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Abstract
This thesis explores combinatorial methods in random vector balancing, nonparamet-
ric estimation, and network inference. First, motivated by problems from controlled
experiments, we study random vector balancing from the perspective of discrepancy
theory, a classical topic in combinatorics, and give sharp statistical results along
with improved algorithmic guarantees. Next, we focus on the problem of density
estimation and investigate the fundamental statistical limits of coresets, a popular
framework for obtaining algorithmic speedups by replacing a large dataset with a
representative subset. In the following chapter, motivated by the problem of fast eval-
uation of kernel density estimators, we demonstrate how a multivariate interpolation
scheme from finite-element theory based on the combinatorial-geometric properties
of a certain mesh can be used to significantly improve the storage and query time
of a nonparametric estimator while also preserving its accuracy. Our final chapter
focuses on pedigree reconstruction, a combinatorial inference task of recovering the
latent network of familial relationships of a population from its extant genetic data.
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Chapter 1

Introduction

Modern machine learning problems present the dual challenges of achieving statistical
accuracy and computational efficiency. There is an inherent tension between these
two objectives. From a statistical point of view, oftentimes more data is better: good
estimators become more accurate with growing sample size. On the other hand, from
a computational perspective, larger datasets are more costly to process and thus
estimators with attractive statistical properties may be impractical to evaluate. The
purpose of this thesis is to demonstrate how combinatorial methods can be used to
leverage the structure of data and produce computationally tractable estimators with
fast rates of convergence.

Combinatorial principles have a rich history in statistics and continue to be cen-
tral to the field. The birth of the central limit theorem in the classical work of de
Moivre–Laplace relies on understanding the asymptotics of binomial coefficients. The
fundamental Vapnik–Chervonenkis combinatorics establishes uniform central limit
theorems and hence also rates of estimation for many learning problems. Over the
last twenty years, statistical problems involving discrete structures such as inference
problems in networks have received a lot of attention, spurred by computational,
mathematical, biological, and technological applications, among others. In other sit-
uations, combinatorial structure in an estimator itself leads to attractive statistical
and computational properties. For example, one may choose estimators based on
solutions to combinatorial optimization problems.

This thesis investigates the role of combinatorial structure in statistical problems
arising in random vector balancing, nonparametric estimation, and network inference.

In Chapter 2, motivated by a connection with controlled experiments, we explore
the statistical and computational aspects of random vector balancing. Vector bal-
ancing is a combinatorial optimization problem central to discrepancy theory that
consists of dividing a set of vectors into two groups that have approximately the
same sum. We provide a sharp analysis of the discrepancy of Gaussian vectors as
well as an efficient algorithm achieving the best-known guarantees in an interesting
regime. This chapter is based on a joint work [Turner et al., 2020] with Raghu Meka
and Philippe Rigollet.

In Chapter 3, we develop a statistical perspective on coresets. Coresets provide a
useful framework for summarizing data by extracting a small representative subset.
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We focus on the problem of density estimation and study the fundamental limitations
of coreset-based estimators, providing a sharp minimax lower bound. We also intro-
duce new coreset kernel density estimators based on Carathéodory’s theorem that
are near-minimax optimal and improve on prior methods. This chapter is based on a
joint work [Turner et al., 2021b] with Jingbo Liu and Philippe Rigollet.

In Chapter 4 we demonstrate how interpolation can be used to improve on the
computational aspects of nonparametric estimators. We construct a piecewise mul-
tivariate interpolation of a density estimator on a combinatorially structured mesh
arising in finite element methods. The resulting interpolant has sublinear space and
near-constant query time while preserving statistical accuracy. This chapter is based
on a joint work [Turner et al., 2021a] with Jingbo Liu and Philippe Rigollet.

Our final chapter focuses on pedigree reconstruction, a combinatorial inference
task of recovering the latent network of familial relationships of a population. We in-
troduce a natural generative model for the pedigree structure and provide an efficient
algorithm that approximately recovers the genealogical network from extant genetic
data. This chapter is based on a joint work [Kim et al., 2020] with Younhun Kim,
Elchanan Mossel, and Govind Ramnarayan.

The remainder of this introduction describes these works in more detail.

1.1 Balancing Gaussian vectors
Motivation

Random vector balancing has a natural connection to experimental design. In con-
trolled experiments, the subjects are assigned to two groups, a treatment and control.
Next, an intervention—for example administering a drug—is applied to the treatment
group, and inference is conducted to assess efficacy. Pure randomization of the as-
signment to treatment and controls is often cited as the ‘gold standard’ because it
results in similar covariate structure between the two groups, and indeed this helps
to remove confounding variables for the purpose of inference. However, the uniformly
random assignment does not result in optimal balance between the covariates of each
group, and in many cases it is desirable to aim for a higher degree of balance, as we
demonstrate in a simple example.

Suppose that the experimenter divides the subjects into a treatment group + and
control group − and at the conclusion of the experiment observes an additive linear
response

𝑌𝑖 = 𝛼+1(𝜎𝑖 = 1) + 𝛼−1(𝜎𝑖 = −1) + 𝛽𝑋𝑖 + 𝜀𝑖, 1 ≤ 𝑖 ≤ 𝑛 (1.1)

where 𝛼+, 𝛼−, 𝛽 are unknowns; 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑∼ 𝑁(0, 1) are the covariates of the 𝑛

subjects; 𝜎𝑖 ∈ {−1, 1} is the assignment; and 𝜀1, . . . , 𝜀𝑛
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2) is the noise which

we assume is independent of 𝑋1, . . . , 𝑋𝑛.
We allow 𝜎 to be random and to depend on 𝑋1, . . . , 𝑋𝑛, and we enforce that P[𝜎𝑖 =

1|𝑋1, . . . , 𝑋𝑛] = 1
2 . From the perspective of balancing, the natural treatment effect

estimator to consider is the Horwitz–Thompson estimator 𝜏 [Horvitz and Thompson,
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1952, Harshaw et al., 2019], which takes the following form under this assumption:

𝜏 = 2
𝑛

𝑛∑︁
𝑖=1

𝜎𝑖𝑌𝑖.

By our setup, 𝜏 is unbiased, so the rate of estimation of the treatment effect is
controlled by the variance of 𝜏 . If the treatment and control group are approximately
the same size, it holds that

E[(𝛼+ − 𝛼− − 𝜏)2] = var (𝜏) = 4𝛽2

𝑛2 var
(︃

𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖

)︃
+ 4𝜎2

𝑛
+ 𝑜

(︂ 1
𝑛

)︂
. (1.2)

The expression above suggests that the treatment and controls should be assigned
in order to achieve the best possible aggregate covariate balance between the two
groups. What results is a well-studied combinatorial optimization problem known as
the discrepancy of the one-dimensional covariates 𝑋1, . . . , 𝑋𝑛:

𝒟(𝑋1, . . . , 𝑋𝑛) = min
𝜎∈{±1}𝑛

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒ (1.3)

This derivation raises two fundamental questions:

1. How large is the discrepancy?

2. Can we find 𝜎 ∈ {−1, 1}𝑛 with small objective value in polynomial time?

Before revisiting these questions, we first give a very brief overview of discrepancy
theory.

Discrepancy theory

Discrepancy theory is a rich area originating in combinatorics that centers on the
combinatorial optimization problem

𝒟(𝑋1, . . . , 𝑋𝑛) = min
𝜎∈{±1}𝑛

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞

= min
𝜎∈{±1}𝑛

|X𝜎|∞ , (1.4)

where X is the matrix with columns 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑. Observe that (1.3) is a special
case of this problem when 𝑑 = 1. Discrepancy first arose in the context of hypergraph
coloring problems. In this setting, the matrix X is deterministic, has {0, 1}-valued
entries, and is interpreted as the adjacency matrix of a set system as follows. The
columns of X represent a universe of elements {1, . . . , 𝑛}, and the rows represent sets
𝑆1, . . . , 𝑆𝑑 ⊂ {1, . . . , 𝑛} where X𝑖𝑗 = 1 if and only if 𝑗 ∈ 𝑆𝑖. Hence, discrepancy is
the problem of coloring the elements {1, . . . , 𝑛} with two colors, say red and blue, so
that every set in our set system has roughly as many red points as blue points.

It is instructive to evaluate the performance of the random coloring 𝜎 ∼ Unif{−1, 1}𝑛
on a set system given by 𝑋 ∈ {0, 1}𝑛×𝑛. By Hoeffding’s inequality and the union
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bound, ⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞

.
√︁
𝑛 log 𝑛.

Is it possible to improve upon this naive assignment? A famous result of Spencer
[1985] shows that, remarkably, it is possible to beat the union bound with a clever
choice of coloring based on a delicate nonconstructive application of the probabilistic
method and the pigeonhole principle. If 𝑑 = 𝑛, Spencer’s main result ‘Six standard
deviations suffice’ states that

𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 6
√
𝑛.

This inequality is optimal up to constant factor, and the more general bound

𝒟(𝑋1, . . . , 𝑋𝑛) = 𝑂

⎛⎝√︃
𝑛 log 2𝑑

𝑛

⎞⎠
holds over all 𝑑× 𝑛 matrices with 𝑑 ≥ 𝑛 and entries in [−1, 1].

The last decade has witnessed a flurry of algorithmic progress in discrepancy the-
ory, starting with Bansal [2010] who discovered the first algorithm achieving Spencer’s
bound, and since then several other algorithms [Lovett and Meka, 2012, Harvey et al.,
2014, Rothvoss, 2017, Levy et al., 2017, Eldan and Singh, 2018] have been shown to
attain 𝑂(

√
𝑛) discrepancy. Still many questions remain wide open such as the Beck–

Fiala conjecture, which states that

𝒟(𝑋1, . . . , 𝑋𝑛) .
√
𝑡, for all 𝑡-sparse 𝑋1, . . . , 𝑋𝑛 ∈ {0, 1}𝑑,

and the tantalizingly stronger Komlós conjecture, which states that

𝒟(𝑋1, . . . , 𝑋𝑛) . 1, if max
1≤𝑖≤𝑛

|𝑋𝑖|2 ≤ 1.

Our problem and contributions

Spencer’s result suggests that in the problem of experimental design the optimal allo-
cation improves over pure randomization. While Spencer’s focus was on a worst-case
setting, from the statistical point of view, it is natural for us to interpret the covari-
ates 𝑋1, . . . , 𝑋𝑛 as i.i.d. copies of a random vector 𝑋 ∈ R𝑑, with 𝑋 ∼ 𝑁(0, 𝐼𝑑) as a
canonical example. Our results focus on the regime 𝑑≪ 𝑛 and demonstrate a striking
gap between the performance of the optimal assignment and pure randomization.

Our first result gives a sharp characterization of the discrepancy of Gaussian
random vectors in a regime that was not previously explored.

Theorem 1.1 (Informal). Let 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑑). Then as 𝑛→∞

𝒟(𝑋1, . . . , 𝑋𝑛) ∼
√︂
𝜋𝑛

2 2−𝑛/𝑑
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with high probability, for 𝜔(1) = 𝑑 = 𝑜(𝑛).

The cases 𝑑 = 1, 𝑑 = 𝑂(1), and 𝑑 = Ω(𝑛) were analyzed in Karmarkar et al. [1986],
Costello [2009], and Chandrasekaran and Vempala [2014], respectively, and combin-
ing these results with ours provides a complete understanding of the discrepancy of
Gaussian random vectors. Under the slightly stronger assumption 𝑑 = 𝑂(𝑛/ log 𝑛),
Theorem 1.1 also applies to more general distributions with i.i.d. coordinates that
are absolutely continuous with respect to the Lebesgue measure and satisfy some
additional regularity properties (see Chapter 2 for more details).

The proof of Theorem 1.1 is based on the second moment method, a nonconstruc-
tive technique from probabilistic combinatorics for deriving existence results [Alon
and Spencer, 2008]. The second moment method states that for a nonnegative ran-
dom variable 𝑆, we have

P[𝑆 > 0] ≥ E[𝑆]2
E[𝑆2] . (1.5)

As described in detail in Chapter 2, our strategy is to let 𝑆 count the number of
signings with discrepancy at most 𝛾2−𝑛/𝑑

√︁
𝜋𝑛/2 and show that the right-hand-side

of (1.5) tends to 1 asymptotically for 𝛾 > 1. This requires a careful analysis which
we carry out using Laplace’s method. The lower bound is simpler and is proved
through the first moment method, which is a straightforward application of Markov’s
inequality (see Proposition 2.2).

The nonconstructive nature of Theorem 1.1 raises the question of the performance
of polynomial-time algorithms in our average-case setting. The next result provides
a partial answer to this question and establishes the first efficient algorithm that
achieves quasi-polynomially small discrepancy (i.e., discrepancy decaying faster than
𝑛−Ω(1)) in dimensions two and higher.

Theorem 1.2. Let 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑑) where 𝑑 = 𝑂(

√︁
log𝑛

log log𝑛). Then there exists
an absolute constant 𝑐 > 0 and a randomized polynomial-time algorithm that with
high probability outputs a signing 𝜎 ∈ {−1,+1}𝑛 such that⃒⃒⃒⃒

⃒
𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞
≤ exp

(︃
−𝑐 log2 𝑛

𝑑

)︃
.

The univariate case was shown by Karmarkar and Karp [1982]. As with our first
result, Theorem 1.2 also applies to a more general family of distributions on R𝑑 with
i.i.d. entries that are absolutely continuous with respect to the Lebesgue measure.

We give a very simplified description of our algorithm, which we call generalized
Karmarkar–Karp (GKK), applied to i.i.d. uniformly distributed points in [−1, 1]𝑑.
As in Karmarkar and Karp [1982], our algorithm is a differencing method, which
means that throughout the algorithm, we maintain a set of vectors 𝑆, and our basic
operations consist of removing two vectors, say 𝑥 and 𝑦, from 𝑆 and then adding the
difference to 𝑆 : 𝑆 ← 𝑆∪{𝑥−𝑦}∖{𝑥, 𝑦}. We perform a sequence of these differencing
operations in a judicious way until there is a single vector 𝑣 remaining in 𝑆. Note
that at any given time, the elements of 𝑆 correspond to (disjoint) partial signed sums
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of the original vectors 𝑋1, . . . , 𝑋𝑛. Hence, the final vector 𝑣 ∈ 𝑆 is indeed a signed
sum of the original vectors.

Now we describe our particular differencing method. First we divide the cube
into small boxes of side length 𝑛− 1

4𝑑 . In each box, we repeatedly sample two points
at random and take their difference. The outcomes of these differences now lie in
[−𝑛− 1

4𝑑 , 𝑛− 1
4𝑑 ]. We can again repeat this procedure of subdividing by 𝑛− 1

4𝑑 and random
differencing to obtain outcomes in an even smaller box [−𝑛− 2

4𝑑 , 𝑛− 2
4𝑑 ]. Note that after

each phase of subdividing and random differencing, the number of remaining points is
reduced by 50%. Hence after 𝑂(log 𝑛) phases of subdividing and differencing, only one
point remains, and it lies in the cube [−𝑛− log 𝑛

4𝑑 , 𝑛− log 𝑛
4𝑑 ], which matches the guarantee

of Theorem 1.2.
This heuristic analysis gives the correct bound, but it ignores that there may be

an odd number of points left over in a box after random differencing. Our algorithm
handles these leftover points by using a delicate clean-up step that brings these leftover
points into a smaller range using a careful choice of differencing operations. There
are also other technical difficulties that arise in controlling the distribution of the
outcomes of random differencing in each phase. The full details of our algorithm and
its analysis can be found in Chapter 2.

In comparison with Theorem 1.1, which proves that the discrepancy is exponen-
tially small, and Theorem 1.2, which attains quasi-polynomially small discrepancy
algorithmically, the uniformly random signing performs drastically worse and has
discrepancy Θ(

√
𝑛 log 𝑑). These results along with the discussion at the beginning of

this section suggest that in the setting of controlled experiments with a large sample
size and a small number of covariates that are strongly predictive, it can be highly
advantageous to select a design that optimizes balance. Our findings also highlight a
theme in this thesis of using combinatorial methods to beat randomization, a notion
we revisit in the next section.

Further directions

There is a stark contrast between the bounds of Theorems 1.1 and 1.2 that suggests
the presence of a statistical-to-computational gap as has been observed in sparse
PCA and many other planted problems [Berthet and Rigollet, 2013a, Brennan et al.,
2018, Kunisky et al., 2019, Brennan and Bresler, 2020]. In the univariate case, it is a
longstanding open question as to whether this gap can be closed, and there is evidence
from statistical physics [Boettcher and Mertens, 2008], worst-case reductions [Hoberg
et al., 2017], and most recently the overlap gap property [Gamarnik and Kızıldağ,
2021] suggesting a negative answer.

Next, the result of Theorem 1.2 only allows for very mildly growing dimension,
and our algorithm breaks down when 𝑑 ≫ log 𝑛. While the optimization problem
has value

√
𝑛2−𝑛/𝑑, for log 𝑛 ≪ 𝑑 ≪ 𝑛 it is not even clear how to design algorithms

attaining 𝑜(
√
𝑑) discrepancy, which appears to be the natural barrier for standard

algorithms based on partial coloring. Can 𝑜(1) discrepancy be attained efficiently
when 𝑛 = poly(𝑑)? This remains an interesting and challenging open question.

Finally, our algorithm GKK from Theorem 1.2 gives rise to an experimental design
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that can be constructed efficiently. By our development earlier in this section, we
expect that the GKK design leads to a treatment effect estimator 𝜏 with very small
variance in the simple model of (1.1). We also conjecture that the GKK design
performs well on models with more complicated correlation structures and unobserved
covariates as is typical in problems in causal inference. It would be interesting to
analyze the performance of GKK in such settings and compare it on real and synthetic
data to other methods in the literature such as the matching-based design of Greevy
et al. [2004], the rerandomization based-design of Li et al. [2018], as well as the
discrepancy-based designs of Bertsimas et al. [2015], Krieger et al. [2019], and Harshaw
et al. [2019].

1.2 Coreset density estimation
Background

A coreset is a small weighted subset of the data that captures most of its information.
Algorithmic tasks on large datasets raise fundamental computational challenges, so
replacing the original observations with a coreset can improve on the time and space
complexity while maintaining a high quality of approximation. This is a well-studied
paradigm that has been applied to many problems including Bayesian posterior es-
timation [Campbell and Broderick, 2019], clustering [Feldman et al., 2013], herding
[Harvey and Samadi, 2014], logistic regression [Huggins et al., 2016, Munteanu et al.,
2018], stochastic gradient descent [Mirzasoleiman et al., 2020], graph sparsification
[Spielman and Srivastava, 2011], neural networks [Dubey et al., 2018], matrix-column
subset selection [Yang et al., 2017], and kernel density estimation [Phillips, 2013,
Phillips and Tai, 2018b, Karnin and Liberty, 2019].1

The term ‘coreset’ was first coined in Bādoiu et al. [2002], though the conception
of the idea goes back to Vapnik and Chervonenkis [1971]. In their seminal work,
Vapnik and Chervonenkis consider the notion of a range space (𝑋,ℛ) where 𝑋 is a
dataset and ℛ is a collection of finite subsets of 𝑋. They introduce the notion of an
𝜀-sample as a subset 𝒞 ⊂ 𝑋 that satisfies

sup
𝑅∈ℛ

⃒⃒⃒⃒
⃒ |𝑅||𝑋| − |𝒞 ∩ 𝑅||𝒞|

⃒⃒⃒⃒
⃒ ≤ 𝜀, (1.6)

One of their main results shows that a random sample of size Ω̃(𝐷
𝜀2 ) from 𝑋 yields

an 𝜀-sample with high probability, where 𝐷 is the VC-dimension of (𝑋,ℛ). Here we
interpret 𝒞 as a coreset for the task of counting the relative number of points in a
given subset 𝑅 ∈ ℛ.

The main application of interest to us is kernel density estimation. The kernel
1The definition of coreset is not consistent in the literature, but the one we give here captures

many important applications. Also several works use coresets implicitly or refer to them by dif-
ferent names, for example, as sketches, sparsifiers, or 𝜀-samples. Here we distinguish coresets from
dimensionality-reduction techniques that embed all of the dataset in a lower dimensional space
(which are sometimes also referred to as sketches).
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density estimator (KDE) with bandwidth ℎ on the dataset 𝑋1, . . . , 𝑋𝑛 is defined to
be

𝑓(𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

𝑘ℎ(𝑋𝑖 − 𝑦), (1.7)

where 𝑘ℎ(𝑥) = ℎ−𝑑𝑘(𝑥
ℎ
) and 𝑘 : R𝑑 → R. The goal of coreset kernel density estimation

is to approximate 𝑓 by the coreset KDE

𝑓𝒞(𝑦) =
∑︁
𝑋𝑗∈𝒞

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦). (1.8)

Motivated by problems in computational geometry [Joshi et al., 2011, Phillips,
2013], clustering [Bachem et al., 2018, Feldman et al., 2013] and outlier detection
[Schubert et al., 2014], among others, the existing literature mostly considers the case
of deterministic observations and bandwidth ℎ = Θ(1). In this setting, the primary
methods for constructing a coreset are based on random sampling, the Frank–Wolfe
algorithm, and discrepancy theory.

Random sampling If the kernel 𝑘 satisfies certain structural properties, i.e.,
is Lipschitz, positive definite, or satisfies a certain VC-dimension constraint, then a
coreset sampled uniformly at random from the data of size 𝑂̃( 1

𝜀2 ) satisfies ‖𝑓−𝑓𝒞‖∞ ≤
𝜀. KDE coresets based on importance sampling appear to have not been studied, and
as we show, such coresets are provably far from optimal in certain cases. On the other
hand, importance sampling based on sensitivity scores and the closely related leverage
scores has shown great success in many other problems [Spielman and Srivastava,
2011, Feldman et al., 2013, Cohen et al., 2017, see e.g.].

Frank–Wolfe The Frank–Wolfe algorithm is a greedy iterative method related to
gradient descent that is useful for producing sparse approximations to the sample
mean in high-dimensional spaces. For kernel density estimation, if we assume that
(𝑥, 𝑦) ↦→ 𝑘(𝑥− 𝑦) is positive-definite, there exists a reproducing kernel Hilbert space
ℋ, and the KDE 𝑓 is simply the sample average of the feature vectors {𝜑𝑖}𝑛𝑖=1 :=
{𝑘ℎ(𝑋𝑖 − ·)}𝑛𝑖=1. The Frank–Wolfe algorithm is defined as follows. Let 𝑥0 denote an
arbitrary 𝜑𝑖. Then for 1 ≤ 𝑡 ≤ |𝒞|, define recursively

𝑖𝑡 = arg min
1≤𝑖≤𝑛

⟨𝑥𝑡 − 𝑓, 𝜑𝑖 − 𝑓⟩ℋ

𝑥𝑡+1 = 1
𝑡
𝜑𝑖𝑡 + 𝑡− 1

𝑡
𝑥𝑡,

and set 𝑥𝒞 = 𝑓𝒞. It is known that ‖𝑓 − 𝑓𝒞‖ℋ = 𝑂(|𝒞|−1/2), and by Cauchy–Schwarz
this implies the same bound in ‖·‖∞ if ℎ = Ω(1).

Discrepancy In a very general sense, low discrepancy implies the existence of
small coresets. Define the discrepancy of a class of functions F to be

𝒟(F ) = inf
𝜎∈{−1,1}𝑛

sup
𝑓∈F

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜎𝑖𝑓(𝑋𝑖)
⃒⃒⃒⃒
⃒ .
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Note that if the class F = {𝑓1, . . . , 𝑓𝑑} is finite, then 𝒟(F ) is the same as the
discrepancy of the matrix (𝑓𝑖(𝑋𝑗))1≤𝑖≤𝑑,1≤𝑗≤𝑛, as defined in Section 1.1. A classical
fact [see Matoušek, 1999, Lemma 1.6] states that if F contains the function 1(𝑥) ≡ 1
for all 𝑥 and 𝒟(F ) ≤ 𝜀𝑛, then there exists a coreset of size 𝑛

2 such that

sup
𝑓∈F

⃒⃒⃒⃒
⃒⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑓(𝑋𝑖)−
1

(𝑛/2)
∑︁
𝑋𝑖∈𝒞

𝑓(𝑋𝑖)

⃒⃒⃒⃒
⃒⃒ ≤ 𝜀. (1.9)

The idea behind (1.9) is roughly that {𝑋𝑖 : 𝜎𝑖 = 1} and {𝑋𝑖 : 𝜎𝑖 = −1} serve as
good 𝜀-approximations. This procedure can be iterated in a straightforward manner
to yield much smaller coresets [for a simple proof see e.g. Karnin and Liberty, 2019,
Fact 5]: if for all 𝑆 ⊂ {𝑋1, . . . , 𝑋𝑛}

inf
𝜎∈{−1,1}𝑛

sup
𝑓∈F

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

𝜎𝑖𝑓(𝑋𝑖)
⃒⃒⃒⃒
⃒ ≤ 𝐷,

then there exists a coreset 𝒞 of size 𝑂(𝐷
𝜀

) such that

sup
𝑓∈F

⃒⃒⃒⃒
⃒⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑓(𝑋𝑖)−
1
|𝒞|

∑︁
𝑋𝑖∈𝒞

𝑓(𝑋𝑖)

⃒⃒⃒⃒
⃒⃒ ≤ 𝜀. (1.10)

The previous display may be regarded as a weighted version of the original notion of
𝜀-approximation considered by Vapnik and Chervonenkis [1971] as in (1.6).

This connection between coresets and discrepancy theory was first applied to the
kernel density estimation problem by Phillips [2013]. Here the class is specified by the
translates of the kernel: F = {𝑘ℎ(𝑋𝑖− ·)}𝑛𝑖=1, and hence the resulting error metric is
the sup-norm. The state-of-the-art [Phillips and Tai, 2018b] shows that if ℎ = Θ(1)
and 𝑘 is a PSD kernel that is Lipschitz and decays sufficiently fast, then there exists
a coreset 𝒞 of size 𝑂̃(

√
𝑑
𝜀

) such that ‖𝑓 − 𝑓𝒞‖∞ ≤ 𝜀.
This result is nearly optimal in worst-case over the dataset 𝑋, and it improves

upon the guarantees of the Frank–Wolfe algorithm and random sampling, which have
size Ω( 1

𝜀2 ). However, as we show, by imposing certain smoothness constraints on the
dataset, namely that the data is generated from a Hölder smooth probability density
function, it is possible to significantly improve on the guarantees of Phillips and Tai
[2018b] in a classical statistical setting as we describe next.

Density estimation and our problem

Density estimation is the problem of reconstructing an unknown probability density
function from data. Classical nonparametric statistics considers the rates of estima-
tion of densities from certain smoothness classes. Here we consider a Hölder class
𝒫ℋ(𝛽) that contains all probability density functions that are supported on [0, 1]𝑑
and have bounded partial derivatives of order 𝛽 (see Section 3.1.2 for a formal defini-
tion). Let 𝑓 ∈ 𝒫ℋ(𝛽), and assume that the observations 𝑋1, . . . , 𝑋𝑛 are drawn i.i.d.
from the probability distribution P𝑓 associated to 𝑓 . Let E𝑓 denote the expectation
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over the data with respect to P𝑓 . Then the minimax rate in 𝐿2, which is natural from
the statistical point of view, has the form

inf̂
𝑓

sup
𝑓∈𝒫ℋ(𝛽)

E𝑓‖𝑓 − 𝑓‖2 = 𝑂𝛽,𝑑

(︂
𝑛− 𝛽

2𝛽+𝑑

)︂
. (1.11)

For appropriate choice of kernel, the KDE 𝑓 with bandwidth ℎ ≍ 𝑛−1/(2𝛽+𝑑) attains
the minimax rate over the class 𝒫ℋ(𝛽). In particular, there is simple Fourier-theoretic
condition characterizing a large class of such kernels. Let ℱ [𝑘] denote the Fourier
transform of 𝑘. If for some 𝛿 > 0 it holds that

ℱ [𝑘](𝜔) ≡ 1, ∀𝜔 ∈ [−𝛿, 𝛿]𝑑, (1.12)

then the corresponding KDE with bandwidth ℎ ≍ 𝑛−1/(2𝛽+𝑑) attains the minimax rate
[see Tsybakov, 2009, Chapter 1]. A simple example of such a kernel is constructed as
follows. Let 𝜓 : R→ [0, 1] denote a cutoff function that has the following properties:
𝜓 ∈ 𝒞∞, 𝜓

⃒⃒⃒
[−1,1]

≡ 1, and 𝜓 is supported on [−2, 2]. Then the kernel

𝑘𝑠(𝑥) =
𝑑∏︁
𝑖=1
ℱ [𝜓](𝑥𝑖) (1.13)

satisfies the condition (1.12), and thus the corresponding KDE attains the minimax
rate. Also note that the kernel 𝑘 is smooth, which will be useful for us later in
constructing KDE coresets.

Our main goal is to extend this understanding of minimax rates for density esti-
mation to coreset density estimators of the form (1.8). Specifically, we are interested
in finding the smallest possible coresets yielding minimax optimal estimators.

Our methods and contributions

Our estimation strategy is to first compute a minimax optimal standard KDE and
then approximate it using a coreset KDE. To motivate our techniques, let us first
consider a naive approach based on the Frank–Wolfe algorithm.

The standard KDE (1.7) can be thought of as the average of the infinite-dimensional
vectors 𝑘ℎ(𝑋1 − ·), . . . , 𝑘ℎ(𝑋𝑛 − ·). Our goal is to obtain a sparse approximation for
the KDE, and one approach we discussed for doing so is to apply Frank–Wolfe in the
reproducing kernel Hilbert space corresponding to 𝑘. Let 𝑚 = |𝒞|. Factoring in the
bandwidth ℎ ≍ 𝑛−1/(2𝛽+𝑑) of the standard KDE and the guarantees for Frank–Wolfe
previously discussed in Section 1.2, we obtain a coreset 𝑓FW

𝒞 that satisfies

‖𝑓 − 𝑓FW
𝒞 ‖∞ ≤ ℎ−𝑑𝑚− 1

2 . 𝑛
𝑑

2𝛽+𝑑𝑚− 1
2 .

However, setting the right-hand-side to be the minimax rate 𝑛−𝛽/(2𝛽+𝑑) requires 𝑚 &
𝑛, and there is essentially no compression.

Although Frank–Wolfe fails to yield sublinear coresets for density estimation, it
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gives a hint towards the correct approach. While Frank–Wolfe yields sparse approxi-
mation of points in convex bodies in infinite-dimensional space, our method is to use
Carathéodory’s theorem, a result that yields exact sparse representation of points in
convex bodies in finite-dimensional space. Indeed, approximate Carathéodory is one
of the main applications of the Frank–Wolfe algorithm, but looking in the opposite
direction nicely motivates our approach.

Carathéodory’s theorem states that every point in the convex hull of a set 𝑆 ⊂ R𝐷

can be expressed as a convex combination of 𝐷 + 1 points of 𝑆, and the proof yields
an algorithm that runs in 𝑂(𝑛𝐷3 + 𝑛2) arithmetic operations [Carathéodory, 1907,
Hiriart-Urruty and Lemaréchal, 2004]. Therefore, if we can embed the functions
𝑘ℎ(𝑋1 − ·), . . . , 𝑘ℎ(𝑋𝑛 − ·) in R𝐷, then Carathéodory immediately yields a coreset of
cardinality 𝐷+1. For simplicity, let us see how to apply this strategy in the univariate
case 𝑋1, . . . , 𝑋𝑛 ∈ [0, 2𝜋] and for a smooth periodic kernel 𝑘. Then 𝑘 has a Fourier
expansion

𝑘(𝑦) =
∑︁
𝜔∈Z
ℱ [𝑘](𝜔)𝑒𝑖𝑦𝜔,

and by the smoothness of 𝑘, basic Fourier analysis implies that ℱ [𝑘](𝜔) = 𝑂(|𝜔|−𝛾) for
every 𝛾 > 0 [Katznelson, 2004]. Recall that in the univariate case, 𝑘ℎ(𝑦) = ℎ−1𝑘( 𝑦

ℎ
).

Therefore, ⃒⃒⃒⃒
⃒⃒𝑘ℎ(𝑦)−

∑︁
|𝜔|≤𝑇

ℱ [𝑘ℎ](𝜔)𝑒𝑖𝑦𝜔
⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒𝑘ℎ(𝑦)−

∑︁
|𝜔|≤𝑇ℎ

ℱ [𝑘](𝜔)𝑒𝑖𝑦𝜔
⃒⃒⃒⃒
⃒⃒ ≤ 𝜀

if 𝑇 ≥ ℎ−1𝜀− 1
𝛾 . In our setting, we have ℎ ≍ 𝑛−1/(2𝛽+1) and 𝜀 = 𝑛−𝛽/(2𝛽+1), which

implies that for any fixed 𝛿 > 0, we can take 𝛾 > 0 sufficiently large so that the
Fourier expansion truncated at 𝑇 = 𝑂(𝑛

1
2𝛽+1 +𝛿) gives a good approximation to 𝑘ℎ(𝑦).

Applying this reasoning to the translates 𝑘ℎ(𝑋1 − ·), . . . , 𝑘ℎ(𝑋𝑛 − ·) gives the de-
sired embedding into R𝐷 with 𝐷 = 𝑂(𝑛

1
2𝛽+1 +𝛿), where we map 𝑘ℎ(𝑋𝑖 − ·) to the

𝐷-dimensional vector of its Fourier coefficients up to 𝑇 = 𝑂(𝑛
1

2𝛽+1 +𝛿). Now applying
Carathéodory’s theorem in R𝐷 yields a coreset 𝒞 of size 𝑂(𝑛

1
2𝛽+1 +𝛿) and weights {𝜆𝑗}

such that

⃒⃒⃒
𝑓 − 𝑓𝒞

⃒⃒⃒
∞

=

⃒⃒⃒⃒
⃒⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑘ℎ(𝑋𝑖 − ·)−
∑︁
𝑋𝑗∈𝒞

𝜆𝑗𝑘ℎ(𝑋𝑗 − ·)

⃒⃒⃒⃒
⃒⃒
∞

≤ 𝑛− 𝛽
2𝛽+1 .

Therefore if 𝑓 is a also good approximation to 𝑓 , we have derived the rate of the
Carathéodory coreset KDE. Conditions for 𝑓 to be a minimax optimal estimator are
well-known from classical nonparametric statistics [Tsybakov, 2009], and as discussed
earlier, 𝑘𝑠 gives an example of a kernel satisfying these conditions that is also smooth
enough so that Carathéodory can be applied effectively. It is possible to adapt the
above heuristic argument to work in the nonperiodic and high-dimensional case, which
yields our first main result.

Theorem 1.3. Let 𝛿 > 0, and let 𝑘𝑠 denote the kernel from (1.13). Then there
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exists a coreset 𝒞 of cardinality 𝑂𝛽,𝑑,𝛿(𝑛
𝑑

2𝛽+𝑑
+𝛿) with nonnegative weights {𝜆𝑖} where∑︀

𝜆𝑖 = 1 and
sup

𝑓∈𝒫ℋ(𝛽)
E𝑓‖𝑓𝒞 − 𝑓‖2 ≤ 𝑂𝛽,𝑑(𝑛− 𝛽

2𝛽+𝑑 ).

Moreover, the coreset 𝒞 can be constructed in time 𝑂(𝑛1+ 3𝑑
2𝛽+𝑑 + 𝑛2).

Our techniques imply that similar results hold for any smooth kernel whose cor-
responding KDE attains the minimax rate. Also for a coreset of size 𝑚, we show
that our construction attains the rate 𝑚− 𝛽

𝑑
+𝛿 for all fixed 𝛿 > 0. See Corollary 3.1 in

Chapter 3 for a more general statement.
We also prove a minimax lower bound on a more general class of estimators

that demonstrates Theorem 1.3 is nearly optimal with respect to the coreset size.
A decorated coreset (𝒞, 𝜎) consists of a coreset along with a bit string of length
𝐵. A decorated coreset-based estimator consists of all estimators that are mea-
surable with respect to a decorated-coreset; informally, such estimators are only al-
lowed to use information contained in the decorated coreset. We show that coreset
KDEs with bandwidth ℎ = 1

poly(𝑛) and weights |𝜆𝑗| = poly(𝑛) are decorated coreset-
based estimators with 𝐵 = poly(𝑛) bits. Our minimax lower bound shows that for
𝐵 = poly(𝑛), decorated coreset-based estimators require |𝒞| = Ω(𝑛𝑑/(2𝛽+𝑑)) to attain
the rate of estimation 𝑛−𝛽/(2𝛽+𝑑) over the Hölder class 𝒫ℋ(𝛽), and this shows that the
Carathéodory coreset is nearly optimal. More generally, we prove a minimax lower
bound Ω((𝑚 log 𝑛)−𝛽/𝑑) on the rate of estimation of decorated coreset-based estima-
tors with coreset cardinality 𝑚 and bit complexity 𝐵 = poly(𝑛), and this is also nearly
matched by the Carathéodory construction on 𝑚 points. Refer to Theorems 3.1 and
3.4 in Chapter 3 for more details.

Another remark is that the Carathéodory coreset uses nonuniform weights, in
contrast to many of the previously studied coreset KDE methods such as those based
on importance sampling, Frank–Wolfe, and discrepancy theory. For the univariate
Gaussian kernel, we prove strong lower bounds demonstrating the power of nonuni-
form weights. It is known that the Gaussian KDE achieves the minimax rate over the
univariate Lipschitz densities 𝒫ℋ(1). For any choice of bandwidth, we show that the
Gaussian coreset KDE with uniform weights requires Ω̃(𝑛 2

3 ) coreset points to attain
the minimax rate 𝑛− 1

3 , in contrast to the Gaussian Carathéodory KDE, which requires
only 𝑛

1
3 +𝛿 coreset points. The same lower bounds hold for any smooth nonnegative

univariate kernel. More generally, we expect that coreset KDEs with uniform weights
require Ω(𝑛

𝛽+𝑑
2𝛽+𝑑 ) coreset points to attain the minimax rate 𝑛−𝛽/(2𝛽+𝑑) over 𝒫ℋ(𝛽). Ad-

ditionally, we show that for a large class of kernels, the discrepancy-based approach of
Phillips and Tai [2018b] attains the rate 𝑛−𝛽/(2𝛽+𝑑) over 𝒫ℋ(𝛽) using 𝑂(𝑛

𝛽+𝑑
2𝛽+𝑑 ) coreset

points, matching our conjectured lower bound.

Further directions

Faster Carathéodory As stated in Theorem 1.3, for all parameters our algorithm
requires at least 𝑛2 time to construct the coreset, and when the dimension is large
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relative to the smoothness, the time-complexity can be as large as 𝑛4. The main
computational bottleneck is the standard implementation of Carathéodory’s theorem,
which for 𝑛 vectors in dimension 𝐷 runs in time 𝑂(𝑛𝐷3 + 𝑛2). Recent work of
Maalouf et al. [2019] on fast least mean squares solvers gives a new algorithm for
Carathéodory’s theorem that when applied to 𝑛 vectors in dimension 𝐷 runs in time
𝑂(𝑛𝐷+𝐷4 log 𝑛), which reduces to time 𝑂(𝑛𝐷) in low dimensions. It is an interesting
and practical question as to what is the optimal run-time for Carathéodory’s theorem.
Coresets for many tasks In this work, we studied coresets for the density es-
timation problem, and it is an interesting direction to study coresets that perform
well on many different problems. Let us consider a class F of test functions that we
interpret as a collection of tasks to be performed on a dataset. It is natural to regard
a coreset as a measure P𝒞 that is sparsely supported on the dataset and approximates
the empirical measure P𝑛. The integral probability metric

𝑑(P𝑛 ,P𝒞) = sup
𝑓∈F

⃒⃒⃒⃒∫︁
𝑓 dP𝑛 −

∫︁
𝑓 dP𝒞

⃒⃒⃒⃒
= sup

𝑓∈F

⃒⃒⃒⃒
⃒⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑓(𝑋𝑖)−
∑︁
𝑋𝑗∈𝒞

𝜆𝑗𝑓(𝑋𝑗)

⃒⃒⃒⃒
⃒⃒ (1.14)

quantifies the performance of the coreset on the set of tasks F . Can we charac-
terize this performance in terms of the complexity of the class F? Recent work of
Karnin and Liberty [2019] studies this question from the point of view of discrepancy
theory using the halving approach in Section 1.2. Discrepancy-based techniques pro-
duce uniformly weighted coresets, and we would like to find a complexity measure
that provides additional power by accounting for the flexibility of the weights in our
formulation.

1.3 Interpolation of density estimators
As described in Section 1.2, the kernel density estimator is statistically optimal in
many situations, yet from a computational point of view, naive evaluation of the KDE
suffers linear evaluation time. This tension inspired numerous approaches for fast
evaluation of KDEs including methods based on the fast Gauss transform [Greengard
and Rokhlin, 1987, Greengard and Strain, 1991], locality sensitive hashing [Charikar
and Siminelakis, 2017, Backurs et al., 2019], binning [Scott and Sheather, 1985], and
interpolation [Jones, 1989, Kogure, 1998]. The rich study of the KDE motivates a
more general question: if we know that a density estimator is statistically accurate,
can we improve on its computational properties?

In Chapter 4, we provide an affirmative answer by using piecewise multivariate
interpolation to efficiently convert a minimax estimator 𝑓 of an unknown Hölder
density 𝑓 of smoothness 𝛽 to a new nearly-minimax estimator 𝑔 that has near-constant
query time and storage 𝑂̃𝛽,𝑑(𝑛𝑑/(2𝛽+𝑑)).

Interestingly, the storage derived here roughly matches the number of points in
the minimax optimal Carathéodory coreset KDE (see Theorem 1.3). An intuitive
explanation for this is that 𝑛𝑑/(2𝛽+𝑑) represents the number of degrees of freedom
in the Hölder class; concretely, any 𝑓 ∈ 𝒫ℋ(𝛽) can be approximated to minimax-
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accuracy via a Fourier expansion with 𝑂(𝑛𝑑/(2𝛽+𝑑)) terms. Moreover, our minimax
lower bounds for decorated coreset-based estimators described in the last section
imply that 𝑂̃(𝑛𝑑/(2𝛽+𝑑)) is the optimal storage that can be achieved if 𝑔 is required to
be near-minimax optimal (see Theorem 3.4).

The near-constant query time is a consequence of our interpolation scheme, which
uses piecewise multivariate polynomials. We divide the domain, which is assumed to
be [0, 1]𝑑, into 𝑛𝑑/(2𝛽+𝑑) boxes of side length 𝑛−1/(2𝛽+𝑑). In each box, 𝑔 is specified by
a degree 𝛽 polynomial interpolant of 𝑓 over a carefully chosen set of points known
as the principal lattice. Thus to evaluate 𝑔 at a query 𝑦, it suffices to identify the
box containing 𝑦—this is a simple search requiring 𝑂(log 𝑛) time–and to evaluate the
degree 𝛽 polynomial corresponding to that box.

The minimax accuracy is a consequence of two important facts: (i) Hölder smooth
densities of order 𝛽 are well-approximated by piecewise polynomials of degree 𝛽 with
pieces given by the 𝑛𝑑/(2𝛽+𝑑) boxes described above, and (ii) our interpolation scheme
is stable enough to recover the ‘true’ polynomial in each box from the noisy queries
𝑓 of 𝑓 on the principal lattice.

Interpolation on the principal lattice

This section provides an exposition of some of the main ideas in Chung and Yao [1977]
[Nicolaides, 1972, see also]. The principal lattice is defined as follows. Let Δ𝑑 ⊂ [0, 1]𝑑
denote the convex hull of 𝑣0 = 0 and 𝑣𝑖 = 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑑, where 𝑒𝑖 denotes the
𝑖-th standard basis vector in R𝑑. Let ℓ ≥ 1 denote an integer. The principal lattice
𝒫(ℓ) = {𝑈1, . . . , 𝑈𝑀} of order ℓ consists of all convex combinations ∑︀𝑑

𝑗=0 𝜆𝑗𝑣𝑗 where
𝜆𝑗 ∈ 1

ℓ
Z for all 0 ≤ 𝑗 ≤ 𝑑. We also define 𝒫(0) = 0 ∈ R𝑑. By a simple balls-and-bins

counting argument, it holds that the cardinality of 𝒫(ℓ) is 𝑀 =
(︁
ℓ+𝑑
ℓ

)︁
.

The principal lattice 𝒫(ℓ) has the remarkable property that for any values specified
on its elements 𝑈1, . . . , 𝑈𝑀 , there exists a unique polynomial of degree ℓ interpolating
those values. Hence we say that 𝒫(ℓ) admits unique interpolants. This property
is crucial to our approach described above because it allows us to uniquely and ap-
proximately recover the degree ℓ Taylor expansion of the unknown density 𝑓 in each
box.

The aforementioned unique interpolation property of the principal lattice is quite
special and does not hold for all point configurations. By simple linear-algebraic con-
siderations, it is not hard to see that the cardinality of such a set must be 𝑀 =

(︁
ℓ+𝑑
𝑑

)︁
.

A theorem of Chung and Yao [1977] gives an elegant combinatorial-geometric condi-
tion known as GC characterizing point configurations that admit unique interpolants:
a set of points 𝒫 satisfies the GC condition if every 𝑢 ∈ 𝒫 has an associated set of ℓ
affine (𝑑− 1)-dimensional hyperplanes whose union contains every point in 𝒫 except
for 𝑢. Under the condition GC, it is straightforward to build a Lagrangian inter-
polant. To see this, an equivalent interpretation of GC is that for every 𝑢 ∈ 𝒫 there
exist ℓ linear functions ℎ𝑢1 , . . . , ℎ𝑢ℓ such that

ℓ∏︁
𝑖=1

ℎ𝑢𝑖 (𝑢′) = 1(𝑢 = 𝑢′) ∀𝑢′ ∈ 𝒫 .
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Therefore,

𝑝𝑔(𝑦) =
∑︁
𝑢∈𝒫

𝑔(𝑢)
ℓ∏︁
𝑖=1

ℎ𝑢𝑖 (𝑦)

is the unique polynomial of degree ℓ such that 𝑝𝑔(𝑢) = 𝑔(𝑢) for all 𝑢 ∈ 𝒫 .
Let us apply this framework to the principal lattice. Let 𝜆𝑗(𝑥) denote the 𝑗-th

barycentric coordinate of 𝑥 ∈ R𝑑 with respect to 𝑣0, . . . , 𝑣𝑑. Concretely,

𝜆𝑗(𝑥) = 𝑥𝑗 ∀1 ≤ 𝑗 ≤ 𝑑

𝜆0(𝑥) = 1− 𝑥 · 1

We see that 𝒫(ℓ) satifies GC: the ℓ associated hyperplanes to 𝑈 ∈ 𝒫(ℓ) are given by{︂
𝑥 : 𝜆𝑗(𝑥) = 𝑠

ℓ

}︂
where 𝑗 satisfies 𝜆𝑗(𝑈) > 0 and 𝑠 = 0, 1, . . . , ℓ𝜆𝑗(𝑈)− 1. To see this, observe that if
𝑈 ′ ∈ 𝒫(ℓ) has barycentric coordinates majorizing those of 𝑈 (i.e., 𝜆𝑗(𝑈 ′) ≥ 𝜆𝑗(𝑈) for
all 0 ≤ 𝑗 ≤ 𝑑), then in fact 𝑈 ′ = 𝑈 — otherwise ∑︀

𝑗 𝜆𝑗 > 1, which is a contradiction.
Therefore,

𝑝𝑔(𝑦) =
𝑀∑︁
𝑖=1

𝑔(𝑈𝑖) ·
𝑑∏︁
𝑗=0

𝜆𝑗(𝑈𝑖)>0

ℓ𝜆𝑗(𝑈𝑖)−1∏︁
𝑠=0

𝜆𝑗(𝑥)− 𝑠
ℓ

𝜆𝑗(𝑈𝑖)− 𝑠
ℓ

is the unique polynomial interpolant of degree ℓ such that 𝑝𝑔(𝑈𝑖) = 𝑔(𝑈𝑖) for 𝑈𝑖 ∈
𝒫(ℓ).

Our method and contributions

We now formally describe our method for converting the given estimator 𝑓 of the
unknown density 𝑓 ∈ 𝒫ℋ(𝛽) to a more computationally tractable form. Let ℓ = ⌊𝛽⌋
denote the greatest integer strictly less than 𝛽.
Construction of 𝑔

1. Partition: Divide [0, 1]𝑑 into ℎ−𝑑 boxes {𝐵𝑘} of side length ℎ = 𝑛−1/(2𝛽+𝑑)

2. Mesh: Let 𝒫𝑘(ℓ) ⊂ 𝐵𝑘 denote a shifted copy of the rescaled principal lattice
ℎ · 𝒫(ℓ)

3. Interpolate: For each box, construct the unique degree ℓ polynomial inter-
polant 𝑝𝑘 such that 𝑝𝑘(𝑈) = 𝑓(𝑢) for all 𝑢 ∈ 𝒫𝑘(ℓ)

Return: 𝑔 : [0, 1]𝑑 → R defined by

𝑔(𝑦) =
∑︁
𝑘

𝑝𝑘(𝑦)1(𝑦 ∈ 𝐵𝑘).

Our main result is the following theorem.
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Theorem 1.4. Let 𝑓 ∈ 𝒫ℋ(𝛽), and let 𝑓 denote an estimator that is pointwise
minimax optimal:

sup
𝑦∈[0,1]𝑑

P𝑓
[︁⃒⃒⃒
𝑓(𝑦)− 𝑓(𝑦)

⃒⃒⃒
> 𝑡

]︁
≤ 2 exp

(︃
− 𝑡

2

𝜀2

)︃
,

where 𝜀 = 𝑂𝛽,𝑑(𝑛−𝛽/(2𝛽+𝑑)). Let 𝑄 denote the amount of time it takes to query 𝑓 .
Then 𝑔 has the following properties:

• Sublinear space: 𝑂̃𝛽,𝑑(𝑛
𝑑

2𝛽+𝑑 )

• Near-constant query time: 𝑂̃𝛽,𝑑(1)

• Near-minimax error: ‖𝑓 − 𝑔‖∞ = 𝑂̃𝛽,𝑑(𝑛− 𝛽
2𝛽+𝑑 )

The assumption on 𝑓 is satisfied for many density estimators, including large
families of kernel density estimators, local polynomial estimators, and projection es-
timators [Tsybakov, 2009]. Though our work here targets the minimax rate while
using minimal space, more generally, by tuning the parameter ℎ in our construction
above we can guarantee ‖𝑓−𝑔‖∞ ≤ 𝛿 with 𝑂̃𝛽,𝑑(𝛿−𝑑/𝛽) space and near-constant query
time. Also, in this work we focus on density estimation, but our methods are readily
applicable to other nonparametric settings such as regression.

Further directions

The implicit constants in Theorem 1.4 scale roughly as
(︁
𝛽+𝑑
𝛽

)︁
where 𝛽 is the smooth-

ness of the unknown density and 𝑑 is the dimension. When 𝛽 ≍ 𝑑, this binomial
coefficient scales exponentially, so it would be useful to improve these constants.
However, it is important to keep in mind that typically in nonparametric statistics
𝛽 = 𝑂(1), and hence we must have 𝑑 = 𝑂(log 𝑛) for even consistent estimation to be
possible.

Another interesting problem is to find an adaptive method achieving similar guar-
antees to Theorem 1.4 when the smoothness parameter 𝛽 is not known in advance. It
is possible to use existing methods to estimate the smoothness from the data, but it
is unclear if this information can be extracted from a black-box estimator satisfying
an accuracy assumption such as in Theorem 1.4.

Finally, the estimator from Theorem 1.4 is a multivariate piecewise polynomial
and is thus discontinuous. It would be interesting to see if a smoothed version of our
estimator can be constructed using splines.

1.4 Pedigree reconstruction
In our final chapter, we investigate a combinatorial inference problem arising from
genomics. A pedigree is a graph that describes the genealogy of a population. The
nodes of this graph represent individuals, and the edges indicate parent-child rela-
tionships. A fundamental problem in bioinformatics is to reconstruct the pedigree on
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prior generations given the genetic information of previously sequenced individuals. In
real-world applications, companies such as MyHeritage, 23andMe, and Ancestry.com
provide similar services using large databases. There is also a host of algorithms from
the computational biology literature demonstrating promising empirical and theoret-
ical performance [Thompson, 2000, Steel and Hein, 2006, Thatte and Steel, 2008,
He et al., 2014, Huisman, 2017, Wang, 2019]. In this work, we study an idealized
model that generates random pedigrees with a large number of generations and de-
velop an efficient recursive algorithm for reconstructing the unknown pedigree from
the observed gene sequences of extant individuals.

Our model

We consider a simple model of how a child inherits genetic information from its
parents. Each parent possesses a gene sequence, which we assume to be a string
of characters of length 𝐵 from an alphabet. For each entry or block of the child’s
gene sequence, we flip a fair coin. If heads, the block is filled with the mother’s
corresponding symbol, and otherwise the child inherits its father’s symbol in that
block. In our model, we assume that the pedigree is graded by generations so that
only individuals from the same generation form couples. Thus, once the symbols of
the founders, the highest level nodes in the pedigree, are specified, we can continue
repeating the above procedure in a Markovian way to generate an inheritance process
on the entire pedigree. We observe the gene sequences of the extant, the lowest nodes
in the pedigree, and our problem is to reconstruct the latent pedigree from these
observations.

Unfortunately, pedigree reconstruction in this model is ill-posed due to unidentifi-
ability (see Section 5.2 for examples). However, examples of unidentifiable pedigrees
shed light on the phenomena that make inference challenging. The difficulty in pedi-
gree reconstruction stems from inbreeding which essentially amounts to cycles in the
pedigree. For example, there may be pairs of extant nodes with multiple lowest com-
mon ancestors or couples that have a common ancestor. On the other end of the
spectrum of difficulty, one can consider pedigrees with no cycles. In this situation, a
simple approach is to estimate the pairwise distances among all of the extant nodes
by counting the number of common symbols shared by two individuals. If the gene
sequences are long enough, then by Hoeffding–Chernoff bounds this procedure re-
constructs all of the pairwise distance correctly, which in turn suffices to correctly
reconstruct the pedigree [Steel and Hein, 2006].

In this work, we formulate a natural generative model for the pedigree struc-
ture with a mild degree of inbreeding that makes the inference task challenging yet
tractable for approximate recovery. The generative model is specified by a branching
factor 𝛼 that represents the average number of children per couple, an integer 𝑇 that
denotes the number of generations, and an integer 𝑁𝑇 that denotes the size of the
founding population. First, the individuals in the founding population randomly pair
up into couples, and each couple generates Poisson(𝛼) children independently that
compose generation 𝑇 −1. Iterating this procedure of random pairing and generating
Poisson(𝛼) children per couple for 𝑇 generations yields the pedigree structure. The
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inheritance procedure operates as described above, where we initialize the founders
to have no common symbols. Equivalently, this can be viewed as sampling the gene
sequences of the founders i.i.d. and uniformly from a very large or infinite alphabet.

Next we give some intuition about the effect of the parameters in our model on the
degree of inbreeding and the difficulty of the reconstruction problem. The block length
𝐵 can be viewed as the sample complexity of our model by considering the 𝑖-th entry
of each extant gene sequence of the pedigree as a single draw from the inheritance
distribution resulting from the network structure. Thus the larger that 𝐵 is, the more
information we have in the sample regarding the pedigree. As the branching factor 𝛼
increases, the inference task also intuitively becomes easier because more information
is transmitted to the extant. As the size 𝑁𝑇 of the founding population grows large
relative to 𝛼, the amount of inbreeding reduces—for example, siblings are less likely
to form a couple because the average number of children is small relative to the size
of the generation. On the other hand, as the number of generations 𝑇 grows, cycles
become more likely and this increases the degree of inbreeding. These phenomena
are further illustrated by our main result.

Our methods and contributions

In this work, we develop an efficient algorithm for recovering the pedigree that re-
cursively reconstructs it generation by generation, starting with the parents of the
extant nodes. At a high level, the algorithm operates in the following manner. Once
generation 𝑡 is reconstructed, we reconstruct the next level 𝑡 + 1 by first recovering
the gene sequences at level 𝑡. Next, we determine which nodes in level 𝑡 are siblings
with one another by comparing common blocks among their recovered strings. Fi-
nally, collections of nodes determined to be mutual siblings in generation 𝑡 are then
iteratively assigned parents from generation 𝑡+ 1. The idea for this recursive scheme
is simple, but several complications arise in its implementation and analysis due to
the presence of inbreeding (see Chapter 5). Our main result is the following.

Theorem 1.5 (Informal). Assume that the branching factor 𝛼 is a sufficiently large
absolute constant, that the number of generations is 𝑇 = 𝑂( log𝑁𝑇

log𝛼 ), and that the block
length is 𝐵 = Ω(log𝑁𝑇 ). There exists an algorithm that runs in time poly(𝑁𝑇 , 𝐵)
and recovers 90% of the true pedigree in every generation, with high probability as
𝑁𝑇 →∞.

By the bound imposed on 𝑇 , with high probability, the pedigree can be shown
to have size on the order 𝑁1+𝛿

𝑇 , for a small constant 𝛿 that is independent of the
branching factor 𝛼. In other words, regardless of 𝛼, the deepest pedigrees that can
be handled by Theorem 1.5 all have the same number of vertices. On the other hand,
as 𝛼 grows, we show that our algorithm recovers a growing fraction of the pedigree
that can be made arbitrarily close to 1 for 𝛼 large enough. Finally, our algorithm has
sample complexity 𝐵 = poly(𝑇 ), which is one of its main advantages. In comparison,
the naive approach discussed for reconstruction of tree pedigrees based on estimating
pairwise differences requires 𝐵 = exp(Ω(𝑇 )) to recover a large fraction of the truth.
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Further directions

Relaxing the assumptions in our model to reflect the properties of more realistic
pedigrees arising in real-world applications is an important direction for future work.
For example, our approach here requires the branching factor 𝛼 to be a very large
constant, but it may be possible to achieve approximate recovery for all 𝛼 > 2. No-
tably, our model here does not allow for mutations, a basic phenomenon in biological
inheritance, and it would be interesting to investigate the impact of mutations on
the inference problem. As mentioned above, our prior on the gene sequences of the
founders is essentially i.i.d. over a large enough alphabet so that all of the generated
symbols are distinct. It is an intriguing question as to whether similar guarantees
can be attained with a binary or ternary alphabet. Another compelling problem is to
achieve strong recovery guarantees for pedigrees with a higher degree of inbreeding
than the ones we encounter here.
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Chapter 2

Balancing Gaussian vectors

2.1 Introduction
Randomized controlled experiments are often dubbed the “gold standard" for esti-
mating treatment effects because of their ability to create a treatment and a control
group that have the same features on average. Indeed, pure randomization, i.e., as-
signing each observation uniformly at random between the treatment and control
group, leads to two groups with approximately the same size, the same average age,
the same average height, etc. Unfortunately, because of random fluctuations, this ap-
proach may not lead to the best balance between the attributes of the control group
and those of the treatment group. Yet, near perfect balance is highly desirable since
it often leads to a more accurate estimator of the treatment effect. This quest for
balance was initiated at the dawn of controlled experiments. Indeed, W.S. Gosset,
a.k.a Student (of 𝑡-test fame) already questioned the use of pure randomization when
it leads to unbalanced covariates [Student, 1938], and R.A. Fisher proposed random-
ized block designs as a better solution in certain cases [Fisher, 1935]. One traditional
approach to overcome this limitation is to simply rerandomize the allocation until
the generated assignment is deemed balanced enough [Morgan and Rubin, 2012, Li
et al., 2018]. Rerandomization is effectively a primitive form of optimization that
consists in keeping the best of several random solutions. However, it was not until
recently that covariate balancing was recognized for the combinatorial optimization
problem that it really is. With this motivation, Bertsimas et al. [2015], Kallus [2018]
proposed algorithms based on mixed integer programming that, while flexible, did
not come with theoretical guarantees. More recently, Harshaw et al. [2019] used new
algorithms from Bansal et al. [2018] with theoretical guarantees to generate experi-
mental designs with a tunable degree of randomization versus covariate balance and
characterized the resulting trade-off between model robustness and efficiency for a
specific treatment effect estimator computed on data collected in such experiments.

In this work, we investigate both the theoretical and algorithmic aspects associated
to this question by framing it in the broader scope of vector balancing. In particular,
this question bears strong theoretical footing in discrepancy theory.1

1The recent work Harshaw et al. [2019] takes a similar point of view, though here our purpose is
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Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑚 denote a collection of vectors and let X denote the 𝑚 × 𝑛
matrix whose column 𝑖 is 𝑋𝑖. The discrepancy 𝒟(𝑋1, . . . , 𝑋𝑛) of this collection is
defined as follows.2

𝒟𝑛 := 𝒟(𝑋1, . . . , 𝑋𝑛) = min
𝜎∈{±1}𝑛

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞

= min
𝜎∈{±1}𝑛

|X𝜎|∞ (2.1)

Discrepancy theory is a rich and well-studied area with applications to combi-
natorics, optimization, geometry, and statistics, among many others [see the com-
prehensive texts Matoušek, 1999, Chazelle, 2000]. A fundamental result in the area
due to Spencer [1985] states that if max𝑖 |𝑋𝑖|∞ ≤ 1 and 𝑚 = 𝑛, then 𝒟𝑛 ≤ 6

√
𝑛.

Spencer’s proof is nonconstructive and relies on a technique known as partial coloring.
In the last decade, starting with the breakthrough work of Bansal [2010], several al-
gorithmic versions of the partial coloring method have been introduced to efficiently
find a signing 𝜎 that approximately attains the minimum in (2.1). These include
approaches based on random walks [Bansal, 2010, Lovett and Meka, 2012], random
projections [Rothvoss, 2017], and multiplicative weights [Levy et al., 2017]. In the
regime where 𝑚 ≥ 𝑛, these algorithms can be used to compute a signing (or alloca-
tion) 𝜎 ∈ {−1, 1}𝑛 with objective value 𝑂(

√︁
𝑛 log(2𝑚/𝑛) ). Moreover, this guarantee

is tight in the sense that examples are known with discrepancy matching this bound.
The aforementioned results make minimal structural assumptions on the vectors

𝑋1, . . . , 𝑋𝑛 and treat the input as worst-case. However, in the context of controlled
experiments, it is natural to assume that 𝑋1, . . . , 𝑋𝑛 are, in fact, independent copies of
a random vector 𝑋 ∈ R𝑚. While more general results are possible, the reader should
keep in mind the canonical example where 𝑋 ∼ 𝒩𝑚(0, 𝐼𝑚) is a standard Gaussian
vector, and in particular where the entries of 𝑋 are of order 1. We dub the study of
𝒟𝑛 in this context average-case discrepancy.

It was first shown in Karmarkar et al. [1986] via a nonconstructive application
of the second moment method that when 𝑚 = 1, the average-case discrepancy is
𝒟𝑛 = Θ(

√
𝑛 2−𝑛) with high probability, assuming that the underlying distribution

has a sufficiently regular density. This result was extended to specific multidimen-
sional regimes. First, Costello [2009] showed that 𝒟𝑛 = Θ(

√
𝑛 2−𝑛/𝑚) in the con-

stant dimension regime 𝑚 = 𝑂(1). The optimal discrepancy is also known in the
super-linear regime 𝑚 ≥ 2𝑛 where it was shown that 𝒟𝑛 = 𝑂(

√︁
𝑛 log(2𝑚/𝑛)).3

In particular, there is a striking gap between this benchmark and the discrepancy
|X𝜎rdm|∞ = Θ(

√
𝑛 log𝑚) achieved by a random signing 𝜎rdm, especially in the sub-

linear regime. Motivated by applications to controlled experiments, Krieger et al.
[2019] studied the average-case discrepancy problem with the aim to improve on this
gap. The authors devised a simple and efficient greedy scheme that, in the univariate

to focus purely on optimal covariate balance.
2In the interest of clarity, we free ourselves from important considerations in the practical design

of controlled experiments such as having two groups of exactly the same size.
3The upper bound established in Chandrasekaran and Vempala [2014] presents additional poly-

logarithmic terms that are negligible for most of the range 𝑚 ≥ 2𝑛. This is also the regime considered
by Harshaw et al. [2019].
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case, outputs an allocation 𝜎gree satisfying |X𝜎gree| = 𝑂(𝑛−2). In addition, Krieger
et al. [2019] argue that |X𝜎gree| = 𝑂(𝑛−2/𝑚) for any constant dimension 𝑚.

This state of the art leaves three important questions open:

1. Can a sub-polynomial discrepancy be achieved in polynomial time even in di-
mension 1?

2. What is the optimal discrepancy in the intermediate regime where 𝜔(1) = 𝑚 =
𝑜(𝑛)?

3. Do there exist efficient allocations that perform better than the random alloca-
tion in super-constant dimension?

The answer to the first question is well known. Indeed, the best known algorithm for
number partitioning is due to Karmarkar and Karp [1982] and yields 𝜎 ∈ {−1, 1}𝑛
such that |X𝜎|∞ = 𝑒−Ω(log2 𝑛) with high probability [see also Boettcher and Mertens,
2008]. While this result provides a super-polynomial improvement over algorithms
built for the worst case, a significant gap remains between the information-theoretic
bounds and the algorithmic ones despite extensive work on the subject [Boettcher and
Mertens, 2008, Borgs et al., 2001, Hoberg et al., 2017]. This suggests the possibility of
a statistical-to-computational gap similar to those that have been observed starting
with sparse PCA [Berthet and Rigollet, 2013a,b] and more recently in other planted
problems [Brennan et al., 2018, Bandeira et al., 2018]. Moreover, while the greedy
algorithm of Krieger et al. [2019] is loosely based on ideas from this algorithm, no
multivariate extension of this algorithm is known even for the case 𝑚 = 2. Note that
in the super-linear regime 𝑚 ≥ 2𝑛, the work of Chandrasekaran and Vempala [2014]
also proposes a polynomial-time algorithm based on Lovett and Meka [2012] showing
an absence of substantial statistical-to-computational gaps.

In this paper, we provide answers to the remaining two questions raised above.
First, we show that the discrepancy of standard Gaussian vectors is Θ(

√
𝑛 2−𝑛/𝑚) with

high probability for the remaining regime 𝜔(1) = 𝑚 = 𝑜(𝑛). Moreover, we comple-
ment this existential result by giving the first randomized polynomial-time algorithm
that achieves discrepancy 𝑒−Ω(log2(𝑛)/𝑚) when 2 ≤ 𝑚 = 𝑂(

√
log 𝑛). Note that while

this remains an intrinsically low-dimensional result, it covers already super-constant
dimension. This first algorithmic result paves the way for potential algorithmic ad-
vances in a wider range of high-dimensional problems. In particular, our existen-
tial result sets an information-theoretic benchmark against which future algorithmic
results can be compared as well as a baseline to establish potential statistical-to-
computational gaps in high dimensions. These improved discrepancy bounds also
have direct applications to randomized control trials. For example, in the case of
an additive linear response with all covariates observed, the discrepancy attained by
the allocation controls the fluctuations of the difference-in-means treatment effect
estimator [Krieger et al., 2019].

Another point of view on balancing covariates in randomized trails is that of
pairwise matching. In this setup, the experimenter first divides the sample into
two equal-sized groups and then pairs up individuals who have similar covariates.
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For the unidimensional case, Greevy et al. [2004] proposed a scheme that consists of
performing a minimum cost matching that leads to a bounded discrepancy. This result
may be extended to yield a discrepancy of order 𝑛1−1/𝑚 in dimension 𝑚 using results
on random combinatorial optimization Steele [1992]. Unlike matching algorithms,
bipartite matching algorithms can be implemented in near-linear time using modern
tools from computational optimal transport [Cuturi and Peyré, 2018, Altschuler et al.,
2017, 2019]. We leave it as an interesting open question to study allocation schemes
based on random bipartite matching problems for which sharp results have recently
been discovered [Ledoux and Zhu, 2019].

2.2 Main results
In this section, we give an overview of our main results. Detailed computations and
proofs are postponed to subsequent sections.

2.2.1 Existential result
Our first main result shows that when 𝑋1, . . . , 𝑋𝑛

𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑚) and 𝜔(1) = 𝑚 =
𝑜(𝑛), then the discrepancy is asymptotically

√︁
𝜋𝑛
2 2−𝑛/𝑚 with high probability. As in

the one-dimensional case [Karmarkar et al., 1986], this result highlights that drastic
cancellations are possible, with high probability, when the number of vectors grows
asymptotically faster than the dimension.

Theorem 2.1. Fix an absolute constant 𝛾 > 1 and suppose that 𝜔(1) = 𝑚 = 𝑜(𝑛).
Let 𝑋1, . . . , 𝑋𝑛

𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑚) be independent standard Gaussian random vectors. Then

lim
𝑛→∞

P
[︂
𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 𝛾

√︂
𝜋𝑛

2 2−𝑛/𝑚
]︂

= 1 . (2.2)

If 𝛾′ < 1, then
lim
𝑛→∞

P
[︂
𝒟(𝑋1, . . . , 𝑋𝑛) ≥ 𝛾′

√︂
𝜋𝑛

2 2−𝑛/𝑚
]︂

= 1. (2.3)

The work of Costello [2009] handles the case 𝑚 = 𝑂(1), and shows that the
limiting probability in (2.2) is exactly 1 − exp(−2𝛾𝑚). We also note that the series
of papers by Borgs et al. [2001, 2008a,b] provides an even more complete description
of the unidimensional case.

Our results are not limited specifically to Gaussian distributions. A mild extension
of our techniques allows us to derive a similar result for a more general family of
distributions, assuming that 𝑚 = 𝑂(𝑛/ log 𝑛).

Remark 2.1. Let 𝐶 > 0 denote a sufficiently small absolute constant, and suppose
that 𝑚 ≤ 𝐶𝑛/ log 𝑛. Let X denote an 𝑚 × 𝑛 random matrix whose entries are i.i.d
random variables having a common density 𝑓 : R→ R such that∫︁

𝑓(𝑥)2d𝑥 <∞,
∫︁
𝑥4𝑓(𝑥)d𝑥 <∞, and 𝑓(𝑥) = 𝑓(−𝑥), ∀ 𝑥 ∈ R.
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Then there exist absolute positive constants 𝑐 ≤ 𝑐′ such that

lim
𝑛→∞

P
[︁
𝑐
√
𝑛2−𝑛/𝑚 ≤ 𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 𝑐′√𝑛2−𝑛/𝑚

]︁
= 1.

We omit the proof of the above remark and focus on the Gaussian case for simplic-
ity and because for Gaussian vectors, our analysis covers the whole range 𝑚 = 𝑜(𝑛).

The proof of the upper bound in Theorem 2.1 is a nonconstructive application of
the second moment method, in a similar spirit to the analysis of Karmarkar et al.
[1986] on the one-dimensional case as well as Achlioptas–Moore’s analysis of the
threshold for random 𝑘-SAT [Achiloptas and Moore, 2002]. Recall that the second
moment method states that for a nonnegative random variable 𝑆, we have

P[𝑆 > 0] ≥ E[𝑆]2
E[𝑆2] . (2.4)

As described in more detail in Section 2.3, our strategy is to let 𝑆 count the number
of signings with discrepancy at most 𝛾2−𝑛/𝑚

√︁
𝜋𝑛/2 and show that the right-hand-side

of (2.4) tends to 1 asymptotically. We also note that the lower bound in Theorem
2.1 is a straightforward consequence of the Markov inequality (first moment method)
applied to 𝑆 (see Proposition 2.2).

In addition to our result for 𝑚 = 𝑜(𝑛), using similar techniques we also provide a
precise characterization of Gaussian discrepancy in the linear regime 𝑚 ≤ 𝛿𝑛, where 𝛿
is a sufficiently small absolute constant. In Appendix 2.5.2, we show that the discrep-
ancy is Θ(

√
𝑛2−1/𝛿) with probability at least 99%, asymptotically as 𝑛 → ∞. This

provides further evidence of a conjecture of Aubin et al. [2019] that the discrepancy
when 𝑚 = 𝛿𝑛 is asymptotically 𝑐(𝛿)

√
𝑛 with high probability for an explicit function

𝑐(𝛿).4 In particular, our result combined with those of Chandrasekaran and Vempala
[2014] confirms that the discrepancy is Θ(𝑐(𝛿)

√
𝑛) with asymptotic probability at

least 99% when 𝑚 = 𝛿𝑛 for all 𝛿 > 0.
Complementary to our work, we discuss recent existential results on average-case

discrepancy in the discrete case when 𝑋1, . . . , 𝑋𝑛 are i.i.d vectors in {0, 1}𝑚. Ex-
tending prior work of Ezra and Lovett [2016], Franks and Saks [2018] and Hoberg
and Rothvoss [2018] use a nonconstructive Fourier-analytic argument to show, for
two different models of random sparse binary vectors, that the discrepancy is 𝑂(1)
if 𝑛 = Ω̃(𝑚3) [Franks and Saks, 2018] and 𝑛 = Ω̃(𝑚2) [Hoberg and Rothvoss, 2018].
In addition, for the continuous case, Franks and Saks [2018] show that the discrep-
ancy of random unit vectors is 𝑂(exp(−

√︁
𝑛/𝑚3)). Potukuchi [2018] uses the second

moment method to show the discrepancy is 𝑂(1) if 𝑛 = Ω(𝑚 log𝑚) in the specific
case where the entries of 𝑋1 are uniform on {0, 1}. In other recent work, Bansal and
Meka [2019] establish an average-case version of the Beck–Fiala conjecture, giving an
algorithmic proof that the discrepancy of uniformly random 𝑡-sparse binary vectors
is at most 𝑂(

√
𝑡) for the entire range of parameters 𝑚,𝑛 if 𝑡 = Ω(log log𝑚). It is an

open question as to whether there exists a polynomial-time algorithm achieving 𝑂(1)

4See Appendix 2.5.2 for a more precise description of their results.
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discrepancy for random {−1,+1} vectors or sparse {0, 1} vectors with 𝑛 = poly(𝑚)
[Hoberg and Rothvoss, 2018, Franks and Saks, 2018].

2.2.2 Algorithmic result
Our second main result is algorithmic and applies to a large family of continuous dis-
tributions. We construct a randomized polynomial-time algorithm called Generalized
Karmarkar–Karp (GKK) that achieves discrepancy exp(−Ω(log2(𝑛)/𝑚)) with high
probability, assuming 𝑚 = 𝑂(

√
log 𝑛). This establishes the first such efficient algo-

rithm achieving quasi-polynomially-small discrepancy for this regime. Our algorithm
and analysis extend those of Karmarkar and Karp [1982] in the one-dimensional case
to higher dimensions.5

Theorem 2.2. Let X denote a random 𝑚×𝑛 matrix with iid entries having a common
density 𝜌 : [−Δ,Δ] → R which is 𝐿-Lipschitz and bounded above by some constant
𝐷 > 0. Suppose that

𝑚 ≤ 𝐶

√︃
log 𝑛

max(1, log Δ) ,

for some sufficiently small absolute constant 𝐶 = 𝐶(𝐷,𝐿) > 0. Then the algorithm
GKK outputs, in polynomial time, a signing 𝜎 ∈ {−1,+1}𝑛 such that

|X𝜎|∞ ≤ exp
(︃
−𝑐 log2 𝑛

𝑚

)︃
,

with probability at least 1− exp(−𝑐𝑛1/4) for some absolute constant 𝑐 > 0.

This result easily extends to distributions with unbounded support. For example,
if X has i.i.d standard Gaussian entries, then setting Δ = 𝑂(

√
log 𝑛) and conditioning

on the (high probability) event {|X𝑖𝑗| ≤ Δ ∀ 𝑖, 𝑗}, we can apply Theorem 2.2 to show
that GKK yields discrepancy exp(−𝑐 log2(𝑛)/𝑚) for the Gaussian matrix X.

It is an open question as to whether or not the guarantee of Theorem 2.2 can be
improved to achieve sub-quasi-polynomial discrepancy efficiently, even in dimension
one. Note that for 𝑚 = 1, Hoberg et al. [2017] provide evidence of hardness of a
𝑂(2

√
𝑛)-approximation to the optimal discrepancy in worst case via a reduction from

the Minkowski problem and the shortest vector problem. We leave the following
question.

Question 2.1. Suppose that 𝑚 = 𝑛𝛾 for some 𝛾 ∈ (0, 1). Let X denote a random
𝑚 × 𝑛 matrix with independent standard Gaussian entries. What is the smallest
possible value of |X𝜎|∞ that can be achieved algorithmically in polynomial time?

In particular, it is an open problem as to whether the partial coloring method can
be used to guarantee subconstant discrepancy for standard Gaussians when 𝑚 = 𝑛𝛾.

5Karmarkar and Karp [1982] give two algorithms for number partitioning. The first one is a
simple greedy heuristic, but its analysis was only performed for the uniform distribution over a
decade later by Yakir [1996]. Our algorithm presented here generalizes the second one which was
rigorously analyzed in the original paper of Karmarkar and Karp [1982].
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We suspect that the answer is negative. It seems that even attaining discrepancy
𝑜(
√
𝑚) serves as a natural bottleneck for such an approach.

2.3 Gaussian discrepancy in sub-linear dimension
The main goal of this section is to prove the following proposition. Throughout, we
adopt the shorthand notation 𝑢𝑛 .𝑛 𝑣𝑛 for 𝑢𝑛 ≤ 𝑣𝑛(1 + 𝑜(1)) and 𝑢𝑛 ≃𝑛 𝑣𝑛 for
𝑢𝑛 = 𝑣𝑛(1 + 𝑜(1)).

Proposition 2.1. Fix 𝛾 > 1, 𝜔(1) = 𝑚 = 𝑜(𝑛), and let 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑚) be

independent standard Gaussian random vectors. Then

lim
𝑛→∞

P
[︂
𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 𝛾

√︂
𝜋𝑛

2 2−𝑛/𝑚
]︂

= 1 .

We first outline our proof strategy based on the second moment method. Set
𝜀 = 𝜀(𝑛) = 𝛾2−𝑛/𝑚

√︁
𝜋𝑛/2 and define 𝑆, the number of low discrepancy solutions, to

be
𝑆 =

∑︁
𝜎∈{±1}𝑛

1
(︁⃒⃒⃒ 𝑛∑︁

𝑖=1
𝜎𝑖𝑋𝑖

⃒⃒⃒
∞
≤ 𝜀

)︁
. (2.5)

Our goal is to show that E[𝑆2]/E[𝑆]2 = 1 + 𝑜(1). By the second moment method
(2.4), this implies the desired result.

The next lemma gives a useful form for the first and second moments of 𝑆 and
follows from a straightforward calculation. Its proof is postponed to Appendix 2.5.1.

Lemma 2.1. The random variable 𝑆 defined as in (2.5) has its first two moments
given by

E[𝑆] = 2𝑛P
(︁
|𝑍| ≤ 𝜀√

𝑛

)︁𝑚
(2.6)

where 𝑍 ∼ 𝒩 (0, 1), and

E[𝑆2] = 2𝑛
𝑛∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
. (2.7)

Here 𝜌𝑘 = 1 − 2𝑘/𝑛 and P𝜌𝑘
denotes the joint distribution of (𝑋, 𝑌 ) with 𝑋, 𝑌 ∼

𝒩 (0, 1) having correlation 𝜌𝑘.

Given this representation, we proceed in two steps to prove an upper bound on
the second moment E[𝑆2]:

(i) We first apply a truncation argument to show that the contribution from the
𝑘 ≤ 𝑛/4 and 𝑘 ≥ 3𝑛/4 terms in the summand of (2.7) is negligible. See Lemma
2.5 and its proof in Appendix 2.5.1 for details.

(ii) Then we show that the dominant contribution in the summation (2.7) is asymp-
totically bounded by E[𝑆]2 and comes from an interval of length Θ(

√
𝑛) around
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Figure 2-1: 𝛼 ↦→ 𝜑𝑛(𝛼) for 𝑛 = 1000,𝑚 = ⌊
√

1000⌋, and 𝜀 = 1/𝑛.

𝑘 ≃ 𝑛/2. This part is somewhat delicate and we apply the Laplace method to
obtain sharp bounds.

By step (i), it suffices to control the leading term

𝐿 := 2𝑛
3𝑛/4∑︁
𝑘=𝑛/4

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
. (2.8)

To that end, approximate the above binomial coefficient using Lemma C.2 in Berthet
et al. [2018]: For any 𝑙 ∈ (0, 1/2], 𝛼 ∈ (𝑙, 1− 𝑙) such that 𝑛𝛼 is an integer, it holds

exp
(︁
− 1

12𝑙2𝑛
)︁
≤

√︁
2𝜋𝑛𝛼(1− 𝛼) exp(−𝑛ℎ(𝛼))

(︃
𝑛

𝛼𝑛

)︃
≤ exp

(︁ 1
12𝑛

)︁
,

where ℎ(𝛼) = −𝛼 log𝛼 − (1 − 𝛼) log(1 − 𝛼) denotes the binary entropy with ℎ(0) =
ℎ(1) = 0. Therefore, it holds that

𝐿 .𝑛
2𝑛√
2𝜋𝑛

3𝑛/4∑︁
𝑘=𝑛/4

exp(𝜑𝑛(𝛼𝑘)) (2.9)

where 𝛼𝑘 = 𝑘/𝑛 and

𝜑𝑛(𝛼) = 𝑛ℎ(𝛼) +𝑚 log(P1−2𝛼
[︁⃒⃒⃒√

𝑛𝑋
⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

]︁
)− 1

2 log𝛼(1− 𝛼). (2.10)

Moreover, as justified in Lemma 2.6 (see Appendix 2.5.1), for 𝑛 sufficiently large,
𝜑𝑛(𝛼) is a strictly concave function on [0.25, 0.75] with a unique maximum at 𝛼 = 0.5.
See Figure 2-1 for the graph of 𝜑𝑛(𝛼) for a specific setting of the parameters. Thus
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we can make the Riemann sum approximation

𝐿 .𝑛
2𝑛√
2𝜋𝑛

3𝑛/4∑︁
𝑘=𝑛/4

exp(𝜑𝑛(𝛼𝑘)) .𝑛

√
𝑛2𝑛√
2𝜋

∫︁ 3/4

1/4
exp(𝜑𝑛(𝛼))𝑑𝛼. (2.11)

Our goal now is to employ the Laplace method [see, e.g., Murray, 1984], a well-
known technique from asymptotic analysis, to compute explicitly the asymptotic
growth of the right-hand-side above. It consists in performing a second-order Taylor
expansion of 𝜑𝑛 in order to reduce the problem to the computation of a Gaussian
integral.

Lemma 2.2. Suppose that 𝑚 = 𝑜(𝑛) and set 𝜀 = 𝛾2−𝑛/𝑚
√︁
𝑛𝜋/2. Recall the definition

of 𝑆 from (2.5). Then
𝐿 .𝑛 E[𝑆]2. (2.12)

Proof. We apply the Laplace method to the integral in (2.11). Let 𝜂 ∈ (0, 1) be
arbitrary, and define 𝑔𝑛(𝛼) = 𝜑𝑛(𝛼)/𝑛. Since ℎ′′(𝛼) is continuous, Lemma 2.6 implies
that there exists 𝛿 = 𝛿(𝜂) and 𝑁 = 𝑁(𝜂) such that

1
𝑛
|𝜑′′
𝑛(𝛼)− 𝜑′′

𝑛(1/2)| ≤ 𝜂 , ∀𝛼 ∈ (1/2− 𝛿, 1/2 + 𝛿), 𝑛 ≥ 𝑁. (2.13)

The above inequality follows by writing 𝑔′′
𝑛(𝛼) = ℎ′′(𝛼) + 𝑟𝑛(𝛼), where 𝑟𝑛(𝛼) is a

remainder term that goes to 0 uniformly in 𝛼 ∈ (0.25, 0.75) as 𝑛→∞, using Lemma
2.6. Using that the remainder term is small and ℎ′′(𝛼) is continuous at 𝛼 = 1/2, we
arrive at (2.13).

By (2.13) and Taylor’s theorem,

𝜑𝑛(𝛼)− 𝜑𝑛(1/2) ≤ 1
2(𝜑′′

𝑛(1/2) + 𝜂𝑛)(𝛼− 1/2)2 , ∀𝛼 ∈ (1/2− 𝛿, 1/2 + 𝛿), 𝑛 ≥ 𝑁.

(2.14)
Moreover,

𝜑′′
𝑛(1/2) + 𝜂𝑛 < 0 (2.15)

for 𝑛 sufficiently large because 𝜂 ∈ (0, 1) and 𝜑′′
𝑛(1/2) ≃𝑛 −4𝑛 by Lemma 2.6. There-

fore, since 𝜑𝑛 is increasing on (0.25, 0.75) for 𝑛 sufficiently large,
√
𝑛

exp(𝜑𝑛(1/2))

∫︁ 1/2−𝛿

1/4
exp(𝜑𝑛(𝛼)) 𝑑𝛼 .𝑛 10

√
𝑛 exp(𝜑𝑛(1/2− 𝛿)− 𝜑𝑛(1/2)) (2.16)

.𝑛 10
√
𝑛 exp

(︂1
2(𝜑′′

𝑛(1/2) + 𝜂𝑛)𝛿2
)︂

= 𝑜(1),

where we applied (2.14) and (2.15). By symmetry of 𝜑𝑛(𝛼) about 𝛼 = 1/2, the
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integral as in (2.16) from 1/2 + 𝛿 to 3/4 is negligible. Moreover, by (2.14),
∫︁ 1/2+𝛿

1/2−𝛿
exp(𝜑𝑛(𝛼)) 𝑑𝛼 .𝑛

∫︁ 1/2+𝛿

1/2−𝛿
exp

(︂
𝜑𝑛(1/2) + 1

2(𝜑′′
𝑛(1/2) + 𝜂𝑛)(𝛼− 1/2)2

)︂
𝑑𝛼

(2.17)

.𝑛 exp(𝜑𝑛(1/2))
√︃

2𝜋
|𝜑′′
𝑛(1/2) + 𝜂𝑛|

= 2𝑛𝑓𝑚𝑛
√︃

2𝜋
𝑛(1− 𝜂/4) ,

where
𝑓𝑛 = P0(

⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀).

Since 𝜂 ∈ (0, 1) was arbitrary, we conclude by (2.6), (2.9), (2.11), (2.16), (2.16), and
the definition of 𝑓𝑛 that

𝐿 .𝑛
2𝑛√
2𝜋𝑛
· 𝑛 ·

∫︁ 3/4

1/4
exp(𝜑𝑛(𝛼)) 𝑑𝛼 .𝑛 22𝑛𝑓𝑚𝑛 = E[𝑆]2.

Proof of Proposition 2.1. We see that E[𝑆2]/E[𝑆]2 .𝑛 1 as 𝑛 → ∞ applying Lemma
2.1, Lemma 2.5, (2.8), (2.9), and Lemma 2.2. Proposition 2.1 follows by the second
moment method.

We complement Proposition 2.1 with a near-matching lower bound.

Proposition 2.2. Let 𝜔(1) = 𝑚 = 𝑜(𝑛), fix 𝛾 < 1, and let 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑚)

be independent standard Gaussian random vectors. Then

lim
𝑛→∞

P
[︂
𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 𝛾

√︂
𝜋𝑛

2 2−𝑛/𝑚
]︂

= 0.

Proof. Recall the definition of 𝑆 as in (2.5), which counts the number of signings with
discrepancy 𝜀 = 𝛾2−𝑛/𝑚

√︁
𝜋𝑛/2. By the Markov inequality, (2.20), and (2.6),

P [𝑆 > 1] ≤ E[𝑆] = 2𝑛P
[︂
|𝑍| < 𝛾

√︂
𝜋𝑛

2 2−𝑛/𝑚
]︂𝑚

.𝑛 𝛾
𝑚 → 0

because 𝜔(1) = 𝑚 = 𝑜(𝑛) and 𝛾 < 1. This completes the proof.

Our first main result, Theorem 2.1, is a direct consequence of Propositions 2.1
and 2.2.

2.4 Algorithmic discrepancy minimization in low
dimension

Now we describe our approach for proving Theorem 2.2. In this section we introduce
the generalized Karmarkar–Karp algorithm GKK. Recall that the goal is to find
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algorithmically 𝜎 ∈ {±1}𝑛 such that |X𝜎|∞ is small. As in Karmarkar and Karp
[1982], our algorithm is a differencing method, which means that throughout the
algorithm, we maintain a set of vectors 𝑆, and our basic operations consist of removing
two vectors, say 𝑥 and 𝑦, from 𝑆 and then adding the difference to 𝑆 : 𝑆 ← 𝑆 ∪
{𝑥− 𝑦}∖{𝑥, 𝑦}. We perform a sequence of these differencing operations in a judicious
way until there is a single vector 𝑣 remaining in 𝑆. Note that at any given time,
the elements of 𝑆 correspond to (disjoint) partial signed sums of the original vectors
𝑋1, . . . , 𝑋𝑛. Hence, the final vector 𝑣 ∈ 𝑆 is indeed a signed sum of the original
vectors. It is possible to keep track of the final signing by tracking the differences,
though we do not do so explicitly.

Next, we informally describe the GKK differencing method in detail. For sim-
plicity, we assume that Δ = 1 in this description. The algorithm GKK is a recursive
procedure that consists of Θ(log 𝑛) phases. For the first phase of the recursion, given
a collection of 𝑛 vectors lying in [−1, 1]𝑚, we partition this cube into sub-cubes of side
length 𝛼 = 𝑛−Ω(1/𝑚). The idea is that with sub-cubes of this size, we are likely to have
multiple points in each sub-cube, and these points would be very close to each other.
We then randomly difference the vectors in each sub-cube until there is at most one
point left in each sub-cube. Next, we enter a clean-up step to deal with the leftover
vectors. First we combine the leftover vectors (at most one per each sub-cube) via
a standard differencing algorithm that we call REDUCE into a single ‘bad’ vector
𝑣(0) and let 𝐺′ ⊂ [−𝛼, 𝛼]𝑚 denote the vectors formed from random differencing. Next
we make the entries of the bad vector small by adding signed combinations of a few
vectors from 𝐺′. Namely, we draw at random points from 𝐺′ and greedily difference
them against 𝑣(0) until the resulting vector is sufficiently small in the Euclidean norm.
Specially, our update procedure for this clean-up step is

𝑣(𝑘) = 𝑣(𝑘−1) + 𝑎*u 𝑘 (2.18)
𝑎* = argmin

𝑎∈{±1}

⃒⃒⃒
𝑣(𝑘−1) + 𝑎u 𝑘

⃒⃒⃒
2
.

where u 𝑘 is drawn at random from the remaining vectors is 𝐺′.
Once we have 𝑣(𝑘) ∈ [−𝑂𝑚(𝛼), 𝑂𝑚(𝛼)]𝑚, we stop drawing random vectors from

𝐺′, and this ends the first phase of recursion. The remaining vectors form the in-
put to the second phase, which applies the same procedure as above on the smaller
cube [−𝛼, 𝛼]𝑚. Moreover, subsequent phases follow the same pattern: partition,
difference, and clean-up. After each phase, the input cube shrinks by a factor of
𝑛−Ω(1/𝑚). Hence, after a logarithmic number of phases, the remaining vectors lie in a
cube of side length 𝑛−Ω(𝑛/𝑚) = 𝑒−Ω(log2 𝑛/𝑚). We then apply REDUCE to combine
the remaining vectors into a single vector with discrepancy as in Theorem 2.2.

We remark that our algorithm also features a resampling step that happens im-
mediately after partitioning. In each phase, this resampling procedure labels points
as ‘good’ or ‘bad’ so that the good points are independent and have independent
coordinates that have a nice distribution. This same resampling trick was also used
in Karmarkar and Karp [1982] and is essential for (most of) the remaining random
vectors at the end of each phase to have a nice distribution facilitating a recursive
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analysis. Moreover, the partition and difference steps of our algorithm are also
similar to those used in Karmarkar and Karp [1982] for the one-dimensional case.

In summary, the algorithm GKK consists of several phases of a subroutine PRDC,
which stands for partition, resample, difference, clean-up, that we now define explic-
itly. In the first part of the clean-up phase, we remark that the aforementioned
algorithm REDUCE is applied. However, we defer the explicit description of this
algorithm, which uses standard techniques, to Appendix 2.5.3, instead stating its key
property of use.

Lemma 2.3. Given 𝑋1, . . . , 𝑋𝑁 ∈ R𝑚, the algorithm REDUCE is polynomial-time
and outputs 𝜎 ∈ {±1}𝑁 such that⃒⃒⃒⃒

⃒
𝑁∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞
≤ max

𝑆⊂[𝑁 ]:|𝑆|=𝑚

∑︁
𝑗∈𝑆
|𝑋𝑗|∞ . (2.19)

In the explicit description of PRDC below, 𝛾 > 0 denotes a fixed absolute con-
stant to be set later (see Appendix 2.5.5).

PRDC:
Input: A number 𝛼𝑡 > 0. A set of vectors 𝑆𝑡 ⊂ [−𝛼𝑡, 𝛼𝑡]𝑚. A single vector

𝑣𝑡 ⊂ 𝛾𝑚[−𝛼𝑡, 𝛼𝑡]𝑚. A pdf 𝑔𝑡 : [−𝛼𝑡, 𝛼𝑡]𝑚 → R. Define 𝑁𝑡 = 2𝑚⌈|𝑆𝑡|1/(4𝑚)⌉𝑚.

1. Partition: Define 𝛼𝑡+1 = 𝛼𝑡/⌈|𝑆𝑡|1/(4𝑚)⌉. Divide the cube [−𝛼𝑡, 𝛼𝑡]𝑚 into 𝑁𝑡

disjoint sub-cubes 𝐶1, . . . , 𝐶𝑁𝑡 that are of the form 𝛼𝑡+1𝑧 + [0, 𝛼𝑡+1]𝑚 for some
integer vector 𝑧 ∈ Z𝑚.

2. Resample: Independently for every vector 𝑥 in 𝑆𝑡, if 𝑥 ∈ 𝐶𝑗, then label 𝑥 as
‘good’ with probability (min𝑦∈𝐶𝑗

𝑔𝑡(𝑦))/𝑔𝑡(𝑥). Otherwise, label 𝑥 to be ‘bad.’
Let 𝐺𝑡 denote the set of good points and 𝐵𝑡 denote the set of bad points.

3. Difference: For every sub-cube 𝐶𝑗, pick uniformly at random two points in
𝐺𝑡 ∩ 𝐶𝑗, include their difference in 𝐺′

𝑡, and remove them from 𝐺𝑡. Continue
this until 𝐺𝑡 ∩ 𝐶𝑗 has at most 1 good point for every 𝑗. Let 𝐵′

𝑡 be the union of
𝐵𝑡, 𝑣𝑡, and the leftover good points.

4. Clean-up:

(a) Apply REDUCE to the vectors in 𝐵′
𝑡 to obtain 𝜎. Define 𝑣(0)

𝑡 = ∑︀
𝑏𝑖∈𝐵′

𝑡
𝜎𝑖𝑏𝑖.

(b) For 𝑘 = 0, 1, 2, . . .
If

⃒⃒⃒
𝑣

(𝑘)
𝑡

⃒⃒⃒
2
≥ 𝛾𝑚𝛼𝑡+1: remove uniformly at random a point 𝑥 ∈ 𝐺′

𝑡. Define
𝑣

(𝑘+1)
𝑡 = 𝑣

(𝑘)
𝑡 + 𝑎*𝑥 where 𝑎* = argmin𝑎∈{±1} |𝑣

(𝑘)
𝑡 + 𝑎𝑥|2. Define 𝐺′

𝑡 ←
𝐺′
𝑡∖{𝑥}.

Else: 𝑣𝑡+1 := 𝑣
(𝑘)
𝑡 . BREAK

Output: 𝑆𝑡+1 := 𝐺′
𝑡, 𝑣𝑡+1, 𝛼𝑡+1 := 𝛼𝑡/⌈|𝑆𝑡|1/(4𝑚)⌉
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Now we explicitly describe our main algorithm GKK in terms of the subroutine
PRDC. Recall that 𝜌 is the density corresponding to a particular entry of X. First
we need the following definition.

Definition 2.1 (Triangular distribution). A random vector y ∈ R𝑚 follows a trian-
gular distribution on the cube [−𝑅,𝑅]𝑚 if the distribution of y is given by u − v,
where u and v are independent and uniformly distributed on [0, 𝑅]𝑚. Notationally,
we write y ∼ Tri[−𝑅,𝑅]𝑚.

GKK:
Input: An 𝑚 × 𝑛 matrix X. A probability density function 𝜌 : [−Δ,Δ] → R.

Let 𝑇 = ⌈𝐶* log 𝑛⌉ where 𝐶* := (2 log(10/3))−1.

1. Set 𝑆1 = col(X), 𝛼1 = Δ, 𝑣1 = 0, and 𝑔1 = 𝜌⊗𝑚.

2. For 𝑡 = 1, 2, . . . , 𝑇 :

(a) Run PRDC on the input data 𝑆𝑡, 𝑣𝑡, 𝛼𝑡, 𝑔𝑡 to output 𝑆𝑡+1, 𝑣𝑡+1, and 𝛼𝑡+1.
(b) Set 𝑔𝑡+1(𝑥) = 1

𝛼𝑡+1
𝑓(𝑥/𝛼𝑡+1), where 𝑓(𝑥) is the triangular density on

[−1, 1]𝑚.

3. Apply REDUCE to the vectors in 𝑆𝑇∪{𝑣𝑇} to obtain 𝜎. Let 𝑣 = ∑︀
𝑠𝑖∈𝑆𝑇 ∪{𝑣𝑇 } 𝜎𝑖𝑠𝑖.

Output: |𝑣|∞

We remark that the first three steps of PRDC are similar to those in the corre-
sponding subroutine in Karmarkar and Karp [1982] for the one-dimensional case. The
clean-up step and its analysis on the other hand are quite different. In particular, we
use REDUCE to combine the ‘bad’ vectors left over from resampling into a single
bad vector 𝑣(0). This subroutine is quite similar to the algorithm used by Beck–Fiala
to show that 𝑡-sparse vectors have discrepancy at most 2𝑡− 1 [Beck and Fiala, 1981].
In contrast, Karmarkar and Karp [1982] use a greedy iterative algorithm for dealing
with bad points in dimension 1, but it is not clear how to generalize their algorithm to
also work in higher dimensions. In the next part of the clean-up step, we must bring
the bad vector 𝑣(0) into a smaller range. Karmarkar and Karp [1982] do this by ran-
domly sampling points from 𝐺′ and greedily differencing them against 𝑣(0) until the
resulting number is small. Here we use the same approach, but since we are working
in higher dimensions, we measure the resulting vector in the Euclidean norm. In this
part of the clean-up step, the key difference between our work and Karmarkar and
Karp [1982] lies in our analysis, which includes elements of the analysis of stochastic
gradient descent, as well as martingale concentration and the Khintchine inequality
(see Appendix 2.5.5).

We also comment on the reason for the bound 𝑚 = 𝑂(
√

log 𝑛) in Theorem 2.2.
First observe that by our choice of 𝛼 = 𝑛−Ω(1/𝑚) for the side-lengths of the sub-cubes
at the first phase, it is necessary that 𝑚 = 𝑂(log 𝑛); otherwise the sub-cubes are
not smaller than the original cube. The reason we require the stronger condition
𝑚 = 𝑂(

√
log 𝑛) is so that not too many points are labeled ‘bad’ in the resampling
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step of our algorithm. We direct the reader to Appendix 2.5.4 for the analysis and
further discussion.

2.4.1 Analysis of GKK
The proof of Theorem 2.2 follows from a sequence of inductive assumptions. Recall
that 𝑆𝑡 denotes the points input to the 𝑡th phase of PRDC, excluding the single ‘bad’
vector 𝑣𝑡 ∈ 𝛾𝑚[−𝛼𝑡, 𝛼𝑡]𝑚, where 𝛾 is a fixed absolute constant to be determined.
Recall that 𝐶* = (2 log(10/3))−1, as set in the definition of GKK, and that Δ > 0 is
the side length of the cube containing the initial set of vectors 𝑆1.

Proposition 2.3. Let 𝑋1, . . . , 𝑋𝑛 be iid random vectors, each having a joint density
𝑔 : [−Δ,Δ]𝑚 → R. Consider the output 𝑆𝑡, 𝑣𝑡, 𝛼𝑡 that results after the (𝑡−1)-th phase
of PRDC in step 2 of GKK. Then conditioned on |𝑆𝑗| = 𝑛𝑗 for 1 ≤ 𝑗 ≤ 𝑡, we have

• the 𝑛𝑡 points in 𝑆𝑡 are iid and follow a triangular distribution on [−𝛼𝑡, 𝛼𝑡]𝑚,
and

• the random vector 𝑣𝑡 is independent of the vectors in 𝑆𝑡.

Proposition 2.3 ensures that the distribution of the output of each phase of re-
cursion is preserved, allowing us to apply induction. At the heart of this result is
the following marginal calculation which implies that the good points have a uniform
distribution on their respective sub-cubes. Conditioning on 𝑋1 ∈ 𝐶1, if 𝐿 denotes the
label of 𝑋1 as ‘good’ or ‘bad’, then (𝑋1, 𝐿) has a mixed joint density 𝑝(𝑥, ℓ) where
𝑥 ∈ 𝐶1 and ℓ ∈ {‘good’, ‘bad’}, which by Bayes’ rule satisfies

𝑝(𝑥|𝐿 = ‘good’) = 𝑝(𝑥, ‘good’)
P[𝐿 = ‘good’] =

𝑔(𝑥) · min𝑦∈𝐶1 𝑔(𝑦)
𝑔(𝑥)∫︀

𝐶1
𝑝(𝑦, ‘good’)d𝑦 = 1

Vol(𝐶1)
,

for all 𝑥 ∈ 𝐶1.
The proofs of Propositions 2.4 and 2.5 below are postponed to Appendices 2.5.4

and 2.5.5, respectively. The former relies on showing that a large fraction of the
points input to the 𝑡th phase are labeled ‘good’ in the resample step, and the latter
requires us to show that few of the random differences created in step 3 of PRDC
are lost in the clean-up step.

Proposition 2.4. Suppose that 1 ≤ 𝑡 ≤ 𝐶* log 𝑛 and 𝑚 ≤ 𝐶
√︁

(log 𝑛)/max(1, log Δ),
where 𝐶 is a sufficiently small absolute constant. Then for some fixed 𝜃, conditioned
on the events |𝑆𝑗| ≥ 𝜃𝑗−1𝑛 for all 1 ≤ 𝑗 ≤ 𝑡, it holds that the set 𝐺′

𝑡 of random
differences created in step 2 of the 𝑡th phase of PRDC satisfies |𝐺′

𝑡| ≥ 𝛽|𝑆𝑡| for some
fixed 𝛽 with probability at least 1−exp(−𝑐1

√
𝑛), where 𝑐1 > 0 is an absolute constant.

In particular, we may set 𝜃 = 0.3 and 𝛽 = 0.4.

Proposition 2.5. Suppose that 1 ≤ 𝑡 ≤ 𝐶* log 𝑛 and 𝑚 ≤ 𝐶
√

log 𝑛, where 𝐶 is a
sufficiently small absolute constant. Then conditioned on the events |𝐺′

𝑡| ≥ 𝛽|𝑆𝑡| and
|𝑆𝑗| ≥ 𝜃𝑗−1𝑛 for 1 ≤ 𝑗 ≤ 𝑡, it holds that the set 𝑆𝑡+1 ( the input to the (𝑡 + 1)-th
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iteration of PRDC) satisfies |𝑆𝑡+1| ≥ 𝜃|𝑆𝑡| with probability at least 1−exp(−𝑐2𝑛
1/4),

where 𝑐2 > 0 is an absolute constant. In particular, we may choose 𝛽 = 0.4 and
𝜃 = 0.3.

The proof of Theorem 2.2 follows easily from the previous two propositions and
is found in Appendix 2.5.6.

2.5 Appendix

2.5.1 Proofs from Section 2.3

First, we calculate the first and second moments of 𝑆 as defined in (2.5).

Proof of Lemma 2.1. Let 𝑋(𝑗)
𝑖 denote the 𝑗th element of the vector 𝑋𝑖. Since these

elements are independent, we get

E[𝑆] =
∑︁

𝜎∈{±1}𝑛

𝑚∏︁
𝑗=1

P
(︁⃒⃒⃒ 𝑛∑︁

𝑖=1
𝜎𝑖𝑋

(𝑗)
𝑖

⃒⃒⃒
≤ 𝜀

)︁
= 2𝑛P

(︁
|𝑍| ≤ 𝜀√

𝑛

)︁𝑚
where 𝑍 ∼ 𝒩 (0, 1). This completes the proof of (2.6).

To prove (2.7), let 𝑑(𝜏, 𝜎) denotes the Hamming distance between 𝜎 and 𝜏 . Ob-
serve that if 𝜏 and 𝜎 satisfy 𝑑(𝜏, 𝜎) = 𝑘, then 𝑋 := 1√

𝑛

∑︀𝑛
𝑖=1 𝜎𝑖𝑋

(𝑗)
𝑖 and 𝑌 :=

1√
𝑛

∑︀𝑛
𝑖=1 𝜏𝑖𝑋

(𝑗)
𝑖 are 𝜌𝑘-correlated standard Gaussians random variables. Thus

E[𝑆2] =
∑︁

𝜎,𝜏∈{±1}𝑛

P
(︁⃒⃒⃒ 𝑛∑︁

𝑖=1
𝜎𝑖𝑋𝑖

⃒⃒⃒
∞
≤ 𝜀 ,

⃒⃒⃒ 𝑛∑︁
𝑖=1

𝜏𝑖𝑋𝑖

⃒⃒⃒
∞
≤ 𝜀

)︁

=
∑︁
𝜎

𝑛∑︁
𝑘=0

∑︁
𝜏 : 𝑑(𝜏,𝜎)=𝑘

P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
= 2𝑛

𝑛∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
,

which proves the lemma.

The following small-ball probability estimates are required for the proof of the
truncation argument, Lemma 2.5.

Lemma 2.4. Let 𝑍 denote a standard Gaussian random variable, and let 𝑋, 𝑌 denote
𝜌-correlated standard Gaussian random variables with 𝜌 ∈ (−0.5, 0.5). Then for 0 <
𝑧 < 1, we have for some absolute constant 𝑐 > 0 that

− 𝑐𝑧3 ≤ P
[︁
|𝑍| ≤ 𝑧

]︁
−

√︃
2
𝜋
𝑧 ≤ 0, (2.20)
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and for all 𝑧 ∈ (0,∞), we have

P𝜌
[︁
|𝑋| ≤ 𝑧, |𝑌 | ≤ 𝑧] ≤ 2

𝜋
√

1− 𝜌2 𝑧
2. (2.21)

Proof. Observe that 𝑧 ↦→ P[|𝑍| ≤ 𝑧] is a concave function for 𝑧 ≥ 0. Hence, it
lies below the tangent line to this curve at 𝑧 = 0, which is precisely the function
𝑧 ↦→

√︁
2/𝜋𝑧. This proves the right-hand-side of (2.20). To prove the left-hand-side,

we apply Taylor expansion and observe that for |𝑧| ≤ 1, it holds that

P[|𝑍| ≤ 𝑧] =
√︃

2
𝜋
𝑧 − 1

6

√︃
2
𝜋
𝑧3 ±𝑂(𝑧5) ≥

√︃
2
𝜋
𝑧 − 𝑐𝑧3

for some absolute constant 𝑐 > 0. To prove (2.21), note that the joint density 𝜓𝜌(𝑥, 𝑦)
of a pair of standard normal 𝜌-correlated Gaussians satisfies

𝜓𝜌(𝑥, 𝑦) = 1
2𝜋
√

1− 𝜌2 exp
(︁
− 𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

2− 2𝜌2

)︁
≤ 1

2𝜋
√

1− 𝜌2 .

The upper bound follows by positive-semidefiniteness of the covariance matrix. Hence,
integrating over the rectangle |𝑥| ≤ 𝑧, |𝑦| ≤ 𝑧 and applying the above upper bound
yields the desired result.

Lemma 2.5. Suppose that 𝜔(1) = 𝑚 = 𝑜(𝑛) and let 𝜀 = 𝜀(𝑛) = 𝛾2−𝑛/𝑚
√︁
𝜋𝑛/2 for

some 𝛾 > 1. Then

2𝑛
𝑛/4∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
= 𝑜(E[𝑆]2). (2.22)

2𝑛
𝑛∑︁

𝑘=3𝑛/4

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
= 𝑜(E[𝑆]2). (2.23)

Proof. Note that (2.23) follows from (2.22) by symmetry, so it suffices to prove (2.22).
We may write 𝑚 = 𝑛/𝑔𝑛 for some sequence 𝑔𝑛 such that 𝜔(1) = 𝑔𝑛 = 𝑜(𝑛). For
notational convenience, define

𝑓𝑛(𝜌) = P𝜌(
⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀).

By Lemma 2.1, we have

2𝑛∑︀𝑛/4
𝑘=0

(︁
𝑛
𝑘

)︁
P𝜌𝑘

(|
√
𝑛𝑋| ≤ 𝜀 , |

√
𝑛𝑌 | ≤ 𝜀)𝑚

E[𝑆]2

=
𝑛/(𝑔𝑛)2∑︁
𝑘=0

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑓𝑛(𝜌𝑘)
𝑓𝑛(0)

)︃𝑚
⏟  ⏞  

=:𝐴

+
𝑛/4∑︁

𝑘=𝑛/(𝑔𝑛)2

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑓𝑛(𝜌𝑘)
𝑓𝑛(0)

)︃𝑚
⏟  ⏞  

=:𝐵

. (2.24)
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For 𝜀 as above and 𝑍 ∼ 𝑁(0, 1), we have by applying (2.20) that

2𝑛P(|𝑍| < 𝜀/
√
𝑛)𝑚 ≥ 2𝑛

⎛⎝√︃
2
𝜋𝑛

𝜀

⎞⎠𝑚

(1− 𝑐𝜀2/𝑛)𝑚 &𝑛

(︂
𝛾 + 1

2

)︂𝑚
, (2.25)

where 𝑐 is an absolute constant. To obtain the right-hand-side, note that 𝜀/
√
𝑛

𝑛→∞−−−→
0 since 𝑚 = 𝑜(𝑛). Thus, for 𝑛 sufficiently large it holds that

1− 𝑐𝜀2/𝑛 ≥ 1
2

(︃
1 + 1

𝛾

)︃
,

which yields the right-hand-side of (2.25). Now using the crude bound 𝑓𝑛(𝜌𝑘) ≤
P(|
√
𝑛𝑍| ≤ 𝜀), (2.25), the fact that 𝑓𝑛(0) = P(|

√
𝑛𝑍| ≤ 𝜀)2, and the inequality

𝑗∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
≤

(︃
𝑛𝑒

𝑗

)︃𝑗
,

we have

𝐴 =
𝑛/(𝑔𝑛)2∑︁
𝑘=0

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑓𝑛(𝜌𝑘)
𝑓𝑛(0)

)︃𝑚

.𝑛

(︂
𝛾 + 1

2

)︂−𝑚
(𝑒 𝑔2

𝑛)𝑛/𝑔2
𝑛

= exp
(︃
−
𝑛 log 1

2(1 + 𝛾)
𝑔𝑛

+ 𝑛

𝑔2
𝑛

+ 2𝑛 log 𝑔𝑛
𝑔2
𝑛

)︃
= 𝑜(1) (2.26)

because (1/2)(1 + 𝛾) > 1, 𝑔𝑛 →∞, and 𝑛/𝑔𝑛 →∞ as 𝑛→∞.
By (2.20) and (2.21) (noting again that 𝑓𝑛(0) = P(|

√
𝑛𝑍| ≤ 𝜀)2 ), we have

𝐵 =
𝑛/4∑︁

𝑘=𝑛/(𝑔𝑛)2

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑓𝑛(𝜌𝑘)
𝑓𝑛(0)

)︃𝑚
.𝑛 (𝑐′)𝑚

𝑛/4∑︁
𝑘=𝑛/(𝑔𝑛)2

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑛2

𝑘(𝑛− 𝑘)

)︃𝑚/2

(2.27)

where 𝑐′ is an absolute constant. By the Hoeffding bound, letting 𝑐′′ denote another
absolute constant, we have

(2.27) .𝑛 (𝑐′′)𝑚𝑔𝑚𝑛 𝑒−𝑛/8 = exp
(︃
𝑛 log 𝑐′′

𝑔𝑛
+ 𝑛 log 𝑔𝑛

𝑔𝑛
− 𝑛

8

)︃
= 𝑜(1)

since 𝑔𝑛 →∞. Since 𝐴,𝐵 = 𝑜(1), we conclude by (2.24) that (2.22) holds, as desired.
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Lemma 2.6. Suppose that 𝑚 = 𝑜(𝑛) and set 𝜀 = 𝛾2−𝑛/𝑚
√︁
𝑛𝜋/2. Then the function

𝛼 ↦→ 𝜑𝑛(𝛼) defined in (2.10) is asymptotically strictly concave on (0.25, 0.75). More
precisely,

lim
𝑛→∞

1
𝑛

𝜕2

𝜕𝛼2𝜑𝑛(𝛼) = − 1
𝛼(1− 𝛼) < −4 , ∀𝛼 ∈ (0.25, 0.75) ,

and the convergence is uniform over 𝛼 ∈ (0.25, 0.75). Moreover, for 𝑛 large enough,
𝜑𝑛(𝛼) has a unique maximum over (0.25, 0.75) located at 𝛼 = 0.5.

Proof. Because |𝜕2
𝛼 log𝛼(1− 𝛼)| = 𝑂(1) for 𝛼 ∈ (0.25, 0.75), 𝑚 = 𝑜(𝑛), and

ℎ′′(𝛼) = − 1
𝛼(1− 𝛼) ,

to verify the strict concavity of 𝜑𝑛(𝛼), it suffices to show that⃒⃒⃒⃒
⃒ 𝜕2

𝜕𝛼2 logP1−2𝛼
[︁⃒⃒⃒√

𝑛𝑋
⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

]︁⃒⃒⃒⃒⃒ = 𝑂(1), 𝛼 ∈ (0.25, 0.75). (2.28)

For notational convenience, we write 𝑓𝑛(𝜌) = P𝜌 (|
√
𝑛𝑋| ≤ 𝜀 , |

√
𝑛𝑌 | ≤ 𝜀). We

study the logarithmic second derivative

𝐽𝑛(𝜌) := 𝑓 ′′
𝑛(𝜌)
𝑓𝑛(𝜌) −

(︁𝑓 ′
𝑛(𝜌)
𝑓𝑛(𝜌)

)︁2
(2.29)

by controlling each term individually.
First, recall that for any 𝜌 ∈ (−1, 1), the distribution P𝜌 admits a density with

respect to the Lebesgue measure over R2 given by

𝜓𝜌(𝑥, 𝑦) = 1
2𝜋
√

1− 𝜌2 exp
(︁
− 𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

2− 2𝜌2

)︁
.

It holds that
𝑓 ′
𝑛(𝜌) =

∫︁∫︁
[− 𝜀√

𝑛
, 𝜀√

𝑛
]2
𝜕𝜌𝜓𝜌(𝑥, 𝑦)d𝑥d𝑦.

Thus since 𝜀 = 𝑜(
√
𝑛) we get,

lim
𝑛→∞

𝑓 ′
𝑛(𝜌)
𝑓𝑛(𝜌) = lim

𝑛→∞

𝜀2

𝑛

∫︀∫︀
[− 𝜀√

𝑛
, 𝜀√

𝑛
]2 𝜕𝜌𝜓𝜌(𝑥, 𝑦)d𝑥d𝑦

𝜀2

𝑛

∫︀∫︀
[− 𝜀√

𝑛
, 𝜀√

𝑛
]2 𝜓𝜌(𝑥, 𝑦)d𝑥d𝑦

= 𝜕𝜌𝜓𝜌(0, 0)
𝜓𝜌(0, 0) = 𝜕𝜌 log(𝜓𝜌)(0, 0).

(2.30)
Similarly,

lim
𝑛→∞

𝑓 ′′
𝑛(𝜌)
𝑓𝑛(𝜌) =

𝜕2
𝜌𝜓𝜌(0, 0)
𝜓𝜌(0, 0) = 𝜕2

𝜌 log(𝜓𝜌)(0, 0) +
(︁
𝜕𝜌 log(𝜓𝜌)(0, 0)

)︁2
. (2.31)
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Together with (2.29) and (2.30), the above display yields

lim
𝑛→∞

𝐽𝑛(𝜌) = 1 + 𝜌2

(1− 𝜌2)2 = 𝑂(1),

if 𝜌 ∈ (−0.5, 0.5). Moreover, the convergence in (2.30) and(2.31) is uniform over
𝜌 ∈ (−0.5, 0.5). This is because the functions 𝜓𝜌, 𝜕𝜌𝜓𝜌, and 𝜕2

𝜌𝜓𝜌 are all 𝐶-Lipschitz
on R2 for some absolute constant 𝐶 > 0, provided that we restrict 𝜌 ∈ (−0.5, 0.5).
Next, changing variables via 𝜌 = 1 − 2𝛼, this verifies (2.28). Thus we have shown
that 𝜑𝑛(𝛼) is strictly concave on (0.25, 0.75) for 𝑛 sufficiently large, completing the
first part of the proof.

The strict concavity verifies that 𝜑𝑛(𝛼) has a unique maximum on (0.25, 0.75). We
show that it occurs at 𝛼 = 0.5. It is easy to check that both ℎ(𝛼) and 𝛼 ↦→ log 1√

𝛼(1−𝛼)
have a critical point at 𝛼 = 1/2. So, applying the change of variables 𝜌 = 1 − 2𝛼,
we just need to verify that 𝑓 ′

𝑛(0) = 0. Let 𝜑(𝑥) = 1√
2𝜋𝑒

−𝑥2/2 denote the density of a
standard Gaussian and set ℓ = 𝜀/

√
𝑛. Straightforward calculus shows that

𝜕

𝜕𝜌

⃒⃒⃒⃒
⃒
𝜌=0

𝜓𝜌(𝑥, 𝑦) = 𝑥𝑦𝜑(𝑥)𝜑(𝑦).

Therefore,
𝜕

𝜕𝜌

⃒⃒⃒⃒
⃒
𝜌=0

𝑓𝑛(𝜌) =
(︃∫︁ ℓ

−ℓ
𝑥𝜑(𝑥)

)︃2

= 0.

This proves the second part of the lemma, so we’re done.

2.5.2 Gaussian discrepancy in small linear dimension
The goal of this appendix is to prove the result below, which combined with The-
orem 2.1 and Theorem 2 of Chandrasekaran and Vempala [2014] provides a precise
characterization of asymptotic Gaussian discrepancy.

Theorem 2.3. Let 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑∼ 𝒩 (0, 𝐼𝑚) be independent standard Gaussian random

vectors. Let 𝛾 > 1 denote an arbitrary absolute constant. Then there exists Δ = Δ(𝛾)
such that for 𝑚 ≤ Δ𝑛,

lim inf
𝑛→∞

P
[︂
𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 𝛾

√︂
𝜋𝑛

2 2−𝑛/𝑚
]︂
≥ 0.99 . (2.32)

In particular, combining Theorem 2.3 with Theorem 2 of Chandrasekaran and
Vempala [2014], we can now estimate the discrepancy up to constant factor, with
probability asymptotically larger than 99%, in the entire linear regime 𝑚 = 𝛿𝑛 where
𝛿 > 0. Note that our guarantee on the probability here is weaker than that of the
high-probability upper bound from Theorem 2.1. The constant 0.99 can be boosted
to be arbitrarily close to 1 by choosing smaller Δ, though our techniques do not allow
us to set the right-hand-side to be 1 for any fixed Δ > 0.
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The closely related work of Aubin et al. [2019] also considered Gaussian discrep-
ancy in the linear regime 𝑚 = 𝛿𝑛 for fixed 𝛿 > 0. Subject to a certain numerical
hypothesis, the authors showed that

lim inf
𝑛→∞

P
[︁
𝒟(𝑋1, . . . , 𝑋𝑛) ≤ 𝑐(𝛿)

√
𝑛
]︁
> 0, (2.33)

where 𝑐(𝛿), as a function of 𝛿, is the inverse of the function 𝑥 ↦→ log(1/2)/P[|𝑍| ≤ 𝑥]
and 𝑍 ∼ 𝑁(0, 1). Their proof is an application of the second moment method, similar
to ours. They also showed the following high-probability lower bound using the first
moment method:

lim
𝑛→∞

P
[︁
𝒟(𝑋1, . . . , 𝑋𝑛) ≥ (𝑐(𝛿)− 𝜀)

√
𝑛
]︁

= 1, (2.34)

where 𝜀 > 0 is an arbitrary absolute constant. Aubin et al. [2019] conjectures, with
strong evidence using heuristics from statistical mechanics, that the event in (2.33)
holds with probability tending to 1. We remark that as 𝛿 → 0, we have 𝑐(𝛿) =
Θ(2−1/𝛿) = Θ(2−𝑛/𝑚). Theorem 2.3 shows that with a constant factor’s worth of
‘extra room’ in the discrepancy threshold, the asymptotic probability in (2.33) can
be boosted to be arbitrarily close to 1.

On the algorithmic side, using a mild extension of the techniques of Chandrasekaran
and Vempala [2014], in dimension 𝑚 = 𝛿𝑛 with 𝛿 ∈ (0, 1), one can show an algorith-
mic bound of 𝑂(

√
𝛿𝑛) on the discrepancy, and this is the best known result for this

regime. Hence, Theorem 2.3 suggests the possibility of a statistical-to-computational
gap in the small linear regime 𝑚 = 𝛿𝑛 for 𝛿 ∈ (0, 1). Note that for 𝛿 > 1, the
results of Chandrasekaran and Vempala [2014] confirm an absence of statistical-to-
computational gaps in the discrepancy.

The proof of Theorem 2.3 follows closely the steps from Section 2.3 with some
modifications. We begin with a truncation argument as in Lemma 2.5.

Lemma 2.7. Let 𝛾 > 1 denote an arbitrary absolute constant. Then there exists
Δ = Δ(𝛾) such that if 𝑚 = 𝛿𝑛 for 𝛿 ≤ Δ and 𝜀 = 𝜀(𝑛) = 𝛾2−1/𝛿

√︁
𝜋𝑛/2, then

2𝑛
𝑛/4∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
= 𝑜(E[𝑆]2). (2.35)

2𝑛
𝑛∑︁

𝑘=3𝑛/4

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
= 𝑜(E[𝑆]2). (2.36)

Proof. The proof follows closely that of Lemma 2.5, setting 𝑔𝑛 ≡ 1/𝛿. We set

𝑓𝛿(𝜌) = P𝜌(
⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀) = P𝜌(|𝑋| ≤ 𝛾2−1/𝛿

√︁
𝜋/2, |𝑌 | ≤ 𝛾2−1/𝛿

√︁
𝜋/2).

Note that the function 𝑓𝛿 is independent of 𝑛 by our choice of 𝜀. As in (2.24) from
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Lemma 2.5, we let

𝐴 =
𝛿2𝑛∑︁
𝑘=0

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑓𝛿(𝜌𝑘)
𝑓𝛿(0)

)︃𝑚
, 𝐵 =

𝑛/4∑︁
𝑘=𝛿2𝑛

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑓𝛿(𝜌𝑘)
𝑓𝛿(0)

)︃𝑚
.

Note that for 𝛿 sufficiently small (depending on 𝛾), it holds that 𝜀/
√
𝑛 ≤ 1. There-

fore, similar to (2.25), we can apply the lower bound from Lemma 2.4 to conclude
that

2𝑛P[|𝑍| < 𝜀/
√
𝑛]𝑚 ≥ 2𝑛

⎛⎝√︃
2
𝜋𝑛

𝜀

⎞⎠𝑚

(1− 𝑐𝜀2/𝑛)𝑚 ≥
(︂
𝛾 + 1

2

)︂𝑚
, (2.37)

Hence, as in (2.26) we have

𝐴 .𝑛

(︂
𝛾 + 1

2

)︂−𝑚
(𝑒𝛿−2)𝛿2𝑛 = exp

(︂
−𝛿𝑛 log

(︂1
2(1 + 𝛾)

)︂
+ 𝛿2𝑛+ 2𝛿2𝑛 log(1/𝛿)

)︂
.

(2.38)

Hence, if 𝛿 ≤ Δ(𝛾) for Δ(𝛾) sufficiently small, then we have that 𝐴 = 𝑜(1).
Similar to (2.27), we have by applying (2.20) and (2.21) that

𝐵 .𝑛 (𝑐′(𝛾))𝑚
𝑛/4∑︁
𝑘=𝛿2𝑛

(︁
𝑛
𝑘

)︁
2𝑛

(︃
𝑛2

𝑘(𝑛− 𝑘)

)︃𝑚/2

. (2.39)

By the Hoeffding bound (letting 𝑐′′(𝛾) denote another constant depending on 𝛾), we
have

(2.39) .𝑛 (𝑐′′(𝛾))𝑚𝛿−𝑚𝑒−𝑛/8 = exp (𝛿𝑛 log(𝑐′′(𝛾)) + 𝛿𝑛 log(1/𝛿)− 𝑛/8) = 𝑜(1),
(2.40)

provided that 𝛿 ≤ Δ(𝛾) for Δ(𝛾) sufficiently small. Since 𝐴 = 𝑜(1) as well for this
setting of parameters, the lemma follows.

Our next lemma is a version of Lemma 2.6 corresponding to the linear regime.
We use the log-concavity of the function 𝜑𝑛 when we apply the Laplace method to
the second moment, as in the sub-linear regime.

Lemma 2.8. Let 𝜂 > 0 and 𝛾 > 1 be arbitrary constants, and let Δ = Δ(𝛾, 𝜂) denote
a sufficiently small absolute constant. Suppose that 𝑚 = 𝛿𝑛 for 𝛿 ≤ Δ, and set
𝜀 = 𝛾2−1/𝛿

√︁
𝑛𝜋/2. Then the function 𝛼 ↦→ 𝜑𝑛(𝛼) defined in (2.10) is strictly concave

on (0.25, 0.75). More precisely,

1
𝑛

𝜕2

𝜕𝛼2𝜑𝑛(𝛼) ≤ − 1
𝛼(1− 𝛼) + 𝜂 < −4 + 𝜂 , ∀𝛼 ∈ (0.25, 0.75). (2.41)

Moreover, 𝜑𝑛(𝛼) has a unique maximum over (0.25, 0.75) located at 𝛼 = 0.5.
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Proof. Recall that

𝑓𝛿(𝜌) = P𝜌(|𝑋| ≤ 𝛾2−1/𝛿
√︁
𝜋/2, |𝑌 | ≤ 𝛾2−1/𝛿

√︁
𝜋/2).

As in the proof of Lemma 2.6, it suffices to study the logarithmic second derivative
with respect to 𝜌

𝐽𝛿(𝜌) := 𝑓 ′′
𝛿 (𝜌)
𝑓𝛿(𝜌)

−
(︁𝑓 ′

𝛿(𝜌)
𝑓𝛿(𝜌)

)︁2
(2.42)

and show that |𝐽𝛿(𝜌)| = 𝑂(1) for 𝜌 ∈ (−0.5, 0.5). Recall that 𝜓𝜌 denotes the density
associated to P𝜌.

Since 𝜀/
√
𝑛→ 0 as 𝛿 → 0, we have, similar to (2.30), that

lim
𝛿→0

𝑓 ′
𝛿(𝜌)
𝑓𝛿(𝜌)

= lim
𝛿→0

𝜀2

𝑛

∫︀∫︀
[− 𝜀√

𝑛
, 𝜀√

𝑛
]2 𝜕𝜌𝜓𝜌(𝑥, 𝑦)d𝑥d𝑦

𝜀2

𝑛

∫︀∫︀
[− 𝜀√

𝑛
, 𝜀√

𝑛
]2 𝜓𝜌(𝑥, 𝑦)d𝑥d𝑦

= 𝜕𝜌𝜓𝜌(0, 0)
𝜓𝜌(0, 0) = 𝜕𝜌 log(𝜓𝜌)(0, 0).

(2.43)
And similar to (2.31), we have

lim
𝛿→0

𝑓 ′′
𝛿 (𝜌)
𝑓𝛿(𝜌)

=
𝜕2
𝜌𝜓𝜌(0, 0)
𝜓𝜌(0, 0) = 𝜕2

𝜌 log(𝜓𝜌)(0, 0) +
(︁
𝜕𝜌 log(𝜓𝜌)(0, 0)

)︁2
. (2.44)

It follows that
lim
𝛿→0

𝐽𝛿(𝜌) = 1 + 𝜌2

(1− 𝜌2)2 = 𝑂(1)

for 𝜌 ∈ (−0.5, 0.5). Moreover, similar to the proof of Lemma 2.6, the convergence in
(2.43) and (2.44) is uniform in 𝛿 by the Lipschitzness of 𝜓𝜌, 𝜕𝜌𝜓𝜌, and 𝜕2

𝜌𝜓𝜌 over the
interval 𝜌 ∈ (−0.5, 0.5). Therefore, if we take 𝛿 sufficiently small with respect to 𝛾, 𝜂,
then (2.41) holds.

Note that independent of 𝜀, we have that 𝜌 = 0 is a critical point of 𝜑𝑛, as shown at
the end of the proof of Lemma 2.6. Applying this and making the change of variables
𝜌 = 1− 2𝛼 verifies the last statement of Lemma 2.8.

Proof of Theorem 2.3. Recall from the definition in (2.8) that

𝐿 := 2𝑛
3𝑛/4∑︁
𝑘=𝑛/4

(︃
𝑛

𝑘

)︃
P𝜌𝑘

(︁⃒⃒⃒√
𝑛𝑋

⃒⃒⃒
≤ 𝜀 ,

⃒⃒⃒√
𝑛𝑌

⃒⃒⃒
≤ 𝜀

)︁𝑚
.

Applying Stirling’s formula and a Riemann sum approximation as in (2.9) and (2.11),
respectively, we have that

𝐿 .𝑛 2𝑛
√︂
𝑛

2𝜋

∫︁ 3/4

1/4
exp(𝜑𝑛(𝛼))𝑑𝛼. (2.45)

Since 𝜑𝑛(𝛼)/𝑛 is independent of 𝑛, we can apply the Laplace method directly [see
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Murray, 1984] along with Lemma 2.8 to see that
∫︁ 3/4

1/4
exp(𝜑𝑛(𝛼))𝑑𝛼 .𝑛

√︃
2𝜋

|𝜑′′
𝑛(1/2)| exp(𝜑𝑛(1/2)) ≤

√︃
2𝜋

𝑛(4− 𝜂)2𝑛+1𝑓𝛿(0)𝑚. (2.46)

assuming 𝛿 ≤ Δ for Δ(𝛾, 𝜂) sufficiently small.
Therefore, by Lemma 2.5, (2.45), (2.46), Lemma 2.1, the definition of 𝑓𝛿, and

assuming that 𝛿 ≤ Δ for Δ(𝛾, 𝜂) sufficiently small, we have

E[𝑆2] .𝑛 𝐿 .𝑛

√︃
4

4− 𝜂 (2𝑛P[|
√
𝑛𝑍| ≤ 𝜀]𝑚)2 =

√︃
4

4− 𝜂E[𝑆]2.

Setting 𝜂 = 10−5, we have by the second moment method (2.4) that

P[𝑆 > 0] ≥ E[𝑆]2
E[𝑆2] &𝑛

√︁
1− 𝜂/4 ≥ 0.99,

completing the proof of Theorem 2.3.

2.5.3 The REDUCE algorithm
In this appendix we define the REDUCE algorithm, a simple procedure for combin-
ing a set of points into a single point whose ℓ∞-norm is not too large. This algorithm
REDUCE is described explicitly below, and its main property of use is described in
Lemma 2.3, whose proof is given below. The analysis of this algorithm uses feasibility
as in the classical proof of the Beck-Fiala theorem [Alon and Spencer, 2008].

REDUCE:
Input: 𝑚×𝑁 matrix X with columns 𝑋1, . . . , 𝑋𝑁 .
If 𝑁 < 𝑚:

Choose 𝑠 ∈ {±1}𝑁 arbitrarily.
Else:

1. Let 𝑠(0) = 0 ∈ R𝑁 , and let 𝑇0 = ∅.

2. For 𝑘 = 0, 1, 2, . . .
If |𝑇𝑘| < 𝑁 −𝑚

(a) Find (e.g., using Gaussian elimination) a vector 𝑣 ̸= 0 ∈ R𝑁 such that
X𝑣 = 0 and 𝑣𝑗 = 0 for all 𝑗 ∈ 𝑇𝑘.

(b) Define 𝑠(𝑘+1) = 𝑠(𝑘) + 𝜆𝑣, where 𝜆 > 0 is the smallest real number such
that |𝑠(𝑘)

𝑗 + 𝜆𝑣𝑗| = 1 for some 𝑗 /∈ 𝑇𝑘.

(c) Define 𝑇𝑘+1 = {𝑗 :
⃒⃒⃒
𝑠(𝑘+1)

⃒⃒⃒
= 1}.

Else: 𝑠 := 𝑠(𝑘). BREAK
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Output: 𝜎 := sgn(𝑠)

Proof of Lemma 2.3. We suppose that 𝑁 > 𝑚, otherwise, an arbitrary choice of
signing gives the desired upper bound. Suppose that we are in the 𝑘-th iteration of
Step 2 of REDUCE. If |𝑇𝑘| < 𝑁 −𝑚, then there are at most 𝑚 + |𝑇𝑘| < 𝑁 linear
constraints on the vector 𝑣 ∈ R𝑁 in step 2(a). So by dimension-counting, there exists
a nonempty subspace of feasible 𝑣. Next if 𝑠(𝑘) ∈ [−1, 1]𝑚, then 𝜆 from step 2(b)
exists and furthermore 𝑠(𝑘+1) ∈ [−1, 1]𝑚 by the choice of 𝑗 in step 2(b). Also, we
have that 𝑇𝑘 ⊂ 𝑇𝑘+1; if |(𝑠(𝑘))𝑗| = 1, then the 𝑗-th coordinate remains unchanged for
future iterations of step 2. Finally, |𝑇𝑘| increases at least by 1 in each iteration, so
the loop in step 2 is guaranteed to terminate after at most 𝑁 −𝑚 iterations.

It remains to verify that 𝜎 satisfies the upper bound from Lemma 2.3. Observe
that 𝑠 ∈ [−1, 1]𝑚, 𝑇 := |{𝑗 : |𝑠𝑗| = 1}| ≥ 𝑁 −𝑚, and

𝑁∑︁
𝑖=1

𝑠𝑖𝑋𝑖 = 0.

Therefore, ⃒⃒⃒⃒
⃒
𝑁∑︁
𝑖=1

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞
≤

⃒⃒⃒⃒
⃒
𝑁∑︁
𝑖=1

𝑠𝑖𝑋𝑖

⃒⃒⃒⃒
⃒
∞

+

⃒⃒⃒⃒
⃒⃒∑︁
𝑖/∈𝑇

(sgn(𝑠𝑖)− 𝑠𝑖)𝑋𝑖

⃒⃒⃒⃒
⃒⃒
∞

≤ max
𝑆⊂[𝑁 ]:|𝑆|=𝑚

∑︁
𝑖∈𝑆
|𝑋𝑖|∞ .

2.5.4 Proof of Proposition 2.4
We need to show that at each application of resampling in GKK, a small number
of points are labeled ‘bad’. As discussed in the introduction, the restriction on the
dimension 𝑚 = 𝑂(

√
log 𝑛) is needed in our analysis to show that the probability of a

point being labeled ‘bad’ is small.
We briefly describe the intuition for this condition by considering the first phase

of the algorithm GKK. Suppose, for example, that 𝑋1, . . . , 𝑋𝑛 are independent tri-
angularly distributed vectors on [−1, 1]𝑚. In step 1 of PRDC, the cube [−1, 1]𝑚 is
partitioned into sub-cubes of side length 𝛼′ = 𝑛−Ω(1/𝑚). Next, we enter the resam-
pling step. We show below that the probability of a point being labeled ‘bad’ is at
most 𝑂(2𝑚𝑚𝛼′) = 𝑂(2𝑚𝑚𝑛−Ω(1/𝑚)). Roughly speaking, the reason for this is that
there are 2𝑚(𝛼′)−𝑚 sub-cubes, and the probability of a point in a particular sub-cube
being labeled ‘bad’ is controlled by the product of three terms: 1) the ℓ1-Lipschitz
constant of the density of 𝑋1, which is 1, 2) the ℓ1-diameter of the sub-cube, which
is 𝑚𝛼′, and 3) the volume of the sub-cube, which is (𝛼′)𝑚. Hence, the probability of
a point being labeled ‘bad’ is a small constant, assuming that 𝑚 = 𝑂(

√
log 𝑛).

The next two lemmas present the above argument in full detail.
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Lemma 2.9. Let 𝜌 : [−Δ,Δ] → R denote a pdf that is 𝐿-Lipschitz and bounded
above by some constant 𝐷 > 0. Let 𝑔 = 𝜌⊗𝑚 : [−Δ,Δ]𝑚 → R denote the density
of the distribution of 𝑚 independent random variables, each individually distributed
according to 𝜌. Then 𝑔 is 𝐿′-Lipschitz in the ℓ1 norm:

∀ 𝑥, 𝑦 ∈ [−Δ,Δ]𝑚, |𝑔(𝑥)− 𝑔(𝑦)| ≤ 𝐿′ |𝑥− 𝑦|1 ,

where
𝐿′ = 𝐿𝐷𝑚−1.

Proof. Define 𝑥1 = 𝑥, and for 2 ≤ 𝑘 ≤ 𝑚, define

𝑥𝑘 = 𝑥𝑘−1 + e𝑘(𝑦𝑘 − 𝑥𝑘),

where e𝑘 denotes the 𝑘-th elementary basis vector. Then we have

|𝑔(𝑥)− 𝑔(𝑦)| ≤
𝑚∑︁
𝑘=1

⃒⃒⃒
𝑔(𝑥𝑘)− 𝑔(𝑥𝑘−1)

⃒⃒⃒ ⎛⎝∏︁
𝑖<𝑘

𝑔(𝑦𝑖)
⎞⎠⎛⎝∏︁

𝑖>𝑘

𝑔(𝑥𝑖)
⎞⎠

≤
𝑚∑︁
𝑘=1

𝐿𝐷𝑚−1|𝑥𝑘 − 𝑦𝑘|

= 𝐿𝐷𝑚−1 |𝑥− 𝑦|1 .

Lemma 2.10. Let 𝑆 = 𝑋1, . . . , 𝑋𝑠 ∈ [−Δ,Δ]𝑚 denote a sample of iid random vec-
tors, each having a joint density 𝑔 = 𝜌⊗𝑚, where 𝜌 is 𝐿-Lipschitz and bounded above
by 𝐷 > 0. Let 𝐵 denote the bad points created in step 2 of PRDC run on the input
𝑆, 𝑣 = 0, 𝛼 = Δ, and 𝑔. If 𝑚 ≤ 𝐶

√︁
log(𝑠)/max(1, log Δ) for a sufficiently small

constant 𝐶 = 𝐶(𝐷,𝐿) > 0, then

P[|𝐵| > 0.1𝑠] ≤ exp(−𝑐1𝑠),

where 𝑐1 is an absolute constant.

Proof. Let 𝛼′ = Δ/⌈𝑠1/(4𝑚)⌉. Let 𝐶1, . . . , 𝐶𝑁 denote the sub-cubes of side length 𝛼′

formed by partitioning (step 1 of PRDC), recalling that 𝑁 = (2Δ)𝑚(𝛼′)−𝑚. Since
𝑋1, . . . , 𝑋𝑠 are independent, we first study the probability that 𝑋1 is bad and then
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apply a Hoeffding bound.

P[𝑋1 is bad] =
𝑁∑︁
𝑗=1

∫︁
𝐶𝑗

(︃
1−

min𝑦∈𝐶𝑗
𝑔(𝑦)

𝑔(𝑥)

)︃
𝑔(𝑥) 𝑑𝑥

=
𝑁∑︁
𝑗=1

∫︁
𝐶𝑗

(︃
𝑔(𝑥)−min

𝑦∈𝐶𝑗

𝑔(𝑦)
)︃
𝑑𝑥

≤
𝑁∑︁
𝑗=1

Vol(𝐶𝑗)𝐿𝐷𝑚−1 diamℓ1(𝐶𝑗)

= (2Δ)𝑚𝐿𝐷𝑚−1𝑚𝛼′,

where we measure the diameter in the ℓ1 norm and applied Lemma 2.9. Since

𝑚 ≤ 𝐶
√︁

log(𝑠)/max(1, log Δ),

we have
𝑝 := (2Δ)𝑚𝐿𝐷𝑚−1𝑚𝛼′ ≤ (2Δ)𝑚𝐷𝑚−1𝑚Δ𝑠−1/(4𝑚) ≤ 0.05

for 𝐶 = 𝐶(𝐷,𝐿) > 0 sufficiently small. Since the 𝑋𝑖’s are independent, by Hoeffding’s
inequality,

P[ |𝐵| ≥ 0.1𝑠] ≤ P[ |𝐵| − 𝑝𝑠 ≥ 0.05𝑠] ≤ exp
(︃
−2(0.05)2𝑠2

𝑠

)︃
,

which completes the proof.

Proof of Proposition 2.4. The proof is by induction on 𝑡. We first handle the base
case 𝑡 = 1. By assumption the matrix X has independent entries, each having a
pdf which is 𝐿-Lipschitz and bounded above by 𝐷. By Lemma 2.10, with prob-
ability at least 1 − exp(−𝑐1𝑛), there are at most 0.1𝑛 points labeled ‘bad’. Since
𝑚 ≤ 𝐶

√︁
log(𝑛)/max(1, log Δ), for 𝐶 sufficiently small, there are at most 𝑁1 ≤

(2Δ)𝑚𝛼−𝑚
2 ≤ 𝑛0.6 sub-cubes created by partitioning (step 1 of PRDC). Thus, at most

that many good points are leftover after random differencing in step 3 of PRDC. We
conclude that with probability at least 1− exp(−𝑐1𝑛), there are at least

𝑛− 0.01𝑛− 𝑛0.6

2 ≥ 0.4𝑛 (2.47)

points in 𝐺′
1, the set of random differences.

Now we show the inductive step. Let ℰ denote the event |𝑆𝑗| = 𝑛𝑗 where 𝑛𝑗 ≥
(0.3)𝑗−1𝑛 for all 1 ≤ 𝑗 ≤ 𝑡. It suffices to show that

P
[︃
|𝐺′

𝑡+1| ≤ 0.4𝑛𝑡
⃒⃒⃒⃒
⃒ ℰ

]︃
≤ exp

(︁
−𝑐1
√
𝑛
)︁
. (2.48)

By Proposition 2.3 in Appendix 2.5.7, conditionally on ℰ , the distribution of the
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points in 𝑆𝑡 = y 1, . . . ,y 𝑛𝑡 are iid and follow a triangular distribution on [−𝛼𝑡, 𝛼𝑡]𝑚.
Hence, we have by Lemma 2.9 that the density of 𝛼−1

𝑡 y 1, . . . , 𝛼
−1
𝑡 y 𝑛𝑡 is 1-Lipschitz

with respect to ℓ1 and is bounded above by 𝐷 = 1. Note that, by an application of
the chain rule, the probability 𝛼−1

𝑡 y 𝑗 is labeled ‘good’ using the triangular density on
[−1, 1]𝑚 for 𝑔 in step 2 of PRDC is the same as the probability that y 𝑗 is labeled
‘good’ using the triangular density on [−𝛼𝑡, 𝛼𝑡]𝑚 for 𝑔 in step 2 of PRDC.

Since 𝑡 ≤ ⌈𝐶* log 𝑛⌉ and 𝑛𝑗 ≥ (0.3)𝑗−1𝑛 for 1 ≤ 𝑗 ≤ 𝑡, we have that 𝑛𝑡 ≥
√
𝑛. In

particular, for 𝐶 > 0 sufficiently small, 𝑠 =
√
𝑛 satisfies the required lower bound of

Lemma 2.10. Therefore,

P
[︃
|𝐵𝑡+1| ≥ 0.1𝑛𝑡

⃒⃒⃒⃒
⃒ ℰ

]︃
≤ exp(−𝑐1𝑛𝑡) ≤ exp(−𝑐1

√
𝑛).

For 𝐶 sufficiently small and 𝑚 ≤ 𝐶
√

log 𝑛, there are at most 𝑁𝑡 ≤ 2𝑚𝑛1/4
𝑡 ≤ 𝑛0.6

𝑡 sub-
cubes formed in step 1 of PRDC. Hence, at most 𝑛0.6

𝑡 good points are leftover after
the random differencing step of PRDC. Halving the number of remaining points as
in (2.47) of the base case, we conclude that (2.48) holds with the desired probability
in phase 𝑡.

2.5.5 Proof of Proposition 2.5
The goal of this subsection is to prove Proposition 2.5. The next technical lemma
implies that a negligible fraction of points are lost in step 4(b), the clean-up step of
PRDC.

Lemma 2.11. Let 𝛼 = ⌈𝑠1/(4𝑚)⌉−1, and let 𝒰 = u 1, . . . ,u 𝑠
𝑖𝑖𝑑∼ Tri[−𝛼, 𝛼]𝑚 denote

a sample from a triangular distribution. Let 𝑣(0) ∈ R𝑚 denote a random vector
independent of 𝒰 satisfying

⃒⃒⃒
𝑣(0)

⃒⃒⃒
2
≤ 𝑅𝑚3/2 for some absolute constant 𝑅 > 0. For

𝑘 = 1, 2, . . . , define a sequence of random vectors

𝑣(𝑘) = 𝑣(𝑘−1) + 𝑎*u 𝑘

where
𝑎* = argmin

𝑎∈{±1}

⃒⃒⃒
𝑣(𝑘−1) + 𝑎u 𝑘

⃒⃒⃒
2
.

Let 𝑐* denote the absolute constant from Claim 2.1. Suppose that 𝑅′ ≥ 2/𝑐* and

𝐾 ≥ 8𝑅2𝑚2√𝑠
𝑅′𝑐* .

Then with probability at least

1− exp
(︃
−(𝑐*)2𝐾

8𝑚

)︃

there exists 𝑘 ≤ 𝐾 such that
|𝑣(𝑘)|2 ≤ 𝑅′𝑚𝛼.
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Proof. By the definition of 𝑣(𝑘), we have that

0 ≤
⃒⃒⃒
𝑣(𝐾+1)

⃒⃒⃒2
2

=
⃒⃒⃒
𝑣(0)

⃒⃒⃒2
2

+
𝐾∑︁
𝑘=0

(︁
−2

⃒⃒⃒
⟨𝑣(𝑘),u 𝑘+1⟩

⃒⃒⃒
+ |u 𝑘+1|22

)︁
.

Consider the event ℰ that for all 1 ≤ 𝑘 ≤ 𝐾, we have
⃒⃒⃒
𝑣(𝑘)

⃒⃒⃒
2
≥ 𝑅′𝑚𝛼. Let

𝜈(𝑘) = 𝑣(𝑘)/
⃒⃒⃒
𝑣(𝑘)

⃒⃒⃒
2
. Observe that |u 𝑘|22 ≤ 𝛼2𝑚. Applying this and rearranging the

inequality above, we have that the event ℰ implies

𝐾∑︁
𝑘=0

⃒⃒⃒
⟨𝜈(𝑘),u 𝑘+1⟩

⃒⃒⃒
≤ 𝑅2𝑚3 + 𝛼2𝑚𝐾

2𝑅′𝑚𝛼
. (2.49)

For 0 ≤ 𝑗 ≤ 𝐾, define a sequence of random variables

𝑀𝑗 :=
𝑗∑︁

𝑘=0

(︁⃒⃒⃒
⟨𝜈(𝑘),u 𝑘+1⟩

⃒⃒⃒
− 𝑐*𝛼

)︁
.

For convenience, we also define 𝑀−1 ≡ 0. Note that 𝑀𝑗 is measurable with respect to
the sigma-field Ω𝑗 generated by the random variables 𝑣(0), 𝑣(1), . . . , 𝑣(𝑗+1). Therefore,
Ω−1 ⊂ Ω0 ⊂ . . . defines a filtration for the sequence of random variables {𝑀𝑗}𝑗≥−1.

Claim 2.1. There exists an absolute constant 𝑐* > 0 such that {𝑀𝑗}𝑗≥−1 is a sub-
martingale with respect to the filtration {Ω𝑗}𝑗≥−1.

Proof. Since 𝑣(0) is independent of 𝒰 and 𝒰 is an independent sample, it follows that
u 𝑘+1 is independent of 𝜈(𝑘). Observe that the coordinates of u 𝑘+1 are subGaus-
sian. By the Khintchine inequality for the ℓ1 norm [see Exercises 2.6.5 and 2.6.6 of
Vershynin, 2018], we have

E
[︃⃒⃒⃒
⟨𝜈(𝑘),u 𝑘+1⟩

⃒⃒⃒ ⃒⃒⃒⃒
⃒ 𝑣(𝑘)

]︃
= E

[︃⃒⃒⃒
⟨𝜈(𝑘),u 𝑘+1⟩

⃒⃒⃒ ⃒⃒⃒⃒
⃒ 𝜈(𝑘)

]︃
≥ 𝛼𝑐*

⃒⃒⃒
𝜈(𝑘)

⃒⃒⃒
2

= 𝛼𝑐* > 0

for an absolute constant 𝑐* > 0.

Let 𝑐* > 0 denote the absolute constant from Claim 2.1, and set 𝑅′ ≥ 2/𝑐*. Next,
note the equivalence between the following inequalities:

𝑐*𝛼𝐾 ≥ 𝑐*𝛼𝐾

2 + 𝑅2𝑚3 + 𝛼2𝑚𝐾

2𝑅′𝑚𝛼
⇔ (2.50)

𝐾 ≥ 𝑅2𝑚2

𝑅′(𝑐* − 1/𝑅′)𝛼
−2,

assuming that 𝑐* − 1/𝑅′ > 0. Setting 𝑅′ ≥ 2/𝑐*, it follows that if

𝐾 ≥ 8𝑅2𝑚2√𝑠
𝑅′𝑐* ,

56



then (2.50) holds. Next, note by Cauchy-Schwarz that the submartingale 𝑀𝑗 has
increments bounded by 𝛼

√
𝑚. Since (2.50) holds, we may apply the Hoeffding–Azuma

inequality to conclude that for such choice of 𝐾 and 𝑅′ that

P[ℰ ] ≤ P
[︃
𝑀𝐾 ≤

𝑅2 + 𝛼2𝑚2𝐾

2𝑅′𝑚𝛼
− 𝑐*𝛼𝐾

]︃
≤ P

[︂
𝑀𝐾 ≤ −

𝑐*𝛼𝐾

2

]︂
≤ exp

(︃
−(𝑐*)2𝐾

8𝑚

)︃
,

as desired.

Proof of Proposition 2.5. Let 𝑡 ≥ 1 denote the current phase. Let ℰ denote the event
that |𝑆𝑗| = 𝑛𝑗 for all 1 ≤ 𝑗 ≤ 𝑡 and |𝐺′

𝑡| = 𝑔′
𝑡 where 𝑛𝑗 ≥ (0.3)𝑗−1𝑛 for all 1 ≤ 𝑗 ≤ 𝑡 and

𝑔′
𝑡 ≥ (0.4)𝑛𝑡. By Proposition 2.3 and Lemma 2.16 in Appendix 2.5.7, conditionally on
ℰ , the points z 1, . . . , z 𝑔′

𝑡
∈ 𝐺′

𝑡 are distributed as Tri[−𝛼𝑡+1, 𝛼𝑡+1]𝑚, and the leftover
vector 𝑣(0)

𝑡 obtained in step 4(a) of PRDC is independent of this sample. Moreover,
by Lemma 2.3 and the fact that |𝑣𝑡|∞ ≤ |𝑣𝑡|2 ≤ 𝛾𝑚𝛼𝑡, it follows that⃒⃒⃒

𝑣
(0)
𝑡

⃒⃒⃒
∞
≤ (𝛾 + 1)𝑚𝛼𝑡.

Hence, the Cauchy–Schwarz inequality yields that⃒⃒⃒
𝑣

(0)
𝑡

⃒⃒⃒
2
≤ (𝛾 + 1)𝑚3/2𝛼𝑡.

Next, apply Lemma 2.11 with 𝒰 = 1
𝛼𝑡

z 1, . . . ,
1
𝛼𝑡

z 𝑔′
𝑡
, 𝑣(0) = 1

𝛼𝑡
𝑣

(0)
𝑡 , 𝑅 = 𝛾 + 1,

𝑅′ = 𝛾, and 𝐾 = (𝑔′
𝑡)3/4 where 𝛾 ≥ 2/𝑐*. Recall that by assumption 𝑔′

𝑡 ≥ (0.4)𝑛𝑡 ≥
(0.4)(0.3)𝑡−1𝑛. Since 𝑡 ≤ ⌈𝐶* log 𝑛⌉, we have that 𝑔′

𝑡 ≥
√
𝑛. So for 𝐶 sufficiently

small in the bound 𝑚 ≤ 𝐶
√

log 𝑛, we have that the lower bound

𝐾 = (𝑔′
𝑡)3/4 ≥ 8(𝛾 + 1)2𝑚2√𝑔′

𝑡

𝛾𝑐*

holds, and so indeed Lemma 2.11 applies. Therefore, conditioned on ℰ , with proba-
bility at least

1− exp
(︃
−(𝑐*)2(𝑔′

𝑡)3/4

8𝑚

)︃
≥ 1− exp

(︁
−(𝑐*)2𝑛1/4

)︁
there exists 𝑘 ≤ 𝐾 = (𝑔′

𝑡)3/4 with ⃒⃒⃒
𝑣

(𝑘)
𝑡

⃒⃒⃒
2
≤ 𝛾𝑚𝛼𝑡+1.

By the lower bounds 𝑛 ≥ 𝑒(1/𝐶)𝑚2 and 𝑔′
𝑡 ≥

√
𝑛, for 𝐶 sufficiently small, it fol-

lows that (𝑔′
𝑡)3/4 ≤ (0.01)𝑔′

𝑡. Hence, conditioned on ℰ , with probability at least
1− exp

(︁
−(𝑐*)2𝑛1/4

)︁
we have |𝑆𝑡+1| ≥ 𝑔′

𝑡 − (𝑔′
𝑡)3/4 ≥ (0.3)𝑛𝑡, as desired.
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2.5.6 Proof of Theorem 2.2
Our main theorem is a direct consequence of Propositions 2.4 and 2.5.

Proof of Theorem 2.2. Recall that 𝑇 = ⌈𝐶* log 𝑛⌉ where 𝐶* = (2 log(10/3))−1, and
set 𝜃 = 0.3. By the union bound over the 𝑇 phases of PRDC in GKK, induction,
and Propositions 2.4 and 2.5, we have that |𝑆𝑡| ≥ 𝜃𝑡−1𝑛 for all 1 ≤ 𝑡 ≤ 𝑇 with
probability at least 1 − exp(−𝑐3𝑛

1/4), for some absolute constant 𝑐3 > 0. Since
𝛼𝑡+1 = 𝛼𝑡/⌈|𝑆𝑡|1/(4𝑚)⌉, this implies by induction that

𝛼𝑇 ≤ max(1,Δ)𝜃−𝑇 2/(4𝑚)𝑛−𝑇/(4𝑚) ≤ max(1,Δ) exp
(︃
−𝐶

* log2 𝑛

8𝑚

)︃

with probability at least 1− exp(−𝑐3𝑛
1/4).

Moreover, by the stopping criterion from step 4(b) of PRDC, |𝑣𝑇 |∞ ≤ |𝑣𝑇 |2 ≤
𝛾𝑚𝛼𝑇 . Applying REDUCE to 𝑆𝑇 ∪{𝑣𝑇}, we see by Lemma 2.3 that the output |𝑣|∞
of GKK satisfies

|𝑣|∞ ≤ max(1,Δ)(𝛾𝑚+𝑚− 1) exp
(︃
−𝐶

* log2 𝑛

8𝑚

)︃
≤ exp

(︃
−𝑐 log2 𝑛

𝑚

)︃

for an absolute constant 𝑐 > 0. Note that the right-hand-side follows if we take 𝐶 > 0
sufficiently small in the bound 𝑚 ≤ 𝐶

√︁
log(𝑛)/max(1, log Δ).

2.5.7 Distributional properties
Our analysis of GKK relies heavily on the fact that the operations in the algorithm
preserve important features of the original distribution such as independence. Though
not carefully proven in Karmarkar and Karp [1982], these features are crucial to our
analysis, so we provide explicit justification of these properties below for completeness.

First we introduce some notation. Given 𝛼 > 0, a fixed collection of vectors
z 1, . . . , z 𝑠 ⊂ [−𝛼, 𝛼]𝑚, and a density 𝑔 : [−𝛼, 𝛼]𝑚, divide the cube [−𝛼, 𝛼]𝑚 into
𝑁 := 2𝑚(⌈𝑠1/(4𝑚)⌉)𝑚 sub-cubes 𝐶1, . . . , 𝐶𝑁 of side length 𝛼/⌈𝑠1/(4𝑚)⌉ as in step 1
of PRDC. Label the points z 1, . . . , z 𝑠 as in step (2) of PRDC using the density
𝑔. Define a random collection of ordered pairs 𝒯𝑠,𝛼,𝑔 ⊂ ([𝑁 ] × {0, 1})𝑠 so that for
1 ≤ 𝑖 ≤ 𝑠,

(𝒯𝑠,𝛼,𝑔)𝑖 = (𝑗, 1)

if and only if z 𝑖 ∈ 𝐶𝑗 and if z 𝑖 is labeled ‘good’, and

(𝒯𝑠,𝛼,𝑔)𝑖 = (𝑗, 0)

if and only if z 𝑖 ∈ 𝐶𝑗 and z 𝑖 is labeled as ‘bad’.
Usually 𝑠, 𝛼 and 𝑔 are clear from context, in which case we write 𝒯 for 𝒯𝑠,𝛼,𝑔.

Observe that 𝒯 keeps track of which sub-cube 𝑣𝑖 lands in and also whether it was
labeled good or bad. We refer to 𝒯 as the configuration vector corresponding to the
input of PRDC.
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We proceed by proving some preliminary lemmas, the first of which states roughly
that given random vectors z 1, . . . , z 𝑠 with a nice conditional distribution, the good
points in each sub-cube 𝐶𝑗 have a uniform distribution.
Lemma 2.12. Suppose that conditioned on an event ℱ ,

• the random vectors 𝑆 = z 1, . . . , z 𝑠 ∈ R𝑚 are iid, and each vector has the
conditional joint density 𝑔 : [−Δ,Δ]𝑚 → R.

• 𝑆 ∪ {𝑣} is a collection of independent random vectors.
Run the first two steps of PRDC with input 𝑆 = z 1, . . . , z 𝑠,𝑣, 𝛼 = Δ, and density
𝑔. Let 𝐺 denote the good points, and let 𝐵 denote the bad points. Then conditioned
on 𝒯𝑠,Δ,𝑔 and ℱ ,

• the random vectors in 𝐵 ∪𝐺 are mutually independent.

• For 1 ≤ 𝑗 ≤ 𝑁 , a given good point in 𝐶𝑗 has a uniform distribution on 𝐶𝑗.
Proof. The first statement follows because (1) 𝐺 ∪𝐵 = z 1, . . . , z 𝑠 is an independent
sample, conditioned on ℱ , and (2) the ordered pair (𝒯𝑠,Δ,𝑔)𝑖 is generated independently
for each 𝑖 ∈ [𝑠]. Thus it suffices to show, by symmetry and passing to conditional
densities, that

𝑔(𝑧|z 1 ∈ 𝐶𝑗, z 1 good) = 1
Vol(𝐶𝑗)

for all 𝑧 ∈ 𝐶𝑗. By Bayes’ rule,

𝑔(𝑧|z 1 ∈ 𝐶𝑗, z 1 good) = P[z 1 good|z 1 = 𝑧, z 1 ∈ 𝐶𝑗, ℱ ] 𝑔(𝑧|z 1 ∈ 𝐶𝑗)
P[z 1 good|z 1 ∈ 𝐶𝑗, ℱ ]

=
(︃

min𝑥∈𝐶𝑗
𝑔(𝑥)

𝑔(𝑧) · 𝑔(𝑧)
P[z 1 ∈ 𝐶𝑗 | ℱ ]

)︃⧸︃(︃
Vol(𝐶𝑗) min𝑥∈𝐶𝑗

𝑔(𝑥)
P[z 1 ∈ 𝐶𝑗| ℱ ]

)︃

= 1
Vol(𝐶𝑗)

,

where the last line follows because

P[z 1 good, z 1 ∈ 𝐶𝑗| ℱ ] =
∫︁
𝐶𝑗

P[z 1 good|z 1 = 𝑧, ℱ ]𝑔(𝑧) 𝑑𝑧 = Vol(𝐶𝑗) min
𝑥∈𝐶𝑗

𝑔(𝑥).

Lemma 2.13. Consider the set-up of Lemma 2.12, and let 𝛼′ = 𝛼/⌈𝑠1/(4𝑚)⌉. Let 𝐺′

denote the set of random differences constructed after step 3. of PRDC applied to
𝑆, 𝑣, 𝛼 = Δ, and 𝑔. Then conditioned on the events ℱ and 𝒯 = T, the points in 𝐺′

are iid and have a triangular distribution on [−𝛼′, 𝛼′]𝑚.
Proof. Observe that T determines the number of points in 𝐺′. The points in 𝐺′

are independent by Lemma 2.12 and the fact that the points in 𝐺 are randomly
differenced in step 3. of PRDC. Since 𝐶𝑗 is a translation of the sub-cube [−𝛼′, 𝛼′]𝑚,
the difference of two independent, uniformly sampled points from 𝐶𝑗 have a triangular
distribution on [−𝛼′, 𝛼′]𝑚.
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Lemma 2.14. Consider the set-up of Lemma 2.13, and let ℓ ∈ Z≥0. Let the random
variable ℒ denote the number of points removed from 𝐺′ in step 4(b) of PRDC
applied to 𝑆, 𝑣, 𝛼 = Δ, and 𝑔. Let 𝑆 ′ and 𝑣′ denote the vectors output by PRDC.
Let 𝑔′ = |𝐺′|. Then conditioned on the events ℱ , 𝒯 = T, and ℒ = ℓ,

• The 𝑔′− ℓ points in 𝑆 ′ are iid and follow a triangular distribution on [−𝛼′, 𝛼′]𝑚.

• The random vector 𝑣′ is independent of the vectors in 𝑆 ′.

Proof. Recall that |𝐺′| = 𝑔′ is determined by T. Label the points in 𝐺′ independently
at random to be 𝐺′ = y 1, . . . ,y 𝑔′ . The points in 𝐺′ are independent and triangularly
distributed on [−𝛼′, 𝛼′]𝑚 by Lemma 2.13, conditionally on ℱ and 𝒯 = T. Recall the
single vector 𝑣 that was input initially to PRDC. In step 4(a), this is combined with
vectors in 𝐵′ to construct a single vector 𝑣(0). By Lemma 2.12, we have that 𝑣(0) is
independent of 𝐺′, conditionally on 𝒯 = T and ℱ .

Now in step 4(b) of PRDC, let us remove points from𝐺′ in the order y 𝑔′ ,y 𝑔′−1, . . . ,y 𝑔′−ℓ+1.
By the stopping criterion for step 4(b), we have

{ℒ = ℓ} =
{︁⃒⃒⃒
𝑣(𝑘)

⃒⃒⃒
2
> 𝛾𝑚𝛼′ ∀ 1 ≤ 𝑘 ≤ ℓ− 1,

⃒⃒⃒
𝑣(ℓ)

⃒⃒⃒
2
< 𝛾𝑚𝛼′

}︁
.

Since 𝑣(𝑘) = 𝑣(𝑘−1)±y 𝑔′−𝑘+1 for 1 ≤ 𝑘 ≤ ℓ, the random vector 𝑣(𝑘) is independent
of y 1, . . . ,y 𝑔′−ℓ. Therefore, the sample 𝑆 ′ = y 1, . . . ,y 𝑔′−ℓ is independent of the event
ℒ = ℓ. Hence, further conditioning on ℒ = ℓ does not affect the distribution of 𝑆 ′, as
desired.

Summarizing the content of Lemmas 2.12, 2.13, and 2.14, we have the following
proposition.

Proposition 2.6. Suppose that conditioned on an event ℱ ,

• the random vectors 𝑆 = z 1, . . . , z 𝑠 ∈ R𝑚 are iid, and each vector has the
conditional joint density 𝑔 : [−Δ,Δ]𝑚 → R.

• 𝑆 ∪ {𝑣} is a collection of independent random vectors.

Let 𝑆 ′, 𝑣′ denote the vectors output by PRDC applied to 𝑆, 𝑣, 𝛼 = Δ, and 𝑔. Let
𝑠′ ∈ Z≥0 and 𝛼′ = 𝛼/⌈𝑠1/(4𝑚)⌉. Then conditioned on ℱ , 𝒯 = T, and |𝑆 ′| = 𝑠′,

• the 𝑠′ points in 𝑆 ′ are iid and follow a triangular distribution on [−𝛼′, 𝛼′]𝑚.

• The random vector 𝑣′ is independent of the vectors in 𝑆 ′.

Observe that Proposition 2.6 and induction imply the next lemma, which guar-
antees that we have a nice distribution after every phase of PRDC, conditionally on
the data 𝒯 (𝑗) at each step.

Lemma 2.15. Let 𝑋1, . . . , 𝑋𝑛 be iid random vectors, each having a joint density
𝑔 : [−Δ,Δ]𝑚 → R, conditioned on some event ℱ . Consider the output 𝑆𝑡, 𝑣𝑡, 𝛼𝑡 that
results after the (𝑡− 1)-th phase of PRDC in step 2 of GKK. For 1 ≤ 𝑗 ≤ 𝑡− 1, let
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𝒯 (𝑗) denote the configuration vector resulting from step 2 of the 𝑗-th phase of PRDC.
Then conditioned on 𝒯 (𝑗) = T(𝑗) for 1 ≤ 𝑗 ≤ 𝑡 − 1 and |𝑆𝑗| = 𝑛𝑗 for 1 ≤ 𝑗 ≤ 𝑡, we
have

• the 𝑛𝑡 points in 𝑆𝑡 are iid and follow a triangular distribution on [−𝛼𝑡, 𝛼𝑡]𝑚.

• The random vector 𝑣𝑡 is independent of the vectors in 𝑆𝑡.

Next, marginalizing over all possible configuration vectors yields Proposition 2.3.

Proof of Proposition 2.3. We induct on the phase 𝑡. Consider the base case 𝑡 = 2.
Let z 1, . . . , z 𝑛2 denote the vectors in 𝑆2, and let 𝐼𝑖 denote a measurable subset of
[−𝛼2, 𝛼2]𝑚 for 1 ≤ 𝑖 ≤ 𝑛2. Recall that T(1) determines the number of differences in
𝐺′

1, and |𝑆2| determines the amount of points lost in step 4(b) of PRDC. Then we
have, marginalizing over all possible choices of T(1) compatible with |𝑆2| = 𝑛2,

P
[︃
z 𝑖 ∈ 𝐼𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛2

⃒⃒⃒⃒
⃒ |𝑆2| = 𝑛2

]︃

=
∑︁
T(1)

P
[︃
z 𝑖 ∈ 𝐼𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛2

⃒⃒⃒⃒
⃒𝒯 (1) = T(1), |𝑆2| = 𝑛2

]︃
P

[︃
𝒯 (1) = T(1)

⃒⃒⃒⃒
⃒ |𝑆2| = 𝑛2

]︃

By Lemma 2.15,

P
[︃
z 𝑖 ∈ 𝐼𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛2

⃒⃒⃒⃒
⃒𝒯 (1) = T(1), |𝑆2| = 𝑛2

]︃
= P [u 𝑖 ∈ 𝐼𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛2]

where u 1, . . . ,u 𝑛2
𝑖𝑖𝑑∼ Tri[−𝛼2, 𝛼2]𝑚. Hence,

P
[︃
z 𝑖 ∈ 𝐼𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛2

⃒⃒⃒⃒
⃒ |𝑆2| = 𝑛2

]︃
= P[u 𝑖 ∈ 𝐼𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛2],

which confirms the first bullet point of Proposition 2.3 for the base case 𝑡 = 2.
Following a similar marginalization procedure, this also implies by Lemma 2.15 that
𝑣2, the single vector output by PRDC, is independent of 𝑆2 conditionally on |𝑆2|.

Now we handle the inductive step. Let 𝑆𝑡 = y 1, . . . ,y 𝑛𝑡 and 𝑣𝑡 denote the vectors
output by the (𝑡− 1)th phase of PRDC. Suppose that conditionally on ℱ := {|𝑆2| =
𝑛2, . . . , |𝑆𝑡| = 𝑛𝑡} that 𝑆𝑡 is an iid sample of triangularly distributed vectors on
[−𝛼𝑡, 𝛼𝑡]𝑚, and 𝑣𝑡 is independent of 𝑆𝑡. By Proposition 2.6, conditionally on ℱ ,
|𝑆𝑡+1| = 𝑛𝑡+1, and the configuration vector 𝒯 (𝑡) = T(𝑡), the sample 𝑆𝑡+1 is an iid
collection of triangularly distributed vectors on [−𝛼𝑡+1, 𝛼𝑡+1]𝑚. Hence, conditioning
on ℱ ∪{|𝑆𝑡+1| = 𝑛𝑡+1} and applying the same marginalization over the configuration
vector T(𝑡) as in the base case yields the first bullet point of Proposition 2.3 for the
inductive step. The second bullet point follows similarly.

The next lemma is used in Appendix 2.5.5. We omit its proof because it is similar
to that of Proposition 2.3.

61



Lemma 2.16. Let 𝑋1, . . . , 𝑋𝑛 be iid random vectors, each having a joint density
𝑔 : [−Δ,Δ]𝑚 → R. Apply GKK to the matrix X with columns 𝑋1, . . . , 𝑋𝑛, and
consider the good points 𝐺′

𝑡 created from random differencing in step 3 of the 𝑡th phase
of PRDC. Also consider the random vector 𝑣(0)

𝑡 formed in step 4(a) of PRDC. Then
conditioned on |𝑆𝑗| = 𝑛𝑗 for 1 ≤ 𝑗 ≤ 𝑡 and |𝐺′

𝑡| = 𝑔′
𝑡 ,

• the random vectors in 𝐺′
𝑡 form an independent sample of size 𝑔′

𝑡 from Tri[−𝛼𝑡+1, 𝛼𝑡+1]𝑚.

• The random vector 𝑣(0)
𝑡 is independent of the vectors in 𝐺′

𝑡.
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Chapter 3

Coreset density estimation

3.1 Introduction

The ever-growing size of datasets that are routinely collected has led practitioners
across many fields to contemplate effective data summarization techniques that aim
at reducing the size of the data while preserving the information that it contains.
While there are many ways to achieve this goal, including standard data compression
algorithms, they often prevent direct manipulation of data for learning purposes.
Coresets have emerged as a flexible and efficient set of techniques that permit direct
data manipulation. Coresets are well-studied in machine learning [Har-Peled and
Kushal, 2007, Feldman et al., 2013, Bachem et al., 2017, 2018, Karnin and Liberty,
2019], statistics [Feldman et al., 2011, Zheng and Phillips, 2017, Munteanu et al., 2018,
Huggins et al., 2016, Phillips and Tai, 2018a,b], and computational geometry [Agarwal
et al., 2005, Clarkson, 2010, Frahling and Sohler, 2005, Gärtner and Jaggi, 2009, Claici
et al., 2020].

Given a dataset 𝒟 = {𝑋1, . . . , 𝑋𝑛} ⊂ R𝑑 and task (density estimation, logistic
regression, etc.) a coreset 𝒞 is given by 𝒞 = {𝑋𝑖 : 𝑖 ∈ 𝑆} for some subset 𝑆 of
{1, . . . , 𝑛} of size |𝑆| ≪ 𝑛. A good coreset should suffice to perform the task at hand
with the same accuracy as with the whole dataset 𝒟.

In this work we study the canonical task of density estimation. Given i.i.d ran-
dom variables 𝑋1, . . . , 𝑋𝑛 ∼ P𝑓 that admit a common density 𝑓 with respect to the
Lebesgue measure over R𝑑, the goal of density estimation is to estimate 𝑓 . It is
well known that the minimax rate of estimation over the 𝐿-Hölder smooth densities
𝒫ℋ(𝛽, 𝐿) of order 𝛽 is given by

inf̂
𝑓

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓 − 𝑓‖2 = Θ𝛽,𝑑,𝐿(𝑛− 𝛽
2𝛽+𝑑 ) , (3.1)

where the infimum is taken over all estimators based on the dataset 𝒟. Moreover the
minimax rate above is achieved by a kernel density estimator

𝑓𝑛(𝑥) := 1
𝑛ℎ𝑑

𝑛∑︁
𝑗=1

𝑘
(︂
𝑋𝑖 − 𝑥
ℎ

)︂
(3.2)
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for suitable choices of kernel 𝑘 : R𝑑 → R and bandwidth ℎ > 0 [see e.g. Tsybakov,
2009, Theorem 1.2].

The main goal of this paper is to extend this understanding of rates for density
estimation to estimators based on coresets. Specifically we would like to characterize
the statistical performance of coresets in terms of their cardinality. To do so, we
investigate two families of estimators built on coresets: one that is quite flexible and
allows arbitrary estimators to be used on the coreset and another that is more struc-
tured and driven by practical considerations; it consists of weighted kernel density
estimators built on coresets.

3.1.1 Two statistical frameworks for coreset density estima-
tion

We formally define a coreset as follows. Throughout this work 𝑚 = 𝑜(𝑛) denotes
the cardinality of the coreset. Given 𝑥 ∈ R𝑑×𝑛, let 𝑆 = 𝑆(𝑦|𝑥) denote a conditional
probability measure on the set

(︁
[𝑛]
𝑚

)︁
of subsets of [𝑛] = {1, 2, . . . , 𝑛} of cardinality 𝑚.

In information theoretic language, 𝑆 is a channel from R𝑑×𝑛 to subsets of cardinality
𝑚. We refer to the channel 𝑆 as a coreset scheme because it designates a data-driven
method of choosing a subset of data points. In what follows, we abuse notation and let
𝑆 = 𝑆(𝑥) denote an instantiation of a sample from the measure 𝑆(𝑦|𝑥) for 𝑥 ∈ R𝑑×𝑛.
A coreset 𝑋𝑆 is then defined to be the projection of the dataset 𝑋 = (𝑋1, . . . , 𝑋𝑛)
onto the subset indicated by 𝑆(𝑋): 𝑋𝑆 := {𝑋𝑖}𝑖∈𝑆(𝑋).

The first family of estimators that we investigate is quite general and allows the
statistician to select a coreset and then employ an estimator that only manipulates
data points in the coreset to estimate an unknown density. To study coresets, it is
convenient to make the dependence of estimators on observations more explicit than
in the traditional literature. More specifically, a density estimator 𝑓 based on 𝑛 obser-
vations 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 is a function 𝑓 : R𝑑×𝑛 → 𝐿2(R𝑑) denoted by 𝑓 [𝑋1, . . . , 𝑋𝑛](·).
Similarly, a coreset-based estimator 𝑓𝑆 is constructed from a coreset scheme 𝑆 of size
𝑚 and an estimator (measurable function) 𝑓 : R𝑑×𝑚 → 𝐿2(R𝑑) on 𝑚 observations.
We enforce the additional restriction on 𝑓 that for all 𝑦1, . . . , 𝑦𝑚 ∈ R𝑑 and for all
bijections 𝜋 : [𝑚] → [𝑚], it holds that 𝑓 [𝑦1, . . . , 𝑦𝑚](·) = 𝑓 [𝑦𝜋(1), . . . , 𝑦𝜋(𝑚)](·). Given
𝑆 and 𝑓 as above, we define the coreset-based estimator 𝑓𝑆 : R𝑑×𝑛 → 𝐿2(R𝑑) to be
the function 𝑓𝑆[𝑋](·) := 𝑓 [𝑋𝑆](·) : R𝑑 → R. We evaluate the performance of coreset-
based estimators in Section 3.2 by characterizing their rate of estimation over Hölder
classes.1

The symmetry restriction on 𝑓 prevents the user from exploiting information about
the ordering of data points to their advantage: the only information that can be used
by the estimator 𝑓 is contained in the unordered collection of distinct vectors given
by the coreset 𝑋𝑆.

1Our notion of coreset-based estimators bares conceptual similarity to various notions of com-
pression schemes as studied in the literature, e.g. Littlestone and Warmuth [1986], Ashtiani et al.
[2020], Hanneke et al. [2019].
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As evident from the results in Section 3.2, the information-theoretically optimal
coreset estimator does not resemble coreset estimators employed in practice. To rem-
edy this limitation, we also study weighted coreset kernel density estimators (KDEs)
in Section 3.3. Here the statistician selects a kernel 𝑘, bandwidth parameter ℎ, and
a coreset 𝑋𝑆 of cardinality 𝑚 as defined above and then employs the estimator

𝑓𝑆(𝑦) =
∑︁
𝑗∈𝑆

𝜆𝑗ℎ
−𝑑𝑘

(︂
𝑋𝑗 − 𝑦
ℎ

)︂
,

where the weights {𝜆𝑗}𝑗∈𝑆 are nonnegative, sum to one and are allowed to depend on
the full dataset.

In the case of uniform weights where 𝜆𝑗 = 1
𝑚

for all 𝑗 ∈ 𝑆, coreset KDEs are
well-studied [see e.g. Bach et al., 2012, Harvey and Samadi, 2014, Phillips and Tai,
2018a,b, Karnin and Liberty, 2019]. Interestingly, our results show that allowing
flexibility in the weights gives a definitive advantage for the task of density estimation.
By Theorems 3.2 and 3.5, the uniformly weighted coreset KDEs require a much larger
coreset than that of weighted coreset KDEs to attain the minimax rate of estimation
over univariate Lipschitz densities.

3.1.2 Setup and Notation
We reserve the notation ‖·‖2 for the 𝐿2 norm and |·|𝑝 for the ℓ𝑝-norm. The con-
stants 𝑐, 𝑐𝛽,𝑑, 𝑐𝐿, etc. vary from line to line and the subscripts indicate parameter
dependences.

Fix an integer 𝑑 ≥ 1. For any multi-index 𝑠 = (𝑠1, . . . , 𝑠𝑑) ∈ Z𝑑≥0 and 𝑥 =
(𝑥1, . . . , 𝑥𝑑) ∈ R𝑑, define 𝑠! = 𝑠1! · · · 𝑠𝑑!, 𝑥𝑠 = 𝑥𝑠1

1 · · · 𝑥𝑠𝑑
𝑑 and let 𝐷𝑠 denote the differ-

ential operator defined by

𝐷𝑠 = 𝜕|𝑠|1

𝜕𝑥𝑠1
1 · · · 𝜕𝑥𝑠𝑑

𝑑

.

We reserve the notation |𝑠| for the coordinate-wise application of |·| to the multi-index
𝑠.

Fix a positive real number 𝛽, and let ⌊𝛽⌋ denote the maximal integer strictly less
than 𝛽. Given 𝐿 > 0 we let ℋ(𝛽, 𝐿) denote the space of Hölder functions 𝑓 : R𝑑 → R
that are supported on the cube [−1/2, 1/2]𝑑, are ⌊𝛽⌋ times differentiable, and satisfy

|𝐷𝑠𝑓(𝑥)−𝐷𝑠𝑓(𝑦)| ≤ 𝐿 |𝑥− 𝑦|𝛽−⌊𝛽⌋
2 ,

for all 𝑥, 𝑦 ∈ R𝑑 and for all multi-indices 𝑠 such that |𝑠|1 = ⌊𝛽⌋.
Let 𝒫ℋ(𝛽, 𝐿) denote the set of probability density functions contained in ℋ(𝛽, 𝐿).

For 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿), let P𝑓 (resp. E𝑓 ) denote the probability distribution (resp. expec-
tation) associated to 𝑓 .

For 𝑑 ≥ 1 and 𝛾 ∈ Z≥0, we also define the Sobolev functions 𝒮(𝛾, 𝐿′) that consist
of all 𝑓 : R𝑑 → R that are 𝛾 times differentiable and satisfy

‖𝐷𝛼𝑓‖2 ≤ 𝐿′
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for all multi-indices 𝛼 such that |𝛼|1 = 𝛾.
Given 𝑓 ∈ 𝐿2, we define the Fourier transform ℱ [𝑓 ] : R𝑑 → R by

ℱ [𝑓 ](𝜔) =
∫︁
R𝑑
𝑓(𝑥)𝑒−𝑖⟨𝑥,𝜔⟩d𝑥.

3.2 Coreset-based estimators
In this section we study the performance of coreset-based estimators. Recall that
coreset-based estimators are estimators that only depend on the data points in the
coreset.

Define the minimax risk for coreset-based estimators 𝜓𝑛,𝑚(𝛽, 𝐿) over 𝒫ℋ(𝛽, 𝐿) to
be

𝜓𝑛,𝑚(𝛽, 𝐿) = inf
𝑓,|𝑆|=𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓𝑆 − 𝑓‖2, (3.3)

where the infimum above is over all choices of coreset scheme 𝑆 of cardinality 𝑚 and
all estimators 𝑓 : R𝑑×𝑚 → 𝐿2(R𝑑).

Our main result on coreset-based estimators characterizes their minimax risk.

Theorem 3.1. Fix 𝛽, 𝐿 > 0 and an integer 𝑑 ≥ 1. Assume that 𝑚 = 𝑜(𝑛). Then the
minimax risk of coreset-based estimators satisfies

inf
𝑓,|𝑆|=𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓𝑆 − 𝑓‖2 = Θ𝛽,𝑑,𝐿(𝑛− 𝛽
2𝛽+𝑑 + (𝑚 log 𝑛)− 𝛽

𝑑 ).

The above theorem readily yields a characterization of the minimal size 𝑚*(𝛽, 𝑑)
that a coreset can have while still enjoying the minimax optimal rate 𝑛− 𝛽

2𝛽+𝑑 from (3.1).
More specifically, let 𝑚* = 𝑚*(𝑛) be such that

(i) if 𝑚(𝑛) is a sequence such that 𝑚 = 𝑜(𝑚*), then lim inf𝑛→∞ 𝑛
𝛽

2𝛽+𝑑𝜓𝑛,𝑚(𝛽, 𝐿) =
∞, and

(ii) if 𝑚 = Ω(𝑚*) then lim sup𝑛→∞ 𝜓𝑛,𝑚(𝛽, 𝐿)𝑛
𝛽

2𝛽+𝑑 ≤ 𝐶𝛽,𝑑,𝐿 for some constant
𝐶𝛽,𝑑,𝐿 > 0.

Then it follows readily from from Theorem 3.1 that 𝑚* = Θ𝛽,𝑑,𝐿(𝑛
𝑑

2𝛽+𝑑/ log 𝑛).
Theorem 3.1 illustrates two different curses of dimensionality: the first stems from

the original estimation problem, and the second stems from the compression problem.
As 𝑑 → ∞, it holds that 𝑚* ∼ 𝑛/ log 𝑛, and in this regime there is essentially no
compression, as the implicit constant in Theorem 3.1 grows rapidly with 𝑑.2

Our proof of the lower bound in Theorem 3.1 first uses a standard reduction from
estimation to a multiple hypothesis testing problem over a finite function class. While
Fano’s inequality is the workhorse of our second step, note that the lower bound must
hold only for coreset-based estimators and not any estimator as in standard minimax

2In fact, even for the classical estimation problem (3.1), this constant scales as 𝑑𝑑 [see McDonald,
2017, Theorem 3].
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lower bounds. This additional difficulty is overcome by a careful handling of the
information structure generated by coreset scheme channels rather than using off-
the-shelf results for minimax lower bounds. The full details of the lower bound are
in the Appendix.

The estimator achieving the rate in Theorem 3.1 relies on an encoding procedure.
It is constructed by building a dictionary between the subsets in

(︁
[𝑛]
𝑚

)︁
and an 𝜀-net on

the space of Hölder functions. The key idea is that, for 1≪ 𝑚 ≤ 𝑛/2, the amount of
subsets

(︁
𝑛
𝑚

)︁
grows rapidly with 𝑚, so for 𝑚 large enough, there is enough information

to encode a nearby-neighbor in 𝐿2(R𝑑) to the kernel density estimator on the entire
dataset.

3.2.1 Proof of the upper bound in Theorem 3.1
Fix 𝜀 = 𝑐*(𝑚 log 𝑛)− 𝛽

𝑑 for 𝑐* to be determined and let 𝒩𝜀 denote an 𝜀-net of 𝒫ℋ(𝛽, 𝐿)
with respect to the 𝐿2([−1

2 ,
1
2 ]𝑑) norm. It follows from the classical Kolmogorov-

Tikhomorov bound [see, e.g., Theorem XIV of Kolmogorov and Tikhomirov, 1993]
that there exists a constant 𝐶KT(𝛽, 𝑑, 𝐿) > 0 such that we can choose 𝒩𝜀 with
log |𝒩𝜀| ≤ 𝐶KT(𝛽, 𝑑, 𝐿) 𝜀−𝑑/𝛽. In particular, there exists f ∈ 𝒩𝜀 such that ‖𝑓𝑛−f‖2 ≤ 𝜀

where 𝑓𝑛 is the minimax optimal kernel density estimator defined in (3.2).
We now develop our encoding procedure for f. To that end, fix an integer 𝐾 ≥ 𝑚

such that
(︁
𝐾
𝑚

)︁
≥ |𝒩𝜀| and let 𝜑 :

(︁
[𝐾]
𝑚

)︁
→ 𝒩𝜀 be any surjective map. Our procedure

only looks at the first coordinates of the sample 𝑋 = {𝑋1, . . . , 𝑋𝑛}. Denote these
coordinates by 𝑥 = {𝑥1, . . . , 𝑥𝑛} and note that these 𝑛 numbers are almost surely
distinct. Let 𝐴 denote a parameter to be determined, and define the intervals

𝐵𝑖𝑘 = [(𝑖− 1)𝐾−1𝐴+ (𝑘 − 1)𝐴, (𝑖− 1)𝐾−1𝐴+ (𝑘 − 1)𝐴+𝐾−1𝐴].

For 𝑖 = 1, . . . , 𝐾, define

𝐵𝑖 =
1/𝐴⋃︁
𝑘=1

𝐵𝑖𝑘.

The next lemma, whose proof is in the Appendix, ensures that with high proba-
bility every bin 𝐵𝑖 contains the first coordinate 𝑥𝑖 of at least one data point.
Lemma 3.1. Let 𝐾−1 = 𝑐(log 𝑛)/𝑛 for 𝑐 > 0 a sufficiently large absolute constant,
and let 𝐴 = 𝐴𝛽,𝐿,𝐾 denote a sufficiently small constant. Then for all 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿)
and 𝑋1, . . . , 𝑋𝑛

𝑖𝑖𝑑∼ P𝑓 , the event that for every 𝑗 = 1, . . . , 𝐾 there exists some 𝑥𝑖 in
bin 𝐵𝑗 holds with probability at least 1−𝑂(𝑛−2).

In the high-probability event ℰ that every bin 𝐵𝑖 contains the first coordinate of
some data point, choose a unique representative 𝑥∘

𝑗 ∈ 𝑥 such that 𝑥∘
𝑗 ∈ 𝐵𝑗 and pick

any 𝑇f ∈ 𝜑−1(f). Then define 𝑆 = {𝑖 : 𝑥𝑖 = 𝑥∘
𝑗 , 𝑗 ∈ 𝑇f}. If there exists a bin with no

observation, then let 𝑋𝑆 consist of two data points lying in the same bin and 𝑚− 2
random data points. Then set 𝑓𝑆 ≡ 0.

Note that 𝑓𝑆 is indeed a coreset-based estimator. The function 𝑓 such that 𝑓𝑆 =
𝑓 [𝑋𝑆] looks at the 𝑚 data points in the coreset, and if their first coordinates lie in
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distinct bins, then 𝑋𝑆 is decoded as above to output the corresponding element f of
the net 𝒩𝜀. Otherwise, 𝑓 ≡ 0.

Next, it suffices to show the upper bound of Theorem 3.1 in the case when 𝑚 ≤
𝑐𝑛𝑑/(2𝛽+𝑑) for 𝑐 a sufficiently small absolute constant. For 𝑐* = 𝑐*

𝛽,𝑑,𝐿 sufficiently large,
by Stirling’s formula and our choice of 𝐾 it holds that

log
(︃
𝐾

𝑚

)︃
≥ 𝐶KT(𝛽, 𝑑, 𝐿)

(︂1
𝜀

)︂ 𝑑
𝛽

≥ log |𝒩𝜀|.

Hence, the surjection 𝜑 and our encoding estimator 𝑓𝑆 are well-defined.
Next we have

E𝑓‖𝑓𝑆 − 𝑓‖2 = E𝑓
[︁
‖f − 𝑓‖21ℰ

]︁
+ E𝑓

[︁
‖0− 𝑓‖21ℰ𝑐

]︁
.

We control the first term as follows using (3.1) and the fact that ‖f − 𝑓𝑛‖2 ≤ 𝜀 on ℰ :

E𝑓
[︁
‖f − 𝑓‖21ℰ

]︁
≤ E𝑓‖𝑓𝑛 − 𝑓‖2 + E𝑓‖f − 𝑓𝑛‖2

≤ 𝑐𝛽,𝑑,𝐿
(︁
𝑛

−𝛽
2𝛽+𝑑 + (𝑚 log 𝑛)− 𝛽

𝑑

)︁
.

By the Cauchy-Schwarz inequality,

E𝑓
[︁
‖0− 𝑓‖21ℰ𝑐

]︁
≤

(︁
E𝑓‖𝑓‖2

2 P(ℰ𝑐)
)︁1/2

≤ 𝑐𝛽,𝑑,𝐿 𝑛
−1 .

Put together, the previous three displays yield the upper bound of Theorem 3.1.

3.3 Coreset kernel density estimators
In this section, we consider the family of weighted kernel density estimators built on
coresets and study its rate of estimation over the Hölder densities. In this framework,
the statistician first computes a minimax estimator 𝑓 using the entire dataset and
then approximates 𝑓 with a weighted kernel density estimator over the coreset. Here
we allow the weights to be a measurable function of the entire dataset rather than
just the coreset.

As is typical in density estimation, we consider kernels 𝑘 : R𝑑 → R of the form
𝑘(𝑥) = ∏︀𝑑

𝑖=1 𝜅(𝑥𝑖) where 𝜅 is an even function and
∫︀
𝜅(𝑥) d𝑥 = 1. Given bandwidth

parameter ℎ, we define 𝑘ℎ(𝑥) = ℎ−𝑑 𝑘(𝑥
ℎ
).

3.3.1 Carathéodory coreset method
Given a KDE with uniform weights and bandwidth ℎ defined by

𝑓(𝑦) = 1
𝑛

𝑛∑︁
𝑗=1

𝑘ℎ(𝑋𝑗 − 𝑦),
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on a sample 𝑋1, . . . , 𝑋𝑛, we define a coreset KDE 𝑔𝑆 as follows in terms of a cutoff
frequency 𝑇 > 0. Define 𝐴 = {𝜔 ∈ 𝜋

2Z
𝑑 : |𝜔|∞ ≤ 𝑇}. Consider the complex vectors

(𝑒𝑖⟨𝑋𝑗 ,𝜔⟩)𝜔∈𝐴. By Carathéodory’s theorem [Carathéodory, 1907], there exists a subset
𝑆 ⊂ [𝑛] of cardinality at most 2(1 + 4𝑇

𝜋
)𝑑 + 1 and nonnegative weights {𝜆𝑗}𝑗∈𝑆 with∑︀

𝑗∈𝑆 𝜆𝑗 = 1 such that

1
𝑛

𝑛∑︁
𝑗=1

(𝑒𝑖⟨𝑋𝑗 ,𝜔⟩)𝜔∈𝐴 =
∑︁
𝑗∈𝑆

𝜆𝑗(𝑒𝑖⟨𝑋𝑗 ,𝜔⟩)𝜔∈𝐴. (3.4)

Then 𝑔𝑆(𝑦) is defined to be

𝑔𝑆(𝑦) =
∑︁
𝑗∈𝑆

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦).

Algorithmic considerations

For a convex polyhedron 𝑃 with vertices 𝑣1, . . . , 𝑣𝑛 ∈ R𝐷, the proof of Carathéodory’s
theorem is constructive and yields a polynomial-time algorithm in 𝑛 and 𝐷 to find a
convex combination of 𝐷+1 vertices that represents a given point in 𝑃 [Carathéodory,
1907] [see also Hiriart-Urruty and Lemaréchal, 2004, Theorem 1.3.6]. For complete-
ness, we describe below this algorithm applied to our problem. Note that, more
generally, for a large class of convex bodies, Carathéodory’s theorem may be imple-
mented efficiently using standard tools from convex optimization [Grötschel et al.,
2012, Chapter 6].

Set 𝐷 = 2|𝐴| ≤ 2(1 + 4𝑇
𝜋

)𝑑. For 𝑗 = 1, . . . , 𝑛, let

𝑣𝑗 = (Re 𝑒𝑖⟨𝑋𝑗 ,𝜔⟩, Im 𝑒𝑖⟨𝑋𝑗 ,𝜔⟩)𝜔∈𝐴 ∈ R𝐷.

Let 𝑀 denote the matrix with columns (𝑣1, 1)𝑇 , . . . , (𝑣𝑛, 1)𝑇 ∈ R𝐷+1, and let Δ𝑛−1 ⊂
R𝑛 denote the standard simplex. Assume without loss of generality that 𝑛 ≥ 𝐷 + 2.
Next,

1. Find a nonzero vector 𝑤 ∈ ker(𝑀)

2. Find 𝛼 > 0 so that 𝜆1 := 1
𝑛
1 + 𝛼𝑤 lies on the boundary of Δ𝑛−1

Observe that 𝑀𝜆1 = ( 1
𝑛

∑︀
𝑣𝑖, 1)𝑇 , and since 𝜆1 ∈ 𝜕Δ𝑛−1 the average is now repre-

sented using a convex combination of at most 𝑛−1 of the vertices 𝑣1, . . . , 𝑣𝑛. As long
as at least 𝐷 + 2 vertices remain, we can continue reducing the number of vertices
used to represent 1

𝑛

∑︀
𝑣𝑗 by applying steps 1 and 2. Thus after at most 𝑛 − 𝐷 − 1

iterations, we obtain a (𝐷+ 1)-sparse vector 𝜆 ∈ Δ𝑛−1 that satisfies ∑︀
𝜆𝑗𝑣𝑗 = 1

𝑛

∑︀
𝑣𝑖,

as desired.

3.3.2 Results on Carathéodory coresets
Proposition 3.1 is key to our results and specifies conditions on the kernel guaranteeing
that the Carathéodory method yields an accurate estimator.
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Proposition 3.1. Let 𝑘(𝑥) = ∏︀𝑑
𝑖=1 𝜅(𝑥𝑖) denote a kernel with 𝜅 ∈ 𝒮(𝛾, 𝐿′) such that

|𝜅(𝑥)| ≤ 𝑐𝛽,𝑑 |𝑥|−𝜈 for some 𝜈 ≥ 𝛽 + 𝑑 and such that the KDE

𝑓(𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

𝑘ℎ(𝑋𝑖 − 𝑦)

with bandwidth ℎ = 𝑛− 1
2𝛽+𝑑 satisfies

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E‖𝑓 − 𝑓‖2 ≤ 𝑐𝛽,𝑑,𝐿 𝑛
− 𝛽

2𝛽+𝑑 . (3.5)

Then the Carathéodory coreset estimator 𝑔𝑆 constructed from 𝑓 with 𝑇 = 𝑐𝑑,𝛾,𝐿′ 𝑛
𝑑/2+𝛽+𝛾
𝛾(2𝛽+𝑑)

satisfies
sup

𝑓∈𝒫ℋ(𝛽,𝐿)
E‖𝑔𝑆 − 𝑓‖2 ≤ 𝑐𝛽,𝑑,𝐿 𝑛

− 𝛽
2𝛽+𝑑 .

There exists a kernel 𝑘𝑠 ∈ 𝒞∞ that satisfies the conditions above for all 𝛽 and 𝛾.
We sketch the details here and postpone the full argument to the Proof of Theorem
3.2 in the Appendix. Let 𝜓 : R → [0, 1] denote a cutoff function that has the
following properties: 𝜓 ∈ 𝒞∞, 𝜓

⃒⃒⃒
[−1,1]

≡ 1, and 𝜓 is supported on [−2, 2]. Define
𝜅𝑠(𝑥) = ℱ [𝜓](𝑥), and let 𝑘𝑠(𝑥) = ∏︀𝑑

𝑖=1 𝜅𝑠(𝑥𝑖) denote the resulting kernel. Observe
that for all 𝛽 > 0, the kernel 𝑘𝑠 satisfies

ess sup𝜔 ̸=0
|1−ℱ [𝑘𝑠](𝜔)|

|𝜔|𝛼
≤ 1, ∀𝛼 ⪯ 𝛽.

Using standard results from Tsybakov [2009], this implies that the resulting KDE
𝑓𝑠 satisfies (3.5). Since 𝜓 = ℱ−1[𝑘𝑠] ∈ 𝒞∞, the Riemann–Lebesgue lemma guarantees
that |𝜅𝑠(𝑥)| ≤ 𝑐𝛽,𝑑 |𝑥|−𝜈 is satisfied for 𝜈 = ⌈𝛽 + 𝑑⌉. Since 𝜓 is compactly supported,
an application of Parseval’s identity yields 𝜅𝑠 ∈ 𝒮(𝛾, 𝑐𝛾). Applying Proposition 3.1
to 𝑘𝑠, we conclude that for the task of density estimation, weighted KDEs built on
coresets are nearly as powerful as the coreset-based estimators studied in Section 3.2.

Theorem 3.2. Let 𝜀 > 0. The Carathéodory coreset estimator 𝑔𝑆(𝑦) built using the
kernel 𝑘𝑠 and setting 𝑇 = 𝑐𝑑,𝛽,𝜀 𝑛

𝜀
𝑑

+ 1
2𝛽+𝑑 satisfies

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓‖𝑔𝑆 − 𝑓‖2 ≤ 𝑐𝛽,𝑑,𝐿 𝑛
− 𝛽

2𝛽+𝑑 .

The corresponding coreset has cardinality

𝑚 = 𝑐𝑑,𝛽,𝜀𝑛
𝑑

2𝛽+𝑑
+𝜀.

Theorem 3.2 shows that the Carathéodory coreset estimator achieves the minimax
rate of estimation with near-optimal coreset size. In fact, a small modification yields
a near-optimal rate of convergence for any coreset size as in Theorem 3.1.
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Corollary 3.1. Let 𝜀 > 0 and 𝑚 ≤ 𝑐𝛽,𝑑,𝜀 𝑛
𝑑

2𝛽+𝑑
+𝜀. The Carathéodory coreset estimator

𝑔𝑆(𝑦) built using the kernel 𝑘𝑠, setting ℎ = 𝑚− 1
𝑑

+ 𝜀
𝛽 and 𝑇 = 𝑐𝑑𝑚

1/𝑑, satisfies

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E‖𝑔𝑆 − 𝑓‖2 ≤ 𝑐𝛽,𝑑,𝜀,𝐿

(︂
𝑚− 𝛽

𝑑
+𝜀 + 𝑛− 𝛽

2𝛽+𝑑
+𝜀

)︂
,

and the corresponding coreset has cardinality 𝑚.

Next we apply Proposition 3.1 to the popular Gaussian kernel 𝜑(𝑥) = (2𝜋)−𝑑/2 exp(−1
2 |𝑥|

2
2).

This kernel has rapid decay in the real domain and Fourier space, and is thus amenable
to our techniques. Moreover, 𝜑 is a kernel of order ℓ = 1, [Tsybakov, 2009, Definition
1.3 and Theorem 1.2] and so the standard KDE 𝑓𝜑 on the full dataset attains the
minimax rate of estimation 𝑐𝑑,𝐿𝑛

1/(2+𝑑) over the Lipschitz densities 𝒫ℋ(1, 𝐿).

Theorem 3.3. Let 𝜀 > 0. The Carathéodory coreset estimator 𝑔𝜑(𝑦) built using the
kernel 𝜑 and setting 𝑇 = 𝑐𝑑,𝜀 𝑛

1
2+𝑑

+ 𝜀
𝑑 satisfies

sup
𝑓∈𝒫ℋ(1,𝐿)

E‖𝑔𝜑 − 𝑓‖2 ≤ 𝑐𝑑,𝐿 𝑛
− 1

2+𝑑 .

The corresponding coreset has cardinality

𝑚 = 𝑐𝑑,𝜀𝑛
𝑑

2+𝑑
+𝜀.

In addition, we have a nearly matching lower bound to Theorem 3.2 for coreset
KDEs. In fact, our lower bound applies to a generalization of coreset KDEs where
the vector of weights {𝜆𝑗}𝑗∈𝑆 is not constrained to be in the simplex but can range
within a hypercube of width that may grow polynomially with 𝑛.

Theorem 3.4. Let 𝐴,𝐵 ≥ 1. Let 𝑘 denote a kernel with ‖𝑘‖2 ≤ 𝑛. Let 𝑔𝑆 denote
a weighted coreset KDE with bandwidth ℎ ≥ 𝑛−𝐴 built from 𝑘 with weights {𝜆𝑗}𝑗∈𝑆
satisfying max𝑗∈𝑆 |𝜆𝑗| ≤ 𝑛𝐵. Then

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓‖𝑔𝑆 − 𝑓‖2 ≥ 𝑐𝛽,𝑑,𝐿

[︂
(𝐴+𝐵)− 𝛽

𝑑 (𝑚 log 𝑛)− 𝛽
𝑑 + 𝑛− 𝛽

2𝛽+𝑑

]︂
.

This result is essentially a consequence of the lower bound in Theorem 3.1 because,
in an appropriate sense, coreset KDEs with bounded weights are well-approximated
by coreset-based estimators. Hence, in the case of bounded weights, allowing these
weights to be measurable functions of the entire dataset rather than just the coreset, as
would be required in Section 3.2, does not make a significant difference for the purpose
of estimation. The full details of Theorem 3.4 are postponed to the Appendix.

3.3.3 Proof sketch of Proposition 3.1
Here we sketch the proof of Proposition 3.1, our main tool in constructing effective
coreset KDEs. Full details of the argument may be found in the Appendix.
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Let 𝑘(𝑥) = ∏︀𝑑
𝑖=1 𝜅(𝑥𝑖) denote a kernel, and suppose that 𝑓(𝑦) = 1

𝑛

∑︀𝑛
𝑖=1 𝑘ℎ(𝑋𝑖−𝑦)

is a good estimator for an unknown density 𝑓 in that

‖𝑓 − 𝑓‖2 ≤ 𝜀 := 𝑐𝛽,𝑑 𝑛
− 𝛽

2𝛽+𝑑

on setting ℎ = 𝑛−1/(2𝛽+𝑑). Our goal is to find a subset 𝑆 ⊂ [𝑛] and weights {𝜆𝑗}𝑗∈𝑆
such that

1
𝑛

𝑛∑︁
𝑖=1

𝑘ℎ(𝑋𝑖 − 𝑦) ≈
∑︁
𝑗∈𝑆

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦).

Suppose for simplicity that 𝜅 is compactly supported on [−1/2, 1/2]. By hypothesis
and Parseval’s theorem 𝜅 ∈ 𝒮(𝛾, 𝐿′), and we can further show that 𝑘 ∈ 𝒮(𝛾, 𝑐𝑑,𝐿′) and
𝑘ℎ ∈ 𝒮(𝛾, 𝑐𝑑,𝐿′ℎ−𝑑/2−𝛾). Let ℱ̄ [𝑓 ] = 4−2𝑑ℱ [𝑓 ] denote the rescaled Fourier transform.
Using the Fourier expansion on the interval [−2, 2]𝑑 and fast Fourier decay of 𝑘ℎ, we
have

‖𝑘ℎ(𝑥)−
∑︁

|𝜔|∞<𝑇

ℱ̄ [𝑘ℎ](𝜔)𝑒𝑖⟨𝑥,𝜔⟩‖2 ≤ 𝜀 (3.6)

when 𝑇 = ( 𝑐𝑑,𝛾,𝐿′ℎ
− 𝑑

2 −𝛾

𝜀
)1/𝛾 = 𝑐𝑑,𝛾,𝐿′ 𝑛

𝑑/2+𝛽+𝛾
𝛾(2𝛽+𝑑) . Observe that this matches the setting of

𝑇 in Proposition 3.1.
The approximation (3.6) implies that for 𝑋𝑖 ∈ [−1/2, 1/2]𝑑,

𝑓(𝑦) ≈
∑︁

|𝜔|∞<𝑇

ℱ̄ [𝑘ℎ](𝜔)
(︃

1
𝑛

𝑛∑︁
𝑖=1

𝑒𝑖⟨𝑋𝑖,𝜔⟩
)︃
𝑒−𝑖⟨𝑦,𝜔⟩.

Using the Carathéodory coreset and weights {𝜆𝑗}𝑗∈𝑆 constructed in Section 3.3.1, it
follows that

∑︁
|𝜔|∞<𝑇

ℱ̄ [𝑘ℎ](𝜔)
(︃

1
𝑛

𝑛∑︁
𝑖=1

𝑒𝑖⟨𝑋𝑖,𝜔⟩
)︃
𝑒−𝑖⟨𝑦,𝜔⟩ =

∑︁
|𝜔|∞<𝑇

ℱ̄ [𝑘ℎ](𝜔)
(︃

𝑛∑︁
𝑖=1

𝜆𝑗𝑒
𝑖⟨𝑋𝑖,𝜔⟩

)︃
𝑒−𝑖⟨𝑦,𝜔⟩.

Applying (3.6) again, we see that the right-hand-side is approximately equal to 𝑔𝑆(𝑦),
the estimator produced in Section (3.3.1). By the triangle inequality, we conclude
that ‖𝑔𝑆(𝑦)− 𝑓‖2 ≤ 𝑐𝛽,𝑑 𝜀, as desired.

3.4 Lower bounds for coreset KDEs with uniform
weights

In this section we study the performance of univariate uniformly weighted coreset
KDEs

𝑓unif
𝑆 (𝑦) = 1

𝑚

∑︁
𝑖∈𝑆

𝑘ℎ(𝑋𝑖 − 𝑦),

where 𝑋𝑆 is the coreset and |𝑆| = 𝑚. The next results demonstrate that for a
large class of kernels, there is significant gap between the rate of estimation achieved
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by 𝑓unif
𝑆 (𝑦) and that of coreset KDEs with general weights. First we focus on the

particular case of estimating the class 𝒫ℋ(1, 𝐿) of univariate Lipschitz densities. For
this class, the minimax rate of estimation (over all estimators) is 𝑛−1/3, and this can
be achieved by a weighted coreset KDE of cardinality 𝑐𝜀𝑛

1/3+𝜀 by Theorem 3.2, for
all 𝜀 > 0.

Theorem 3.5. Let 𝑘 denote a nonnegative kernel satisfying

𝑘(𝑡) = 𝑂(|𝑡|−(𝑘+1)), and ℱ [𝑘](𝜔) = 𝑂(|𝜔|−ℓ)

for some ℓ > 0, 𝑘 > 1. Suppose that 0 < 𝛼 < 1/3. If

𝑚 ≤ 𝑛
2
3 −2(𝛼(1− 2

ℓ
)+ 2

3ℓ)
log 𝑛 ,

then

inf
ℎ,𝑆:|𝑆|≤𝑚

sup
𝑓∈𝒫ℋ(1,𝐿)

E‖𝑓unif
𝑆 − 𝑓‖2 = Ω𝑘

(︂
𝑛− 1

3 +𝛼

log 𝑛

)︂
. (3.7)

The infimum above is over all possible choices of bandwidth ℎ and all coreset schemes
𝑆 of cardinality at most 𝑚.

By this result, if 𝑘 has lighter than quadratic tails and fast Fourier decay, the
error in (3.7) is a polynomial factor larger than the minimax rate 𝑛−1/3 when 𝑚 ≪
𝑛2/3. Hence, our result covers a wide variety of kernels typically used for density
estimation and shows that the uniformly weighted coreset KDE performs much worse
than the encoding estimator or the Carathéodory method. In addition, for very
smooth univariate kernels with rapid decay, we have the following lower bound that
applies for all 𝛽 > 0.

Theorem 3.6. Fix 𝛽 > 0 and a nonnegative kernel 𝑘 on R satisfying the following
fast decay and smoothness conditions:

lim
𝑠→+∞

1
𝑠

log 1∫︀
|𝑡|>𝑠 𝑘(𝑡)𝑑𝑡 > 0, (3.8)

lim
𝜔→∞

1
|𝜔|

log 1
|ℱ [𝑘](𝜔)| > 0, (3.9)

where we recall that ℱ [𝑘] denotes the Fourier transform. Let 𝑓unif
𝑆 be the uniformly

weighted coreset KDE. Then there exists 𝐿𝛽 > 0 such that for 𝐿 ≥ 𝐿𝛽 and any 𝑚 and
ℎ > 0, we have

inf
ℎ,𝑆:|𝑆|≤𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E‖𝑓unif
𝑆 − 𝑓‖2 = Ω𝛽,𝑘

(︃
𝑚

− 𝛽
1+𝛽

log𝛽+ 1
2 𝑚

)︃
.

Therefore attaining the minimax rate with 𝑓unif
𝑆 requires 𝑚 ≥ 𝑛

𝛽+1
2𝛽+1 for such

kernels. Next, note that the Gaussian kernel satisfies the hypotheses of Theorem
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3.5 and 3.6. As we show in Theorem 3.7, results of Phillips and Tai [2018b] imply
that our lower bounds are tight up to logarithmic factors: there exists a uniformly
weighted Gaussian coreset KDE of size 𝑚 = 𝑂̃(𝑛2/3) that attains the minimax rate
𝑛−1/3 for estimating univariate Lipschitz densities (𝛽 = 1). In general, we expect a
lower bound 𝑚 = Ω(𝑛

𝛽+𝑑
2𝛽+𝑑 ) to hold for uniformly weighted coreset KDEs attaining

the minimax rate. The proofs of Theorems 3.5 and 3.6 can be found in the Appendix.

3.5 Comparison to other methods

Three methods for constructing coreset kernel density estimators that have previously
been explored include random sampling [Joshi et al., 2011, Lopez-Paz et al., 2015],
the Frank–Wolfe algorithm [Bach et al., 2012, Harvey and Samadi, 2014, Phillips and
Tai, 2018a], and discrepancy-based approaches [Phillips and Tai, 2018b, Karnin and
Liberty, 2019]. These procedures all result in a uniformly weighted coreset KDE.
To compare these results with ours on the problem of density estimation, for each
method under consideration we raise the question: How large does 𝑚, the size of the
coreset, need to be to guarantee that

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓‖𝑔𝑆 − 𝑓‖2 = 𝑂𝛽,𝑑,𝐿

(︂
𝑛− 𝛽

2𝛽+𝑑

)︂
? (3.10)

Here 𝑔𝑆 is the resulting coreset KDE and the right-hand-side is the minimax rate over
all estimators on the full dataset 𝑋1, . . . , 𝑋𝑛.

Uniform random sampling of a subset of cardinality 𝑚 yields an i.i.d dataset, so
the rate obtained is at least 𝑚−𝛽/(2𝛽+𝑑). Hence, we must take 𝑚 = Ω(𝑛) to achieve
the minimax rate.

The Frank–Wolfe algorithm is a greedy method that iteratively constructs a sparse
approximation to a given element in a convex set [Frank et al., 1956, Bubeck, 2015].
Thus Frank–Wolfe may be applied directly in the RKHS corresponding to a positive-
semidefinite kernel as shown in Phillips and Tai [2018b] to approximate the KDE
on the full dataset. However, due to the shrinking bandwidth in our problem, this
approach also requires 𝑚 = Ω(𝑛) to guarantee the bound in (3.10). Another strategy
is to approximately solve the linear equation (3.4) using the Frank–Wolfe algorithm.
Unfortunately, a direct implementation again uses 𝑚 = Ω(𝑛) data points.

A more effective strategy utilizes discrepancy theory [Phillips, 2013, Phillips and
Tai, 2018b, Karnin and Liberty, 2019] [see Matoušek, 1999, Chazelle, 2000, for a com-
prehensive exposition of discrepancy theory]. By the well-known halving algorithm
[see e.g. Chazelle and Matoušek, 1996, Phillips and Tai, 2018b] if for all 𝑁 ≤ 𝑛, the
kernel discrepancy

disc𝑘 = sup
𝑥1,...,𝑥𝑁

min
𝜎∈{−1,+1}𝑛

1𝑇 𝜎=0

‖
𝑁∑︁
𝑖=1

𝜎𝑖𝑘(𝑥𝑖 − 𝑦)‖∞
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is at most 𝐷, then there exists a coreset 𝑋𝑆 of size 𝑂̃𝐷(𝜀−1) such that

‖ 1
𝑛

𝑛∑︁
𝑖=1

𝑘(𝑋𝑖 − 𝑦)− 1
𝑚

∑︁
𝑗∈𝑆

𝑘(𝑋𝑖 − 𝑦)‖∞ ≤ 𝜀. (3.11)

The idea of the halving algorithm is to maintain a set of datapoints 𝒞ℓ at each
iteration and then set 𝒞ℓ+1 to be the set of vectors that receive sign +1 upon min-
imizing ‖∑︀𝑥∈𝒞ℓ

𝜎𝑥𝑘(𝑥 − 𝑦)‖∞. Starting with the original dataset and repeating this
procedure 𝑂(log 𝑛

𝑚
) times yields the desired coreset 𝑋𝑆 satisfying (3.11).

Phillips and Tai [2018b, Theorem 4] use a state-of-the-art algorithm from Bansal
et al. [2018] called the Gram–Schmidt walk to give strong bounds on the kernel dis-
crepancy of bounded and Lipschitz kernels 𝑘 : R𝑑×R𝑑 → R that are positive definite
and decay rapidly away from the diagonal. With a careful handling of the Lipschitz
constant and error in their argument when the bandwidth is set to be ℎ = 𝑛−1/(2𝛽+𝑑),
their techniques yield the following result applied to the kernel 𝑘𝑠. For completeness
we give details of the argument in the Appendix.

Theorem 3.7. Let 𝑘𝑠 denote the kernel from Section 3.3.2. The algorithm of Phillips
and Tai [2018b] yields in polynomial time a subset 𝑆 with |𝑆| = 𝑚 = 𝑂̃(𝑛

𝛽+𝑑
2𝛽+𝑑 ) such

that the uniformly weighted coreset KDE 𝑔𝑆 satisfies

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E‖𝑓 − 𝑔𝑆‖2 ≤ 𝑐𝛽,𝑑,𝐿 𝑛
− 𝛽

2𝛽+𝑑 .

This result also applies to more general kernels, for example, the Gaussian kernel
when 𝛽 = 1. We suspect that this is the best result achievable by discrepancy-based
methods. In particular for nonnegative univariate kernels with fast decay in the real
and Fourier domains, such as the Gaussian kernel, Theorem 3.5 implies that this rate
is optimal for estimating Lipschitz densities with uniformly weighted coreset KDEs.

In contrast, the Carathéodory coreset KDE as in Theorem 3.2 only needs cardi-
nality 𝑚 = 𝑂𝜀(𝑛

𝑑
2𝛽+𝑑

+𝜀) to be a minimax estimator. By Theorem 3.4, this result is
nearly optimal for coreset KDEs with bounded kernels and weights. And as with the
other three methods described, our construction is computationally efficient. Hence
allowing more general weights results in more powerful coreset KDEs for the problem
of density estimation.

3.6 Appendix

3.6.1 Proofs from Section 3.2
Proof of Lemma 3.1

Note that 𝑓1(𝑥1) ∈ 𝒫ℋ(𝛽, 𝐿) as a univariate density because 𝑓(𝑥) ∈ 𝒫ℋ(𝛽, 𝐿). Hence,
𝑓1 satisfies

|𝑓1(𝑥)− 𝑓1(𝑦)| ≤ 𝐿|𝑥− 𝑦|𝛼
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for some absolute constants 𝐿 > 0 and 𝛼 ∈ (0, 1). If 𝐵𝑖𝑘 = 𝐵𝑗𝑘 + 𝑠 for 𝑠 ≤ 𝐴, then

|P(𝐵𝑖𝑘)− P(𝐵𝑗𝑘)| ≤
∫︁
𝐵𝑖𝑘

|𝑓(𝑥1)− 𝑓(𝑥1 + 𝑠)| d𝑥1 ≤ 𝐿𝐾−1𝐴1+𝛼. (3.12)

Thus for all 𝑖, 𝑗,

|P(𝐵𝑖)− P(𝐵𝑗)| ≤
1/𝐴∑︁
𝑘=1
|P(𝐵𝑖𝑘)− P(𝐵𝑗𝑘)| ≤ 𝐿𝐾−1𝐴𝛼. (3.13)

It follows that for all 𝑖 = 1, . . . , 𝐾,

lim
𝐴→0

P(𝐵𝑖) = 𝐾−1. (3.14)

Let ℰ denote the event that every bin 𝐵𝑖 contains at least one observation 𝑥𝑘. By
the union bound,

P(ℰ𝑐) ≤
∑︁
𝑗=1

P(𝑋11 /∈ 𝐵𝑗)𝑛 ≤ 𝐾 max
𝑗

(1− P(𝐵𝑗))𝑛.

By (3.14), choosing 𝐴 small enough ensures that P[𝐵𝑗] ≥ (1/2)𝐾−1 for all 𝑗. In
fact, by (3.12) one may take 𝐴 = ( 1

2𝐾−2𝐿
)1/𝛼. Hence, setting 𝐾−1 = 𝑐(log 𝑛)/𝑛 for 𝑐

sufficiently large, we have
P(ℰ𝑐) = 𝑂(𝑛−2).

Proof of the lower bound in Theorem 3.1

In this section, 𝑋 = 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 denotes the sample. It is convenient to
consider a more general family of decorated coreset-based estimators. A decorated
coreset consists of a coreset 𝑋𝑆 along with a data-dependent binary string 𝜎 of
length 𝑅. A decorated coreset-based estimator is then given by 𝑓 [𝑋𝑆, 𝜎], where
𝑓 : R𝑑×𝑚 × {0, 1}𝑅 → 𝐿2([−1/2, 1/2]𝑑) is a measurable function. As with coreset-
based estimators, we require that 𝑓 [𝑥1, . . . , 𝑥𝑚, 𝜎] is invariant under permutation of
the vectors 𝑥1, . . . , 𝑥𝑚 ∈ R𝑑. We slightly abuse notation and refer to the channel
𝑆 : 𝑋 → 𝑌𝑆 = (𝑋𝑆, 𝜎) as a decorated coreset scheme and 𝑓𝑆 as the decorated
coreset-based estimator.

The next proposition implies the lower bound in Theorem 3.1 on setting 𝑅 = 0,
in which case a decorated coreset-based estimator is just a coreset-based estimator.
This more general framework allows us to prove Theorem 3.4. on lower bounds for
weighted coreset KDEs.

Proposition 3.2. Let 𝑓𝑆 denote a decorated coreset-based estimator with decorated
coreset scheme 𝑆 such that 𝜎 ∈ {0, 1}𝑅. Then

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓‖𝑓𝑆 − 𝑓‖2 ≥ 𝑐𝛽,𝑑,𝐿

(︂
(𝑚 log 𝑛+𝑅)− 𝛽

𝑑 + 𝑛− 𝛽
2𝛽+𝑑

)︂
.
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Choice of function class

Fix ℎ ∈ (0, 1) such that 1/ℎ𝑑 is integral to be chosen later. Let 𝑧1, . . . , 𝑧1/ℎ𝑑 label the
points in {1

2ℎ · 1𝑑 + ℎZ𝑑} ∩ [−1/2, 1/2]𝑑, where 1𝑑 denotes the all-ones vector of R𝑑.
We consider a class of functions of the form 𝑓𝜔(𝑥) = 1 + ∑︀1/ℎ𝑑

𝑗=1 𝜔𝑗𝑔𝑗(𝑥) indexed by
𝜔 ∈ {0, 1}1/ℎ𝑑 . Here, 𝑔𝑗(𝑥) is defined to be

𝑔𝑗(𝑥) = ℎ𝛽𝜑
(︂
𝑥− 𝑧𝑗
ℎ

)︂
where 𝜑 : R𝑑 → R is 𝐿-Hölder smooth of order 𝛽, has ‖𝜑‖∞ = 1, and has

∫︀
𝜑(𝑥) d𝑥 =

0.
Informally, 𝑓𝜔 puts a bump on the uniform distribution with amplitude ℎ𝛽 over 𝑧𝑗

if and only if 𝜔𝑖 = 1. Using a standard argument [Tsybakov, 2009, Chapter 2] we can
construct a packing 𝒱 of {0, 1}1/ℎ𝑑 which results 𝒢 = {𝑓𝜔 : 𝜔 ∈ 𝒱} of the function
class {𝑓𝜔 : 𝜔 ∈ {0, 1}1/ℎ𝑑} such that

(i) ‖𝑓 − 𝑔‖2 ≥ 𝑐𝛽,𝑑,𝐿 ℎ
𝛽 for all 𝑓, 𝑔 ∈ 𝒢, 𝑓 ̸= 𝑔 and,

(ii) 𝒢 is large in the sense that 𝑀 := |𝒢| ≥ 2𝑐𝛽,𝑑,𝐿/ℎ
𝑑 .

Minimax lower bound

Using standard reductions from estimation to testing, we obtain that

inf
𝑓,|𝑆|=𝑚,
𝜎∈{0,1}𝑅

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓𝑆 − 𝑓‖2 ≥ inf
𝑓,|𝑆|=𝑚,
𝜎∈{0,1}𝑅

max
𝑓∈𝒢

E𝑓 ‖𝑓𝑆 − 𝑓‖2

≥ 𝑐𝛽,𝑑,𝐿 ℎ
𝛽 · inf

𝜓𝑆

1
𝑀

∑︁
𝜔∈𝒱

P𝑓𝜔 [𝜓𝑆(𝑋) ̸= 𝜔]. (3.15)

where the infimum in the last line is over all tests 𝜓𝑆 : R𝑑×𝑛 → [𝑀 ] of the form
𝜓𝑆(𝑋) = 𝜓(𝑌𝑆) for a decorated coreset scheme 𝑆 and a measurable function 𝜓 :
R𝑑×𝑚 × {0, 1}𝑅 → [𝑀 ].

Let 𝑉 denote a random variable that is distributed uniformly over 𝒱 and observe
that

1
𝑀

∑︁
𝜔∈𝒱

P𝑓𝜔 [𝜓𝑆(𝑋) ̸= 𝜔] = P[𝜓𝑆(𝑋) ̸= 𝑉 ]

where P denotes the joint distribution of (𝑋, 𝑉 ) characterized by the conditional
distribution 𝑋|𝑉 = 𝜔 which is assumed to have density 𝑓𝜔 for all 𝜔 ∈ 𝒱 .

Next, by Fano’s inequality [Cover and Thomas, 2006, Theorem 2.10.1] and the
chain rule, we have

P[𝜓𝑆(𝑋) ̸= 𝑉 ] ≥ 1− 𝐼(𝑉 ;𝜓𝑆(𝑋)) + 1
log𝑀 , (3.16)

where 𝐼(𝑉 ;𝜓𝑆(𝑋)) denotes the mutual information between 𝑉 and 𝜓𝑆(𝑋) and we
used the fact that the entropy of 𝑉 is log𝑀 . Therefore, it remains to control
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𝐼(𝑉 ;𝜓𝑆(𝑋)). To that end, note that it follows from the data processing inequal-
ity that

𝐼(𝑉 ;𝜓𝑆(𝑋)) ≤ 𝐼(𝑉 ; (𝑋𝑆, 𝜎)) = 𝐼(𝑉 ;𝑌𝑆) = KL(𝑃𝑉,𝑌𝑆
‖𝑃𝑉 ⊗ 𝑃𝑌𝑆

) ,

where 𝑃𝑉,𝑌𝑆
, 𝑃𝑉 and 𝑃𝑌𝑆

denote the distributions of (𝑉, 𝑌𝑆), 𝑉 and 𝑌𝑆 respectively and
observe that 𝑃𝑌𝑆

is the mixture distribution given by 𝑃𝑌𝑆
(𝐴, 𝑡) = 𝑀−1 ∑︀

𝜔∈𝒱 𝑃𝑓𝜔(𝑋𝑆 ∈
𝐴, 𝜎 = 𝑡) for 𝐴 ⊂ R𝑑×𝑚 and 𝑡 ∈ {0, 1}𝑅. Denote by 𝑓𝜔,𝑌𝑆

the mixed density of
𝑃𝑓𝜔(𝑋𝑆 ∈ ·, 𝜎 = ·), where the continuous component is with respect to the Lebesgue
measure on [−1/2, 1/2]𝑑×𝑚. Denote by 𝑓𝑌𝑆

the mixed density of the uniform mixture
of these:

𝑓𝑌𝑆
:= 1

𝑀

∑︁
𝜔∈𝒱

𝑓𝜔,𝑌𝑆
.

By a standard information-theoretic inequality, for all measures Q it holds that

KL(𝑃𝑉,𝑌𝑆
‖𝑃𝑉 ⊗ 𝑃𝑌𝑆

) = 1
𝑀

∑︁
𝜔

KL(𝑃𝑌𝑆 |𝜔‖𝑃𝑌𝑆
) ≤ 1

𝑀

∑︁
𝜔

KL(𝑃𝑌𝑆 |𝜔‖Q). (3.17)

In fact, we have equality precisely when Q = 𝑃𝑌𝑆
, and (3.17) follows immediately

from the nonnegativity of the KL-divergence. Setting Q = Unif[−1
2 ,

1
2 ]𝑑⊗Unif{0, 1}𝑅,

for all 𝜔 we have

KL(𝑃𝑌𝑆 |𝜔,Q) =
∑︁

𝑡∈{0,1}𝑅

∫︁
[− 1

2 ,
1
2 ]𝑑
𝑓𝜔,𝑌𝑆

(𝑥, 𝑡) log 𝑓𝜔,𝑌𝑆
(𝑥, 𝑡)

2−𝑅 d𝑥

≤
∑︁

𝑡∈{0,1}𝑅

∫︁
[− 1

2 ,
1
2 ]𝑑
𝑓𝜔,𝑌𝑆

(𝑥, 𝑡) log 𝑓𝜔,𝑌𝑆
(𝑥, 𝑡) d𝑥+𝑅. (3.18)

Our next goal is to bound the first term on the right-hand-side above.

Lemma 3.2. For any 𝜔 ∈ 𝒱, we have
∑︁

𝑡∈{0,1}𝑅

∫︁
[− 1

2 ,
1
2 ]𝑑
𝑓𝜔,𝑌𝑆

(𝑥, 𝑡) log 𝑓𝜔,𝑌𝑆
(𝑥, 𝑡) d𝑥 ≤ 3𝑚 log 𝑛.

Proof. Let P𝑋𝑆
denote the distribution of the (undecorated) coreset 𝑋𝑆, and note

that the density of this distribution is given by 𝑓𝜔,𝑋𝑆
(𝑥) := ∑︀

𝑡∈{0,1}𝑅 𝑓𝜔,𝑌𝑆
(𝑥, 𝑡). Then

because the logarithm is increasing,
∑︁

𝑡∈{0,1}𝑅

∫︁
[− 1

2 ,
1
2 ]𝑑
𝑓𝜔,𝑌𝑆

(𝑥, 𝑡) log 𝑓𝜔,𝑌𝑆
(𝑥, 𝑡) d𝑥 ≤

∑︁
𝑡∈{0,1}𝑅

∫︁
[− 1

2 ,
1
2 ]𝑑
𝑓𝜔,𝑌𝑆

(𝑥, 𝑡) log 𝑓𝜔,𝑋𝑆
(𝑥) d𝑥

=
∫︁

[− 1
2 ,

1
2 ]𝑑
𝑓𝜔,𝑋𝑆

(𝑥) log 𝑓𝜔,𝑋𝑆
(𝑥) d𝑥.
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By the union bound,

P𝑋𝑆
(·) ≤

∑︁
𝑠∈([𝑛]

𝑚)
P𝑋𝑠(·) =

(︃
𝑛

𝑚

)︃
P𝑋[𝑚](·) .

It follows readily that 𝑓𝜔,𝑋𝑆
(·) ≤

(︁
𝑛
𝑚

)︁
𝑓𝜔,𝑋[𝑚](·) . Next, let 𝑍 ∈ [−1/2, 1/2]𝑑×𝑚 be a

random variable with density 𝑓𝜔,𝑋𝑆
and note that

∫︁
𝑓𝜔,𝑋𝑆

log 𝑓𝜔,𝑋𝑆
= E log 𝑓𝜔,𝑋𝑆

(𝑍) ≤ log
(︃
𝑛

𝑚

)︃
+E log 𝑓𝜔,𝑋[𝑚](𝑍) ≤ 𝑚 log

(︁𝑒𝑛
𝑚

)︁
+𝑚 log 2 ,

where in the last inequality, we use the fact that 𝑓𝜔,𝑋[𝑚] = 𝑓𝑚𝜔 ≤ 2𝑚. The lemma
follows.

Since log𝑀 ≥ 𝑐𝛽,𝑑,𝐿ℎ
−𝑑, it follows from (3.16)–(3.18) and Lemma 3.2 that

P[𝜓𝑆(𝑋) ̸= 𝑉 ] ≥ 1− 3𝑚 log 𝑛+𝑅 + 1
log𝑀 ≥ 0.5

on setting ℎ = 𝑐𝛽,𝑑,𝐿(𝑚 log 𝑛+𝑅)−1/𝑑. Plugging this value back into (3.15) yields

inf
𝑓,|𝑆|=𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓𝑆 − 𝑓‖2 ≥ 𝑐𝛽,𝑑,𝐿(𝑚 log 𝑛+𝑅)−𝛽/𝑑 .

Moreover, it follows from standard minimax theory [see e.g. Tsybakov, 2009, Chapter
2] that

inf
𝑓,|𝑆|=𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓𝑆 − 𝑓‖2 ≥ 𝑐𝛽,𝑑,𝐿𝑛
− 𝛽

2𝛽+𝑑 .

Combined together, the above two displays give the lower bound of Proposition 3.2.

3.6.2 Proofs from Section 3.3

Proof of Proposition 3.1

Let 𝜙 : R𝑑 → [0, 1] denote a cutoff function that has the following properties: 𝜙 ∈ 𝒞∞,
𝜙
⃒⃒⃒
[−1,1]𝑑

≡ 1, and 𝜙 is compactly supported on [−2, 2]𝑑.

Lemma 3.3. Let 𝑘ℎ(𝑥) = 𝑘ℎ(𝑥)𝜙(𝑥) where |𝜅(𝑥)| ≤ 𝑐𝛽,𝑑 |𝑥|−𝜈. Then

‖𝑘ℎ − 𝑘ℎ‖2 ≤ 𝑐𝛽,𝑑 ℎ
−𝑑+𝜈 .
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Proof.

‖𝑘ℎ − 𝑘ℎ‖2 = ‖(1− 𝜙)𝑘ℎ‖2

≤ ‖(1− 1[−1,1]𝑑)𝑘ℎ‖2

= ℎ−𝑑/2‖(1− 1[− 1
ℎ
, 1

ℎ
]𝑑)𝑘‖2

≤ 𝑑ℎ−𝑑/2‖1|𝑥1|≥ 1
ℎ
𝑘‖2

≤ 𝑐𝛽,𝑑 ℎ
−𝑑/2

√︃∫︁
|𝑥1|≥ 1

ℎ

𝜅2(𝑥1) d𝑥1

≤ 𝑐𝛽,𝑑 ℎ
−𝑑+𝜈 .

The triangle inequality and the previous lemma yield the next result.
Lemma 3.4. Let 𝑘 denote a kernel such that |𝜅(𝑥)| ≤ 𝑐𝛽,𝑑 |𝑥|−𝜈2 . Recall the definition
of 𝑘ℎ from Lemma 3.3. Let {𝑋𝑗 : 𝑗 ∈ 𝑆} ⊂ R𝑑 denote an arbitrary set of points (not
necessarily from a sample), and let

𝑔𝑆(𝑦) =
∑︁
𝑗∈𝑆

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦)

denote a weighted KDE on the points labeled by 𝑆 where 𝜆𝑗 ≥ 0 and 1𝑇𝜆 = 1. Let

𝑔𝑆(𝑦) =
∑︁
𝑗∈𝑆

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦).

Then
‖𝑔𝑆 − 𝑔𝑆‖2 ≤ 𝑐𝛽,𝑑ℎ

−𝜈+𝑑.

Next we show that 𝑘ℎ is well approximated by its Fourier expansion on [−2, 2]𝑑.
Since 𝑘ℎ is a smooth periodic function on [−2, 2]𝑑, it is expressed in 𝐿2 as a Fourier
series on 𝜋

2Z
𝑑. Thus we bound the tail of this expansion. In what follows, 𝛼 ∈ Z𝑑≥0 is

a multi-index and
ℱ̄ [𝑓 ](𝜔) = 1

42𝑑

∫︁
𝑓(𝑥)𝑒−𝑖⟨𝑥,𝜔⟩ d𝑥

denotes the (rescaled) Fourier transform on [−2, 2]𝑑, where 𝜔 ∈ 𝜋
2Z

𝑑.
Lemma 3.5. Suppose that 𝜅 ∈ 𝒮(𝛽, 𝐿′). Let 𝐴 = {𝜔 ∈ 𝜋

2Z
𝑑 : |𝜔|1 ≤ 𝑇}, and define

𝑘𝑇ℎ (𝑦) =
∑︁
𝜔∈𝐴
ℱ̄ [𝑘ℎ](𝜔)𝑒𝑖⟨𝑦,𝜔⟩.

Then
‖(𝑘ℎ − 𝑘𝑇ℎ )1[−2,2]𝑑‖2 ≤ 𝑐𝛾,𝑑,𝐿′ 𝑇−𝛾ℎ−𝑑/2−𝛾

Proof. Observe that for 𝜔 /∈ 𝐴, it holds that

∑︁
|𝛼|1=𝛾

𝛾!
𝛼! |𝜔|

𝛼 = (|𝜔1|+ · · ·+ |𝜔𝑑|)𝛾 ≥ 𝑇 𝛾.
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Therefore,

‖ℱ̄ [𝑘ℎ](𝜔)1𝜔/∈𝐴‖ℓ2 ≤ 𝑇−𝛾‖
∑︁

|𝛼|1=𝛾

𝛾!
𝛼! |𝜔|

𝛼 ℱ̄ [𝑘ℎ](𝜔)1𝜔/∈𝐴‖ℓ2

≤ 𝑇−𝛾 ∑︁
|𝛼|1=𝛾

𝛾!
𝛼! ‖𝜔

𝛼ℱ̄ [𝑘ℎ](𝜔)‖ℓ2

= 𝑐𝑑 𝑇
−𝛾 ∑︁

|𝛼|1=𝛾

𝛾!
𝛼! ‖

𝜕𝛼

𝜕𝑥𝛼
𝑘ℎ(𝑥)‖2, (3.19)

where in the last line we used Parseval’s identity. For any multi-index 𝛼 with |𝛼|1 = 𝛾,

‖ 𝜕
𝛼

𝜕𝑥𝛼
𝑘ℎ(𝑥)‖2 = ‖

∑︁
𝜂⪯𝛼

𝜕𝜂

𝜕𝑥𝜂
𝑘ℎ(𝑥) 𝜕𝛼−𝜂

𝜕𝑥𝛼−𝜂𝜙(𝑥)‖2

≤ ℎ− 𝑑
2 −𝛾 ∑︁

𝜂⪯𝛼
𝑐𝑑,𝛾 ‖

𝜕𝜂

𝜕𝑥𝜂
𝑘(𝑥)‖2, (3.20)

where we used that the derivatives of 𝜙 are bounded. Next by Parseval’s identity,

‖ 𝜕
𝜂

𝜕𝑥𝜂
𝑘(𝑥)‖2

2 = 𝑐𝑑
𝑑∏︁
𝑖=1
‖𝜔𝜂𝑖

𝑖 ℱ [𝜅](𝜔𝑖)‖2
2. (3.21)

For 0 ≤ 𝑎 ≤ 𝛾, we have∫︁
|𝜔𝑎ℱ [𝜅](𝜔)|2 d𝜔 ≤ 2‖𝜅‖2

1 +
∫︁

|𝜔|≥1
|𝜔𝛾ℱ [𝜅](𝜔)|2 d𝜔 ≤ 2‖𝜅‖2

1 + 𝐿′. (3.22)

By (3.19)–(3.22),

‖ℱ̄ [𝑘ℎ](𝜔)1𝜔/∈𝐴‖ℓ2 ≤ 𝑐𝑑,𝛾,𝐿′ 𝑇−𝛾ℎ− 𝑑
2 −𝛾,

as desired.

Applying the previous lemma and linearity of the Fourier transform, we have the
next corollary that gives an expansion for a general KDE on the smaller domain
[−1

2 ,
1
2 ]𝑑.

Corollary 3.2. Let 𝑔𝑆 denote the weighted KDE built from 𝑘ℎ from Lemma 3.4 where
{𝑋𝑗 : 𝑗 ∈ 𝑆} ⊂ [−1

2 ,
1
2 ]𝑑 is an arbitrary set of points (not necessarily from a sample)

and moreover 𝜅 ∈ 𝒮(𝛽, 𝐿′). Let 𝐴 = {𝜔 ∈ 𝜋
2Z

𝑑 : |𝜔|1 ≤ 𝑇}, and define

𝑔𝑆
𝑇 (𝑦) =

∑︁
𝜔∈𝐴
ℱ̄ [𝑔𝑆](𝜔)𝑒𝑖⟨𝑦,𝜔⟩.

Then
‖(𝑔𝑆 − 𝑔𝑆𝑇 )1[− 1

2 ,
1
2 ]𝑑‖2 ≤ 𝑐𝑑,𝛾,𝐿′ 𝑇−𝛾ℎ−𝑑/2−𝛾𝐿.
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Now we have all the ingredients needed to prove Proposition 3.1.

Proof of Proposition 3.1 . Let

𝑓(𝑦) = 1
𝑛

𝑛∑︁
𝑗=1

𝑘ℎ(𝑋𝑗 − 𝑦),

and
𝑔𝑆(𝑦) =

∑︁
𝑗∈𝑆

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦)

where the coreset {𝑋𝑗 : 𝑗 ∈ 𝑆} is constructed by Carathéodory’s theorem as in Section
3.3.1 and 𝑘ℎ is defined as in Lemma 3.3. Also consider their Fourier expansions 𝑓𝑇
and 𝑔𝑇𝑆 as defined in Corollary 3.2. Observe that, by construction of the Carathéodory
coreset,

𝑓𝑇 (𝑦) = 𝑔𝑇𝑆 (𝑦) ∀𝑦 ∈ [−1
2 ,

1
2]𝑑.

In what follows, ‖·‖2 is computed on [−1
2 ,

1
2 ]𝑑. By the triangle inequality,

‖𝑔𝑆 − 𝑓‖2 ≤ ‖𝑔𝑆 − 𝑔𝑆‖2 + ‖𝑔𝑆 − 𝑔𝑇𝑆 ‖2 + ‖𝑔𝑇𝑆 − 𝑓𝑇‖
+ ‖𝑓𝑇 − 𝑓‖2 + ‖𝑓 − 𝑓‖2

≤ 𝑐𝛽,𝑑 ℎ
−𝑑+𝜈 + 𝑐𝑑,𝛾,𝐿′ 𝑇−𝛾ℎ−𝑑/2−𝛾 + 0

+ 𝑐𝑑,𝛾,𝐿′ 𝑇−𝛾ℎ−𝑑/2−𝛾 + 𝑐𝛽,𝑑 ℎ
−𝑑+𝜈 (3.23)

On the right-hand-side of the first line, the first and last terms are bounded via
Lemma 3.4. The second and fourth terms are bounded via Lemma 3.5, and the third
term is 0 by Carathéodory. By our choice of 𝑇 and the decay properties of 𝑘, we have

‖𝑔𝑆 − 𝑓‖2 ≤ 𝑐𝛽,𝑑,𝐿 ℎ
𝛽 ≤ 𝑐𝛽,𝑑,𝐿 𝑛

−𝛽/(2𝛽+𝑑).

The conclusion follows by the hypothesis on 𝑘, the previous display, and the triangle
inequality.

Proof of Theorem 3.2

Our goal is to apply Proposition 3.1 to 𝑘𝑠. First we show that the standard KDE
built from 𝑘𝑠 attains the minimax rate on 𝒫ℋ(𝛽, 𝐿). The Fourier condition

ess sup𝜔 ̸=0
|1−ℱ [𝑘𝑠](𝜔)|

|𝜔|𝛼
≤ 1, ∀𝛼 ⪯ 𝛽,

implies that 𝑘𝑠 is a kernel of order 𝛽 [Tsybakov, 2009, Definition 1.3]. Since ℱ [𝑘𝑠](0) =
1 =

∫︀
𝑘𝑠(𝑥) d𝑥, it remains to show that the ‘moments’ of order at most 𝛽 of 𝑘𝑠 vanish.

In fact all of the moments vanish. We have, expanding the exponential and using the
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multinomial formula,

𝜓(𝜔) = ℱ−1[𝑘𝑠](𝜔)

=
∫︁
𝑘𝑠(𝑥)𝑒𝑖⟨𝑥,𝜔⟩d𝑥

=
∞∑︁
𝑡=0

∫︁
𝑘𝑠(𝑥)(𝑖⟨𝑥, 𝜔⟩)𝑡

𝑡! d𝑥

=
∞∑︁
𝑡=0

∑︁
|𝛼|1=𝑡

𝑖𝑡

𝛼!𝑤
𝛼
{︂∫︁

𝑘𝑠(𝑥)𝑥𝛼d𝑥
}︂
.

Since 𝜓(𝜔) ≡ 1 in a neighborhood near the origin, it follows that all of the terms∫︀
𝑘𝑠(𝑥)𝑥𝛼d𝑥 = 0. Thus 𝑘𝑠 is a kernel of order 𝛽 for all 𝛽 ∈ Z≥0, and the standard

KDE on all of the dataset with bandwidth ℎ = 𝑛−1/(2𝛽+𝑑) attains the rate of estimation
𝑛−𝛽/(2𝛽+𝑑) over 𝒫ℋ(𝛽, 𝐿) [see e.g. Tsybakov, 2009, Theorem 1.2].

Next, |𝜅𝑠(𝑥)| ≤ 𝑐𝛽,𝑑 |𝑥|𝜈 for 𝜈 = ⌈𝛽 + 𝑑⌉. This is because

𝑥𝜈𝜅𝑠(𝑥) = 𝑥𝜈ℱ [𝜓](𝑥) = ℱ
[︃

d𝜈
d𝑥𝜈𝜓

]︃
(𝑥) ≤ ‖ d𝜈

d𝑥𝜈𝜓‖1 ≤ 𝑐𝛽,𝑑.

Moreover for all 𝛾 ∈ Z>0, 𝜅𝑠 ∈ 𝒮(𝛾, 𝑐𝛾). By Parseval’s identity,

‖ d𝛾
d𝑥𝛾 𝜅𝑠‖2 = 1√

2𝜋
‖ℱ [ d𝛾

d𝑥𝛾 𝜅𝑠]‖2 = 1√
2𝜋
‖𝜔𝛾𝜓(𝜔)‖2 ≤ 𝑐𝛾

because 𝜓 has compact support [see e.g. Katznelson, 2004, Chapter VI].
All of the hypotheses of Proposition 3.1 are satisfied, so we apply the result with

𝛾 = 𝑑

2𝜀

to derive Theorem 3.2.

Proof of Corollary 3.1

Recall from the proof of Theorem 3.2 that 𝑘𝑠 is a kernel of all orders. By a standard
bias-variance trade-off [see e.g. Tsybakov, 2009, Section 1.2], it holds for the KDE 𝑓
with bandwidth ℎ built on the entire dataset that

E𝑓‖𝑓 − 𝑓‖2 ≤ 𝑐𝛽,𝑑,𝐿

(︃
ℎ𝛽 + 1√

𝑛ℎ𝑑

)︃
. (3.24)

Moreover, from (3.23) applied to 𝑘𝑠 , setting 𝑇 = 𝑐𝑑𝑚
1/𝑑, we get

‖𝑔𝑆 − 𝑓‖2 ≤ 𝑐𝛽,𝑑 ℎ
𝛽 + 𝑐𝑑,𝛾𝑚

−𝛾/𝑑ℎ−𝑑/2−𝛾 . (3.25)
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Choosing
𝛾 = (𝛽 + 𝑑

2)( 𝛽
𝑑𝜀
− 1), ℎ = 𝑚− 1

𝑑
+ 𝜀

𝛽

(assuming without loss of generality that 𝜀 > 0 is sufficiently small so that 𝛾 > 0),
then the triangle inequality, (3.24), (3.25), and the upper bound on 𝑚 yield the
conclusion of Corollary 3.1.

Proof of Theorem 3.4

Let 𝜆 = 𝜆1, . . . , 𝜆𝑚 and let 𝜆̃ = 𝜆̃1, . . . , 𝜆̃𝑚. Observe that

‖
∑︁
𝑗∈𝑆

𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦)−
∑︁
𝑗∈𝑆

𝜆̃𝑗𝑘ℎ(𝑋𝑗 − 𝑦)‖2 ≤
∑︁
𝑗∈𝑆

⃒⃒⃒
𝜆𝑗 − 𝜆̃𝑗

⃒⃒⃒
‖𝑘ℎ(𝑋𝑗 − 𝑦)‖2

≤
⃒⃒⃒
𝜆− 𝜆̃

⃒⃒⃒
∞
𝑛2ℎ−𝑑/2. (3.26)

Using this we develop a decorated coreset-based estimator 𝑓𝑆 (see Section 3.6.1)
that approximates 𝑔𝑆 well. Set 𝛿 = 𝑐𝛽,𝑑,𝐿𝑛

−4ℎ𝑑/2 for 𝑐𝛽,𝑑,𝐿 sufficiently small and to be
chosen later. Order the points of the coreset 𝑋𝑆 according to their first coordinate.
This gives rise to an ordering ⪯ so that

𝑋 ′
1 ⪯ 𝑋 ′

2 ⪯ · · · ⪯ 𝑋 ′
𝑚

denote the elements of 𝑋𝑆. Let 𝜆 ∈ R𝑚 denote the correspondingly reordered collec-
tion of weights so that

𝑔𝑆(𝑦) =
𝑚∑︁
𝑗=1

𝜆𝑗𝑘ℎ(𝑋 ′
𝑗 − 𝑦).

Construct a 𝛿-net 𝒩𝛿 with respect to the sup-norm |·|∞ on the set {𝜈 ∈ R𝑚 :
|𝜈|∞ ≤ 𝑛𝐵}. Observe that

log |𝒩𝛿| = log(𝑛𝐵𝛿−1)𝑚 = 𝑐𝛽,𝑑,𝐿 (𝐵 + 𝐴)𝑚 log 𝑛 (3.27)

Define 𝑅 to be the smallest integer larger than the right-hand-side above. Then
we can construct a surjection 𝜑 : {0, 1}𝑅 → 𝒩𝛿. Note that 𝜑 is constructed before
observing any data: it simply labels the elements of the 𝛿-net 𝒩𝛿 by strings of length
𝑅.

Given 𝑔𝑆(𝑦) = ∑︀
𝑗∈𝑆 𝜆𝑗𝑘ℎ(𝑋𝑗 − 𝑦), define 𝑓𝑆 as follows:

1. Let 𝜆̃ ∈ R𝑚 denote the closest element in 𝒩𝛿 to 𝜆 ∈ R𝑚.

2. Choose 𝜎 ∈ {0, 1}𝑅 such that 𝜑(𝜎) = 𝜆̃.

3. Define the decorated coreset 𝑌𝑆 = (𝑋𝑆, 𝜎).

4. Order the points of 𝑋𝑆 by their first coordinate. Pair the 𝑖-th element of 𝜆̃ with
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the 𝑖-th element 𝑋 ′
𝑖 of 𝑋𝑆, and define

𝑓𝑆(𝑦) =
𝑚∑︁
𝑗=1

𝜆̃𝑗𝑘ℎ(𝑋 ′
𝑗 − 𝑦)

We see that 𝑓𝑆 is a decorated-coreset based estimator because in step 4 this
estimator is constructed only by looking at the coreset 𝑋𝑆 and the bit string 𝜎.
Moreover, by (3.26) and the setting of 𝛿,

‖𝑓𝑆 − 𝑔𝑆‖2 ≤ 𝑐𝛽,𝑑,𝐿 𝑛
−2. (3.28)

By Proposition 3.2 and our choice of 𝑅,

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓‖𝑓𝑆 − 𝑓‖2 ≥ 𝑐𝛽,𝑑,𝐿

(︂
(𝐴+𝐵)− 𝛽

𝑑 (𝑚 log 𝑛)− 𝛽
𝑑 + 𝑛− 𝛽

2𝛽+𝑑

)︂
.

Applying the triangle inequality and (3.28) yields Theorem 3.4.

3.6.3 Proofs from Section 3.4

Notation: Given a set of points 𝑋 = 𝑥1, . . . , 𝑥𝑚 ∈ [−1/2, 1/2] (not necessarily a
sample), we let

𝑓𝑋(𝑦) = 1
𝑚

𝑚∑︁
𝑖=1

𝑘ℎ(𝑋𝑖 − 𝑦)

denote the uniformly weighted KDE on 𝑋.

Proof of Theorem 3.5

The proof of Theorem 3.5 follows directly from Propositions 3.3 and 3.4, which are
presented in Sections 3.6.3 and 3.6.3, respectively.

Small bandwidth

First we show that uniformly weighted coreset KDEs on 𝑚 points poorly approximate
densities that are very close to 0 everywhere.

Lemma 3.6. Let 𝑓𝑋 denote a uniformly weighted coreset KDE built from an even
kernel 𝑘 : R → R with bandwidth ℎ on 𝑚 points 𝑋 = 𝑥1, . . . , 𝑥𝑚 ∈ R. Suppose that
quantiles 0 ≤ 𝑞1 ≤ 𝑞2 satisfy ∫︁ 𝑞1

−𝑞1
𝑘(𝑡)d𝑡 ≥ 0.9, and (3.29)∫︁ 𝑞2

−𝑞2
𝑘(𝑡)d𝑡 ≥ 1− 𝛾. (3.30)
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Let 𝑈 denote an interval [0, 𝑢] where

𝑢 ≥ 8𝑞2ℎ, (3.31)

and suppose that 𝑓 : 𝑈 → R satisfies

1
100𝑞1𝑚ℎ

≤ 𝑓(𝑥) ≤ 45
44 ·

1
100𝑞1𝑚ℎ

(3.32)

for all 𝑥 ∈ 𝑈 .
Then

inf
𝑋:|𝑋|=𝑚

‖(𝑓𝑋 − 𝑓)1𝑈‖1 ≥
𝑢

440𝑞1𝑚ℎ
− 𝛾.

Proof. Let 𝑁 denote the number of 𝑥𝑖 ∈ 𝑋 such that [𝑥𝑖 − 𝑞1ℎ, 𝑥𝑖 + 𝑞1ℎ] ⊂ [0, 𝑢].
The argument proceeds in two cases. With foresight, we set 𝛼 = 1/(44𝑞1). Also let
𝐶1 = 1/(100𝑞1) and 𝐶2 = 45/(4400𝑞1).

Case 1: 𝑁 ≥ 𝛼𝑢
ℎ

. Then by (3.29) and the nonnegativity of 𝑘,

‖𝑓𝑋1𝑈‖1 ≥
0.9𝑁
𝑚
≥ 0.9𝛼𝑢

𝑚ℎ
.

By (3.32),
‖𝑓‖1 ≤

𝐶2𝑢

𝑚ℎ
.

Hence,
‖(𝑓𝑋 − 𝑓)1𝑈‖1 ≥

𝑢

𝑚ℎ
(0.9𝛼− 𝐶2) = 𝐶2

𝑢

𝑚ℎ
= 45

4400 ·
𝑢

𝑞1𝑚ℎ
.

Thus Lemma 3.6 holds in Case 1 where 𝑁 ≥ 𝛼𝑢/ℎ.

Case 2: 𝑁 ≤ 𝛼𝑢
ℎ

. Let

𝑉 = [2ℎ𝑞2, 𝑢− 2ℎ𝑞2] ∖
⋃︁
𝑗∈𝑇

[𝑥𝑗 − 𝑞1ℎ, 𝑥𝑗 + 𝑞1ℎ]

where 𝑇 is the set of indices 𝑗 so that [𝑥𝑗 − 𝑞1ℎ, 𝑥𝑗 + 𝑞1ℎ] ⊂ 𝑈 . Observe that if 𝑗 /∈ 𝑇 ,
then by (3.30), ∫︁

𝑉

1
ℎ
𝑘
(︂
𝑥𝑗 − 𝑡
ℎ

)︂
d𝑡 ≤ 𝛾.

If 𝑗 ∈ 𝑇 , then by (3.29), ∫︁
𝑉

1
ℎ
𝑘
(︂
𝑥𝑗 − 𝑡
ℎ

)︂
d𝑡 ≤ 0.1.

Thus,
‖𝑓𝑋1𝑉 ‖1 ≤

0.1𝑁
𝑚

+ 𝛾 ≤ 𝛼0.1𝑢
𝑚ℎ

+ 𝛾.
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By the union bound, observe that the Lebesgue measure of 𝑉 is at least

𝑢− 4ℎ𝑞2 − 2𝑁ℎ𝑞1 ≥
𝑢

2 − 2𝑁ℎ𝑞1 ≥ 𝑢(1
2 − 2𝛼𝑞1).

Next, by (3.32),
‖𝑓1𝑉 ‖1 ≥ 𝐶1

𝑢

𝑚ℎ
(1
2 − 2𝛼𝑞1).

Therefore,

‖(𝑓𝑋 − 𝑓)1𝑈‖1 ≥
𝑢

𝑚ℎ
(𝐶1(1/2− 2𝛼𝑞1)− 0.1𝛼)− 𝛾 = 𝑢

440𝑞1𝑚ℎ
− 𝛾. (3.33)

Proposition 3.3. Let 𝐿 > 2. Let 0 < 𝛿 < 1/3 denote an absolute constant. Let
𝑓𝑋 denote a uniformly weighted coreset KDE with bandwidth ℎ built from a kernel
𝑘 on 𝑋 = 𝑥1, . . . , 𝑥𝑚. Suppose that 𝑘(𝑡) ≤ Δ|𝑡|−(𝑘+1) for some absolute constants
Δ > 0, 𝑘 ≥ 1. If ℎ ≤ 𝑛−1/3+𝛿, then for

𝑚 ≤ 𝑛2/3−2𝛿

log 𝑛

it holds that
sup

𝑓∈𝒫ℋ(1,𝐿)
inf

𝑋:|𝑋|=𝑚
‖𝑓𝑋 − 𝑓‖2 = Ω

(︃
𝑛−1/3+𝛿

log 𝑛

)︃
. (3.34)

Proof. Let

𝑓(𝑡) = 𝜆
(︁
𝑒−1/𝑡1(𝑡 ∈ [−1/2, 0]) + 𝑒−1/(1−𝑡)1(𝑡 ∈ [0, 1/2])

)︁
,

where 𝜆 is a normalizing constant so that
∫︀
𝑓 = 1. Observe that 𝑓 ∈ 𝒫ℋ(1, 𝐿). Our

first goal is to show that

‖𝑓𝑋 − 𝑓‖1 = Ω
(︃

1
𝑚ℎ log2(𝑚ℎ)

)︃

holds for all 𝜏/ℎ ≤ 𝑚 ≤ ℎ−2 and for all ℎ ≤ 𝑛−1/3+𝛿, where 𝜏 is an absolute constant
to be determined.

We apply Lemma 3.6 to the density 𝑓 . Let 𝑞1 be defined as in Lemma 3.6, and
set 𝐶1 = 1/(100𝑞1) and 𝐶2 = 45/(4400𝑞1). Set 𝜏 = 10𝐶2/𝜆. Let

𝑈 = [𝑡1, 𝑡2] :=
[︃

1
log(𝜆𝑚ℎ/𝐶1)

,
1

log(𝜆𝑚ℎ/𝐶2)

]︃
.

The function 𝑓 |𝑈 satisfies the bounds (3.32) from Lemma 3.6. Observe that the length
of 𝑈 is

𝑢 := 𝑡2 − 𝑡1 = Ω( 1
log2(𝑚ℎ)

).
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We set the parameter 𝛾 in Lemma 3.6 to be

𝛾 = 1
800𝑞1𝑚ℎ log2(𝑚ℎ)

.

By the decay assumption on 𝑘, we may set

𝑞2 :=
(︃

2Δ
𝑘𝛾

)︃1/𝑘

.

Therefore,

𝑢− 8𝑞2ℎ = Ω( 1
log2(𝑚ℎ)

)− 8ℎ
(︃

2Δ
𝑘𝛾

)︃1/𝑘

(3.35)

= Ω( 1
log2(𝑚ℎ)

)−𝑂(ℎ(𝑚ℎ log2(𝑚ℎ))1/𝑘) (3.36)

= Ω( 1
log2(ℎ−1)

)−𝑂(ℎ1−1/𝑘 log2(ℎ−1)) > 0 (3.37)

for 𝑛 sufficiently large, because we assume 𝜏/ℎ ≤ 𝑚 ≤ ℎ−2, ℎ ≤ 𝑛−1/3+𝛿, and 𝑘 > 1.
Hence, condition (3.31) is satisfied for 𝑚,ℎ in the specified range, so we apply Cauchy–
Schwarz and Lemma 3.6 to conclude that for all 𝜏/ℎ ≤ 𝑚 ≤ ℎ−2 and ℎ ≤ 𝑛−1/3+𝛿,

‖𝑓𝑋 − 𝑓‖2 ≥ ‖𝑓𝑋 − 𝑓‖1 = Ω
(︃

1
𝑚ℎ log2(𝑚ℎ)

)︃
= Ω

(︃
1

𝑚ℎ log2(ℎ−1)

)︃
. (3.38)

Suppose first that log2(1/ℎ) ≥ 𝑛1/3−𝛿. Then clearly the right-hand side of (3.38)
is Ω(1) for 𝑚 ≤ 𝑛. Otherwise, we have for all ℎ ≤ 𝑛−1/3+𝛿 that if 𝑚 is in the range

𝜏

ℎ
≤ 𝑚 ≤ min

(︃
𝑛1/3−𝛿 log 𝑛
ℎ log2(1/ℎ)

, ℎ−2
)︃

=: 𝑁ℎ,

then (3.38) implies

‖𝑓𝑋 − 𝑓‖2 = Ω
(︃
𝑛−1/3+𝛿

log 𝑛

)︃
. (3.39)

Moreover, a uniformly weighted coreset KDE on 𝑚 = 𝑂(1/ℎ) points can be expressed
as a uniformly weighted coreset KDE on Ω(1/ℎ) points by setting some of the 𝑥𝑖’s
to be duplicates. Hence (3.39) holds for all 1 ≤ 𝑚 ≤ 𝑁ℎ. Since 𝑁ℎ is a decreasing
function of ℎ, it follows that (3.39) holds for all 𝑚 ≤ 𝑛2/3−2𝛿/ log 𝑛 and ℎ ≤ 𝑛−1/3+𝛿,
as desired.
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Large bandwidth

Lemma 3.7. Let 𝜀 = 𝜀(𝑛) > 0, and let 𝑓𝑋 denote the uniformly weighted coreset KDE
on 𝑋 with bandwidth ℎ. Suppose that 𝜑 : R→ R is an odd 𝒞∞ function supported on
[−1/4, 1/4]. Let 𝑓(𝑡) : [−1/2, 1/2]→ R≥0 denote the density

𝑓(𝑡) = 12
11(1− 𝑡2) + 𝜀𝜑(𝑡) cos

(︂
𝑡

𝜀

)︂
.

Then

‖𝑓𝑋 − 𝑓‖2
2 ≥

1
2𝜀

2
(︁
‖𝜑‖2

2 −
⃒⃒⃒
ℱ [𝜑2](2𝜀−1)

⃒⃒⃒)︁
− ‖𝜑‖1 sup

|𝜔|≥ℎ𝜀−1/2
|ℱ [𝑘](𝜔)| − 2𝜀

∫︁
|𝜔|≥𝜀−1/2

|ℱ [𝜑](𝜔)| d𝜔. (3.40)

Proof. Let 𝑔(𝑡) = (12/11)(1− 𝑡2) and 𝜓(𝑡) = 𝜀𝜑(𝑡) cos(𝑡/𝜀). Observe that

‖𝑓𝑋 − 𝑓‖2
2 ≥ ‖𝑔 − 𝑓‖2

2 − 2⟨𝑓𝑋 , 𝑔 − 𝑓⟩+ 2⟨𝑔, 𝜓(𝑡)⟩
= ‖𝑔 − 𝑓‖2

2 − 2⟨𝑓𝑋 , 𝑔 − 𝑓⟩ (3.41)

because 𝑔(𝑡)𝜓(𝑡) is an odd function. Next, using cos2(𝜃) = (1/2)(cos(2𝜃) + 1),

‖𝑔 − 𝑓‖2
2 = 𝜀2

∫︁ 1/2

−1/2
cos2(𝑡/𝜀)𝜑2(𝑡)d𝑡

≥ 𝜀2

2 ‖𝜑‖
2
2 −

𝜀2

2
⃒⃒⃒
ℱ [𝜑2](2𝜀−1)

⃒⃒⃒
. (3.42)

By the triangle inequality and Parseval’s formula,⃒⃒⃒
⟨𝑓𝑋 , 𝑔 − 𝑓⟩

⃒⃒⃒
𝜀

≤
(︂ ∫︁

|𝜔|≤ℎ𝜀−1/2⏟  ⏞  
=:𝐴

+
∫︁

|𝜔|≥ℎ𝜀−1/2⏟  ⏞  
=:𝐵

)︂⃒⃒⃒⃒
ℱ [𝑘]

(︃
−ℎ
𝜀
− 𝜔

)︃
1
ℎ
ℱ [𝜑]

(︂
−𝜔
ℎ

)︂ ⃒⃒⃒⃒
d𝜔.

Moreover,

𝐴 ≤ 1
2𝜀‖𝜑‖1 · sup

|𝜔|≥ℎ𝜀−1/2
|ℱ [𝑘](𝜔)| , (3.43)

𝐵 ≤ ‖𝑘‖1 ·
∫︁

|𝜔|>𝜀−1/2
|ℱ [𝜑](𝜔)| d𝜔. (3.44)

Then (3.40) follows from ‖𝑘‖1 = 1 and equations (3.41), (3.42), (3.43), and (3.44).

Proposition 3.4. Let 𝜀 = 𝑛−1/3+𝛾 for some absolute constant 𝛾 > 0. Let 𝑓𝑋 denote
a uniformly weighted coreset KDE with bandwidth ℎ built from a kernel 𝑘 on 𝑋 =
𝑥1, . . . , 𝑥𝑚. Suppose that |ℱ [𝑘](𝜔)| ≤ |𝜔|−ℓ. If ℎ ≥ 𝑐𝜀1−2/ℓ = 𝑐𝑛(−1/3+𝛾)(1−2/ℓ) for 𝑐
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sufficiently large, then for all 𝑚 it holds that

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

inf
𝑋:|𝑋|=𝑚

‖𝑓𝑋 − 𝑓‖2 = Ω(𝜀) = Ω
(︁
𝑛−1/3+𝛾

)︁
(3.45)

Proof. The proof is a direct application of Lemma 3.7. Let 𝑓(𝑡) = 𝑔(𝑡)+𝜀𝜑(𝑡) cos(𝑡/𝜀),
where we set

𝜑(𝑡) = −𝑒
1

𝑥(𝑥+1/4)1(𝑥 ∈ [−1/4, 0]) + 𝑒− 1
𝑥(𝑥−1/4)1(𝑥 ∈ [0, 1/4]).

Observe that 𝜑 is odd and 𝜑 ∈ 𝒞∞. Thus, 𝜑2 ∈ 𝒞∞, so by the Riemann–Lebesgue
lemma [see e.g. Katznelson, 2004, Chapter VI], ℱ [𝜑2](𝜀−1) ≤ 10𝜀. Using a similar
argument and noting that ℱ [𝜑](𝜔) = 𝜔−2ℱ [𝜑′′](𝜔) ≤ 10𝜔−3, we obtain∫︁

|𝜔|≥2𝜀−1
|ℱ [𝜑](𝜔)| d𝜔 ≤ 100𝜀2.

Also ‖𝜑‖2 ≥ 𝑐′ for a small absolute constant, and ‖𝜑‖1 ≤ 2.
Thus Lemma 3.7, the hypothesis on 𝑘, and ℎ ≥ 𝑐′𝜀1−2/ℓ imply that

‖𝑓𝑋 − 𝑓‖2
2 ≥

𝑐2

2 𝜀
2 − 2

(︂
𝜀

ℎ

)︂ℓ
− 200𝜀3 = Ω(𝜀2).

Since 𝑓 ∈ 𝒫ℋ(1, 𝐿), the statement of the lemma follows.

Proof of Theorem 3.6

We follow a similar strategy to the proof of Theorem 3.5 by handling the cases of
small and large bandwidth separately.

Let 𝑞1 = 𝑞1(𝑘) > 0 be the minimum number such that
∫︀

|𝑡|>𝑞1
𝑘(𝑡)𝑑𝑡 ≤ 0.1. By the

assumption in the theorem, there exists 𝑎 > 0 such that∫︁
|𝑡|>𝑠

𝑘(𝑡)𝑑𝑡 ≤ 1
𝑎

exp(−𝑎𝑠), ∀𝑠 ≥ 0.

Note that we can set 𝐿(1)
𝛽 large such that for any 𝛿 ∈ [0, 1], there exists 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿(1)

𝛽 )
such that 𝑓(𝑥) = 𝛿 for 𝑥 ∈ [0, 1/2]. We first show that for any given 𝑚 and ℎ, we
have

inf
𝑆:|𝑆|≤𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿(1)

𝛽
)
E‖𝑓unif

𝑆 − 𝑓‖1 ≥ 0.2
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃
1

⎧⎨⎩ℎ ≤ 0.02𝑎
log

(︁
𝑚𝑞1

0.001𝑎 ∨
10
𝑎

)︁ ∧ 1

⎫⎬⎭ .

(3.46)

Let 𝑓 be an arbitrary function in 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿(1)
𝛽 ) such that

𝑓(𝑥) = 1 ∧ 1
100𝑞1𝑚ℎ

, ∀𝑥 ∈ [0, 1/2].
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Let 𝑇 be the set of 𝑖 ∈ 𝑆 for which 𝑥𝑖 ∈ [𝑞1ℎ, 1/2− 𝑞1ℎ].

Case 1: |𝑇 | ≥ 𝑚
(︁
1 ∧ 1

100𝑞1𝑚ℎ

)︁
. Since 𝑘 ≥ 0, we have

‖𝑓𝑋1[0,1/2]‖1 ≥
0.9|𝑇 |
𝑚

≥ 0.9
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃
.

On the other hand,

‖𝑓1[0,1/2]‖1 ≤
1
2

(︃
1 ∧ 1

100𝑞1𝑚ℎ

)︃
,

therefore,

‖(𝑓𝑋 − 𝑓)1[0,1/2]‖1 ≥ 0.4
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃
.

Case 2: |𝑇 | < 𝑚
(︁
1 ∧ 1

100𝑞1𝑚ℎ

)︁
. Define

𝛾 := 0.1
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃

and

𝑞2 := 0.02
ℎ
.

Note that to verify (3.46) we only need to consider the event of ℎ ≤ 0.02𝑎
log( 𝑚𝑞1

0.001𝑎
∨ 10

𝑎 ) ∧ 1,
in which case ∫︁

|𝑡|>𝑞2
𝑘(𝑡)𝑑𝑡 ≤ 1

𝑎
exp(−𝑎𝑞2)

≤ 1
𝑎
·
(︃

0.001𝑎
𝑚𝑞1

∧ 0.1𝑎
)︃

≤ 1
𝑎
·
(︃

0.001𝑎
𝑞1𝑚ℎ

∧ 0.1𝑎
)︃

= 0.1(1 ∧ 1
100𝑞1𝑚ℎ

)

= 𝛾.

Moreover since 𝛾 ≤ 0.1 we see that 𝑞2 ≥ 𝑞1. Now define

𝑉 := [2ℎ𝑞2, 1/2− 2ℎ𝑞2] ∖
⋃︁
𝑗∈𝑇

[𝑥𝑗 − 𝑞1ℎ, 𝑥𝑗 − 𝑞1ℎ].

91



Then for 𝑗 /∈ 𝑇 , we have ∫︁
𝑉

1
ℎ
𝑘
(︂
𝑥𝑗 − 𝑡
ℎ

)︂
𝑑𝑡 ≤ 𝛾

while for 𝑗 ∈ 𝑇 we have ∫︁
𝑉

1
ℎ
𝑘
(︂
𝑥𝑗 − 𝑡
ℎ

)︂
𝑑𝑡 ≤ 0.1.

Thus,

‖𝑓𝑋1𝑉 ‖1 ≤
0.1|𝑇 |
𝑚

+ 𝛾 ≤ 0.2
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃
.

On the other hand, by the union bound we see that the Lebesgue measure of 𝑉 is at
least

1
2 − 4𝑞2ℎ− 2𝑞1ℎ|𝑇 | ≥ 0.5− 4𝑞2ℎ− 0.02 ≥ 0.4

where we used the fact that 𝑞2ℎ = 0.02. Then

‖𝑓1𝑉 ‖1 ≥ 0.4
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃

and hence

‖(𝑓𝑋 − 𝑓)1[0,1/2]‖1 ≥ ‖(𝑓𝑋 − 𝑓)1𝑉 ‖1 ≥ 0.2
(︃

1 ∧ 1
100𝑞1𝑚ℎ

)︃
.

This concludes the proof of (3.46).
The second step is to show that for given 𝑚 and ℎ, we have

inf
𝑆:|𝑆|≤𝑚

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E‖𝑓unif
𝑆 − 𝑓‖1 ≥

1
4

(︃
𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2 (3.47)

sufficiently large 𝑚 and 𝐿 to be determined later, and 0 < 𝑏 <∞ is such that

ℱ [𝑘](𝜔) ≤ 1
𝑏

exp(−𝑏𝜔), ∀𝜔 ∈ R

whose existence is guaranteed by the assumption of the theorem. Let 𝜑 be a smooth,
even, nonnegative function supported on [−1/2, 1/2] satisfying

∫︀
[−1/2,1/2] 𝜑 = 1. Define

𝑓𝜖(𝑡) := 𝜑(𝑡)
(︂
𝑐𝜖 + 𝜖𝛽 sin 𝑡

𝜖

)︂
where 𝑐𝜖 > 0 is chosen so that

∫︀
[−1/2,1/2] 𝑓𝜖 = 1. Then lim𝜖→0 𝑐𝜖 = 1, and in particular

𝑓𝜖 ≥ 0 when 𝜖 < 𝜖(𝜑, 𝛽) for some 𝜖(𝜑, 𝛽). Moreover we can find 𝐿
(2)
𝛽 < ∞ such that
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𝑓𝜖 ∈ 𝒫ℋ(𝛽, 𝐿(2)
𝛽 ) for all 𝜖 < 𝜖(𝜑, 𝛽). Now

‖𝑓𝜖 − 𝑓𝑋‖1 ≥ |ℱ [𝑓𝜖](1/𝜖)−ℱ [𝑓𝑋 ](1/𝜖)|

≥
⃒⃒⃒⃒
⃒
∫︁

[−1/2,1/2]
𝑓𝜖(𝑡)𝑒−𝑖𝑡/𝜖𝑑𝑡

⃒⃒⃒⃒
⃒−

⃒⃒⃒⃒
⃒ℱ [𝑘](ℎ

𝜖
)
⃒⃒⃒⃒
⃒

≥
⃒⃒⃒⃒
⃒
∫︁

[−1/2,1/2]
𝑓𝜖(𝑡) sin 𝑡

𝜖
𝑑𝑡

⃒⃒⃒⃒
⃒−

⃒⃒⃒⃒
⃒ℱ [𝑘](ℎ

𝜖
)
⃒⃒⃒⃒
⃒

= 𝜖𝛽
⃒⃒⃒⃒
⃒
∫︁

[−1/2,1/2]
𝜑(𝑡) sin2 𝑡

𝜖
𝑑𝑡

⃒⃒⃒⃒
⃒−

⃒⃒⃒⃒
⃒ℱ [𝑘](ℎ

𝜖
)
⃒⃒⃒⃒
⃒ (3.48)

where (3.48) used the fact that 𝜑 is even. Since lim𝜖→0
∫︀

[−1/2,1/2] 𝜑(𝑡) sin2 𝑡
𝜖
𝑑𝑡 = 1

2 ,
there exists 𝜖′(𝜑) such that ∫︁

[−1/2,1/2]
𝜑(𝑡) sin2 𝑡

𝜖
𝑑𝑡 ≥ 1

4

for any 𝜖 ≤ 𝜖′(𝜑). Now define

𝜖′′(ℎ,𝑚) = 𝑏(ℎ ∧ 1)
2 log𝑚 .

There exists 𝑚(𝜑, 𝛽, 𝑏) < ∞ such that supℎ>0 𝜖
′′(ℎ,𝑚) < 𝜖(𝜑, 𝛽) ∧ 𝜖′(𝜑) whenever

𝑚 ≥ 𝑚(𝜑, 𝛽, 𝑏). With the choice of 𝜖 = 𝜖′′(ℎ,𝑚), we can continue lower bounding
(3.48) as (for 𝑚 ≥ 𝑚(𝜑, 𝛽, 𝑏)):

1
4

(︃
𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2 .

Finally, we collect the results for step 1 and step 2. First observe that the main
term in the risk in step 1 can be simplified as

(︃
1 ∧ 1

100𝑞1𝑚ℎ

)︃
1

⎧⎨⎩ℎ ≤ 0.02𝑎
log

(︁
𝑚𝑞1

0.001𝑎 ∨
10
𝑎

)︁ ∧ 1

⎫⎬⎭
= 1

100𝑞1𝑚ℎ
∧ 1 {𝒜} (3.49)

where 𝒜 denotes the event in the left side of (3.49).
Thus up to multiplicative constant depending on 𝑘, 𝛽, we can lower bound the

risk by taking the max of the risks in the two steps:

(︂ 1
𝑚ℎ
∧ 1{𝒜}

)︂
∨

⎛⎝(︃
𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2

⎞⎠ (3.50)

whenever 𝐿 ≥ 𝐿𝛽 := 𝐿
(1)
𝛽 ∨ 𝐿

(2)
𝛽 . We can use the distributive law to open up the
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parentheses in (3.50). By checking the ℎ > 𝑚− 1
𝛽 and ℎ ≤ 𝑚− 1

𝛽 cases respectively, it
is easy to verify that

1
𝑚ℎ
∨

⎛⎝(︃
𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2

⎞⎠ = Ω
⎛⎝𝑚− 𝛽

𝛽+1

log𝛽𝑚

⎞⎠ .

Next, if 𝒜 is true, we evidently have

1{𝒜} ∨
⎛⎝(︃

𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2

⎞⎠ = 1 = Ω
⎛⎝𝑚− 𝛽

𝛽+1

log𝛽𝑚

⎞⎠ .

If 𝒜 is not true, then ℎ > 0.02𝑎
log( 𝑚𝑞1

0.001𝑎
∨ 10

𝑎 ) ∧ 1, and we have

1{𝒜} ∨
⎛⎝(︃

𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2

⎞⎠ =
⎛⎝(︃

𝑏(ℎ ∧ 1)
log𝑚

)︃𝛽
− 1
𝑏𝑚2

⎞⎠
= Ω

(︁
log−2𝛽𝑚

)︁
= Ω

⎛⎝𝑚− 𝛽
𝛽+1

log𝛽𝑚

⎞⎠ .

In either case the risk with respect to 𝐿1 is Ω
(︃
𝑚

− 𝛽
𝛽+1

log𝛽 𝑚

)︃
. It remains to convert this

to a lower bound in 𝐿2. We consider two cases. First note that by the fast decay
condition on the Fourier transform, 𝑘 ∈ 𝒞1. Let 𝐵 = 𝐵𝑘 denote a constant such that

sup
𝑥∈[−1/2,1/2]

|𝑘′(𝑥)| ≤ 𝐵. (3.51)

Set Δ = 𝐵1/2 ∨ 𝑘(0) ∨ 1.
Case 1: ℎ ≤ Δ. Let 𝑈 = {|𝑦| ≥ 1

2 + 𝑐𝛽,Δ,𝑎 log𝑚}, and let 𝑈 𝑐 = R∖𝑈 . If ℎ ≤ Δ,
then because 𝑋𝑖 ∈ [−1/2, 1/2] and by the exponential decay of 𝑘,

‖𝑓𝑋(𝑦)1𝑈‖1 ≤ 𝑚−2

for 𝑐𝛽,Δ,𝑎 sufficiently large. Thus by Cauchy–Schwarz,

‖(𝑓𝑋 − 𝑓)1𝑈𝑐‖2 ≥ 𝑐′
𝛽,Δ,𝑎(log𝑚)−1/2‖(𝑓𝑋 − 𝑓)1𝑈𝑐‖2

= 𝑐′
𝛽,Δ,𝑎(log𝑚)−1/2

(︁
‖(𝑓𝑋 − 𝑓)‖1 − ‖(𝑓𝑋 − 𝑓)1𝑈‖1

)︁
≥ 𝑐′

𝛽,Δ,𝑎(log𝑚)−1/2

⎛⎝𝑐𝛽,𝑘
⎛⎝𝑚− 𝛽

𝛽+1

log𝛽𝑚

⎞⎠−𝑚−2

⎞⎠
= Ω

⎛⎝ 𝑚− 𝛽
𝛽+1

log𝛽+ 1
2 𝑚

⎞⎠
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Case 2: ℎ ≥ Δ. In this case, 𝑘(𝑋𝑖 − 𝑦) is nearly constant for all 𝑖. By (3.51) and
Taylor’s theorem, ⃒⃒⃒⃒

𝑘(0)− 𝑘
(︂
𝑋𝑖 − 𝑦
ℎ

)︂⃒⃒⃒⃒
≤ 2𝐵

for all 𝑦 ∈ [−1/2, 1/2] and for all 𝑖. Hence, for all 𝑦 ∈ [−1/2, 1/2], using ℎ ≥ Δ,

𝑓𝑋(𝑦) = 1
𝑚ℎ

𝑚∑︁
𝑖=1

𝑘
(︂
𝑋𝑖 − 𝑦
ℎ

)︂
≤ 1
ℎ

(𝑘(0) + 2𝐵) ≤ 3.

For 𝐿𝛽 large enough, we see that for the function 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿𝛽) with 𝑓 |[0, 1
100 ] ≡ 4,

‖𝑓𝑋 − 𝑓‖2 ≥ ‖(𝑓𝑋 − 𝑓)1[0, 1
100 ]‖1 = Ω(1).

3.6.4 Proofs from Section 3.5
Proof of Theorem 3.7

Here we adapt the results in Section 2 of Phillips and Tai [2018b] to our setting
where the bandwidth ℎ = 𝑛−1/(2𝛽+𝑑) is shrinking. Using their notation, we de-
fine 𝐾𝑠(𝑥, 𝑦) = 𝑘𝑠

(︁
𝑥−𝑦
ℎ

)︁
and study the kernel discrepancy of the kernel 𝐾𝑠. First

we verify the assumptions on the kernel (bounded influence, Lipschitz, and positive
semidefiniteness) needed to apply their results.

First, the kernel 𝐾𝑠 is bounded influence [see Phillips and Tai, 2018b, Section 2]
with constant 𝑐𝐾 = 2 and 𝛿 = 𝑛−1, which means that

|𝐾𝑠(𝑥, 𝑦)| ≤ 1
𝑛

if |𝑥− 𝑦|∞ ≥ 𝑛2. This follows from the fast decay of 𝜅𝑠.
Note that if 𝑥 and 𝑦 differ on a single coordinate 𝑖, then

|𝑘𝑠(𝑥)− 𝑘𝑠(𝑦)| ≤

⃒⃒⃒⃒
⃒⃒𝑐(𝑥𝑖 − 𝑦𝑖) ∏︁

𝑗 ̸=𝑖
𝜅𝑠(𝑥𝑗)

⃒⃒⃒⃒
⃒⃒ ≤ 𝑐 |𝑥𝑖 − 𝑦𝑖|

because |𝜅𝑠(𝑥)| ≤ ‖𝜓‖1 for all 𝑥 and the function 𝜅𝑠 is 𝑐-Lipschitz for some constant 𝑐.
Hence by the triangle and Cauchy–Schwarz inequalities, the function 𝑘𝑠 is Lipschitz:

|𝑘𝑠(𝑥)− 𝑘𝑠(𝑦)| ≤ 𝑑𝑐𝑘 |𝑥− 𝑦|1 ≤ 𝑑3/2𝑐𝜅 |𝑥− 𝑦|2 .

Therefore the kernel 𝐾𝑠(𝑥, 𝑦) is Lipschitz [see Phillips and Tai, 2018b] with con-
stant 𝐶𝐾 = 𝑑3/2𝑐𝜅ℎ

−1. Moreover, the kernel 𝐾𝑠 is positive semidefinite because the
Fourier transform of 𝜅𝑠 is nonnegative.

Given the shrinking bandwidth ℎ = 𝑛−1/(2𝛽+𝑑), we slightly modify the lattice used
in Phillips and Tai [2018b, Lemma 1]. Define the lattice

ℒ = {(𝑖1𝛿, 𝑖2𝛿, . . . , 𝑖𝑑𝛿) | 𝑖𝑗 ∈ Z} ,
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where
𝛿 = 1

𝑐𝜅𝑑2𝑛ℎ−1 .

The calculation at the top of page 6 of Phillips and Tai [2018b, Lemma 1] yields

disc(𝑋,𝜒, 𝑦) :=
⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜒(𝑋𝑖)𝐾𝑠(𝑋𝑖, 𝑦)
⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜒(𝑋𝑖)𝐾𝑠(𝑋𝑖, 𝑦0)
⃒⃒⃒⃒
⃒ + 1

where 𝑦0 is the closest point to 𝑦 in the lattice ℒ, and 𝜒 assigns either +1 or −1 to
each element of 𝑋 = 𝑋1, . . . , 𝑋𝑛. Moreover, with the bounded influence of 𝐾𝑠, if

min
𝑖
|𝑦 −𝑋𝑖|∞ ≥ 𝑛2,

then
disc(𝑋,𝜒, 𝑦) =

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝜒(𝑋𝑖)𝐾𝑠(𝑋𝑖, 𝑦)
⃒⃒⃒⃒
⃒ ≤ 1.

On defining
ℒ𝑋 = ℒ ∩ {𝑦 : min

𝑖
|𝑦 −𝑋𝑖|∞ ≤ 𝑛2},

we see that
max
𝑦∈R𝑑

disc(𝑋,𝜒, 𝑦) ≤ max
𝑦∈ℒ𝑋

disc(𝑋,𝜒, 𝑦) + 1

for all signings 𝜒 : 𝑋 → {−1,+1}. This is precisely the conclusion of Phillips and
Tai [2018b, Lemma 1].

This established, the positive definiteness and bounded diagonal entries of 𝐾𝑠 and
Phillips and Tai [2018b, Lemmas 2 and 3] imply that

disc𝐾𝑠 = 𝑂(
√︁
𝑑 log 𝑛).

Given 𝜀 > 0, the halving algorithm can be applied to 𝐾𝑠 as in Phillips and Tai
[2018b, Corollary 5] to yield a coreset 𝑋𝑆 of size 𝑚 = 𝑂(𝜀−1√𝑑 log 𝜀−1) such that

‖ 1
𝑛

𝑛∑︁
𝑗=1

𝐾𝑠(𝑋𝑗, 𝑦)− 1
𝑚

∑︁
𝑗∈𝑆

𝐾𝑠(𝑋𝑗, 𝑦)‖∞ ≤ 𝜀.

Rescaling by ℎ−𝑑, we have

‖𝑓 − 𝑓unif
𝑆 ‖∞ = ‖ 1

𝑛

𝑛∑︁
𝑗=1

𝑘𝑠(𝑋𝑗, 𝑦)− 1
𝑚

∑︁
𝑗∈𝑆

𝑘𝑠(𝑋𝑗, 𝑦)‖∞ ≤ 𝜀ℎ−𝑑.

Recall from Section 3.6.2 that 𝑓 attains the minimax rate of estimation on 𝒫ℋ(𝛽, 𝐿).
Thus setting 𝜀 = ℎ𝑑𝑛−𝛽/(2𝛽+𝑑) we get a coreset of size 𝑂̃𝑑(𝑛

𝛽+𝑑
2𝛽+𝑑 ) that attains the min-

imax rate 𝑐𝛽,𝑑,𝐿 𝑛−𝛽/(2𝛽+𝑑), as desired. Moreover, by the results of Phillips and Tai
[2018b], this coreset can be constructed in polynomial time.
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Chapter 4

Interpolation of density estimators

4.1 Introduction
Density estimation is the task of estimating an unknown density 𝑓 given an i.i.d.
sample 𝑋1, . . . , 𝑋𝑛 ∼ P𝑓 , where P𝑓 is the probability distribution associated to 𝑓 . A
popular choice of density estimator is the kernel density estimator (KDE)

𝑓(𝑦) := 1
𝑛ℎ𝑑

𝑛∑︁
𝑗=1

𝐾
(︂
𝑋𝑖 − 𝑦
ℎ

)︂
. (4.1)

With proper setting of the bandwidth parameter ℎ and choice of kernel 𝐾, the
KDE 𝑓 is a minimax optimal estimator over the 𝐿-Hölder smooth densities 𝒫ℋ(𝛽, 𝐿)
of order 𝛽 [see e.g. Tsybakov, 2009, Theorem 1.2]:

inf̂
𝑓

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

E𝑓 ‖𝑓 − 𝑓‖2 = Θ𝛽,𝑑,𝐿(𝑛− 𝛽
2𝛽+𝑑 ) . (4.2)

Despite its statistical utility, the KDE (4.1) has the computational drawback that it
naively requires Ω(𝑛) time to evaluate a query. The problem of improving on these
computational aspects has thus received a lot of attention.

The fast evaluation of kernel density estimators has been well-studied including
approaches based on the fast Gauss transform [Greengard and Strain, 1991], hierar-
chical space decompositions [Greengard and Rokhlin, 1987], locality sensitive hashing
[Charikar and Siminelakis, 2017, Backurs et al., 2018, Siminelakis et al., 2019, Backurs
et al., 2019], and binning [Scott and Sheather, 1985], as well as interpolation [Jones,
1989, Kogure, 1998], our main technique in this work. Typically these techniques
carefully leverage the structure of the kernel under consideration, and many of them
operate in a worst-case framework over the dataset. In this work, we consider the
problem of fast evaluation of a density estimator 𝑓 in a statistical setting where 𝑓
gives a good pointwise approximation to an unknown density 𝑓 : [0, 1]𝑑 → R that
lies in a Hölder class of smooth functions. We show that a pointwise approxima-
tion guarantee alone, without assuming any specific structure of the estimator 𝑓 , is
enough to construct a new estimator 𝑓 that can be stored and queried cheaply, and
whose approximation error is similar to that of the original estimator. Our approach
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is based on a multivariate polynomial interpolation scheme of Nicolaides [1972] [see
also Chung and Yao, 1977] and provides an explicit formula for 𝑓 in terms of some
judiciously chosen queries of the original estimator.

4.1.1 Related work
Motivated by multi-body problems, Greengard and Strain [1991] developed the fast
Gauss transform to rapidly evaluate sums of the form (4.1) when 𝐾(𝑥) = exp(− |𝑥|22)
is the Gaussian kernel. Their work is posed a worst-case batch setting where 𝑓 is to
be evaluated at 𝑚 points 𝑦1, . . . , 𝑦𝑚 specified in advance and the locations 𝑋1, . . . , 𝑋𝑛

lie in a box. Their techniques use hierarchical space decompositions and series ex-
pansions to show that (4.1) may be evaluated at 𝑦1, . . . , 𝑦𝑚 with precision 𝜀 in time
ℎ−𝑑(log 1

𝜀
)𝑑(𝑛 + 𝑚). These results apply to any kernel that has a rapidly converging

Hermite expansion [see also Greengard and Rokhlin, 1987]. There are also follow up
works on the improved fast Gauss transform and tree-based methods that use related
ideas [Yang et al., 2003, Lee et al., 2006].

More recently, several works [Charikar and Siminelakis, 2017, Backurs et al., 2018,
Siminelakis et al., 2019, Backurs et al., 2019, Coleman and Shrivastava, 2020] are
devoted to the problem of fast evaluation of (4.1) in high dimension using locality
sensitive hashing. In these works, the dataset is carefully reweighted for importance
sampling such that a randomly drawn datapoint 𝑋𝑟’s corresponding kernel value
𝐾(𝑋𝑟 − 𝑦) gives a good approximation to 𝑓(𝑦). This sampling procedure can be
executed efficiently using hashing-based methods. For example, Backurs et al. [2019]
show that for the Laplace and Exponential kernels with bandwidth ℎ = 1, e.g., the
value 𝑓(𝑦) can be computed with multiplicative 1 ± 𝜀 error in time 𝑂( 𝑑√

𝜏𝜀2 ) even in
worst case over the dataset, where 𝜏 is a uniform lower bound on the KDE.

Another effective approach to this problem in high dimensions is through coresets
[Agarwal et al., 2005, Clarkson, 2010, Phillips and Tai, 2018a,b]. A coreset is a
representative subset {𝑋𝑖}𝑖∈𝑆 of a dataset such that

𝑓(𝑦) ≈ 1
𝑛ℎ𝑑

∑︁
𝑖∈𝑆

𝐾
(︂
𝑋𝑖 − 𝑦
ℎ

)︂
.

When ℎ = 𝑂(1), for example, the results of Phillips and Tai [2018b] give a polynomial
time algorithm in 𝑛, 𝑑 such that the coreset KDE yields an additive 𝜀 approximation
to 𝑓 using a coreset of size 𝑂̃(

√
𝑑
𝜀

). Their results hold in worst case over the dataset
and for a variety of popular kernels. The methods of Phillips and Tai [2018b] are
powered by state-of-the-art algorithms from discrepancy theory [Bansal et al., 2018]
[see Matoušek, 1999, Chazelle, 2000, for a comprehensive exposition on discrepancy].

Our approach is most closely related to prior work on the interpolation of kernel
density estimators due to Jones [1989] and Kogure [1998]. Motivated by visualiza-
tion and computational aspects, Jones [1989] studies binned and piecewise linearly
interpolated univariate kernel density estimators and provides precise bounds on the
mean-integrated squared error. Kogure [1998] extends this work and constructs higher
order piecewise polynomial interpolants of multivariate kernel density estimators, and
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shows that for very smooth densities, this procedure improves the mean-integrated
squared error. In addition, we note the recent work of Belkin et al. [2019], Liang
et al. [2020] demonstrating the perhaps surprising effectiveness of interpolation in
nonparametric regression. We also remark that nonparametric estimators based on
multivariate piecewise polynomials are well-studied in statistics [see e.g. Györfi et al.,
2006, Chapter 10], and there is a line of related literature in computer science on fast
estimation of univariate densities that are well-approximated by piecewise polynomi-
als [Chan et al., 2014, Acharya et al., 2017, Hao et al., 2020].

Our work differs from Kogure [1998] in a few important respects. We do not as-
sume 𝑓 to be a KDE in the first place, but rather give a general method for effectively
interpolating a minimax density estimator. Also, our results hold for the entire range
of the smoothness parameter 𝛽 and dimension 𝑑, while Kogure [1998] requires the
density to be at least 𝑞𝑑 times differentiable when interpolating KDEs with kernels of
order 𝑞 [Tsybakov, 2009, Definition 1.3]. On the other hand, our method increases the
mean squared by a multiplicative factor 𝑂̃(𝑐𝛽,𝑑), while Kogure’s approach improves
the mean squared error (though our focus here is the 𝐿∞ norm). Finally, we use a
different interpolation scheme as detailed in Section 4.2.1.

4.1.2 Results
We seek to impose minimal requirements on a density estimator 𝑓 of an unknown
smooth density 𝑓 so that it can be converted to a new estimator 𝑓 that performs well
on the following criteria.

1. (Minimax) 𝑓 is a minimax estimator for 𝑓

2. (Space-efficient) 𝑓 can be stored efficiently

3. (Fast querying) 𝑓 can be evaluated efficiently

4. (Fast preprocessing) 𝑓 can be constructed efficiently

In this work, we focus on near-minimax estimation in the 𝐿∞ norm, motivated by
the aforementioned works on efficient evaluation of kernel density estimators. Since
we impose that the unknown density 𝑓 is supported on [0, 1]𝑑, such a guarantee also
implies upper bounds on the 𝐿𝑝 error for all 𝑝 ≥ 1.

In the statistical setup where typically 𝛽, 𝑑 = 𝑂(1), by efficient we mean requiring
only polynomial time or space in the sample size 𝑛. In particular for fixed 𝛽, by (4.2)
consistent estimation is only possible when 𝑑 ≪ log 𝑛. In what follows we indicate
dependencies on the parameters 𝛽 and 𝑑 for clarity.

The requirement that we place on the estimator 𝑓 to be converted is the following
assumption.

Assumption 4.1. For all 𝑦 ∈ [0, 1]𝑑 and 1 ≥ 𝑡 ≥ 𝜀, we have

sup
𝑓∈𝒫ℋ(𝛽,𝐿)

P𝑓
[︁⃒⃒⃒
𝑓(𝑦)− 𝑓(𝑦)

⃒⃒⃒
> 𝑡

]︁
≤ 2 exp

(︃
− 𝑡

2

𝜀2

)︃
,
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where 𝜀 := 𝑐* 𝑛−𝛽/(2𝛽+𝑑) is the minimax rate of estimating 𝐿-Hölder smooth densities
𝒫ℋ(𝛽, 𝐿) of order 𝛽 and 𝑐* = 𝑐𝛽,𝑑,𝐿 > 0.

The formal definition of the Hölder class 𝒫ℋ(𝛽, 𝐿) we consider is given in Section
4.1.3. In particular Assumption 4.1 is satisfied if the pointwise error is a sub-Gaussian
random variable with parameter 𝜀 that captures the minimax rate of estimation. For
the KDE built from a kernel 𝐾 of order ℓ := ⌊𝛽⌋ [Tsybakov, 2009, Definition 1.3]
and bandwidth ℎ = 𝑛− 1

2𝛽+𝑑 , this assumption follows from a standard bias-variance
trade-off and an application of Bernstein’s inequality (see Appendix 4.4.1).

Under Assumption 4.1, we have our main result.

Theorem 4.1. Let 𝑓 : [0, 1]𝑑 → R denote a probability density function, and let
𝑓 denote an estimator satisfying Assumption 4.1 for some 𝛽 > 0 and 𝑑 ≥ 1. Let
𝑄 denote the amount of time it takes to query 𝑓 . Set ℓ = ⌊𝛽⌋. Then there exists
an estimator 𝑓 that can be constructed in time 𝑐con 𝑄𝑛

𝑑
2𝛽+𝑑 , that requires at most

𝑐sto 𝑛
𝑑

2𝛽+𝑑 log 𝑛 bits to store, that can be queried in time 𝑐que log 𝑛, and that satisfies

E𝑓‖𝑓 − 𝑓‖∞ < 𝑐err(log 𝑛)1/2𝑛− 𝛽
2𝛽+𝑑 .

In Theorem 4.1, we may take

𝑐con =
(︃
ℓ+ 𝑑

ℓ

)︃
,

𝑐sto = 5𝑑(ℓ+ 1)(log𝐿)
(︃
ℓ+ 𝑑

ℓ

)︃
,

𝑐que = 14(𝑑+ ℓ)2
(︃
ℓ+ 𝑑

𝑑

)︃
, and

𝑐err = 8𝑐*𝐿𝑑
3
2 ℓ+2ℓℓ

(︃
ℓ+ 𝑑

ℓ

)︃⎯⎸⎸⎷log 2
(︃
ℓ+ 𝑑

ℓ

)︃
.

In particular, for 𝛽, 𝑑 = 𝑂(1), we can evaluate queries to 𝑓 in nearly constant
time, and the estimator 𝑓 can be stored using sublinear space. Moreover, 𝑓 can be
preprocessed in subquadratic time, assuming that the evaluation time of the original
estimator 𝑓 is 𝑂𝑑(𝑛), which holds for the KDE (4.1). We also note that 𝑓 is a
near-minimax estimator in the sup norm, up to logarithmic factors, and thus by our
domain assumption is also near-minimax in the 𝐿𝑝 norms, again up to logarithmic
factors. Finally, our construction in Section 4.2.1 yields an explicit formula for 𝑓
in terms of a sublinear number of initial queries of 𝑓 on a judiciously chosen mesh.
Specifically, the estimator 𝑓 is a piecewise multivariate interpolation of the estimator
𝑓 on this mesh.

Though our focus is on density estimation, our method is not limited to this
setting. The next result holds under a modified version of Assumption 4.1 and is
derived by following the proof of Theorem 4.1. We omit the argument as it is very
similar.
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Theorem 4.2. Let 𝑓 : [0, 1]𝑑 → R denote an 𝐿-smooth Hölder function of order 𝛽,
and suppose that one has query access to a function 𝑓 where ‖𝑓 − 𝑓‖∞ ≤ 𝜀. Then by
first computing 𝑐con 𝜀

− 𝑑
𝛽 initial queries of 𝑓 , one can construct a new function 𝑓 that

satisfies ‖𝑓 − 𝑓‖∞ ≤ 𝑐err 𝜀, that can be stored using 𝑐sto 𝜀
− 𝑑

𝛽 log 𝜀−1 bits, and that can
be queried in time 𝑐que log 𝜀−1.

Theorem 4.2 is useful when it is possible to design a procedure for estimating a
smooth function 𝑓 pointwise, but that procedure cannot necessarily be carried out
efficiently per query. For example in nonparametric regression, Nadaraya–Watson
estimators are known to be accurate pointwise [Tsybakov, 2009] but naively require
evaluation time that is linear in the number of data points. One can also imagine
a numerical or experimental setting where it is only possible to gather a limited
number of accurate measurements of a smooth response, and one wants to graph the
underlying function efficiently and accurately over the entire domain.

4.1.3 Setup and notation
Fix an integer 𝑑 ≥ 1. For any multi-index 𝑠 = (𝑠1, . . . , 𝑠𝑑) ∈ Z𝑑≥0, let |𝑠| = 𝑠1 + · · ·+𝑠𝑑
and for 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑, define 𝑠! = 𝑠1! · · · 𝑠𝑑! and 𝑥𝑠 = 𝑥𝑠1

1 · · · 𝑥𝑠𝑑
𝑑 . Let 𝐷𝑠

denote the differential operator

𝐷𝑠 = 𝜕|𝑠|

𝜕𝑥𝑠1
1 · · · 𝜕𝑥𝑠𝑑

𝑑

.

Fix a positive real number 𝛽, and let ⌊𝛽⌋ denote the maximal integer strictly less
than 𝛽. We reserve the notation ‖·‖𝑝 for the 𝐿𝑝 norm and |·|𝑝 for the ℓ𝑝 norm.

Given 𝐿 > 0 we let ℋ(𝛽, 𝐿) denote the space of Hölder functions 𝑓 : R𝑑 → R that
are supported on the cube [0, 1]𝑑, are ⌊𝛽⌋ times differentiable, and satisfy

|𝐷𝑠𝑓(𝑥)−𝐷𝑠𝑓(𝑦)| ≤ 𝐿 |𝑥− 𝑦|𝛽−⌊𝛽⌋
2 ,

for all 𝑥, 𝑦 ∈ R𝑑 and for all multi-indices 𝑠 such that |𝑠| = ⌊𝛽⌋.
Let 𝒫ℋ(𝛽, 𝐿) denote the set of probability density functions contained in ℋ(𝛽, 𝐿).

For 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿), let P𝑓 (resp. E𝑓 ) denote the probability distribution (resp. expec-
tation) associated to 𝑓 .

The parameter 𝐿 will be fixed in what follows, so typically we write 𝒫ℋ(𝛽) :=
𝒫ℋ(𝛽, 𝐿). The constants 𝑐, 𝑐𝛽,𝑑, 𝑐𝐿, etc. vary from line to line and their subscripts
indicate parameter dependences.

4.2 Efficient interpolation of density estimators
The important implication of Assumption 4.1 is that we can query 𝑓 at a polynomial
number of data points such that for each query 𝑦, 𝑓(𝑦) ≈ 𝑓(𝑦), where 𝑓 is the
unknown density.
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Lemma 4.1. Let 𝐴 > 0 and set 𝑁 = Δ𝑛𝐴 with Δ ≥ 1. Let 𝑦1, . . . , 𝑦𝑁 ⊂ [0, 1]𝑑
denote a set of points. Then with probability at least 1− 𝑛−2,⃒⃒⃒

𝑓(𝑦𝑖)− 𝑓(𝑦𝑖)
⃒⃒⃒
≤

√︁
log(2Δ𝑛𝐴+2) 𝜀

for all 1 ≤ 𝑖 ≤ 𝑁 , where 𝜀 = 𝑐* 𝑛−𝛽/(2𝛽+𝑑) is the minimax rate.

Proof. Set 𝑡 =
√︁

log(2Δ𝑛𝐴+2) 𝜀 ≥ 𝜀 and apply Assumption 4.1 to 𝑦𝑖. Then by the
union bound,

P
[︁
∃𝑦𝑖 :

⃒⃒⃒
𝑓(𝑦𝑖)− 𝑓(𝑦𝑖)

⃒⃒⃒
> 𝑡

]︁
≤ 2Δ𝑛𝐴𝑒− 𝑡2

𝜀2 ≤ 𝑛−2.

We now describe our construction of 𝑓 . Define ℓ := ⌊𝛽⌋ and 𝑀 =
(︁
ℓ+𝑑
ℓ

)︁
.

Construction of 𝑓 (informal):

1. Partition: Divide [0, 1]𝑑 into ℎ−𝑑 sub-cubes {𝐼𝑗} ⊂ [0, 1]𝑑 of side-length ℎ =
𝑛−1/(2𝛽+𝑑) where 𝑗⃗ ∈ Z𝑑≥0 and 𝐼𝑗 := [0, ℎ]𝑑 + ℎ⃗𝑗.

2. Mesh: For each 𝑗⃗, construct a mesh consisting of𝑀 =
(︁
ℓ+𝑑
ℓ

)︁
points 𝑈 𝑗⃗

1 , . . . , 𝑈
𝑗⃗
𝑀 ∈

𝐼𝑗.

3. Interpolate: In each sub-cube 𝐼𝑗, construct a multivariate polynomial inter-
polant 𝑞𝑗 on the 𝑀 points (𝑈 𝑗⃗

1 , 𝑓(𝑈 𝑗⃗
1 )), . . . , (𝑈 𝑗⃗

𝑀 , 𝑓(𝑈 𝑗⃗
𝑀)).

Return: 𝑓 : [0, 1]𝑑 → R defined by

𝑓(𝑦) =
∑︁
𝑗⃗

𝑞𝑗(𝑦)1(𝑦 ∈ 𝐼𝑗).

We first give some intuition for why 𝑓 is an accurate estimator. On each sub-cube
𝐼𝑗, the true density 𝑓 ∈ 𝒫ℋ(𝛽, 𝐿) is approximated up to the minimax error by a
polynomial 𝑞𝑗 of degree at most ℓ by the properties of Hölder functions. Upon setting
Δ = 𝑀 and 𝐴 = 𝑑/(2𝛽 + 𝑑) in Lemma 4.1, this guarantees that for all points 𝑈 𝑗⃗

𝑘 in
the mesh, 𝑓(𝑈 𝑗⃗

𝑘) ≈ 𝑓(𝑈 𝑗⃗
𝑘) ≈ 𝑞𝑗(𝑈

𝑗⃗
𝑘) with high probability. By studying the stability

of the resulting polynomial system of equations, we can show that this construction
yields a good approximation to the ‘true’ interpolation polynomial 𝑞𝑗 on the sub-cube
𝐼𝑗. This argument, carried out formally later in this section, yields the estimation
bound of Theorem 4.1.

Next, we comment on the remaining guarantees of Theorem 4.1. As we show later,
there is an explicit formula for 𝑞𝑗, so the main preprocessing bottleneck is the eval-
uation of 𝑓 on the 𝑀𝑛𝑑/(2𝛽+𝑑) points in the mesh, which naively takes 𝑄𝑀𝑛𝑑/(2𝛽+𝑑)

time. For the space requirement, it suffices to store the values {𝑓(𝑈 𝑗⃗
𝑘)} up to polyno-

mial precision as well as the elements of the mesh. Querying 𝑓 at a point 𝑦 ∈ [0, 1]𝑑
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requires checking which sub-cube 𝑦 belongs to by scanning its 𝑑 coordinates and then
evaluating 𝑞𝑗(𝑦), which is a 𝑑-variate polynomial of degree ⌊𝛽⌋. By a careful consid-
eration of the numerical precision required to perform these steps in Section 4.2.2, we
obtain the computational guarantees of Theorem 4.1.

4.2.1 Interpolation on the principal lattice
To construct our interpolant, we refer to the next definition and theorem which are
classical in finite element analysis [Nicolaides, 1972, Chung and Yao, 1977]. The
lattice 𝒫ℓ ⊂ [0, 1]𝑑, dubbed the ℓ-th principal lattice, has the special property that
every function defined on 𝒫ℓ admits a unique polynomial interpolant of degree at most
ℓ. This property is known to be equivalent to a combinatorial geometric condition
referred to as GC in Chung and Yao [1977]. A set of points 𝒫 is called GC if every
point 𝑥 ∈ 𝒫 has an associated set ℋ𝑥 consisting of ℓ affine hyperplanes whose union
contains 𝒫∖𝑥 and such that none of these hyperplanes contain 𝑥.

Definition 4.1 (ℓ-th principal lattice of Δ𝑑). Let Δ𝑑 ⊂ [0, 1]𝑑 denote the simplex on
the points {0} ∪ {𝑒𝑖}𝑑𝑖=1 ⊂ R𝑑, where 𝑒𝑖 denotes the 𝑖-th standard basis vector in R𝑑.
Label the vertices of Δ𝑑 to be 𝑣0 = 0, 𝑣𝑖 = 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑑. For all 𝑥 ∈ R𝑑, there
exists a unique vector (𝜆0(𝑥), . . . , 𝜆𝑑(𝑥)) with entries summing to one such that

𝑥 =
𝑑∑︁
𝑖=0

𝜆𝑖(𝑥)𝑣𝑖 .

Let Λ : R𝑑 → R𝑑+1 denote the function such that Λ(𝑥) = (𝜆0(𝑥), . . . , 𝜆𝑑(𝑥)). For
ℓ ≥ 1, the ℓ-th principal lattice 𝒫ℓ of Δ𝑑 is defined to be

𝒫ℓ =
{︁
𝑥 ∈ Δ𝑑 : ℓΛ(𝑥) ∈ Z𝑑+1

≥0

}︁
. (4.3)

We also define 𝒫0 = 0 ∈ R𝑑.

Given a point 𝑥 ∈ 𝒫ℓ, the associated set of affine hyperplanes satisfying the GC
condition is

ℋ𝑥 =
𝑑⋃︁
𝑡=0

𝜆𝑡(𝑥)>0

ℓ𝜆𝑡(𝑥)−1⋃︁
𝑟=0

{︃
𝑑∑︁
𝑖=0

𝛼𝑖𝑣𝑖
⃒⃒⃒
ℓ𝛼𝑡 = 𝑟,

𝑑∑︁
𝑖=0

𝛼𝑖 = 1
}︃
.

Given a set of hyperplanes satisfying this combinatorial condition, it is straightfor-
ward to write down a Lagrangian-type interpolation formula, as was first computed
for the principal lattice by Nicolaides [1972].

Theorem 4.3 (Nicolaides [1972],Chung and Yao [1977]). Write 𝒫ℓ = {𝑈1, . . . , 𝑈𝑀} ⊂
Δ𝑑 and let 𝑔 : 𝒫ℓ → R denote a function defined on this lattice. For ℓ ≥ 1, define the
polynomial

𝑝𝑖(𝑥) =
𝑑∏︁
𝑡=0

𝜆𝑡(𝑈𝑖)>0

ℓ𝜆𝑡(𝑈𝑖)−1∏︁
𝑟=0

𝜆𝑡(𝑥)− 𝑟
ℓ

𝜆𝑡(𝑈𝑖)− 𝑟
ℓ

, (4.4)
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where we recall that 𝜆𝑡(𝑥) is from Definition 4.1. If ℓ = 0, then 𝑀 = 1, and we
simply define 𝑝1(𝑥) ≡ 1. Then

𝑝(𝑥) :=
𝑀∑︁
𝑖=1

𝑝𝑖(𝑥)𝑔(𝑈𝑖)

satisfies 𝑝(𝑈𝑖) = 𝑔(𝑈𝑖) for all 𝑈𝑖 ∈ 𝒫ℓ. Moreover, this is the unique polynomial of
degree at most ℓ with this property.

Since 𝜆𝑡(𝑥) is linear in 𝑥 ∈ R𝑑, it is easy to see that 𝑝𝑖(𝑥) is a polynomial of degree
ℓ, and moreover 𝑝𝑖(𝑈𝑗) = 1 if 𝑖 = 𝑗 and zero otherwise.

We are now ready to give a precise description of the construction of 𝑓 . The idea
is to generate the mesh for interpolation using a shifted and rescaled version of the
ℓ-th principal lattice on Δ𝑑 ⊂ [0, 1]𝑑. Recall that 𝑓 is a density estimator that satisfies
Assumption 4.1.

Construction of 𝑓 (formal version):

1. Partition: Divide [0, 1]𝑑 into ℎ−𝑑 sub-cubes {𝐼𝑗} ⊂ [0, 1]𝑑 of side-length ℎ =
𝑛−1/(2𝛽+𝑑) where 𝑗⃗ ∈ Z𝑑≥0 and 𝐼𝑗 := [0, ℎ]𝑑 + ℎ⃗𝑗.

2. Mesh: For each 𝑗⃗, construct a mesh on 𝐼𝑗 consisting of 𝑀 =
(︁
ℓ+𝑑
ℓ

)︁
points given

by the shifted and rescaled principal lattice 𝒫 𝑗⃗ℓ := {ℎ(𝑥 + 𝑗⃗) : 𝑥 ∈ 𝒫ℓ} ⊂ 𝐼𝑗.
Let 𝑈 𝑗⃗

1 , . . . , 𝑈
𝑗⃗
𝑀 denote the points in 𝒫 𝑗⃗ℓ .

3. Interpolate: In each sub-cube 𝐼𝑗, construct a multivariate polynomial inter-
polant 𝑞𝑗 through the 𝑀 points (𝑈 𝑗⃗

1 , 𝑓(𝑈 𝑗⃗
1 ), . . . , (𝑈 𝑗⃗

𝑀 , 𝑓(𝑈 𝑗⃗
𝑀)) given by 𝑞𝑗(𝑦) =

𝑝𝑗⃗(𝑦/ℎ− 𝑗⃗), where 𝑝 is the polynomial interpolant from Theorem 4.3 given by

𝑝𝑗⃗(𝑥) =
𝑀∑︁
𝑘=1

𝑝𝑘(𝑥)𝑓(𝑈 𝑗⃗
𝑘).

Return: 𝑓 : [0, 1]𝑑 → R defined by

𝑓(𝑦) =
∑︁
𝑗⃗

𝑞𝑗(𝑦)1(𝑦 ∈ 𝐼𝑗).

4.2.2 Proof of Theorem 4.1

We prove Theorem 4.1 in two parts, first by studying the estimation error ‖𝑓 − 𝑓‖∞
in Section 4.2.2 and second by proving the storage and time complexity upper bounds
in Section 4.2.2.
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Estimation error

First, we quantify the error in the approximation of the values of 𝑞𝑗 on the mesh
points. Let 𝑓𝑧,ℓ denote the degree ℓ polynomial given by the Taylor expansion of
𝑓 ∈ 𝒫ℋ(𝛽) at 𝑧. Since 𝑓 ∈ 𝒫ℋ(𝛽), by a standard fact (see Lemma 4.5) it holds that

|𝑓(𝑦)− 𝑓𝑧,ℓ(𝑦)| ≤ 𝐿𝑑ℓ/2

ℓ! |𝑦 − 𝑧|
𝛽
2 ,

where 𝑓𝑧,ℓ is the degree-ℓ Taylor expansion of the function 𝑓 at 𝑧 ∈ R𝑑.
For 𝑗⃗ ∈ {0, . . . , ℎ−1 − 1}𝑑, define 𝑞𝑗 := 𝑓𝑧𝑗 ,ℓ

, where 𝑧𝑗⃗ is the vertex of 𝐼𝑗 closest to
the origin. Then for all 𝑦 ∈ 𝐼𝑗, it holds that

|𝑓(𝑦)− 𝑞𝑗(𝑦)| ≤
(︃
𝐿𝑑𝛽

ℓ!

)︃
ℎ𝛽

=
(︃
𝐿𝑑𝛽

ℓ!

)︃
𝑛−𝛽/(2𝛽+𝑑)

=: 𝑐𝑛−𝛽/(2𝛽+𝑑) (4.5)

Note that the right-hand side is the minimax rate of estimation in (4.2) up to constant
factors.

Next, by Lemma 4.1 (setting Δ = 𝑀 and 𝐴 = 𝑑
2𝛽+𝑑) and (4.5) it holds with

probability at least 1− 𝑛−2 that⃒⃒⃒⃒
𝑞𝑗(𝑈

𝑗⃗
𝑘)− 𝑓(𝑈 𝑗⃗

𝑘)
⃒⃒⃒⃒
≤ (𝑐*

√︁
4 log 2𝑀 + 𝑐)(log 𝑛) 1

2𝑛− 𝛽
2𝛽+𝑑

=: 𝑐(log 𝑛) 1
2𝑛− 𝛽

2𝛽+𝑑 (4.6)

for all 𝑗⃗ ∈ {0, . . . , ℎ−1 − 1}𝑑 and 𝑘 ∈ [𝑀 ]. Using this fact, we can show that the
polynomial interpolant built on {(𝑈 𝑗⃗

𝑘 , 𝑓(𝑈 𝑗⃗
𝑘))}𝑀𝑘=1 provides a good approximation for

𝑞𝑗 on the interval 𝐼𝑗, which is our next task. The following lemma establishes stability
of the polynomial approximation.

Lemma 4.2. Let 𝑞𝑗 denote the unique polynomial of degree at most ℓ that passes
through the points {(𝑈 𝑗⃗

𝑘 , 𝑓(𝑈 𝑗⃗
𝑘))}𝑀𝑘=1. Then with probability at least 1− 𝑛−2, for all 𝑗⃗

and all 𝑥 ∈ 𝐼𝑗, ⃒⃒⃒
𝑞𝑗(𝑥)− 𝑞𝑗(𝑥)

⃒⃒⃒
≤ 𝑐𝛽,𝑑,𝐿(log 𝑛) 1

2𝑛− 𝛽
2𝛽+𝑑 . (4.7)

Proof. Define 𝑔𝑗⃗(𝑥) = 𝑞𝑗(ℎ(𝑥 + 𝑗⃗)) and 𝑔𝑗⃗(𝑥) = 𝑞𝑗(ℎ(𝑥 + 𝑗⃗)) to be polynomials re-
stricted to the domain [0, 1]𝑑. Recall that 𝑔 and 𝑔 are given by formulas as in Theorem
4.3. It holds by (4.6) that for all 1 ≤ 𝑘 ≤𝑀 ,⃒⃒⃒⃒

𝑔(𝑈 𝑗⃗
𝑘)− 𝑔(𝑈 𝑗⃗

𝑘)
⃒⃒⃒⃒
≤ 𝑐(log 𝑛)1/2𝑛− 𝛽

2𝛽+𝑑 .
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Let 𝑦 ∈ [0, 1]𝑑, and observe that by Theorem 4.3 and the triangle inequality,

|𝑔(𝑦)− 𝑔(𝑦)| ≤𝑀 sup
𝑥∈[0,1]𝑑
1≤𝑘≤𝑀

⃒⃒⃒⃒
𝑝𝑘(𝑥)

(︂
𝑔(𝑈 𝑗⃗

𝑘)− 𝑔(𝑈 𝑗⃗
𝑘)

)︂⃒⃒⃒⃒

≤𝑀 𝑐 (log 𝑛)1/2𝑛− 𝛽
2𝛽+𝑑 sup

𝑥∈[0,1]𝑑
1≤𝑘≤𝑀

|𝑝𝑘(𝑥)| . (4.8)

Observe that for 𝑥 ∈ [0, 1]𝑑, we have |𝜆0(𝑥)| = |1−∑︀
𝑥𝑖| ≤ 𝑑, and for 1 ≤ 𝑡 ≤ 𝑑,

we have |𝜆𝑡(𝑥)| = |𝑥𝑖| ≤ 1. Therefore, by the definition of 𝑝𝑘 and 𝑈 𝑗⃗
𝑘 ,

|𝑝𝑘(𝑥)| ≤ ℓℓ𝑑.

By this bound, (4.8), and translation and scale invariance of ‖·‖∞, Lemma 4.2 follows
with 𝑐𝛽,𝑑,𝐿 = 𝑐𝑀𝑑ℓℓ.

Define 𝑓(𝑥) = ∑︀
𝑗⃗ 𝑞𝑗(𝑥)1(𝑥 ∈ 𝐼𝑗), and observe that Theorem 4.1 follows from (4.5),

Lemma 4.2, and the triangle inequality. Though we have derived a high probability
bound, the expectation claimed in Theorem 4.1 follows using the uniform boundedness
of Hölder functions as stated in Lemma 4.4. Tracing constants above yields the
expression for 𝑐err.

Time and space requirements

Recall that 𝑀 =
(︁
ℓ+𝑑
ℓ

)︁
where ℓ = ⌊𝛽⌋. For the space requirement, we store the

principal lattices and the values of 𝑓 on these lattice points, and note that each query
is at most 𝐿𝑑𝑂(𝛽+1) in magnitude by Lemma 4.4. The queries per sub-cube can thus
be stored with 𝑀(log𝐿𝑑𝑂(𝛽+1) + log 𝑛) bits. The extra log 𝑛 bits are required so that
the interpolating polynomials can be queried with sufficient precision. The lattices
are composed of rational points in R𝑑, so we need at most 𝑀𝑑 log(𝛽 + 1) bits per
sub-cube to store them. Since there are 𝑛

𝑑
2𝛽+𝑑 sub-cubes, the space requirement of

Theorem 4.1 follows and is a conservative estimate for simplicity.
Next we characterize the time complexity. Assume first that ℓ ≥ 1. For 1 ≤ 𝑘 ≤

𝑀 , it holds that

|𝑝𝑘(𝑦)− 𝑝𝑘(𝑦′)| ≤ (𝑑+ 1)2ℓℓℓ+1 |𝑦 − 𝑦′|∞

because by expanding the product in the formula in Theorem 4.3, 𝑝𝑖 is a sum of at
most 2ℓ(𝑑 + 1) terms, each having coefficients of size at most ℓℓ, and moreover for
|𝛼| ≤ ℓ, the monomial 𝑦𝛼 is ℓ-Lipschitz with respect to |·|∞ over the cube. Therefore,
it also holds that ⃒⃒⃒

𝑞𝑗(𝑦)− 𝑞𝑗(𝑦
′)
⃒⃒⃒
≤𝑀𝐿𝑑

3
2𝛽+ 1

2 (𝑑+ 1)2ℓℓℓ+1 |𝑦 − 𝑦′|∞

by the formula in the interpolation step of 𝑓 , noting that without loss of generality,
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⃒⃒⃒⃒
𝑓(𝑈 𝑗⃗

𝑘)
⃒⃒⃒⃒

= 𝐿𝑑𝑂(𝛽+1) by Lemma 4.4. By the form of 𝑐err, given a query 𝑦 it suffices to
round its coordinates to 𝐵 := ℓ+log 𝑑+log 𝑛 bits to compute 𝑞𝑗(𝑦) with the required
level of accuracy.

Next, the number of arithmetic operations needed to evaluate 𝑞𝑗(𝑦) is bounded
conservatively by 6(𝑑+ ℓ)𝑀 . To identify which sub-cube contains 𝑦 requires time at
most 2𝑑 log 𝑛. Hence, the total complexity is upper bounded by

6(𝑑+ ℓ)𝑀𝐵 + 2𝑑 log 𝑛 ≤ 16(𝑑+ ℓ)2𝑀 log 𝑛 =: 𝑐que

This bound also holds conservatively when ℓ = 0 since in that case, to evaluate 𝑓(𝑦),
we just need to match the given query 𝑦 to the sub-cube 𝐼𝑗 containing it and output
𝑓(𝑈 𝑗⃗

1 ).

4.3 A result of Kolmogorov and Tikhomirov

Given a function class ℱ , let 𝑁(ℱ , 𝛿) denote the minimal number of 𝐿∞ balls of
radius 𝛿 that cover ℱ , and define 𝐻(ℱ , 𝛿) = log𝑁(ℱ , 𝛿) to be the metric entropy.
Let ℋ(𝛽) = ℋ(𝛽, 𝐿) denote the class of Hölder functions supported on [0, 1]𝑑 as
defined in Section 4.1.3. A classical result of Kolmogorov and Tikhomirov [1993]
shows that

𝐻(ℋ(𝛽), 𝛿) ≤ 𝑐𝛽,𝑑,𝐿 𝛿
− 𝑑

𝛽 . (4.9)

Their proof strategy is conceptually similar to our piecewise multivariate polyno-
mial approximation scheme in that they subdivide the cube as we do here, approx-
imate 𝑓 by its Taylor polynomial in each cube, and then discretize the coefficients.
We show now that our techniques imply a slightly weaker version of the bound (4.9).

Define a mesh as in steps 1 and 2 of our formal construction of 𝑓 as in Section
4.2.1, but now for a general parameter ℎ > 0 to be set later. This mesh has 𝑀ℎ−𝑑

points that we denote by {𝑈 𝑗⃗
𝑘}𝑗⃗,𝑘. Let 𝑓, 𝑔 ∈ ℋ(𝛽) be such that for all 𝑗⃗, 𝑘 it holds

that ⃒⃒⃒⃒
𝑓(𝑈 𝑗⃗

𝑘)− 𝑔(𝑈 𝑗⃗
𝑘)

⃒⃒⃒⃒
≤ ℎ𝛽.

By the Hölder condition and Lemma 4.5, there exists a degree ℓ = ⌊𝛽⌋ polynomial
𝑞𝑗 approximating 𝑓 in 𝐼𝑗 and a degree ℓ = ⌊𝛽⌋ polynomial 𝑟𝑗⃗ approximating 𝑔 in 𝐼𝑗,
each with error ℎ𝛽 pointwise. We conclude that⃒⃒⃒⃒

𝑞𝑗(𝑈
𝑗⃗
𝑘)− 𝑟𝑗⃗(𝑈

𝑗⃗
𝑘)

⃒⃒⃒⃒
≤ 𝑐𝛽,𝑑,𝐿 ℎ

𝛽

for all 𝑗⃗, 𝑘. Following the proof of Lemma 4.2, this implies that for all 𝑥 ∈ 𝐼𝑗,⃒⃒⃒
𝑞𝑗(𝑥)− 𝑟𝑗⃗(𝑥)

⃒⃒⃒
≤ 𝑐𝛽,𝑑,𝐿 ℎ

𝛽.
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Hence we conclude that for all 𝑥 ∈ [0, 1]𝑑,

|𝑓(𝑥)− 𝑔(𝑥)| ≤ 𝑐𝛽,𝑑,𝐿 ℎ
𝛽.

The Hölder functions are uniformly bounded by some constant 𝑐𝛽,𝑑,𝐿 (see Lemma
4.4). Hence setting 𝛿 = 𝑐𝛽,𝑑,𝐿 ℎ

𝛽 and rounding the values of each function at each
point 𝑈 𝑗⃗

𝑘 to multiples of ℎ𝛽, we see that there exists a 𝛿-net of size at most
(︂
𝑐𝛽,𝑑,𝐿
𝛿

)︂𝑀𝑐′
𝛽,𝑑,𝐿𝛿

−𝑑/𝛽

.

Therefore
𝐻(ℋ(𝛽), 𝛿) ≤ 𝑐𝛽,𝑑,𝐿 𝛿

− 𝑑
𝛽 log 1

𝛿
,

a mildly weaker bound than (4.9).

4.4 Appendix

4.4.1 KDEs satisfy Assumption 1

In this section, for completeness we verify that for appropriate kernels, the standard
KDE satisfies Assumption 4.1.

Proposition 4.1. Let 𝐾(·) denote a kernel of order ⌊𝛽⌋ satisfying

‖𝐾‖∞ <∞,
∫︁
𝐾2(𝑥)d𝑥 <∞,

∫︁
|𝑥𝛼𝐾(𝑥)| d𝑥 <∞

for all multi-indices 𝛼 ∈ R𝑑
≥0 with |𝛼| = 𝛽. Then Assumption 4.1 is satisfied for the

KDE 𝑓 with bandwidth ℎ = 𝑐𝑛−1/(2𝛽+𝑑).

Proof. For brevity, 𝑐 denotes a constant that varies from line to line and can depend
on 𝛽, 𝑑, 𝐿 and 𝐾. Fix 𝑦 ∈ [0, 1]𝑑. It is well-known that under the conditions of
Proposition 4.1 [see e.g. Tsybakov, 2009],

𝑏 = 𝑏(𝑦) :=
⃒⃒⃒
E𝑓(𝑦)− 𝑓(𝑦)

⃒⃒⃒
≤ 𝑐ℎ𝛽,

and for a data point 𝑋𝑖 ∼ P𝑓 ,

𝜏 2 = 𝜏 2(𝑦) := Var𝐾ℎ(𝑋𝑖 − 𝑦) ≤ 𝑐

ℎ𝑑
.

By the triangle inequality and Bernstein’s inequality for bounded random variables
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[Vershynin, 2018],

Pr
(︁⃒⃒⃒
𝑓(𝑦)− 𝑓(𝑦)

⃒⃒⃒
> 𝑡

)︁
≤ exp

(︃
− 𝑛(𝑡− 𝑏)2

2𝜏 2 + 2‖𝐾ℎ‖∞(𝑡− 𝑏)/3

)︃
. (4.10)

Let ℎ = 𝑐𝑛−1/(2𝛽+𝑑). Note that ‖𝐾ℎ‖∞ = ℎ−𝑑‖𝐾‖∞ and (𝑛ℎ𝑑)−1 = 𝑐𝑛−𝛽/(2𝛽+𝑑). Then
we recover Assumption 4.1 by setting 𝑡 ≥ 𝑐𝑛−𝛽/(2𝛽+𝑑) in (4.10).

4.4.2 Properties of Hölder functions
For completeness, we provide proofs of standard facts about the class of Hölder func-
tions.

Lemma 4.3 (Inclusion). Let ℋ(𝛽, 𝑑, 𝐿) denote the class of Hölder functions supported
on [0, 1]𝑑 in dimension 𝑑. If 𝛽 > 1, then it holds that ℋ(⌊𝛽⌋, 𝑑, 𝐿) ⊂ ℋ(⌊𝛽⌋ −
1, 𝑑, 𝑑3/2𝐿).

Proof. Let 𝑓 ∈ ℋ(𝛽, 𝑑, 𝐿). Since 𝑓 is supported on [0, 1]𝑑 and smooth on R𝑑, we have
that

|𝐷𝑠𝑓(𝑥)| ≤ 𝐿 |𝑥|2 ≤ 𝐿
√
𝑑 (4.11)

for all |𝑠| = ⌊𝛽⌋.
Fix 𝑥, 𝑦 ∈ [0, 1]𝑑, and define for 1 ≤ 𝑖 ≤ 𝑑+ 1 the point 𝑧𝑖 ∈ [0, 1]𝑑 to be

𝑧𝑖𝑗 =

⎧⎨⎩𝑥𝑗 if 𝑗 ≥ 𝑖

𝑦𝑗 if 𝑗 < 𝑖.

Observe that 𝑧1 = 𝑥 and 𝑧𝑑+1 = 𝑦.
Let 𝑡 denote a multi-index with |𝑡| = ⌊𝛽⌋ − 1. By the fundamental theorem of

calculus and the Hölder condition,

|𝐷𝑡𝑓(𝑥)−𝐷𝑡𝑓(𝑦)| ≤
𝑑∑︁
𝑖=1

⃒⃒⃒
𝐷𝑡𝑓(𝑧𝑖)−𝐷𝑡𝑓(𝑧𝑖+1)

⃒⃒⃒

=
𝑑∑︁
𝑖=1

⃒⃒⃒⃒
⃒
∫︁ 𝑦𝑖

𝑥𝑖

𝜕

𝜕𝑥𝑖
𝐷𝑡𝑓(𝑥1, . . . , 𝑧, 𝑦𝑖+1, ..., 𝑦𝑑) d𝑧

⃒⃒⃒⃒
⃒ .

Using (4.11), the expression in the second line is bounded above by 𝐿𝑑3/2, which
proves the lemma.

Lemma 4.4 (Uniform boundedness). The class ℋ(𝛽) is uniformly bounded. In par-
ticular,

sup
𝑓∈ℋ(𝛽)

‖𝑓‖∞ ≤ 𝑑3⌊𝛽⌋/2+1/2 𝐿.
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Proof. Suppose first that 𝑓 ∈ ℋ(𝛽) for 𝛽 > 1. By repeated application of Lemma
4.3, 𝑓 is (𝑑3⌊𝛽⌋/2𝐿)-Lipschitz. Since 𝑓 is supported on [0, 1]𝑑,

|𝑓(𝑥)| = |𝑓(𝑥)− 𝑓(0)| ≤ 𝑑3⌊𝛽⌋/2𝐿 |𝑥|2 ≤ 𝑑3⌊𝛽⌋/2+1/2𝐿.

If 𝛽 ≤ 1, then arguing as in the previous display, we see that |𝑓(𝑥)| ≤ 𝐿
√
𝑑 for all

𝑥 ∈ R𝑑.

Lemma 4.5 (Taylor approximation). Given 𝑓 ∈ ℋ(𝛽), let 𝑓𝑥,⌊𝛽⌋ denote its Taylor
polynomial of degree ⌊𝛽⌋ at a point 𝑥 ∈ R𝑑,

𝑓𝑥,⌊𝛽⌋(𝑦) =
∑︁

|𝑠|≤⌊𝛽⌋

(𝑦 − 𝑥)𝑠
𝑠! 𝐷𝑠𝑓(𝑥) , 𝑦 ∈ R𝑑 .

Then it holds that
⃒⃒⃒
𝑓(𝑦)− 𝑓𝑥,⌊𝛽⌋(𝑦)

⃒⃒⃒
≤ 𝐿𝑑⌊𝛽⌋/2

⌊𝛽⌋! |𝑥− 𝑦|
𝛽
2 , 𝑥, 𝑦 ∈ R𝑑 .

Proof. By Taylor’s theorem with remainder [see, eg., Folland, 1999]
⃒⃒⃒
𝑓(𝑦)− 𝑓𝑥,⌊𝛽⌋(𝑦)

⃒⃒⃒
= ⃒⃒⃒⃒

⃒⃒ ∑︁
|𝑠|=⌊𝛽⌋

1
𝑠! [𝐷𝑠𝑓(𝑥+ 𝑐(𝑦 − 𝑥))−𝐷𝑠𝑓(𝑥)] (𝑦 − 𝑥)𝑠

⃒⃒⃒⃒
⃒⃒

for some constant 𝑐 ∈ (0, 1). By the triangle inequality and the Hölder condition, the
expression in the second line is bounded above by

∑︁
|𝑠|=⌊𝛽⌋

𝐿 |𝑥− 𝑦|𝛽−⌊𝛽⌋
2

𝑠! |(𝑦 − 𝑥)𝑠| =

𝐿 |𝑥− 𝑦|𝛽−⌊𝛽⌋
2

⌊𝛽⌋!

(︃
𝑑∑︁
𝑖=1
|𝑥𝑖 − 𝑦𝑖|

)︃⌊𝛽⌋

,

where the equality is by the multinomial theorem. In turn, this last expression is
bounded above by

𝐿𝑑⌊𝛽⌋/2

⌊𝛽⌋! |𝑥− 𝑦|
𝛽
2

using Cauchy–Schwarz.
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Chapter 5

Pedigree reconstruction

5.1 Introduction

5.1.1 Motivation

The decreased costs of sequencing technologies have enabled large-scale, data-driven
analyses of genomes Institute [2019]. Recent science and news articles feature stories
only possible due to this plethora of data, such as the recent identification and capture
of a high-profile criminal Kolata and Murphy [2018] predicated on DNA evidence.
In this effort, an individual’s genetic information was compared to a large, curated
database called GEDMatch consisting of over one million individual genomes. In
comparison, there exist databases which are of several orders of magnitude larger in
size such as MyHeritage (∼3.7 million MyHeritage), 23andMe (∼10 million 23andMe),
and Ancestry (∼15 million Ancestry.com).

This raises the question: how much kinship information can be learned from
DNA? Current databases already contain a considerable amount of this information.
Indeed, it is estimated that a given US individual of European ancestry, on average,
has a third cousin or closer who is already in the MyHeritage database Erlich et al.
[2018]. However, such databases are still far from complete. This calls into question
the ability to detect missing kinships based on individuals already present in the
database.

This discussion also highlights the issue of genomic privacy. Indeed, it becomes
much easier to identify and locate individuals by combining the genetic and genealog-
ical information with outside information (addresses, e-mails, family photos, etc.).
This potential, having already been demonstrated by the resolution of the aforemen-
tioned criminal case, was brought to attention by Erlich et al. [2018]. From this point
of view, the ability to reconstruct genealogies from collected genetic data is of concern
for individuals whose information is revealed, even if one has never been sequenced.
Since our work establishes a positive result in a pessimistic scenario where we start
with no ground truth information, we believe that our work brings to attention this
critical issue via a theoretical framework.
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5.1.2 Our contributions
Without any prior knowledge about the ground truth, can we learn everyone’s geneal-
ogy using their genetic information? In this paper, we study the inference problem
of recovering ancestral kinship relationships of a population of extant (present-day)
individuals, using only their genetic data. Our goal is to use this extant genetic
data to recover the pedigree of the extant population, under an idealized model. A
pedigree is a graph whose nodes (individuals) have edges that encode parent-sibling
relationships. The topology and reconstruction of pedigrees are well-studied in bioin-
formatics from both a theoretical and empirical perspective, and in general the study
of pedigrees poses formidable computational and statistical challenges.

In this paper, we introduce a novel recursive algorithm Rec-Gen for pedigree
reconstruction. To demonstrate the effectiveness of our approach, we give a mathe-
matical proof that for an idealized generative model on pedigrees, our algorithm is
able to approximately recover the true, unknown pedigree only using the genetic data
of the extant population. In terms of sample complexity, which for our purposes refers
to the common gene sequence length of an extant individual, our algorithm greatly
outperforms the naive reconstruction method (estimate pairwise distances between
the extant individuals, then construct the pedigree that produces these distances).
We propose our approach in this work as a prototype for the future study of more
general pedigrees, including those involving real-life genetic data, from both a the-
oretical and empirical perspective. For further discussion on our model of pedigree
generation, as well as its features and limitations, see Section 5.1.4 and Section 5.1.6.

5.1.3 Related works
A common method in theoretical evolutionary biology is to model lineages and inher-
itance via a family of directed acyclic graphs. One line of work is that of phylogenetics
(refer to Semple and Steel [2003] for an overview) which uses trees to model the oc-
currence of large-scale speciation events in evolutionary biology. Another line of work
is coalescent theory, which focuses on variable-height inheritance trees between genes
as its main statistic to infer large-scale population sizes, as in e.g. Kim et al. [2019].
In contrast, pedigrees capture small-scale individual genealogies that encode familial
relationships. Specifically, most pedigree models are for human genealogies, where
we designate exactly two parents to each individual. By construction, such graphs
are no longer trees and warrant different strategies for inference.

Steel and Hein [2006] posed the formal definition of pedigrees using graph-theoretic
language. In that work, the authors gave combinatorial arguments proving that one
can reconstruct complete pedigrees, assuming the correct ancestral history is provided
as an input for each extant individual. Our definition of pedigrees is essentially the
same as the one outlined by these authors, though we make the simplification that
we do not identify the vertex set bipartition (corresponding to the biological sex of
the individuals).

To tie in more closely with real-world applications, one must consider the challenge
of estimating these histories from data. Along these lines, Thatte and Steel [2008]
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studied stochastic processes that one can associate with the pedigree, in such a way
that one can prove negative results (information-theoretic impossibility) or positive
results (an algorithm) for the reconstruction of the pedigree from extant data. The
stochastic process used to show their positive result was based on a very specific
family of Markov chains which allows for inference but is quite different from our
model.

For the problem of performing pedigree reconstruction on real data, there is a
wealth of literature Thompson [2000], Kirkpatrick et al. [2011], He et al. [2013],
Thompson [2013], He et al. [2014], Shem-Tov and Halperin [2014], Huisman [2017],
Wang [2019]. Such studies apply heuristics that take into account various complica-
tions and phenomena observed in human genomes, such as varying levels of corre-
lations between different sites and the presence of mutations that are not inherited
from parents.

One line of work particularly relevant to this paper is He et al. [2013, 2014] in
which the authors also tackle the problem of pedigree reconstruction from real extant
genetic data. Assuming answers to queries of the form, “how much DNA did 𝑖 and
𝑗 simultaneously inherit from their ancestors?”, they design a statistical test that
distinguishes between siblings, half-siblings and cousins. Their method leverages this
information with a maximal-clique finding algorithm to iteratively reconstruct the
parents, layer-by-layer. There is no proof of correctness provided, but they provide
benchmarks on real and simulated data to provide experimental justification. Our
contributions have a slightly different flavor: using a similar iterative strategy but with
a different statistical test (the novel part of our algorithm) and for a more optimistic
set of assumptions, one can actually provably reconstruct the pedigree correctly in a
sample-efficient way, in an asymptotic sense.

The authors of He et al. [2014] specifically emphasize their method’s ability to
reconstruct half-siblings. Technically speaking, this is not allowed in our model and
therefore it may appear to the reader that there is something too restrictive or subop-
timal about our analysis. One major difference between our model and the aforemen-
tioned work is that we model haploid individuals (one copy of DNA), while in reality
humans are diploids (two copies of DNA). Furthermore, in our proof, we guarantee
reconstruction of monogamous couples of haploid individuals – in other words, up
to permutation of the two individuals within each couple. It can be observed that
given a monogamous pedigree with a haploid model, one can construct a natural,
non-monogamous pedigree with a diploid model such that the total variation of the
extant data of the two pedigrees is zero. Therefore, we think that our results should
also hold for a diploid model with minor modifications and have correctness guaran-
tees to match the empirical results of the aforementioned work He et al. [2014], for
example by interpreting Fig. 5-1(a) as a pair of diploid half-siblings.

Our work is also closely related to the problem of phylogenetic reconstruction Erdős
et al. [1999], Mossel [2004], Mossel and Roch [2005], Daskalakis et al. [2006]. In this
setting, symbols are passed from the root of a phylogenetic tree to descendants via
a Markov process such as in the Cavender–Farris–Neyman model, a basic model for
mutations. Similar to our inference problem in this work, in phylogenetic reconstruc-
tion, one is tasked with reconstructing the tree given only the symbols at the leaves.
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The main result of Erdős et al. [1999] characterizes the sample complexity—the min-
imal string length of the data at the leaves such that reconstruction is possible—as
logarithmic in the depth of the tree, a phenomenon that our results suggest also holds
for the pedigree reconstruction problem. The work Mossel and Roch [2005] provides
theoretical guarantees for the problem of learning the phylogenetic generative model
(i.e., the topology of the tree as well as the transition matrices), which includes hidden
Markov models as a special case, from the extant data under a spectral assumption
on the transition matrices (see also later work of Hsu et al. [2012]). Most closely
related to our approach in this paper is the work Mossel [2004], which shows how
to recursively reconstruct phylogenies using techniques from the theory of broadcast
processes on trees (see also Daskalakis et al. [2006]). This approach provides inspira-
tion for our main algorithm Rec-Gen, which uses similar techniques to recursively
reconstruct pedigrees. We direct the reader to Evans et al. [2000] and Mossel [2001]
for studies of broadcast processes on trees with binary and large alphabet respectively,
and Makur et al. [2018] for a generalization to directed acyclic graphs.

5.1.4 Model description and results
We now give an informal, detailed description of our framework for pedigree recon-
struction, with a more detailed treatment of the generative model in Section 5.3.
Our generative model on pedigrees consists of two parts: a parametric model for
generating the network structure on the set of ancestors and extant individuals, and
an inheritance procedure for transmitting genetic data from the founders, the oldest
individuals in the pedigree, to the extant population.

To generate the pedigree network structure, we begin with a large founding popu-
lation of size 𝑁𝑇 . The founders randomly mate monogamously, and each couple gives
birth to a random number of children, so that the average number of offspring per
couple is a constant1 𝛼. This procedure of random monogamous mating continues
for 𝑇 subsequent generations, eventually yielding the extant nodes and a pedigree 𝒫
formed by the individuals in generations 0, 1, . . . , 𝑇 , with 𝑁𝑖 nodes at each level 𝑖.

Next we describe how genetic data transmits from the founding population to the
extant. Every individual in the pedigree has a gene sequence consisting of 𝐵 symbols
placed in 𝐵 distinct blocks. Each individual in the founding population is initialized
with independent uniformly random draws from a very large alphabet Σ. Now we
state how parents pass down genes to their children. In a given block, a child inherits,
with equal probability, either its mother’s or its father’s symbol in the corresponding
block. This procedure repeats for all couples in a given generation and then continues
over subsequent generations so that genetic data is iteratively transferred through the
pedigree, eventually giving rise to the gene sequences of the extant individuals.

Our main result is summarized in the following theorem. See Theorem 5.3 for a
formal statement.

1More precisely, each couple has a random number of children distributed as a Poisson random
variable with expectation 𝛼.
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Theorem 5.1 (Main result, informal). Let 𝛼 and 𝛽 denote sufficiently large absolute
constants independent of 𝑁𝑇 , the size of the founding population. Let 𝜀 denote a
sufficiently small absolute constant independent of 𝑁𝑇 . Assume that the alphabet size
|Σ| is very large with respect to 𝑁𝑇 .

Then given extant genetic data produced from the generative model with alphabet
Σ, growth rate 𝛼, gene sequence length 𝐵 = 𝛽 log𝑁𝑇 , and number of generations
𝑇 = 𝜀 log𝑁𝑇 as described above, the algorithm Rec-Gen recovers 90% of the true
pedigree in every generation, with high probability. Moreover, this algorithm runs
in polynomial time in the size of the pedigree and the number of blocks per extant
individual.

Let 𝒫 denote the true, unknown pedigree. Our formal version of Theorem 5.1 (see
Theorem 5.3) implies that with high probability Rec-Gen outputs a reconstructed
pedigree 𝒫 whose size is at least 0.9𝑁𝑖 in each generation 𝑖 ∈ {0, . . . , 𝑇}, such that
every node 𝑢̂ ∈ 𝒫 can be identified with exactly one node 𝑢 ∈ 𝒫 , and this identifi-
cation preserves relationships in the sense that 𝑢̂ is a child of 𝑣 in 𝒫 if and only if 𝑢
is a child of 𝑣 in 𝒫 . In graph-theoretic terminology, our reconstruction 𝒫 is a (very
large) induced subgraph of the truth 𝒫 .

We note that the stipulation that we recover 90% of the nodes at each level is
actually a simplification; in fact, we can make the fraction of reconstructed nodes in
each generation arbitrarily large by taking 𝛼 to be large enough. We refer the reader
to Theorem 5.3 for details.

5.1.5 The Rec-Gen algorithm
The algorithm Rec-Gen consists of a recursive procedure that uses only the genetic
information from the extant population to construct a good approximation for the
true pedigree 𝒫 of depth 𝑇 that generated the observations. In the first phase of
recursion, the algorithm reconstructs the parents of the extant nodes, which we label
as the 1st generation. In the 𝑡th phase, the algorithm adds a 𝑡th generation to the
partially reconstructed version of the true pedigree given by the output of the previous
phase. The algorithm terminates after 𝑇 phases of recursion, producing a pedigree
𝒫 with 𝑇 generations that well-approximates the true, unknown pedigree 𝒫 .

We next give a simplified version of our recursive procedure that serves to illustrate
the main ideas. See Section 5.6 for a detailed description of Rec-Gen. Suppose that
we have constructed a pedigree 𝒫𝑡 of depth 𝑡, and recall that 𝐵 refers to the length of
the gene sequence of an individual. Also recall that a couple refers to a pair of mated
individuals.

Note that the first step of our recursive procedure equips each couple with an
empirical gene sequence of length B where each block can contain two distinct sym-
bols. This empirical gene sequence is constructed based on extant data and should
be thought of as determining which symbols belong to at least one of the individuals
from the couple in a given block. Also, we say that three gene sequences 𝜎, 𝜎′, 𝜎′′

overlap in a block if all three sequences have some symbol in common in that block.
Perform the following steps to output a pedigree 𝒫𝑡+1 of depth 𝑡+ 1.
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(1) Collect-Symbols For each couple 𝑐 in generation 𝑡 of 𝒫𝑡, use the extant
genetic data to recover symbols that belong to 𝑐 as follows.

– Recover a symbol 𝜎 in block 𝑏 ∈ [𝐵] of 𝑐 if 𝑐 has three extant descendants
descended from distinct children of 𝑐 that all share symbol 𝜎 in block 𝑏.

– Repeat this procedure to recover at most one other symbol 𝜎′ ̸= 𝜎 for 𝑐 in
block 𝑏.

(2) Test-Siblinghood For every triple of couples 𝑐, 𝑐′, 𝑐′′ ∈ 𝒫𝑡 in generation 𝑡,
determine 𝑐, 𝑐′, 𝑐′′ to be (mutually) ‘siblings’ if and only if at least 0.21𝐵 of
their recovered symbols mutually overlap.

(3) Assign-Parents For every maximal collection 𝒞 = {𝑐1, 𝑐2, . . . , 𝑐𝑘} of couples
in generation 𝑡 such that every triple in 𝒞 consists of mutual siblings, construct
a pair of parents in generation 𝑡+1 that have as children precisely one individual
from each couple in 𝒞.2

After 𝑇 iterations of the above recursive procedure, we output a pedigree 𝒫𝑇 that
gives a good approximation to the underlying pedigree that generated the extant
genetic data as described in Theorem 5.1. We remark that working with triples as
above greatly simplifies our analysis, as discussed in Section 5.2.3.

5.1.6 Model discussion and future directions
Our generative model imposes various constraints on the typical pedigrees that we
consider. We discuss these modeling assumptions here and also consider the problem
of investigating more general models that could more accurately capture properties
of real-world data.

First, we consider the assumption that the size of the alphabet Σ is very large with
respect to the size 𝑁𝑇 of the founding population. Since a “block” represents the unit
of inheritance from a parent3, this implies that with very high probability all of the
founders have distinct symbols in their gene sequences, and no two founders share a
common symbol.4 Our large alphabet assumption is equivalent to the assertion that
the founders are unrelated.

Second, the stochastic process describing inheritance in our model has the fol-
lowing biological interpretation. A standard concept in population genetics refers
to long-running sequence matches as being identical by descent (IBD) if they arose
due to inheritance from a common ancestor Thompson [2013]. In contrast, the term
identity by state refers to the event that two identical tracts in the genome arose by
coincidence – via mutations – in two unrelated individuals. Our inheritance model

2We perform this step in such a way that every child is assigned at most 2 parents.
3Using biology terminology, each block can be considered as an idealized abstraction of a collection

of single-nucleotide polymorphisms (sites of variation) with high linkage disequilibrium (empirical
measure of correlation) that are passed from parent to child.

4Mathematically, this can be thought of as an improper prior on a countably infinite alphabet Σ.
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contains the assertion that each block corresponds to true IBD sequences: if two in-
dividuals have the same symbol, we can always identify a common ancestor that gave
rise to these symbols.

Third, we recall the hypothesis that every couple has on average 𝛼 children, where
𝛼 is a sufficiently large absolute constant independent of the size 𝑁𝑇 of the founding
population. This ensures that, roughly speaking, every new generation is a factor
𝛼/2 larger than the previous one. Assuming roughly uniform growth of generations,
it is necessary that 𝛼 > 0 — otherwise the population would die out and there would
be no extant nodes after 𝑇 generations. More subtly, it is necessary that 𝛼 ≥ 2
— otherwise, via standard results from the theory of branching processes (see, e.g.
Kimmel and Axelrod [2015]) a founding node has a very low probability of passing
on its symbols to the extant. In this situation, even detection of such an ancestor
from extant genetic data alone is information-theoretically impossible. On the other
hand, our assumption that 𝛼 is a large constant essentially amplifies the signal sent
from a founder to the extant, and this simplifies our mathematical analysis.

Our first open question considers relaxing the previously discussed assumptions.

Question 5.1. What theoretical guarantees can be established for pedigree reconstruc-
tion in the context of our generative model when 𝛼 is very close to 2? What about
when the size of the alphabet Σ is finite? Can we analyze more generic models of
inheritance where blocks are not inherited i.i.d. from parents?

A more subtle consequence of our generative model is inbreeding, a term we use
to refer to the following phenomena: (1) the presence of multiple lowest common
ancestors for a pair of extant nodes, and (2) the presence of mated couples such that
the two individuals in the couple have a lowest common ancestor (LCA) (see Defini-
tion 5.5 for the formal definition of an LCA). The degree of inbreeding qualitatively
refers to the frequency of such structures in the pedigree. Moreover, inbreeding as in
(2) is mathematically equivalent to having cycles in the pedigree. In general, a higher
degree of inbreeding makes the pedigree reconstruction problem more difficult and in
some cases information-theoretically impossible (see Section 5.2.1 for detailed exam-
ples). Our choice of model allows for some degree of inbreeding, and our algorithm
and analysis are carefully tailored to circumvent this obstacle.

Other assumptions inherent in our model include that the pedigree is graded, i.e.,
couples are formed from individuals in the same generation, and monogamous: a
given individual only mates with one other individual. Furthermore, mutations —
errors in the transmission of genetic data from parents to offspring — are a central
component in biological applications that our current model does not incorporate.

Question 5.2. What theoretical guarantees can be established for reconstruction of
pedigrees in generative models with some combination of (i) a higher degree of in-
breeding, (ii) mutations, (iii) non-monogamous mating, and (iv) inter-generational
mating?
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𝑘 ℓ

𝑔 ℎ 𝑖 𝑗

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

(a) three sets of grandparents (cousins, one way)

𝑘 ℓ

𝑔 ℎ 𝑖 𝑗

𝑎 𝑏 𝑐 𝑑

(b) two sets of grandparents (cousins, two ways)

Figure 5-1: Simple examples of depth-3 complete pedigrees with a single block. The
letters inside the boxes represents the block data. 5-1(a): The overlap probability is
Pr(𝑘 = ℓ) = 1

8 . 5-1(b): An altered version of 5-1(a) with only two sets of grandparents,
which yields Pr(𝑘 = ℓ) = 1

4 .

5.2 Inference challenges and techniques
In this section, we detail some of the challenges posed by the reconstruction of pedi-
grees constructed from our generative model as well as our techniques and analysis
for handling them. To develop some intuition for our strategy, we first illustrate some
of the properties of pedigrees using concrete examples.

5.2.1 Examples: complications from inbreeding
Recall that two individuals 𝑢, 𝑣 that share the same set of parents are siblings. If
two individuals share a common subset of grandparents (but not parents), we refer
to them as cousins.

First consider the pedigrees displayed in Fig. 5-1(a). An important statistic for
determining relationships is the correlation between symbols of nodes at the same
level. Consider the event 𝐸 that the left extant shares the same symbol as the
right extant. Note that these two extant nodes are cousins sharing a single set of
grandparents. The grandparents are the founders in this example, so we assign to
each of them a unique symbol (𝑎 ̸= 𝑏 ̸= 𝑐 ̸= 𝑑 ̸= 𝑒 ̸= 𝑓). The occurrence of 𝐸 implies
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𝑘 ℓ

𝑒 𝑓 𝑔 ℎ

𝑎 𝑏

(a) four siblings begetting cousins.

𝑘 ℓ

𝑒 𝑓

𝑎 𝑏

(b) two siblings
begetting siblings.

Figure 5-2: Two examples of complete pedigrees with inbreeding. The extants in
5-2(a) are cousins, yet they have a coincidence of 1

2 as if they were generic siblings
from unrelated parents. In comparison, 5-2(b) yields 3

4 which exceeds the coincidence
of siblings.

that 𝑘 = 𝑐 or 𝑘 = 𝑑 via the left extant receiving a symbol from its right parent; this
occurs with probability 1

2 . Conditioned on this occurring, the right extant block ℓ
is the same as 𝑘 with probability 1

4 , so the overall probability that both receive the
same symbol is 1

8 .
Compare this to the example shown in Fig. 5-1(b), where the two extant are

cousins in two ways (siblings marrying siblings). Note that whichever symbol (out of
𝑎, 𝑏, 𝑐, 𝑑) that 𝑘 is, the right grandchild receives the same independently with prob-
ability 1

4 . This is an example of a type of inbreeding where two extant nodes have
more than one LCA.

The examples in Fig. 5-2 demonstrate how the correlation between extant nodes
is boosted due to the presence of inbreeding. Note that in the generic case where
extant siblings have an ancestral pedigree that is a tree, these individuals have a 1

2
fraction overlap in their blocks. For comparison, let us compute the probability of
coincidence for the two extant nodes in Fig. 5-2(a). The probability that 𝑘 = 𝑎, for
example, is

Pr(𝑘 = 𝑎) = Pr(𝑒 = 𝑓 = 𝑎) + 1
2 Pr ({𝑒, 𝑓} = {𝑎, 𝑏}) = 1

4 +
(︂1

2

)︂2
= 1

2 .

Since 𝑘 and ℓ inherit symbols independently from their grandparents, the overall
probability is

Pr(𝑘 = ℓ) = Pr(𝑘 = ℓ = 𝑎) + Pr(𝑘 = ℓ = 𝑏) =
(︂1

2

)︂2
+

(︂1
2

)︂2
= 1

2 ,

which is precisely the probability that two generic siblings inherit the same symbol.
The situation in Fig. 5-2(b) is even more pronounced. The two parents share

the same symbol (either 𝑎 or 𝑏) with probability 1
2 and have different symbols with

probability 1
2 . This means that the coincidence probability is now 1

2 + 1
2 ×

1
2 = 3

4 :

119



their correlation between overlaps is much stronger than that of siblings in the generic
case.

From the example in Fig. 5-2(a), we conclude that the statistical model of ex-
tant data parametrized by pedigrees is unidentifiable. Stated another way, it is
information-theoretically impossible to distinguish between siblings and inbred cousins
using only extant data. Thus, in order for any algorithm to succeed in reconstructing
a large fraction of the pedigree using only extant data, it is necessary to bound the
amount of inbreeding in the ensemble of pedigrees of interest. We accomplish this
using a careful analysis of our generative model.

5.2.2 Informal analysis of Rec-Gen
In this section, we present a high-level analysis of the Rec-Gen algorithm. Theo-
rem 5.1 states that Rec-Gen yields an accurate reconstruction on 90% of nodes for
typical pedigrees from our generative model5. Note that a formal statement of this
theorem, our main result, is given by Theorem 5.3, and a complete proof is contained
in the upcoming sections.

Suppose we construct a pedigree 𝒫𝑡 on 𝑡 generations that, for simplicity of the
discussion, exactly matches the true, unknown pedigree 𝒫 up to generation 𝑡. We
show that Collect-Symbols, Test-Siblings, and Assign-Parents applied to
𝒫𝑡 provide an accurate reconstruction of 90% of the nodes at generation 𝑡+ 1. In the
remainder of this section we give a high-level argument that the output 𝒫𝑡+1 satisfies
the following conditions:

(i) every individual 𝑢̂ in 𝒫𝑡+1 can be identified with a unique individual 𝑢 in 𝒫 at
generation 𝑡+ 1,

(ii) at most 10% of the nodes in generation 𝑡 + 1 of 𝒫 are not identified with an
individual in 𝒫𝑡+1, and

(iii) if 𝑣 is a child of 𝑢̂ in 𝒫𝑡+1, then 𝑣 is a child of 𝑢 in 𝒫 .

Recall that for the purposes of reconstruction, we only have access to the genetic data
of the extant.

In this discussion, we refer to three couples 𝑐, 𝑐′, 𝑐′′ ∈ 𝒫 as (mutual) siblings if
there exist individuals 𝑢 ∈ 𝑐, 𝑢′ ∈ 𝑐′, and 𝑢′′ ∈ 𝑐′′ such that 𝑢, 𝑢′, and 𝑢′′ are mutually
siblings. A clique refers to a collection of couples 𝒞 = {𝑐1, . . . , 𝑐𝑘} such that every
triple from 𝒞 consists of mutual siblings.

The next two facts are essential to the argument.

(A) If Collect-Symbols recovers symbol 𝜎 in block 𝑏 for a couple 𝑐 in generation
𝑡, then 𝑐 also has the symbol 𝜎 in block 𝑏 in 𝒫 (Claim 5.5).

(B) Collect-Symbols recovers at least 99% of the symbols for at least 99% of
the couples in generation 𝑡 (Lemma 5.17).

5We note again that the 90% is for simplicity of exposition, and in reality we can recover an
arbitrarily large fraction of nodes. This is made precise in Theorem 5.3.
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Together, (A) and (B) imply that for 99% of the couples in generation 𝑡, our algo-
rithm gets all of the siblings relationships between these couples correct. To see why,
we can use a similar calculation as in the first example of Section 5.2.1 to conclude
that the average overlap between the symbols of three individuals that are mutually
siblings is 25%. By concentration of binomial random variables about their means, it
follows that with high probability, all triples of individuals that are mutually siblings
in 𝒫 have at least 24.9% mutual overlap between their symbols. A simple union
bound combined with (A) and (B) implies that for most triples of individuals in gen-
eration 𝑡 that are mutually siblings, the recovered symbols from Collect-Symbols
in those individuals’ corresponding couples have overlap at least 21%. Hence, Test-
Siblinghood infers correct siblinghood relationships for a majority of triples.

Moreover, our siblings test on the recovered symbols does not have any false-
positives:

(C) Test-Siblinghood never misclassifies non-siblings as siblings (Lemma 5.20).

The next and last key fact argues that our naive assignment of parents to individ-
uals in cliques as in Assign Parents is in fact the correct assignment in a typical
pedigree. This property holds with very high probability over our generative model.

(D) Let 𝒞 ⊂ 𝒫 denote a clique at generation 𝑡 in the true pedigree. Then there
exists a couple 𝑐, which we refer to as the parents of 𝒞, in generation 𝑡+ 1 of 𝒫
that has exactly one child in every couple of 𝒞, and no other couple has more
than 1 child in 𝒞 (Lemma 5.6).

Together, (A), (B), (C), and (D) imply that our reconstruction criteria (i), (ii), and
(iii) from the beginning of this section hold, as we now justify. Recall that we already
showed (A) and (B) imply that we classify a large fraction of the couples at generation
𝑡 correctly as siblings. Moreover, part (C) and the transitivity of siblinghood in 𝒫
imply that cliques in our reconstruction really correspond to cliques in the truth. By
part (D) such cliques have unique parents. Thus, for (i), we identify newly constructed
couples 𝑢̂ ∈ 𝒫𝑡+1 with the unique parents 𝑢 ∈ 𝒫 of the clique formed by the children
of 𝑢̂, further pairing the two individuals in 𝑢 with those in 𝑢̂ arbitrarily. With this
identification, (iii) follows immediately. To show part (ii), later in the paper we give
a sufficient condition for a couple at generation 𝑡 to have 99% of its symbols collected
by Collect-Symbols as in (B) (see Lemma 5.17). Then we show that 90% of
individuals in generation 𝑡 + 1 have children in such couples (see Proposition 5.5),
which proves part (ii). Essentially, this sufficient condition amounts to saying that
a couple 𝑐 at generation 𝑡 has no inbreeding (cycles) above or below it (i.e. among
its ancestors or descendants, respectively) and that the pedigree of descendants of 𝑐
contains a 𝛼/4-ary tree (see Definition 5.18).

5.2.3 Motivation for using triples
It is tempting to employ a seemingly simpler recursive scheme than the one described
in Section 5.1.5 that operates on pairs instead of triples. As an example, consider an
alternative recursive procedure such that:

121



1. Collect-Symbols only uses pairs of extant descendants to recover symbols
of a couple 𝑐,

2. Test-Siblinghood considers only pairs of couples at generation 𝑡 and detects
them to be siblings if their strings overlap by at least 49%, and

3. Assign-Parents assigns parents to individuals in maximal collections 𝒞 such
that every pair of couples is (tested as) siblings.

Unfortunately, this simpler approach encounters two major technical complications.
First, working with a pairwise siblings test introduces a problem for the step

of assigning parents. Define a pairwise clique to be a collection of couples so that
every pair of couples passes the pairwise siblings test. With high probability, it
turns out in every generation there exist a constant number of pairwise cliques that
are not explained in the naive way of assigning to this clique parents that have
precisely one child per couple. In particular, in the true pedigree 𝒫 it is possible
to have three couples that mutually pass the pairwise siblings test, yet there are
three distinct parent couples each having precisely two children among these three
couples. See Fig. 5-3 for an illustration. This type of structure, though rare, occurs a
constant number of times in each generation, and thus introduces inherent errors in
our reconstruction that accumulate at every step of iteration.

Figure 5-3: An undesirable subpedigree, where three child couples have mutual sib-
lingship, but they do not mutually share a parent couple.

A second problem caused by working with pairs arises in the step of collecting
symbols. The pairwise version of our algorithm assigns a symbol to a couple if that
symbol occurs in two extant descendants that are descended from distinct children of
that couple. In our generative model, it turns out that with high probability there are
a logarithmic number of pairs of extant nodes that have at least two LCA’s. For such
pairs, the pairwise algorithm does not accurately assign symbols to their reconstructed
ancestors. Similar to the previous issue, these errors snowball and make the analysis
for proving Theorem 5.1 very difficult.

On the other hand, working with an algorithm using triples as described in Sec-
tion 5.1.5 makes for a much cleaner analysis and nicer reconstruction guarantee. This
innovation circumvents the technical complications of the pairwise version because
every clique (recall that this is a collection of couples where every triple consists of
mutual siblings) can be explained in a naive way (Lemma 5.6), and in our genera-
tive model every triple of extant individuals descended from distinct children of a
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given ancestor have that ancestor as their unique LCA with very high probability
(Lemma 5.8).

5.2.4 Outline of technical arguments
The remainder of the paper, which provides a formal proof of Theorem 5.1, is divided
into four parts.

• Section 5.3 provides preliminary definitions and a formal definition of our gen-
erative model.

• Section 5.4 proves important properties about the typical network structure of
pedigrees from our generative model.

• Section 5.5 proves important properties about the block statistics of the extant
nodes in a typical pedigree from our generative model.

• Section 5.6 gives a precise description of Rec-Gen and provides a formal state-
ment and proof of Theorem 5.1.

Specifically, in Section 5.4 we rigorously quantify the degree of inbreeding in typical
pedigrees from our model by counting the number of collisions (see Definition 5.12
and Lemma 5.4). This has several useful consequences, including that every clique
has a unique parent (fact (D) from Section 5.2.2, also see Lemma 5.6) and that the
extant individuals used in Collect-Symbols have a unique LCA (see Lemma 5.8).
In particular, the latter is key to showing fact (A) from Section 5.2.2.

In Section 5.5, we provide a definition (see Definition 5.18) that essentially char-
acterizes the individuals in 𝒫 that are reconstructible via Rec-Gen. We show that
couples involving such individuals, referred to as awesome couples, transmit many of
their symbols to the extant, with high probability (see Lemma 5.17). In particular,
awesome couples have at least 99% of their symbols recovered by Collect-Symbols
(fact (B) from Section 5.2.2). We also prove an important result for our siblings test:
triples of individuals that are not mutually siblings have mutually overlap at most
19% (see Lemma 5.11). This combined with fact (A) from Section 5.2.2 essentially
shows that Test-Siblinghood never classifies non-siblings as siblings (fact (C) from
Section 5.2.2, see also Lemma 5.20).

Our final section, Section 5.6 ties everything together, following fairly closely
the high-level argument presented in Section 5.2.2 to prove the formal version of
Theorem 5.1.

5.3 Formal setup and technical preliminaries

5.3.1 Key definitions and terms
Definition 5.1. A pedigree 𝒫 = (𝑉,𝐸) is a directed acyclic graph (DAG) with
vertices 𝑉 and edges 𝐸 where every vertex has indegree at most 2. The collection of
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vertices of indegree zero are referred to as the founders, and the collection of vertices
of outdegree zero are referred to as the extant.

Definition 5.2. If the indegree of each vertex in the underlying DAG is either 2 or
0, then 𝒫 is called a complete pedigree.

In this work, we focus on a special family of complete pedigrees that are both
graded and monogamous.

Definition 5.3. 𝒫 is said to be graded if the vertices 𝑉 (𝒫) can be partitioned into⋃︀𝑇
𝑖=0 𝑉𝑖(𝒫) such that 𝑉𝑇 (𝒫) are the founders, 𝑉0(𝒫) are the extant, and all directed

paths 𝑒𝑇 , . . . , 𝑒1 from 𝑉𝑇 (𝒫) to 𝑉0(𝒫) can be written as a sequence of edges 𝑒𝑡 = (𝑣𝑡 →
𝑣𝑡−1) where 𝑣𝑡 ∈ 𝑉𝑡(𝒫) and 𝑣𝑡−1 ∈ 𝑉𝑡−1(𝒫) for each 𝑡. The founders’ index 𝑇 is the
depth of the pedigree.
𝒫 is said to be monogamous if for every vertex 𝑢 of outdegree > 0, there exists

a unique vertex 𝑢′ such that (𝑢 → 𝑣) ∈ 𝐸 ⇐⇒ (𝑢′ → 𝑣) ∈ 𝐸. The unordered pair
{𝑢, 𝑢′} is referred to as a couple.

We assume that every non-extant individual in the pedigree is in a couple, and
so the number of vertices at each non-extant level is even. This assumption is effec-
tively without loss of generality—if an individual is not in a couple, then it has no
descendants, and so we cannot recover information about this individual or even its
existence.

An example of a complete, graded, monogamous pedigree is shown in Fig. 5-1(a).
In our model, symbols are passed down from parents to children in a completely
symmetric way. Thus, given the data of the children, it is impossible to distinguish
the owner of each symbol from amongst the two parents. The goal of this paper is
to show how one can provably infer the structure of a complete pedigree from extant
genetic data via the reconstruction of the ancestral symbols, modulo block phasing
(determining which symbol belongs to which parent for each block). Therefore, we
introduce the following version of a pedigree which condenses this information.

Definition 5.4. A coupled pedigree 𝒬 = (𝑉𝒬, 𝐸𝒬) induced by a complete, monoga-
mous pedigree 𝒫 = (𝑉𝒫 , 𝐸𝒫) is defined as follows:

• 𝑉𝒬 ⊂
(︁
𝑉𝒫
2

)︁
is obtained by merging couples 𝑐 = {𝑢, 𝑢′} ⊂ 𝑉𝒫 into a single node

(extant individuals remain singletons), introducing edge multiplicity.

• 𝐸𝒬 is the result of halving the number of resulting copies of each edge after
merging couples.

In particular, a coupled pedigree is also a pedigree. Examples are drawn in Fig. 5-4
in relation to Fig. 5-1, where the complete pedigree 5-1(a) induces a coupled pedi-
gree 5-4(a) and 5-1(b) induces 5-4(b).

The only information that is lost after transforming a complete, monogamous
pedigree into a coupled pedigree is the block phasing. Indeed, observe that given
the coupled structure 𝒬 = (𝑉𝒬, 𝐸𝒬), one can easily obtain the individual structure
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𝑘 ℓ

{𝑔, ℎ} {𝑖, 𝑗}

{𝑎, 𝑏} {𝑐, 𝑑} {𝑒, 𝑓}

(a) coupled version of 5-1(a)

𝑘 ℓ

{𝑔, ℎ} {𝑖, 𝑗}

{𝑎, 𝑏} {𝑐, 𝑑}

(b) coupled version of 5-1(b)

Figure 5-4: 5-1(a) induces coupled pedigree 5-4(a), while 5-1(b) induces 5-4(b).
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𝒫 = (𝑉𝒫 , 𝐸𝒫) up to block phasing as follows: (1) add the extant individuals in
𝑉0 ⊂ 𝑉𝒬 to 𝑉𝒫 , (2) for every non-extant node 𝑐 ∈ 𝑉𝒬 add individuals 𝑢𝑐, 𝑢

′
𝑐 to

𝑉𝒫 , and (3) given parents 𝑐1 and 𝑐2 of 𝑐 in 𝒬, add the four edges 𝑢𝑐1 → 𝑢𝑐, 𝑢
′
𝑐1 →

𝑢𝑐, 𝑢𝑐2 → 𝑢′
𝑐, 𝑢

′
𝑐2 → 𝑢′

𝑐 to 𝐸𝒫 . In addition, if 𝒫 is graded, 𝒬 retains a graded structure
𝑉𝒬 = 𝑉0(𝒬) ∪ · · · ∪ 𝑉𝑇 (𝒬) so that 𝑉0(𝒬) are the extant nodes and 𝑉1(𝒬), . . . , 𝑉𝑇 (𝒬)
are depth-graded couple nodes. In particular, the graph structure of an individuals
pedigree 𝒫 uniquely determines the graph structure of its associated coupled pedigree
𝒬 and vice versa.

Given the previous discussion, since our goal is to recover the graph structure
of an underlying true pedigree 𝒫 given gene sequences of a large number of extant
individuals, it suffices to reconstruct the associated coupled pedigree 𝒬.

Furthermore, since the graph underlying a pedigree is a DAG, given a subset 𝑆 of
the pedigree, it is natural to consider the notion of “ancestors” (nodes anc(𝑆) from
which there is a directed path to 𝑆) and “descendants” (nodes desc(𝑆) to which there
is a directed path from 𝑆). Also for simplicity, we stipulate that every node 𝑣 is both
a descendant and an ancestor of itself, i.e., 𝑣 ∈ anc(𝑣) and 𝑣 ∈ desc(𝑣). Since the
indegree of each node can be more than one, it is possible for two nodes to have more
than one “lowest common ancestor”. We define this now.

Definition 5.5 (Lowest Common Ancestors). Let 𝑆 denote a set of nodes in a pedi-
gree 𝒫. The set of lowest common ancestors of 𝑆, denoted LCA(𝑆), consists of
all nodes 𝑢 ∈ 𝒫 such that 𝑢 is an ancestor of every node in 𝑆, and moreover, no
descendant of 𝑢 is an ancestor of every node in 𝑆.

During our analysis, we often restrict our attention to the information that the
pedigree contains about the ancestors or descendants of a particular collection of
nodes. In particular, we want to exploit (sub)structures that are not too intertwined.
The following definitions make these ideas precise:

Definition 5.6 (Subpedigrees). Let 𝑊 ⊂ 𝑉𝒫 denote a subset of nodes of pedigree
𝒫. The subgraph of (𝑉𝒫 , 𝐸𝒫) induced by 𝑊 is itself a pedigree, which we call the
subpedigree of 𝒫 induced by 𝑊 .

Definition 5.7 (Ancestral pedigrees). Let 𝑊𝑘 ⊂ 𝑉𝑘(𝒫) denote a subset of vertices at
level 𝑘 of a graded pedigree 𝒫. The subpedigree induced by 𝑊𝑘 ∪ anc(𝑊𝑘) is the (level
𝑘) ancestral subpedigree of 𝒫 induced by 𝑊𝑘.

Definition 5.8 (Descendant pedigrees). Let 𝑊𝑘 ⊂ 𝑉𝑘(𝒫) denote a subset of vertices
at level 𝑘 of a graded pedigree 𝒫. The subpedigree induced by 𝑊𝑘 ∪ desc(𝑊𝑘) is the
(level 𝑘) descendant subpedigree of 𝒫 induced by 𝑊𝑘.

Definition 5.9 (Tree pedigrees). A pedigree 𝒫 that has no undirected cycles (when
the directions of the edges in 𝐸𝒫 are ignored) is called a tree pedigree.

Note that coupled pedigrees can have edges of multiplicity two, though only in the
case where two siblings form a coupled node, which a rare structure in our generative
model. In coupled pedigrees, we consider a double edge to be an undirected cycle of
length two. Hence, a tree pedigree consists entirely of simple or multiplicity 1 edges.
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As we demonstrate (e.g. Lemma 5.11), coupled tree pedigrees exhibit a type of
correlation decay between blocks that enable us to perform inference on the struc-
ture. In contrast, non-tree coupled pedigrees correspond to pedigrees with inbreeding,
which can arise in nature and appear in our probabilistic model as well. Section 5.2.1
illustrates examples of such structures. These types of structures introduce challenges
for performing inference under our generative model.

5.3.2 Siblings in a pedigree
Note that siblinghood is a transitive relationship: if 𝑢, 𝑣 are siblings and 𝑣, 𝑤 are
siblings, then so are 𝑢,𝑤. As alluded to in Section 5.2.3, it is important to look at
these relationships in triplets. We now detail how one can encode this information as
a 3-uniform hypergraph.

Definition 5.10. A 3-uniform hypergraph is a pair (𝑉,𝐸) of vertices and a mul-
tiset of edges, so that each edge is an unordered triple {𝑢, 𝑣, 𝑤} of vertices in 𝑉 .

Definition 5.11. Let 𝒫 be a coupled pedigree of depth 𝑇 (each non-extant node is a
set of a pair of individuals). The siblinghood hypergraph 𝐺𝑘 of 𝒫 at level 𝑘 > 0
is the 3-uniform hypergraph that describes the three-way sibling relationships of its
level-𝑘 members. For every triple 𝑒 = {𝑐1, 𝑐2, 𝑐3}, the edge multiplicity 𝑛(𝑒;𝐺𝑘) is

𝑛(𝑒;𝐺𝑘) =

⎧⎪⎪⎨⎪⎪⎩
0 if ̸ ∃ (𝑢1, 𝑢2, 𝑢3) ∈ 𝑐1 × 𝑐2 × 𝑐3 such that 𝑢1, 𝑢2, 𝑢3 are siblings
1 if ∃ unique (𝑢1, 𝑢2, 𝑢3) ∈ 𝑐1 × 𝑐2 × 𝑐3 such that 𝑢1, 𝑢2, 𝑢3 are siblings
2 else

The siblinghood hypergraph 𝐺0 is defined similarly, by considering each extant individ-
ual 𝑢 as a degenerate (cardinality 1) couple 𝑐𝑢 = {𝑢} and applying the above definition
(Each hyperedge appears zero or once, never twice).

Recall that a clique in a 3-uniform hypergraph is a collection of vertices such that
all possible triplets form an edge. The next statement is an observation that follows
from the definition of 𝐺𝑘 and the transitivity of siblinghood.

Proposition 5.1. If 𝑐1, . . . , 𝑐𝑚 are level-𝑘 couples that respectively contain individuals
𝑢1, . . . , 𝑢𝑚 which are siblings, then 𝑐1, . . . , 𝑐𝑚 form a clique in 𝐺𝑘.

5.3.3 Probability Tools
We denote a Poisson distribution with mean 𝜆 as Pois(𝜆). We use some basic tools
from probability theory in our proof. The first is referred to in literature as Poisson
thinning, see e.g. Lalley [2016].

Proposition 5.2 (Poisson Thinning). Let 𝑁 ∼ Pois(𝜆), and let 𝑋1, 𝑋2, . . . be iid
Ber(𝑝) random variables that are independent of 𝑁 . Then 𝑋 = ∑︀𝑁

𝑖=1 𝑋𝑖 is Pois(𝜆𝑝)-
distributed.
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Second, we recall that sums of Poisson random variables are themselves Poissons:

Proposition 5.3. Fix 𝑁 > 0 and let 𝑋1, 𝑋2, . . . , 𝑋𝑁 be iid Pois(𝜆) random variables.
Then 𝑋 = ∑︀𝑁

𝑖=1 𝑋𝑖 is Pois(𝜆𝑁)-distributed.

Third, we will invoke the following standard variants of the Chernoff–Hoeffding
bounds for sums of Bernoulli random variables:

Theorem 5.2 (Bernoulli tail probability (Chernoff–Hoeffding Bounds)). Let 𝑋 =∑︀𝑁
𝑖=1 𝑋𝑖 be a sum of independent Bernoulli(𝑝𝑖) random variables. Let 𝜇 = E[𝑋].

Then

Pr(𝑋 > (1 + 𝛿)𝜇) ≤ exp
(︃
− 𝛿2

2 + 𝛿
𝜇

)︃

Pr(𝑋 < (1− 𝛿)𝜇) ≤ exp
(︃
−𝛿

2

2 𝜇
)︃

Pr(|𝑋 − 𝜇| > 𝛾𝑁) ≤ 2 exp(−2𝑁𝛾2).

Lastly and in the same spirit as the Chernoff–Hoeffding bound, we will use the
fact that Poisson distributions also have sub-exponential tails.

Proposition 5.4 (Poisson tail probability). Let 𝑋 ∼ Pois(𝜆). Then for any 𝑥 > 0,
we have

Pr(|𝑋 − 𝜆| ≥ 𝑥) ≤ 2 exp
(︃
− 𝑥2

2(𝜆+ 𝑥)

)︃

For a proof, refer to Chapter 2 of Pollard [2015].

5.4 Structure of Poisson Pedigrees

5.4.1 Model Description
We now describe our simple model for generating a population and its genetic data.
The model is best viewed in two stages. In the first stage, we generate the popula-
tion as well as the pedigree topology 𝒫indiv on these individuals, and in the second
stage, we generate the genetic data given this pedigree structure. Note that the
random individual pedigree 𝒫indiv constructed below is graded, monogamous, and
complete.
Part I: Pedigree topology

1. To generate 𝒫indiv, start with 𝑁𝑇 = 𝑁 founding individuals in 𝑉𝑇 and make
an arbitrary maximum matching of these individuals to create a set of mated
couples. For each couple, generate an independent Pois(𝛼) number of children,
where 𝛼 > 0 is a fixed parameter throughout the entire pedigree. These newly
generated individuals form the nodes in 𝑉𝑇−1.

2. Repeat the above process to generate the individuals in 𝑉𝑇−2, . . . , 𝑉0.
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Once we have the population and pedigree structure as above, we generate the
genetic data in the following manner.

Part II: Inheritance procedure

1. Each individual 𝑢 in 𝒫indiv has a length-𝐵 string 𝜎𝑢 (𝑢’s gene sequence). The
string’s indices are referred to as blocks.

2. For each founding individual 𝑢 in 𝑉𝑇 and for each block 𝑏 ∈ [𝐵], each 𝜎𝑢(𝑏) is
drawn i.i.d. uniformly from an alphabet Σ. For our model, Σ is an infinite-
sized alphabet: we simply require that each block of each founder has a unique
symbol.

3. Every other individual 𝑣 in the population has exactly two parents 𝑓 and 𝑚.
Conditioned on 𝜎𝑓 and 𝜎𝑚, independently over [𝐵], the 𝑖th block of 𝑣 copies
𝜎𝑓 (𝑖) with probability 0.5 and 𝜎𝑚(𝑖) with probability 0.5.

Remark 5.1. We adopt the following conventions in the remainder of the paper.

1. We let 𝒫 denote the coupled pedigree induced (see Definition 5.4) by the
randomly generated individual pedigree 𝒫indiv constructed in Part I above.

2. We use the term coupled node, or simply node when the context is clear, to
refer to a vertex of 𝒫. We use the term individual to refer to an element
of 𝒫indiv contained in a coupled node of 𝒫. Unless otherwise explicitly noted,
parent-child relationships are taken according to the structure of the coupled
pedigree 𝒫. That is, given 𝑢, 𝑣 ∈ 𝒫 we use the phrase, “𝑢 is a child of 𝑣,” to
mean that the couple 𝑢 contains an individual who is an offspring of the mated
couple 𝑣. Finally, we say that coupled nodes 𝑢, 𝑣 ∈ 𝒫 are siblings if 𝑢 and 𝑣
contain individuals who are siblings in 𝒫indiv.

3. Pr denotes the probability measure over the randomly generated pedigree 𝒫 as
well as the random inheritance procedure.

To given an example of our terminology, there are two individuals in a non-extant
coupled node. Each individual is a vertex of 𝒫indiv, and together they form a coupled
node, which is a vertex of 𝒫 . Note that as an artifact of our definitions, extant
individuals are both coupled nodes and individuals in 𝒫 . Moreover extant nodes
have exactly one parent in 𝒫 given by the coupled node containing the individuals
comprising that extant individuals biological parents, as determined by our generative
model.

To further emphasize the previous remark, recall that by the discussion in Sec-
tion 5.3.1, there is a unique correspondence between coupled pedigrees and individual
pedigrees. Hence, it suffices to give a (partial) reconstruction 𝒫 of 𝒫 to (partially)
reconstruct the original individual pedigree 𝒫indiv. Thus the content of our main re-
sult Theorem 5.3 and the remainder of this paper primarily work with the coupled
pedigree 𝒫 .
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Parameters: For convenience, we collect the various parameters of interest here.

Parameter Description Value
𝑁 Size of founding population
𝐵 Number of blocks for each individual Θ(log(𝑁))
𝛼 Expected # of children per couple Θ(1)
𝑇 Number of generations in population 𝜀 log(𝑁), 𝜀 = 𝑂(1/ log(𝛼))
|Σ| Size of block alphabet ∞

We set 𝐵 = 𝑂(log(𝑁)) for a sufficiently large constant. The expected number of
children per couple, 𝛼, will be set to a sufficiently large constant that is at least 3.
Finally, the number of generations 𝑇 will be set to 𝜀 log(𝑁), where 𝜀 > 0 is sufficiently
small with respect to 1/ log(𝛼).

5.4.2 Concentration bounds and upper bounds on inbreeding
In this section we quantify the degree of inbreeding in 𝒫 . To do so, we first de-
scribe an alternative description of our generative model. An equivalent procedure
for constructing the coupled pedigree structure 𝒫 is to (1) sample the generation
sizes according to Poisson random variables with appropriate parameters, (2) pair up
individuals in each generation at random into coupled nodes, and (3) have coupled
nodes choose two parent coupled nodes at random from the previous generation. This
is described formally below.

Lemma 5.1. The (coupled) pedigree 𝒫 described in Section 5.4.1 can be equivalently
viewed as follows:

1. Let 𝑁𝑇 := 𝑁 be the size of the founding population. For 𝑖 from 𝑇 to 1: Let
𝑁 ′
𝑖

𝑑𝑒𝑓= ⌊𝑁𝑖/2⌋ · 2 be the number of individuals in couples, and sample 𝑁𝑖−1 ∼
Pois(𝛼𝑁 ′

𝑖/2).

2. For each level 𝑖, match the individuals at level 𝑖 randomly, leaving out a single
individual if 𝑁𝑖 was odd.

3. For each level 𝑖, sample a vector 𝑣⃗ ∈ [𝑁 ′
𝑖/2]𝑁𝑖−1 from a Multinomial distribution

with parameters
(𝑁𝑖−1, (2/𝑁 ′

𝑖 , . . . , 2/𝑁 ′
𝑖)).

For any 𝑘 ∈ [𝑁 ′
𝑖/2], the set of coordinates {𝑗 : 𝑣𝑗 = 𝑘} are interpreted as

children of the 𝑘𝑡ℎ couple at level 𝑖 (and are therefore siblings at level 𝑖− 1).

4. Convert the resulting pedigree on individuals from steps 1–3 to a coupled pedigree
𝒫.

Proof. The number of vertices at each level in the statement of Lemma 5.1 is the
same as the model in Section 5.4.1. This follows by induction. The number of
founding vertices 𝑁 is the same in both models. In the model in Section 5.4.1, the
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number of individuals at level 𝑖 − 1 is distributed as ∑︀𝑁 ′
𝑖/2

𝑗=1 𝑋𝑗, where the 𝑋𝑗 are iid
Pois(𝛼) and 𝑁 ′

𝑖 is the number of individuals at level 𝑖 that are matched. The value
of this sum is distributed as Pois(𝛼𝑁 ′

𝑖/2) (due to Proposition 5.3), the same as in the
statement Lemma 5.1.

The random matching in Step 2 of Lemma 5.1 is the same as the matching in Sec-
tion 5.4.1.

The final step in the process above assigns individuals in 𝑉𝑖−1 to parents in 𝑉𝑖 by
sampling a vector 𝑣⃗ of length 𝑁𝑖−1 with entries in [𝑁 ′

𝑖/2] from a multinomial distribu-
tion and assigning individuals to parents based on these labels. Indeed, if we look at
the number of children of a fixed couple (say, the 𝑗𝑡ℎ couple in 𝑉𝑖), this is distributed
as Bin(𝑋, 2/𝑁 ′

𝑖), where 𝑋 ∼ Pois(𝛼𝑁 ′
𝑖/2). By Poisson thinning (Proposition 5.2),

this distribution is simply Pois(𝛼), which is exactly the distribution of the number of
children of the 𝑗𝑡ℎ couple in Section 5.4.1.

Next we use tail bounds on Poisson random variables to show that the sizes of
each level are well-concentrated with high probability, assuming a sufficiently large
size of the initial population. Recall that 𝑁𝑖 denotes the number of individuals in
generation 𝑖.

Lemma 5.2 (Concentration of generations). Fix 𝛿 such that 0 < 𝛿 < 𝛼/2 − 1, and
suppose that the founding population size 𝑁 is at least 𝛼/𝛿 + 1. Then, for some
constant 𝐶1 = 𝐶1(𝛿), with probability at least 1 − 𝑇 exp(−𝐶1𝛼𝑁) we have that, for
all 𝑖 ∈ {0, . . . , 𝑇 − 1}

(𝛼/2− 𝛿)𝑁𝑖+1 ≤ 𝑁𝑖 ≤ (𝛼/2 + 𝛿) ·𝑁𝑖+1. (5.1)

Remark 5.2. An immediate corollary of this result is that

(𝛼/2− 𝛿)𝑖 ·𝑁 ≤ 𝑁𝑇−𝑖 ≤ (𝛼/2 + 𝛿)𝑖 ·𝑁 (5.2)

for each 𝑖 ≤ 𝑇 with high probability.

Proof of Lemma 5.2. Our goal is to upper bound the right-hand-side of

Pr[some 𝑁𝑗 fails Eq. (5.1)] ≤
𝑇−1∑︁
𝑖=0

Pr[𝑁𝑖 fails Eq. (5.1) |𝑁𝑖+1 satisfies Eq. (5.2)]

and so it suffices to show

Pr[𝑁𝑖 fails Eq. (5.1) |𝑁𝑖+1 satisfies Eq. (5.2)] ≤ 2 exp(−Θ(𝛼2(𝑁 − 1)/(𝛼 + 𝛿))).

Consider fixing the number of individuals at level 𝑖+ 1 to be an arbitrary number
𝑁𝑖+1 satisfying Eq. (5.2). We know that the number of individuals at level 𝑖 is dis-
tributed as 𝑁𝑖 ∼ Pois(𝛼𝑁 ′

𝑖+1/2). By applying the Poisson tail bound Proposition 5.4,
we see that
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Pr
[︁
|𝑁𝑖 − 𝛼𝑁 ′

𝑖+1/2| > (𝛿/2)𝑁 ′
𝑖+1 | 𝑁𝑖+1 satisfies Eq. (5.2)

]︁
(5.3)

< 2 exp
(︃
−(𝛼𝑁 ′

𝑖+1/2)2

2(𝛼/2 + 𝛿/2)𝑁 ′
𝑖+1

)︃

< 2 exp
(︃
−𝛼
−𝑁 ′

𝑖+1
4(1 + 𝛿)

)︃
(5.4)

We now claim that |𝑁𝑖−𝛼𝑁𝑖+1/2| > 𝛿𝑁𝑖+1 implies that |𝑁𝑖−𝛼𝑁 ′
𝑖+1/2| > (𝛿/2)𝑁 ′

𝑖+1,
which follows from the facts that |𝑁𝑖+1 − 𝑁 ′

𝑖+1| ≤ 1 and that 𝑁𝑖+1 ≥ 𝑁 (Eq. (5.2)).
Namely, assume that 𝑁𝑖 > (𝛼/2 + 𝛿)𝑁𝑖+1. Then 𝑁𝑖 > (𝛼/2 + 𝛿/2)𝑁 ′

𝑖+1, since 𝑁𝑖+1 ≥
𝑁 ′
𝑖+1. Now assume instead that 𝑁𝑖 < (𝛼/2− 𝛿)𝑁𝑖+1. Then

𝑁𝑖 < (𝛼/2− 𝛿)𝑁𝑖+1

≤ (𝛼/2− 𝛿)(𝑁 ′
𝑖+1 + 1)

≤ (𝛼/2− 𝛿/2)(𝑁 ′
𝑖+1)

where in the last line we use the fact that (𝛿/2)𝑁 ′
𝑖+1 ≥ (𝛿/2)(𝑁 − 1) ≥ 𝛼/2.

Hence, we get that

Pr[|𝑁𝑖 − 𝛼𝑁𝑖+1/2| > 𝛿𝑁𝑖+1 | 𝑁𝑖+1 satisfies Eq. (5.2)] ≤ 2 exp
(︃
−𝛼

[︃
𝑁 − 1

4(1 + 𝛿)

]︃)︃

where we use the fact that 𝑁𝑖+1 ≥ 𝑁 since 𝑁𝑖+1 satisfies Eq. (5.2).

Remark 5.3 (Dependence on 𝛿). The strategy from this point onwards is to condition
on the event from Eq. (5.1). Since this event fails with probability that is exponentially
small in 𝑁 , we lose only an additive exp(−𝑐𝛿𝛼𝑁) probability.

As mentioned in Section 5.2.1, two nodes may have significantly higher amounts
of symbol overlap caused by inbreeding in their ancestral pedigree than would be
expected given their distance in the pedigree. This can cause us to reconstruct an
incorrect pedigree if we attempt to explain the symbol overlap without accounting
for inbreeding; for instance, we may see two nodes and think they are siblings, when
in reality they are cousins with inbreeding in their family tree (see Section 5.2.1 for
a detailed example). To formally connect different patterns of inbreeding with the
amount of spurious symbol overlap they cause, we introduce the notion of collisions
in an ancestral pedigree. Roughly speaking, triples of coupled nodes with relatively
few collisions in their ancestral pedigree do not have many spurious overlaps, which
we prove in Section 5.5. We first define collisions and then bound the number that
occur under our probabilistic assumptions in Lemma 5.4. We also give an alternative
characterization of collisions in Lemma 5.3 that is useful later.

Definition 5.12 (Collisions). Let 𝒫 denote a coupled pedigree. Fix a subset of nodes
𝐴 ⊂ 𝑉𝑘(𝒫), where 𝑘 ̸= 𝑇 . If 𝑘 > 0, we say that this collection has 𝑧 collisions at level
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𝑘 + 1 if the set of parents of 𝐴 in 𝒫 has size 2|𝐴| − 𝑧. If 𝑘 = 0, we say that it has 𝑧
collisions at level 1 if the set of parents in 𝒫 has size |𝐴| − 𝑧. Write

coll𝑘+1(𝐴) := (# collisions at level 𝑘 + 1 in 𝐴)

Extend the notion of collisions to ancestral subgraphs as follows. If we have nodes
𝑢1, . . . , 𝑢𝐽 ∈ 𝑉𝑘(𝒫), the number of collisions between the ancestral subpedigrees anc(𝑢𝑗)
for 𝑗 = 1, . . . , 𝐽 is equal to

coll(𝑢1, . . . , 𝑢𝐽) :=
𝑇−𝑘−1∑︁
𝑖=0

coll𝑖+1(anc𝑖(𝑢1) ∪ · · · ∪ anc𝑖(𝑢𝐽))

where anc𝑖(𝑢𝑗) denotes the set of ancestors 𝑖 levels above 𝑢𝑗.

Lemma 5.3 (Ancestral collisions, alternate characterization). Let 𝑢1, . . . , 𝑢𝐽 de-
note a set of nodes that are all at the same level. Consider the subpedigree 𝒯 =
anc(𝑢1, . . . , 𝑢𝐽). Let 𝑘𝑗 denote the number of nodes in 𝒯 that have outdegree 𝑗 in the
subpedigree 𝒯 . Then

coll(𝑢1, . . . , 𝑢𝐽) =
∑︁
𝑗≥2

(𝑗 − 1)𝑘𝑗.

Proof. Let 𝑆 denote a set of nodes at level 𝑖. Let 𝑘𝑖𝑗(𝑆) denote the set of parents of
𝑆 that have outdegree 𝑗 in the subpedigree anc(𝑆). Let coll𝑖+1(𝑆) denote the number
of collisions that 𝑆 has at level 𝑖+ 1. Then we claim that

coll𝑖+1(𝑆) =
∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆). (5.5)

This is true by induction on the cardinality of 𝑆, as we now demonstrate. We
prove this assuming that 𝑆 is a set of non-extant coupled nodes; the case for extant
nodes is extremely similar. The base case |𝑆| = 1 follows because the unique node
𝑢 ∈ 𝑆 either has two distinct parents, in which case there are no collisions and each
has outdegree 1, or 𝑢 has a single parent, in which case the number of collisions is 1
and the parent has outdegree 2. In both cases Eq. (5.5) holds.

For the inductive step, suppose that Eq. (5.5) is valid for all 𝑆 with |𝑆| ≤ 𝑠. Now
consider 𝑆 with |𝑆| = 𝑠 + 1. Choose an arbitrary 𝑢 ∈ 𝑆 and consider 𝑆 ′ = 𝑆∖{𝑢}.
Observe that by Definition 5.12 and induction:

coll𝑖+1(𝑆) = 2|𝑆| − |𝑝𝑎𝑟(𝑆)|
= 2|𝑆 ′| − |𝑝𝑎𝑟(𝑆 ′)|+ 2|{𝑢}| − |𝑝𝑎𝑟(𝑢)∖𝑝𝑎𝑟(𝑆 ′)|
= coll(𝑆 ′) + 2− |𝑝𝑎𝑟(𝑢)∖𝑝𝑎𝑟(𝑆 ′)|
=

∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆 ′) + 2− |𝑝𝑎𝑟(𝑢)∖𝑝𝑎𝑟(𝑆 ′)|.

Therefore, if 𝑢 has ℓ ∈ {0, 1, 2} parents contained in 𝑝𝑎𝑟(𝑆 ′), then

coll𝑖+1(𝑆) = ℓ+
∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆 ′) =
∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆),

133



because each parent of 𝑢 contained in 𝑝𝑎𝑟(𝑆 ′) increases the degree of some node in
𝑆 ′ by 1.

Applying this argument over all levels 𝑖 to the sets ∪𝐽ℓ=1anc𝑖(𝑢ℓ), we see by Defini-
tion 5.12 and summing over all levels 𝑖 that Lemma 5.3 holds for coupled nodes.

In our model and in light of Lemma 5.1, a collision between sets 𝐴 and𝐵 intuitively
corresponds to a node in 𝐵 “choosing” a parent couple that was already chosen by
another node in 𝐴 ∪ 𝐵. This observation lets us bound the number of collisions
between the ancestors of 3 nodes with high probability.

Lemma 5.4 (Exponential tail of collisions). Fix three nodes 𝑢, 𝑣, 𝑤 ∈ 𝒫 in the same
level 𝑘, and let 𝑐 be a positive integer. Then

Pr[coll(𝑢, 𝑣, 𝑤) ≥ 𝑐] = 𝑂

(︃
72𝑐 · 22𝑐𝑇

𝑁 𝑐

)︃
(5.6)

Proof. We show that the probability on the left-hand-side of Eq. (5.6) can be upper
bounded by the probability that a binomial random variable with sufficiently small
mean is at least 𝑐, from which the result follows.

We assume that each level has at least 𝑁 individuals. This is a high probability
event by Lemma 5.2 (which actually describes a much stronger situation). Since we
just want an upper bound, we condition such an event and this assumption is made
without loss of generality.

Let 𝑆𝑖 := anc𝑖(𝑢)∪anc𝑖(𝑣)∪anc𝑖(𝑤). Note that |𝑆𝑖| ≤ 3·2𝑖, regardless of how many
collisions have happened underneath it. The distribution of coll(anc𝑖(𝑢), anc𝑖(𝑣), anc𝑖(𝑤))
is equal to a sum of at most 3 · 2𝑖+1 Bernoulli random variables, two for each node
in 𝑆𝑖, which are indicator random variables that a parent coupled node selected by
some node in 𝑢 ∈ 𝑆𝑖 is the same as a parent coupled node previously selected by
𝑣 ∈ 𝑆𝑖 (Lemma 5.1). Furthermore, each of these indicator random variables is 1
with probability at most 3 · 2𝑇+2/𝑁 , even conditioned on the previously set ran-
dom variables—indeed, there are only 3 · 2𝑖+1 ≤ 3 · 2𝑇 parents selected in total, so
there are only this many nodes that can be selected from to cause a collision, and
there are at least ⌊𝑁/2⌋ ≥ 𝑁/4 coupled nodes at level 𝑖 + 1. Therefore, the ran-
dom variable coll(𝑆𝑖) is stochastically dominated by Bin(3 · 2𝑖+1, 3 · 2𝑇+2/𝑁). Let
𝑋𝑖 ∼ Bin(3 · 2𝑖+1, 3 · 2𝑇+2/𝑁). Then we get that

Pr[coll(𝑢, 𝑣, 𝑤) ≥ 𝑐] = Pr[
∑︁
𝑖

coll𝑘+𝑖(𝑆𝑖) ≥ 𝑐]

≤ Pr[
𝑇−1∑︁
𝑖=𝑘

𝑋𝑖 ≥ 𝑐]

≤ Pr[𝑋 ≥ 𝑐] (5.7)

where 𝑋 ∼ Bin(3 · 2𝑇+1, 3 · 2𝑇+2/𝑁). By bounding the binomial tail and noting that
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we take 𝑁 > 144 · 22𝑇 , (Eq. (5.7)) can be bounded by

Pr[𝑋 ≥ 𝑐] ≤
3·2𝑇 +1∑︁
𝑖=𝑐

(︃
3 · 2𝑇+1

𝑖

)︃(︃
3 · 2𝑇+2

𝑁

)︃𝑖

≤
3·2𝑇 +1∑︁
𝑖=𝑐

(3 · 2𝑇+1)𝑖
(︃

3 · 2𝑇+2

𝑁

)︃𝑖

≤ 2 · 72𝑐 · 22𝑐𝑇

𝑁 𝑐

In particular, by union bounding over all triples of nodes in the coupled pedigree
𝒫 , we get the following corollary. Note that there are most (𝛼/2 + 𝛿)𝑇 · 𝑁 nodes in
the pedigree when we condition on the high-probability event from Lemma 5.2.

Corollary 5.1.

Pr[∃𝑢, 𝑣, 𝑤 : coll(𝑢, 𝑣, 𝑤) ≥ 4] = 𝑂

(︃
(𝛼/2 + 𝛿)3𝑇28𝑇

𝑁

)︃

Since we take the ratio 𝑇/ log(𝑁) to be sufficiently small (Section 5.4.1), the
probability of the above event is negligible. Hence, we can assume without loss of
generality for the rest of the document that the number of collisions in the ancestral
trees of any three nodes is at most 3.

Additionally, by applying Lemma 5.4 to a single node (repeated three times) and
applying linearity of expectation, we can bound the probability that there are many
coupled nodes 𝑢 with collisions in their ancestral pedigrees anc(𝑢) using Markov’s
inequality. We state this as a corollary.

Corollary 5.2. For any 𝐶 > 0,

Pr
[︂⃒⃒⃒⃒
{𝑢 : coll(𝑢) ≥ 1}

⃒⃒⃒⃒
≥ 𝐶(2𝛼 + 4𝛿)𝑇

]︂
≤ 72/𝐶

as long as 𝑁 is sufficiently large.

Definition 5.13 (𝑑-Richness). Fix a pedigree 𝒫, and let 𝑑 ≥ 3 be an integer. All
extant nodes in 𝒫 are 𝑑-rich. For all 𝑘 > 0, a level 𝑘-node is 𝑑-rich if it has at least
𝑑 children that are 𝑑-rich.

Lemma 5.5 (Most nodes are 𝑑-rich). Fix a constant 0 < 𝜏 < 1, and let 𝛿 > 0 as
in Lemma 5.2. As long as 𝑁 and 𝛼 are sufficiently large, there exists a constant
𝐶2 = 𝐶2(𝜏, 𝛿) such that with probability 1− 𝑇 exp(−𝐶2𝛼𝑁), at least (1− 𝜏) fraction
of level-𝑘 coupled nodes in 𝒫 are 𝑑-rich for all 𝑘.

Proof of Lemma 5.5. Let the term “𝑑-poor node” refer to coupled nodes that are not
𝑑-rich. Let 𝑀𝑘 denote the number of coupled nodes at level 𝑘 in 𝒫 . Our goal is to
prove an upper bound on the event that there are at least 𝜏𝑀𝑘+1 𝑑-poor nodes at
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level 𝑘 + 1, conditioned on the event that there are at least (1 − 𝜏)𝑀𝑘 𝑑-rich nodes
at level 𝑘.

Let 𝑅𝑘 denote the event that there are at least (1− 𝜏)𝑀𝑘 𝑑-rich nodes at level 𝑘.
Let 𝐸 denote the event (𝛼/2− 𝛿)𝑀𝑘+1 ≤𝑀𝑘 ≤ (𝛼/2 + 𝛿)𝑀𝑘+1 for all 𝑘, which occurs
with probability 1 − exp(−𝐶1𝛼𝑁) by Lemma 5.2. We also condition on the sizes of
𝑀0, . . . ,𝑀𝑇 , abbreviating this conditioning as 𝑀0:𝑇 .

Let 𝑆 be an arbitrary subset of nodes at level 𝑘+1 of size 𝜏𝑀𝑘+1 +1, and consider
the event where 𝑆 only consists of 𝑑-poor nodes. This implies that the number of
𝑑-rich children of 𝑆 is at most (𝑑−1)(𝜏𝑀𝑘+1 +1). Let 𝑋𝑖 be iid Bernoulli RVs, which
represent indicators for the event where the 𝑖th 𝑑-rich child chooses at least one of its
parents to be in 𝑆. Note that Pr(𝑋𝑖 = 1) =

(︂
1−

(︁
1− |𝑆|

𝑀𝑘+1

)︁2
)︂
> |𝑆|

𝑀𝑘+1
.

Pr(𝑆 only has 𝑑-poor nodes | 𝑅𝑘, 𝐸,𝑀0:𝑇 )

≤ Pr
⎡⎣(1−𝜏)𝑀𝑘∑︁

𝑖=1
𝑋𝑖 ≤ (𝑑− 1)|𝑆|

⃒⃒⃒⃒
⃒⃒ 𝑀0:𝑇

⎤⎦
≤ exp

⎡⎣−(1− 𝜏)𝑀𝑘|𝑆|
2𝑀𝑘+1

(︃
1− (𝑑− 1)𝑀𝑘+1

(1− 𝜏)𝑀𝑘

)︃2
⎤⎦ (Chernoff–Hoeffding Bound)

Observe that there are
(︁
𝑀𝑘+1

|𝑆|

)︁
≤

(︁
𝑒
𝜏

)︁𝜏𝑀𝑘+1+1
many choices for 𝑆. To apply a

union bound, it suffices for 𝛼 to be large enough so that (1−𝜏)𝑀𝑘

𝑀𝑘+1

(︁
1− (𝑑−1)𝑀𝑘+1

(1−𝜏)𝑀𝑘

)︁2
≈

(1− 𝜏)𝛼(1− 𝑑−1
(1−𝜏)𝛼)2 looks linear in 𝛼. In that case, we obtain a bound of the form

Pr(at least 𝜏𝑀𝑘+1 𝑑-poor nodes at level 𝑘 + 1 | 𝑅𝑘, 𝐸,𝑀0:𝑇 )
≤ exp (−𝐶𝑀𝑘+1𝛼) .

Therefore, we may write

Pr(at least (1− 𝜏) fraction of 𝑑-rich at all levels)

≥ (1− 𝑒−𝐶1𝛼𝑁)
𝑇∏︁
𝑘=1

(1− exp(−𝐶𝑀𝑘+1𝛼))

≥ 1− exp(−𝐶1𝛼𝑁)−
𝑇−1∑︁
𝑘=0

exp(−𝐶𝑁(𝛼/2− 𝛿)𝑘𝛼)

≥ 1− 𝑇 exp(−𝐶2𝛼𝑁)

for an appropriate constant 𝐶2 depending only on 𝜏 and 𝛿.

Lemma 5.6 (Cliques have unique parents). Let 𝐺𝑘 denote the siblinghood hypergraph
at level 𝑘. Let 𝛿 > 0 be as in Lemma 5.2. For a constant 𝐶3 = 𝐶3(𝛿), with probability
at least 1− 1

𝑁
𝑒𝐶3𝑇 log𝛼, for all hypercliques 𝒞 ⊂ 𝐺𝑘 with at least one hyperedge, there

is a unique node at level 𝑘+ 1 that is a parent of every node in 𝒞. We refer this node
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as the parent of 𝒞.

Proof. By Proposition 5.1, a hyperclique corresponds to a set of coupled nodes that
contain a set of mutual siblings, where each couple has at least one of the siblings in
it. This establishes that there is a coupled node at level 𝑘 + 1 that is at least one
parent of every node in 𝒞. In the case where 𝒞 is a hyperclique of extant nodes, we
are done: every node in 𝒞 is an individual and has exactly one parent coupled node.

If 𝒞 is at a higher level, note that there can be at most two parents for 𝒞, as
defined above. The reason is that any individual has exactly one parent couple, and
since there are only two individuals in a couple, there cannot be three parent couples
each with one child in each couple in 𝒞.

Next we show that if there are two coupled nodes, both of which are parents of 𝒞,
then there must be many collisions among the ancestors of 𝒞, and therefore we can
rule this out as a low-probability event. Since 𝒞 has at least one hyperedge, we know
that |𝒞| ≥ 3. This means that any arbitrary set of three nodes from 𝒞 must have
at least 6 − 2 = 4 collisions by Definition 5.12—but Corollary 5.1 shows that with
probability 𝑂

(︁
(𝛼/2+𝛿)3𝑇 28𝑇

𝑁

)︁
, this does not occur anywhere in the pedigree.

Lemma 5.7 (Disjointness of maximal cliques). Let 𝐺𝑘 denote the siblinghood hy-
pergraph at level 𝑘. For 𝑘 = 0, each extant node is contained in a unique maximal
clique, and moreover, the maximal cliques in 𝐺0 are vertex disjoint (and thus, also
edge-disjoint). For 𝑘 > 0, each node is contained in at most two maximal cliques.
Moreover, with probability 1− 1

𝑁
𝑒𝐶3𝑇 log𝛼, the maximal cliques in 𝐺𝑘 are edge-disjoint.

Proof. Note that maximal cliques in the siblinghood hypergraph correspond to max-
imal sets of siblings. The claim for extant nodes is relatively trivial - extants are
individuals, and so the maximal sets of siblings partition the set of extant nodes.

For 𝑘 > 0, since each individual in a coupled node has one pair of parents, a
coupled node can have at most two parents. Thus it can be part of at most two sets
of siblings. Hence, it is part of at most two maximal cliques.

Finally, we need to establish that the maximal cliques in 𝐺𝑘 are edge-disjoint. To
do this, it suffices to show that the intersection between any two maximal cliques is less
than 3, so there can be no hyper-edge. Indeed, if three nodes that are simultaneously
in two maximal cliques, these three nodes would themselves form a clique with two
different parents in level 𝑘 + 1, which occurs with probability at most 1− 1

𝑁
𝑒𝐶3𝑇 log𝛼

by Lemma 5.6.

5.4.3 The joint LCA and its uniqueness
The next two lemmas are crucial in Section 5.6 to show that we can accurately collect
symbols for accurately reconstructed coupled nodes. Here we define the joint lowest
common ancestor, which is a special type of LCA for a triple of coupled nodes.

Definition 5.14. Let 𝑢, 𝑣, 𝑤 denote coupled nodes in 𝒫. We say that 𝑢, 𝑣, 𝑤 have
a joint LCA 𝑧 if it holds that 𝑧 ∈ LCA(𝑢, 𝑣, 𝑤) and there exist distinct children
𝑐𝑢, 𝑐𝑣, 𝑐𝑤 of 𝑧 so that for all 𝑥 ∈ {𝑢, 𝑣, 𝑤}, 𝑐𝑥 is an ancestor of 𝑥.
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𝑧

𝑧′

𝑢 𝑣 𝑤

Figure 5-5: “Proof-by-picture” of Lemma 5.9.

Lemma 5.8 (Joint LCA is unique). Suppose that each triple of coupled nodes in 𝒫 has
at most 3 collisions. Further suppose that 𝑢, 𝑣, 𝑤 have a joint LCA 𝑧 ∈ LCA(𝑢, 𝑣, 𝑤).
Then 𝑧 is the unique LCA of 𝑢, 𝑣, 𝑤.

Proof. For the sake of contradiction, suppose that 𝑢, 𝑣, 𝑤 have another LCA 𝑧′ ̸= 𝑧.
By the definition of LCA, 𝑧′ is neither an ancestor nor a descendant of 𝑧.

If 𝑧′ is a joint LCA of 𝑢, 𝑣, 𝑤, then both 𝑧 and 𝑧′ have outdegree 3 in anc(𝑢, 𝑣, 𝑤),
which by Lemma 5.3 implies that anc(𝑢, 𝑣, 𝑤) has at least 2× (3− 1) = 4 collisions.

If 𝑧′ is not a joint LCA, then 𝑧′ has outdegree 2 in anc(𝑢, 𝑣, 𝑤). Moreover, there
exists a unique lowest node 𝑦 ∈ desc(𝑧′)∩ anc(𝑢, 𝑣, 𝑤) that is an ancestor of precisely
two nodes in {𝑢, 𝑣, 𝑤}. In particular, 𝑦 has outdegree at least 2 in anc(𝑢, 𝑣, 𝑤).
Observe that the nodes 𝑦, 𝑧, 𝑧′ are all distinct. Hence by Lemma 5.3, the number of
collisions is at least 2× (2− 1) + 1× (3− 1) = 4.

In either case, anc(𝑢, 𝑣, 𝑤) has at least 4 collisions, which is a contradiction.

Lemma 5.9 (Inheritance paths go through LCA). Suppose that each triple of coupled
nodes in 𝒫 has at most 3 collisions. Further suppose that 𝑢, 𝑣, 𝑤 ∈ 𝒫 have an LCA
𝑧. Let 𝑧′ denote a strict ancestor of 𝑧. Then for some 𝑥 ∈ {𝑢, 𝑣, 𝑤}, all paths from
𝑧′ to 𝑥 in 𝒫 pass through 𝑧.

Proof. To draw a contradiction, suppose that for all 𝑥 ∈ {𝑢, 𝑣, 𝑤} that 𝑧′ has a path
to 𝑥 that does not go through 𝑧. Suppose further, without loss of generality, that 𝑧′

is the lowest node in 𝒫 that is an ancestor of 𝑧 and has this property.
Let 𝒯 denote a spanning tree on desc(𝑧) ∩ anc(𝑢, 𝑣, 𝑤) (red edges in Fig. 5-5).

Also select a spanning tree 𝒯 ′ on the union of all paths from 𝑧′ to 𝑢, 𝑣, 𝑤 that do not
go through 𝑧 (blue edges in Fig. 5-5). Observe that 𝑧′ has outdegree at least 2 in 𝒯 ′.
Since 𝑧′ also has a path to 𝑧, then 𝑧′ has outdegree at least 3 in anc(𝑢, 𝑣, 𝑤). Moreover,
𝒯 has 2 collisions. Since 𝑧′ is not contained in 𝒯 , we conclude by Lemma 5.3 that
anc(𝑢, 𝑣, 𝑤) has at least 2+ 1× (3−1) = 4 collisions. The first terms accounts for the
collisions in 𝒯 , and the second applies Lemma 5.3 to 𝑧′. This is a contradiction.

Note that by Corollary 5.1, Lemmas 5.8 and 5.9 hold for all triples 𝑢, 𝑣, 𝑤 ∈ 𝒫
with high probability.
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5.5 Lemmas that enable reconstruction
In this section, we prove bounds on “overlap statistics” previously explored in Sec-
tion 5.2. Since we now have switched to talking about coupled pedigrees, we re-define
its notion now.

Definition 5.15 (Diploid blocks). Let 𝒫indiv induce the coupled pedigree 𝒫. Given
(haploid) gene sequences (𝜎𝑢)𝑢∈𝑉 (𝒫indiv), we associate with each non-extant couple 𝑣 =
{𝑣1, 𝑣2} node a diploid sequence 𝜎𝑣 defined in terms of each block 𝑏 as a multiset
𝜎𝑣(𝑏) := 𝜎𝑣1(𝑏) ∪ 𝜎𝑣2(𝑏). Each extant node’s block is thought of as a singleton set.

Definition 5.16 (Diploid overlap). Three diploid sequences 𝜎, 𝜎′, 𝜎′′ overlap in block
𝑏 if

𝜎(𝑏) ∩ 𝜎′(𝑏) ∩ 𝜎′′(𝑏) ̸= ∅.

The term fraction of mutual overlaps between coupled nodes 𝑢, 𝑣, 𝑤 in refers to
the statistic

# overlapping blocks of 𝜎𝑢, 𝜎𝑣, 𝜎𝑤
𝐵

= |{𝑏 ∈ [𝐵] : 𝜎𝑢(𝑏) ∩ 𝜎𝑣(𝑏) ∩ 𝜎𝑤(𝑏) ̸= ∅}|
𝐵

.

5.5.1 Distinguishing siblings from non-siblings
In this section, we establish the following high-probability separation condition for
triples of coupled nodes at the same level:

• if 𝑢, 𝑣, 𝑤 are mutually siblings, they overlap in at least 1/4 fraction of blocks.

• if 𝑢, 𝑣, 𝑤 are not mutually siblings, they overlap in at most 3/16 fraction of
blocks.

In order to reconstruct the pedigree, we perform inference on the underlying pedigree
structure from the symbols at the extant level. The key step of our reconstruction
algorithm is to infer which triples of nodes are mutually siblings based on the over-
lap between their reconstructed symbols. The conditions stated above justify using
the number of overlapping symbols in triples as a statistic for determining sibling-
hood. The first fact (Lemma 5.10) is easy to prove. In contrast, the second fact
(Lemma 5.11) is rather non-trivial; we prove it using casework.

Lemma 5.10 (Symbol overlap in siblings). With probability 1−𝑂(𝛼3𝑇𝑁3 exp(−𝛾2𝐵)),
the fraction of mutual overlap in symbols between any triple of coupled nodes 𝑢,
𝑣, 𝑤 ∈ 𝒫 that are mutually siblings is at least 1

4 − 𝛾 for any arbitrarily small 𝛾 > 0.

Proof. It suffices to consider the overlap of the individuals 𝑢1, 𝑣1, 𝑤1 in 𝑢, 𝑣, 𝑤, respec-
tively, that are siblings, i.e., 𝑢1, 𝑣1, 𝑤1 have a common parent in 𝒫indiv. We claim that
the expected fraction of overlap for 𝑢1, 𝑣1, 𝑤1 is at least 1/4. Indeed, any individual
symbol at the parent (couple) node survives to all three children with probability 1/8,
and there are 2𝐵 symbols at the parent (one per block per member of the couple).
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The Chernoff–Hoeffding bound gives that for any fixed triple (𝑢, 𝑣, 𝑤) of siblings, the
probability that it has less than 1/4 − 𝛾 mutual overlap is at most exp(−𝛾2𝐵). To
be explicit, let 𝑋𝑖 denote the indicator of an overlap between 𝑢, 𝑣, 𝑤 in block 𝑏.

Pr(average overlap < 1/4− 𝛾) = Pr
(︃

1
𝐵

𝐵∑︁
𝑖=1

𝑋𝑖 < 1/4 + 𝛾

)︃

= Pr
(︃

1
𝐵

𝐵∑︁
𝑖=1

(𝑋𝑖 − E[𝑋𝑖]) < 1/4− E[𝑋1] + 𝛾

)︃

≤ Pr
(︃

1
𝐵

𝐵∑︁
𝑖=1

(𝑋𝑖 − E[𝑋𝑖]) < −𝛾
)︃

≤ 2 exp(−2𝐵𝛾2).

In the second line we use that 𝑋𝑖 are i.i.d., in the third line we use that the expectation
is at least 1/4, and to finish we apply Chernoff–Hoeffding. A union bound over all
𝑂((𝛼𝑇𝑁)3) triples of siblings yields the result.

Lemma 5.11 (Symbol overlap in non-siblings). Fix 𝛾 > 0. With probability 1 −
𝑂(1/𝑁𝑇 )− 𝑂(𝛼3𝑇𝑁3 exp(−𝛾2𝐵)), every triple of coupled nodes 𝑢, 𝑣, and 𝑤 that are
at the same level but are not mutual siblings share overlap in less than 3

16 +𝛾 fraction
of their symbols.

Proof of Lemma 5.11

Remark 5.4. In this proof, we condition on the high probability event from Corol-
lary 5.1 that all triples 𝑢, 𝑣, 𝑤 of coupled nodes have at most 3 collisions in their
ancestral subpedigree anc(𝑢, 𝑣, 𝑤).

It is clear that if 𝑢, 𝑣, 𝑤 are completely unrelated, then their mutual overlap is
zero, since we assume an infinite alphabet. If 𝑢, 𝑣, 𝑤 have a common ancestor, then
typically their ancestral pedigree has two collisions, and all triples have at most three
collisions in their ancestral pedigree by our conditioning in Remark 5.4. We refer to
triples with three collisions as being inbred and think of the extra collision as the site
of inbreeding, a notion that we later formalize in this section.

Recall the definition of tree subpedigree (Definition 5.9), which we refer to simply
as a tree in what follows. Also recall that an edge of multiplicity 2 in a pedigree is
considered to be an undirected cycle of length 2. Thus, a tree subpedigree consists
only of simple (multiplicity 1) edges. Our strategy for proving Lemma 5.11 follows
the recipe below for casework.

1. 𝑢, 𝑣, 𝑤 have exactly two LCAs, and the ancestral pedigree of 𝑢, 𝑣, 𝑤 is a tree.

2. 𝑢, 𝑣, 𝑤 have exactly one LCA, and the LCA has a cycle above it.

3. 𝑢, 𝑣, 𝑤 have exactly one LCA, and the ancestral pedigree of 𝑢, 𝑣, 𝑤 is a tree.
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4. 𝑢, 𝑣, 𝑤 have exactly one LCA, and the ancestral pedigree of 𝑢, 𝑣, 𝑤 contains a
cycle that is not completely above the LCA.

We now assert that the above cases cover all possibilities; this is proven in the
next two claims.

Claim 5.1. For 𝑢, 𝑣, and 𝑤 to have a single LCA, their ancestors must have at least
2 collisions.

Proof. All three nodes need a common ancestor, which means there are at least 2
collisions are present in anc(𝑢, 𝑣, 𝑤).

Claim 5.2. The nodes 𝑢, 𝑣, and 𝑤 have at most two LCAs, with two LCAs only if
anc(𝑢, 𝑣, 𝑤) has three collisions. Furthermore, if there are two LCAs, then anc(𝑢, 𝑣, 𝑤)
is a tree pedigree.

Proof. By the previous claim, creating a single LCA for three nodes requires 2 colli-
sions in anc(𝑢, 𝑣, 𝑤). By definition, one LCA cannot be an ancestor of another LCA.
This means there must be at least one more collision in anc(𝑢, 𝑣, 𝑤) to create the
second LCA, bringing the total number of collisions required in anc(𝑢, 𝑣, 𝑤) to three.
This immediately yields the final part of the claim by Remark 5.4.

To establish that there are at most two LCAs, suppose we add a third LCA.
Then by the same argument, this LCA cannot be an ancestor of either of the two
other LCAs, and so there must be another collision to explain it. This leads to four
collisions among the ancestors, which we have ruled out.

We now upper bound the expected overlap between 𝑢, 𝑣 and 𝑤 by doing the above
casework on the structure of their ancestral pedigrees. We simply upper bound the
expected overlap, relying on the independence of inheritance in the different blocks
so that we can apply a Chernoff–Hoeffding bound.

Lemma 5.12 (Case 1: exactly two LCAs). Suppose that 𝑢, 𝑣, and 𝑤 have exactly
two LCAs. Then the expected fraction of mutual overlap is at most 1/8.

Proof. Fig. 5-6 illustrates the topology of interest. First we note that neither of the
LCAs can have repeated symbols, since their ancestral pedigrees contain no collisions.
Consider the ancestral pedigree from 𝑢, 𝑣, and 𝑤 up to any one particular LCA, noting
that this pedigree is a tree by Claim 5.2. Any configuration containing 𝑢, 𝑣, 𝑤 and
their ancestors leading up to that LCA has at least 5 edges, since 𝑢, 𝑣, 𝑤 are not
mutual siblings. Therefore, the probability that a single symbol propagates from
that LCA to all of 𝑢, 𝑣, and 𝑤 is ≤ (1/2)5 = 1/32, which yields an expected 1/16
fraction of overlap since there are 2|𝐵| symbols at the LCA (since it is a coupled
node). Since there are two such LCAs, the expectation is at most 1/8.

In the remaining cases, we assume there is exactly one LCA. Note that any com-
mon symbols across 𝑢, 𝑣, and 𝑤 must be present in this LCA—if 𝑢, 𝑣, and 𝑤 inherit
a symbol that is not present in this LCA, then by tracing their paths of inheritance
for the symbol we can find another LCA. However, this does not guarantee that all
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𝑧′

𝑧

𝑝 𝑞

𝑢 𝑣 𝑤

Figure 5-6: The topologies of Lemma 5.12 with two LCAs. Others are obtained by
swapping the roles of 𝑢, 𝑣, 𝑤.

common symbols in 𝑢, 𝑣, and 𝑤 can be traced back to inheritance from the LCA—
if there is inbreeding, some nodes in {𝑢, 𝑣, 𝑤} can potentially inherit a symbol via
an ancestor of the LCA through a path does not go through the LCA, while the rest
inherit it from the LCA.

Lemma 5.13 (Case 2: one LCA with cycle above). Suppose that 𝑢, 𝑣, and 𝑤 have
exactly one LCA 𝑧. Furthermore, this LCA has at least one collision in its ancestral
pedigree. Then the fraction of mutual overlap is at most 1/8 in expectation.

Proof. We know that 𝑢, 𝑣, and 𝑤, must have at least two distinct parents between
them that are connected to 𝑧 (else 𝑧 would be their parent). This means there are at
least two edges in the graph between 𝑧 and the parents of 𝑢, 𝑣, and 𝑤, and at least
three edges between 𝑢, 𝑣, and 𝑤 and their respective parents.

Since we know there are at most three collisions among the ancestors of 𝑢, 𝑣, and
𝑤, there can be only one collision in the ancestral pedigree of 𝑧, and the presence
of this collision means there are no other collisions in anc(𝑢, 𝑣, 𝑤). Therefore, each
of the parent couples of 𝑢, 𝑣, and 𝑤 have an individual that is unrelated to 𝑧, and
so there are no repeated symbols within any of the parent couples. So even if the
parents were to get 100% overlap in the blocks due to inheritance from 𝑧, it holds
that 𝑢, 𝑣, and 𝑤 inherit at most 1/8 fraction of these blocks on expectation.

Finally, all common symbols between 𝑢, 𝑣, and 𝑤 must have been inherited from
𝑧— if a common symbol was instead inherited by some 𝑥 ∈ {𝑢, 𝑣, 𝑤} from some
ancestor of 𝑧, this would create a fourth collision in anc(𝑢, 𝑣, 𝑤).

Lemma 5.14 (Case 3: one LCA and anc(𝑢, 𝑣, 𝑤) is a tree). Suppose 𝑢, 𝑣, and 𝑤
have exactly one LCA and anc(𝑢, 𝑣, 𝑤) is a tree. Then the fraction of mutual overlap
is at most 1/16 in expectation.

Proof. The lack of any cycles in anc(𝑢, 𝑣, 𝑤) means that all inheritance of common
symbols comes from the lone LCA 𝑧. Any such union of paths from 𝑧 to 𝑢, 𝑣 and
𝑤 forms a directed tree with at least five edges; see Fig. 5-7. In addition, 𝑧 has two
distinct symbols in every block. Therefore, for any particular symbol the probability
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𝑧

𝑝 𝑞

𝑢 𝑣 𝑤

𝑧

𝑝 𝑞 𝑟

𝑢 𝑣 𝑤

Figure 5-7: Exhaustive list of topologies from Lemma 5.14, up to re-labelling of
𝑢, 𝑣, 𝑤. Each edge represents a path of length > 1.

that all three of 𝑢, 𝑣, 𝑤 inherit it is ≤ (1/2)5 = 1/32, which yields an expected fraction
of at most 1/16 overlapping blocks.

The final case is the most complicated one to analyze.

Lemma 5.15 (Case 4: one LCA with cycle not completely above). Suppose 𝑢, 𝑣, and
𝑤 have exactly one LCA and anc(𝑢, 𝑣, 𝑤) contains a cycle that does not lie completely
above 𝑧 = LCA(𝑢, 𝑣, 𝑤). Then the fraction of mutual overlap is at most 3/16 in
expectation.

As an aid in proving Lemma 5.15, it is helpful to first identify the “most recent”
inbred node. We make this notion precise now.

Definition 5.17 (Witness). We call a node 𝑔 ∈ anc(𝑢, 𝑣, 𝑤) a witness to inbreeding
or simply a witness if 𝑔 is the lowest node in anc(𝑢, 𝑣, 𝑤) that is part of an undirected
cycle.

Lemma 5.16 (Unique witness). Under the conditions of Lemma 5.15, there exists a
unique witness in anc(𝑢, 𝑣, 𝑤). Moreover, this witness lies strictly below the LCA 𝑧.

Proof. We know that 𝒯 := anc(𝑢, 𝑣, 𝑤) is not a tree, so there exists a cycle in 𝒯 . We
show that there can only be one cycle. Suppose that there exist two cycles 𝒞, 𝒞 ′ in
𝒯 . Then we claim that coll(𝑢, 𝑣, 𝑤) ≥ 4.

Consider a spanning tree 𝒯 ′ of 𝒯 . Then 𝒯 ′ has two collisions. Moreover, 𝒯 ′ ∪ 𝒞
contains a single cycle, so we conclude that there exists a node in 𝒯 ′ whose outdegree
is increased by one upon adding the edges from 𝒞 to 𝒯 ′ (Otherwise, 𝒯 ′ ∪ 𝒞 would
still be a tree). Therefore, by Lemma 5.3, 𝒯 ′ ∪ 𝒞 has three collisions. By similar
reasoning and using that 𝒞 ̸= 𝒞 ′, we conclude that 𝒯 ′ ∪ 𝒞 ∪ 𝒞 ′ has 4 collisions.
Since 𝒯 ′ ∪ 𝒞 ∪ 𝒞 ′ ⊂ 𝒯 , we conclude that 𝒯 has at least 4 collisions. But under our
conditioning, no subpedigree has 4 or more collisions. It follows that in Lemma 5.15
there is exactly one cycle in 𝒯 , and thus, exactly one witness.

To prove the final statement, note that if the witness is located above 𝑧 in
anc(𝑢, 𝑣, 𝑤), then the cycle lies completely above 𝑧.
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𝑧 : {𝑥, 𝑦}

𝑔

𝑝

𝑢 𝑣

𝑞

𝑤

𝑥

𝑥
𝑧 : {𝑥, 𝑦}

𝑔

𝑝

𝑢 𝑣 𝑤

𝑥
𝑥

Figure 5-8: Example of structures being analyzed in the proof of Lemma 5.15,
Subcase 2. Here {𝑥, 𝑦} depict the symbols of the LCA 𝑧 in a specific block. The
red edges delineate the inheritance events (possibly occurring simultaneously) of a
common symbol 𝑥.

Proof of Lemma 5.15. Consider 𝑢, 𝑣, 𝑤 and the subpedigree 𝒯 = anc(𝑢, 𝑣, 𝑤) consist-
ing of the ancestors of 𝑢, 𝑣, 𝑤. Recall that 𝑧 is the unique LCA of 𝑢, 𝑣, 𝑤. By Lemma 5.16,
there is a unique witness 𝑔 ∈ 𝒯 , which is the lowest node in the unique cycle occurring
in 𝒯 .

Subcase 1: LCA(𝑢, 𝑣) = LCA(𝑣, 𝑤) = LCA(𝑢,𝑤) = LCA(𝑢, 𝑣, 𝑤).
Without further loss of generality, suppose that the witness 𝑔 lies along the path

from 𝑢 to 𝑧. Then it follows that there is a unique path from 𝑣 to 𝑧 in 𝒯 . Otherwise,
there would exist two cycles in 𝒯 , which is a contradiction as this would lead to 4
collisions in 𝒯 . Similarly, there is a unique path from 𝑤 to 𝑧 in 𝒯 . Moreover, anc(𝑧)
is a tree. It follows that the subpedigree anc(𝑣, 𝑤) of the ancestors of 𝑣 and 𝑤 is a
tree. Observe that 𝑧 is at least two levels above 𝑣, 𝑤, and by the topology of this
subcase, there are at least 4 edges in the tree subpedigree from 𝑧 to 𝑣 and 𝑤. This
implies that the expected overlap between 𝑣 and 𝑤 is at most 2 · (1/2)4 = 1/8. Thus
the expected overlap between 𝑢, 𝑣, 𝑤 is at most the expected overlap between 𝑢 and
𝑣, which is bounded by 1/8.

Subcase 2: Without loss of generality, LCA(𝑢, 𝑣) ̸= LCA(𝑢, 𝑣, 𝑤).
Let 𝑝 = LCA(𝑢, 𝑣). Either 𝑔 is on the branch that leads to 𝑢 and 𝑣, or it is on the

branch that leads to 𝑤. First, suppose that 𝑔 is on the branch that leads to 𝑢 and
𝑣. Then we may further assume 𝑔 is on the path from 𝑧 to 𝑝. For if, say, 𝑔 is on the
path from 𝑝 to 𝑢, then anc(𝑣, 𝑤) is a tree, in which case we can argue as in Subcase
1 that the mutual expected overlap between 𝑢, 𝑣, 𝑤 is at most 1/8.

Therefore, it suffices to consider the cases 𝑔 is on the path from 𝑧 to 𝑝 or 𝑔 is
on the path from 𝑧 to 𝑤 (Fig. 5-8). In the first case, the descendants of 𝑔 form a
tree with at least two edges. Moreover, there is a unique node 𝑞 at the same level
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as 𝑔 in 𝒯 , and this individual is located on the path from 𝑧 to 𝑤. Let 𝜎(𝑧) = {𝑥, 𝑦}
denote the (distinct) symbols of 𝑧 in a given block. By these facts, symmetry, and
conditional independence of inheritance,

Pr[𝜎(𝑢) ∩ 𝜎(𝑣) ∩ 𝜎(𝑤) ̸= ∅]
≤ 2 Pr[𝜎(𝑔) = {𝑥, 𝑥}, 𝑥 ∈ 𝜎(𝑢) ∩ 𝜎(𝑣)] Pr[𝑥 ∈ 𝜎(𝑞), 𝑥 ∈ 𝜎(𝑤)]

+ 2 Pr[𝜎(𝑔) = {𝑥, 𝑦}, 𝑥 ∈ 𝜎(𝑢) ∩ 𝜎(𝑣)] Pr[𝑥 ∈ 𝜎(𝑞), 𝑥 ∈ 𝜎(𝑤)]

≤ 2×
(︂1

4 × 1
)︂
×

(︂1
2 ×

1
2

)︂
+ 2×

(︂1
2 ×

1
4

)︂
×

(︂1
2 ×

1
2

)︂
= 3

16 .

The second line includes a factor of 2 to account for either 𝑥 or 𝑦 being passed down
to 𝑢, 𝑣, 𝑤. The terms in the third line are ordered to correspond to the events in the
two lines above. In particular, we have by conditional independence of inheritance
that

Pr[𝜎(𝑔) = {𝑥, 𝑥}] ≤ 1/4

because there are at most 2 paths from 𝑧 to 𝑔, and each has probability at most 1/2
of passing down 𝑥. The bound

Pr[𝜎(𝑔) = {𝑥, 𝑦}] ≤ 1/2

holds similarly.
Now suppose that 𝑔 is on the path from 𝑧 to 𝑤. Then

Pr[𝜎(𝑢) ∩ 𝜎(𝑣) ∩ 𝜎(𝑤) ̸= ∅] ≤ 2 Pr[𝑥 ∈ 𝜎(𝑢) ∩ 𝜎(𝑣)] Pr[𝑥 ∈ 𝜎(𝑤)]

≤ 2 · 1
8 ·

3
4 = 3

16 .

Above, we used the fact that tree pedigree from 𝑧 to 𝑢, 𝑣 has at least 3 edges. We
also used the fact

Pr[𝑥 ∈ 𝜎(𝑤)] ≤ 3
4 ,

which holds because there are at most two paths to 𝑤 from 𝑧, each path has probability
at least 1/2 of not passing down 𝑥, and so by conditional independence of inheritance,
the probability that both paths do not pass down 𝑥 is at least 1/4.

Finally, to finish the proof of Lemma 5.11 using Lemmas 5.12, 5.13, 5.14, and
5.15, note that in all four cases the expected overlap between coupled nodes 𝑢, 𝑣, 𝑤 is
at most 3/16. Thus, the probability that 𝑢, 𝑣, 𝑤 mutually share more than 3/16 + 𝛾
fraction of symbols in all cases is at most 2 exp(−2𝐵𝛾2) by Chernoff–Hoeffding, similar
to the analysis of Lemma 5.10. Union bounding over all 𝑂((𝛼𝑇𝑁)3) possible triples
gives an 𝑂(𝛼3𝑇𝑁3 exp(−𝐵𝛾2)) upper bound of the chance that there is some triple
with at least 3/16 + 𝛾 overlap. By also ruling out the bad event in Corollary 5.1
(which occurs with probability 𝑂(1/𝑁𝑇 )), we obtain the desired upper bound.
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5.5.2 Which ancestors are reconstructible?
In this section, we characterize nodes that are of importance in our analysis: couples
whose history lacks inbreeding (e.g. graph structure is reconstructible using blocks)
and have ample extant information (e.g. blocks are recoverable). We present this in
two parts respectively in Definition 5.18 and Definition 5.19.

Definition 5.18 (Awesome Node). Call a node in the pedigree 𝒫 awesome if:

1. It is 𝑑-rich.

2. It is not an ancestor of any extant node that has a collision within its own
ancestral pedigree (including itself).

Definition 5.19 (𝑏-goodness). Let 𝑏 ∈ [𝐵] be a specific block. Say that a coupled
node 𝑣 in a pedigree 𝒫 is 𝑏-good if 𝑣 has at least two sets of three extant descendants
𝑥1, 𝑦1, 𝑧1 and 𝑥2, 𝑦2, 𝑧2 in 𝒫 such that:

1. 𝑣 is a joint LCA of 𝑥1, 𝑦1, 𝑧1 and is a joint LCA of 𝑥2, 𝑦2, 𝑧2.

2. 𝑥1, 𝑦1, and 𝑧1 all have the same symbol 𝜎1 in block 𝑏, and 𝑥2, 𝑦2, and 𝑧2 all
have the same symbol 𝜎2 in block 𝑏.

3. 𝜎1 ̸= 𝜎2.

We furthermore define every extant node to be 𝑏-good, for all 𝑏 ∈ [𝐵].

We now deliver the main message of this section: most nodes have these properties,
given the assumptions of our model (Proposition 5.5 and Lemma 5.17). Therefore,
this characterization enables a natural reconstruction algorithm (Section 5.6).

Proposition 5.5 (Many awesome nodes). Let 𝑑 > 0 (as in Definition 5.18) be a con-
stant, let 𝛼 be a sufficiently large constant with respect to 𝑑, and let 𝑁 be sufficiently
large with respect to both 𝑑 and 𝛼. With probability at least 1−𝛼−Ω(𝑇 ), in every layer
of the pedigree at least 1− 1/𝑑 fraction of the nodes are awesome.

Proof. Since 𝛼 and 𝑁 are sufficiently large with respect to 𝑑, we can apply Lemma 5.5
with 𝜏 = 1/(2𝑑) and 𝛿 = 𝑑. This tells us that at least 1 − 1/(2𝑑) fraction of nodes
in each layer are 𝑑-rich with probability 1 − 𝑇 exp(−𝐶2𝛼𝑁), where the constant
𝐶2 = 𝐶2(1/(2𝑑), 𝑑) depends only on 𝑑.

Applying Corollary 5.2 with 𝐶 = 𝛼𝑇 , there are at most 𝛼𝑂(𝑇 ) nodes at the extant
level with collisions in their ancestral pedigree, with probability 1 − 𝛼−Ω(𝑇 ). This
means there are at most 2𝑇 · 𝛼𝑂(𝑇 ) ancestors of these nodes. It follows that the
number of nodes that are 𝑑-rich but not awesome is at most 2𝑇 · 𝛼𝑂(𝑇 ). This is
at most 𝑁

2𝑑 , provided 𝑁 is sufficiently large with respect to 𝑑 and 𝛼 and we take
𝜀 = 𝑇/ log𝑁 to be small with respect to 1/ log(𝛼).

The first probability 1 − 𝑇 exp(−𝐶2𝛼𝑁) is exponentially small in 𝑁 , while the
second probability 1 − 𝛼−Ω(𝑇 ) is exponentially small in 𝑇 = 𝜀 log𝑁 . Therefore,
the probability of both events occurring simultaneously can be lower bounded by
1− 𝛼−Ω(𝑇 ), by taking the constant hidden in the Ω to be slightly smaller than what
is found in the previous paragraph.
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Lemma 5.17 (Awesome implies 𝑏-good). Let 𝑑 > 0 (as in Definition 5.18) be a suf-
ficiently large constant. With probability 1− exp(−Ω(𝐵)) over the symbol inheritance
process, every awesome coupled node in 𝒫 is 𝑏-good for at least 99% fraction of blocks
𝑏 ∈ [𝐵].

The figure “99%” is an arbitrary choice for simplification. It can be replaced by
anything arbitrarily close to 1, which changes the constant factor of Ω(𝐵) found in the
lemma above. To prove Lemma 5.17, first we need a structural claim about awesome
nodes:
Claim 5.3. For any awesome coupled node, the subpedigree formed by it and its
awesome descendants contains an induced 𝑑-ary tree that goes down to the extant
level.
Proof of Claim 5.3. First, we show that this subpedigree has no undirected cycles
within it, which establishes the tree structure. Then, we argue that each node has 𝑑
children within this subpedigree.

Suppose that there an undirected cycle within this subpedigree. We show that
this implies the presence of a collision within the subpedigree, contradicting the awe-
someness of all nodes in the subpedigree. Note that there must be a node within this
subpedigree with a cycle in its ancestral pedigree - for instance, take the node at the
lowest level within the cycle. Applying Lemma 5.3 to this awesome node, we see it
has a collision among its ancestors, which contradicts condition 2) of Definition 5.18.

Now we establish that each node has at least 𝑑 children in the subpedigree. An
awesome coupled node 𝑣 has at least 𝑑 children that are 𝑑-rich, since it is 𝑑-rich itself.
Furthermore, none of these children have descendants with collisions in their ancestral
pedigree, so they are all awesome, which finishes the proof.

Proof of Lemma 5.17. Every awesome coupled node in 𝒫 has exactly 2 distinct sym-
bols in each block. Indeed, assume for contradiction that there is an awesome coupled
node 𝑣 with a block in which it only has one distinct symbol. Due to the infinite al-
phabet assumption, we know that we can trace any symbol in a block back to a unique
founder. Hence, there must be a collision in the ancestral pedigree of 𝑣, which is a
contradiction with condition 2) of (Definition 5.18).

Now we can proceed with showing that every awesome coupled node is 𝑏-good for
99% fraction of blocks 𝑏 ∈ [𝐵]. Fix an awesome node 𝑣 and a block 𝑏 ∈ [𝐵].

We use condition (1) of awesomeness to show that, with probability tending to
1 as 𝑑 → ∞, there exist two sets of three extant nodes that both have 𝑣 as a joint
LCA, where the first set has a symbol 𝜎1 in block 𝑏, and the second set has a symbol
𝜎2 ̸= 𝜎1.

Towards this end, let us follow the inheritance of 𝜎1 among an induced 𝑑-ary
tree of awesome descendants, as guaranteed by Claim 5.3. The inheritance follows a
broadcast process with copy probability 1/2 on this 𝑑-ary tree. The probability that
the symbol makes it to at least three distinct children of 𝑣, and this symbol in turn
survives to the extant nodes can be expressed as(︃

1− (1/2)𝑑
(︃

1 + 𝑑+
(︃
𝑑

2

)︃)︃)︃
· 𝑐𝑑,1/2 (5.8)
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where 𝑐𝑑,1/2 refers to the survival probability of percolation on the 𝑑-ary tree with copy
probability 1/2. The first term refers to the probability that the symbol is inherited
by at least 3 of the 𝑑 awesome children of 𝑣. Additionally, these three extant nodes
have 𝑣 as an LCA, as they have paths of inheritance from 𝑣 that do not all intersect
at any other node.

Naturally, Eq. (5.8) also gives the probability that 𝜎2 is similarly inherited. Fur-
thermore, from standard results about Galton-Watson processes (see e.g. Kimmel
and Axelrod [2015]), we know that as 𝑑 → ∞, 𝑐𝑑,1/2 → 1. Hence, we conclude that
Eq. (5.8) tends to 1 as 𝑑→∞. Thus it follows from the union bound the probability
that there exist two sets of three extant nodes that both have 𝑣 as a lowest common
ancestor, the first set has 𝜎1 in block 𝑏, and the second set has 𝜎2, also tends to 1 as
𝑑→∞.

Hence, given a specific block 𝑏, the probability that an awesome coupled node is
𝑏-good is at least 0.995. The high probability of this occurring for all blocks follows
from a standard Chernoff–Hoeffding bound.

5.6 Reconstructing the Pedigree
On the following page, we provide pseudocode for Rec-Gen which is the proposed
reconstruction procedure, with details of the inner procedures following it (Collect-
Symbols, Test-Siblinghood, and Assign-Parents). Note that for the first it-
eration of Rec-Gen, we do not need to collect symbols as the extant genetic data
is given to us. Thus we simply test siblinghood at iteration 𝑘 = 1 by using the true
gene sequences.

The goal of the rest of this section is to prove the correctness of Rec-Gen. We
now formally state our guarantee:

Theorem 5.3 (Main theorem, formal). Let 𝒫 be the depth-𝑇 coupled pedigree output
by the algorithm Rec-Gen, applied to the gene sequences in 𝑉0(𝒫). With probability
tending towards 1 as 𝑁 → ∞, 𝒫 is an induced subpedigree of 𝒫 such that |𝑉𝑖(𝒫)| ≥
𝜂(𝛼)|𝑉𝑖(𝒫)| for all levels 𝑖 ∈ {0, . . . , 𝑇}, where 𝜂(𝛼)→ 1 as 𝛼→∞. The probability
is over the randomness of the coupled pedigree 𝒫 and the inheritance procedure with
parameters set as in Section 5.4.1.

We define 𝜂(𝛼) := 1 − (1/𝑑(𝛼)) where, for a given value of 𝛼, 𝑑(𝛼) is defined to
be the largest value of 𝑑 such that Proposition 5.5 holds. Observe that 𝑑(𝛼) → ∞
as 𝛼 → ∞ because Proposition 5.5 holds for arbitrarily large values 𝑑. Therefore,
𝜂(𝛼)→ 1 as 𝛼→∞.

We make use of the following high-probability events, provided 𝛼 is a large enough
constant so that 𝑑 = 𝑑(𝛼) satisfies the hypothesis of Lemma 5.17, 𝑁 is sufficiently
large with respect to 𝛼, the total number of generations is 𝑇 = 𝜀 log𝑁 , where 𝜀 =
𝑂(1/ log𝛼), and the gene sequence length is 𝐵 = Ω(log𝑁).
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Algorithm 1 Reconstruct a depth-𝑇 coupled pedigree, given extant individuals 𝑉0.
1: procedure Rec-Gen(𝑇, 𝑉0)
2: 𝒫 ← (𝑉 = 𝑉0, 𝐸 = ∅) ◁ Extant Pedigree with no edges
3: for 𝑘 = 1 to 𝑇 do
4: if 𝑘 > 1 then
5: for all vertices 𝑣 in level 𝑘 − 1 of 𝒫 do
6: Collect-Symbols(𝑣,𝒫)
7: 𝐺̂← Test-Siblinghood(𝒫)
8: Assign-Parents(𝒫 , 𝐺̂)
9: return 𝒫

Algorithm 2 Empirically reconstruct the symbols of top-level node 𝑣 in 𝒫 .
1: procedure Collect-Symbols(𝑣,𝒫)
2: for all blocks 𝑏 ∈ [𝐵] do
3: repeat
4: Find extant triple (𝑥, 𝑦, 𝑧) such that:

1) 𝑣 is a joint LCA of 𝑥, 𝑦, 𝑧,
2) 𝑥, 𝑦, and 𝑧 all have the same symbol 𝜎 in 𝑏, and
3) 𝜎 is not yet recorded for block 𝑏 in 𝑣.

5: Record the symbol 𝜎 for block 𝑏 in 𝑣.
6: until two distinct symbols are recorded for block 𝑏, or no such triple exists.

Algorithm 3 Perform statistical tests to detect siblinghood
1: procedure Test-Siblinghood(depth (𝑘 − 1) pedigree 𝒫)
2: 𝑉 ← {𝑣 ∈ 𝑉𝑘−1(𝒫) : (# fully recovered blocks of 𝑣) ≥ 0.99|𝐵|}
3: 𝐸 ← ∅
4: for all distinct triples {𝑢, 𝑣, 𝑤} ⊂ 2𝑉 at level 𝑘 − 1 do
5: if ≥ 0.21|𝐵| blocks 𝑏 such that 𝑠𝑢(𝑏) ∩ 𝑠𝑣(𝑏) ∩ 𝑠𝑤(𝑏) ̸= ∅ then
6: 𝐸 ← 𝐸 ∪ {𝑢, 𝑣, 𝑤}
7: return 𝐺̂ = (𝑉,𝐸) ◁ 3-wise sibling hypergraph

Algorithm 4 Construct ancestors, given top-level 3-way sibling relationship.
1: procedure Assign-Parents(𝒫 , 𝐺)
2: repeat
3: 𝒞 ← Any-Maximal-Clique(𝐺)
4: Remove one copy of all hyper-edges in 𝒞 from 𝐺.
5: If |𝒞| ≥ 𝑑, attach a level-𝑘 parent in 𝒫 for all nodes from 𝒞.
6: until no maximal cliques of size ≥ 𝑑 remain in 𝐺.
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Proposition 5.6 (Key Reductions). With probability tending towards 1 as 𝑁 →∞,
the pedigree 𝒫 satisfies:

1. For each level 𝑘, each clique of 𝐺𝑘 has a single parent (Lemma 5.6).

2. For each level 𝑘, the maximal cliques of 𝐺𝑘 are edge-disjoint, in such a way that
each 𝑣 ∈ 𝑉𝑘(𝒫) is contained in at most two maximal cliques (Lemma 5.7).

3. Each triple 𝑢, 𝑣, 𝑤 of nodes, has at most 3 collisions (Corollary 5.1), implying

(a) their joint LCA is unique (Lemma 5.8), and
(b) all inheritance paths for some node 𝑥 ∈ {𝑢, 𝑣, 𝑤} go through the unique

LCA (Lemma 5.9).

4. The fraction of overlap is at least 24.9% for siblings in 𝒫 while for non-mutual
siblings it is at most 18.85% (Lemmas 5.10 and 5.11).

5. For each level 𝑘, at least 𝜂(𝛼) fraction of nodes in 𝑉𝑘(𝒫) are awesome (Propo-
sition 5.5).

6. If 𝑢 ∈ 𝑉 (𝒫) is awesome, then it is 𝑏-good for 99% of blocks 𝑏 ∈ [𝐵] (Lemma 5.17).

The “probability tending towards 1” portion of Theorem 5.3 can be quantified via
a union bound on the probability of failure of any of the events in Proposition 5.6,
while the “|𝑉 (𝒫)| ≥ 𝜂(𝛼)|𝑉 (𝒫)|” guarantee comes from the fact that we recover 100%
of the awesome nodes in conjunction with Condition 5. With this as a simplification,
we proceed with the proof of Theorem 5.3.

The upcoming lemma (Lemma 5.18) proves the correctness of the very first itera-
tion (depth 1 from depth 0), and therefore serves as the base case. The inductive step
(Lemma 5.19) is presented immediately afterwards. For the remainder of this section,
we write 𝒫𝑘 to denote the depth-𝑘 reconstructed pedigree after the 𝑘th iteration of
Rec-Gen, (𝒫0 is the depth-0 pedigree of all the extant nodes). In contrast, let 𝒫𝑘
denote the subpedigree of 𝒫 (the ground truth) induced by graded levels 𝑉0 up to 𝑉𝑘.

Lemma 5.18. Let 𝐺̂0 denote the estimated 3-regular siblinghood hypergraph for the
extant nodes (line 7 of Test-Siblinghood). Consider the pedigree 𝒫1 created by
Assign-Parents applied to (𝒫0, 𝐺̂0). Then there exists an injective homomorphism
𝜑 : 𝒫1 → 𝒫1 so that the induced subgraph on 𝜑(𝒫1) is isomorphic to 𝒫1. Moreover,
𝜑(𝒫1) contains 𝐴≤1, where 𝐴≤1 is the set of awesome nodes at levels ≤ 1 in 𝒫.

Proof. Let 𝐺0 denote the true siblinghood hypergraph on extant nodes with at least
two siblings. By Condition 4, we have that 𝐺0 ∼= 𝐺0. Since both graphs have the
same set of vertices, we simply write 𝐺0 = 𝐺0.

This gives a natural, explicit characterization of 𝜑. For an extant node 𝑣 ∈
𝑉0(𝒫1), define 𝜑(𝑣) = 𝑣 so that it is the identity map on the extant. Given couple
𝑢̂ ∈ 𝑉1(𝒫1), define 𝜑(𝑢̂) to be the parent couple 𝑢 ∈ 𝑉1(𝒫1) of the children of 𝑢̂. The
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condition 𝐺0 ∼= 𝐺0 implies that at least one such choice for 𝑢 exists, and moreover
by Condition 1, 𝑢 is the unique parent.

𝜑 is injective: Let 𝑢̂, 𝑣 ∈ 𝑉1(𝒫1) with 𝑢̂ ̸= 𝑣. At the extant level, the maximal
cliques in 𝐺0 are vertex disjoint by Condition 2. Hence, the children of 𝑢̂ and the
children of 𝑣 have empty intersection. Moreover in 𝒫1, vertex-disjoint maximal cliques
have distinct parents. Therefore, 𝜑(𝑢̂) ̸= 𝜑(𝑣), as desired.

𝜑 respects edges: We already know that (𝑢̂, 𝑣) ∈ 𝐸(𝒫1) =⇒ (𝜑(𝑢̂), 𝑣) ∈ 𝐸(𝒫1).
Now suppose that (𝜑(𝑢̂), 𝑣) is an edge in 𝒫1 for 𝑢̂ ∈ 𝑉1(𝒫1) and 𝑣 ∈ 𝑉0(𝒫1). Since 𝑢
is in the image of 𝜑, it follows that 𝑢 has at least 3 children 𝑤, 𝑥, 𝑦 that passed the
siblings test in our algorithm. If 𝑣 is one of 𝑤, 𝑥, 𝑦, we’re done, so suppose not. By
Condition 5.10, the extant triples {𝑣, 𝑤, 𝑥}, {𝑣, 𝑥, 𝑦}, and {𝑣, 𝑤, 𝑦} all have at least
24% overlap. Therefore, 𝑣, 𝑤, 𝑥, 𝑦 form a clique in 𝐺0, and line 5 of Assign-Parents
states that 𝑢̂ is a parent of all four, so (𝑢̂, 𝑣) is an edge in 𝒫1.

The image of 𝜑 contains the awesome nodes in 𝒫1: This part is trivially true for
the extant nodes, so consider only the awesome nodes 𝐴1 ⊂ 𝑉1(𝒫1). By definition,
any awesome node 𝑢 ∈ 𝑉1(𝒫1) is 𝑑-rich. Since 𝑑 ≥ 3, the children of 𝑢 form a maximal
clique of size at least 3 in 𝐺0. Therefore, Assign-Parents creates a parent 𝑢̂ for
these children in 𝒫1, which gives the pre-image of 𝑢.

Lemma 5.19. Let 𝑘 ≥ 2 and suppose that we are given 𝒫𝑘−1. Assume that there
exists an injective homomorphism 𝜑 : 𝒫𝑘−1 → 𝒫𝑘−1 which satisfies

1. 𝜑|𝒫0
≡ 𝐼𝑑,

2. 𝜑(𝒫𝑘−1) ⊂ 𝒫𝑘−1 induces a subgraph isomorphic to 𝒫𝑘−1, and

3. 𝜑(𝒫𝑘−1) contains the awesome nodes in sets 𝐴0, 𝐴1, . . . , 𝐴𝑘−1.

Let 𝒫𝑘 be the level-𝑘 extension of 𝒫𝑘−1, via lines 4 through 7 of Rec-Gen. Then
there exists a level-𝑘 extension of the map 𝜑 : 𝒫𝑘 → 𝒫𝑘 with the same properties.

We prove this in two stages. The first part (Lemma 5.20) asserts that we recon-
struct the sibling relationships correctly, while the latter (Lemma 5.21) assures that
the cliques of this estimated siblinghood hypergraph are actually the faithful, “largest
possible” groupings of siblings.

Lemma 5.20. Assume the hypotheses of Lemma 5.19, and let 𝐺̂𝑘−1 be the estimated
siblinghood hypergraph constructed by Test-Siblinghood, line 7, on input 𝒫𝑘−1.
Then the subgraph of 𝐺𝑘−1 induced by 𝜑(𝐺̂𝑘−1) is isomorphic to 𝐺̂𝑘−1, and moreover
𝜑(𝐺̂𝑘−1) contains all of the awesome nodes 𝐴𝑘−1 at level 𝑘 − 1.

The upcoming statements (Claim 5.4, Claim 5.5 and Claim 5.6) are pivotal for
the proof of Lemma 5.20.

Definition 5.20. For an awesome node 𝑢 ∈ 𝒫𝑘, its awesome subtree is the subgraph
of 𝒫𝑘 that is the union of all paths from 𝑢 to extant nodes that consist entirely of
awesome nodes.
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Claim 5.4. Suppose that there is a reconstruction map 𝜑 : 𝒫𝑘−1 → 𝒫𝑘−1 satisfying
the hypotheses in Lemma 5.19. Then for any awesome node 𝑢 = 𝜑(𝑢̂) ∈ 𝑉𝑘−1(𝒫𝑘−1),
its awesome subtree 𝑆𝑢 satisfies 𝜑−1(𝑆𝑢) = desc(𝑢̂).

Proof of Claim 5.4. Note that Line 5 of Assign-Parents ensures that every node
in 𝒫𝑘−1 is 𝑑-rich. Since 𝜑 is an injective homomorphism, it follows that every node
in 𝜑(desc(𝑢̂)) is also 𝑑-rich in 𝒫 . Furthermore, 𝑢 being awesome implies that all of
its descendants are awesome in 𝒫 , since none of its descendants can have collisions
in its ancestral pedigree (Definition 5.18). By the definition of the awesome subtree
(Definition 5.20), it holds that 𝜑(desc(𝑢̂)) ⊆ 𝑆𝑢.

For the other direction (𝜑(desc(𝑢̂)) ⊇ 𝑆𝑢), let 𝑣 ∈ 𝑉0(𝒫) be an extant node so
that there is a path from 𝑢 to 𝑣 consisting only of awesome nodes. By condition 3 of
Lemma 5.19, all of the nodes along this path are in the image of 𝜑.

Claim 5.5. Let 𝜑 be as in Lemma 5.19, and let 𝑢 = 𝜑(𝑢̂) for some 𝑢̂ ∈ 𝑉𝑘−1(𝒫𝑘−1).
Suppose that in block 𝑏 the symbols 𝜎̂1 and 𝜎̂2 are recovered for 𝑢̂ by applying Algorithm
1 to 𝑢̂. Then it holds that 𝑢 also has symbols 𝜎̂1, 𝜎̂2 in block 𝑏.

Proof of Claim 5.5. For 𝑖 = 1, 2, suppose that nodes 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ 𝑉0(𝒫0) = 𝑉0(𝒫) have
the symbol 𝜎̂𝑖 in block 𝑏 and are used by Collect-Symbols to recover 𝜎̂𝑖 in block
𝑏 of 𝑢̂. Recall that 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are all descended from distinct children of 𝑢̂. Let 𝜑(𝒫𝑘−1)
induce subpedigree 𝒬 in 𝒫 .

By the hypotheses of Lemma 5.19, 𝒬 ∼= 𝒫𝑘−1 and so 𝑢 must be a common ancestor
of 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 in 𝒬. By line 4 of Collect-Symbols and because 𝒬 ∼= 𝒫𝑘−1, 𝑢̂ – and
therefore 𝑢 – is their joint LCA. With respect to 𝒫 , Conditions 3a and 3b tell us the
much stronger condition that 𝑢 is their only LCA, and that all paths in 𝒫 from any
common ancestor of 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 to 𝑥𝑖 (without loss of generality) must pass through 𝑢.
Therefore, if 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 all inherit symbols 𝜎̂𝑖 in block 𝑏, the symbol 𝜎̂𝑖 must have passed
through block 𝑏 of 𝑢 via the infinite symbols assumption.

Claim 5.6. Let 𝜑 be as in Lemma 5.19, and let 𝑢 = 𝜑(𝑢̂) for some 𝑢̂ ∈ 𝑉𝑘−1(𝒫𝑘−1).
Suppose that 𝑢 is awesome in 𝒫. If 𝑢 is 𝑏-good and has symbols 𝜎1, 𝜎2 in block 𝑏, then
Collect-Symbols recovers the symbols 𝜎1 and 𝜎2 for 𝑢̂ in block 𝑏.

Proof of Claim 5.6. By Claim 5.5, we only need to show that at least two symbols in
block 𝑏 are reconstructed by Collect-Symbols applied to 𝑢̂. Note that 𝑏-goodness
implies 𝜎1 ̸= 𝜎2.

By 𝑏-goodness of 𝑢, as in the proof of Lemma 5.17, there is a witnessing triple
for each of the 𝜎𝑖 contained in the extant of the awesome subtree 𝑆𝑢. By Claim 5.4,
desc(𝑢̂) also contains these witnesses. Since extant nodes are the exact same in 𝒫
compared to 𝒫𝑘−1 by hypothesis 1 of Lemma 5.19, Collect-Symbols applied to 𝑢̂
recovers 𝜎1, 𝜎2 in block 𝑏.

Proof of Lemma 5.20. By assumption, 𝜑 : 𝐺̂𝑘−1 → 𝐺𝑘−1 is injective. To first see
that 𝜑 is a hypergraph homomorphism, let 𝑢̂, 𝑣, 𝑤̂ ∈ 𝑉𝑘−1(𝒫𝑘−1) be distinct nodes
satisfying line 2 of Test-Siblinghood, and let 𝑢 = 𝜑(𝑢̂), 𝑣 = 𝜑(𝑣), and 𝑤 = 𝜑(𝑤̂)
denote their counterparts in 𝒫 .
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Suppose that 𝑢, 𝑣, 𝑤 are not mutually siblings. By Condition 4, 𝑢, 𝑣, 𝑤 have at
most 0.1885|𝐵| mutually overlapping blocks. By Claim 5.5, for all 𝑥̂ ∈ {𝑢̂, 𝑣, 𝑤̂}, the
symbols reconstructed for 𝑥̂ in block 𝑏 using Collect-Symbols are a subset of the
symbols in block 𝑏 of 𝑥 := 𝜑(𝑥̂) ∈ {𝑢, 𝑣, 𝑤}. Therefore, 𝑢̂, 𝑣, 𝑤̂ have mutually overlap-
ping symbols in at most 0.1885|𝐵| blocks. Since 0.1885 < 0.21, Test-Siblinghood
does not place a hyperedge between 𝑢̂, 𝑣, 𝑤̂ in 𝐺̂1.

To conclude that the induced subgraph 𝜑(𝐺̂𝑘−1) is isomorphic to 𝐺̂𝑘−1, it remains
to show that if 𝑢, 𝑣, 𝑤 are mutual siblings in 𝒫 , then {𝑢̂, 𝑣, 𝑤̂} is a hyperedge in 𝐺̂𝑘−1.
Note that 99% of the blocks of 𝑢̂, 𝑣, 𝑤̂ were recovered by Collect-Symbols by the
definition of 𝐺̂𝑘−1, and by Claim 5.5, the symbols of 𝑢̂, 𝑣, 𝑤̂ in block 𝑏 are a subset of
the symbols of 𝑢, 𝑣, 𝑤, respectively, in block 𝑏. By Condition 4, the mutual overlap
between the siblings 𝑢, 𝑣, 𝑤 is at least 0.249|𝐵|. Thus, by a union bound on the
occurrence of 1%-fraction of unrecovered blocks, the mutual overlap between 𝑢̂, 𝑣, 𝑤̂
is at least (0.249 − 0.03)|𝐵| ≥ 0.21|𝐵|. Therefore, Test-Siblinghood constructs
a hyperedge on 𝑢̂, 𝑣, 𝑤̂, as desired. It follows that the induced subgraph 𝜑(𝐺̂𝑘−1) is
isomorphic to 𝐺̂𝑘−1.

Finally, we show that the awesome nodes 𝐴𝑘−1 are fully contained in 𝜑(𝐺̂𝑘−1).
By Condition 6, awesome nodes are 𝑏-good. Now apply Claim 5.6, to conclude that
Collect-Symbols reconstructs 99% of the blocks in each awesome node 𝑢, so 𝑢 ∈
𝐺̂𝑘−1 according to Line 2 of Test-Siblinghood.

Lemma 5.21. Let C denote the maximal (hyper)cliques in the subgraph of 𝐺𝑘−1 in-
duced by 𝜑(𝐺̂𝑘−1), and let Calgo denote the (hyper)cliques probed by Assign-Parents
applied to 𝐺̂𝑘−1. Given 𝒞 ∈ Calgo, define 𝜑(𝒞) to be the set given by the image of 𝒞
under 𝜑. Then 𝜑 is a bijection between Calgo and C .

Proof. By Lemma 5.20, the subgraph 𝐻 induced by 𝜑(𝐺̂𝑘−1) is isomorphic to 𝐺̂𝑘−1.
Hence, it suffices to show that the cliques probed by Assign-Parents applied to
𝐻 are precisely the maximal cliques of 𝐻. Recall that by Condition 2, the maximal
cliques in 𝐻 are edge-disjoint, and every node of 𝐻 is involved in at most 2 cliques.

It is helpful to imagine the cliques 𝒞1, 𝒞2, . . . , 𝒞𝑀 ∈ Calgo as being listed out in
the same order that they are probed by Assign-Parents, indexed by timesteps
𝑚 = 1, 2, . . . ,𝑀 . Let 𝐻(0) = 𝐻, and let 𝐻(𝑚) denote the result of removing the edges
of the clique 𝒞𝑡 from 𝐻(𝑚−1).

We argue that for all 𝑚, the graph 𝐻(𝑚) is a union of edge-disjoint maximal
cliques, and any two maximal cliques intersect in at most a single vertex. The base
case 𝑚 = 1 is true by Condition 2. This holds for 𝑚 > 1 because the above property
is preserved when all of the edges are removed from a single maximal clique in 𝐻(𝑚−1).
Moreover, for all 𝑚, the maximal cliques in 𝐻(𝑚) are the same as those of 𝐻(𝑚−1)

but with a single maximal clique 𝒞𝑚 in 𝐻(𝑚−1) removed. Hence, it also follows by
induction that for all 𝑚, the maximal clique 𝒞𝑚 in 𝐻(𝑚−1) is also a maximal clique
in 𝐻.

Since Assign-Parents terminates at the first time 𝑀 when 𝐻(𝑀) has no hyper-
edges, we conclude that 𝒞1, . . . , 𝒞𝑀 are all of the maximal cliques in 𝐻, as desired.

Proof of Lemma 5.19. We first extend the definition of 𝜑 to level 𝑘. For 𝑢̂ ∈ 𝑉𝑘(𝒫𝑘),
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we define 𝜑(𝑢̂) ∈ 𝑉𝑘(𝒫𝑘) as follows. Let 𝒞 ⊂ 𝑉𝑘−1(𝒫𝑘) denote the children of 𝑢̂.
By Lemmas 5.20 and 5.21, 𝜑(𝒞) is a clique in 𝐺𝑘−1. Define 𝜑(𝑢̂) ∈ 𝑉𝑘(𝒫𝑘) to be the
parent of the children of the clique 𝜑(𝒞) in 𝒫 . The map 𝜑 is well-defined at level 𝑘
because of Condition 1. It remains to show that 𝜑 is an isomorphism onto its image,
and moreover that its image contains all of the awesome nodes at level 𝑘.

The map 𝜑 is injective: We know this is true for 𝜑
⃒⃒⃒
𝒫𝑘−1

, so it suffices to consider

injectivity of 𝜑 when restricted to the nodes at level 𝑘 in 𝒫𝑘. Let 𝑢̂, 𝑣 ∈ 𝑉𝑘(𝒫𝑘)
with 𝑢̂ ̸= 𝑣. Let 𝒞 (resp., 𝒞 ′) denote the maximal clique in 𝐺̂𝑘−1 that consists of the
children of 𝑢̂ (resp., 𝑣). By Lemma 5.21, 𝜑(𝒞) and 𝜑(𝒞 ′) are distinct maximal cliques
in the induced subgraph 𝜑(𝐺̂𝑘−1), and therefore, are contained in distinct maximal
cliques in 𝐺𝑘−1. Distinct maximal cliques in 𝐺𝑘−1 have distinct parents, so by the
definition of 𝜑, we conclude that 𝜑(𝑢̂) ̸= 𝜑(𝑣), as desired.

The map 𝜑 is edge-preserving: Suppose that (𝑢̂, 𝑣) is an edge in 𝒫𝑘 with 𝑢̂ ∈
𝑉𝑘(𝒫𝑘) and 𝑣 ∈ 𝑉𝑘−1(𝒫𝑘). Consider the maximal clique 𝒞 containing 𝑣 in 𝐺̂𝑘−1.
By Lemma 5.21, 𝜑(𝒞) is a maximal clique in the induced subgraph 𝜑(𝐺̂𝑘−1) ⊂ 𝐺𝑘−1,
and by construction of 𝜑, the parent of 𝜑(𝒞) is 𝜑(𝑢̂). Therefore, the edge (𝜑(𝑢̂), 𝜑(𝑣))
is in the pedigree 𝒫𝑘.

Suppose now that the edge (𝑢, 𝑣) = (𝜑(𝑢̂), 𝜑(𝑣)) is in the pedigree 𝒫𝑘. Consider
the maximal clique 𝒞 ′ ⊂ 𝐺𝑘−1 containing 𝑣. By Lemma 5.21, 𝒞 := 𝜑−1(𝒞 ′) = {𝑥 ∈
𝒫𝑘 : 𝜑(𝑥) ∈ 𝒞 ′} is a maximal clique in 𝐺̂𝑘−1. By Lemma 5.21 and the construction in
Assign-Parents, we conclude that the parent of 𝑣 in 𝒫𝑘 is mapped to 𝑢 under 𝜑.
By injectivity of 𝜑, this parent is precisely 𝜑−1(𝑢) = 𝑢̂. Therefore, (𝑢̂, 𝑣) is an edge
in 𝒫𝑘.

The image of 𝜑 contains the awesome nodes in 𝒫𝑘: It suffices to prove the state-
ment for the awesome nodes at level 𝑘, which we denote by 𝐴𝑘. Suppose that 𝑢 is an
awesome node at level 𝑘 of 𝒫 . By awesomeness, 𝑢 has at least 𝑑 awesome children.
Let 𝒞 ′ denote the clique in 𝐺𝑘−1 given by the awesome children of 𝑢. By Lemmas 5.20
and 5.21, 𝒞 := 𝜑−1(𝒞 ′) satisfies |𝒞| = |𝒞 ′| ≥ 𝑑 because all of the awesome children up
to level 𝑘 − 1 are in the image of 𝜑, by the inductive hypotheses. By Lemma 5.21,
the maximal clique 𝒞 containing 𝒞 in 𝐺̂𝑘−1 satisfies that 𝜑(𝒞) are all children of 𝑢.
By the definition of Assign-Parents and 𝜑 at level 𝑘, we conclude that a parent 𝑢̂
is constructed for 𝒞 ⊃ 𝒞 and 𝜑(𝑢̂) = 𝑢, as desired.

154



Bibliography

23andMe. About us. https://mediacenter.23andme.com/company/about-us/.

Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Sample-optimal
density estimation in nearly-linear time. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 1278–1289. SIAM,
2017.

D. Achiloptas and C. Moore. The asymptotic order of the random 𝑘-sat threshold.
In The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings, Vancouver, BC, Canada, November 2002. IEEE.

Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approx-
imation via coresets. Combinatorial and computational geometry, 52:1–30, 2005.

N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, Inc., New
Jersey, 3 edition, 2008.

Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approx-
imation algorithms for optimal transport via Sinkhorn iteration. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages
1961–1971, 2017.

Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Weed. Massively
scalable Sinkhorn distances via the Nyström method. In Advances in Neural In-
formation Processing Systems 32 (NeurIPS 2019), 12 2019. To appear.

Ancestry.com. Ancestry continues to lead the industry with
world’s largest consumer dna network. https://www.
ancestry.com/corporate/newsroom/press-releases/ancestry%C2%
AE-surpasses-15-million-members-its-dna-network-powering-unparalleled.

Hassan Ashtiani, Shai Ben-David, Nicholas JA Harvey, Christopher Liaw, Abbas
Mehrabian, and Yaniv Plan. Near-optimal sample complexity bounds for ro-
bust learning of gaussian mixtures via compression schemes. Journal of the ACM
(JACM), 67(6):1–42, 2020.

Benjamin Aubin, Will Perkins, and Lenka Zdeborova. Storage capacity in symmetric
binary perceptrons. Journal of Physics A: Mathematical and Theoretical, 2019.

155

https://mediacenter.23andme.com/company/about-us/
https://www.ancestry.com/corporate/newsroom/press-releases/ancestry%C2%AE-surpasses-15-million-members-its-dna-network-powering-unparalleled
https://www.ancestry.com/corporate/newsroom/press-releases/ancestry%C2%AE-surpasses-15-million-members-its-dna-network-powering-unparalleled
https://www.ancestry.com/corporate/newsroom/press-releases/ancestry%C2%AE-surpasses-15-million-members-its-dna-network-powering-unparalleled


Francis R Bach, Simon Lacoste-Julien, and Guillaume Obozinski. On the equivalence
between herding and conditional gradient algorithms. In ICML, 2012.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions
for machine learning. arXiv preprint arXiv:1703.06476, 2017.

Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering via
lightweight coresets. In Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages 1119–1127, 2018.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density
evaluation for smooth kernels. In 2018 IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 615–626. IEEE, 2018.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel den-
sity estimation in high dimensions. In Advances in Neural Information Processing
Systems, pages 15799–15808, 2019.
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