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Abstract
Climate change poses an existential threat to the United States military’s energy
systems. We researched current trends in energy, economics, and weather, translating
those trends into quantifiable threats to the military’s secondary power systems. We
also assembled a data set about secondary power systems on domestic U.S. military
bases. Because that data set was missing critical information, we formulated and
then evaluated an imputation method to complete the data set. This imputation
method successfully predicted expected cost for the missing installation data. We ran
simulations using our quantified trends and data set on existing software to predict
the effects of those trends on certain U.S. military bases. Ultimately, we identified
threats that could potentially cost 150 million dollars and cause more than a week of
additional electrical downtime for those select bases.
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Chapter 1

Introduction

The average citizen of the United States spends more time per year in blackouts

than in eight other developed nations [1]. Meanwhile, the United States military

is the largest in the world, with many of its essential operations occurring at home.

Since most permanent military bases (i.e. installations) rely on their local commercial

power grid, the outages affect them much like the rest of the country. This thesis aims

to quantify the costs, in terms of downtime and expenditure, arising from increasing

rates of power outages. We also investigate the effects of weather and economic trends

on those same metrics.

In general, man-made and natural disasters pose a major risk to United States

military installations. Even routine events like a power line falling or a heavy snow-

fall could disrupt crucial military operations. Specifically, any number of disturbances

often disrupt power systems that installations rely on for critical operations. Down-

time caused by blackouts is often unacceptable given the sensitivity of work done on

installations. But, trying to determine the correct backup plan is difficult. Choos-

ing the right backup power system depends on the anticipated outage scenarios, the

acceptable power availability, and the budget. There are many solutions that can

accommodate these constraints with varying degree of success.

As a result, the United States military finds itself needing to identify sufficiently

resilient and cost effective systems on each of their military installations. Historically,

this has been primarily managed by the local facilities administrators at each instal-
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lation. However, this leaves the Department of Defense (DoD) without a holistic view

into the overall readiness of its resilience systems. This is a growing blindspot as cli-

mate change is quickly changing the cost and reliability of the American commercial

power grid.

The Energy Systems group at MIT Lincoln Laboratory works with the DoD to

engineer better backup power systems in American military installations across the

globe. As part of this mission, the Energy Systems group has developed the En-

ergy Resilience Assessment (ERA) tool. The tool can predict the expected cost and

reliability of a range of backup electricity systems over the next decade for a given

installation, provided it has been given a simple power system configuration data for

the installations.

In this thesis, we sought to quantify how climate change trends might affect backup

power systems on DoD installations over the next decade, using the ERA tool as

the backbone of our experiments. However, we faced two major challenges at the

beginning of this project. The first was identifying climate change trends that have

quantifiable impacts on installations, then translating them into parameters within

the ERA tool. The other major hurdle was assembling a representative data set of

installation configuration data to run the modified ERA tool on.

We used recent research to identify weather, economic, and energy trends that

were being accelerated by climate change. Building on past data collection within

the Energy Systems group, we assembled a data set of input data that describes the

energy configuration on installations for the ERA tool. What data we could not

access, we generated using statistical imputation. We then ran experiments in the

ERA tool, testing installations under different climate change strains. In order to

develop an intuition for the underlying structure of a complete energy usage data

set, we clustered all domestic installations based on that usage data set. We used

that clustering to inform our views of how representative our data and results were

in general.

To summarize, first we developed validation tests and ran imputations to create a

larger, validated data set. Second, we identified climate change and economic trends
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that might affect the resilience of energy systems. Next, we ran simulations to evaluate

the effects of these trends on our new data set. Finally, we used the results from those

simulations to identify which trends appear to be the biggest threat to DoD backup

power systems over the next ten years. While this thesis is limited by the data we had

access to, we believe our findings are an important step in quantifying the climate

change threat to the U.S military.
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Chapter 2

Literature Review

2.1 Assessing DoD Energy Resilience

US military installations that provide vital services to the Department of Defense

depend on continuously delivered power, much like critical civilian facilities. Elec-

tricity is needed to power the industrial equipment, servers, fuel systems, hospitals,

and communication infrastructure that underpin domestic and foreign military op-

erations. Often, this reliance on electricity goes unnoticed until power is disrupted,

and the vulnerability of backup power systems is realized.

The goal of energy resilience analysis is to understand the factors that lead to

power disruptions, and to recommend methods of designing energy systems that can

quickly and robustly respond to such failures. For example, within a military instal-

lation, broader American infrastructure reliability may determine the frequency of

disruptions. But the ability to repair equipment, move operations to another facility,

and limit electricity use may determine how well an installation is able to respond to

such an event.

Resilience analysis, especially as it pertains to energy systems, takes a variety

of analysis approaches, ranging from highly quantitative, probabilistic modeling that

provides optimized system solutions to qualitative system assessments that emphasize

softer metrics. As an example of the former qualitative approach, Ouyang, Duenas-

Osorio and Min proposed a three stage resilience framework for evaluating urban
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infrastructure. [2] In the paper, they offer several formulas to quantify different

facets of infrastructure resilience and use those to evaluate and predict threats to a

Texas power grid as a case study.

Curt and Tacnet [3] exemplifies the other, qualitative approach to resilience analy-

sis. They define four limiting factors in risk management procedures: unknown events

and uncertainty, growing complexity of sociotechnical systems, poorly designed or

maintained defense barriers, and errors in procedure. The paper overall focuses on

framing resilience analysis as an exercise in predicting and preparing for the unex-

pected, rather than one in quantifying risks.

Within the context of DoD installation energy systems, probabilistic assessments

often suffer from over reliance on quantitative metrics that are hard to define, and

even harder to measure. More importantly, this type of analysis often fails to extend

beyond foreseeable events that have well defined probabilities. In other words, these

approaches are effective at modeling typical, everyday behavior, but do poorly at

modeling catastrophic rare cases that can have an outsized influence on operations

and public perception.

Military installations are unique from many civilian systems in that their times

of greatest risk are often their periods of greatest need. For instance, when a ma-

jor hurricane strikes the United States, the National Guard is often a part of the

U.S. government’s disaster response. Having reliable resilience systems means that

National Guard locations in the region where the hurricane occurred must be fully

functional. In general, U.S. military installations are meant to be assets in a crisis

and resilience systems keep them in operation during many such crises. As a result,

the DoD prioritizes catastrophic rare cases in the discussion of installation energy

resilience.

With this in mind, this work built upon previous work by the Energy Systems

group at Lincoln Laboratory in assessing the energy resilience of DoD installations.

This previous work included predicting the effects of long-term power outages and

different power system structures on individual installations. We expanded on that

research in two dimensions. We evaluated the energy resilience of a larger number of
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military installations and expanded the scenarios the simulator could evaluate.

2.1.1 ERA Tool

The Energy Resilience Analysis (ERA) tool, was developed by the Energy Systems

Group at MIT Lincoln Laboratory to help military leadership make informed re-

silience decisions. Typically used by energy systems management on installations,

the ERA tool helps make architecture decisions that line up well with the cost and

reliability needs of the installations.

The tool generates an expected cost and effectiveness for both the current and

potential energy solutions on a given installation. An energy solution could be as

complex as centralizing emergency generators into a microgrid or as simple as build-

ing a new solar farm. The expected cost includes capital expenditure (if applicable),

maintenance, and fuel costs over the next ten years. The effectiveness metric mea-

sures the expected number of blackout minutes over ten years given a certain energy

architecture. The ERA tool generates estimates by running failure simulations using

a Monte Carlo simulation. The standard number of Monte Carlo simulations in the

ERA tool is 1024 iterations. We used this number of simulations throughout this

thesis.

2.2 Clustering Techniques

Given unlabeled data, we can identify underlying structure in a data set by find-

ing data points that are quantitatively similar and grouping them together. This

approach, called clustering, requires both a metric and a method for measuring sim-

ilarity between data points. The metric, given two data points, will measure how

similar the two data points are to one another. The method dictates the process for

both grouping the data points according to the distance metric and choosing which

points to inspect and when to inspect them.
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2.2.1 K-Means Clustering

K-means clustering is a clustering algorithm. It uses squared Euclidean distance as its

distance metric. For an n-dimensional data set, where we are measuring the squared

Euclidean distance d2 between x and y,

d2(x, y) = (x1 � y1)
2 + (x2 � y2)

2 + · · ·+ (xn � yn)
2.

Centroids are the geometric center of planes, determined by the mean squared Eu-

clidean distance of all data points. The k-means algorithm uses centroids to find a

cluster for each data point.

During each iteration, it assigns each data point to its closest centroid. After,

the algorithm moves the centroid to a new position determined by the plane of data

points that were assigned to it in the last round. This is repeated multiple times,

until some termination condition is reached. Afterwards, the clusters are determined

by the final centroids. All the points that were the closest to one centroid becomes a

cluster [4].

Algorithm 1 K-Means Algorithm Pseudocode
1: function KMeans(List<datapoint> X, integer k)
2: Initialize length k List<datapoint> centroids randomly
3: Initialize length k List<List<datapoint> clusters as empty
4: while not converged do

5: for datapoint x in X do

6: centroidi = nearest datapoint in centroids to xi.
7: if x in clusters, remove it
8: add x to corresponding clusteri in clusters
9: for int j in range(0, k) do

10: datapoint centroidj = center of clusterj.
11: return clusters

Elbow Method

An important step when using a k-means clustering is the selection of k. The el-

bow method is a k visual selection technique, using the inertia and/or distortion of
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the k-means clustering. Inertia is the sum of squared distances of all data points.

Meanwhile, distortion is the average of the the squared distance from each point to

the centroid of the point’s cluster. After graphing the distortion and/or inertia from

k-means clustering over some range of k, we select a k based on the graph. We look

for an elbow point, where there is a marked change in the slope of the distortion /

inertia, suggesting an optimal k value [5].

2.2.2 Parameter Importance

Results from the k-means algorithm do not include which parameters most determine

membership in clusters. A common approach for identifying those parameters is

training a random forest classifier on the data [6]. The classifier will train on the same

data points and identify the significance for each parameter in determining cluster

membership. The parameter importance helps us as researchers develop intuition for

the underlying selection structure of the clusters [7].

2.3 Imputation

Oftentimes, data collection methods are not complete and we are left with data sets

missing important data points. Imputation allows us to complete the missing data

using the other data points as references for the data completion.

2.3.1 Multiple Imputation by Chained Equations

Multiple Imputation with Chained Equations is a commonly used imputation method

[8]. Also known as MICE, the model for imputing missing variables uses many chained

regressions to predict the missing values. It treats each component (can be either a

column or a row) with missing values as the dependent variable in a regression, using

some or all of the present values in the data set as the predictors. To begin, MICE

puts in a placeholder value (often the mean of the data set, column or row) into

each empty data value. MICE next sets a couple of placeholder variables back to
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missing. Then, MICE regresses on the other variables on the imputation model,

using a standard regression model. The missing variables are predicted using the

recently fitted regression model. MICE uses a round robin ordering to select the

missing variables. Next, it repeats the fitting and predicting from a regression model

steps to predict the missing variables. The entire process is repeated through several

"cycles", as each missing variable is predicted from regression models several times

[9].

2.4 Hypothesis Testing

When running an experiment, often there is a control group and a group that received

a treatment. It is difficult to tell if the differences between the control and treated

groups is a function of stochasticity within the underlying model. Alternatively, there

could be a difference in the ground truth distributions that produced the control and

treated results, representing an actual effect from the treatment. We use hypothesis

testing to assess the likelihood that the results from the control and treatment groups

are from the same distribution.

2.4.1 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a type of hypothesis test. It is non-parametric. In

addition, while other paired tests assume that the underlying distribution is normal

(namely, the paired Student’s t-test), the Wilcoxon signed-rank test does not make

any assumptions about the underlying distribution. Given pairs of data, often repre-

senting a treated and a control experiment on the same data point, the test evaluates

the likelihood that control and treatment group results were generated by the same

distribution [10]. Provided sample size N , with 2N total data points (accounting for

the pairs), and pairs i = 0, . . . N � 1, we have the measurements x0,i and x1,i for a
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given pair numbered i and Ri is the rank, we define the Wilcoxon test statistic W as

W =
NX

i=0

[sgn(x1,i � x0,i) ⇤Ri

. After calculating W , we compare it to a critical value found in a reference table. If

|W | > Wcritical, we reject the hypothesis that our treated results come from the same

distribution as the control results [10].
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Chapter 3

Technical Approach

This thesis addresses an open-ended problem constrained by extremely limited infor-

mation. In order to appropriately account for these limitations, the project required

a complex design. While we discuss the mechanics of our data collection and experi-

mentation in Chapter 4, this chapter establishes our overarching experimental design

and our data sources.

3.1 Design Summary

To predict the effects of climate change strains on DoD installations, we used the

ERA tool to evaluate how strain scenarios might affect specific backup power systems.

As described previously (see 2.1.1), the ERA tool was designed to help installation

managers make informed decisions about their backup power systems. However,

by toggling certain parameters in the installation data used to run the ERA tool,

we simulated the effects of specific climate change strain scenarios on those same

installations.

As described in the introduction (1), there are two main challenges in using the

ERA tool to predict the effects of climate change on military installations. First, the

strain scenarios had to be designed. We used recent research to identify ERA tool

parameters that are already affected by climate change (i.e. sunniness). Then, we

wrote Python code that for each ERA tool input about an installation, would create
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15 ERA tool inputs describing that installation under varying degrees of strain.

The other challenge was the limited ERA tool input data. The Energy Systems

group has complete ERA tool input data for only eight installations, while there

were more than 200 installations in our analysis. We assembled a larger data set by

selecting certain ERA inputs sent in by installation managers to the ERA tool. We

verified this new ERA input data by running it through a series of sanity checks we

developed. Ultimately, our final, ground truth data set had complete ERA tool input

data for 33 installations.

Even then, we only have ERA tool input data for a small fraction of the DoD

installations. To make matters worse, this data is not entirely representative of the

population of DoD installations. We demonstrate the lack of representation using a

statistical clustering of a separate energy usage dataset (see Chapter 3.2.1) that is

complete across all installations.

We combined the verified dataset with the complete energy use dataset and im-

puted the missing data using MICE (see Chapter 2.3.1). We selected the data nor-

malization method for the imputation using similar tests we used to select which

unverified ERA tool input to include in the ground truth data set. We tested the

imputation itself by comparing the MICE predictions for the cost and reliability of

the imputed ERA tool input with ERA tool’s evaluation of that imputed input.

Finally, we generated 15 strain scenarios from the ground truth data set and ran

them through the ERA tool. Our initial plan was to run all the data from both the

verified data set and our data imputation. However, due to time constraints and

concerns that our ground truth data set was not representative of all installations, we

only ran verified installations from a certain cluster.

For a visual summary of this process, see Figure 3-1.

3.2 Datasets

We used several different data sources to complete this research. Some are not publicly

available outside of the DoD.

28



Data sources

AEMRR dataset
incomplete installation energy

system data (e.g.
ERA tool input data)

anticipated climate
change strains
and impact

Research
components

clustering
analysis

creation of
a verified ERA input

dataset and imputation to
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strains in ERA tool

Experiments

standard ERA tool runs strain ERA tool runs

Results

changes in resilience metrics between
strains and standard ERA tool runs

Conclusions

generalizability of results

Figure 3-1: A visual representation of the expected workflow of the project

3.2.1 AEMRR Dataset

The Annual Energy Management and Resilience Report (AEMRR) is a report com-

piled by the Department of Defense annually. It serves as a summary for all things

energy for DoD assets. [11] While available in a limited summary form on the internet,

we had access to a more detailed version for this research.

We used the 2019 AEMRR report for this thesis.

29



Usage data

One section of the AEMRR data details the energy usage on each installation during

2019. It breaks down usage into different energy types (electricity from the grid, nat-

ural gas, fuel oil, coal, purchased steam, renewable electricity, renewable non-electric,

and other) and details the consumption and cost for each of those energy types.

It also segments usage data into infrastructure that needs to be meeting certain sus-

tainability goals ("goal included") and infrastructure that does not ("goal excluded").

However, since this analysis is focused on resilience, and not sustainability, the "goal

included" and "goal excluded" columns are combined.

3.2.2 EIA Price Index

The United States Energy Information Administration (often referred to as the EIA) is

an analytical agency within the U.S. Department of Energy. They focus on recording

and forecasting energy usage and costs. [12] Among their many publications, they

release a yearly report on their forecasts for future energy costs. We used Table 3

(Energy Prices by Sector and Source) to create some of the strain scenarios for the

tool. We used the industrial prices (rather than residential and commercial), because

military energy pricing most closely follows the industrial costs. We specifically used

price forecasts for distillate fuel oil (diesel), natural gas, and electricity. The report

has a baseline estimate for the cost of each energy source, as well as predictions

under different economic conditions. [13] The different economic scenarios we used

were high economic growth, low economic growth, high oil price, low oil price, and

different potential carbon credit programs.

3.2.3 ERA Tool Input Data

The ERA tool needs information about the baseline energy system on an installation

in order to run. It allows the tool to generate an accurate Monte Carlo simulation

of the installation’s energy system. There are about 70 different parameters, most

of them are single numerical values or booleans. Those include weather informa-
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tion (number of clear days, sunniness, average wind speed, etc.), cost data (capital

expenditure cost for new energy systems, maintenance cost for those same systems,

installation costs, fuel prices, etc.), and system configuration data (existence of a

natural gas system, solar arrays, local electricity grid on the installation) There are

also a handful of list based parameters (length of each historical electricity outage,

failure type of each outage, capacities of each primary generator, capacities of each

standby generator).

Web Application Data

The ERA tool is hosted on a private web application by the DoD. Many installation

managers use this application to evaluate the resilience of their current installation

configuration. Anytime that the tool is run, the tool input data is stored at MIT

Lincoln Laboratory, including which installation the manager is from. While there

are a handful of common sense data checks on the web application (i.e. no values are

negative), there is no guarantee that the data entered by the installation manager is

accurate.

3.3 Trends

There are documented energy and weather trends that have implications for the

resilience of secondary power systems. We detail how we use these documented trends

in our strain analysis in 4.5.

3.3.1 Wind Speed

In order to produce energy, wind turbines rely on land surface winds with high enough

speeds to move the turbine blades. Wind power (p) is a function of the cube of

wind speed (u), air density (⇢ ), swept area of turbines (s), and efficiency factor (f)

according to the formula:

p =
⇢sf

2
u3

31



However, wind speed is not a consistent variable when it comes to predicting

wind power. As shown in Zeng, Zieglar, et. al. [14], there have been conflicting and

shifting trends in wind speed in the last 4 decades. From the 1980s to 2010 there

was a reported 8% global decline in land surface wind speed, referred to as global

terrestrial stilling although there is still no consensus on the source of this change.

On the other hand, recent studies indicate that over the past decade there has been

an increase in terrestrial wind speed. While no evidence of an years-long global trend

increase in wind speed has yet been compiled, there is a consistent upward trend in

wind speed at many local sites over the past few years [14]. Given the inconsistency

in wind speed trends, we determine that it is difficult to predict future wind speeds.

3.3.2 Sun Intensity

Photovoltaic solar energy uses solar radiation to produce electricity [15]. However,

solar radiation is not a consistent resource. The mean solar radiation the Earth

experiences changes year over year. Additionally, there is significant intermittency in

energy generation on a shorter time scale, causing potential interruptions in service.

Yin, Molini, et.al, [16] compiled the results from 11 climate change models to predict

the relative change in the mean clearness index from the period 2006-2015 to the

period 2041-2050. The mean clearness index measures the fraction of the irradiance

from the sun the ground experiences (accounting for the scattering, absorption, and

reflection of the solar radiation). The index is frequently used in assessing the energy

draw possible from a photovoltaic solar arrays.

3.3.3 Power Outages

According to Climate Central [17], there has been approximately a tenfold increase

in the frequency of major power outages in the United States from the 1980s to the

2010s, with the designation of major power outages is done by the non-profit NERC.

Climate Central also found that the annual number of climate related outages doubled

from 2003 to 2014 [17]. According to a study done by Inside Energy on outage data

32



from 2000 to 2014, the five-year annual average of outages doubled every five years

[1]. Other sources offer slightly different estimates of the rate of increase of power

outages, but they both agree that there has been a marked increase over the past few

decades [18][19].

It is important to note that we did not collect conclusive evidence that the increas-

ing rate of outages is a function of climate change. While such research may exist, we

did not look for it. Given that caveat, this increasing rate of power outages may be

a function of aging infrastructure alone or combined function of aging infrastructure

or climate change. However, for the purposes of this research, we were focusing on

identifying trends and speculating their effects if they continued or accelerated. So,

we are assuming that the trend of increasing outages will continue.

3.4 Addressing Incomplete Tool Input Data

3.4.1 Summary

As mentioned previously, we had limited ERA input data to run the tool on. In order

to supplement that data set, we used data that the Lincoln Laboratory team did not

put together. We had two sources of potential supplementary ERA input data: the

web application data and a matrix imputation. To ensure that all data we used in

our final analyses is reliable, we ran each ERA tool input through validation tests.

Finally, to evaluate how representative our final ERA input data set is, we clustered

installations based on their AEMRR usage data. Using those clusters, we identified

the limitations of our verified data set.

3.4.2 Clustering

We identified clusters within the AEMRR usage data (3.2.1) using standard n-dimensional

clustering methodology, as described previously. In order to understand how normal-

ization of the data set would affect the clustering, we tried different normalization

techniques prior to running the clustering algorithm. We selected the best clustering
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by working with the Energy Systems group to qualitatively evaluate which cluster-

ing was the best representation of different categories of installations. These clusters

informed later insights into how representative our limited data set was.

3.4.3 ERA Input Validation Tests

In order to validate that any ERA input data was reasonable, we worked with the

Lincoln Laboratory team to develop tests. Those tests are effectively sanity checks,

making sure that a couple data points from the ERA tool input is within a reasonable

range of that reliable supplementary data. For instance, one test checked (after

appropriate unit conversion) that the ERA input data value for electrical load was

reasonably close to the AEMRR total electrical use parameter for a given installation.

The tests themselves are described in more detail in the methodology chapter.

3.4.4 Verified Data set of ERA Tool Inputs

As mentioned previously, the Energy Systems group only had complete ERA tool

input data for eight installations. This is not enough data to either run the matrix

imputation on, let alone make generalizations about the resilience of DoD bases from

strain testing. Therefore, we ran the web application data (see 3.2.3) through the

validation tests. Those ERA tool inputs that pass the tests, we combined with the

data from the eight installations put together by the Energy Systems group. This

final, combined data set is called the ground truth data set of ERA tool inputs

throughout this thesis.

3.4.5 Matrix Imputation

We combined AEMRR usage data (3.2.1) with the verified ERA tool input data

(3.4.4) into one matrix indexed by installation, with missing ERA input data param-

eters as null entries. We added new columns to the matrix, containing the cost and

effectiveness results from running the ERA tool on the installations from the verified

data set.
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Next, after normalizing the matrix, we ran the MICE algorithm (2.3.1) to fill in

the null entries in the matrix. We repeated this process several times, each time

with a different normalization technique. We tested the normalization techniques by

running the validation tests on each installation with imputed ERA input data from

the matrices. After selecting the matrix that performed the best on the tests, we ran

each imputed installation through the tool.

We compared the imputed values for the cost and effectiveness with the ones

the ERA tool produced. The magnitude of error enabled us to evaluate how well

the imputation picked up on the internal structure of the data set. If the error was

large, then the imputed ERA tool values were not correct, as the ERA tool results

from those imputed inputs do not line up with the imputed predictions from that

imputed data. However, if the error is small, then the imputation replicated most of

the underlying relationship between the AEMRR data, the tool inputs and the tool

results.

3.5 Developing Strain Scenarios

3.5.1 Summary

As a first step in understanding the effects of future strains on DoD energy systems,

we considered a few different potential scenarios that we would expect to change the

results of the ERA tool. We chose this approach because we didn’t have to make

any assumptions about the probabilities of strain scenarios occurring. Instead, we

developed them from current research

Another major factor in the methodology for the ERA tool experiments was time.

The ERA tool is not entirely automated nor fault tolerant. Each individual scenario

run for one installation takes approximately five minutes and we could reliably batch

about twenty different scenario runs for one installation each run. With the number

of experiments we initially wanted to run, the tool would’ve been running for more

than 400 hours. Given that batches needed to be run and their results manually
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inspected approximately every other hour, this plan had to be abbreviated.

3.5.2 Strain Scenario Approach

Ultimately, we decided on developing "strain scenarios." These events were designed

based on already predicted or documented trends, such as the increasing number of

blackouts per year in the United States. We used the variable inputs that the ERA

tool takes as our starting points for identifying energy and economic parameters that

could change over the next decade, changing the ERA tool’s predictions. We chose

parameters for our strain scenarios from there based on the availability of reputable

research that explicitly predicted changes in the parameter’s value over at least the

next decade. We settled on the following parameters to research and then changing

their values: sunniness, wind speed, diesel cost, grid electricity cost, and natural gas

cost. By sweeping through these values, we can understand the sensitivity of cost

and performance of power systems to these potential future strains. We do not make

any predictions about the future, instead, just using recent research to estimate the

range of potential values for these relevant parameters.

Using the predictions from the EIA (see Chapter 3.2.2) and the papers referenced

in Chapter 3.3, we identified three values for each parameter: a low, moderate, and

high rate of change. Using the rate of outages as an example, the low rate of change

for outage predictions was no change in the ERA tool, while the high range was

two times the rate of outages over the next decade. We could then run ERA tool

experiments where we toggled a parameter and evaluate the expected change in cost

and downtime for a given installation.There were four distinct categories of strains to

resilience systems.

Energy Prices

The first parameter we considered was energy prices (including grid electricity cost,

diesel cost, and natural gas cost). While there are multiple ERA tool parameters tied

to energy prices, the predictions come from the same set of EIA predictions. Those
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EIA predictions come from the same models for potential economic growth and policy

changes, meaning that for every prediction about the grid electricity cost, there’s

a corresponding predicted natural gas cost. This allowed us to run the tool with

low/medium/high energy price predictions rather than running different permutation

of electricity and natural gas costs.

Weather

We had no model for the relationship between the two weather parameters (wind

speed and sunniness). So we treated the two as distinct scenarios. We toggled the

sunniness separately from the wind speed in our first experiments. However, once we

had compiled our final ground truth data set, we discovered that none of our data

points had any wind turbines. As a result, we abandoned the wind speed analysis, as

it would make no tangible difference in either of the metrics we were looking at. A

handful did have solar panels, so we continued to investigate the effect of changing

solar radiation.

Power Outages

The final category was the rate of power outages. We decided to run all our ex-

periments toggling one of the other categories (ultimately, either energy prices or

sunniness), along with toggling the rate of outages on the military installations. We

made this decision because the rate of outages most tangibly changed cost and relia-

bility metrics in our initial experiments. Additionally, during our research, we found

the most convincing evidence for the consistently increasing rate of outages over the

last two decades compared to the other strains we investigated.
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Chapter 4

Methodology

4.1 AEMRR Data Set Refinement

The AEMRR 3.2.1 data set included information that was not relevant to our research,

so we removed or combined the irrelevant data. In order to identify whether an aspect

of the data set was useful, we focused on the end goal: identifying the reliability and

cost of the military installation as a whole.

4.1.1 Duplicate Data

There were multiple columns in the AEMRR data set with duplicate columns. The

columns contained the same information, just in different units. After verifying that

the duplicated data was consistent after conversion, we dropped any energy column

that used a unit other than megawatt hours.

4.1.2 "Goal Included" and "Goal Excluded" Data

There were several columns that mentioned either "goal included" or "goal excluded"

columns. As mentioned in subsection 3.2.1, these columns described the energy use in

certain assets on a military installation. If all the "goal included" and "goal excluded"

assets were listed together, they would be the complete list of assets on a military

installation. Because "goal included" and "goal excluded" designations are relevant
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for sustainability concerns, not energy usage on an installation, so we decided this was

not a relevant component of the AEMRR data set. For "goal included" and "goal

excluded" data, if there was not already a column that combined the information

into a total, we created that column and dropped any remaining "goal included" and

"goal excluded" columns.

4.1.3 Combining AEMRR Installations

The energy statistics for a single installation were often split across different rows in

the AEMRR data set. An installation might be represented across several rows, with

the row’s data coming from different components of the installation such as:

• craft services (i.e. the kitchens and mess halls)

• administrative buildings

• training facilities

The different services or groups that use the energy on a given installation often use

the same electrical grid and backup power systems. Since we’re interested specifi-

cally in the performance of that shared infrastructure, we did not need the level of

granularity in the AEMRR data set.

So, we combined the rows that we believed were from the same installations. When

cleaning the data, provided that an installation had the same name and was in the

same state as another installation, we combined the two installations by adding all

their numerical data together column by column. This allowed us to quickly combine

all the organizations we believed were sharing the same energy system. A quick check

by a Lincoln Laboratory colleague confirmed that the number of installations after

collapsing these data points was about the expected number of domestic military

installations.

We also removed all installations that were not in the 50 states and District of

Columbia in the United States of America. Analyzing installations in territories

and in the rest of the world would add more complexity to the data set. Given
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the abbreviated nature of this project and therefore thesis, we removed the extra

dimension of predicting strains internationally and the computational load of having

even more installations to analyze.

4.2 Clustering Methodology

4.2.1 K-Means

We used k-means clustering to find the underlying structure of the refined AEMRR

data. Specifically, we used the k-means clustering method from the Python package

scikit-learn. We ran the algorithm with the standard settings from that package and

utilized the tool’s inertia measurements. Additionally, we calculated the distortion

using the Euclidian distance function cdist from the Python package scipy. After

running the k-means algorithm for values of k between 1 and 15, inclusively, we

created elbow plots from the inertia and distortion measurements. We decided on the

k values using those elbow plots.

4.2.2 Normalization

For the clustering, we further refined the data. Because k-means clustering uses Eu-

clidean distances, the clustering can be overly influenced by parameters with large val-

ues. Since there were many units across the columns (United States dollar, megawatt

hours), running the clustering algorithm on the data set as-is risked overweighting

certain parameters. In order to avoid incorrect clusters, we developed and tested

several normalization techniques.

For the baseline normalization process, we used a standard normalization tech-

nique where for each column, we found the mean and standard deviation. Then for

each value in the column, we subtracted the mean from it and divided by the standard

deviation. This method centers each column’s values around zero and removes the

units from the data, so issues of scale are reduced.

As we began running the clustering algorithm, we found that the normalization
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itself was producing good results. However, the clustering was clearly being domi-

nated by the total amount of energy consumed (described in detail in section 5.1).

We knew that both the amount of energy consumed is important in determining the

cost and effectiveness of backup power systems, but did not represent the whole story.

The different types of energy used and the proportion of that energy use matters as

well.

We tried two other clustering experiments using the same normalized data set

that the original clustering experiment used. For each already normalized row, we

divided each value by the "Total Consumption" parameter value for that data point.

We intended for this to scale each row by the total energy that was consumed on the

installation, allowing the clustering algorithm to cluster based on the different energy

types used and the energy costs overall. We also attempted something similar again,

normalizing based on the used square footage on the military installation to cluster

based on the energy consumption relative to the assets on the installation.

We trained a random forest classifier using the original refined AEMRR data

set as the input data and the clusters from each normalization as the output. As

described in 2.2.2, the parameters that the random forest identified as the most

important in determining which installation belonged to allowed us to identify the

defining characteristics of each cluster.

4.3 Assembling a Ground Truth Data Set

As mentioned in previous chapters, the Energy Systems group at MIT Lincoln Lab-

oratory only had access to eight complete ERA tool inputs when this thesis was

written. With 280 installations in our analysis, this was far too few. Therefore, we

set out to create a ground truth data set that compiled all the installation energy

usage and outage data we had access to.

We created a ground truth data set in several steps.

1. We combined the eight complete ERA tool inputs (each one about a different

installation) with our previously assembled and cleaned AEMRR usage data set
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to form the first version of the ground truth data set. This created new columns

for all the ERA tool input parameters compared to the original cleaned AEMRR

data set.

2. We filled in single value supplementary data (i.e. the number of substations on

an installation).

3. We ran validation tests on the ERA tool input data from the web application.

Any input data point that passed all the tests were added to the ground truth

data set. This would not create any new rows or columns, instead just filled in

empty values.

4. For every installation in the ground truth data set with complete ERA tool

input data, we ran the installation through the ERA tool. We store some of the

results from the ERA run as new columns in the ground truth data set.

4.3.1 Matching Installation Names

One challenge we faced as we combined our data sources was matching the names

for installations to different names that referred to the same installation. Between

differing abbreviation standards and bases with different names than the larger joint

bases that contained them, the name matches were not always obvious.

We matched the names to one another in a multi-step process:

1. We used the string matching Python package FuzzyWuzzy to match each in-

stallation name in a supplementary data set to an AEMRR installation name.

2. We manually inspected the name match with a member of the Energy Systems

Group.

3. If a name match was incorrect, we replaced it with the correct AEMRR instal-

lation name if one was available

4. If we couldn’t find a correct AEMRR name, we assumed the installation was

not in our analysis, and we ignored the data point.
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4.3.2 Supplementary Parameter Data

The Energy Systems group had three lists that we used to supplement the ground

truth data set.

The first was a master list of substations across many installations. This list

contained a close to exact count of the number of substations for a fraction of the

installations in our analysis. As number of substations was an ERA tool input pa-

rameter, we totalled the number of substations on each installation present in the list

and imported it into the ground truth data set.

The second was a master list of backup generators. Like the list of substations,

it was close to exact for the installations that it had data for. Again, the number of

emergency generators was a parameter in the ERA tool input, and therefore a column

in our ground truth data set. We compiled the list of emergency generators for each

installation listed and imported it into the ground truth data.

The final was a list of installations with completed microgrids. This was straight-

forward, coming from an MIT Lincoln Laboratory report that listed all installations

with microgrids on them. For the installations that were included in our analysis, we

updated the ground truth data to reflect that they had microgrids. Similarly, for any

installation not listed in that report, we noted that those installations did not have

microgrids in the ground truth data.

4.3.3 ERA Tool Input Verification Tests

For each unverified ERA tool input (either generated using MICE or created by a

non-Lincoln Laboratory ERA tool user), we needed to evaluate if the configuration

was reasonable.

Using the data that we had compiled from the AEMRR and a handful of Lincoln

Laboratory data sets, we checked that the unverified configuration parameter values

were within a certain reasonable range. Given actual value a and the expected value

x, we used this equation to measure the error E:
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E =
|a� x|

a
.

For a handful of cost variables, we used a simpler test that verified the given energy

cost is within the U.S. national range of commercial energy prices, as indicated from

the range in the AEMRR data set.

We used a different set of tests for the data from the web application than the

tests we used for the matrix imputation. All of the supplementary data we used to

check the ERA web application data, we added to the ground truth data that was the

source for the imputation. Therefore we couldn’t use those tests that relied on the

supplementary information (since the imputation didn’t impute data already existing

in the ground truth data set).

4.3.4 Selecting ERA Tool Inputs from the Web Application

There was data from the ERA tool web application (see section 3.2.3) that we used

to fill in more of the ground truth data set. The ERA tool web application is used by

stakeholders to investigate the resilience of their installation and potential architecture

improvements.

However, we had no guarantee that ERA tool input data entered into the web

application was representative for the given installation. Using the tests described

previously, we ran the most recent web application input for each installation through

our tests. Each ERA tool input that passed all tests (i.e. had a test value between

the lower and upper bounds) was considered verified.

The verified inputs were then added into the ground truth data set. There were

no new columns or rows added, instead they went into the already existing ERA tool

parameter columns. If there was data from the supplementary Lincoln Laboratory

data sets already there, it was overwritten by the ERA web application tool data.
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Expected value Test
type

Lower
bound

Upper
bound

Actual value

ERA tool input
substation count

LL substation count (if
known)

error
equa-
tion

-10.00 10.0

Sum of ERA tool input
generator capacity

ERA tool input average
electrical load

error
equa-
tion

-3.00 3.0

ERA tool input average
electrical load

AEMRR consumption
÷ 8760 hours

error
equa-
tion

-1.00 1.0

ERA tool input critical
thermal load

ERA tool input cogen
+ steam capacities

error
equa-
tion

-10.00 10.0

ERA tool electricity cost within
range

0.01 0.5

ERA tool natural gas
cost

within
range

0.10 30.0

ERA tool average PPA
cost

within
range

0.01 0.5

Table 4.1: ERA input data verification tests (for web application data)

4.3.5 Running the ERA Tool on Complete Input Data

The final component of our ground truth data set were the results of an ERA tool

run. We selected two of the summary outputs from the ERA tool and added them

as two more columns in the ground truth data set. The two columns were the total

expected cost of the installation’s backup power system (including fuel and capital

expenditures) and the expected downtime, both over the next decade.

We ran the verified entries (i.e. the eight Lincoln Laboratory ERA input instal-

lations and the ones selected from the web application) in the ERA tool. For these
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Expected value Test
type

Lower
bound

Upper
bound

Actual value

ERA tool input
average electrical
load

AEMRR consumption ÷
8760 hours

error
equa-
tion

-0.1 0.1

ERA tool input grid
electricity cost

AEMRR electricity cost ÷
(100 ⇥ elec. consumption)

error
equa-
tion

-0.1 0.1

ERA tool input
natural gas cost

AEMRR natural gas cost ÷
(10 ⇥ n.g. consumption)

error
equa-
tion

-0.1 0.1

ERA tool input
average PPA cost

ERA tool input grid
electricity cost

error
equa-
tion

-2.0 2.0

Table 4.2: ERA input data verification tests (for imputed data)

specific ERA tool runs, we did not use the strain scenarios we designed. We selected

the seven day black sky outage because it is a common outage duration used when

designing installation energy systems. We imported the results from the ERA tool

run into the ground truth data set.

4.4 Matrix Imputation

Even with the additional data from the web application, we didn’t have ERA tool

inputs for a majority of the installations. Using MICE (see 2.3.1), we ran a matrix

imputation on the ground truth data to generate ERA tool inputs for the installations

with missing data.
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4.4.1 Data Preparation

MICE only runs on numerical data and will impute any missing numerical values.

The ground truth data set included Boolean, list, string, and numerical data. To

create a data set that MICE could run on, we removed all non-numerical data.

All the string parameters the tool needed, we either already had or we could

generate easily.

The Booleans were mostly based on numerical values. We inferred those Booleans

in post processing. Another Boolean indicated if the installation had a microgrid or

not. We already had a list of which installations had microgrids, so we used that

list prior to running the imputation. The other Booleans were settings that were

consistent across installations (i.e. including the black sky outage).

There were four list-based parameters. Two were outage related, and the other

two were lists of generators (prime and emergency specifically). While the ERA tool

could estimate the number of outages, it could not predict the generator lists for a

given installation. We created two new numerical columns where we summed the

prime and emergency generator capacities, respectively.

We also changed certain empty values to zero. For instance, any empty values in

rows of verified installations were set to zero. Since the tool inputs were complete,

we knew that those empty values meant zero. Because we did not want MICE trying

to predict those values, it was imperative to change the values from empty to zero.

Normalization Techniques

Like the clustering, we used different normalization techniques to try to improve the

MICE results. When applicable, we normalized over columns (i.e. over the parameters

in our matrix, not the installations).

Standard normalization: No normalization at all.

Z-score normalization: Given mean µ and standard deviation � of a column
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and a value v from that same column, the normalized value vn is

vn =
v � µ

�

.

Standard deviation normalization: Given standard deviation � of a column

and a value v from that same column, the normalized value vn is

vn =
v

�

.

Logarithmic normalization: Given value v, the normalized value vn is,

vn = log2(n)

.

4.4.2 Imputation

We used the Iterative Imputer method from the Python package scikit-learn. We

ran the imputer with some custom parameters. We set maximum iterations to 2000

iterations of MICE. We also set the minimum predicted value of 0, since no value

in the data set should be negative. Finally, we had an error tolerance of 1e�3.

This value was selected by hand and the one we selected was the lowest value that

improved the results. Using the normalized and prepared data, we ran the imputer.

The imputer outputted the results of running MICE procedure on the data set. We

also used the Simple Imputer method from the Python package scikit-learn. We ran

our entire preprocessing, imputation, and validation process on the results from the

simple imputer. This allowed us to evaluate the sensitivity of our validation tests.
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4.4.3 Data Post-Processing

We took several steps to process the data after the imputation and return it to its

intended state.

1. We reversed the normalization by running the inverse of the normalization func-

tion on the imputation output.

2. We converted certain columns from floats to integers, based on which columns

contained integer parameters (e.g. the number of substations).

3. We restored the Boolean columns. For the Booleans that depended on another

column (usually the capacity of a certain technology) we inferred it from the

imputed value. For the Booleans that were constant across installations (e.g.

including the black sky simulation), we set those to our predetermined values.

4. For installations without supplementary generator data, we took the sum of

generator capacities (either prime or emergency) and divided it by 300. Round-

ing the value we received, we listed that number of 300 kW generators for the

installation. The 300 kW number was chosen as a representative, standard

generator size

4.4.4 Data Validation

We validated the different normalization methods using two techniques. The first

verified that the normalization was reversed correctly after the imputation was run

(e.g. there was no substantial change in the non-missing values). Selecting only the

data from the installations with complete ERA tool inputs, we checked the difference

from the data before the normalization and after it. Then we took the mean and

standard deviation of those errors, to verify that there wasn’t too much data loss

from the MICE procedure and/or the normalization technique.

The next validation step was running the tests (the tests themselves are enu-

merated in section 4.3.3). For each normalization technique, we ran each imputed

ERA tool input through the tests. We stored which imputed inputs passed the tests

50



and scored the normalization techniques based on the proportion of installations that

passed.

4.4.5 ERA Tool Experiment

After selecting the normalization techniques that performed the best, we used the

imputed data set they had produced as our main imputed data set. Then, we ran

all the imputed ERA tool inputs through the tool. We evaluated the imputation

performance based on the difference between the tool’s output for the two output

columns (total expected hours of downtime and total expected cost) and the imputed

values for those same columns. The rationale for this method of testing is described

in depth in the previous chapter (see 3.4.5).

4.5 Strain Analysis Methodology

4.5.1 Installation Selection

As described in the previous chapter, we were limited by the sheer amount of time

it took to run the ERA tool (see 3.5.1). Also, two thirds of the strain experiments

for a given installation relied on having outage history. More importantly, we trusted

the ground truth data set more than the imputed data set. With this all in mind, we

selected 26 installations to run through the strain experiments. We only chose the

installations that were complete in our original ERA ground truth data set, that had

outages listed, and were in our dominant cluster.

4.5.2 Experiment Configuration

As described previously, the strains experiments toggle either a price change or a sun-

niness change for a given ERA input. Then, those toggling experiments are all rerun

with different (increasing) rates of outages (see 3.5.1 for the rationale). Ultimately,

including a "standard run" control where the price and sunniness is not toggled, there

are 15 experiments.
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Parameters

For each strain variable (sunniness, price change, rates of outages) we had three rates

of change: low, medium, and high. For all the strains, we generated the medium

value by finding the mean between the high and low rate of change.

For the sunniness, the rates of change came from the paper discussed previously

(see 3.3.2). There were two different graphs of sunniness. One was a prediction of the

sunniness in the 2040s and one was a report of the sunniness in the 2010s. We found

the low rate of change by subtracting the lowest value in the range of the 2010s from

the predicted sunniness in the 2040s, then dividing by the difference in years from

the middle of each periods. We found the high rate using the same procedure, just

choosing the highest values rather than the lowest.

The price change values came from the EIA data (for more detail, see 3.2.2).

We were interested in several different EIA forecasts: high economic growth, low

economic growth, high oil price, low oil price, and different potential carbon credit

programs. We were looking at three different industrial energy prices: distillate fuel

oil (diesel), natural gas, and electricity. When looking at the graphs provided by the

EIA to visualize their different predictions, we noticed that most of the time, a rise or

a fall in one energy type price, causes a similar change in the other price predictions.

Therefore, we "bundled" the energy prices, assuming for the purposes of the strain

experiments, that the lowest energy prices would co-occur, as would the highest. We

selected the high rates of change for each of the energy types by finding the highest

predicted price in 2031 (the end of the strain simulation’s time frame) and dividing it

by ten. We did the same to find the low rate of change, except we found the lowest,

rather than highest, predicted price in 2031.

The exact rate that power outages are increasing across the United States is

unknown and it is not monotonically increasing. However, the consensus from the

literature review (described in detail in 3.3.3) is that they are increasing decade over

decade. We decided to assume that there were double and triple the number of

outages occurring each decade, for the moderate and high outage rates respectively.
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As noted previously, this might chance given serious investment in the U.S. energy grid

infrastructure, but we are interested in predicting effects of current trends continuing.

In order to convert the sunniness and price change rates of change into usable

strain experiments, for a given ERA tool input value v corresponding to a strain with

an expected rate of change r, the strain value vs is

vs = v ⇥ r5

. The rate r is raised to the fifth to approximate the amortized value over the decade

that the experiment is run for.

low rate of change (per
year)

high rate of change (per
year)

Strain Scenario

Diesel Cost -3.02 3.88

Electricity Cost -0.37 1.09

Natural Gas Cost 1.15 7.16

Mean Clearness
(Sunniness)

-0.23 -0.15

Table 4.3: Rates of change for generating strain scenarios

Outage Generation

In order to generate the increasing rate of outages strains, we also used an amortized

rate measurement. The moderate increase in outages approximated the rate of out-

ages doubling by the end of the decade. The high increase in outages was the same,

except it approximated the rate of outages tripling by the end of the decade. Because

we only have data for the rate of commercial utility outages, this rate increase only

includes outages described as type 1 outages by the ERA tool.

We first created a list of only the type 1 outages from the original list of outages.
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For each set of strains with a moderate increase in outages, we created a new list

.6 times the length of the type 1 list. This list was created using sampling with

replacement from that same list of type 1 outages. Finally, the new sampled list was

appended to the original list (including all outages of type 1, 2, and 3). The same

procedure follows for strains with a high increase in outages, except the list created

by sampling is 1.4 times the length.

4.5.3 Hypothesis Testing

After running the ERA tool on all the different strain scenarios, we had two important

statistics for the effects of each strain scenario on a certain installation:

• the expected number of hours of downtime for the next decade

• the expected expenditure on maintaining and running the backup power system

over the next decade

We used hypothesis testing, specifically the Wilcoxon signed-rank test, to evaluate

if the strains were having a significant effect on the backup power system cost or

downtime across the installations.
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Chapter 5

Results

5.1 Clustering

We selected the k value for the cluster based on the elbow plot (see Figure 5-1). We

noted that the elbow plots produced by the cluster using a standard normalization

did not have the pronounced elbow that would indicate a particularly descriptive k

value. All three clusterings had one cluster of more than 200 installations and all

other clusters smaller than 50 installations (see Figure 5-2). As shown in Figure 5-3,

the feature importance for the standard normalization clustering was dominated by

the total consumption and cost values. However, for the clusterings produced by

the other two normalization methods, there is a much more equitable split of feature

importance across the top ten features.

Ultimately, we decided to use the clustering produced by the normalization by

total consumption as our primary clustering. Therefore, when we could only use one

cluster designation (i.e. selecting which cluster to use to run strain experiments), we

used the normalized by total consumption clustering as our default clustering. Three

factors contributed to our selection of this clustering. First, its elbow plots had

well defined inflection points. Secondly, it had the most well distributed parameter

importance graphs. Finally, there were concerns from the Energy Systems group

that the square footage measurements in the AEMRR might be inflated for certain

installations, while the total consumption metric is much more reliable.
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Figure 5-1: K-means elbow plots for different normalization techniques

5.2 Supplementary ERA Input Data

Once we added the 26 new ERA tool inputs from the web application to our ground

truth data, we had a verified data set of ERA tool inputs with 33 data points. There

were 33, not 34, because there was an installation in the web application data that

we already had in the Lincoln Laboratory data. Our verified data is close to repre-

sentative of the clusters (see Table 5.2). However, as shown in Figure 5-4, cluster one

is just substantially bigger than clusters zero and two, and the verified data is very

small compared to the ERA tool input data that is incomplete.

5.3 Imputation

After running the matrix imputations, we validated the results using the tests we

designed. We also ran a simple mean imputation, which began the same way as the

MICE (placing the mean in all empty entries), but terminated immediately after that.

The simple mean imputation performed the best, with every installation passing the
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Figure 5-2: Number of installations in each cluster for a given normalization technique

tests, with no normalization and standard deviation normalization trailing behind

with the second and third best scores, respectively. See Table 5.2 for the specific

scores.

We knew that the result of the simple mean imputation is not a good imputation.

Very small installations do not have the same number of substations, same electricity

cost, etc. as large installations. As a result, we were wary of the validation test

results. We ran both the standard deviation normalization and the no normalization

imputation results through the ERA tool.
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Figure 5-3: Feature importance for each clustering for a given normalization tech-
nique, only including the top ten parameters by percentage

Despite no normalization imputation performing better on the validation tests,

the standard deviation imputation performed significantly better on predicting the

ERA tool results. While both imputations performed poorly in predicting downtime,

58



Cluster
ID

Number of
Installations

Percent of Installations in Cluster, by
Status

Status

Unveri-
fied

0.0 16 6

Unveri-
fied

1.0 227 92

Unveri-
fied

2.0 4 2

Verified 0.0 2 6

Verified 1.0 31 94

Both NaN 18 6

Both NaN 258 92

Both NaN 4 1

Table 5.1: Breakdown of total cluster membership by installation verification status

the standard deviation imputation predicted the operational expenditure with an R2

value of .94 (see 5-5). A possible cause of the worse downtime prediction performance

for the imputation is how most of the AEMRR data is about energy consumption,

not outages or downtime.

5.4 Strain

When we ran the strain scenario experiments, we decided to only run the verified

ERA tool data input data that came from installations in cluster one. 31 of the 33

verified data points were from installations in cluster one. Given how few data points

we had for other clusters, we were only confident in claims we would make about

installations in cluster one, since we had so many more data points. Cluster one is

defined by predominantly higher consumption than the other two clusters, typically
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Figure 5-4: Number of installations in each cluster, broken down by verification status

higher cost, and a wide range of fuel oil consumption (see Figure 5-7). Additionally,

cluster one represents a very strong majority. After selecting only the installations

with outage data, we had 26 total installations, representing just under 10% of total

installations in cluster one.

Once we ran the strain experiments, we inspected the cost and downtime of the

installations under strain (see Figures 5-8 5-9). Comparing them to the "standard

run" where the installation is not under strain, some of the installations were only

seeing marginal changes in costs or downtime under strain. However, there was a

shifting in the distribution and medians for most of metrics from installations under

the strains.

After evaluating the distributions of differences in metrics from the standard ex-
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no
nor-
mal-
iza-
tion

log scale
normal-
ization

standard
deviation
normaliza-
tion

z score
normal-
ization

simple mean
imputation (no
normalization)

mean data change
during imputation

0.086 -0.159 0.089 0.096 0.086

standard deviation
of data change

0.142 0.318 0.151 0.162 0.142

percentage of
imputed
installations
passing tests

32.8 0.0 23.1 3.2 1

number of
iterations before
stopping condition
reached

126 432 309 343 NaN

Table 5.2: Imputation performance on verification tests

periment to each strain experiment, (see Figures 5-10 and 5-11) we determined that

the distributions are not normal. Because the distributions were not normal, we se-

lected and then ran the Wilcoxon signed-rank test for each metric on each of the

strain results, comparing it to the standard run for that same installation. For the

majority of the strain scenarios, we rejected the hypothesis that the strain scenario

results came from the same distribution as the standard run for at least a p < .05

(see Table 5.3). The strain scenarios where we failed to reject the hypothesis were

all in the no outage change group and all except for one were measuring the change

in downtime. It would make sense that energy price changes and sunniness changes

would not make a huge difference on downtime, given that relatively few installations

rely on solar power during grid outages and cost changes alone should not impact

downtime substantially.

Overall, the price changes and outage increases have the biggest impact on pre-
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dicted expenditure. Additionally, when low energy price changes co-occurred in a

strain experiment, the average price change from the standard strain was negative,

meaning that the cost went down. In terms of changing the predicted downtime,

the biggest factor was the rate of outages. While sunniness changes affected costs

significantly, it did not affect downtime significantly, suggesting that currently the

biggest impact of solar power in these installations is in reducing costs, rather than

in backup power generation.

We totalled the expected expenditure and downtime from each strain across the

26 installations we analyzed. The data is all in Table 5.4, but we highlight a few

values here. The expected total expenditure of a high outage increase alone is 20

million dollars more than the standard expected expenditure, just for these 26 in-

stallations. A high energy price change alone is 126 million dollars more than the

standard expenditure, representing a 6% change in expenditure overall. Across the

26 installations, there would be almost a weeks worth more hours of downtime than

in the standard scenario under a high outage increase.
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Mean Percent
Change in
Downtime

Level of
Significance of �
in Downtime

Mean Percent
Change in

Expenditure

Level of
Significance of � in
Expenditure

Strain Scenario

standard run (no strain) 0.00 NaN 0.00 NaN

low energy price change -8.53 not significant -3.62 ***

high energy price change -5.79 not significant 4.74 ***

less sunniness -2.29 not significant -0.00 not significant

more sunniness -3.81 not significant 0.03 *

standard run (moderate
outage increase)

39.20 ** 0.93 ***

low energy price change
(moderate outage
increase)

43.91 *** -2.86 ***

high energy price change
(moderate outage
increase)

43.96 *** 5.87 ***

less sunniness (moderate
outage increase)

39.94 *** 0.95 **

more sunniness
(moderate outage
increase)

43.69 ** 0.90 **

standard run (high
outage increase)

69.46 *** 2.50 **

low energy price change
(high outage increase)

65.20 *** -1.59 ***

high energy price change
(high outage increase)

65.92 *** 7.73 ***

less sunniness (high
outage increase)

72.90 *** 2.48 **

more sunniness (high
outage increase)

64.95 *** 2.48 ***

Table 5.3: Aggregate statistics of strain experiment results.
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Figure 5-5: Parity and residuals plots for evaluating the performance of the imputa-
tion on data with normalized by standard deviation. The truth values are the ERA
tool results from running the ERA tool on the imputed data

64



Figure 5-6: Plot of correlation between ERA tool predictions of downtime and ex-
penditure for verified installations
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Figure 5-7: Distribution of top 3 defining features of the clusters from the clustering
run on the data that was normalized by total consumption
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Figure 5-8: Box plot of the percent change in expected downtime for each strain
experiment from the control ERA tool run
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Figure 5-9: Box plot of the percent change in expected expenditure to administer the
installation for each strain experiment from the control ERA tool run
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Figure 5-10: Distributions of the change in downtime of the installations from the
control run to the strain experiment run in the ERA tool, separated by strain exper-
iment
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Figure 5-11: Distributions of the change in expenditure from the control run to the
strain experiment run in the ERA tool, separated by strain experiment
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Total Downtime
Across Tested

Installations

Total � in Downtime
(hours) Across Tested

Installations

Total
Expenditure

Across Tested
Installations

Total � in
Expenditure ($M)

Across Tested
Installations

standard run 216.0 0.0 5054.0 0.0

low energy price
change

214.0 -2.0 4968.0 -86.0

high energy price
change

214.0 -2.0 5180.0 126.0

less sunniness 220.0 4.0 5055.0 1.0

more sunniness 217.0 1.0 5055.0 1.0

standard run
(moderate outage
increase)

346.0 130.0 5064.0 10.0

low energy price
change (moderate
outage increase)

350.0 134.0 4975.0 -79.0

high energy price
change (moderate
outage increase)

348.0 132.0 5191.0 137.0

less sunniness
(moderate outage
increase)

344.0 128.0 5064.0 10.0

more sunniness
(moderate outage
increase)

346.0 130.0 5063.0 9.0

standard run (high
outage increase)

379.0 163.0 5074.0 20.0

low energy price
change (high outage
increase)

375.0 159.0 4983.0 -72.0

high energy price
change (high outage
increase)

382.0 166.0 5203.0 149.0

less sunniness (high
outage increase)

379.0 163.0 5074.0 19.0

more sunniness
(high outage
increase)

378.0 161.0 5074.0 20.0

Table 5.4: Totals across the 26 installations in the strain experiment
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we compiled a partially complete data set of military installation en-

ergy systems and identified underlying structures in it using clustering. Also, we

formulated a method for handling the large amount of missing data in our data set

and then implemented that imputation methodology. At the same time, we ran the

complete parts of our data set through simulations to evaluate the effects of climate

change on the U.S. military’s backup power system.

The results of the different clusterings that we generated showed us that most

military installations are similar in energy use and consumption, with a handful of

extreme outliers. The imputation methodology shows promise, as it predicted one

of our two metrics very well. Given better validation tests and enough data to run

leave-one-out testing, it could be a great tool for approximating the energy systems

on installations. Finally, almost all the strain experiments we ran had statistically

significant effects on both the expected downtime and expenditure of backup military

power systems in our simulations.
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6.2 Future Work

Stronger reporting standards and better naming conventions in the DoD could im-

prove opportunities for energy usage and resilience analytics. With a consistent nam-

ing scheme, data sets could be combined more easily. Additionally, with more re-

ported data, we could gain more insight into the performance and possibilities for

each installation.

There are many new high performance sparse matrix completion methods that

could greatly improve the imputation performance. Similarly, we had only about 10%

of the data set as training data. Given more data, we could improve, and more exten-

sively test, the imputation results. With either of these improvements, the imputation

methodology could enable resilience surveys across domestic DoD installations using

the ERA tool. Since the ERA tool evaluates many potential architectures, rather

than just the current one, the DoD could investigate the long term savings from dif-

ferent renewable energy sources across all domestic military installations using the

imputed results.

Additionally, these imputation methods could be used for other incomplete DoD

data streams. For example, a highly relevant area of investment currently is protecting

against power-related cyber attacks. One of the first steps in preventing such attacks

is understanding the inventory and condition of networked power components. Often,

these data sets are incomplete, hindering or stopping analysis. With imputation, we

could build out more complete data sets of configurations and installed components,

which are crucial for identifying cyber-security weaknesses.

The ERA tool currently offers black sky predictions, where it tests the effects of a

multi-day outage, along with the standard outages. The strain scenarios we developed

could be added to the ERA tool as an option, along with the black sky predictions.

Building strain simulations into the tool would allow stakeholders across the military

to view the effects of potential economic and climate shifts on their installation’s

resilience. They could also see if changing prices or outage rates affect their decisions

as they’re deciding on potential architecture changes.
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6.3 Potential Impact of this Work

The DoD wants to be able to make holistic and informed investments and deci-

sions about energy infrastructure. In order to make those decisions, the DoD needs

information about the configuration and performance of energy systems across all

installations managed by the department. However, at present, only a small, non-

representative group of installations have the complete power system data needed to

inform these decisions and investments.

Part of this thesis addressed this lack of usable data. Most of data that the DoD,

and therefore MIT Lincoln Laboratory, has access to is self-reported data without

quality assurance. So, we built tests to verify the validity of installation power systems

data. Some data needed for trend and reliability analysis was missing and we had no

process for finding the data. In order to solve this problem, we used an imputation

methodology to infer the missing installation power system data. We showed that

the methodology is reliable by running comparisons between the imputed results

and simulated results, where there were high correlations for one of our two metrics.

Finally, DoD installations are unique and are difficult to make generalizations about,

especially from the few data points we had. Using one of the few complete, quality

assured data sets we had access to, we identified clusters in the installations. We used

these clusters to characterize the types of installations that our data set had verified

data for.

In short, we have developed multiple avenues (clustering, self reported data veri-

fication tests, and imputation) for characterizing and generalizing from these limited

data sources. Next, we showed how these larger data sets could be used in analytics.

We focused on the potential future effects from current trends in economics,

weather, and infrastructure reliability. Using the data set we created, we were able to

predict that at current rates of change from these trends, there would be more than

5 additional days of power outages and 10 million dollars in additional expenditure

over 26 installations. If these results are representative of all of the installations in

their cluster, we could see more than a month in additional total downtime and 100
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million dollars in additional expenditure over all those installations.

As discussed in the future work section, we believe that this approach of analyzing

potential strains to the cost and reliability of critical infrastructure is extendable

beyond the work we have shown here. Evaluating the sensitivity of DoD systems

to potential strains of any kind can inform better investment of limited resources in

improving the military’s energy infrastructure.

In the race to prepare critical infrastructure for climate change, better visibility

and analytics is an important component.
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Appendix A

Tables

Cluster Number (Standard
Normalization)

Number of Installations in
Cluster

0 0 232

1 1 35

2 2 1

3 3 5

4 4 2

5 5 2

6 6 1

7 7 2

Table A.1: Cluster membership totals for standard normalization
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Cluster Number (Normalized by Total
Consumption)

Number of Installations in
Cluster

0 0 18

1 1 258

2 2 4

Table A.2: Cluster membership totals for normalized by total consumption

Cluster Number (Normalized by Square
Footage)

Number of Installations in
Cluster

0 0 266

1 1 1

2 2 13

Table A.3: Cluster membership totals for normalized by square footage

Number of installations with
supplementary data added

percent of installations with
supplementary data added

Total Number of
Substations

94 38.1

Generator List 18 7.3

Verified Web
Application
Data

26 9.6

Table A.4: Amount of supplementary data added to installations with missing data
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Appendix B

Figures
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Figure B-1: Distribution of top 3 defining features of the clusters generated by clus-
tering on data normalized using only the standard method
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Figure B-2: Distribution of top 3 defining features of the clusters generated by clus-
tering on data normalized using square footage and the standard method
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Figure B-3: Parity and residuals plots for evaluating the performance of the imputa-
tion run on data with no normalization
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Figure B-4: Box plot of the expected downtime of the installation (in hours) generated
by the ERA tool, separated by the strains the installations were run under
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Figure B-5: Box plot of the expected expenditure to administer the backup power
system on an installation (in millions of dollars) generated by the ERA tool, separated
by the strains the installations were run under
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