𝑊𝑖𝑗ℎ𝑗)

)︃∏︁
𝑗

𝜇𝐻𝑗→𝑋𝑖
(ℎ𝑗).

Now we compute that

Pr[𝑋𝑖 = 𝑥𝑖|𝑋∼𝑖 = 𝑥∼𝑖]

=
∑︁
ℎ

𝑥𝑖 Pr(𝑋𝑖 = 𝑥𝑖, 𝐻 = ℎ|𝑋∼𝑖 = 𝑥∼𝑖)

∝
∑︁
ℎ

exp

(︃
𝑥𝑖(𝑏

(1)
𝑖 +

∑︁
𝑗

𝑊𝑖𝑗ℎ𝑗)

)︃
𝜇𝐻→𝑋𝑖

(ℎ)

= exp(𝑥𝑖𝑏
(1)
𝑖 )

𝑛2∏︁
𝑗=1

(cosh(𝑊𝑖𝑗) + sinh(𝑥𝑖𝑊𝑖𝑗) tanh(
∑︁
𝑘 ̸=𝑖

𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

∝ exp(𝑥𝑖𝑏
(1)
𝑖 )

𝑛2∏︁
𝑗=1

(1 + 𝑥𝑖 tanh(𝑊𝑖𝑗) tanh(
∑︁
𝑘 ̸=𝑖

𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

= exp

(︃
𝑥𝑖𝑏

(1)
𝑖 +

𝑛2∑︁
𝑗=1

log(1 + 𝑥𝑖 tanh(𝑊𝑖𝑗) tanh(
∑︁
𝑘 ̸=𝑖

𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

)︃

where we used ∝ to ignore constants of proportionality independent of 𝑥𝑖 and in the

third line we used Lemma 51 below. Therefore if we use that

log(1+𝛽𝑥𝑖) =
1

2
log

1 + 𝛽𝑥𝑖
1 − 𝛽𝑥𝑖

+
1

2
(log(1+𝛽𝑥𝑖)+log(1−𝛽𝑥𝑖)) = tanh−1(𝛽𝑥𝑖)+

1

2
(log(1+𝛽)+log(1−𝛽))

where we see the last term does not depend on 𝑥, we can compute that

E[𝑋𝑖 = 𝑥𝑖|𝑋∼𝑖 = 𝑥∼𝑖]

=

∑︀
𝑥𝑖
𝑥𝑖 exp

(︁
𝑥𝑖𝑏

(1)
𝑖 +

∑︀𝑛2

𝑗=1 log(1 + 𝑥𝑖 tanh(𝑊𝑖𝑗) tanh(
∑︀

𝑘 ̸=𝑖𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

)︁
∑︀

𝑥𝑖
exp

(︁
𝑥𝑖𝑏

(1)
𝑖 +

∑︀𝑛2

𝑗=1 log(1 + 𝑥𝑖 tanh(𝑊𝑖𝑗) tanh(
∑︀

𝑘 ̸=𝑖𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

)︁
=

∑︀
𝑥𝑖
𝑥𝑖 exp

(︁
𝑥𝑖𝑏

(1)
𝑖 +

∑︀𝑛2

𝑗=1 𝑥𝑖 tanh−1(tanh(𝑊𝑖𝑗) tanh(
∑︀

𝑘 ̸=𝑖𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

)︁
∑︀

𝑥𝑖
exp

(︁
𝑥𝑖𝑏

(1)
𝑖 +

∑︀𝑛2

𝑗=1 𝑥𝑖 tanh−1(tanh(𝑊𝑖𝑗) tanh(
∑︀

𝑘 ̸=𝑖𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

)︁
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= tanh

(︃
𝑏
(1)
𝑖 +

𝑛2∑︁
𝑗=1

tanh−1(tanh(𝑊𝑖𝑗) tanh(
∑︁
𝑘 ̸=𝑖

𝑊𝑘𝑗𝑥𝑗 + 𝑏
(2)
𝑗 ))

)︃

where in the final step we used that tanh(𝑧) = 𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧 . From this we get (6.1) by

plugging in the definition of 𝑓𝛽𝑖𝑗
.

Lemma 51. For any 𝑧 ∈ R we have the formula for moment generating function of

a recentered Bernoulli:

E𝑋∼𝐵𝑒𝑟±(tanh(𝑧))[exp(𝜆𝑋)] = cosh(𝜆) + sinh(𝜆) tanh(𝑧)

where 𝐵𝑒𝑟±(𝜇) denotes the distribution of a {±1}-valued random variable with mean

𝜇.

Proof. First recall that E𝑋∼𝑅𝑎𝑑[exp(𝜆𝑋)] = cosh(𝜆) and E𝑋∼𝑅𝑎𝑑[𝑋 exp(𝜆𝑋)] =

tanh(𝜆). Therefore

E𝑋∼𝐵𝑒𝑟±(tanh(𝑧))[exp(𝜆𝑋)] = E𝑋∼𝑅𝑎𝑑

[︂
𝑒𝜆𝑋

𝑒𝑧𝑋

cosh(𝑧)

]︂
=

cosh(𝑧 + 𝜆)

cosh(𝑧)

=
cosh(𝑧) cosh(𝜆) + sinh(𝑧) sinh(𝜆)

cosh(𝑧)

= cosh(𝜆) + sinh(𝜆) tanh(𝑧).

6.7.2 2-layer Tanh Neural Network as Bayes-Optimal Predic-

tion in an RBM

In particular, (6.1) lets us realize any standard 2-layer tanh neural network as the

Bayes-optimal predictor in an RBM in a natural limit where the number of hidden

neurons goes to infinity, but the effect of each hidden neuron is very small, so that the

ℓ1 norm of the weights going into the top neuron stays bounded by a constant. Each
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hidden unit in the neural network corresponds in a direct way to several duplicated

hidden units in the RBM. The construction is given explicitly in the next Lemma; we

will not use the statement explicitly but use it to develop intuition for (6.1).

Lemma 52. Suppose that 𝑔(𝑥) = tanh
(︁
𝑢0 +

∑︀𝑇
𝑗=1 𝑢𝑗 tanh (𝑀𝑗0 +

∑︀
𝑘𝑀𝑗𝑘𝑥𝑘)

)︁
where

𝑥 is 𝑛-dimensional, i.e. 𝑔 is a 2-layer neural network with tanh activations. Then

𝑔(𝑥) = lim
𝐾→∞

tanh

(︃
𝑢0 +

𝐾∑︁
𝑖=1

𝑇∑︁
𝑗=1

tanh(𝑢𝑗/𝐾)𝑓|𝑢𝑗/𝐾|

(︃
𝑀𝑗0 +

∑︁
𝑘

𝑀𝑗𝑘𝑥𝑘

)︃)︃
,

so by (6.1) from Theorem 53 the restriction of 𝑓 to {±1}𝑛 is the Bayes-optimal

predictor of a visible unit in an RBM with 𝑛+1 total visible units where the activations

of the other visible units are known.

Proof. This follows from the observation in Remark 18 and from Theorem 53 by

building the corresponding RBM with 𝐾𝑇 hidden units.

6.7.3 Distribution learning bounds from prediction bounds

In this section, we show how good estimates of the conditional prediction functions

can be used in a direct way to recover the joint distribution of the RBM in total

variation distance.

Algorithm 3 DistributionFromPredictors

1: For every 𝑖 we suppose we are given 𝑓𝑖 : {±1}𝑛 → R and set ̂︀𝒩 (𝑖) such that 𝑓𝑖
is a predictor of node 𝑖 from other nodes that depends only on those in the set̂︀𝒩 (𝑖)

2: Define 𝒮 := {𝑆 : ∃𝑖, 𝑆 ⊂ ̂︀𝒩 (𝑖)}
3: for 𝑆 ∈ 𝒮 do
4: For all 𝑖 ∈ 𝑆, define �̂�𝑆,𝑖 := E𝑋∼𝑈𝑛𝑖({±1}𝑛)[tanh−1(𝑓𝑖(𝑋))𝑋𝑆∖𝑖].
5: Define �̂�𝑆 := 1

|𝑆|
∑︀

𝑖∈𝑆 �̂�𝑆,𝑖.
6: Return the MRF with unnormalized pmf exp

(︀∑︀
𝑆∈𝒮 �̂�𝑆𝑋𝑆

)︀
.

Lemma 53 ([163]). Suppose 𝑃,𝑄 are distributions over random variable 𝑋 valued
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in {±1}𝑛. If 𝑃 (𝑥) ∝ exp(
∑︀

𝑆 𝑝𝑆𝑋𝑆) and 𝑄(𝑥) ∝ exp(
∑︀

𝑆 𝑞𝑆𝑋𝑆) then

SKL(𝑃,𝑄) =
∑︁
𝑆

(𝑝𝑆 − 𝑞𝑆)(E𝑃 [𝑋𝑆] − E𝑄[𝑋𝑆]).

where SKL(𝑃,𝑄) = KL(𝑃,𝑄) + KL(𝑄,𝑃 ) is the symmetrized KL divergence.

Proof. From the definition we see

SKL(𝑃,𝑄) = E𝑃

[︂
log

𝑃 (𝑥)

𝑄(𝑥)

]︂
−E𝑄

[︂
log

𝑃 (𝑥)

𝑄(𝑥)

]︂
= E𝑃

[︃∑︁
𝑆

(𝑝𝑆 − 𝑞𝑆)𝑋𝑆

]︃
−E𝑄

[︃∑︁
𝑆

(𝑝𝑆 − 𝑞𝑆)𝑋𝑆

]︃

so using linearity of expectation proves the result.

The following definition captures the level of contiguity 𝑃 has with the uniform

measure when looking at small sets of coordinates.

Definition 32. For any distribution 𝑃 on {±1}𝑛 and 𝑑 ≤ 𝑛 we define

𝛿𝑃 (𝑑) := inf
|𝑆|≤𝑑

inf
𝑥𝑆

2|𝑆|𝑃 (𝑋𝑆 = 𝑥𝑆).

Lemma 54. For any function 𝑓 which depends on at most 𝑑 coordinates,

E𝑃 [𝑓(𝑋)2] ≥ 𝛿𝑃 (𝑑)E𝑋∼{±1}𝑛 [𝑓(𝑋)2]

The following Lemma is a standard observation used in most previous works on

learning Ising models including [29, 189, 108] and others.

Lemma 55. A (𝜆1, 𝜆2)-bounded RBM satisfies 𝛿𝑃 (𝑑) ≥ (1 − tanh(𝜆1))
𝑑.

Proof. In the 𝑑 = 1 case this follows from the law of total expectation as

E[𝑋𝑖|𝐻,𝑋∼𝑖] = tanh(𝑏
(1)
𝑖 +

∑︀
𝑗 𝑊𝑖𝑗𝐻𝑗) and the term inside the tanh has magnitude

at most 𝜆1 by definition. For general 𝑑 the result follows by induction, by using the

above argument for a single spin and then applying the induction hypothesis to the

model where than spin is plus and where that spin is minus, since these models are

also (𝜆1, 𝜆2)-bounded RBMs.

213



Lemma 56. Let 𝑃 denote the distribution returned by Algorithm Distribution-

FromPredictors and let 𝑃 be the true distribution. Let log𝑃 (𝑥) =
∑︀

𝑆 𝑤𝑆𝑥𝑆 and

log𝑃 (𝑥) =
∑︀

𝑆 �̂�𝑆𝑥𝑆 be the Fourier expansions of the log-likelihoods. Then

SKL(𝑃 , 𝑃 ) ≤
∑︁
𝑆

|𝑤𝑆 − �̂�𝑆|

≤
∑︁
𝑖

2|𝒩 (𝑖)|/2+1√︁
𝛿𝑃 (|𝒩 (𝑖) ∪ ̂︀𝒩 (𝑖)|)

√︁
E𝑋′ [(tanh−1(𝑓𝑖(𝑋 ′)) − tanh−1(E𝑃 [𝑋𝑖|𝑋∼𝑖]))2]

where 𝑋 ′ ∼ 𝑈𝑛𝑖({±1}𝑛).

Proof. Define 𝑤𝑆 to be the true coefficient in the true MRF potential. By Lemma 53

and Holder’s inequality we know SKL(𝑃, 𝑃 ) ≤ 2
∑︀

𝑆 |�̂�𝑆 − 𝑤𝑆|. Then by Jensen’s

inequality and the Cauchy-Schwarz inequality,

∑︁
𝑆

|�̂�𝑆 − 𝑤𝑆| ≤
∑︁
𝑆

1

|𝑆|
∑︁
𝑖∈𝑆

|�̂�𝑆,𝑖 − 𝑤𝑆|

=
∑︁
𝑖

∑︁
𝑆:𝑖∈𝑆

1

|𝑆|
|�̂�𝑆,𝑖 − 𝑤𝑆|

≤
∑︁
𝑖

2|𝒩 (𝑖)|/2
√︃∑︁

𝑆:𝑖∈𝑆

(�̂�𝑆,𝑖 − 𝑤𝑆)2.

Now using Plancherel’s theorem [148], the fact that 𝑓𝑖(𝑥) = tanh
(︀∑︀

𝑆:𝑖∈𝑆 𝑤𝑆𝑥𝑆∖{𝑖}
)︀
,

and the definition of 𝛿𝑃 (𝑑) gives the result.

6.8 Guarantees for Learning Feedforward Networks

(with Arbitrary Distribution)

In this section we prove upper and lower bounds for learning one-layer feedforward

networks with 𝑓𝛽 activations in the hidden units and inputs𝑋 drawn from an arbitrary

distribution such that ‖𝑋‖∞ ≤ 1.
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6.8.1 Preliminaries: Optimal Approximation of Analytic

Functions

Identify C with R2 by taking 𝑥 to be real and 𝑦 to be the imaginary component of

a complex number 𝑧. Define ℰ𝜌 to be the region bounded by the ellipse in C = R2

centered at the origin with equation 𝑥2

𝑎2
+ 𝑦2

𝑏2
= 1 with semi-axes 𝑎 = 1

2
(𝜌 + 𝜌−1) and

𝑏 = 1
2
|𝜌−𝜌−1|; the focii of the ellipse are ±1. In the present context, this is sometimes

referred to as a Bernstein ellipse. For an arbitrary function 𝑓 : [−1, 1] → R, let 𝐸𝐷(𝑓)

denote the error of the best polynomial approximation of degree 𝐷 in infinity norm

on the interval [−1, 1] of 𝑓 , i.e.

𝐸𝐷(𝑓) := min
𝑃 :deg(𝑃 )≤𝐷

max
𝑥∈[−1,1]

|𝑓(𝑥) − 𝑃 (𝑥)|. (6.3)

The following theorem of Bernstein exactly characterizes the asymptotic rate at which

𝐸𝐷(𝑓) shrinks:

Theorem 59 (Theorem 7.8.1, [53]). Let 𝑓 be a function defined on [−1, 1]. Let 𝜌0

be the supremum of all 𝜌 such that 𝑓 has an analytic extension on the interior of ℰ𝜌.

Then

lim sup
𝐷→∞

𝐷
√︀
𝐸𝐷(𝑓) =

1

𝜌0

where we interpret the rhs as ∞ when 𝜌0 = 0.

For the definition of what it means for the function to be analytic on a region

of the complex plane, we refer to a text on complex analysis such as [177]. For our

application we need only the upper bound and we need a quantitative estimate for

finite degree 𝑑. In the proof of the upper bound in [53], the following result is proved:

Theorem 60 (Quantitative Variant of Theorem 7.8.1, [53]). Suppose 𝑓 is analytic

on the interior of ℰ𝜌1 and |𝑓(𝑧)| ≤𝑀 on the closure of ℰ𝜌1. Then

𝐸𝐷(𝑓) ≤ 2𝑀

𝜌1 − 1
𝜌−𝐷
1 .

This quantitative variant was previously used in [112] as part of a construction of
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low-degree approximations to the ReLU activation with specific properties. Note

that when applying this theorem, we should center 𝑓 so that the constant 𝑀 is small,

since adding constants to 𝑓 will obviously not change 𝐸𝑑(𝑓).

6.8.2 Approximation Guarantees for 𝑓𝛽 Family of Activations

Recall that the activations 𝑓𝛽 were defined in Theorem 53 to be 𝑓𝛽(𝑥) =

1
𝛽

tanh−1(𝛽 tanh(𝑥)). Recall that if 𝛽 = 1 then 𝑓𝛽(𝑥) = 𝑥 so the function is ana-

lytic everywhere on C, and if 𝛽 = 0 is is tanh so it is meromorphic. For the remaining

values of 𝛽 ∈ (0, 1), the function 𝑓𝛽 is slightly more complicated (it has branch cuts),

however we show it is still nicely behaved near the real line.

Lemma 57. For 𝛽 ∈ [0, 1] the function 𝑓𝛽 is analytic on the strip {𝑥+𝑖𝑦 : |𝑦| < 𝜋/2}.

Proof. Observe that

𝑓 ′
𝛽(𝑧) =

1 − tanh2(𝑧)

1 − 𝛽2 tanh2(𝑧)
..

Since tanh is analytic except at points of the form 𝑧 = 𝜋
2
𝑖+𝜋𝑘𝑖, the only other possible

poles are solutions to 𝛽2 tanh2(𝑧) = 1, i.e. solutions to tanh(𝑧) = ±1/𝛽. Recalling

that tanh−1(𝑧) = 1
2
(log(1 + 𝑧) − log(1 − 𝑧)) and taking into account the branch cut

from (−∞, 0] for the logarithm, we see that the solutions to tanh(𝑧) = 1/𝛽 are of the

form

𝑧 =
1

2
log

1 + 1/𝛽

1/𝛽 − 1
+
𝜋𝑖

2
+ 𝑘𝜋𝑖

and for tanh(𝑧) = −1/𝛽 of the form

𝑧 =
1

2
log

1/𝛽 − 1

1 + 1/𝛽
+
𝜋𝑖

2
+ 𝑘𝜋𝑖

for 𝑘 ∈ Z. In particular we see that 𝑓 ′
𝛽 is analytic on the strip {𝑥 + 𝑖𝑦 : |𝑦| < 𝜋/2}

so 𝑓𝛽 is as well (since the region is simply connected, this can be proved by path

integration [177]).

To get a quantitative upper bound we will need to bound (the centered version of)

𝑓𝛽 on the Bernstein ellipse, which will require us to back away from the singularities of
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𝑓 ′
𝛽 on the lines 𝑦 = ±𝜋/2. The following Lemma proves that 𝑓 ′

𝛽 is uniformly bounded

in a slightly smaller region:

Lemma 58. For all 𝛽 ∈ [0, 1], |𝑓 ′
𝛽(𝑧)| ≤ 2 everywhere on the closed strip {𝑥 + 𝑖𝑦 :

|𝑦| ≤ 𝜋/4}.

Proof. Observe that

𝑓 ′
𝛽(𝑧) =

1 − tanh2(𝑧)

1 − 𝛽2 tanh2(𝑧)
=

cosh2(𝑧) − sinh2(𝑧)

cosh2(𝑧) − 𝛽2 sinh2(𝑧)

=
1

1 + (1 − 𝛽2) sinh2(𝑧)
=

1

1 + (1 − 𝛽2) cosh(2𝑧)−1
2

using the identies cosh2(𝑥) − sinh2(𝑥) = 1 and sinh2(𝑧) = cosh(2𝑧)−1
2

. Since cosh(2𝑥+

2𝑖𝑦) = 𝑒2𝑥+2𝑖𝑦+𝑒−2𝑥−2𝑖𝑦

2
we see that under the assumption |𝑦| ≤ 𝜋/4 that cosh(2𝑥+2𝑖𝑦)

lies in the right half plane, therefore |1 + (1 − 𝛽2) cosh(2𝑧)−1
2

| ≥ |1 − (1 − 𝛽2)/2| ≥ 1/2

which proves the result.

Lemma 59. For any 𝛽 ∈ [0, 1], arbitrary ℎ ∈ R, and any 𝑅 ≥ 0,

𝐸𝐷(𝑓𝛽(𝑅𝑥+ ℎ)) ≤ 4𝑅(1 + 2𝑅)

(1 + 1/2𝑅)𝐷

Proof. Just for this proof define 𝑔𝛽,ℎ(𝑥) := 𝑓𝛽(𝑅𝑥+ ℎ)− 𝑓𝛽(ℎ). We prove this bound

by application of Bernstein’s theorem. By Lemma 57 we know that 𝑓𝛽 is analytic

on the strip {𝑥 + 𝑖𝑦 : |𝑦| < 𝜋/2} so in particular it is analytic on the closed strip

{𝑥+ 𝑖𝑦 : |𝑦| ≤ 𝜋/4}, and by Lemma 58 we know that |𝑓 ′
𝛽| ≤ 2 on the closed strip.

We now compute 𝜌 so that 𝑅ℰ𝜌 is contained in the latter strip. We solve

1

2
(𝜌− 𝜌−1) =

𝜋

4𝑅

which gives 𝜌2 − 𝜋
2𝑅
𝜌 − 1 = 0 so 𝜌 =

𝜋/2𝑅+
√

𝜋2/4𝑅2+4

2
> 1 + 1/2𝑅. Since |𝑔′𝛽,ℎ(𝑧)| ≤

𝑅|𝑓 ′
𝛽| ≤ 2𝑅 on the closure of the ellipse, it follows by the mean-value theorem that

|𝑔𝛽,ℎ| ≤ 2(1 + 1/2𝑅)𝑅 ≤ 1 + 2𝑅 on ℰ1+1/2𝑅 and applying Theorem 60 gives the

result.
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6.8.3 Learning Feedforward Networks under ℓ∞ Bounded In-

put

Since the final activation in our network is tanh, we recall some useful facts about

logistic regression and the logistic loss which we will use.

Definition 33. The logistic loss is defined to be

ℓ(𝑣, 𝑦) := log(1 + 𝑒−2𝑣𝑦).

We note that the factor of 2 in the exponent and the normalization differ depending

on convention.

The following facts about the logistic loss which can be checked from the definition

(or see a reference such as [165]):

Fact 3. The following are true if 𝑦 ∈ {±1} is fixed:

1. ℓ(𝑣, 𝑦) is convex and 2-Lipschitz in 𝑣.

2. ℓ(𝑣, 𝑦) = − log Pr(𝑌 = 𝑦) where 𝑌 is a {±1}-valued random variable with

expectation tanh(𝑣).

3. 𝜕
𝜕𝑣
ℓ(𝑣, 𝑦) = −2𝑦𝑒−2𝑣𝑦

1+𝑒−2𝑣𝑦 and 𝜕2

𝜕𝑣2
ℓ(𝑣, 𝑦) = 2

1+cosh(2𝑣)
.

Furthermore if 𝑌 is a {±1}-valued random variable (and 𝑣 is deterministic) then

4. E𝑌 ℓ(𝑣, 𝑌 ) = KL(ℒ(𝑌 ),ℒ(𝑌 )) +𝐻(𝑌 ) where 𝑌 is defined above, ℒ(𝑌 ) denotes

the law of random variable 𝑌 , KL denotes the Kullback-Liebler divergence and

𝐻 denotes the Shannon entropy.

We recall the following Theorem which states the agnostic learning guarantee for

fitting ℓ1-constrained predictors in logistic loss, i.e. the logistic version of the Lasso:

Theorem 61 (Consequence of Theorem 26.15 of [165]). Suppose that 𝑋 is a random

vector in R𝑛 such that ‖𝑋‖∞ ≤ 1 almost surely and 𝑌 is an arbitrary {±1}-valued
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random variable. Then with probability at least 1 − 𝛿, simultaneously for all 𝑤 with

‖𝑤‖1 ≤ 𝑅 it holds that

Ê[ℓ(𝑤 ·𝑋, 𝑌 )] ≤ E[ℓ(𝑤 ·𝑋, 𝑌 )] + 4𝑅

√︂
2 log(2𝑛)

𝑚
+ 2𝑅

√︂
2 log(2/𝛿)

𝑚

where Ê denotes the empirical expectation over 𝑚 i.i.d. copies (𝑋1, 𝑌1), . . . , (𝑋𝑚, 𝑌𝑚)

of (𝑋, 𝑌 ).

In order to bound the ℓ1 norm of our predictor we will need the following Lemmas:

Lemma 60 ([168], Lemma 2.13 of [76]). Suppose 𝑝(𝑥) =
∑︀𝐷

𝑖=0 𝛽𝑖𝑥 and |𝑝(𝑥)| ≤ 𝑀

for 𝑥 ∈ [−1, 1], then
∑︀𝐷

𝑖=0 𝛽
2
𝑖 ≤ (𝐷 + 1)(4𝑒)2𝐷𝑀2.

Lemma 61. Suppose that 𝑝(𝑥) =
∑︀𝐷

𝑖=0 𝑎𝑖(𝑤 · 𝑥)𝑖 =
∑︀

𝛼 𝑢𝛼𝑥
𝛼. Then

∑︁
𝛼

|𝑢𝛼| ≤
√︃∑︁

𝑖

𝑎2𝑖 (1 + ‖𝑤‖1)𝐷.

Proof. For any multi-index 𝛼 let 𝑤𝛼 :=
∏︀

𝑖∈𝛼𝑤𝑖 and observe by the multinomial

theorem

𝑝(𝑤 · 𝑥) =
∑︁
𝑖

𝑎𝑖(𝑤 · 𝑥)𝑖 =
∑︁
𝑖

𝑎𝑖
∑︁
|𝛼|=𝑖

(︂
𝑖

𝛼

)︂
𝑤𝛼𝑥

𝛼.

Therefore by the triangle inequality, multinomial theorem, and Cauchy-Schwarz in-

equality

∑︁
𝛼

|𝑢𝛼| ≤
∑︁
𝑖

|𝑎𝑖|
∑︁
|𝛼|=𝑖

(︂
𝑖

𝛼

)︂
|𝑤𝛼| =

∑︁
𝑖

|𝑎𝑖|‖𝑤‖𝑖1 ≤
√︃∑︁

𝑖

𝑎2𝑖
∑︁
𝑖

‖𝑤‖2𝑖1 ≤
√︃∑︁

𝑖

𝑎2𝑖 (1+‖𝑤‖1)𝑑

where in the last step we used 1 + 𝑥2 + 𝑥4 + · · · + 𝑥𝑘 ≤ (1 + 𝑥)𝑘 for 𝑥 ≥ 0.

Theorem 62. Suppose that 𝑌 is a random variable valued in {±1}, 𝑋 is a random

vector such that ‖𝑋‖∞ ≤ 1 almost surely and

E[𝑌 |𝑋] = tanh

(︃
𝑏(1) +

∑︁
𝑗

𝑤𝑗𝑓𝛽𝑗

(︁
𝑏
(2)
𝑗 +

∑︁
𝑘

𝑊𝑗𝑘𝑋𝑘

)︁)︃
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where 𝑏(1) ∈ R, 𝛽𝑗 ∈ [0, 1], 𝑤 is an arbitrary real vector and 𝑊 is an arbitrary real

matrix. Let 𝑊𝑗 denote column 𝑗 of 𝑊 . Then ℓ1-constrained regression on the degree

𝐷 monomial feature map 𝜙𝐷(𝑥) ↦→
(︀∏︀

𝑖∈𝑆 𝑋𝑖

)︀
|𝑆|≤𝑑

with ℓ1 constraint

‖𝑤‖1 ≤ 𝑅 := |𝑏(1)| +
√
𝐷 + 1(4𝑒)𝐷+1

∑︁
𝑗

|𝑤𝑗|(1 + ‖𝑊𝑗‖1)𝐷+1

returns a predictor �̂� such that with probability at least 1 − 𝛿,

E[ℓ(�̂� · 𝜙𝑑(𝑋), 𝑌 )] − E[ℓ(𝑣*(𝑋), 𝑌 )]

≤ 8
∑︁
𝑗

|𝑤𝑗|
‖𝑊𝑗‖1 + 2‖𝑊𝑗‖21
(1 + 2/‖𝑊𝑗‖1)𝐷

+ 4𝑅

√︂
2𝐷 log(2𝑛)

𝑚
+ 2𝑅

√︂
2 log(2/𝛿)

𝑚

where 𝑣*(𝑋) := tanh−1(E[𝑌 |𝑋]) = 𝑏(1) +
∑︀

𝑗 𝑤𝑗𝑓𝛽𝑗

(︁
𝑏
(2)
𝑗 +

∑︀
𝑘𝑊𝑗𝑘𝑋𝑘

)︁
is the mini-

mizer of the expected logistic loss over all measurable functions of 𝑋. The runtime is

𝑝𝑜𝑙𝑦(𝑛𝐷).

Proof. The fact that 𝑣*(𝑋) is the minimizer of the logistic loss E[ℓ(ℎ(𝑋), 𝑌 )] over all

𝑋-measurable functions ℎ can be seen from Fact 3. To derive the bound we combine

the approximation-theoretic guarantees developed in the previous section with the ℓ1

guarantee for logistic Lasso.

For the approximation step, define 𝑤* so that 𝑤* · 𝜙𝑑(𝑋) is given by replacing

each activation 𝑓𝛽𝑗
by its best polynomial approximation 𝑃𝑗 on the interval [𝑏

(2)
𝑗 −

‖𝑊𝑗‖1, 𝑏(2)𝑗 + ‖𝑊𝑗‖1]. By the triangle inequality and Lemma 59, for any 𝑥 ∈ {±1}𝑛,

|𝑣*(𝑥)−𝑤*·𝜙𝑑(𝑥)| ≤
∑︁
𝑗

|𝑤𝑗||(𝑓𝛽𝑗
−𝑃𝑗)(𝑏

(2)
𝑗 +

∑︁
𝑘

𝑊𝑗𝑘𝑥𝑘)| ≤ 4
∑︁
𝑗

|𝑤𝑗| (‖𝑊𝑗‖1 + 2‖𝑊𝑗‖21)
(1 + 2/‖𝑊𝑗‖1)𝐷

.

Since the logistic loss is 2-Lipschitz (Fact 3.1), this implies that

E[ℓ(𝑤* · 𝜙𝐷(𝑋), 𝑌 )] ≤ E[ℓ(𝑣*(𝑋), 𝑌 )] + 8
∑︁
𝑗

|𝑤𝑗| (‖𝑊𝑗‖1 + 2‖𝑊𝑗‖21)
(1 + 2/‖𝑊𝑗‖1)𝐷

. (6.4)

Combining Lemma 58, Lemma 60 and Lemma 61 and using the triangle inequality

220



shows that ‖𝑤*‖1 ≤ 𝑅 where 𝑅 is as specified in the Theorem statement. Then ap-

plying Theorem 61 and combining it with (6.4) gives the desired inequality bounding

the error of the predictor �̂�.

To simplify usage of this Theorem, we give the following slightly less precise bound

which will be used from now on:

Corollary 6. In the same setting as Theorem 62, if we assume that ‖𝑊𝑗‖1 ≤

𝜆 for every 𝑗 and 𝜆 ≥ 2, then with probability at least 1 − 𝛿, E[ℓ(�̂� ·

𝜙𝑑(𝑋), 𝑌 )] − E[ℓ(𝑣*(𝑋), 𝑌 )] ≤ 𝜖 as long as the number of samples 𝑚 satisfies

𝑚 = Ω((|𝑏(1)|2𝜆𝑂(𝐷)) log(2𝑛/𝛿)) where 𝐷 = 𝑂(𝜆 log(‖𝑤‖1𝜆/𝜖)) and the runtime of

the algorithm is 𝑝𝑜𝑙𝑦(𝑛𝐷).

Proof. In order to make the first term of the bound on E[ℓ(�̂� · 𝜙𝑑(𝑋), 𝑌 )] −

E[ℓ(𝑣*(𝑋), 𝑌 )] at most 𝜖/2, we can upper bound it by 𝑂(‖𝑤‖1𝜆2/(1 + 2/𝜆)𝐷)

and see that it suffices to take 𝐷 = Ω(𝜆 log(‖𝑤‖1𝜆/𝜖)). Then 𝑅 = |𝑏(1)| +

exp(𝑂(𝐷))‖𝑤‖1𝜆𝐷+1 = |𝑏(1)| + 𝜆𝑂(𝐷) so it suffices to take 𝑚 = Ω((|𝑏(1)|2 +

𝜆𝑂(𝐷)) log(2𝑛/𝛿))

Remark 19. In the analysis of Theorem 62 we did not concern ourselves with the

exact constants in the runtime. However, if we are interested in optimizing the run-

time it should be noted that instead of getting a precise estimate of the empirical risk

minimizer when computing the logistic regression, one can achieve a similar statistical

guarantee by using a single pass of stochastic mirror descent/exponentiated gradient

(see reference text [36]), e.g. as used in [108] where the needed high-probability guar-

antees can be found.

6.8.4 Nearly Matching computational lower bounds

In this section, we show that the runtime guarantee of Corollary 6 is close to optima:

more precisely its runtime is optimal in ‖𝑤‖1 and 𝜖 up to a log log factor in the

exponent, and also that at least sub-exponential dependence on 𝜆 is required. We

first recall the definition of this problem and a standard hardness assumption for
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learning sparse parity with noise. We phrase it in terms of a testing problem versus

the uniform distribution, which is equivalent to a learning formulation (i.e. recovering

𝑆 below), by boosting the probability of success and using a standard reduction of

removing one coordinate at a time and testing (see e.g. [184]).

Definition 34. The 𝑘-sparse parity with noise distribution is the following distri-

bution on (𝑋, 𝑌 ) parameterized by 𝜂 ∈ (0, 1/2) and an unknown subset 𝑆 of size

𝑘:

1. Sample 𝑋 ∼ Unif({−1,+1}𝑛).

2. With probability 1/2 + 𝜂, set 𝑌 =
∏︀

𝑠∈𝑆 𝑋𝑠, and with probability 1/2 − 𝜂, set

𝑌 = (−1)
∏︀

𝑠∈𝑆 𝑋𝑠.

The 𝑘-sparse parity with noise problem is to test between the uniform and 𝑘-sparse

parity with noise with sum of probability of Type I and Type II errors upper bounded

by 0.01, given access to an oracle which generates samples from one of the two dis-

tributions.

Assumption 1 (Hardness of learning sparse parity with noise). Suppose 𝑘𝑛 is an

arbitrary sequence of positive integers with 𝑘𝑛 = 𝑜(𝑛1−𝜖) for any 𝜖 > 0 and 𝑛 growing,

any algorithm which solve the 𝑘-sparse parity with noise testing problem must have

runtime 𝑛Ω(𝑘𝑛).

The reason for the condition 𝑘𝑛 = 𝑜(𝑛1−𝜖) is simply because the number of sets

of size 𝑛 is 2𝑛, not 𝑛𝑛, so small correction factors in the exponent are needed when 𝑘

is comparable to 𝑛. The best known algorithm for learning sparse parity with noise

runs in time 𝑛0.8𝑘𝑛 [184].

Theorem 63. In the setting of Corollary 6 and under Assumption 1, for 𝜆 ≤ 2 there

exists families of models (one with 𝜖 a constant, one with ‖𝑤‖1 a constant) where a

runtime of

𝑛
Ω
(︁

log(‖𝑤‖1/𝜖)
log log(‖𝑤‖1/𝜖)

)︁
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is needed for any algorithm to achieve 𝜖 error with high probability, regardless of its

sample complexity and even in the case of tanh activations (𝛽𝑗 = 0 for all 𝑗). There

also exists a sequence of models with 𝜆 = Θ(𝑛 log(𝑛)) and ‖𝑤‖1 = 𝑂(
√
𝑛) which

requires runtime

𝑛Ω(
√

𝜆/ log2(𝜆) log(𝑛) log ‖𝑤‖1)

to achieve error 𝜖 = 0.01 with high probability.

Proof. We first show a lower bound of 𝑛Ω(log(‖𝑤‖1/𝜖)) for a family of models where

𝜆 ≤ 1. Recall we are proving a lower bound in the 𝛽𝑗 = 0 case where all activations

are tanh. The lower bound is shown by building a parity function out of tanh functions

exactly using a simple taylor series expansion argument, under the assumption that

the input to the network is in the hypercube {±1}𝑛. The construction proceeds in

a similar fashion to the sparse parity with noise lower bound for learning RBMs of

bounded hidden degree established in Chapter 2. We first describe the construction

of a parity function on boolean inputs 𝑥1, . . . , 𝑥𝑘. It suffices to build this parity with a

small (constant-size) coefficient, since we can repeat it to make the coefficient larger.

We start from the fact that

tanh(𝑧) = 2
∑︁
𝑘

(−1)𝑘

𝜋2𝑘+2
(1 − 1/4𝑘+1)𝜁(2𝑘 + 2)𝑧2𝑘+1

for |𝑧| < 𝜋/2 and recall that the Riemann 𝜁 function does not vanish on even integers

[177], so every coefficient in this expansion is nonzero. Furthermore it is known that

𝜁(𝑛) → 1 as 𝑛→ ∞, since this follows from the power series definition of 𝜁(𝑠) =
∑︀

1
𝑛𝑠 ,

so we can write

tanh(𝑧) =
∑︁
𝑘

𝑎2𝑘+1𝑧
2𝑘+1

where 𝑎2𝑘+1 ̸= 0 for any 𝑘 and |𝑎2𝑘+1| = Θ(1/𝜋2𝑘+2). From this we can see that for

some constant 𝑐 ̸= 0,

𝑥1 · · ·𝑥2𝑘+1 = 𝑐
(2𝑘 + 1)2𝑘+1

𝑎2𝑘+1

tanh

(︂
𝑥1 + · · · + 𝑥2𝑘+1

2𝑘 + 1

)︂
+ 𝑝(𝑥)
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where 𝑝(𝑥) is of degree at most 𝑘−1, using that 𝑥2𝑖 = 1 for all 𝑖 on the hypercube; here

the constant 𝑐 (which is close to 1) is a fixed correction factor to handle the small

effect of maximum-degree terms coming from expanding higher order terms in the

tanh power series. We can inductively rewrite each of the highest-order coefficients

of 𝑝 in terms of tanh and lower order monomials: this ultimately gives us a way to

write parity as a linear combination of tanh functions. Using this, we can rewrite

tanh(1
4
𝑥1 · · · 𝑥2𝑘+1) as a two-layer tanh network with ‖𝑤‖1 = 𝑘𝑂(𝑘) and 𝜆 ≤ 1. Taking

𝜖 = 1/16 and using the hardness of 𝑘-sparse parity with noise, we get that the runtime

for learning the corresponding network is at least 𝑛Ω(𝑘) = 𝑛Ω(log(‖𝑤‖1)/ log log(‖𝑤‖1)).

We can similarly prove a lower bound of 𝑛Ω(log(1/𝜖)/ log log(1/𝜖)) for constant 𝜆, ‖𝑤‖1
by using the same method to convert tanh(𝜂𝑥1 · · ·𝑥2𝑘+1) into a two-layer network and

by taking 𝜂 = 𝑘−Θ(𝑘) so that the ℓ1 norm of the coefficients is shrunk to be at most 1.

Taking 𝜖 = Θ(𝜂) and using the sparse parity with noise lower bound as above gives

the result.

Finally, we give a lower bound showing exponential dependence on 𝜆 is necessary.

We use the well-known fact that a parity can be written as a small sum of threshold

functions [86]. For 𝑘 even,

𝑥1 · · ·𝑥𝑘 = 1[𝑥1+· · ·+𝑥𝑘 ≥ −𝑘]−2(1[𝑥1+· · ·+𝑥𝑘 ≥ −𝑘+2]−1[𝑥1+· · ·+𝑥𝑘 ≥ −𝑘+4]+· · · )

with a total of 𝑘 + 1 terms in the sum on the rhs. We now consider replacing each

threshold function with the approximation 1[𝑎 ≥ 𝑏] ≈ 1+tanh(𝜆′(𝑎−𝑏+1/2))
2

for some

𝜆′ > 0. Note that the error of this approximation for a singe threshold unit and

integers 𝑎, 𝑏 is maximized when 𝑎 − 𝑏 = 0 where the error is 1−tanh(𝜆′/2)
2

= 𝑂(𝑒−𝜆′
).

Therefore by Holder’s inequality, the error in approximating 𝑥1 · · ·𝑥𝑘 by replacing

all of the threshold functions is 𝑂(𝑘𝑒−𝜆′
) = 𝑂(𝑘𝑒−𝜆/(𝑘+1/2)), where we used that

𝜆 = (𝑘 + 1/2)𝜆′ where 𝜆 is the hidden node ℓ1 norm as used previously. By adding

a tanh nonlinearity on top of the approximate parity, this gives an approximate

construction of sparse parity with noise.

Taking 𝑘 =
√
𝑛 and 𝜆 = Θ(𝑘2 log(𝑛)) we see that the resulting model is TV-
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distance 𝑛−Θ(𝑘) from sparse parity with noise, so any algorithm with runtime 𝑐𝑛−Θ(𝑘)

cannot distinguish this model from sparse parity with noise with probability better

than 75% for sufficiently small constant 𝑐 > 0. From the assumed hardness of learning

sparse parity with noise, any algorithm succeeding to distinguish this model from

the uniform distribution with sufficiently small error probability requires runtime

𝑛Ω(𝑘) = 𝑛
√

𝜆/ log2(𝜆) log(𝑛) log ‖𝑤‖1 .

Remark 20. In the second construction in the proof of Theorem 63, based off of

approximating threshold functions, the computational lower bound becomes stronger if

we allow the algorithm access to less data (recall that for a fixed noise level, Θ(𝑘 log 𝑛)

samples suffice information-theoretically for sparse parity with noise). If we only

allow to use Θ(𝑘 log 𝑛) samples as information-theoretically required, then we can

take 𝜆 = Θ(𝑘(log 𝑘 + log log 𝑛)) and the runtime required is 𝑛𝑘 = 𝑛𝜆/(log log𝑛+log(𝜆)).

6.9 Learning RBMs by Learning Feedforward Net-

works

6.9.1 Structure and Distribution Learning Guarantees

In this section we discuss application of the prediction guarantees from the previous

section to structure and distribution learning. As motivation, recall that in undirected

graphical models the Markov blanket or neighborhood of a node 𝑖, the minimal set

of nodes which separate node 𝑖 from the rest of the model in the underlying graph,

is one of the most interesting pieces of information to learn about a node. By the

Markov property, node 𝑖 interacts directly only with nodes in its Markov blanket, in

the sense that 𝑋𝑖 is conditionally independent of all other nodes 𝑋𝑘 given the values

of nodes 𝑋𝑗 for all 𝑗 in the markov blanket of 𝑖. Learning the markov blanket of

all nodes, equivalently learning the underlying graph of the Markov Random Field,

is referred to as structure learning. It is also well known (see e.g. [109]) that once

we have performed structure learning, distribution learning (e.g. in total variation

distance) becomes a conceptually straightforward task as it can typically be reduced
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to solving low-dimensional regression problems.

As explained in the introduction, learning the structure requires a non-degeneracy

condition on neighbors (recall the definition of 𝜂-nondegeneracy from above). In

the introduction, we stated that if all edges are 𝜂-nondegenerate then we can learn

the structure perfectly; in the next Theorem, we state a slightly more precise result

giving the result we can successfully test between non-neighbors and 𝜂-nondegenerate

neighbors, without requiring nondegeneracy on the entire model. Since our guarantee

holds with high probability, using the union bound it immediately gives a result for

structure recovery under 𝜂-nondegeneracy.

Theorem 64. Let 𝑖 and 𝑗 be two visible nodes in a (𝜆1, 𝜆2)-bounded RBM. Let 𝐻0

be the hypothesis that nodes 𝑖 and 𝑗 are not two-hop neighbors and 𝐻1 the hypothesis

that nodes 𝑖 and 𝑗 are 𝜂-nondegenerate two-hop neighbors. Given 𝛿 > 0 and 𝑚 =

Ω(𝜆
𝑂(𝐷)
2 log(2𝑛/𝛿)) i.i.d. samples where 𝐷 = 𝑂(𝜆2 log(𝜆1𝜆2/𝜂)), we can test in time

𝑝𝑜𝑙𝑦(𝑛𝐷) between 𝐻0 and 𝐻1 with sum of Type I and Type II errors upper bounded

by 𝛿.

Proof. We run the following testing procedure:

1. Run the ℓ1 regression algorithm from Theorem 53 to predict 𝑋𝑖 from 𝑋∼𝑖 and

from 𝑋∼𝑖,𝑗.

2. Repeat the previous step with 𝑖 and 𝑗 reversed.

3. If the decrease in prediction accuracy for removing 𝑖 or 𝑗 is at least 3𝜂/4 in

either step 1 or step 2, reject 𝐻0.

That this works follows by combining Theorem 53 and Corollary 6, by choosing

𝜖 = 𝜂/8 under 𝐻0 the difference in prediction error is at most 2𝜖 whereas under 𝐻1 it

must be at least 𝜂 − 2𝜖.

Assuming that all 2-hop neighbors in the RBM are 𝜂-nondegenerate, the above

Theorem lets us recover the structure of the RBM (its 2-hop neighborhoods) in time

𝑝𝑜𝑙𝑦(𝑛𝐷). In the following remark, we explain how large 𝐷 is in the regimes where

we know polynomial time sampling from the RBM is possible:
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Remark 21 (Comparison to polynomial time sampling regimes). Dobrushin’s unique-

ness criterion is probably the most well-known sufficient condition for sampling to be

possible in polynomial time in a general pairwise model. Dobrushin’s condition is that

for every node 𝑖, the total ℓ1-norm of the edges touching node 𝑖 is at most 1, where the

mixing time guarantees for Glauber dynamics become worse as the maximum norm

approaches 1 (see [122]). This condition is tight in the example of the Ising model

on the complete graph (Curie-Weiss), or for the bipartite complete graph (i.e. dense

RBM) with all edge weights positive and equal and an equal number of visible and

hidden units.

Under Dobrushin’s uniqueness criterion on the RBM, we have that 𝜆1, 𝜆2 ≤ 1 so

𝐷 = 𝑂(log(1/𝜂)). As mentioned above, we cannot compute 𝜂 in terms of just the

edge weights for general models, but if we for example assume the model is 𝑑-regular

and has all edge weights equal to +1/𝑑 and no external field then it is not too hard to

show that 𝜂 = Ω(1/𝑑2) (see Chapter 2), so in this case the overall runtime is 𝑛log(𝑑).

We expect that under Dobrushin’s condition 𝜂 = Ω(1/𝑑2) except in perhaps some rare

degenerate situations. This means the runtime is improved by an exponential factor in

the exponent compared to what one gets by just applying the RBM to MRF reduction,

since learning 𝑑-wise MRFs is known to require 𝑛𝑑 time in general [108].

In some other interesting contexts, it is also known that polynomial time sampling

can only be guaranteed when 𝜆1, 𝜆2 = 𝑂(1): for antiferromagnetic Ising models on

bounded degree graphs with equal edge weights the sharp result is known for every

𝑑 [169, 70, 172] and embedding these Ising models as RBMs with hidden nodes of

degree 2 in a straightforward way gives models with 𝜆1, 𝜆2 = 𝑂(1) and 𝜂 = Ω(1/𝑑2)

(see Example 14 above).

For distribution learning we will need the following technical Lemma, which is

proved in Appendix 6.9.2 using the local Rademacher complexity framework [14].

Informally it says that if 𝑋 is a random variable with a density with respect to

the uniform measure on {±1}𝑛 that is lower bounded by a constant, then given

a number of samples 𝑚 which is large with respect to the size of the domain the

natural estimator of tanh−1(E[𝑌 |𝑋]) has error which converges at a 1/𝑚 rate, which
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generalizes the case of estimating the (exponential-family parameterization of) mean,

the 𝑛 = 0 case, in a natural way. Since the bound depends exponentially on 𝑛, we

will only apply it in settings where we expect 𝑛 is small. Similar bounds are used

in previous works including [34, 29] and proved using different methods, though they

are not quite as optimized (e.g. deriving this result from Lemma 3.2 of [29] would

give a 1/𝛾2 dependence); this bound can be shown to be optimal up to constants.

Lemma 62. Suppose that 𝑋 is a random variable valued in {±1}𝑛 with Pr(𝑋 = 𝑥) ≥

𝛾/2𝑛 for every 𝑥 and 𝑌 is a random variable valued in {±1}. Suppose that |E[𝑌 |𝑋]| ≤

𝑟 for 𝑟 < 1. Let Ê[𝑌 |𝑋] be the empirical conditional expectation of 𝑌 given 𝑋 based

upon 𝑚 i.i.d. samples of (𝑋, 𝑌 ) and define ℎ(𝑋) := min(max(E[𝑌 |𝑋], 𝑟),−𝑟). Then

with probability at least 1 − 𝛿,

E[(tanh−1(ℎ(𝑋)) − tanh−1(E[𝑌 |𝑋]))2] .
2𝑛/𝛾 + log(1/𝛿)

(1 − 𝑟2)2𝑚

where . denotes inequality up to an absolute constant.

We present the proof of this lemma in the subsequent subsection. From this

Lemma we straightforwardly get the right result for learning a sparse RBM with

known 2-hop neighborhoods.

Algorithm 4 DistributionFromStructure

1: We assume for every node 𝑖 we are given a recovered neighborhood ̂︀𝒩 (𝑖). ̂︀𝒩 (𝑖)

2: For every node 𝑖 with neighborhood ̂︀𝒩 (𝑖), let 𝑓𝑖(𝑋) := ̂︀E[𝑋𝑖|𝑋 ̂︀𝒩 (𝑖)] be the empir-
ical conditional expectation of 𝑋𝑖 given 𝑋 ̂︀𝒩 (𝑖).

3: Return the output of Algorithm DistributionFromPredictors run with
these 𝑓𝑖.

Lemma 63. For any (𝜆1, 𝜆2)-bounded RBM where the maximum two-hop degree

of any visible node is at most 𝑑2 and where ‖𝑏(1)‖∞ ≤ 𝐵, for 𝛿 > 0 and 𝑚 =

Ω

(︂
𝑛2
(︁

2
(1−tanh(𝜆1))

)︁𝑑2+1

log(𝑛/𝛿)/𝜖4
)︂

we have that with probability at least 1 − 𝛿, Al-

gorithm DistributionFromStructure given 𝑚 samples and ̂︀𝒩 (𝑖) = 𝒩 (𝑖) for

every 𝑖 returns a distribution 𝑃 which is 𝜖-TV close to the distribution of the RBM.
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Furthermore, if 𝑤𝑆, �̂�𝑆 are as defined as in Lemma 56 then

2TV(𝑃, 𝑃 )2 ≤ SKL(𝑃, 𝑃 ) ≤
∑︁
𝑆

|𝑤𝑆 − �̂�𝑆| ≤ 𝜖2.

Proof. By Lemma 56, Lemma 55 and Lemma 62 we have

SKL(𝑃 , 𝑃 ) ≤
∑︁
𝑆

|𝑤𝑆 − �̂�𝑆|

≤
∑︁
𝑖

2𝑑2/2+1

(1 − tanh(𝜆1))𝑑2/2

√︁
E𝑋∼𝑈𝑛𝑖({±1}𝑛)[(tanh−1(ℎ𝑖(𝑋)) − tanh−1(E𝑃 [𝑋𝑖|𝑋∼𝑖])2]

≤
∑︁
𝑖

2𝑑2/2+1

(1 − tanh(𝜆1))𝑑2

√︁
E𝑋𝒩 (𝑖)

[(tanh−1(ℎ𝑖(𝑋)) − tanh−1(E𝑃 [𝑋𝑖|𝑋∼𝑖])2]

≤
∑︁
𝑖

2𝑑2/2+1

(1 − tanh(𝜆1))𝑑2

√︃
2𝑑2/(1 − tanh(𝜆1))𝑑2 + log(𝑛/𝛿)

(1 − tanh(𝜆1)2)2𝑚

and by Pinsker’s inequality TV(𝑃 , 𝑃 )2 ≤ SKL(𝑃 , 𝑃 )/2 so the result follows.

Theorem 65. Suppose that all visible nodes in an RBM which are neighbors in

the Markov blanket sense are 𝜂-nondegenerate neighbors, and that maximum 2-

hop degree of any visible node is at most 𝑑2. Then given 𝛿 > 0 and 𝑚 =

Ω(𝜆
𝑂(𝐷)
2 log(2𝑛/𝛿) + 𝑛2

(︁
2

(1−tanh(𝜆1))

)︁𝑑2+1

log(𝑛/𝛿)/𝜖4) i.i.d. samples where 𝐷 =

𝑂(𝜆2 log(𝜆1𝜆2/𝜂)) samples, Algorithm DistributionFromStructure run with the

set of 𝜂-nondegenerate neighbors output by Theorem 64 returns with probability at least

1 − 𝛿 a distribution which is 𝜖-TV close to the true distribution of the RBM.

Proof. This follows by combining Theorem 64 and Lemma 63.

Remark 22. If we do not assume that all neighbors are 𝜂-nondegenerate, then by

Theorem 68 it is impossible to get a nontrivial distribution learning guarantee as-

suming the hardness of learning sparse parity with noise, in the sense that the naive

approach of forgetting the RBM structure entirely and using MRF learning results

(e.g. [108]) cannot be improved.
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6.9.2 Proof of Lemma 62

We recall the statement of Lemma 62. Suppose that 𝑋 is a random variable valued

in {±1}𝑛 with Pr(𝑋 = 𝑥) ≥ 𝛾/2𝑛 for every 𝑥 and 𝑌 is a random variable valued

in {±1}. Suppose that |E[𝑌 |𝑋]| ≤ 𝑟 for 𝑟 < 1. Let Ê[𝑌 |𝑋] be the empirical

conditional expectation of 𝑌 given 𝑋 based upon 𝑚 i.i.d. samples of (𝑋, 𝑌 ) and

define ℎ(𝑋) := min(max(E[𝑌 |𝑋], 𝑟),−𝑟). Then with probability at least 1 − 𝛿,

E[(tanh−1(ℎ(𝑋)) − tanh−1(E[𝑌 |𝑋]))2] .
2𝑛

𝛾(1 − 𝑟2)2𝑚
+

log(1/𝛿)

(1 − 𝑟2)2𝑚

We will prove the result by proving the analogous result without the tanh−1 first,

as Lemma 64. The following general result reduces this to computing the local

Rademacher complexity of the corresponding function class.

Theorem 66 (Corollary 5.3 of [14]). Suppose that ℱ is a class of functions from 𝒳

to [−1, 1] and ℓ(𝑦, 𝑦) is a loss which satisfies:

1. ℓ is 𝐿-Lipschitz in 𝑦.

2. There is a constant 𝐵 ≥ 1 such that for any random variable 𝑋 supported on

𝒳 and random variable 𝑌 on [−1, 1]

E(𝑓(𝑋) − 𝑓 *(𝑋))2 ≤ 𝐵E[ℓ(𝑓(𝑋), 𝑌 ) − ℓ(𝑓 *(𝑋), 𝑌 )]

where 𝑓 *(𝑋) is a minimizer of E[ℓ(𝑓(𝑋), 𝑌 )] which we assume exists.

Then if 𝜓(𝑟) is a sub-root function (meaning a monotonically increasing non-negative

function with 𝜓(𝑟)/
√
𝑟 monotonically decreasing) such that

𝜓(𝑟) ≥ 𝐵𝐿E sup
𝑓∈ℱ ,𝐿2E[(𝑓−𝑓*)2]≤𝑟

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖(𝑓 − 𝑓 *)(𝑋𝑖) (6.5)

where the 𝜎𝑖 are i.i.d. Rademacher random variables, then for any 𝑟 ≥ 𝜓(𝑟) with
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probability at least 1 − 𝛿

E[ℓ(𝑓(𝑋), 𝑌 ) − ℓ(𝑓 *(𝑋), 𝑌 )] .
𝑟

𝐵
+

(𝐿+𝐵) log(1/𝛿)

𝑚

where the notation . hides an absolute constant.

Lemma 64. Under the same setup as Lemma 62,

E[(ℎ(𝑋) − E[𝑌 |𝑋])2] .
2𝑛

𝛾𝑚
+

log(1/𝛿)

𝑚
.

Proof. We consider ℱ the class of arbitrary functions from 𝒳 to [−𝑟, 𝑟] and take

ℓ(𝑦, 𝑦) := (𝑦 − 𝑦)2 to be the square loss so 𝐿 = 2 and 𝐵 = 1 satisfy the conditions

above. It is clear from the definition of ℎ that it is the empirical risk minimizer for

this function class and loss. Since this class is convex we can take 𝜓(𝑟) to be defined

by the rhs of (6.5) (Lemma 3.4 of [14]) and it remains to compute the fixed point of

𝜓. Thus if we write 𝑔 := 𝑓 − 𝑓 *

𝜓(𝑟) = 2E sup
𝑓 :4E[𝑔2]≤𝑟

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖𝑔(𝑋𝑖)

and we observe by the assumption Pr(𝑋 = 𝑥) ≥ 𝛾/2𝑛 that

E𝑋 [𝑔2] ≥ 𝛾E𝑋′∼𝑈𝑛𝑖({±1}𝑛)[𝑔(𝑋 ′)2] = 𝛾
∑︁
𝑆

̂︀𝑔(𝑆)2

by Plancherel’s Theorem [148] where ̂︀𝑔(𝑆) denotes the Fourier coefficient of 𝑔 corre-

sponding to set 𝑆, so that 𝑔(𝑥) =
∑︀

𝑆 ̂︀𝑔(𝑆)𝑥𝑆 where 𝑥𝑆 =
∏︀

𝑠∈𝑆 𝑥𝑠. Therefore by the

above, the Cauchy-Schwarz inequality, and Jensen’s inequality we have

𝜓(𝑟) = 2E sup
𝑔:4E[𝑔2]≤𝑟

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖𝑔(𝑋𝑖)

≤ 2E sup
𝑔:
∑︀

𝑆 𝑔(𝑆)2≤𝑟/4𝛾

1

𝑚

∑︁
𝑆

𝑔(𝑆)
1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖(𝑋𝑖)𝑆
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≤
√︀
𝑟/𝛾E

1

𝑚

⎯⎸⎸⎷∑︁
𝑆

(︃
𝑚∑︁
𝑖=1

𝜎𝑖(𝑋𝑖)𝑆

)︃2

≤
√
𝑟

𝑚
√
𝛾

⎯⎸⎸⎷E
∑︁
𝑆

(︃
𝑚∑︁
𝑖=1

𝜎𝑖(𝑋𝑖)𝑆

)︃2

=

√
𝑟

√
𝑚𝛾

2𝑛/2.

Solving for the fixed point of 𝑟 =
√
𝑟√

𝑚𝛾
2𝑛/2 gives 𝑟* = 2𝑛

𝛾𝑚
so the result follows from

Theorem 66.

Proof of Lemma 62. Recall that the derivative of tanh−1 at 𝑥 is 1
1−𝑥2 . Therefore on

the domain [−𝑟, 𝑟] the function tanh−1 is 1
1−𝑟2

Lipschitz. Therefore by the mean value

theorem,

E[(tanh−1(ℎ(𝑋)) − tanh−1(E[𝑌 |𝑋]))2] ≤ 1

(1 − 𝑟2)2
E[(ℎ(𝑋) − E[𝑌 |𝑋])2]

and applying Lemma 64 gives the result.

6.9.3 Matching Computational Lower Bounds

In the following sequence of theorems we show that our runtime guarantees for struc-

ture learning of RBMs cannot be significantly improved. The first result relies in part

on the representation of sparse parity with noise given in Chapter 2; this embedding

is constructed in a similar way to the first embedding used in Theorem 63. It shows

the dependence on 𝜆1 and 𝜂 is correct when asking for structure recovery.

Theorem 67. In the same setup as Theorem 64 and under Assumption 1, there exists

a family of instances parameterized by 𝑛 going to infinity with 𝜆2 ≤ 2 such that any

algorithm which is able to achieve structure recovery for a model with all neighbors

being 𝜂-nondegenerate requires runtime 𝑛Ω(log(𝜆1/𝜂)/ log log(𝜆1/𝜂)), regardless of its sample

complexity.

Proof. In Chapter 2, it was shown that for any fixed constant 𝜂 (say 𝜂 = 1/8), there

exists an embedding of 𝑘-sparse parity with noise into an RBM where every hidden

unit has incoming edges of total ℓ1 norm upper bounded by 2 (i.e. satisfying 𝜆1 ≤ 2)
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and there are 2𝑂(𝑘) hidden units; it can be checked straightforwardly that for 𝜂 = 1/8

that 𝜆2 = 𝑘𝑂(𝑘). Therefore if we fix 𝜖 = 𝜂/2 then when assuming the hardness of

𝑘-sparse parity with noise there is a 𝑛Ω(𝑘) runtime lower bound which matches since

𝜆2 = 𝑒𝑂(𝑘).

For the tightness in 𝜖, by making the parity bias 𝜂 exponentially small in 𝑘 log(𝑘),

it’s easy to check that by repeating the construction in Chapter 2 that we can make

𝜆2 a constant; then to find the parity with noise one needs 𝜖 exponentially small in

𝑘 log 𝑘 as well, and the hardness assumption implies the runtime must be 𝑛Ω(𝑘).

By tensorizing this construction, we show that the 𝜂-nondegeneracy assumption is

required, even if we only care about distribution learning. More precisely, we need it

to learn in TV distance with runtime better than the pessimistic 𝑛𝑂(𝑑ℎ) result which

follows from viewing the RBM as an unstructured MRF and using the result of [108].

Theorem 68. There exists a family of RBMs with 𝑛 nodes, maximum hidden node

degree 𝑑𝐻 , and 𝜆1, 𝜆2 = 𝑂(1) such that any algorithm which can learn this family of

RBMs within total variation distance at most 1/4 requires 𝑛Ω(𝑑𝐻) time.

Proof. The construction in Theorem 67 shows that there exists a family of RBMs

given by embedding sparse parity with noise with the desired property, except that

the total variation distance is only guaranteed to be 2−𝑂(𝑑𝐻 log(𝑑𝐻)). By building a

larger RBM consisting of 2𝑑𝐻 log(𝑑𝐻) disjoint copies of the original RBM (note that the

resulting increase in 𝑛 is a multiplicative factor independent of the original 𝑛), we

can boost the total variation distance to be arbitrarily close to 1.

In order to give lower bounds with respect to 𝜆2 for fixed 𝜂, we need a significantly

more involved argument. We first recall an approximate construction of parity (with

low levels of noise) from [133]:

Theorem 69 (Theorem 7 of [133]). There exists an RBM network with 𝑛2 +1 hidden

units and weights 𝑝𝑜𝑙𝑦(𝑛, log(1/𝜖)) such that the marginal distribution 𝑃 on the visible
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units satisfies 𝑃 (𝑥) ∝ 𝑒𝑓(𝑥) for some 𝑓 satisfying

sup
𝑥∈{±1}𝑛

|𝑓(𝑥)/𝐶 − 𝑥1 · · ·𝑥𝑛| ≤ 𝜖

where 𝐶 > 0 satisfies 𝐶 = 𝑝𝑜𝑙𝑦(log(𝑛), log(1/𝜖)).

This construction is for a dense parity, but obviously we can make the parity as

sparse as we want by adding additional visible units not connected to anything else.

More significantly, since the above theorem only constructs an 𝜖-approximate instance

of parity with noise 𝜂 = 𝑂(1/2−1/𝑝𝑜𝑙𝑦(𝑛, 1/𝜖)), when 𝑛 or 1/𝜖 is large it does not seem

that the resulting distribution is computationally hard to distinguish from the uniform

distribution, since Gaussian elimination over F2 has some chance of succeeding to find

the parity. Since we need 𝜖 to be small for the model to be indistinguishable from

sparse parity with noise, this appears to be a barrier to deriving a hardness result

from the above Theorem. Instead, we will prove that our result cannot be significantly

improved for SQ (Statistical Query) algorithms (for a reference, see [24]). In the

Statistical Query model algorithms do not have access to data, but instead have

access to an SQ oracle:

Definition 35. An oracle for the statistical query model over distribution 𝒟 over

𝑋, 𝑌 takes input (𝑔, 𝜏) where 𝑔 is a function 𝑔 : {±1}𝑛 × {±1} → [−1, 1] and 𝜏 is a

tolerance, and gives output 𝑣 with

|E𝑋,𝑌∼𝐷[𝑔(𝑋, 𝑌 )] − 𝑣| ≤ 𝜏.

Standard arguments, i.e. implementing the needed regressions using standard

gradient-based methods for convex optimization shows that our algorithm for learning

RBMs can be implemented in the statistical query model (in this case, the separation

of 𝑋 and 𝑌 in the definition above is somewhat artificial but we will take 𝑌 to be a

particular visible unit in the RBM). We will show that statistical query algorithms

cannot do better than subexponential dependence on 𝜆2.

The following theorem statements a lower bound for learning concepts of large
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SQ-dimension in the Statistical Query model. The definition of SQ-dimension can be

found in [24], but for our purposes the only needed fact is that the class of 𝑘-parities

over the uniform distribution {±1}𝑛 has SQ-dimension
(︀
𝑛
𝑘

)︀
[24].

Theorem 70 ([24]). Let ℱ be a class of functions over {±1}𝑛 and 𝐷 a distribution

such that SQ-DIM(ℱ , 𝐷) ≥ 𝑑 ≥ 16. Then if all queries are made with tolerance at

least 1/𝑑1/3, then at least 𝑑1/3/2 queries are required to learn ℱ with error less than

1/2 − 1/𝑑3 in the statistical query model.

Theorem 71. Let 𝑆 be an unknown subset of [𝑛] of size 𝑘 and containing 𝑛 and 𝒟

is the distribution of the RBM produced by Theorem 69 on 𝑆 where the other 𝑛− |𝑆|

visible units are isolated and without external field. Let ℱ be the class of parities on

[𝑛 − 1]. As before, 𝜆2 refers to the maximum ℓ1-norm into any hidden unit and we

choose parameters so that 𝜆2 = 𝑝𝑜𝑙𝑦(𝑛) and ‖𝑤‖1 = 𝑝𝑜𝑙𝑦(𝑛). There exists 𝜖 > 0 so

that no SQ algorithm with tolerance 𝑛−𝜆𝜖
2 and access to 𝑛𝜆𝜖

2 queries can learn ℱ with

error less than 1/4.

Proof. In Theorem 69 we take 𝜖 = exp(−𝑛) which gives 𝜆2 = 𝑝𝑜𝑙𝑦(𝑛). The resulting

RBM is then within TV distance exp(−𝑛) of the distribution of a parity over the

uniform distribution with a small amount of label noise, so an SQ algorithm for the

RBM setting implies an SQ algorithm for learning parity, and the result follows from

the lower bound of Theorem 70.

6.10 Learning a Feedforward Network under the

RBM distributional assumption

In this section we reverse the connection between RBMs and Feedforward networks by

using RBMs with certain structural assumptions as a useful distributional assumption

for learning feedforward network. More formally, we assume our data is generated by

the following Supervised RBM.
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Definition 36. A Supervised Restricted Boltzmann Machine is any joint distribution

over random variables 𝑋 valued in {±1}𝑛1, 𝐻 valued in {±1}𝑛2 and label 𝑌 ∈ {±1}

of the form

Pr[𝑋 = 𝑥,𝐻 = ℎ, 𝑌 = 𝑦] ∝ exp
(︀
⟨𝑥,𝑊ℎ⟩ + ⟨ℎ,𝑤⟩𝑦 + ⟨𝑏(1), 𝑥⟩ + ⟨𝑏(2), ℎ⟩ + 𝑏(3)𝑦

)︀
where the weight matrix 𝑊 is an arbitrary 𝑛𝑉 ×𝑛𝐻 matrix and external fields/biases

𝑏(1) ∈ R𝑛1, 𝑏(2) ∈ R𝑛2 and 𝑏(3) are arbitrary, and 𝑋 is referred to as the vector of

visible unit activations and 𝐻 the vector of hidden unit activations.

We make the following additional assumptions on the parameters of the model.

Assumption 2 (Minimum Ferromagnetic Interaction). For all 𝑖 ∈ [𝑛1], 𝑗 ∈ [𝑛2]

either 𝑊𝑖𝑗 = 0 or 𝑊𝑖𝑗 ≥ 𝛼.

We do not make any assumption on the weight 𝑤 to the label. Therefore the

model overall is not ferromagnetic.

Assumption 3 (Sparsity). For all 𝑖 ∈ [𝑛1],
∑︀𝑛2

𝑗=1𝑊𝑖𝑗 + |𝑏(1)𝑖 | ≤ 𝜆 and for either

𝑦 = −1 or 𝑦 = 1, for all 𝑗 ∈ [𝑛2]
∑︀𝑛1

𝑖=1𝑊𝑖𝑗 + |𝑏(2)𝑗 + 𝑦𝑤𝑗| ≤ 𝜆.

Here the sparsity assumption implies that under the conditioning of the label to

either value, the sparsity parameter is bounded. This conditional sparsity can be

exploited by an algorithm for learning the conditional distribution whereas a direct

regression algorithm may be unable to gain from the same.

Remark 23. Observe that the generative model of 𝑋 itself is not sparse since 𝑌 is

connected to all hidden nodes however conditioned on knowing the label 𝑌 , the model

is now sparse. This assumption is more reasonable than assuming sparsity directly on

the model of 𝑋 which may not hold.

Assumption 4 (Balanced Label). For 𝑦 ∈ {±1}, Pr[𝑌 = 𝑦] ≥ 𝛽.

The above assumption essentially rules out trivial constant learners. Using data,

it is easy to check if this assumption is satisfied or not.
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As before, we can compute the conditional mean function of the label as follows:

E[𝑌 |𝑋 = 𝑥] = tanh

(︃
𝑏(3) +

∑︁
𝑗

tanh−1 (tanh(𝑤𝑗)𝜈𝑗)

)︃

where 𝜈𝑗 := tanh
(︁
𝑏
(2)
𝑗 +

∑︀
𝑖 tanh−1 (tanh(𝑊𝑖𝑗)𝑋𝑖)

)︁
= tanh

(︁
𝑏
(2)
𝑗 +

∑︀
𝑖𝑊𝑖𝑗𝑋𝑖

)︁
. This

represents a 2-layer neural network and in the limit of infinite hidden nodes, it can

represent all 2-layer tanh networks (see Lemma 52).

Assumption 5 (Boundedness). When E[𝑌 |𝑋 = 𝑥] is re-expressed as tanh(𝑓 *(𝑥)+𝑏*)

for some function 𝑓 * with no constant term and 𝑏* ∈ R. |𝑏*| ≤ 𝐵 for some 𝐵 > 0.

The above assumption intuitively says that the effect on 𝑌 that does not depend

on 𝑋 is bounded. 𝐵 can be bounded in terms of the network parameters.

Also observe that conditioned on a fixed label,

Pr[𝑋 = 𝑥,𝐻 = ℎ|𝑌 = 𝑦] ∝ exp
(︀
⟨𝑥,𝑊ℎ⟩ + ⟨𝑏(1), 𝑥⟩ + ⟨𝑏(2) + 𝑤𝑦, ℎ⟩

)︀
which is a sparse, ferromagnetic RBM with arbitrary external field. Thus, we capture

a neural network problem with a conditional RBM distributional assumption on the

input. This distributional assumption seems more natural than the Gaussian input

distribution which is extensively used in prior work. Also, this assumption allows us

to leverage prior known algorithms for structure learning of ferromagnetic RBMs to

learn the prediction function.

6.10.1 Preliminaries: Structure Learning of RBMs with Fer-

romagnetic Interactions

Consider a RBM with the following additional assumptions:

Assumption 6 (Minimum Ferromagnetic Interaction). For all 𝑖 ∈ [𝑛1], 𝑗 ∈ [𝑛2]

either 𝑊𝑖𝑗 = 0 or 𝑊𝑖𝑗 ≥ 𝛼.

Assumption 7 (Sparsity). For all 𝑖 ∈ [𝑛1],
∑︀𝑛2

𝑗=1𝑊𝑖𝑗 + |𝑏(1)𝑖 | ≤ 𝜆 and for all 𝑗 ∈ [𝑛2],∑︀𝑛1

𝑖=1𝑊𝑖𝑗 + |𝑏(2)𝑗 | ≤ 𝜆.
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Under these assumptions, [75] has shown that a simple greedy algorithm based

on covariance maximization suffices to learn the structure of the RBM. We use this

result because the earlier analysis of Chapter 2 makes the further assumption of non-

negative external fields which won’t be true in our general situation. (It remains an

interesting open problem to combine the good sample complexity guarantees of the

analysis of Chapter 2 with the general setting of [75].)

The crucial structural property that [75] use is their algorithm is the following

strengthening of the FKG inequality,

Lemma 65 (Lemma 2 of [75]). For any observed nodes 𝑢, 𝑣 and set 𝑆 ⊆ [𝑛1]∖{𝑢, 𝑣},

Cov(𝑢, 𝑣|𝑋𝑆 = 𝑥𝑆) := E[𝑋𝑢𝑋𝑣|𝑋𝑆 = 𝑥𝑆]−E[𝑋𝑢|𝑋𝑆 = 𝑥𝑆] E[𝑋𝑣|𝑋𝑆 = 𝑥𝑆] ≥ 𝛼2 exp(−12𝜆).

Subsequently they define average conditional covariance CovAvg(𝑢, 𝑣|𝑆) =

E𝑥𝑆
[Cov(𝑢, 𝑣|𝑋𝑆 = 𝑥𝑆)] which straightforwardly is lower bounded by an applica-

tion of the above lemma. Their final algorithm essentially greedily maximizes this

average conditional covariance to build the neighborhood.

Theorem 72 (Theorem 2 of [75]). Consider 𝑀 samples 𝒮 drawn from a RBM with

arbitrary external field satisfying the given assumptions. For 𝜏 = 𝛼2

2
exp(−12𝜆) and

𝛿 = exp(−2𝜆)/2, with probability 1 − 𝜁, LearnRBMNbhd(𝑢, 𝜏,𝒮) outputs exactly

the two-hop neighborhood of observed variable 𝑢 for

𝑀 ≥ Ω

(︂
(log(1/𝜁) + 𝑇 * log(𝑛))

22𝑇 *

𝜏 2𝛿2𝑇 *

)︂
and 𝑇 * =

8

𝜏 2
.

Moreover, the algorithm runs in time 𝑂(𝑇 *𝑀𝑛).

6.10.2 Prediction from Distribution Learning

Here we will present our algorithm for learning the supervised RBM followed by a

proof of its correctness. Instead of learning the label function directly, we will instead

first learn the underlying generative model of 𝑋 conditioned on a particular value of

the label and use this knowledge to predict 𝑌 .
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Theorem 73. Given a supervised RBM satisfying Assumption 2, 3,

4 and 5, there exists an algorithm with sample complexity 𝑚 =

𝑛2 exp(𝜆)exp(𝑂(𝜆))(1/𝛼)𝑂(1)(1/𝛽)𝑂(1) log(𝑛/𝛿)/𝜖2 and runtime 𝑝𝑜𝑙𝑦(𝑚) returns

hypothesis ℎ such that,

E[ℓ(ℎ(𝑋), 𝑌 ] − E[ℓ(ℎ*(𝑋), 𝑌 ] ≤ 𝜖

where ℓ is the logistic loss and ℎ* is the minimizer of the logistic loss.

Remark 24. For an example where this algorithm is better than if we have no dis-

tributional assumptions, observe that we can construct a ferromagnetic RBM where

E[𝑌 |𝑋] is a sparse parity function by adapting in a straightforward way the reduc-

tion used in the proof of the part of Theorem 63 with bounded 𝜆 (the use of tanh as

opposed to 𝑓𝛽 in that construction is not fundamental, or we can use a finite ver-

sion of Lemma 52), since the hidden units in that proof all have nonnegative weights.

It’s clear why Algorithm LearnSupervisedRBMNBhd is better than an algorithm

which doesn’t know the input distribution: under the true input distribution, the vis-

ible units involved in the parity are correlated so the algorithm can find them, which

makes learning the sparse parity easy.

Our main algorithm can be broken down into three main steps: 1) Use greedy

maximization (similar to Algorithm 1 of [75]) to first learn the two-hop neighborhood

𝒩 (𝑖) of each observed variable 𝑖 w.r.t. the hidden layer conditioned on the label, 2)

For each observed variable 𝑋𝑖, learn the distribution for 𝑋|𝑌 = 𝑦 for 𝑦 = ±1, and 3)

Use the estimated distribution to compute E[𝑌 |𝑋].

Structure Learning For notation simplicity, we will overload notation and rep-

resent CovAvg(𝑢, 𝑣|𝑆, 𝑌 ) = E𝑥𝑆 ,𝑦[Cov(𝑢, 𝑣|𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦)] where Cov(𝑢, 𝑣|𝑋𝑆 =

𝑥𝑆, 𝑌 = 𝑦) = E[𝑋𝑢𝑋𝑣|𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦] − E[𝑋𝑢|𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦] E[𝑋𝑣|𝑋𝑆 = 𝑥𝑆, 𝑌 =

𝑦]. Then for structure learning, our algorithm essentially follows Algorithm 1 of [75]

with the slight modification of conditioning w.r.t. 𝑌 .
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Theorem 74. Consider 𝑚 samples 𝒮 drawn from a supervised RBM satisfying As-

sumption 2, 3 and 4. For 𝜏 = 𝛽𝛼2

2
exp(−12𝜆) and 𝛿 = exp(−2𝜆)/2, with probability

1 − 𝜁,

LearnSupervisedRBMNbhd(𝑢, 𝜏,𝒮) outputs exactly the two-hop neighbors of ob-

served variable 𝑢 w.r.t. the hidden layer, with

𝑚 ≥ Ω

(︂
(log(1/𝜁) + 𝑇 * log(𝑛))

22𝑇 *

𝜏 2𝛽𝛿2𝑇 *

)︂
and 𝑇 * =

8

𝜏 2
.

Moreover, the algorithm runs in time 𝑂(𝑇 *𝑀𝑛).

Proof. In order to apply Theorem 72 to our setting, the only two properties we need

to show are 1) given the conditioning of 𝑌 , the average conditional covariance bound

still holds, that is, CovAvg(𝑢, 𝑣|𝑆 ∪ {0}) is lower bounded for all 𝑆 ⊆ [𝑛2]∖{𝑢, 𝑣} for 𝑣

in the two-hop neighborhood of 𝑢, 2) Pr[𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦] for all 𝑥𝑆 and 𝑦. We have,

CovAvg(𝑢, 𝑣|𝑆, 𝑌 ) =
∑︁
𝑦∈±1

∑︁
𝑥𝑆∈{±1}|𝑆|

Pr[𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦]Cov(𝑢, 𝑣|𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦)

By Assumption 3, we know that either for 𝑦 = 1 or 𝑦 = −1 (say 𝑦 = 1 WLOG), the

resulting RBM is sparse therefore we can apply Lemma 65 to the ones conditioned

on 𝑦 = 1. Also, we know that Cov(𝑢, 𝑣|𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦) ≥ 0 for all 𝑥𝑆 and 𝑦 due to

FKG inequality for ferromagnetic RBMs. This implies that,

CovAvg(𝑢, 𝑣|𝑆, 𝑌 ) ≥
∑︁

𝑥𝑆∈{±1}|𝑆|

Pr[𝑋𝑆 = 𝑥𝑆, 𝑌 = 1]Cov(𝑢, 𝑣|𝑋𝑆 = 𝑥𝑆, 𝑌 = 1)

≥
∑︁

𝑥𝑆∈{±1}|𝑆|

Pr[𝑋𝑆 = 𝑥𝑆, 𝑌 = 1]𝛼2 exp(−12𝜆)

≥ Pr[𝑌 = 1]𝛼2 exp(−12𝜆) ≥ 𝛽𝛼2 exp(−12𝜆).

For the second part, let us order the elements of 𝑆 of size 𝑘 as 𝑠1, . . . , 𝑠𝑘, then we

have

Pr[𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦] = Pr[𝑌 = 𝑦] × Pr[𝑋𝑠1 = 𝑥𝑠1|𝑌 = 𝑦] × Pr[𝑋𝑠2 = 𝑥𝑠2|𝑋𝑠1 = 𝑥𝑠1 , 𝑌 = 𝑦] × . . .
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× Pr[𝑋𝑠𝑘 = 𝑥𝑠𝑘 |𝑋𝑠1 = 𝑥𝑠1 , . . . , 𝑋𝑠𝑘−1
= 𝑥𝑠𝑘−1

, 𝑌 = 𝑦]

Since 𝑙1-norm to the observed nodes is bounded by 𝜆, by Bresler’s property (see [29])

we have Pr[𝑋𝑠𝑟 = 𝑥𝑠𝑟 |𝑋𝑠1 = 𝑥𝑠1 , . . . , 𝑋𝑠𝑟 = 𝑥𝑠𝑟 , 𝑌 = 𝑦] ≥ 𝛿. This implies that

Pr[𝑋𝑆 = 𝑥𝑆, 𝑌 = 𝑦] ≥ 𝛽𝛿|𝑆| for all values of 𝑥𝑆 and 𝑦. Now by applying Theorem 72

with the correct parameters, we get the required result.

Distribution Learning Given the neighborhood of each observed node, we run Al-

gorithm DistributionFromStructure and subsequently use Lemma 63 to guar-

antee that we obtin the weights of the unnormalized MRFs for distributions 𝑋|𝑌 = 𝑦

for 𝑦 ∈ {±1} up to epsilon accuracy. More formally,

Lemma 66. Let the maximum two-hop degree of any visible node is at most 𝑑2 and

‖𝑏(1)‖∞ ≤ 𝐵. For 𝛿 > 0 and 𝑚 = Ω

(︂
𝑛2
(︁

2
(1−tanh(𝜆))

)︁𝑑2+1

log(𝑛/𝛿)/𝜖2
)︂

we have that

with probability at least 1 − 𝛿, Algorithm DistributionFromStructure given 𝑚

samples and ̂︀𝒩 (𝑖) = 𝒩 (𝑖) for every 𝑖 returns unnormalized MRFs of 𝑋|𝑌 = 𝑦 for 𝑦 ∈

{±1} with coefficients 𝑓 (𝑦)
𝑆 that are close to the coefficients of the true unnormalized

MRFs 𝑓 (𝑦)
𝑆 , that is, ∑︁

𝑆

|𝑓 (𝑦)
𝑆 − 𝑓

(𝑦)
𝑆 | ≤ 𝜖.

Constructing the Predictor Observe that the joint distribution of 𝑋 and 𝑌 can

be represented as,

Pr[𝑋 = 𝑥, 𝑌 = 𝑦] ∝ exp

(︃∑︁
𝑆

𝑓
(1)
𝑆 𝑥𝑆1[𝑦 = 1] +

∑︁
𝑆

𝑓
(−1)
𝑆 𝑥𝑆1[𝑦 = −1] + 𝑏*𝑦

)︃

for some 𝑏* and coefficients of the true unnormalized MRFs 𝑓 (𝑦)
𝑆 corresponding to

conditioning of 𝑌 = 𝑦. This gives us,

E[𝑌 |𝑋 = 𝑥] = tanh

(︃∑︁
𝑆

(𝑓
(1)
𝑆 − 𝑓

(−1)
𝑆 )

2
𝑥𝑆 + 𝑏

)︃
≈𝜀 tanh

(︃∑︁
𝑆

(𝑓
(1)
𝑆 − 𝑓

(−1)
𝑆 )

2
𝑥𝑆 + 𝑏

)︃
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Since we have estimates of 𝑓 (𝑦)
𝑆 , to learn the predictor for 𝑌 we only need to find 𝑏*

which we can find by minimizing ℓ snce it is convex. Let ℎ𝑏 =
∑︀

𝑆

(𝑓
(1)
𝑆 −𝑓

(−1)
𝑆 )

2
𝑥𝑆 + 𝑏

and ℎ̂𝑏 =
∑︀

𝑆

(𝑓
(1)
𝑆 −𝑓

(−1)
𝑆 )

2
𝑥𝑆 + 𝑏. We minimize �̂�[ℓ(ℎ𝑏(𝑋), 𝑌 )] over 𝑏 and suppose the

minimizer is �̂�. By Fact 3.3, ℓ(ℎ̂𝑏(𝑋), 𝑌 ) ≤ ℓ(ℎ𝑏(𝑋), 𝑌 ) + 4𝜖. By Fact 3.4, ℎ𝑏* is the

minimizer of the logistic loss. Then we have,

Ê[ℓ(ℎ𝑏(𝑋), 𝑌 )] ≤ Ê[ℓ(ℎ̂𝑏*(𝑋), 𝑌 )] + 4𝜖 ≤ Ê[ℓ(ℎ𝑏*(𝑋), 𝑌 )] + 8𝜖.

Last we need a generalization bound that holds for our hypothesis class. For this we

bound the Rademacher complexity (see [165] for more background) of the class of

functions ℓ ∘ ℋ where ℋ := {ℎ𝑏||𝑏| ≤ 𝐵}.

ℛ𝑚(ℓ ∘ ℋ) ≤ 2ℛ𝑚(ℋ)

= E𝜎

⎡⎣ ∑︁
𝑏||𝑏|≤𝐵

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖ℎ𝑏(𝑥
(𝑖))

⎤⎦
= E𝜎

⎡⎣ ∑︁
𝑏||𝑏|≤𝐵

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖
∑︁
𝑆

(𝑓
(1)
𝑆 − 𝑓

(−1)
𝑆 )𝑥𝑆 + 2𝑏

⎤⎦
= 2E𝜎

⎡⎣ ∑︁
𝑏||𝑏|≤𝐵

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖𝑏

⎤⎦
= 2𝐵E𝜎

[︃
1

𝑚

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑖=1

𝜎𝑖

⃒⃒⃒⃒
⃒
]︃

≤ 2𝐵√
𝑚
.

Here the first inequality follows from the contraction lemma (see [120]) and the last

from standard properties of Radmeacher variables. Now applying Theorem 26.5 from

[165] we get

|E[ℓ(ℎ𝑏(𝑋), 𝑌 )] − E[ℓ(ℎ̂𝑏(𝑋), 𝑌 )]| ≤ 2𝐵√
𝑚

+ 𝑐

√︃
log(1/𝛿)√

𝑚
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where 𝑐 is the maximum value of logistic loss by any hypothesis in the class. Observe

that by Fact 3.4, logistic loss at ℎ𝑏* is bounded by a constant. Hence by Lipschitzness,

we know that loss anywhere will be bounded by 𝑂(max(1, 𝐵)). Therefore choosing

𝑚 ≥ Ω(𝐵2 log(1/𝛿)/𝜖2) suffices to get within 𝜖. Combining this with before we get

that the loss is within 𝑂(𝜀) of the best loss.

Proof of Theorem 73 First, the algorithm runs LearnSupervisedRBMMbhd

for each node to learn the structure of the induced RBM exactly with the given

samples

𝑚1 = exp(𝜆)exp(𝑂(𝜆))(1/𝛼)𝑂(1)(1/𝛽)𝑂(1) log(𝑛/𝛿).

With the structure, we run DistributionFromStructure to learn

both the induced RBMs for each conditioning of the label using 𝑚2 ≥

Ω

(︂
𝑛2
(︁

2
(1−tanh(𝜆))

)︁𝑑2+1

log(𝑛/𝛿)/𝜖2
)︂

samples where 𝑑2 is the max 2-hop neighbor-

hood size. Note that the dependence on 𝜆 is greater in 𝑚1 than 𝑚2. Subsequently,

given the unnormalized mrfs, we run a simple optimization to find the bias term of

the predictor using 𝑚3 ≥ Ω(𝐵2 log(1/𝛿)/𝜖2) samples. Combining the learnt mrf and

the bias term, we get our hypothesis.

Remark 25. If the model is not ferromagnetic, it is also possible and we expect it

may be advantageous in some models to still use a similar indirect approach based on

Bayes rule for learning a predictor of 𝑌 , but using the result of Theorem 53 instead

of the greedy structure recovery method used in this section. The disadvantage of this

approach is of course that its runtime for achieving structure recovery is slower.

6.11 Additional Experimental Data

Figure 6-3 contains samples generated from the model trained on MNIST images. For

reference, we also include samples from the true MNIST and FashionMNIST training

sets in the same format as Figure 6-2 and Figure 6-1.
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Figure 6-2: Five i.i.d. samples for each MNIST class, drawn from the trained model
by Gibbs sampling.

Figure 6-3: Reference MNIST images chosen randomly from training set.
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Figure 6-4: Reference FashionMNIST samples from training set.
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