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Essays on the Design of Online Marketplaces and Platforms

by

David Holtz

Submitted to the Sloan School of Management on May 7, 2021, in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in Management

Abstract

This dissertation consists of three chapters that concern the design of online mar-
ketplaces and platforms. In Chapter 1, I estimate the impact of increasing the ex-
tent to which content recommendations are personalized by analyzing the results of
a randomized experiment on approximately 900,000 Spotify users across seventeen
countries. I find that increasing recommendation personalization increased the num-
ber of podcasts that Spotify users streamed, but also decreased the individual-level
diversity of Spotify users’ podcast consumption and increased the dissimilarity be-
tween the podcast consumption patterns of different users across the population. In
Chapter 2, I propose methods for obtaining unbiased estimates of the total average
treatment effect (TATE) when conducting experiments in online marketplaces, and
test the viability of said methods using a simulation built on top of scraped data
from Airbnb. I find that blocked graph cluster randomization can reduce the bias of
TATE estimates in online marketplaces by as much as 64.5%, however, this reduction
in bias comes with a substantial increase in root-mean-square error (RMSE). I also
find that fractional neighborhood treatment response (FNTR) exposure models and
inverse probability-weighted estimators have the potential to further reduce bias, de-
pending on the choice of FNTR threshold. In Chapter 3, I conduct two large-scale
meta-experiments on Airbnb in an attempt to estimate the actual magnitude of bias
in TATE estimates from marketplace interference. In both meta-experiments, some
Airbnb listings are assigned to experiment conditions at the individual-level, whereas
others are assigned to experiment conditions at the level of clusters of listings that
are likely to substitute for one another. The two meta-experiments measure the im-
pact of two different pricing-related interventions on Airbnb: a change to Airbnb’s fee
policy, and a change to the pricing algorithm that Airbnb uses to recommend prices
to sellers. Results from the fee policy meta-experiment reveal that at least 32.60%
of the treatment effect estimate in the Bernoulli-randomized meta-experiment arm is
due to interference bias. Results from the pricing algorithm meta-experiment high-
light the difficulty of detecting interference bias when treatment interventions require
intention-to-treat analysis.

Thesis Supervisor: Sinan Aral
Title: David Austin Professor of Management
Professor of Information Technology and Marketing

3



4



Acknowledgments

I am incredibly fortunate and privileged to have had the opportunity to do my PhD

at MIT. I cannot imagine a more vibrant intellectual community to have been a

part of over the past six years, and feel I have grown immensely as a researcher and

thinker. First and foremost, I thank my advisor, Sinan Aral, for his support and

mentorship during this six-year-long journey. He inspired me to seek out and tackle

ambitious, interesting, and important projects, and taught me how to do so in an

extremely rigorous way. It has been a great pleasure to be his student. I also thank

my committee members, Dean Eckles and John Horton, both of whom have regularly

provided invaluable mentorship, feedback, and career advice.

Beyond my committee, I am extremely thankful to the many academic mentors

and friends who have contributed to my success during graduate school. At MIT, a

number of fantastic professors, teachers, and advisors, including Erik Brynjolfsson,

Wanda Orlikowski, Tamara Broderick, Ben Golub, Glenn Ellison, Bengt Holmtsröm,

Frank Schilbach, Victor Chernozhukov, Josh Angrist, Sara Fisher Ellison, and Rachael

Meager, inspired and nurtured my interest in economics, technology, causal inference,

network science, and machine learning. Outside of MIT, I’ve benefited tremendously

from the guidance and friendship of folks like Johan Ugander, Chiara Farronato, Tian-

shu Sun, Jon Hersh, Arun Sundararajan, Anindya Ghose, Foster Provost, Ramesh

Johari, Ravi Bapna, Ed McFowland, Zhe Zhang, Hyunjin Kim, Sam Ransbotham,

Grace Gu, Marios Kokkodis, Katherine Hoffman Pham, Martin Saveski, Joel Wald-

fogel, Christian Catalini, Tuan Phan, and Jui Ramaprasad, all of whom have helped

me navigate the crazy world of academia and make sense of my own research. I am

particularly thankful to Sid Suri, who has basically been an informal second advisor

to me over the past year. I can’t imagine what the pandemic year would’ve been like

without Sid’s mentorship and friendship, and I look forward to meeting him in person

once the world returns to normal.

During my PhD, I have been lucky to work with enough brilliant coauthors to fill

5



an MLB roster.1 I have learned an incredible amount from collaborating with Ruben

Lobel, Inessa Liskovich, Sanaz Mobasseri, Janet Xu, Longqi Yang, Sonia Jaffe, Ben

Carterette, Praveen Chandar, Henriette Cramer, Zahra Nazari, Alex Dow, Diana

MacLean, Liane Scult, Seth Benzell, Jeremy Yang, Amin Rahimian, Cathy Cao,

Jenny Allen, Tara Sowrirajan, Dipayan Ghosh, Jerry Zhang, Paramveer Dhillon, and

Christos Nicolaides. I am particularly grateful to have had the chance to work with,

learn from, and become friends with Andrey Fradkin over the past seven years. When

Andrey and I began working on a paper together in 2014, I had no idea I would finish

my PhD before our paper made it to publication.2 He has continually pushed me to

think about things more deeply and to work more carefully, and has played a huge

role in my growth as a researcher.

My decision to pursue a PhD at a business school was in part driven by the

fact that B-school academia allows me to approach research questions as an academic

while still collaborating with and learning from those in industry. The things I learned

in the Bay Area from 2012 to 2015 have inspired my entire research agenda, and

my continued growth is in large part thanks to my interactions with friends and

colleagues in the tech industry. Thank you to Terry Angelos, Vickie Peng, Chris

Chen, Kevin Rice, Jason Bosinoff, Alex Rampell, and Eddie Lim for taking a chance

on a physicist who knew nothing about tech. Thanks also to Elena Grewal, Bar

Ifrach, Jan Overgoor, Riley Newman, Ricardo Bion, Vasyl Pihur, Hector Yee, and

the rest of the A-team at Airbnb for helping me evolve into the data scientist I am

today, and for sparking my interest in online marketplaces. Thanks to Aline Lerner,

who believed in my skills as a data scientist before almost anyone else, and is always

looking out for opportunities to do cool things with data. Thank you to Sam Way,

Clark Lemke, and Briana Vecchione, with whom I had memorable late afternoon

conversations on the 62nd floor of 4 WTC. Thanks to everyone at Facebook CDS,

from whom I learned invaluable lessons about how to conduct top-tier computational

social science research. A special thank you to Sean Taylor, who was willing to

1I am not suggesting my co-authors actually form a baseball team. Were they to do so, I do not
think the team would be good at baseball.

2I’ve learned a lot about social science publication cycles since then.

6



grab a beer with someone he barely knew3 and talk about Information Systems PhD

programs. Sean has been the most supportive “academic older sibling” imaginable

and without his help, I would not be where I am today.

I owe an immense amount to numerous students and post-docs at MIT, who are

now lifelong friends and colleagues. Thanks to my fellow M(IT) PhD students, Emma

Van Inwegen, Sebastian Steffen, Alex Moehring, Hong-Yi Tu Ye, Guillaume Saint-

Jacques, and Shan Huang, who have made the past six years fly by and have been

a constant source of guidance and support. I am particularly indebted to Michael

Zhao, with whom I’ve had many engaging conversations in the cafe car of NYC-bound

Amtrak trains, and Daniel Rock and Avi Collis, without whom I truly could not have

navigated the final years of graduate school. Thanks to IDE post-docs Xiang Hui,

Sagit Bar-Gill, Ananya Sen, and Meng Liu for your friendship and advice. Thank you

to my Sloan classmates Mahreen Khan, Madhav Kumar, Heather Yang, Jenna Myers,

Claire McKenna, Alex Kowalski, Simon Friis, Suzie Noh, and Georg Rickmann, who

were instrumental in making it through the first two years of school and staying

sane thereafter. A special thanks goes to the “Economagic” group of Joe Hazell,

Layne Kirshon, Mazi Kazemi, Peter Hansen, and Tom Ernst, who have always kindly

answered my dumbest questions about econometrics.

The Initiative on the Digital Economy has been a huge part of my PhD experience,

and I’m incredibly appreciative of the work that David Verrill, Carrie Reynolds, Susan

Young, and the rest of the IDE team have done to build such an amazing hub for

impactful digitization research. I’m also thankful to Jeanne Ross, Chris Foglia, and

the rest of the team at CISR. Because of CISR’s generosity, I have been able to attend

and present my research at conferences across the world during my PhD. I’m grateful

to Matt Salganik, Chris Bail, and everyone else involved in SICSS 2018. Although

my Matt Salganik back tattoo was temporary, the experiences I had in Durham were

incredibly formative, and will continue to influence my research for the entirety of my

career. I am lucky to have attended three straight NBER graduate student tutorials

on digitization. Those tutorials led to multiple eureka moments, and I am immensely

3RIP to the Blind Cat.

7



thankful to Avi Goldfarb and Shane Greenstein for organizing them. I also owe a

huge thank you to Hillary Ross, Davin Schnappauf, and Sarah Massey for all of their

help and support throughout the PhD process.

I wouldn’t be the person I am today were it not for the many outstanding men-

tors I’ve had throughout the years. Toby Marriage, Lyman Page, and Brian Wecht

inspired and nurtured my interest in physics, and I continue to look up to them all

today. Hyeseung Marriage-Song helped me navigate my 20s and escape largely un-

scathed. Hans Kriefall, Glen Pannell, Bob Sandberg, Carol Dunne, Joel Mercier,

Jeff Snyder, Dan Trueman, James Folta, Dan Burt, Max McCal, Jim Miller, and

Joe Gaudett were instrumental in my development as a musician, thespian, and co-

median. Kristen Record and Linda Cline helped kickstart my interest in math and

science, and encouraged me to set my sights high. Stephanie Colman, Rena Sydel,

and Jimmy Martin spent countless hours with me when I was a precocious (and

probably annoying) kid, and encouraged me to pursue my passions.

Finally, I am extremely fortunate to have the support of fantastic friends and

family. I am immensely grateful to Steve, LAC, Zach, Halcyon, Nuss, Molly, Mike,

Jason, Jon, Charlie, Billy, Jacob, Willie, Siyu, Ben, Meredith, Kevin H., Sarah, Joy,

Kevin S., Roger, Rob, Lance, Albert, Chris G.D., Leila, Chris H., Anthony, and

Ponchi. Thank you to my grandparents, Carole, Gilbert, Irwin, and Bernice, for

pushing me to do my best and asking me to explain Bitcoin over charbroiled Outback

steaks. Thank you to my parents, Tracie and Jeff, for their unconditional love and

support. Above all, I am particularly indebted to my mother, who has sacrificed so

much so that I could achieve my dreams.

8



Contents

1 The Engagement-Diversity Connection: Evidence from a Field Ex-

periment on Spotify 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Research Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Spotify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Podcast categorization . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 Effect on podcast consumption . . . . . . . . . . . . . . . . . 25

1.5.2 Effect on diversity of podcast consumption . . . . . . . . . . . 28

1.5.3 Treatment effects by stream referrer . . . . . . . . . . . . . . . 34

1.5.4 Long-term treatment effects . . . . . . . . . . . . . . . . . . . 39

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendices 51

1.A Experiment Balance Checks . . . . . . . . . . . . . . . . . . . . . . . 51

1.B Podcast Follows Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.B.1 Effect on podcast follows . . . . . . . . . . . . . . . . . . . . . 52

1.B.2 Effect on diversity of podcast follows . . . . . . . . . . . . . . 55

1.B.3 Long-term effects . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.B.4 Effect on “sales diversity” . . . . . . . . . . . . . . . . . . . . . 63

9



1.C Principal stratification methodology . . . . . . . . . . . . . . . . . . . 67

1.D “Home” podcast impressions over time . . . . . . . . . . . . . . . . . 68

1.E Effect on “sales diversity” . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.F Additional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2 Limiting Bias from Test-Control Interference in Online Marketplace

Experiments 79

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.2 Theoretical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.3 Data & Network Construction . . . . . . . . . . . . . . . . . . . . . . 91

2.4 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.5.1 Simulating Ground Truth . . . . . . . . . . . . . . . . . . . . 99

2.5.2 Measuring bias and RMSE . . . . . . . . . . . . . . . . . . . . 102

2.5.3 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . 106

2.5.4 Performance under network mis-specification . . . . . . . . . . 107

2.5.5 Performance with varying cluster sizes . . . . . . . . . . . . . 110

2.5.6 Performance with different levels of demand . . . . . . . . . . 113

2.5.7 Performance in a different simulated market . . . . . . . . . . 116

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendices 123

2.A Modified Simulation Framework . . . . . . . . . . . . . . . . . . . . . 123

3 Reducing Interference Bias in Online Marketplace Pricing Experi-

ments 127

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.3 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.3.1 Platform Guest Fees . . . . . . . . . . . . . . . . . . . . . . . 133

10



3.3.2 Price Tips & Smart Pricing . . . . . . . . . . . . . . . . . . . 136

3.4 Experiment Motivation & Design . . . . . . . . . . . . . . . . . . . . 138

3.4.1 Treatment Assignment Mechanism . . . . . . . . . . . . . . . 139

3.5 Fee Meta-experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.6 Algorithmic Pricing Experiment . . . . . . . . . . . . . . . . . . . . . 153

3.6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Appendices 165

3.A Method for cluster size selection . . . . . . . . . . . . . . . . . . . . . 165

3.B Interference bias for nights booked and gross guest spend . . . . . . . 170

3.B.1 Fee meta-experiment . . . . . . . . . . . . . . . . . . . . . . . 170

3.B.2 Algorithmic pricing meta-experiment . . . . . . . . . . . . . . 174

3.C Cluster-level analysis of cluster-randomized

meta-treatment arm . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.C.1 Fee meta-experiment . . . . . . . . . . . . . . . . . . . . . . . 178

3.C.2 Algorithmic pricing meta-experiment . . . . . . . . . . . . . . 180

3.D Results with mixed units of analysis . . . . . . . . . . . . . . . . . . . 182

3.D.1 Fee meta-experiment . . . . . . . . . . . . . . . . . . . . . . . 182

3.D.2 Algorithmic pricing meta-experiment . . . . . . . . . . . . . . 182

11



12



Chapter 1

The Engagement-Diversity

Connection: Evidence from a Field

Experiment on Spotify
1

1.1 Introduction

Recommender systems and algorithmic content curation play an increasingly large

role in people’s lives. For instance, algorithmic recommendations influence the news

and entertainment that we consume, the products that we purchase, and the people

with whom we develop romantic relationships. Collaborative filtering recommenda-

tion systems drive 35% of product choices on Amazon (Lamere and Green 2008) and

60% of consumption choices on Netflix (Thompson 2008). However, despite recom-

1With Ben Carterette (Spotify), Praveen Chandar (Spotify), Henriette Cramer (Spotify), Zahra
Nazari (Spotify) and Sinan Aral (MIT Sloan School of Management). We are grateful to Samuel F.
Way, Briana Vecchione, John Horton, Dean Eckles, Jui Ramaprasad, Joel Waldfogel, Daniel Rock,
Michael Zhao, Katherine Hoffman Pham, Emma van Inwegen, Mazi Kazemi, Alex Moehring, Sebas-
tian Steffen, Seth Benzell, Mahreen Khan, Hong Yi Tu Ye, Sanaz Mobasseri, and Martin Saveski for
their helpful feedback. We also thank numerous other Spotify employees who have assisted with this
project. We have also received helpful feedback on this work from participants at CIST 2020, SCECR
2020, ISMS 2020, ACM EC 2020, the Facebook Workshop on Responsible Recommender Systems,
the LSE Information Systems & Innovation Seminar, and the MIT Sloan Marketing Seminar, as
well as anonymous reviewers at Management Science and Marketing Science. This experiment was
classified as exempt by the MIT Committee on the Use of Humans as Experimental Subjects under
Protocol #E-1974.

13



mender systems’ increasing ubiquity, the ways in which they impact the types of

choices we make are still not well understood. While some scholars have speculated

that recommender systems will lead to “filter bubbles” (Sunstein 2001, Pariser 2011),

others hypothesize that recommender systems will homogenize user consumption,

leading to the “rich getting richer” (Negroponte 1996, Van Alstyne and Brynjolfsson

2005, Salganik et al. 2006). In this paper, we analyze a large scale field experiment

conducted on Spotify, one of the world’s leading streaming platforms. During the

experiment, both treatment and control users were recommended podcasts with the

sole aim of increasing podcast consumption; while control users were recommended

podcasts popular amongst those in their demographic group, treatment users were

provided fully personalized recommendations based on their existing music listening

history. We measure the impact of more personalized content recommendations on

user engagement, as well as individual-level and aggregate podcast category diversity.

We find that the recommender system in the experiment increased the average

number of podcasts streamed per user by 28.90% relative to the less-personalized,

popularity-based recommendation strategy. We also test for the impact of the al-

gorithm on user-level podcast category diversity, as measured through the Shannon

entropy (Shannon 1948, Teachman 1980), and aggregate podcast category diversity,

as measured through a quantity that we call “intragroup diversity” (Aral and Van Al-

styne 2011).2 We find that the more personalized algorithm decreased individual-level

diversity, but increased intragroup diversity. These results indicate that recommender

systems and personalization algorithms have the capacity to push individual users

into homogeneous consumption patterns that are increasingly dissimilar from those

of their peers. While the effects of the treatment are largest for streams originating

from the section of Spotify’s app where personalized recommendations are delivered,

we observe evidence that the treatment also affected streams originating from other

parts of the app. This suggests that exposure to personalized recommendations can

also affect the diversity of content that users organically engage with. Furthermore,

2While we quantify diversity using these particular measures, there is a large body of academic
literature discussing different approaches to measuring diversity. See, for instance, Mitchell et al.
(2020).
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the treatment effects that we observe quickly dissipated once the experiment had

ended, indicating that on average users revert to their counterfactual baseline listen-

ing habits once personalized recommendations are no longer shown. This suggests

that user exposure to personalized recommendations must be persistent for firms to

realize long-term increases in user engagement, and that firms have the ability to

“course correct” if they discover that personalized recommendations are having an

undesirable effect on users’ consumption patterns.

In aggregate, our findings highlight the potential for recommender systems to

create an “engagement-diversity trade-off” for firms when recommendations are opti-

mized solely to drive consumption; while algorithmic recommendations can increase

user engagement, they can also homogenize individual users’ consumption and Balka-

nize user content consumption. This shift in consumption diversity can negatively

impact user churn rates and lifetime values (Anderson et al. 2020), and the optimal

strategy for content creators, including platforms that create original content (such

as Spotify or Netflix). It is possible that our findings also extend to settings where

diversity is measured with respect to the ideological slant or extremity of content.

If so, the “engagement-diversity trade-off” suggests that recommender systems that

increase engagement/consumption can also create costs for firms, due to the high

level of public scrutiny given to personalized recommendations, and impact public

discourse on platforms through the creation of “filter bubbles.” In light of our results,

we believe it is worthwhile for academics and practitioners to continue developing

personalization techniques that explicitly take into account the diversity of content

recommended to users (Marler and Arora 2004, Castells et al. 2015, Lacerda 2017).3

1.2 Related Literature

This paper contributes to a growing body of literature that focuses on the economic

and societal impacts of recommender systems, which use product metadata as well

3In this paper, we consider the implications of personalized recommendations from the firm’s
perspective. We do not consider whether personalized recommendations are welfare-increasing or
-decreasing for Spotify users, although we think this is an important topic for future research.
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as implicit and explicit user feedback to generate personalized product recommenda-

tions to users (Resnick and Varian 1997, Adomavicius and Tuzhilin 2005). Previous

research has shown that the adoption of new digital technologies, such as online

streaming platforms, can influence the types and diversity of content that people

consume (Dewan and Ramaprasad 2012, Aguiar and Waldfogel 2018, Datta et al.

2018, Knox and Datta 2020), and recommender systems are likely a key mecha-

nism in driving these consumption changes. Early research established that online

recommendations impact consumer product choices (Senecal and Nantel 2004), and

that recommender systems in particular often lead to increased engagement and/or

purchases (Das et al. 2007, Freyne et al. 2009, De et al. 2010, Zhou et al. 2010,

Oestreicher-Singer and Sundararajan 2012b, Sharma et al. 2018). However, there is

no clear consensus on the impact that recommender systems have on the diversity of

items that users consume.

Building on the work of Brynjolfsson et al. (2011), a series of papers have at-

tempted to quantify, through models, simulations, observational analysis, and nat-

ural experiments, the effect of recommender systems on sales diversity (Fleder and

Hosanagar 2009, Wu et al. 2011, Oestreicher-Singer and Sundararajan 2012a, Jannach

et al. 2013, Hosanagar et al. 2013, Nguyen et al. 2014, Hervas-Drane 2015). Most, but

not all, of these papers measure changes in sales diversity by looking at differences

in the Lorenz curve corresponding to product consumption or sales. Many of these

studies argue that recommender systems make individual consumption more diverse,

while decreasing aggregate consumption diversity. To provide some intuition for how

this might occur, imagine a platform with four users and four pieces of content: 𝐴, 𝐵,

𝐶, and 𝐷. A recommender system could shift users’ consumption vectors from (𝐴),

(𝐵), (𝐶), (𝐷) to (𝐴𝐵), (𝐴𝐵), (𝐴𝐵), (𝐴𝐵). While each individual users’ consumption

is less concentrated, aggregate consumption is more concentrated.

A separate stream of research has focused on the impact that recommender sys-

tems have on the types of content that people consume, and the resultant societal

impacts. While some papers in this research stream argue that algorithms lead to

increased ideological segregation (Flaxman et al. 2016, Tufekci 2018, Ribeiro et al.
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2019), others find that users’ tendency to engage with content that agrees with their

ideological preferences is driven by user choice, as opposed to algorithms (Gentzkow

and Shapiro 2006, Bakshy et al. 2015). Importantly, content diversity is a distinct

concept from sales diversity, and the effect of recommender systems on these two

types of diversity need not be the same. For instance, a recommender system could

lead users to consume more long tail content that is all ideologically similar. In this

paper, we focus on diversity with respect to podcast categories, rather than ideologi-

cal affiliation. However, both types of diversity characterize the type of content that

users consume, and it is possible that the application of our analytical framework to

data with ideological labels would produce similar results.

Our work contributes to an emerging literature that uses randomized field experi-

ments to measure the impact of recommender systems on the diversity of content that

users consume (Claussen et al. 2019, Lee and Hosanagar 2019). Claussen et al. (2019)

find that personalization decreased individual-level diversity, and that this decrease

in consumption diversity spilled over to non-personalized sections of the website they

studied. In contrast, Lee and Hosanagar (2019) find that the introduction of a rec-

ommender system had a neutral-to-positive effect on individual-level diversity, but

decreased aggregate diversity. Our research is also closely related to Anderson et al.

(2020), who use observational data from Spotify to study the relationship between

personalization and listening diversity. They find that user-driven listening was more

diverse than algorithmic listening, and that users who became more diverse over time

did so by shifting away from algorithmic listening. Importantly, they also find that

users with more diverse listening habits were less likely to leave the platform and

were more likely to eventually become paid subscribers, suggesting that short-term

increases in engagement due to personalization may have unintended long-term busi-

ness implications.

We build on the existing literature by analyzing data from a randomized field

experiment, which allows us to credibly estimate the causal effect of personalized rec-

ommendations on content consumption, and attempting to resolve the tension that

exists between the two aforementioned experimental estimates. In contrast to much of
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the recommender systems research in economics and management, which has focused

on measuring changes in sales diversity, we focus on measures of diversity that take

into account the types of content that users consume, as measured through podcast

category tags on Spotify. Like Claussen et al. (2019), we find that personalized rec-

ommendations decreased individual-level diversity, and we also find that personalized

recommendations simultaneously increased aggregate diversity. These findings are at

odds with Lee and Hosanagar (2019), who find that the introduction of algorithmic

recommendations had a neutral-to-positive effect on individual-level diversity while

decreasing aggregate diversity. We believe this contrast may be due to a number of

factors. First, the impact of recommender systems can depend on a wide range of

factors, including but not limited to the type of data used for training (Lin et al.

2015), the algorithm used to generate recommendations (Wu et al. 2011, Jannach

et al. 2013), and the setting in which the recommender is deployed. We study the

impact of a novel algorithm (which predicts podcast affinity based on a user’s music

listening history) in a novel setting (podcast recommendations on Spotify). Second,

this paper quantifies diversity differently than Lee and Hosanagar (2019). The poten-

tial for different measures of diversity to suggest different types of effects underscores

the need to develop and use a number of different measures when quantifying the

impact of recommendation systems on consumption diversity.

1.3 Research Setting

1.3.1 Spotify

The setting for our study is Spotify, one of the world’s leading streaming platforms.

Spotify was founded in 2006, and as of December 2019 had 271 million monthly

active users and 124 million paying subscribers.4 Although Spotify launched as a

music streaming platform, in 2015 the company expanded its offerings to include

4https://s22.q4cdn.com/540910603/files/doc_financials/2019/q4/Shareholder-Letter
-Q4-2019.pdf
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videos and, more importantly for this study, podcasts.5 Podcasts are an increasingly

popular type of content to stream online, and represent an important new vertical for

Spotify. According to Edison Research, 51% of the U.S. population has listened to at

least one podcast, and 32% listens to podcasts on a monthly basis. Among monthly

podcast listeners, 43% have listened to a podcast on Spotify (Edison Research 2019).

Spotify users on mobile are able to access three different sections of the Spotify

app via a navigation bar that runs along the bottom of the phone screen: “Your

Library,” “Search,” and “Home.” The “Your Library” section of the app allows a user

to access albums, playlists and albums that they have previously saved, as well as

podcasts they have previously followed and podcast episodes they have previously

downloaded. The “Search” section of the app allows users to search Spotify’s content

library for specific pieces of content. The “Home” section of the app is most relevant

to our research. It presents the user with a ranked set of “shelves,” each of which

contains a ranked set of “cards.” Shelves correspond to different types of content,

such as “content a user was recently listening to,” or “music from a particular genre.”

Each card is essentially a link to a piece of content (e.g., a playlist or Spotify artist

page). Shelves in the “Home” section of the app, and the cards within each shelf,

are ordered by a combination of machine learning algorithms and human editors.6 A

screenshot of the “Home” section of the Spotify app on iOS can be seen in Figure 1.1.

In this paper, we will analyze changes to the number of podcasts users stream, as

well as the types of podcasts users stream as measured through podcast category tags.

Each podcast stream also has a “referrer” field associated with it, which indicates

which part of the Spotify app the stream originated from. This field allows us to

differentiate between streams that originated from the “Home” section of the app

(where the experiment introduced variation in recommended podcasts) and streams

that originated from other sections of the app (where the experiment did not introduce

any variation).

5https://www.fastcompany.com/3046504/spotify-launches-podcasts-video-and-contex
t-based-listening

6Details of Spotify’s approach to ranking home content can be found in McInerney et al. (2018).
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Figure 1.1: A screenshot of the “Podcasts to try” shelf on the Spotify iOS app. During
the experiment, this shelf was fixed in the second slot on the “Home” section of the
Spotify app.
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1.3.2 Podcast categorization

At the time of the experiment, there were thirteen podcast category tags that could

be associated with a podcast on Spotify: “Arts & Entertainment,” “Business & Tech-

nology,” “Comedy,” “Educational,” “Games,” “Kids & Family,” “Lifestyle & Health,”

“Music,” “News & Politics,” “Society & Culture,” “Sports & Recreation,” “Stories,”

and “True Crime.” Figure 1.2 shows the podcast section of the “Browse” pane on

Spotify’s desktop app, which allows users to browse through podcasts by selecting

one of the thirteen categories. Category tags are extracted from podcasts’ RSS feeds,

and are not determined internally at Spotify. Podcast creators can specify as many

category tags for a podcast as they wish, although many podcast upload tools limit

podcast creators to three categories. Of the category tags podcast creators specify, no

one category is identified as a “primary” category. Podcast creators are incentivized

to select truthful category tags for their shows, since inaccurate tags can lead to their

shows being removed from important venues, such as the iTunes store.

Figure 1.2: Podcast categories on Spotify, as displayed in the Podcasts section of the
desktop app’s “Browse” pane.
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In our dataset, there are as many as ten podcast category tags associated with any

particular podcast. However, 68.23% of podcasts have only one category associated

with them, and 97.50% of podcasts have three or fewer podcast categories associated

with them. Figure 1.3 shows the distribution of categories per podcast for podcasts

available on Spotify as of July 8th, 2019, as well as the fraction of all podcasts that

have each category tag associated with them.7 The most common podcast category

is associated with 30.34% of all podcasts, whereas the least common category is

associated with 0.20% of all podcasts.

We use the category tags associated with each user’s podcast streams to quantify

changes in the diversity of their podcast consumption. For streams of podcasts that

have multiple category tags, we divide the stream evenly across each of the podcast’s

associated categories. For instance, the podcast “Trial By Stone: The Dark Crystal

Podcast” has only one category associated with it: “Arts & Entertainment”. On

the other hand, the podcast “World’s Best Parents” has four categories associated

with it: “Comedy,” “Educational”, “Kids & Family,” and “Stories”. If a user streamed

an episode of “Trial By Stone,” this would count as one stream for the “Arts &

Entertainment” category, whereas if a user streamed an episode of “World’s Best

Parents”, this would count as 0.25 streams for each of the four categories with which

“World’s Best Parents” is associated.

1.4 Experiment Design

We analyze data from an experiment conducted on a sample of 852,937 premium

Spotify users across seventeen countries8 between April 18, 2019 and May 2, 2019 as

part of a product rollout. In order to be eligible for the experiment, a user needed to

have never streamed or followed a podcast on Spotify, and to have visited the “Home”

section of the Spotify app during the experiment.

Users in both the treatment and control were exposed to a shelf in the “Home”

7Actual podcast category names are removed due to confidentiality concerns.
8The experiment was conducted on users located in AR, AU, BR, CA, CL, CO, DE, DK, ES,

FR, GB, IT, MX, NL, NO, RS, and US.
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Figure 1.3: Histograms showing the frequency with which each podcast category is
attached to a podcast, and the distribution of category tags per podcast. y-axis values
and category names hidden due to confidentiality concerns.
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section of the Spotify mobile app labeled “Podcasts to Try,” which was anchored in

the second highest slot in the “Home” section. For users in the treatment, the “Pod-

casts to Try” shelf was populated with 10 recommendations generated by a neural

network model that predicted the podcasts a user would follow based on their music

listening history and demographic information.9 For users in the control, the “Pod-

casts to Try” shelf was populated with the 10 most popular podcasts among users

who shared the focal user’s self-reported gender, age bucket, and country.10 Both

the machine learned recommendations and the demographic-based recommendations

were determined using pre-treatment data, and were not updated over the course of

the experiment. For users in both treatment arms, the “Podcasts to Try” shelf was

hidden once the user had streamed or followed any podcast on Spotify. Figure 1.1

shows a screenshot of the “Podcasts to try” shelf on iOS. The shelf’s UI was consistent

across the control and treatment groups; the only thing exogenously varied was the

set of podcasts populating the shelf.

Users were assigned to treatment arms using the following “bucket randomization”

procedure. Every Spotify user was first assigned to one of ten thousand “buckets”

based on a hash of their Spotify username. An equal number of these buckets were

randomly assigned to the treatment and control conditions. Each user received the

treatment corresponding to their bucket. A subset of buckets are also labeled as

“long-term hold out” buckets, and are not included in Spotify experiments conducted

on the “Home” section of the app. “Long-term hold out” buckets assigned to our

treatment and control conditions were not shown the “Podcasts to Try” shelf, and are

not included in our analysis. This assignment procedure resulted in 405,401 treat-

ment users across 86 buckets, and 447,536 control users across 94 buckets. Critically,

at the time of the experiment, Spotify did not create new user buckets each time

an experiment was launched, which means that users within a given treatment as-

signment bucket share a treatment assignment history for previous experiments. To

account for this, we report either cluster-robust standard errors or cluster bootstrap

9For a more detailed description of the neural network model, we refer the reader to Nazari et al.
(2020).

10Age buckets are defined as follows: 18-24, 25-29, 30-34, 35-44, 45-54, 55+.
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standard errors for all experiment analyses. In all cases where standard errors are

bootstrapped, 𝑛𝑏𝑜𝑜𝑡 = 1, 000. We report the balance of observable characteristics

between the treatment and control groups in Appendix 1.A.

1.5 Results

In this section, we present the experiment results. We report the effects of the treat-

ment on podcast streams, however, the effects of the treatment on podcast follows

are extremely similar, and can be found in Appendix 1.B.

1.5.1 Effect on podcast consumption

We first study the impact of algorithmic podcast recommendations on the percentage

of users that streamed at least one podcast, and on the average number of podcast

streams per user during the experiment. Throughout the paper, we measure the effect

of the treatment by estimating the following model:

𝑦𝑖 = 𝛼 + 𝛽𝑇𝑖 + 𝛿𝑋𝑖 + 𝜖𝑖, (1.1)

where 𝑦𝑖 is the outcome of interest for user 𝑖 (in this case, either a binary outcome

indicating whether the user streamed any podcasts during the experiment, or a count

of the number of times the user streamed a podcast during the experiment), 𝛼 is a

constant, 𝑋𝑖 is a vector of user-level covariates (age bucket, self-reported gender, and

account age in days), and 𝑇𝑖 is user 𝑖’s treatment assignment. Standard errors are

clustered at the user treatment assignment bucket level.

Figure 1.4 shows the distribution of podcast streams per user during the experi-

ment in both treatment arms, both overall and conditional on the user streaming at

least one podcast during the experiment. Table 1.1 reports the estimated effect of

the treatment on the percentage of users streaming at least one podcast during the

experiment, and Table 1.2 reports the estimated effect of the treatment on podcast

streams per user during the experiment. In both cases, we report estimates obtained
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Figure 1.4: The distribution of of podcasts streamed in both treatment arms. Inset
plot shows the distribution of podcasts streamed in both treatment arms conditional
on streaming at least one podcast.
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with and without controlling for user-level covariates. We find that the treatment

increased the number of Spotify users streaming at least one podcast by 36.33% (±

3.01%), and increased the number of podcast streams per user by 28.90% (± 3.81%).

This large treatment effect indicates that personalized podcast recommendations were

extremely effective at increasing podcast consumption during the experiment, both

in terms of unique podcast streamers and podcast streams per user.

Table 1.1: A linear probability model showing the effect of the treatment on streaming
at least one podcast. Standard errors are clustered at the user bucket level.

Dependent variable:

Streamed podcast

(1) (2)

Treatment 0.017*** 0.017***
(0.001) (0.001)

Constant 0.048*** 0.039***
(0.0004) (0.001)

User Gender No Yes
User Age No Yes
User account age No Yes
Observations 852,937 852,937
R2 0.001 0.004
Adjusted R2 0.001 0.004
Residual Std. Error 0.230 (df = 852935) 0.230 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01

In order to determine the extent to which the increase in podcast streams per user

is driven by compositional shifts, as opposed to intensity shifts, we use the principal

stratification approach detailed by Frangakis and Rubin (2002) and Ding and Lu

(2017). This method allows us to estimate the causal effect of the treatment for

two latent subpopulations: “always takers” (i.e., users who would have streamed a

podcast whether in the control or treatment) and “compliers” (i.e., users who would

have streamed a podcast if in the treatment, but not if in the control). The principal

stratification methodology is detailed in Appendix 1.C. We estimate that on average,
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Table 1.2: A linear model showing the effect of the treatment on number of podcasts
streamed. Standard errors are clustered at the user bucket level.

Dependent variable:

Podcasts streamed

(1) (2)

Treatment 0.022*** 0.022***
(0.001) (0.001)

Constant 0.077*** 0.056***
(0.001) (0.001)

User Gender No Yes
User Age No Yes
User account age No Yes
Observations 852,937 852,937
R2 0.0005 0.003
Adjusted R2 0.0005 0.003
Residual Std. Error 0.508 (df = 852935) 0.508 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01

“compliers” streamed 1.505 (95% CI: (1.488, 1.522)) more podcasts in the treatment,

whereas “always takers” streamed 0.082 (95% CI: (0.055, 0.112)) fewer podcasts in the

treatment. In other words, the observed increase in number of podcast streams per

user is driven entirely by an increase in podcast streaming adoption, as opposed to an

increase in the number podcasts that Spotify users stream conditional on streaming

at least one podcast.

1.5.2 Effect on diversity of podcast consumption

We also measure the effect of the treatment on the diversity of content that individual

users consume (henceforth referred to as “individual-level diversity”) and the diversity

of content consumption across users (henceforth referred to as “intragroup diversity”).
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Individual-level diversity

We quantify individual-level diversity using the Shannon entropy (Shannon 1948).11

The Shannon entropy of user 𝑖’s streams is defined as

𝑡ℎ𝑖 = −
∑︁
𝑐∈𝐶

𝑠𝑐𝑖 ln(𝑠𝑐𝑖), (1.2)

where 𝐶 is the full set of podcast categories and 𝑠𝑐𝑖 is the share of user 𝑖’s streaming

coming from category 𝑐. Note that if a user did not stream any podcasts belonging

to category 𝑐, that podcast category’s contribution to the Shannon entropy is zero.

Importantly, this also means that users who did not listen to any podcasts during

the experiment have a Shannon entropy of zero. This, along with the fact that the

treatment had a large, positive effect on the number of users streaming podcasts,

could cause the observed effect of the treatment on Shannon entropy across all users

to be positive, even if consumption conditional on streaming became less diverse.12

To account for this, we analyze the data in two ways. First, we estimate the

model in Equation 1.1 for the subset of users that streamed at least one podcast

during the experiment. Results of this analysis cannot be interpreted as causal, since

we are conditioning on a post-treatment variable (streaming at least one podcast).

Nonetheless, these results provide some insight into the extent to which increased

recommendation personalization changed individual-level diversity. Figure 1.5 shows

the histogram of user-level Shannon entropy for podcast streams in both treatment

arms, and Table 1.3 reports the difference in the average streaming user’s Shannon

entropy, both with and without controlling for user-level covariates. We find that

the average Shannon entropy of podcast streams among users who streamed at least

one podcast was 11.51% (±1.08%) lower in the treatment. Second, we again employ

the principal stratification framework described by Frangakis and Rubin (2002) and

Ding and Lu (2017) to estimate the causal effect of the treatment on individual-

11The Shannon entropy is also sometimes referred to as the Teachman index (Teachman 1980).
12This is, in fact, what we observe in our data. When including all users in our analysis, we find

that the treatment increased the average Shannon entropy by 21.16% (±2.89%). These results are
reported in Table 1.F.1.
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Figure 1.5: The distribution of the user-level diversity for streams in both treatment
arms. Inset plot shows the distribution of user-level diversity in both treatment arms
conditional on streaming at least one podcast. y-axis values are on a log scale, and
are hidden due to confidentiality concerns.
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Table 1.3: A linear model showing the effect of the treatment on the Shan-
non/Teachman entropy index (streams) (podcast streamers only). Standard errors
are clustered at the user bucket level.

Dependent variable:

Shannon/Teachman entropy index (streams)

(1) (2)

Treatment −0.071*** −0.070***
(0.004) (0.004)

Constant 0.620*** 0.670***
(0.002) (0.005)

User Gender No Yes
User Age No Yes
User account age No Yes
R2 0.005 0.016
Adjusted R2 0.005 0.016
Residual Std. Error 0.479 (df = 76191) 0.477 (df = 76181)

Note: *p<0.1; **p<0.05; ***p<0.01
Observation counts hidden due to confidentiality concerns
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level diversity for the subset of users who are “always takers.” Consistent with the

previously reported non-causal findings, we estimate that treatment decreased the

average Shannon entropy for streaming “always takers” by 11.29% (95% CI: (10.00%,

12.26%)).

The fact that higher levels of recommendation personalization decreased the av-

erage Shannon entropy for “always takers” indicates that the treatment made users’

podcast consumption more homogenous with respect to podcast categories. Our

analysis cannot identify to what extent this difference is driven by treatment users

streaming podcasts that had fewer podcast categories associated with them. How-

ever, insofar as podcast categories accurately capture information about the topics

covered in a particular show, it is reasonable to assume that a user who listened to

podcasts with fewer category tags conditional on streaming a particular number of

podcasts consumed less diverse content. Figure 1.6 shows the distributions of user-

level Shannon entropy in both treatment arms conditional on streaming a particular

number of podcasts during the experiment.

Intragroup diversity

We quantify intragroup diversity using a mathematical expression introduced by Aral

and Van Alstyne (2011):

𝐼𝐷 =
1

𝑛𝑐

𝑛𝑐∑︁
𝑗=1

[︀
1 − cos

(︀
Γ𝑗, Γ̄

)︀]︀2
, (1.3)

where 𝑛𝑐 is the number of users consuming at least one podcast, Γ𝑗 is a vector de-

scribing the fraction of user 𝑗’s listening belonging to each podcast category, and Γ̄

is the average of Γ𝑗 across all users streaming at least one podcast. Intuitively, 𝐼𝐷

measures the variance of all streaming users’ individual-level podcast category con-

sumption vectors. We calculate 𝐼𝐷 separately for the control and treatment groups,

and test for a statistically significant difference.13

13Calculating 𝐼𝐷 requires that we restrict our analysis to the subset of control and treatment
users who streamed at least one podcast during the experiment. However, since 𝐼𝐷 is a population-
level outcome, as opposed to a user-level outcome, we claim that our estimates can be interpreted
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Figure 1.6: The distribution of the user-level diversity for streams in both treatment
arms conditional on streaming a set number of podcasts during the experiment. y-axis
values are on a log scale, and are hidden due to confidentiality concerns.
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We find that the treatment increased the intragroup diversity for podcast streams

by 5.96% (95% CI: 5.45%, 6.44%)), from 0.710 (95% CI: (0.708, 0.713)) in the control

group to 0.753 (95% CI: (0.751, 0.754)). In other words, not only did increased rec-

ommendation personalization push podcast streamers to consume more homogenous

content, it also pushed podcast streamers to listen to content that was more dissimilar

to the content that other streamers listened to.

1.5.3 Treatment effects by stream referrer

In this subsection, we present the effects of the treatment on streams originating

from different sections of the Spotify app. Because the treatment only directly af-

fected the podcasts that were displayed on “Home,” stream referrer-level treatment

effects provide insight into the extent to which exposure to personalized content rec-

ommendations impacted the types of podcasts that users sought out organically. If

exposure to recommendations did change what users sought out organically, we would

expect the treatment to impact what users stream from other parts of Spotify’s app,

such as “Search” and “Your Library.” As a result, we would observe treatment effects

for streams originating from both “Home” and from non-home surfaces. On the other

hand, if the treatment did not change what users sought out organically (i.e., treat-

ment effects are entirely driven by what users consume when streaming recommended

content on “Home”), we would expect to see treatment effects for “Home” streams,

but no treatment effects for non-home streams.

Podcast consumption

Figure 1.7 shows the distribution of podcast streams per user on both types of re-

ferral surfaces in both treatment arms. Table 1.4 reports the estimated effect of the

treatment on the number of users streaming at least one podcast from each type of

referral surface during the experiment, and Table 1.5 reports the estimated effect of

the treatment on podcast streams per user from each type of referral surface during

causally, and that the set of users that select into podcast streaming is one factor that contributes
to the population-level potential outcomes for 𝐼𝐷.
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Figure 1.7: The distribution of podcasts streamed in both treatment arms by stream
referrer. Inset plots shows the distribution of podcasts streamed by referrer in both
treatment arms conditional on streaming at least one podcast.
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Table 1.4: A linear model showing the effect of the treatment on streaming at least
one podcast, both on and off of home. Standard errors are clustered at the user
bucket level.

Dependent variable:

Streamed podcast
Home Non-home

(1) (2) (3) (4)

Treatment 0.017*** 0.017*** 0.004*** 0.004***

(0.001) (0.001) (0.0004) (0.0004)

Constant 0.029*** 0.023*** 0.030*** 0.026***

(0.0003) (0.001) (0.0003) (0.001)

User Gender No Yes No Yes
User Age No Yes No Yes
User account age No Yes No Yes
Observations 852,937 852,937 852,937 852,937
R2 0.002 0.003 0.0001 0.004
Adjusted R2 0.002 0.003 0.0001 0.004
Residual Std. Error 0.190 (df = 852935) 0.190 (df = 852925) 0.175 (df = 852935) 0.175 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01

Table 1.5: A linear model showing the effect of the treatment on number of podcasts
streamed, both on and off of home. Standard errors are clustered at the user bucket
level.

Dependent variable:

Podcasts streamed
Home Non-home

(1) (2) (3) (4)

Treatment 0.020*** 0.020*** 0.006*** 0.006***

(0.001) (0.001) (0.001) (0.001)

Constant 0.036*** 0.027*** 0.053*** 0.038***

(0.0005) (0.001) (0.001) (0.001)

User Gender No Yes No Yes
User Age No Yes No Yes
User account age No Yes No Yes
Observations 852,937 852,937 852,937 852,937
R2 0.001 0.003 0.00004 0.002
Adjusted R2 0.001 0.003 0.00004 0.002
Residual Std. Error 0.260 (df = 852935) 0.259 (df = 852925) 0.447 (df = 852935) 0.446 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01
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the experiment. We find that the treatment increased the number of Spotify users

streaming podcasts from “Home” by 59.17% (±4.58%), and the number of podcast

streams per user from “Home” by 55.75% (±5.07%). In contrast, we find that the

treatment increased the number of users streaming podcasts from non-home surfaces

by 12.55% (±2.94%) and the average number of podcast streams per user from non-

home surfaces by 10.47% (±4.16%). In other words, the treatment not only caused

an increase in podcast streaming behavior from the “Home” section of the Spotify

app, but also led to a (smaller) increase in the amount of podcast streaming behavior

from other sections of the app.

Individual-level diversity

Table 1.6: A linear model showing the difference in the average Shannon/Teachman
entropy index (streams) by stream referral source (podcast streamers only). Standard
errors are clustered at the user bucket level.

Dependent variable:

Shannon/Teachman entropy index (streams)
Home Non-home

(1) (2) (3) (4)

Treatment −0.116*** −0.116*** −0.018*** −0.017***
(0.004) (0.004) (0.005) (0.005)

Constant 0.654*** 0.730*** 0.552*** 0.562***
(0.003) (0.006) (0.003) (0.007)

User Gender No Yes No Yes
User Age No Yes No Yes
User account age No Yes No Yes
R2 0.016 0.029 0.0003 0.014
Adjusted R2 0.016 0.029 0.0003 0.014
Residual Std. Error 0.456 (df = 54335) 0.453 (df = 54325) 0.500 (df = 36327) 0.497 (df = 36317)

Note: *p<0.1; **p<0.05; ***p<0.01
Observation counts hidden due to confidentiality concerns

Figure 1.8 shows histograms of the user-level Shannon entropy for podcast streams

across both types of referral surface for users in both treatment arms, and Table 1.6

reports the differences in the average referrer-specific, user-level Shannon entropy for

the subsample of users streaming at least one podcast from a given surface type

during the experiment, both with and without controlling for user-level covariates.

We find that for users streaming at least one podcast from “Home,” the average
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Figure 1.8: The distribution of individual-level diversity for podcast streams in both
treatment arms by stream referrer. Inset plots show the distribution of individual-
level diversity by referrer in both treatment arms conditional on streaming at least
one podcast. y-axis values are on a log scale, and are hidden due to confidentiality
concerns.
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Shannon entropy of “Home” streams was 17.70% (± 1.10%) lower in the treatment

group, and that for users streaming at least one podcast from a section other than

“Home,” the average Shannon entropy of non-home streams was 3.31% (± 1.77%)

lower in the treatment group. These results indicate that individual-level diversity

in the treatment group was not only lower for streams originating from “Home,” but

also for streams coming from other sections of the Spotify app.1415

Intragroup diversity

We find that on “Home,” the intragroup diversity increased by 14.04% (95% CI:

(13.34%, 14.66%), from 0.654 (95% CI: 0.650, 0.657) in the control group to 0.746

(95% CI: (0.744, 0.748)). We find that on non-home surfaces, the intragroup diversity

increased by 0.040% (95% CI: (-0.19%, 0.96%), from 0.769 (95% CI: (0.765, 0.771)) in

the control group to 0.772 (95% CI: (0.769, 0.775)). In other words, while we do find

evidence of an increase in intragroup diversity for streams originating on “Home,” we

do not find statistically significant evidence of an increase in intragroup diversity for

non-home streams.

1.5.4 Long-term treatment effects

In this subsection, we use data collected between May 3, 2019 and July 17, 2019

to test for longer-term effects of the treatment. We repeat our main analyses on

cross-sectional datasets that describe users’ behavior over time intervals spanning

from 3rd of the month to the 17th of the month, and from the 18th of the month to

the 2nd of the month. Testing for long-term effects allows us to determine whether

short-term exposure to personalized podcast recommendations has a lasting impact

on the types of content that users consume, or if users revert to their counterfactual

14As was the case for overall effects, the effects of the treatment on referrer-specific individual-
level diversity are positive when we estimate Equation 1.1 for the entire sample. We find that
the treatment increased the average Shannon entropy of home streams by 29.83% (± 3.76%), and
increased the average Shannon entropy of non-home streams by 7.36% (± 3.19%. These results are
reported in Table 1.F.2.

15Our referrer-specific individual-level diversity results cannot be interpreted causally, since we are
conditioning on a post-treatment variable (streaming at least one podcast from a particular referrer.
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baseline podcast listening once individually personalized recommendations are no

longer shown.

Figure 1.9: The long-term effect of the treatment on podcast streams per user,
individual-level streaming diversity conditional on streaming at least one podcast,
and intragroup streaming diversity. Each outcome’s time series is scaled by the ab-
solute value of the magnitude of the treatment effect during the experiment.

Figure 1.9 shows the long-term effect of the treatment on the average number

of podcast streams per user, the average Shannon entropy of podcast streams con-

ditional on streaming at least one podcast, and the intragroup diversity of podcast
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Figure 1.10: The long-term effect of the treatment on the percentage of users stream-
ing at least one podcast. The time series is scaled by the absolute value of the
magnitude of the treatment effect during the experiment.
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Figure 1.11: The long-term referrer-level effect of the treatment on the percentage
of users streaming at least one podcast over time. Each time series is scaled by the
absolute value of the magnitude of the treatment effect during the experiment.
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Figure 1.12: The long-term effect of the treatment on the average user-level Shannon
entropy for streams. The time series is scaled by the absolute value of the magnitude
of the treatment effect during the experiment.
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Figure 1.13: The long-term referrer-level effect of the treatment on the average user-
level Shannon entropy for streams over time. Each time series is scaled by the absolute
value of the magnitude of the treatment effect during the experiment.
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streams. Across all of these outcomes, we observe the same trend: the large treat-

ment effects observed during the experiment quickly shrink in magnitude, and in some

cases disappear entirely, once the experiment has concluded.16 We also measure the

long-term effect of the treatment on podcast streams originating from different refer-

ral surfaces. This allows us to identify potential heterogeneity in the extent to which

short-term exposure to personalized podcast recommendations has a long-term effect

on consumption habits across both recommended listening and organic listening. Fig-

ure 1.14 shows the long-term effect of the treatment on average podcast streams per

user, Shannon entropy for streams conditional on streaming at least one podcast, and

intragroup diversity for streams originating from both home and non-home surfaces.

Stream referrer-level treatment effects follow the same trend as overall effects, and

this trend does not vary by stream referrer; treatment effects dissipate quickly, or

disappear entirely, once the experiment has ended. The lack of long-term treatment

effects suggests that short-term exposure to personalized podcast recommendations

does not affect long-term listening behavior through algorithmic spillovers or through

changes in what users seek out organically.17

1.6 Discussion

We find that personalized recommendations not only increased content consumption,

but also increased the homogeneity of content consumed by individual users and

increased the diversity of content consumed across users. These results suggest that

an “engagement-diversity trade-off” can exist for firms that utilize personalization

algorithms and recommendation systems to increase engagement and/or sales. This

trade-off has multiple managerial implications. First, Anderson et al. (2020) find

16The treatment effects observed during the experiment also quickly dissipate for number of users
streaming at least one podcast (Figures 1.10 and 1.11) and for the average individual-level diversity
of podcast streams measured across all users in the experiment (Figures 1.12 and 1.13), both overall
and conditional on streaming surface.

17The number of podcast streams per user over time was dependent on users being exposed to
podcast content in the “Home” section of the Spotify app. However, the number of impressions that
podcast content received on “Home” varied considerably in the months following the experiment.
The reasons for this are described in Appendix 1.D.
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Figure 1.14: The long-term referrer-level effect of the treatment on podcast streams
per user, individual-level streaming diversity conditional on streaming at least one
podcast, and intragroup streaming diversity. Each outcome’s time series is scaled by
the absolute value of the magnitude of the treatment effect during the experiment.
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that higher levels of individual-level diversity are associated with lower churn rates

and higher rates of premium service subscriptions. If this relationship is causal, this

would suggest that short-term increases in engagement/sales arising from the use

of recommendation systems can have a neutral or even negative long-term effect on

revenue. Second, the fact that recommendation systems can decrease individual-level

diversity, but increase aggregate diversity may affect the optimal strategy for content

creators, including platforms that produce their own original content (e.g., Spotify,

Netflix). Depending on the diversity of content that users consume, content creators

may find it optimal to produce large amounts of low-budget, niche content, or a small

amount of high-budget content with mass appeal. Finally, in this paper, we measure

the effect of increased personalization on consumption diversity measured with respect

to podcast categories. However, it’s possible that our analytical framework, if applied

to data with ideological labels, would yield similar results. If this is the case, when the

content delivered by a platform is ideological and/or extreme in nature, recommender

systems that increase short term firm revenue could also create costs for firms due to

the high level of public scrutiny given to personalized recommendations, and impact

the nature of public discourse through the creation of “filter bubbles.”

Our results also shed light on the effect that exposure to personalized recommen-

dations has on the types of content that users seek out organically. Although we

observe stronger treatment effects on streams originating from the “Home” section of

Spotify’s app, the treatment did affect the volume and individual-level diversity of

content that users seek out organically in other sections of app. These results suggest

that personalized recommendation algorithms have the potential to affect users’ pref-

erences, and may play a role in Balkanizing online content consumption. However,

we do not detect long-term changes in the diversity of Spotify users’ podcast con-

sumption choices after short-term exposure to personalized recommendations. This

suggests that firms can “course correct” if they discover that personalized recommen-

dations are impacting users’ consumption patterns in undesirable ways.

While Lee and Hosanagar (2019) find that recommender systems have a neutral-

to-positive effect on individual-level diversity and decrease aggregate diversity, we, like
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Claussen et al. (2019), find the opposite: in our setting, personalized recommendations

decreased individual-level diversity and increased aggregate diversity. We believe

there are multiple reasons this may be the case. First, as argued by Lee and Hosanagar

(2019), the effect of recommender systems is likely dependent on both the particular

algorithm used and the setting in which it is deployed. Second, previous economics

and management research (e.g., Brynjolfsson et al. (2011), Lee and Hosanagar (2019))

has typically measured changes in sales diversity, whereas we measure changes in the

distribution of content categories consumed.18 Given that recommender systems have

become a common feature of content platforms, we believe it is important to measure

the impact of recommender systems not just on market concentration, but also on

the types of items that users engage with. Overall, the contrast between previous

findings and ours underscores the need to study the effects of many recommendation

algorithms, in many contexts, using many different measures of diversity.

Our results suggest multiple interesting extensions. First, while our experiment

enables us to measure the effect of short-term exposure to personalized recommen-

dations, we are unable to measure the impact of long-term exposure to personalized

recommendations. Long-term exposure may affect content consumption and diversity

differently. Second, while category tags provide a coarse sense of the type of content

users are consuming, there are other important ways to quantify product diversity.

For instance, it may be helpful to measure category similarity, the political skew

of a piece of content, or the “extremity” of a piece of content. Third, it would be

worthwhile to more explicitly consider the optimal strategy of a content producer

in the presence of recommender systems that affect consumption diversity. Finally,

in this paper we study personalized recommendations that are solely optimized for

engagement. This single objective approach to personalization is common in practice,

and our findings suggest that researchers should continue to develop personalization

techniques that explicitly take into account the diversity of content recommended to

users (Marler and Arora 2004, Castells et al. 2015, Lacerda 2017).

18In Appendix 1.E, we report the effect of the experiment on the “sales diversity” for podcast
consumption.
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1.7 Conclusion

In this paper, we analyze data from a randomized field experiment and measure the

effect of personalized content recommendations not just on the amount of content

that people consumed, but also on the diversity of content that people consumed.

We find evidence that an “engagement-diversity trade-off” can exist for firms when

recommendations are optimized solely to drive engagement. While more personal-

ized recommendations increased user engagement, they also decreased the diversity

of content that individual users consumed, while simultaneously increasing the degree

of dissimilarity across users. These shifts in content consumption patterns can nega-

tively impact the rate of churn and average lifetime value for users, and also impact

the optimal strategy for content creators. We also find evidence that exposure to per-

sonalized content recommendations impacted the types of content that users sought

out organically. At first glance, our results are at tension with some recent studies of

recommender systems, such as Lee and Hosanagar (2019). However, we believe this

contrast highlights the need for further experimental studies of recommender systems

across a multitude of different business settings and algorithm specifications, as well as

the need to develop new measures for quantifying the effect of recommender systems.

Furthermore, we believe our results underscore the need for researchers to continue

developing approaches to personalization that optimize jointly for user engagement

and consumption diversity.
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Appendix

1.A Experiment Balance Checks

Table 1.A.1: User bucket-level summary statistics for buckets in both the control
and treatment arms of the experiment. 𝑝-values are computed using the Wilcoxon
rank-sum test.

Metric Mean (control) SD (control) Mean (treatment) SD (treatment) 𝑝-value Sig.
Number of users 4761.021 82.808 4713.965 89.633 < .001 ***
% of users age 18 - 24 0.342 0.007 0.339 0.008 0.077 *
% of users age 25 - 29 0.209 0.005 0.209 0.006 0.955
% of users age 30 - 34 0.131 0.005 0.132 0.005 0.139
% of users age 35 - 44 0.155 0.005 0.156 0.005 0.368
% of users age 45 - 54 0.102 0.004 0.103 0.005 0.291
% of users age 55+ 0.055 0.003 0.055 0.003 0.542
% of users of unknown age 0.006 0.001 0.006 0.001 0.4
% of male users 0.537 0.006 0.538 0.007 0.322
% of female users 0.454 0.006 0.453 0.007 0.291
% of users with other gender 0.005 0.001 0.005 0.001 0.409
% of users with gender unknown 0.004 0.001 0.004 0.001 0.967
Average mean account age (days) 1285.698 11.569 1284.711 11.435 0.412

Table 1.A.1 shows bucket-level summary statistics for user buckets in both the

treatment and control conditions, and tests for statistically significant differences be-

tween them. With the exception of average number of exposed users per bucket, we

do not find statistically significant differences between the control group and treat-

ment group for any of the specified user-level covariates. We believe that the smaller

number of exposed users per bucket in the treatment group is driven by random errors

in the generation of recommendations using the neural network-based model.

1.B Podcast Follows Analysis

In this section, we repeat our analyses for podcast follows, as opposed to podcast

streams. Because our results for podcast follows are extremely similar to those for

podcast streams, we elect not to conduct referrer-level analysis for podcast follows.
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1.B.1 Effect on podcast follows

Figure 1.B.1: The distribution of podcasts followed in both treatment arms. Inset
plot shows the distribution of podcasts followed in both treatment arms conditional
on following at least one podcast.

Figure 1.B.1 shows the distribution of podcast follows per user during the ex-

periment in both treatment arms. Table 1.B.1 reports the estimated effect of the

treatment on podcast follows per user during the duration of the experiment, and

Table 1.B.2 reports the estimated effect of the treatment on following at least one
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Table 1.B.1: A linear model showing the effect of the treatment on number of podcasts
followed. Standard errors are clustered at the user bucket level.

Dependent variable:

Podcasts followed

(1) (2)

Treatment 0.012*** 0.012***
(0.001) (0.001)

Constant 0.023*** 0.029***
(0.0005) (0.001)

User Gender No Yes
User Age No Yes
User account age No Yes
Observations 852,937 852,937
R2 0.0004 0.001
Adjusted R2 0.0004 0.001
Residual Std. Error 0.301 (df = 852935) 0.301 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01

podcast during the experiment. We find that the treatment increased the number of

Spotify users following at least one podcast by 53.45% (± 5.23%), and increased the

number of podcast follows per user by 51.38% (± 7.64%).

Using the principal stratification approach (Frangakis and Rubin 2002, Ding and

Lu 2017), we are able to measure the extent to which this treatment effect is driven

by compositional shifts, as opposed to intensity shifts. We find that the treatment

led “compliers” to follow 1.499 (95% CI: (1.472, 1.536)) more podcasts, whereas the

treatment led “always takers” to follow 0.018 (95% CI: (-0.070, 0.035)) fewer podcasts.

In other words, the increase in podcast following in the treatment is driven by a greater

number of users following at least one podcast during the experiment, as opposed to

an increase in the number of podcast follows from those who would have followed a

podcast even if they had not been exposed to the treatment.
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Table 1.B.2: A linear probability model showing the effect of the treatment on fol-
lowing at least one podcast. Standard errors are clustered at the user bucket level.

Dependent variable:

Followed podcast

(1) (2)

Treatment 0.008*** 0.008***
(0.0003) (0.0003)

Constant 0.015*** 0.018***
(0.0002) (0.0004)

User Gender No Yes
User Age No Yes
User account age No Yes
Observations 852,937 852,937
R2 0.001 0.002
Adjusted R2 0.001 0.002
Residual Std. Error 0.135 (df = 852935) 0.135 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01
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1.B.2 Effect on diversity of podcast follows

We also measure the effect of the treatment on the individual-level diversity and

intragroup diversity for podcast follows.

Individual-level diversity

Figure 1.B.2: The distribution of the user-level diversity for follows in both treatment
arms. Inset plot shows the distribution of user-level diversity in both treatment arms
conditional on following at least one podcast. y-axis values are on a log scale, and
are hidden due to confidentiality concerns.
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Table 1.B.3: A linear model showing the difference in the average Shannon/Teachman
entropy index (follows) (podcast followers only). Standard errors are clustered at the
user bucket level.

Dependent variable:

Shannon/Teachman entropy index (follows)

(1) (2)

Treatment −0.069*** −0.068***
(0.008) (0.008)

Constant 0.650*** 0.708***
(0.006) (0.011)

User Gender No Yes
User Age No Yes
User account age No Yes
R2 0.005 0.021
Adjusted R2 0.005 0.020
Residual Std. Error 0.505 (df = 15894) 0.501 (df = 15884)

Note: *p<0.1; **p<0.05; ***p<0.01
Observation counts hidden due to confidentiality concerns
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Figure 1.B.2 shows the histogram of the user-level Shannon entropy for podcast

follows in both treatment arms, and Table 1.B.3 reports the difference in the average

following user’s Shannon entropy, both with and without controlling for user-level

covariates. We find that the average Shannon entropy of podcast follows among users

who followed at least one podcast was 10.68% (± 2.33%) lower in the treatment.

However, as was the case for our analysis of streaming behavior, this estimate is

non-causal, since we condition on a post-treatment variable (the decision to follow at

least one podcast). Using the principal stratification approach (Frangakis and Rubin

2002, Ding and Lu 2017), we can identify the causal effect of the treatment on the

individual-level diversity of podcast follows for the subset of users who would follow a

podcast, regardless of which treatment condition they were exposed to (i.e., “always

takers”). We estimate that on average, the treatment decreased the individual-level

diversity of always takers by 0.067 (95% CI: (0.052, 0.081)). In other words, the

causal effect of the treatment on the individual-level diversity of podcast follows was

negative for “always takers.”

Table 1.B.4 reports the estimated effect of the treatment on the individual-level

diversity of podcast follows for all users in the experiment, both with and without

controlling for user-level covariates. We find that the treatment increased the Shannon

entropy for podcast follows by 37.06% (± 6.17%). Figure 1.B.3 shows histograms of

the user-level Shannon entropy for podcast follows in both treatment arms conditional

on a user following a particular number of podcasts during the experiment.

Effect on intragroup diversity

We find that the treatment increased the intragroup diversity for follows by 7.12%

(95% CI: (6.04%, 8.23%), from 0.687 (95% CI: (0.681, 0.693)) in the control group to

0.736 (95% CI: (0.732, 0.740))
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Table 1.B.4: A linear model showing the effect of the treatment on the Shan-
non/Teachman entropy index (follows) (all users). Standard errors are clustered at
the user bucket level.

Dependent variable:

Shannon/Teachman entropy index (follows)

(1) (2)

Treatment 0.004*** 0.004***
(0.0003) (0.0003)

Constant 0.010*** 0.013***
(0.0002) (0.0003)

User Gender No Yes
User Age No Yes
User account age No Yes
Observations 852,937 852,937
R2 0.0003 0.001
Adjusted R2 0.0003 0.001
Residual Std. Error 0.108 (df = 852935) 0.108 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure 1.B.3: The distribution of the user-level diversity for follows in both treatment
arms conditional on following a set number of podcasts during the experiment. y-axis
values are on a log scale, and are hidden due to confidentiality concerns.
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1.B.3 Long-term effects

We use data collected between May 3, 2019 and July 17, 2019 to test for longer-term

effects of the treatment. We repeat our main analyses on cross-sectional datasets that

describe users’ behavior over time intervals spanning from the 3rd of the month to

the 17th of the month, and from the 18th of the month to the 2nd of the month.

Figure 1.B.4: The long-term effect of the treatment on podcast follows per user,
individual-level following diversity conditional on following at least one podcast, and
intragroup following diversity. Each outcome’s time series is scaled by the absolute
value of the magnitude of the treatment effect during the experiment.
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Figure 1.B.5: The long-term effect of the treatment on the percentage of users fol-
lowing at least one podcast. The time series is scaled by the absolute value of the
magnitude of the treatment effect during the experiment.
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Figure 1.B.6: The long-term effect of the treatment on the average user-level Shannon
entropy for follows. The time series is scaled by the absolute value of the magnitude
of the treatment effect during the experiment.
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Figure 1.B.4 shows the long-term effect of the treatment on the average number of

podcast follows per user, the average Shannon entropy of podcast follows conditional

on following at least one podcast, and the intragroup diversity of podcast follows.

Across all of these outcomes, we observe the same trend: the large treatment effects

observed during the experiment quickly shrink in magnitude, and in some cases disap-

pear entirely, once the experiment has concluded. Figure 1.B.5 shows the long-term

effect of the treatment on the number of users following at least one podcast, and

Figure 1.B.6 shows the long-term effect of the treatment on the individual-level diver-

sity for podcast follows across all users in our sample. For both of these time series,

we also observe the rapid dissipation of treatment effects.

1.B.4 Effect on “sales diversity”

Figure 1.B.7 shows the Lorenz curve for podcast follows across the top 200 podcasts

in both treatment arms of the experiment. The difference between the two curves in-

dicates that the treatment makes podcast following less concentrated, and distributes

a larger fraction of follows to less popular podcasts, i.e., the treatment increases the

sales diversity for podcast follows. We confirm this by measuring the Gini coefficients

corresponding to each treatment arm’s Lorenz curve. We find that that the treatment

reduces the Gini coefficient by 0.138 (95% CI: (0.116, 0.149)), from 0.588 to 0.450.

We also measure the effect of the treatment on sales diversity by estimating

Equation 1.4 with follow counts and follow rank, as opposed to stream counts and

stream rank. Figure 1.B.8 shows the relationship between ln(𝐹𝑜𝑙𝑙𝑜𝑤𝑠𝑖 + 1) and

ln(𝐹𝑜𝑙𝑙𝑜𝑤𝑠𝑅𝑎𝑛𝑘𝑖) across all podcasts appearing in our dataset, and Table 1.B.5

shows the results of estimating Equation 1.4 on data from the top 200 podcasts in

each treatment arm. The reported 95% confidence intervals are calculated with the

cluster bootstrap (𝑛𝑏𝑜𝑜𝑡 = 1,000). The positive estimate for 𝛽3 also indicates that the

treatment increases sales diversity.
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Figure 1.B.7: The Lorenz curves for podcast follows, calculated separately for users
in the treatment and control. The data for each Lorenz curve is limited to the 200
most followed podcasts in the corresponding treatment arm data. The inset curve
shows the Lorenz curve for follows across all podcasts.
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Figure 1.B.8: The relationship between ln(follows + 1) and ln(follow rank) for both
the control and treatment arms of the experiment.
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Table 1.B.5: Estimated coefficients for a model comparing the podcast follow Lorenz
curves for control and treatment users

Dependent variable:

ln(follows + 1)

ln(rank) −0.906***
(−0.915, −0.869)

Treatment −0.208***
(−0.295, −0.079)

ln(rank) × Treatment 0.172***
(0.133, 0.194)

Constant 6.843***
(6.732, 6.892)

Observations 400
R2 0.983
Adjusted R2 0.983
Residual Std. Error 0.111 (df = 396)

Note: *p<0.1; **p<0.05; ***p<0.01
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1.C Principal stratification methodology

In this section, we describe our principal stratification methodology, which is based

on the principal stratification approach described by Frangakis and Rubin (2002) and

Ding and Lu (2017).

The principal stratification framework allows for causal inference in cases where

an intermediate variable (in our case, listening to or following at least one podcast)

leads to sample selection issues. Using this framework, we are able to separately

measure causal effects of the treatment for “always takers,” i.e., those would stream

or follow a podcast, regardless of their treatment status and “compliers,” i.e., those

who would follow or stream a podcast only if treated. The key assumption necessary

for implementing principal stratification is weak general principal ignorability (Ding

and Lu 2017), which states that the expected outcome conditional on the interme-

diate variable (streaming or following at least one podcast) is independent of strata

(complier, always taker, never taker) after controlling for covariates.

Our implementation of the principal stratification framework uses the marginal

method described by Feller et al. (2017) to compute the probability that each user in

our sample is a complier, always taker, or never taker. Under the principal strat-

ification approach’s monotonicity assumption, we can assume that users who do

not stream or follow a podcast in the treatment are never takers, and that pod-

cast streamers or followers in the control are always takers. For all other users,

we estimate the probability that they are an always taker using a logistic regres-

sion model that is trained on control data and predicts streaming or following a

podcast using user-level covariates. Similarly, we estimate the probability that a

user is a never taker using a logistic regression model that is trained on treat-

ment data and predicts streaming or following a podcast using user-level covari-

ates. Once we have estimated 𝑃 (𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑎𝑘𝑒𝑟)𝑖 and 𝑃 (𝑛𝑒𝑣𝑒𝑟 𝑡𝑎𝑘𝑒𝑟)𝑖, we can cal-

culate 𝑃 (𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑟)𝑖, since 𝑃 (𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑟)𝑖 = 1 − 𝑃 (𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑎𝑘𝑒𝑟)𝑖 − 𝑃 (𝑛𝑒𝑣𝑒𝑟 𝑡𝑎𝑘𝑒𝑟)𝑖.

In cases where 𝑃 (𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑎𝑘𝑒𝑟)𝑖 + 𝑃 (𝑛𝑒𝑣𝑒𝑟 𝑡𝑎𝑘𝑒𝑟)𝑖 > 1, we set 𝑃 (𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑟)𝑖 = 0

and normalize the other two probabilities so that they sum to 1. In both logistic
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regression models, user age bucket, user gender, and user account age (in days) are

the covariates used to predict the intermediate variable.19 Once we have computed

the probability that each user belongs to each stratum, we use these probabilities

as weights to construct causal stratum-level treatment effect estimators. Confidence

intervals are calculated using a clustered bootstrap (𝑛𝑏𝑜𝑜𝑡 = 1, 000).

We test that the principal stratification model we have proposed is accurate using

the balancing conditions proposed by Ding and Lu (2017). Simply put, the balancing

conditions require that within each stratum, the treatment should not appear to have

a causal effect on any function of the pretreatment covariates used to estimate a given

unit’s stratum. For both intermediate outcomes (streaming at least one podcast and

following at least one podcast), we estimate the effect of the treatment on each pre-

treatment user-level covariate in each stratum. The results for podcast streaming are

shown in Figure 1.C.1 and the results for podcast following are shown in Figure 1.C.2.

In both cases, the estimated effects are nearly zero across all strata and covariates,

indicating that the balancing conditions are satisfied.

1.D “Home” podcast impressions over time

The number of podcast streams per user over time was dependent on users being

exposed to podcast content in the “Home” section of the Spotify app. However, the

number of impressions that podcast content received on “Home” varied considerably

in the months following the experiment. During the experiment, the majority of

podcast content impressions on “Home” came from the “Podcasts to Try” shelf, since

it was anchored in the second slot. After the experiment had ended, the “Podcasts

to Try” shelf was briefly removed from the Spotify app to be productionized. The

treatment version of the shelf was relaunched to 100% of Spotify users in late May,

however, the shelf was no longer anchored in the second slot. As a result, there were

19We also calculate strata probability estimates using the EM algorithm described by Ding and Lu
(2017). The point estimates obtained using this method are qualitatively similar to those obtained
using the marginal method. However, we choose the marginal method for computational tractability
when calculating bootstrap standard errors.
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Figure 1.C.1: Results of the principal stratification balance check. The intermediate
variable is whether a given user streamed at least one podcast during the experiment.
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Figure 1.C.2: Results of the principal stratification balance check. The intermediate
variable is whether a given user followed at least one podcast during the experiment.
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Figure 1.D.1: The number of daily podcast content impressions from both the “Pod-
casts to Try” shelf and other podcast-related shelves on the “Home” section of the
Spotify app, shown separately for users in the two treatment arms of the experiment.
The dashed red line corresponds to the experiment launch date. The dashed magenta
line corresponds to the experiment end date. The dashed green line corresponds to
the productization of the “Podcasts to try” shelf. The dashed blue line corresponds
to the launch of the podcast shelf boosting experiment. The dashed yellow line cor-
responds to the end of the podcast shelf boosting experiment. y-axis values hidden
due to confidentiality concerns.

71



far fewer impressions for all podcast related shelves, including “Podcasts to try.” An

experiment to determine the optimal amount of boosting for podcast shelves was

launched in mid-May, and podcast shelf boosting was launched to 100% of users in

early June. Figure 1.D.1 shows the number of impressions for podcast content on

both “Podcasts to Try” and other podcast-related shelves for both treatment and

control users over time. Note that the time series for the two experiment treatment

arms are essentially identical.

1.E Effect on “sales diversity”

In this section, we measure the effect of the treatment on the “sales diversity” of

podcast consumption, as measured through the Lorenz curve and Gini coefficients

corresponding to podcast streaming in both treatment arms of the experiment.

Figure 1.E.1 shows the Lorenz curve for podcast streaming across the top 1,000

podcasts in both treatment arms of the experiment. The difference between the two

curves indicates that the treatment makes podcast streaming less concentrated, and

distributes a larger fraction of streams to less popular podcasts. In other words, the

treatment increases sales diversity. We confirm this by measuring the Gini coefficients

corresponding to each treatment arm’s Lorenz curve. We find that that the treatment

reduces the Gini coefficient by 0.050 (95% CI: 0.037, 0.061), from 0.692 to 0.642.

We also measure the effect of the treatment on sales diversity by estimating the

following model (Brynjolfsson et al. 2011):

ln(𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑖 + 1) =𝛽0 + 𝛽1 ln(𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑅𝑎𝑛𝑘𝑖) + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖+

𝛽3𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × ln(𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑅𝑎𝑛𝑘𝑖) + 𝜖𝑖,
(1.4)

where 𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑖 is how many streams podcast 𝑖 received during the experiment in a

particular treatment arm, 𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑅𝑎𝑛𝑘𝑖 is podcast 𝑖’s rank among all podcasts in

that treatment arm, and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 indicates the treatment arm corresponding to

the observation. The coefficient of interest is 𝛽3, which tests for a difference between
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Figure 1.E.1: The Lorenz curves for podcast streams, calculated separately for users
in the treatment and control. The data for each Lorenz curve is limited to the 1,000
most streamed podcasts in the corresponding treatment arm data. The inset curve
shows the Lorenz curve for streams across all podcasts.
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the two treatment arms in the rate at which number of streams decreases with stream

rank.

Figure 1.E.2: The relationship between ln(streams + 1) and ln(stream rank) for both
the control and treatment arms of the experiment.

Figure 1.E.2 shows the relationship between ln(𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑖 + 1) and ln(𝑆𝑡𝑟𝑒𝑎𝑚𝑠

𝑅𝑎𝑛𝑘𝑖) across all podcasts appearing in our dataset, and Table 1.E.1 shows the results

of estimating Equation 1.4 on data from the top 1,000 podcasts in each treatment arm.

The reported 95% confidence intervals are calculated with the cluster bootstrap (𝑛𝑏𝑜𝑜𝑡

74



Table 1.E.1: Estimated coefficients for a model comparing the podcast stream Lorenz
curves for control and treatment users

Dependent variable:

ln(streams + 1)

ln(rank) −1.046***
(−1.064, −1.024)

Treatment −0.043
(−0.178, 0.086)

ln(rank) × Treatment 0.053***
(0.027, 0.078)

Constant 10.453***
(10.380, 10.587)

Observations 2,000
R2 0.987
Adjusted R2 0.987
Residual Std. Error 0.118 (df = 1996)

Note: *p<0.1; **p<0.05; ***p<0.01
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= 1,000). The positive estimate for 𝛽3 also indicates that the treatment increases sales

diversity.

1.F Additional Tables

Table 1.F.1: A linear model showing the effect of the treatment on the Shan-
non/Teachman entropy index (streams) (all users). Standard errors are clustered
at the user bucket level.

Dependent variable:

Shannon/Teachman entropy index (streams)

(1) (2)

Treatment 0.010*** 0.010***
(0.001) (0.001)

Constant 0.047*** 0.051***
(0.0004) (0.001)

User Gender No Yes
User Age No Yes
User account age No Yes
Observations 852,937 852,937
R2 0.001 0.003
Adjusted R2 0.001 0.003
Residual Std. Error 0.219 (df = 852935) 0.219 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01
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Table 1.F.2: A linear model showing the effect of the treatment on the Shan-
non/Teachman entropy index (streams) by stream referral source (all users). Stan-
dard errors are clustered at the user bucket level.

Dependent variable:

Shannon/Teachman entropy index (streams)
Home Non-home

(1) (2) (3) (4)

Treatment 0.010*** 0.010*** 0.002*** 0.002***

(0.001) (0.001) (0.0004) (0.0004)

Constant 0.033*** 0.038*** 0.022*** 0.021***

(0.0004) (0.001) (0.0002) (0.0005)

User Gender No Yes No Yes
User Age No Yes No Yes
User account age No Yes No Yes
Observations 852,937 852,937 852,937 852,937
R2 0.001 0.002 0.00003 0.002
Adjusted R2 0.001 0.002 0.00003 0.002
Residual Std. Error 0.184 (df = 852935) 0.184 (df = 852925) 0.151 (df = 852935) 0.150 (df = 852925)

Note: *p<0.1; **p<0.05; ***p<0.01
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Chapter 2

Limiting Bias from Test-Control

Interference in Online Marketplace

Experiments
1

2.1 Introduction

Some of the world’s most valuable tech companies, such as Alibaba, Amazon, Airbnb,

and Uber, own and operate online marketplaces. A common way for these firms to

make product decisions is through experimentation, or ‘A/B testing’ (Kohavi et al.

2009). Typically these experiments aim to measure the total average treatment effect

(TATE) of a treatment intervention, i.e., the difference between the average outcome

across all units if 100% of units had been exposed to the treatment, and the average

outcome across all units if no units had been exposed to the treatment, on outcomes

such as click-through-rate or average revenue per user. Many firms conduct thousands

of experiments a year (Clarke 2016), and often aim to measure TATEs that are small

in relative terms (e.g., fractions of a percentage point), but which can correspond to

large revenue gains or losses (e.g., millions of dollars). Given the high potential cost

1I thank Sinan Aral, Dean Eckles, Andrey Fradkin, Madhav Kumar, Ed McFowland, Rajiv
Mukherjee, and Michael Zhao for their useful feedback, and are grateful to KJ Dakin for copy
editing assistance. I also thank participants at CODE 2016, WISE 2016, and WEBEIS 2019, as well
as anonymous reviewers at Information Systems Research, for their comments.
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of drawing incorrect inferences about the effects of any given product change, it is

crucial for online marketplace firms to develop methods for unbiased causal inference

in online marketplace settings.

Under the assumption that each experimental unit’s response is not influenced by

any other units’ treatment assignment (i.e., the “stable unit treatment value assump-

tion” (SUTVA) (Rubin 1974) or “no interference” assumption (Cox 1958)), the TATE

can be identified by the “standard” approach to experimentation, in which individ-

ual units are randomly assigned to treatment or control, and the TATE is estimated

using a difference in means estimator. However, online marketplaces are by defini-

tion connected and violate SUTVA. For instance, a treatment that increases buyer

demand may reduce the supply available to buyers in the control group. Similarly, a

treatment that induces sellers to lower prices may increase demand for treated sellers’

products, thereby reducing the demand for control sellers’ products. In both of these

cases, the treatment affects not only the treated units’ outcomes, but also the control

units’ outcomes.

In this paper, I refer to violations of SUTVA as ‘test-control interference.’ Existing

work has documented the presence of test-control interference in online marketplace

settings (Blake and Coey 2014, Holtz et al. 2020), and previous research has shown

both through the analysis of experimental data and through simulations that naive

estimates of TATEs in online marketplaces can exaggerate the effectiveness of treat-

ment interventions by over 100% (Blake and Coey 2014, Fradkin 2015). Both Blake

and Coey (2014) and Fradkin (2015) have previously proposed methods for combating

test-control interference in online marketplace experiments. However, the proposed

solutions require markets that offer convenient and easily identifiable units of analy-

sis (e.g., auctions or sub-markets) over which to aggregate outcomes or segment the

marketplace, or involve the development of structural model-based simulations, which

may be difficult to implement for smaller firms that do not employ a large number of

economists with training in structural modeling.

Here, I contribute to the literature on test-control interference in online mar-

ketplace experiments by proposing that techniques for network experimentation be
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adapted to the context of online marketplaces, and using a simulation framework

to assess the efficacy of these techniques at reducing the bias of TATE estimates.

The techniques analyzed include graph cluster randomization (GCR) (Ugander et al.

2013), exposure modeling (Aronow et al. 2017), and inverse probability-weighted

treatment effect estimators (Hájek 1971, Aronow et al. 2017, Eckles et al. 2017).

The key step required to adapt these methods to online marketplaces is inferring a

“product network” that connects different sellers or items within a market. After this

is done, the aforementioned methods can be applied in a straightforward way when

designing and/or analyzing online marketplace experiments. Prior research in the

information systems literature has shown that “visible” product networks, in which

an edge exists between two products if they appear on each other’s checkout pages,

can be an effective tool for studying competition, estimating demand spillovers, and

predicting demand (Oestreicher-Singer and Sundararajan 2012b,a, Dhar et al. 2014).

However, it is unclear ex ante if network experiment design and analysis techniques

will be effective at reducing bias when applied to product networks, given that the

underlying phenomena that cause spillovers (e.g., substitution and complementarity)

are different. Furthermore, in many cases, online marketplace experiment design-

ers may need to infer a product network because there is no “explicit” network that

connects sellers/items in the marketplace.

The simulations use a scraped dataset that describes the full set of Airbnb prop-

erties in and around Miami, as well as a product network that is built for this market

using a simple heuristic. In the simulation, which models one night of booking ac-

tivity on Airbnb, a number of searchers with BLP-inspired utility functions (Berry

et al. 1995, Nevo 2000) sequentially visit the market, and are served a subset of the

available properties according to a “search algorithm.” Based on their preferences,

each searcher chooses which property, if any, they will book, after which that prop-

erty does not appear in subsequent search results. Notably, my simulation framework

does not make any assumptions about the functional form of interference between

units. In fact, my marketplace simulations do not explicitly prescribe that different

properties in the market interfere with one another at all.
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Using this simulation framework, I am able to estimate the market-level booking

rate and average listing revenue in the absence of a treatment intervention, and un-

der the market-wide implementation of two different treatment interventions: one in

which the prices of treated listings are reduced, and one in which the “unobservable”

quality of treated listings is increased. After quantifying the true TATEs, using sim-

ulations of market-wide treatment and market-wide control, I also use my simulation

framework to compare the bias, root mean square error (RMSE), and coverage proba-

bilities of different combinations of experiment design, exposure model, and treatment

effect estimator. I find that relative to the baseline of an individual-level, Bernoulli

randomized experiment that is analyzed with a difference in means estimator, blocked

GCR can reduce the bias of TATE estimates by as much as 64.5%. However, blocked

GCR also increased the RMSE of TATE estimates by up to 204%. When analyzed

with a linear regression model in which standard errors are clustered at the level of

the graph cluster, blocked GCR also led to coverage probabilities that were at or

above the nominal level, whereas the baseline experiment design consistently led to

95% confidence intervals with coverage probabilities as low as 6%. I also find that

the combination of the FNTR exposure model and the inverse probability-weighted

Hajek estimator have the potential to further reduce the bias of TATE estimates.

However, the effectiveness of the FNTR exposure model is dependent on the choice

of threshold, and the optimal choice may be difficult for experimenters to ascertain.

I also test the robustness of these findings to changes to the data generating pro-

cess, different levels of network mis-specification, varied numbers of product network

clusters, different levels of demand in the market, and an entirely different set of prod-

ucts (and, as a result, a different product network). In almost all cases, I find that

my general results hold. I also fail to find evidence of a clear “bias-variance” trade-off

as I vary the number of clusters used to segment the product network. This suggests

that the extent to which the bias (RMSE) of TATE estimates decreases (increases)

under GCR is not solely mediated by how finely the product network is partitioned,

and may also depend on the structure of the underlying network and the particular

clustering algorithm that is used.
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The fact that the methods I investigate in this paper reduce bias, but at the cost

of excessive variance, suggests that they may be appropriate in contexts where sta-

tistical power is high (i.e., sample size is large), the experimenter anticipates that the

magnitude of test-control interference will be large, and/or there are significant con-

cerns that bias from test-control interference may flip the sign of the TATE estimate.

However, there are many cases in which the reduction in bias may not be worth the

increase in RMSE. In some cases, experiment designers may prefer alternative designs,

such as switchback experiments (Sneider et al. 2019, Bojinov et al. 2020) or two-sided

randomization (TSR) (Johari et al. 2020). Although switchback experiment designs

do not, in general, cause excessive variance, they can introduce new sources of bias

in contexts where intertemporal spillovers are a significant concern. Although the

TSR design can reduce bias without increasing RMSE to such a significant degree,

TSR is not feasible for treatment interventions that cannot be applied at the joint

shopper-product level. In other cases, in lieu of a randomized experiment, researchers

and practitioners may be able to estimate the effect of a proposed treatment interven-

tion using BLP-style demand estimation techniques (Berry et al. 1995, Nevo 2000).

However, there are many cases in which this approach may be undesirable or infea-

sible, due to the expertise required to estimate structural models, concerns about

specification error, treatment interventions that are not easily modeled in BLP-style

frameworks, and/or the difficulty of using structural models to analyze markets with

supply constraints and large amounts of product heterogeneity (Conlon and Mortimer

2013, Farronato and Fradkin 2018).

The structure of this paper is as follows. In Section 2.2, I review the experiment

designs and analysis methods to be evaluated via simulation, and discuss how these

methods can be adapted to the online marketplace setting. Section 2.3 provides

a summary of the Airbnb dataset used, the network generation process, and my

approach to clustering the network. I describe the simulation process in Section 2.4,

and present my results in Section 2.5. In Section 2.6, I discuss my findings and in

Section 2.7, I conclude.
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2.2 Theoretical Motivation

In this section, I provide a description of the network interference problem, a brief

overview of prior work that aims to address this issue in the context of networked

experiments, and the intuition for how that prior work can be adapted to the setting

of online marketplace experiments.2

The focus of this paper is experiments that aim to estimate the total average

treatment effect (TATE), which is also sometimes referred to as the global average

treatment effect (GATE). Conceptually, the TATE measures the difference between

the average outcome in the population under the counterfactual in which every unit

receives the treatment, and the average outcome in the population under the coun-

terfactual in which every unit receives the control. Formally, consider an experiment

with 𝑁 units, and let 𝑍 be a vector of length 𝑁 indicating each unit’s treatment

assignment (e.g., in the case of binary treatment, 𝑍𝑖 might be 1 if unit 𝑖 is assigned

to the treatment, and 0 if unit 𝑖 is assigned to the control). The response of each unit

𝑖 is a function of 𝑍, and can be written as 𝑌𝑖(𝑍). In this case, the TATE estimand

can be written as

𝜏(𝑧1, 𝑧0) =
1

𝑁

𝑁∑︁
𝑖=1

E [𝑌𝑖(𝑍 = 𝑧1) − 𝑌𝑖(𝑍 = 𝑧0)] , (2.1)

where 𝑧1 is a treatment assignment vector in which all units receive the treatment,

and 𝑧0 is a treatment vector in which all units receive the control.

Non-networked experiments typically rely on the stable unit treatment value as-

sumption (SUTVA) (Rubin 1974), which is also sometimes referred to as the no inter-

ference assumption (Cox 1958) or the individualistic treatment response assumption

(Manski 2013). SUTVA requires that the response of a particular unit in an exper-

iment relies only on the treatment delivered to that unit, and not on the treatment

delivered to other units in the experiment. Put differently, SUTVA requires that

𝑌𝑖(𝑍) = 𝑌𝑖(𝑍𝑖), i.e., unit 𝑖’s response does not depend on any element of Z besides

2For a more detailed overview of the prior work on this issue in the context of networked experi-
ments, I refer the reader to Eckles et al. (2017).
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the 𝑖th element. Under SUTVA, Eq. 2.1 can be rewritten as

𝜏(𝑧1, 𝑧0) =
1

𝑁

𝑁∑︁
𝑖=1

E [𝑌𝑖(𝑍𝑖 = 1) − 𝑌𝑖(𝑍𝑖 = 0)] . (2.2)

When treatment is assigned to individual units randomly, with 𝑁𝑇 units receiving

the treatment and 𝑁𝐶 units receiving the control, the standard difference-in-means

average treatment effect (ATE) estimator

�̂� =
1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑌𝑖1(𝑍𝑖 = 1) − 1

𝑁𝐶

𝑁∑︁
𝑖=1

𝑌𝑖1(𝑍𝑖 = 0) (2.3)

provides an unbiased estimate of both the ATE and the TATE, as the two are equiv-

alent. However, in cases where SUTVA is violated (i.e., there is test-control interfer-

ence), the difference-in-means ATE estimator will provide a biased estimate of the

TATE, since neither 𝑌𝑖(𝑍 = 𝑧1) nor 𝑌𝑖(𝑍 = 𝑧0) is observed for any unit 𝑖 in the

experiment. To gain some intuition for why this is the case, consider a researcher or

policymaker who hopes to measure the effect of a coordinated marketing campaign

delivered to everyone that raises awareness of a new job training program offered by

the government. In a randomized experiment, some of those in the control group,

who are not targeted by the campaign, may still be made aware of the job training

program by contacts of theirs in the treatment group. Because of this “interference”

between the control group and treatment group, the difference between program en-

rollment rates in the two arms of the experiment may not be equal to the difference

between the enrollment rate had everyone been targeted by the marketing campaign

and the enrollment rate had no one been targeted by the marketing campaign.

In order to make estimating the TATE via randomized experiment more tractable,

I can introduce the assumption that unit 𝑖’s treatment response, 𝑌𝑖(𝑍), depends only

on a subset of the elements of 𝑍, as opposed to the full treatment assignment vector.

For instance, in a networked setting, unit 𝑖’s response might only depend on 𝑍𝑖 and

𝑍𝑁(𝑖), where 𝑁(𝑖) is the set of 𝑖’s network neighbors and 𝑍𝑁(𝑖) are the entries of

𝑍 corresponding to those neighbors. Such an assumption can be referred to as a

constant treatment response (CTR) assumption (Manski 2013) or as an exposure
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model (Ugander et al. 2013, Aronow et al. 2017). More formally, an exposure model

can be written as a function 𝑔𝑖(·): 𝑍𝑁 → 𝐺𝑖 that maps global treatment assignment

vectors to the space 𝐺𝑖 of effective treatments for node 𝑖. Under a given exposure

model 𝑔𝑖(·), 𝑔𝑖(𝑧𝑚) = 𝑔𝑖(𝑧𝑛) implies that the treatment vectors 𝑧𝑚 and 𝑧𝑛 provide

unit 𝑖 with the same “effective treatment.” For instance, under an exposure model

in which unit 𝑖’s effective treatment is a function of the treatment assignments for

unit 𝑖 and its neighbors, 𝑁(𝑖), two global treatment assignment vectors that contain

different treatment assignments for unit 𝑗 /∈ 𝑁(𝑖) would provide unit 𝑖 with the same

effective treatment so long as the treatment assignments for 𝑖 and 𝑁(𝑖) were all the

same.

One experiment design method for reducing bias in TATE estimates is graph clus-

ter randomization (GCR) (Ugander et al. 2013, Eckles et al. 2017), in which the net-

work is partitioned into clusters, and then randomized at the cluster-level, as opposed

to the unit-level. Even when an exposure model is not explicitly specified, GCR will

still increase the percentage of units experiencing the “effective treatment” or “effective

control” under a large number of reasonable exposure models, and should reduce the

amount of bias due to test-control interference. More formally, in an individual-level

Bernoulli randomized experiment, treatment assignment is randomized at the unit

level by drawing each 𝑍𝑖 from a Bernoulli distribution

𝑍𝑖 ∼ Bernoulli(𝑞), (2.4)

where 𝑞 is the probability of assignment to the treatment. Under GCR the network is

first partitioned into 𝑁𝐶 clusters: 𝐶1, 𝐶2, ..., 𝐶𝑁𝐶
, after which each cluster is given a

cluster-level treatment assignment, 𝑊𝐽 , which is drawn from a Bernoulli distribution

𝑊𝑗 ∼ Bernoulli(𝑞). (2.5)

After cluster-level treatment assignments are determined, each node in a given cluster

is assigned its cluster’s treatment assignment.

Bias can also be reduced in the analysis stage of an experiment by assuming a
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specific exposure model 𝑔(𝑖), and modifying the ATE estimand found in Eq. 2.1 to

incorporate that exposure model, such that the revised estimand is

𝜏(𝑧1, 𝑧0)𝑒𝑓𝑓 =
1

𝑁

𝑁∑︁
𝑖=1

E [𝑌𝑖(𝑍)|𝑔𝑖(𝑍) = 𝑔𝑖(𝑧1)] − E [𝑌𝑖(𝑍)|𝑔𝑖(𝑍) = 𝑔𝑖(𝑧0)] . (2.6)

If the specified exposure model is correct, then this estimand is equivalent to the

TATE. However, Eckles et al. (2017) show that even in cases where the specified

exposure model is incorrect, under certain monotonicity assumptions, the more “re-

strictive” an exposure model is, the lower the bias of Eq. 2.6 will be relative to the

TATE. In this paper, I will assess the effectiveness of fractional neighborhood treat-

ment response (FNTR) exposure models (Ugander et al. 2013, Aronow et al. 2017,

Eckles et al. 2017). In FNTR exposure models, a node is in the effective treatment

(control) if it is treated (not treated) and more than some fraction 𝜆 of its neighbors

are in the treatment (control). The “restrictiveness” of a given FNTR exposure model

is determined by the parameter 𝜆: the higher this threshold, the more restrictive the

exposure model. In this paper, I consider 𝜆 = .50, 𝜆 = .75, and 𝜆 = .95.

A simple estimator for the ATE estimand in Eq. 2.6 would be the difference in the

sample means for units in the effective treatment and effective control,

𝜏𝑒𝑓𝑓 =

∑︀𝑁
𝑖=1 𝑌𝑖1(𝑔𝑖(𝑍) = 𝑔𝑖(𝑧1))∑︀𝑁
𝑖=1 1(𝑔𝑖(𝑍) = 𝑔𝑖(𝑧1))

−
∑︀𝑁

𝑖=1 𝑌𝑖1(𝑔𝑖(𝑍) = 𝑔𝑖(𝑧0))∑︀𝑁
𝑖=1 1(𝑔𝑖(𝑍) = 𝑔𝑖(𝑧0))

. (2.7)

However, this estimator will only be unbiased for Eq. 2.6 if the effective treatments

are unconfounded, i.e., if the expected outcome of unit 𝑖 under a particular effective

treatment is independent of the probability that unit 𝑖 receives that effective treat-

ment. More formally, for Eq. 2.7 to be an unbiased estimator for Eq. 2.6, it is required

that

𝐸 [𝑌𝑖|𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] ⊥ P [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] . (2.8)

Unfortunately, this unconfoundedness condition is unlikely to hold in most cases.
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One way for Eq. 2.8 to hold would be if either 𝐸 [𝑌𝑖|𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] or P [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)]

were homogeneous across the population. However, it is extremely unlikely that

𝐸 [𝑌𝑖|𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] is the same for all 𝑖, and P [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] will vary across the

population for many exposure models of interest; for instance, in an experiment in

which treatment is randomized at the individual-level, higher degree units will have

a lower probability of receiving effective treatment and effective control under any

FNTR exposure model. In cases where both 𝐸 [𝑌𝑖|𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] and P [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)]

vary across the population, it is also easy to imagine plausible cases in which the

two are correlated. For instance, one could imagine that higher degree units in a

network have systematically different potential outcomes than lower degree units in

a network, even conditional on being exposed to the same effective treatment. Under

the aforementioned experiment in which treatment is delivered at the individual-level,

this would result in a clear violation of Eq. 2.8. Even under a graph-randomized

experiment design, this condition could be violated, as higher degree units may be

more likely to have edges that span multiple clusters, which would also result in

a lower probability of being assigned to the effective treatment or effective control

conditions (Ugander et al. 2013).

One way to unconfound effective treatments is to condition analysis on the design

of the experiment, which determines the probability 𝜋𝑖(𝑧) = P [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧)] that

a given unit is assigned to the effective treatment (𝑧1) or the effective control (𝑧0).

These probabilities can then be used to calculate treatment effect estimators such as

the Horvitz-Thompson estimator (Horvitz and Thompson 1952),

ˆ𝜏𝐻𝑇 (𝑧1, 𝑧0) =
2

𝑁

(︃
𝑁∑︁
𝑖=1

𝑌𝑖1 [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧1)]

𝜋𝑖(𝑧1)
−

𝑁∑︁
𝑖=1

𝑌𝑖1 [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧0)]

𝜋𝑖(𝑧0)

)︃
, (2.9)

and other inverse-probability weighted treatment effect estimators. The Horvitz-

Thompson estimator often suffers from excessive variance, so in this paper, I follow

Aronow et al. (2017) and Eckles et al. (2017) and use the Hajek estimator (Hájek

1971),
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𝜏𝐻(𝑧1, 𝑧0) =

(︃
𝑁∑︁
𝑖=1

1 [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧1)]

𝜋𝑖(𝑧1)

)︃−1 𝑁∑︁
𝑖=1

𝑌𝑖1 [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧1)]

𝜋𝑖(𝑧1)
−(︃

𝑁∑︁
𝑖=1

1 [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧0)]

𝜋𝑖(𝑧0)

)︃−1 𝑁∑︁
𝑖=1

𝑌𝑖1 [𝑔𝑖(𝑍) = 𝑔𝑖(𝑧0)]

𝜋𝑖(𝑧0)
,

(2.10)

to estimate treatment effects under exposure models. The Hajek estimator has non-

zero bias, but the magnitude of this bias is typically small and worth the variance

reduction relative to the Horvitz-Thompson estimator (Aronow et al. 2017, Eckles

et al. 2017).

Although the variance of the Hajek estimator is lower than the variance of the

Horvitz-Thompson estimator, all of the techniques discussed (graph cluster random-

ization, exposure models, inverse-probability weighted treatment effect estimators)

increase the variance of TATE estimates relative to the baseline of individual-level,

Bernoulli randomized experiments (Gerber and Green 2012). One way to offset the

loss of precision, due to graph cluster randomization in particular, is to use a block

random assignment scheme (Gerber and Green 2012, Moore 2012), such as a matched

pair design. Under the matched pair design, units of randomization (in the case of

GCR, clusters) are arranged into blocks of size 𝑏 = 2 in such a way that the two units

that make up each pair are as similar to one another as possible. Within each block,

one unit is assigned to the treatment, and the other is assigned to the control.

The tools above (graph cluster randomization, exposure models, and inverse prob-

ability weighted treatment effect estimators) have been developed and utilized pri-

marily in the context of network experiments. However, SUTVA violations that

bias TATE estimates are not specific to networks; there is mounting evidence that

‘test-control interference’ frequently occurs in marketplace experiments as well, both

because the items offered by different sellers substitute for and/or complement one

another, and because in a market with supply constraints, shoppers “compete” to

purchase inventory. For instance, Blake and Coey (2014) analyze an email market-

ing experiment performed on eBay and conclude that naive estimates of the TATE
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ignoring test-control interference exaggerate the treatment’s effectiveness by about a

factor of 2, and using a simulation based approach, Fradkin (2015) finds that search

algorithm experiments in online marketplaces can overstate true treatment effects by

over 100%.

Both Blake and Coey (2014) and Fradkin (2015) propose methods for combating

bias due to test-control interference in marketplace experiments. Rather than com-

pare outcomes across buyers, Blake and Coey (2014) limit their analysis to auctions

where a majority of bidders are in the treatment or control, and compare outcomes

across auctions. While this does eliminate within-auction interference between users,

there is still potential bias in their effect size estimates due to interference across

auctions. Furthermore, it is not clear how well this methodology generalizes to mar-

ketplaces that do not offer convenient units of analysis (e.g., auctions) over which to

aggregate outcomes.

Fradkin (2015) proposes randomizing across well-defined markets (rather than

at the shopper- or seller-level), or combining experimental results with results from

structural model-based simulations. However, for many marketplaces, market-level

experiments can be infeasible, due to ambiguous or non-existent market definitions,

the existence of only a small number of markets over which to randomize, or high levels

of market heterogeneity. Furthermore, developing structural model-based simulations

may be beyond the scope of what is feasible for many firms conducting marketplace

experiments, particularly those that are unable to hire large numbers of economists

trained in structural modeling and simulation development.

In this paper, I propose that methods such as graph cluster randomization, expo-

sure modeling, and treatment effect estimators such as the Hajek estimator can be

adapted from the context of networks to the context of online marketplaces, and then

test, via simulation, the efficacy of these methods at reducing bias from test-control

interference in TATE estimates in this new context. The key step in adapting these

tools to the online marketplace context is inferring “edges” between sellers/items that

are likely to substitute for or complement one another. Many different approaches

could be used to infer these edges, including the use of simple heuristics around item
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attributes such as price point, category, and physical location, the analysis of pre-

existing search, view, or purchase data, and the repurposing of existing “recommen-

dation networks” that capture the items recommended to users that view/purchase

a particular item. Prior research in the information systems literature has shown

that “product networks” can be an effective tool to study competition and demand

spillovers in online marketplaces. Oestreicher-Singer and Sundararajan (2012b) em-

pirically test the hypothesis that a visible co-purchase or co-view link between two

books on Amazon.com increases their demand correlation, and find that such links

lead to a threefold increase in the influence that complementary products have on

each others’ demand levels. In a later paper, Oestreicher-Singer and Sundararajan

(2012a) find that the extent to which peer-based recommendations in online market-

places redirect demand to “niche” products in the long tail depends on the network

structure of co-purchase or co-view “edges” between items in a given category. Ex-

tending this research, Dhar et al. (2014) find that when time series data is available,

product networks can be used for demand prediction.

Although previous work has shown that the methods presented in this paper are

effective at reducing the bias of TATE estimates in more traditional “networked”

settings, it is not obvious ex ante that they will be effective in online marketplace

settings, given that the underlying phenomena that cause spillovers (e.g., substitution

and complementarity) are different, and that in many cases, the researcher will be

required to construct a network based on inferred edges because there is not an explicit

and/or definitive “network” that connects items or sellers in a marketplace.

2.3 Data & Network Construction

The simulation framework is built on top of a dataset scraped by Slee (2015), which

describes all of the Airbnb listings in and around Miami as of February 13, 2016.

This dataset details the room type, number of reviews, average ‘overall satisfaction’

rating, guest capacity, number of bedrooms, number of bathrooms, price per night

(USD), minimum length of stay, latitude, and longitude of 8,855 Airbnb listings.
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Figure 2.1: The geospatial distribution of Airbnb listings in and around Miami. Color
corresponds to listing type. This figure was produced with ggmap (Kahle and Wick-
ham 2013).

Table 2.1: Summary of Airbnb listing covariates
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Private room 8,855 0.233 0.423 0 0 0 1
Shared room 8,855 0.026 0.158 0 0 0 1
Entire home/apt 8,855 0.742 0.438 0 0 1 1
Reviews 8,855 11.397 22.366 0 0 12 304
Overall satisfaction 6,433 4.588 0.539 1.000 4.500 5.000 5.000
Capacity 6,629 3.060 1.152 1.000 2.000 4.000 8.000
Beds 8,843 1.399 1.028 0.000 1.000 2.000 10.000
Baths 7,922 1.370 0.695 0.000 1.000 2.000 8.000
Price (USD) 8,855 226.016 406.892 15 89 249 10,000
Min Stay 8,418 3.293 9.309 1.000 1.000 3.000 365.000
Lat. 8,855 25.808 0.072 25.443 25.773 25.844 25.974
Lon. 8,855 −80.176 0.070 −80.505 −80.193 −80.129 −80.110
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Figure 2.1 depicts the geospatial distribution of the listings by room type, and Table

2.1 provides information about the distribution of listing-level covariates across the

sample of Airbnb listings.

Before using the dataset for my analyses, I impute missing values in a number

of fields: missing guest capacity, bedroom, and bathroom values are imputed using

the modal value for each variable. Minimum length of stay values are capped at

30, and missing minimum length of stay values are imputed using the modal value

for minimum length of stay. Missing overall satisfaction values are imputed using

the mean value of non-empty entries. I also assign each listing 𝑗 in my dataset an

unobservable quality component,

𝜉𝑗 ∼ 𝑁(0, 1), (2.11)

which is kept constant across all simulations. This unobserved quality component is

observable to searchers, but not observable to the search algorithm or the platform.

Depending on the quality of a given platform’s data, factors that contribute to a list-

ing’s unobservable quality might include the quality of its photos, the responsiveness

of the seller, and/or the text content of the listing’s reviews

I proceed to build a “product network” for listings in this dataset. Each listing

in the dataset constitutes a node in the network, and an edge between two listings

implies that the listings are likely to substitute for one another when searchers are

making purchase decisions. I generate an edge between two listings when the following

three criteria are satisfied:3

1. The listings are within 1 mile of each other

2. The listings have the same room type

3. The difference between the guest capacity of the two listings is not greater than

1 in absolute magnitude
3One could imagine using a subset of these criteria (e.g., all listings within 1 mile of each other

are substitutes), or a totally unrelated criteria (e.g., listings must have co-occurred in search more
than 𝑥 times). For instance, Srinivasan (2018) cluster items in an online marketplace based on how
often they co-occur in search results.
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Using the edge heuristic described above, I produce a network that has 1,538,637

edges, and a clustering coefficient of 0.74. The left pane of Figure 2.2 shows the

degree distribution; the average degree of nodes in the network is 173.76.

In order to simulate graph cluster randomized experiments, I need to divide this

network into clusters. I do so using the Louvain clustering algorithm (Blondel et al.

2008). Louvain clustering attempts to maximize modularity, which is defined as

𝑄 =
1

2𝐸

∑︁
𝑖𝑗

(︂
𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗
2𝐸

)︂
1(𝐶𝑖 = 𝐶𝑗), (2.12)

where 𝐸 is the total number of edges in the graph, 𝐴𝑖𝑗 is a {0, 1} variable that

indicates whether or not an edge exists between nodes 𝑖 and 𝑗; 𝑑𝑖 and 𝑑𝑗 are the

degrees of nodes 𝑖 and 𝑗, respectively, and 1(𝐶𝑖 = 𝐶𝑗) is an indicator function that

is equal to 1 only when 𝑖 and 𝑗 belong to the same cluster. At a high level, Louvain

clustering attempts to maximize the density of links inside communities relative to

links between communities. After running the algorithm on my listing network, the

network is partitioned into 169 clusters, which have an average size of 52.40 listings.

The right pane of Figure 2.2 shows the distribution of cluster size for the 169 clusters.

As noted in Section 2.2, graph cluster randomization and the use of exposure

models can increase the variance of TATE estimates. In order to counteract this

increase in variance, my simulated GCR experiments use block random assignment,

with blocks of size 𝑏 = 2, to assign cluster-level treatment. To arrange clusters into

pairs that will be used in that block random assignment procedure, I first calculate

the average number of reviews, the average overall satisfaction score, the average

number of beds, the average number of bathrooms, the average minimum stay, the

average latitude, the average longitude, the percentage of private room listings, and

the percentage of shared rooms for each cluster. After concatenating these metrics into

a vector representing each cluster, I calculate the Mahalanobis distance (Mahalanobis

1936) between every possible pair of clusters, and select pairs of clusters using a greedy

algorithm that attempts to minimize the sum of the Mahalanobis distances between

each chosen pair.
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Figure 2.2: The left pane shows the degree distribution for the Airbnb listing network
generated using the procedure described in Section 2.3. The right pane shows the
distribution of cluster sizes across the 169 clusters generated using Louvain clustering
(Blondel et al. 2008).
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2.4 Simulation Process

In order to estimate the true TATE under different treatment interventions, as well

as the bias and sampling variance of the TATE estimator under different experiment

designs and analysis approaches, I create a framework for simulating the Airbnb

booking process for one calendar night. Each set of simulated outcomes is generated

using the following procedure.

First, a “search algorithm,” 𝛿, is drawn, with each element of 𝛿 being generated

by first drawing from the uniform distribution over the interval [0, 1] and then nor-

malizing so that the sum of the elements of 𝛿 is one, i.e.,

𝛿𝑘0 ∼ 𝑈 [0, 1] for 𝑘 = 1, 2, 3, ..., 9,

𝛿𝑘 =
𝛿𝑘0∑︀
𝑗 𝛿𝑘0

.
(2.13)

The nine elements of 𝛿 correspond to the weight that the algorithm puts on nor-

malized versions of the following listing-level attributes: number of reviews, average

satisfaction score, number of bedrooms, number of bathrooms, minimum stay, price,

whether the listing is for an entire home/apt, whether the listing is for a private room,

and whether a listing is a shared room. The “search algorithm” can then determine a

“score” for each listing by taking the inner product of 𝛿 and xj, the full vector of the

listing 𝑖’s centered and scaled attributes, i.e.,

Search Score𝑗 = 𝛿 · x𝑗. (2.14)

Conditional on being issued a query by a searcher with certain geographic or attribute

constraints, the algorithm will return to the searcher the ten unbooked listings with

the highest search score. In cases where ten listings meeting the searcher’s criteria

are not available, the algorithm will return all of the listings satisfying the searcher’s

criteria. This allows for the possibility that the algorithm returns no listings if there

are none that satisfy the searcher’s requirements.
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Then, 𝑛𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑠 “searchers” sequentially arrive at Airbnb and look for an available

listing in my market, i.e., Miami. Each searcher randomly draws a region of interest

in latitude/longitude space. The locations of the box edges are drawn with uni-

form probability from the interval spanning from the .25th percentile of the latitudes

(longitudes) belonging to listings in the market to the 99.75th percentile of latitudes

(longitudes) belonging to listings in the market.4 The searcher also draws a minimum

guest capacity from a uniform distribution over {1,2,3,4}. The geographic boundaries

and minimum guest capacity constitute the searcher’s “query,” and only listings that

satisfy the searcher’s geographic and capacity requirements will be returned by the

search algorithm.

Searcher 𝑖’s utility from booking listing 𝑗 is given by the following equation, which

is chosen so that my simulation framework is comparable to models used in the

demand estimation literature (e.g., Berry et al. (1995) and Nevo (2000)):

𝑢𝑖𝑗 = 𝛼𝑖(𝑦𝑖 − 𝑝𝑗) + x̃j𝛽𝑖 + 𝜉𝑗 + 𝜖𝑖𝑗, (2.15)

where x̃j is the vector of listing 𝑗’s attributes besides price, and

𝑦𝑖 ∼𝑁(0, 1)

𝛼𝑖 ∼𝑁(0, 1)

𝛽𝑖𝑘 ∼𝑁(0, 1)∀ 𝑘

𝜖𝑖𝑗 ∼𝑓(𝑥) = 𝑒−𝑥𝑒𝑒
−𝑥

(the Type I extreme-value distribution).

(2.16)

Searcher 𝑖 uses the above utility function to determine which of the up to 10 listings

provided by the search algorithm they would like to book. If none of the listings have

a utility greater than 0 (representing the outside option), or if the search algorithm

does not return any listings meeting the searcher’s query parameters, the searcher

chooses not to book and exits the marketplace. Otherwise, the searcher “books” the

4This is done to account for the potential that there are listings in my dataset that are geographic
outliers.
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listing that provides the highest utility to them. After this point, that listing cannot

appear in future searchers’ consideration sets.

Although this simulation framework simplifies the marketplace dynamics of a plat-

form like Airbnb, I believe it can still provide insight into the degree to which test-

control interference may bias TATE estimates in online marketplace experiments, and

can help determine the extent to which the proposed experiment designs and analysis

techniques reduce that bias. In Appendix 2.A, I repeat my main analysis using a

modified version of the simulation framework above, in which searcher preferences

are drawn from different distributions. My results are qualitatively similar, suggest-

ing that the specifics of my simulation framework are not a significant driver of my

results.

2.5 Results

Using the simulation framework outlined in the previous section, I am able to conduct

simulations of market activity both under market-wide policy regimes (i.e., 100%

treatment and 100% control), as well as under different experiment designs. I compare

the ground truth TATEs generated by contrasting outcomes under market-wide policy

changes to the TATE estimates produced by different experiment designs and analysis

techniques, and calculate the bias and root mean square error (RMSE) of the TATE

estimates produced under different approaches to experiment design and analysis.

In each of my simulations of market activity, I am interested in two different

outcomes. The first is whether or not a listing was booked, which I write as 𝐵𝑖. If

a listing is booked, 𝐵𝑖 = 1, otherwise, 𝐵𝑖 = 0. The second is the amount of revenue

earned by a listing. If listing 𝑖 charges price 𝑝𝑖, then revenue will be 𝐵𝑖 × 𝑝𝑖. More

formally, I can denote the TATE for listing bookings as

𝑇𝐴𝑇𝐸bookings =
1

𝑁

𝑁∑︁
𝑖=1

E [𝐵𝑖(𝑍 = 𝑧1) −𝐵𝑖(𝑍 = 𝑧0)] (2.17)

and the TATE for listing revenue as
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𝑇𝐴𝑇𝐸listing revenue =
1

𝑁

𝑁∑︁
𝑖=1

E [𝑝𝑖(𝑍 = 𝑧1) ×𝐵𝑖(𝑍 = 𝑧1) − 𝑝𝑖(𝑍 = 𝑧0) ×𝐵𝑖(𝑍 = 𝑧0)] .

(2.18)

I choose these two outcomes because they are natural outcomes for both an academic

researcher and a marketplace designer to be interested in when conducting online

marketplace experiments. Listing revenue will also in general be a higher variance

outcome than whether or not a listing is booked, so looking at both outcomes will

enable us to get a sense of how my proposed techniques perform for outcome metrics

with different levels of baseline variability.

I also consider two different types of treatment intervention. The first is a price

reduction of .75 standard deviations for treated listings. Pricing experiments of this

sort are common for online marketplaces, e.g., to estimate price elasticities (e.g., Li

et al. (2015) and Holtz et al. (2020)), but in some cases could be superseded by

structural models or simulations, such as the one developed in Fradkin (2015). The

second is an increase of .75 standard deviations in the unobserved quality of listings.

This type of treatment intervention is also common in online marketplaces, and might

correspond to platform interventions that induce various difficult-to-observe changes

to seller behavior (e.g., seller responsiveness or friendliness) or item quality (e.g.,

photo quality, review text). Treatment interventions of this sort are arguably harder

to model using traditional demand estimation techniques.

2.5.1 Simulating Ground Truth

Table 2.1: True market-wide outcome distributions and TATEs
Treatment Metric 𝜇𝐶 𝜎𝐶 𝜇𝑇 𝜎𝑇 𝑡 𝑝 TATE
Unobserved quality change Listing booked 0.089 0.002 0.092 0.002 21.63 ≤ 2.2 × 10−16 0.003
Unobserved quality change Listing revenue 20.41 4.379 21.03 4.533 2.17 0.03 0.612
Price reduction Listing booked 0.089 0.002 0.092 0.002 17.27 ≤ 2.2 × 10−16 0.002
Price reduction Listing revenue 20.41 4.379 20.87 4.490 1.63 0.1 0.458

I first use my simulation framework to simulate the distribution of market-level

average outcomes in the case in which 100% of listings receive the treatment, and
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Figure 2.1: Comparison of market-wide average outcomes when either 0% or 100% of
listings are assigned treatment. The top row shows distributions when the treatment
is the price reduction treatment. The bottom row shows distributions when the
treatment is the unobserved listing quality change treatment. The left column shows
distributions for the listing booked outcome. The right column shows distributions
for the listing revenue outcome.
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the case in which 100% of listings receive the control. For the control, as well as

both the price reduction treatment and the unobserved listing quality treatment, I

conduct 500 simulations of one night of booking activity in which 1,000 searchers visit

Airbnb. Figure 2.1 compares the sampling distributions of the rate of listings being

booked and the average listing revenue under all three conditions. my results are also

summarized in Table 2.1.

A two-sided 𝑡-test between the distribution of booking rates under the control

and the distribution of booking rates under the price reduction treatment yields a

𝑡-statistic of 𝑡 = 17.27 (𝑝 ≤ 2.2 × 10−16), with an average TATE of 0.002, whereas a

two-sided 𝑡-test between the distribution of average listing revenue under the control

and the distribution of average listing revenue under the price reduction treatment

yields a 𝑡-statistic of 𝑡 = 1.63 (𝑝 = 0.10), i.e., at the 95% level, I am unable to reject

the null hypothesis that the average TATE is equal to zero. This pair of results is

somewhat intuitive: when sellers lower prices, the rate at which listings are booked

increases, because a greater share of listings dominate the outside option. However,

that increase in booking rate does not translate into an increase in revenue, since

those listings are being booked at a lower price.

A two-sided 𝑡-test between the distribution of booking rates under the control and

the distribution of booking rates under the unobserved listing quality treatment yields

a 𝑡-statistics of 𝑡 = 21.63 (𝑝 ≤ 2.2×10−16), with an average TATE of 0.003, whereas a

two-sided 𝑡 test between the distribution of average listing revenue under the control

and the distribution of average listing revenue under the unobserved listing quality

change treatment yields a 𝑡-statistic of 2.17 (𝑝 = 0.03), with an average TATE of

0.612. This pair of results is also intuitive: when the unobservable quality of listings

increases, the rate at which listings are booked increases, again because a greater

share of listings dominate the outside option. Because this increase in booking rate

does not come hand in hand with a reduction in price, this increase in booking rate

translates into an increase in revenue.
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2.5.2 Measuring bias and RMSE

Having simulated the distribution of market-level outcomes under both 100% treat-

ment and 100% control for both my price reduction treatment and my unobservable

listing quality treatment, I can now use my simulation framework to estimate the bias

and RMSE of different combinations of experiment design, choice of exposure model,

and treatment effect estimator for both treatments. I first use my framework to simu-

late 500 Bernoulli randomized individual-level experiments, in which treatment effects

are estimated using a difference in means treatment effect estimator, and then use the

simulation framework to simulate 500 blocked, graph cluster randomized experiments

that use the clusters described in Section 2.3. Under this design, I calculate the dif-

ference in means estimator for all listings, the difference in means estimator for units

satisfying the FNTR exposure model with three different thresholds (𝜆 = .5, 𝜆 = .75,

and 𝜆 = .95), and the Hajek estimator for units satisfying the FNTR exposure model

with the same three thresholds. Each of my simulated experiments emulate one night

of booking activity in which 1,000 searchers visit Airbnb. Figure 2.2 summarizes the

distributions of TATE estimates for each combination of experiment design, exposure

model, and treatment effect estimator, as well as the actual distribution of treatment

effects observed in my simulation framework.

Table 2.2 shows the bias and RMSE of each combination of design, exposure

model, and treatment effect estimator for the booking outcome, under both the price

reduction treatment and the unobserved listing quality treatments. Table 2.3 shows

the same information for the listing revenue outcome under both treatments. These

results are also summarized in Figure 2.3. Relative to the difference in means estima-

tor under the Bernoulli individual-level experiment, I find that the difference in means

estimator under blocked GCR reduced bias by as much as 64.5%, across both metrics

and both types of treatment. However, this comes at the cost of increasing RMSE

by as much as 204%. In other words, although the TATE estimates are on average

closer to the ground truth TATE, the variance of the distribution of those estimates

is much higher, i.e., statistical power is much lower. Under blocked GCR, the use of
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Figure 2.2: The mean TATE, as well as the 2.5th percentile and 97.5th percentile
of the TATE distribution, for different combinations of experiment design, exposure
model, and treatment effect estimator. All combinations reduce bias relative to the
Individual-level Bernoulli experiment with difference in means, but at the cost of
much higher RMSE.
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Figure 2.3: The bias and RMSE of different combinations of experiment design, expo-
sure model, and treatment effect estimator, for both outcomes and both treatments.
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the FNTR exposure model sometimes lowers bias further, but also sometimes leads to

higher RMSE. This appears to be true, regardless of whether the difference in means

estimator or the Hajek estimator is used in conjunction with the FNTR exposure

model. Just how much lower the bias is under the FNTR exposure model, regardless

of the choice of treatment effect estimator, appears to be sensitive to the choice of

FNTR threshold, and it may be difficult for an experiment designer to determine the

optimal threshold prior to their experiment.

Table 2.2: Performance comparison: outcome = bookings
Treatment Design Estimator Bias RMSE Coverage
Price Reduction Bernoulli Difference in means 0.0354 0.0393 6%
Price Reduction GCR Difference in means 0.0248 0.0459 20%
Price Reduction GCR Regression + clustered S.E. 0.0248 0.0459 95%
Price Reduction GCR, FNTR (𝜆 = .50) Difference in means 0.0243 0.0461 20%
Price Reduction GCR, FNTR (𝜆 = .50) Hajek 0.0267 0.0473 100%
Price Reduction GCR, FNTR (𝜆 = .75) Difference in means 0.0254 0.0515 19%
Price Reduction GCR, FNTR (𝜆 = .75) Hajek 0.0210 0.0523 100%
Price Reduction GCR, FNTR (𝜆 = .95) Difference in means 0.0251 0.0523 19%
Price Reduction GCR, FNTR (𝜆 = .95) Hajek 0.0266 0.0581 100%
Unobserved quality Bernoulli Difference in means 0.0110 0.0125 56%
Unobserved quality GCR Difference in means 0.0039 0.0381 23%
Unobserved quality GCR Regression + clustered S.E. 0.0039 0.0381 99%
Unobserved quality GCR, FNTR (𝜆 = .50) Difference in means 0.0035 0.0386 22%
Unobserved quality GCR, FNTR (𝜆 = .50) Hajek 0.0061 0.0389 100%
Unobserved quality GCR, FNTR (𝜆 = .75) Difference in means 0.0043 0.0449 22%
Unobserved quality GCR, FNTR (𝜆 = .75) Hajek 0.0001 0.0472 100%
Unobserved quality GCR, FNTR (𝜆 = .95) Difference in means 0.0045 0.0459 22%
Unobserved quality GCR, FNTR (𝜆 = .95) Hajek 0.0060 0.0515 100%

Table 2.3: Performance comparison: outcome = listing revenue
Treatment Design Estimator Bias RMSE Coverage
Price Reduction Bernoulli Difference in means 6.08 7.26 40%
Price Reduction GCR Difference in means 4.30 9.06 47%
Price Reduction GCR Regression + clustered S.E. 4.30 9.06 97%
Price Reduction GCR, FNTR (𝜆 = .50) Difference in means 4.29 9.09 44%
Price Reduction GCR, FNTR (𝜆 = .50) Hajek 4.65 9.31 100%
Price Reduction GCR, FNTR (𝜆 = .75) Difference in means 4.45 9.61 45%
Price Reduction GCR, FNTR (𝜆 = .75) Hajek 3.90 9.74 100%
Price Reduction GCR, FNTR (𝜆 = .95) Difference in means 4.27 9.46 46%
Price Reduction GCR, FNTR (𝜆 = .95) Hajek 5.13 10.73 100%
Unobserved quality Bernoulli Difference in means 2.26 3.93 86%
Unobserved quality GCR Difference in means 0.73 7.76 49%
Unobserved quality GCR Regression + clustered S.E. 0.73 7.76 100%
Unobserved quality GCR, FNTR (𝜆 = .50) Difference in means 0.70 7.85 46%
Unobserved quality GCR, FNTR (𝜆 = .50) Hajek 1.06 7.89 100%
Unobserved quality GCR, FNTR (𝜆 = .75) Difference in means 0.86 8.59 46%
Unobserved quality GCR, FNTR (𝜆 = .75) Hajek 0.30 9.17 100%
Unobserved quality GCR, FNTR (𝜆 = .95) Difference in means 0.87 8.54 48%
Unobserved quality GCR, FNTR (𝜆 = .95) Hajek 1.62 9.80 100%

In Section 2.6, I further discuss the circumstances under which a researcher and/or

practitioner may find that bias reduction is important enough to accept increased

RMSE, and also briefly discuss alternative solutions to the issue of test-control inter-

ference that may be preferable in cases where a dramatic increase in RMSE is not

acceptable.
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2.5.3 Statistical Inference

In addition to measuring the true bias and RMSE of different combinations of ex-

periment design, exposure model, and treatment effect estimator, I also assess the

coverage probability associated with the 95% confidence interval that each of these

approaches yields. For my difference in means estimators, I calculate the variance of

the treatment effect estimate using the following expression,

𝜎2
𝜏 = 𝜎2(𝑌𝑖𝑇 ) + 𝜎2(𝑌𝑖𝐶), (2.19)

where 𝜎2(𝑌𝑖𝑇 ) and 𝜎2(𝑌𝑖𝐶) are the variance of outcomes in the treatment group and

control group, respectively. To estimate the variance of the Hajek estimator, I use

a linearized version of the conservative variance estimator for the Horvitz-Thompson

estimator found in Aronow et al. (2017), in which I substitute residuals for the actual

observed outcome values in my dataset. I also calculate the variance of the blocked

GCR experiment design TATE estimate when analyzed with a linear model that

clusters standard errors at the level of the cluster. This approach to analyzing the

data better takes into account the design of the experiment, and should lead to 95%

confidence intervals with a coverage probability closer to the nominal level.

The coverage probabilities corresponding to the 95% confidence intervals are found

in the rightmost columns of Tables 2.2 and 2.3. I find that the coverage probability

of the difference in means estimator when used with the Bernoulli design is below the

nominal 95% coverage in all cases, and can be as low as 6%. The blocked GCR design,

when used in conjunction with the difference in means estimator, tends to move the

coverage probability closer to the nominal coverage probability for the price reduction

treatment, but negatively impacts the coverage probability for the unobserved quality

change treatment; this is true both for the standard difference in means estimator

and for all three FNTR exposure model variants. Both regression analysis of the

blocked GCR design with clustered standard errors, and usage of the Hajek estimator

in conjunction with the blocked GCR design and FNTR exposure models produce

coverage probabilities that are greater than the nominal 95% coverage probability,
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ranging from 95% to 100%. These findings highlight the importance of statistical

inference that takes into account the design of the experiment being analyzed.

2.5.4 Performance under network mis-specification

One concern about my proposed approach is that it might be sensitive to the particu-

lar approach that a given researcher uses to define the product network. The network

used in my simulations is based on a listing’s room type, location, and capacity,

which are also three of the variables that are used by both the search algorithm and

searchers. In other words, the network is “well specified.” However, there might be

cases in which researchers do not know the appropriate way to define an edge between

two sellers or items. To test the robustness of my results to mis-specification of the

product network, I estimated the performance of each experiment design, exposure

model, and treatment effect estimator after rewiring random edges in the network

with probabilities ranging from 1% to 15%. In addition to making the network more

random and more mis-specified, this also reduces the degree to which the resulting

network is clustered (Watts and Strogatz 1998). For instance, whereas the clustering

coefficient of my original network is 0.74, the clustering coefficient of the network

after randomly rewiring 15% of the edges is 0.37. I proceeded to cluster each of these

rewired networks using the same Louvain clustering algorithm, and then repeated my

main analysis using the resulting clusters.

Figure 2.4 shows how the bias of each design, exposure model, and estimator

changed as a function of rewiring probability.5 There does not appear to be a dis-

cernible relationship between rewiring probability and bias, and each combination of

design, exposure model, and estimator continues to reduce bias of the TATE estimate

relative to the difference in means estimator used in conjunction with individual-level

Bernoulli randomization (represented in each pane by the dotted yellow line). Fig-

ure 2.5 shows how the RMSE changes as a function of rewiring probability. Again,

there does not seem to be a strong relationship between rewiring probability and the

5No listings satisfied the requirement for the .95 FNTR threshold when the rewiring probability
was .10 or .15.
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Figure 2.4: The bias of different combinations of experiment design, exposure model,
and treatment effect estimator, for both outcomes and both treatments, as a function
of the probability that a given edge in the product network is randomly rewired. The
dashed yellow line indicates the bias of the individual-level, Bernoulli randomized
experiment analyzed with the difference in means estimator.
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Figure 2.5: The RMSE of different combinations of experiment design, exposure
model, and treatment effect estimator, for both outcomes and both treatments, as
a function of the probability that a given edge in the product network is randomly
rewired. The dashed yellow line indicates the RMSE of the individual-level, Bernoulli
randomized experiment analyzed with the difference in means estimator.
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RMSE of the TATE estimates produced under different combinations of experiment

design, exposure model, and treatment effect estimator. Taken together, these re-

sults suggest that while the methods proposed in this paper continue to reduce bias

in TATE estimates, even under non-trivial amounts of network mis-specification, they

also continue to increase the variance of those TATE estimates.

2.5.5 Performance with varying cluster sizes

One possibility is that the “bias-variance” trade-off that exists in my results, i.e., the

fact that the proposed methods do reduce bias, but increase variance and RMSE, can

be controlled by changing the number of clusters produced by the algorithm used to

segment the product network. In other words, with more clusters, it might be the

case that bias is still reduced, albeit by a smaller amount, but with a smaller cost in

terms of increased variance. To probe the extent to which this might be true, I cluster

my network using a greedy algorithm that finds community structure in networks by

optimizing modularity (Clauset et al. 2004). One benefit of this algorithm relative

to the Louvain clustering method I deploy elsewhere in the paper is that it produces

a hierarchical “dendrogram” that can be cut at various heights to produce varying

numbers of clusters. I cut the dendrogram in such a way that it produced numbers

of clusters varying from 100 to 1,000, and repeated my main analysis with these sets

of clusters, as opposed to my primary sets of clusters.

Figure 2.6 shows how the bias of different designs, exposure models, and treatment

effect estimators changed as a function of the number of clusters. I find that bias is

highest, and in some cases higher than bias under the individual-level, Bernoulli

randomized experiment, when the number of clusters is smallest (100). For numbers

of clusters greater than 100, there is no discernible relationship between the number of

clusters produced by the algorithm and the bias of the TATE estimates my simulated

experiments produced. Furthermore, for all tested numbers of clusters above 100,

the bias of the TATE estimates for all combinations of design, exposure model, and

treatment effect estimators is generally lower than the naive experiment. Figure 2.7

shows the RMSE of my TATE estimates for each combination of design, exposure
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Figure 2.6: The bias of different combinations of experiment design, exposure model,
and treatment effect estimator, for both outcomes and both treatments, as a function
of the number of clusters specified during the hierarchical graph clustering procedure
(Clauset et al. 2004). The dashed yellow line indicates the bias of the individual-level,
Bernoulli randomized experiment analyzed with the difference in means estimator.
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Figure 2.7: The RMSE of different combinations of experiment design, exposure
model, and treatment effect estimator, for both outcomes and both treatments, as a
function of the number of clusters specified during the hierarchical graph clustering
procedure (Clauset et al. 2004). The dashed yellow line indicates the RMSE of the
individual-level, Bernoulli randomized experiment analyzed with the difference in
means estimator.
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model, and treatment effect estimator as I vary the number of clusters. The results

are similar to the results for the bias of the TATE estimates. RMSE is high when the

number of clusters is 100; after that, RMSE is much lower, and there does not seem

to be a relationship between the number of clusters and TATE estimate RMSE.

These results suggest that the relationship between the bias and RMSE of graph

clustered experiment designs is mediated by factors beyond just the number of clusters

produced by the clustering algorithm. This relationship is likely a function of other

factors as well, such as the network structure of the product network, the particular

algorithm used to cluster the item/seller network, and the distribution of cluster sizes

conditional on a given number of clusters.

2.5.6 Performance with different levels of demand

It is also possible that the extent to which the proposed methods reduce bias (and/or

increase RMSE) depends on the amount of demand observed in the market. Holtz

et al. (2020) find weak evidence in a large-scale meta-experiment that test-control

interference is more severe in markets that are demand-constrained, as opposed to

supply constrained. This is consistent with findings by Johari et al. (2020), who

develop an analytical framework to study bias in two-sided marketplace experiments

and find that test-control interference is larger in demand-constrained markets. In

order to test how my findings vary across low- and high-demand regimes, I change

the 𝑛𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑠 parameter in my analysis from 1,000 to 500, and then from 500 to 250,

and repeat my main analysis.

Figure 2.8 shows how the bias of TATE estimates produced for each combination

of experiment design, exposure model, and treatment effect estimator changes as a

function of the number of searchers in the market. Generally speaking, as the number

of searchers in the market increases, the relative magnitude of the TATE estimate

bias decreases across all experiment designs, exposure models, and treatment effect

estimators. However, blocked GCR, the FNTR exposure model, and the Hajek esti-

mator continue to reduce bias relative to the individual-level, Bernoulli randomized

experiment analyzed with a difference in means treatment effect estimator. Figure 2.9

113



M
etric = listing revenue

Treatm
ent = price reduction

M
etric = listing revenue

Treatm
ent = unobserved quality change

M
etric = listing booked

Treatm
ent = price reduction

M
etric = listing booked

Treatm
ent = unobserved quality change

400
600

800
1000

400
600

800
1000

400
600

800
1000

400
600

800
1000

0.00

0.01

0.02

0.032 4 6

0.04

0.05

0.06

0.07

0.08

10.0

12.5

15.0

N
um

ber of searchers

Mean effect size
normalized bias

E
stim

ator

D
ifference in m

eans

H
ajek

D
esign and E

xposure M
odel

B
ernoulli

G
C

R
G

C
R

, FN
TR

 (λ = .50)

G
C

R
, FN

TR
 (λ = .75)

G
C

R
, FN

TR
 (λ = .95)

Figure 2.8: The bias of different combinations of experiment design, exposure model,
and treatment effect estimator, for both outcomes and both treatments, as a function
of the amount of demand, i.e., the number of searchers visiting the marketplace.
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Figure 2.9: The RMSE of different combinations of experiment design, exposure
model, and treatment effect estimator, for both outcomes and both treatments, as a
function of the amount of demand, i.e., the number of searchers visiting the market-
place.
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shows how the RMSE under different designs, exposure models, and treatment effect

estimators varies as a function of the amount of demand. I find that RMSE also tends

to decrease as the number of searchers increase, however, each combination of design,

exposure model, and treatment effect estimator I discuss in this paper consistently

exhibits higher RMSE than the baseline of a individual-level, Bernoulli randomized

experiment analyzed with a difference in means estimator.

2.5.7 Performance in a different simulated market

Table 2.4: Summary of Airbnb listing covariates (Washington, D.C.)
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Private room 4,304 0.302 0.459 0 0 1 1
Shared room 4,304 0.029 0.167 0 0 0 1
Entire home/apt 4,304 0.670 0.470 0 0 1 1
Reviews 4,304 15.985 31.416 0 1 17 385
Overall satisfaction 3,213 4.718 0.428 1.000 4.500 5.000 5.000
Capacity 3,748 2.662 1.104 1.000 2.000 4.000 6.000
Beds 4,285 1.231 0.850 0.000 1.000 1.000 10.000
Price (USD) 4,304 139.668 121.384 10 80 150 2,000
Min Stay 4,150 2.968 8.744 1.000 1.000 3.000 180.000
Lat. 4,304 38.914 0.020 38.825 38.902 38.926 38.993
Lon. 4,304 −77.025 0.025 −77.111 −77.041 −77.007 −76.950

Finally, in order to test that my results hold in a different simulated market,

with different network structure and a different distribution of product attributes,

I repeated my analysis using another Airbnb dataset scraped by Slee (2015), which

describes the set of Airbnb listings in Washington, D.C. as of February 21, 2016.6

Table 2.4 provides information about the distribution of listing-level covariates across

this alternate sample of Airbnb listings. After preprocessing the data, creating a

network, and clustering that network using the same procedure described in Section

2.3, I used my simulation framework to measure the bias and RMSE of different

combinations of experiment design, exposure model, and TATE estimator for this

alternate market under both the price reduction treatment and the unobserved listing

quality treatment. Figure 2.10 summarizes my results, which are found in full in Table

2.5 and Table 2.6. These results are qualitatively similar to those found in Figure 2.3.

In other words, I do not find evidence that my results are sensitive to the particular
6One difference between the Miami dataset and the Washington, D.C. dataset is the D.C. dataset

does not contain information on the number of bathrooms in each listing. When calculating search
algorithm scores and searcher utilities, I set this term to 0.
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network structure or distribution of product-level attributes found in my primary

Airbnb dataset.

Table 2.5: Performance comparison: outcome = booked listings (Washington, D.C.)
Treatment Design Estimator Bias RMSE Coverage
Price Reduction Bernoulli Difference in means 0.1027 0.1165 6%
Price Reduction GCR Difference in means 0.0807 0.1035 12%
Price Reduction GCR Regression + clustered S.E. 0.0807 0.1035 50%
Price Reduction GCR, FNTR (𝜆 = .50) Difference in means 0.0806 0.1039 12%
Price Reduction GCR, FNTR (𝜆 = .50) Hajek 0.0788 0.1023 100%
Price Reduction GCR, FNTR (𝜆 = .75) Difference in means 0.0806 0.1106 13%
Price Reduction GCR, FNTR (𝜆 = .75) Hajek 0.0752 0.1040 100%
Price Reduction GCR, FNTR (𝜆 = .95) Difference in means 0.0874 0.1369 17%
Price Reduction GCR, FNTR (𝜆 = .95) Hajek 0.0946 0.1375 100%
Unobserved quality Bernoulli Difference in means 0.0204 0.0242 63%
Unobserved quality GCR Difference in means 0.0097 0.0514 34%
Unobserved quality GCR Regression + clustered S.E. 0.0097 0.0514 94%
Unobserved quality GCR, FNTR (𝜆 = .50) Difference in means 0.0101 0.0523 35%
Unobserved quality GCR, FNTR (𝜆 = .50) Hajek 0.0093 0.0520 100%
Unobserved quality GCR, FNTR (𝜆 = .75) Difference in means 0.0114 0.0645 34%
Unobserved quality GCR, FNTR (𝜆 = .75) Hajek 0.0085 0.0600 100%
Unobserved quality GCR, FNTR (𝜆 = .95) Difference in means 0.0123 0.0929 30%
Unobserved quality GCR, FNTR (𝜆 = .95) Hajek 0.0217 0.0909 100%

Table 2.6: Performance comparison: outcome = listing revenue (Washington, D.C.)
Treatment Design Estimator Bias RMSE Coverage
Price Reduction Bernoulli Difference in means 12.21 13.52 11%
Price Reduction GCR Difference in means 10.65 16.49 16%
Price Reduction GCR Regression + clustered S.E. 10.65 16.49 52%
Price Reduction GCR, FNTR (𝜆 = .50) Difference in means 10.62 16.67 17%
Price Reduction GCR, FNTR (𝜆 = .50) Hajek 10.38 16.34 100%
Price Reduction GCR, FNTR (𝜆 = .75) Difference in means 10.48 18.72 18%
Price Reduction GCR, FNTR (𝜆 = .75) Hajek 9.75 16.96 100%
Price Reduction GCR, FNTR (𝜆 = .95) Difference in means 11.04 23.74 17%
Price Reduction GCR, FNTR (𝜆 = .95) Hajek 12.52 22.97 100%
Unobserved quality Bernoulli Difference in means 2.47 3.34 74%
Unobserved quality GCR Difference in means 1.67 11.36 29%
Unobserved quality GCR Regression + clustered S.E. 1.67 11.36 82%
Unobserved quality GCR, FNTR (𝜆 = .50) Difference in means 1.74 11.65 29%
Unobserved quality GCR, FNTR (𝜆 = .50) Hajek 1.65 11.48 100%
Unobserved quality GCR, FNTR (𝜆 = .75) Difference in means 1.94 14.40 26%
Unobserved quality GCR, FNTR (𝜆 = .75) Hajek 1.62 12.78 100%
Unobserved quality GCR, FNTR (𝜆 = .95) Difference in means 2.16 20.08 18%
Unobserved quality GCR, FNTR (𝜆 = .95) Hajek 3.98 18.66 100%

2.6 Discussion

The fact that the experiment designs, exposure models, and treatment effect esti-

mators I study decrease bias, but also cause significant increases in TATE estimates

suggests an interesting trade-off for online marketplace researchers and practitioners.

In some cases, firms may prefer a biased estimate with much lower RMSE. Although

unbiased experiments are desirable, the corresponding loss of statistical power can

lead to minimum detectable effect sizes that are much higher than acceptable, given

that large online marketplace firms often conduct A/B tests with the hopes of de-

tecting treatment effects that are on the order of fractions of a percent. I believe the
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Figure 2.10: The bias and RMSE of different combinations of experiment design, ex-
posure model, and treatment effect estimator, for both outcomes and both treatments
using data from Washington, D.C.
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methods I explore are best suited to contexts in which there is ample statistical power

(i.e., large sample sizes and/or the ability to increase precision through methods such

as regression adjustment), there is a strong belief that test-control interference will be

severe for the treatment intervention of interest, or there is significant concern that

test-control interference could lead to a sign flip in the TATE estimate.

In other cases, alternative experiment designs for online marketplaces may be

preferable. Recent research has explored the viability of “switchback” designs (Snei-

der et al. 2019, Bojinov et al. 2020), in which the units of randomization are chunks

of time, as opposed to shoppers or sellers. Switchback experiments do not suffer from

excessive variance, however they may introduce new sources of bias if a given treat-

ment intervention has the potential to create intertemporal spillovers. For instance,

in the context of a real-time two-sided market such as Uber, riders may choose to wait

some duration of time if they open the app and find that wait times or prices are too

high. Another design that has recently been proposed is “two-sided randomization”

(TSR) (Johari et al. 2020), in which randomization is delivered at the level of the

shopper-seller or shopper-item pair. Johari et al. (2020) report that TSR is able to

reduce bias in TATE estimates with only modest increases in RMSE. However, there

are many treatment interventions for which TSR is not feasible, due to the require-

ment that randomization be conducted at the shopper-seller/shopper-item level. For

instance, in the Airbnb context, a new calendar management or pricing tool must be

introduced at the host level, not at the level of the searcher-host pair.

There are also markets and treatment interventions for which structural model-

ing techniques, such as the BLP framework (Berry et al. 1995, Nevo 2000), can be

used to estimate the TATE. In this paper, I focus on the assessment of experiment

design and analysis techniques because experimentation is the dominant tool in in-

dustry to assess potential product changes, and represents the “gold standard” for

causal inference in academic research. Many online marketplace firms may not have

the resources required to hire PhD economists who can build structural models, and

randomized experiments may still be preferable in cases where specification error is a

large concern. There are also many treatment interventions that may induce changes
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to behaviors or attributes that are difficult to incorporate into the BLP framework,

such as changes to seller responsiveness or friendliness, changes to the text of user

reviews, or new ways of presenting information to shoppers. Finally, the standard

BLP framework assumes there are no constraints on product availability (Conlon

and Mortimer 2013), which is not true in many large online marketplaces, including

Airbnb, where each listing-night is a totally unique item that can only be purchased

once. Although recent research (Farronato and Fradkin 2018) has applied demand

estimation techniques in the context of Airbnb, in order to do so it was necessary to

aggregate heterogeneous listings into groups that are assumed to be perfectly sub-

stitutable (e.g., “entire apartments in NYC”). In other words, this approach assumes

away much of the heterogeneity that is present in online markets such as Airbnb,

eBay, and Etsy.

Although I believe my simulations provide useful insight into the extent to which

blocked graph cluster randomization, exposure modeling, and inverse probability-

weighted estimators can affect the bias and RMSE of TATE estimates when adapted

to the context of online marketplace experiments, my framework has a number of

limitations. For instance, demand parameters estimated on actual Airbnb data could

be used to tune my simulation. The simulation could also be extended to simulate

more than one calendar night, to support social contagion among sellers who are able

to observe each others’ behavior, and to model treatment interventions that have seller

non-compliance. Furthermore, while I believe my framework is helpful for developing

intuition, it does not provide insight into what approach should be used in a given

research context to build the product network that is used to design and analyze

a given experiment. It is worth noting that my findings in Section 2.5.4 suggest

that network mis-specification does not significantly impact the performance of the

methods I evaluate. That being said, meta-experiments such as those presented by

Pouget-Abadie et al. (2017), Saveski et al. (2017), and Holtz et al. (2020) may provide

a solution to this problem. Under such meta-experiments, two field experiments are

conducted simultaneously on different segments of the market with different designs,

but the same treatment intervention. Subsequently, the treatment effect estimates
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obtained under the two experiment designs are compared in a statistically rigorous

way. One particularly intriguing approach to constructing product networks is to

use historical browsing and purchase data. Evaluation of this approach is beyond

the scope of this paper, because I do not have access to actual user data. However,

Holtz et al. (2020) find that using this type of data to conduct cluster randomized

experiments can be extremely effective at reducing bias from test-control interference

in TATE estimates.

2.7 Conclusion

Given the ubiquity of large online marketplace firms, it is crucial for both academics

and practitioners that methods are developed to obtain accurate causal estimates

through experimentation in online marketplaces. In this work, I have proposed adapt-

ing experiment designs and analysis techniques from the networks literature to the

context of online marketplaces. I then assessed the performance of those methods

through a simulation framework. my methods show that block randomized graph

cluster randomization in particular can be effective at reducing bias in total average

treatment effect estimates, but this comes at the cost of excessive variance and much

higher RMSE. While there are some contexts in which experiment designers may find

this trade-off worthwhile, there are many other contexts in which other experiment

designs or structural modeling may be preferred. The fact that graph cluster ran-

domization increases the variance of treatment effect estimators is not specific to the

context of online marketplaces; this is also true in the context of network experi-

ments, and has likely impeded broader adoption of graph cluster randomized network

experiments. However, recent work in the network experimentation literature (Ugan-

der and Yin 2020) suggests that it may be possible to obtain more precise treatment

effect estimates under graph cluster randomized designs, providing a potential path

forward for graph cluster randomization in both the network and online marketplace

contexts.
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Appendix

2.A Modified Simulation Framework

In order to test the robustness of my results to different underlying data generating

processes, I repeat my analysis using a modified version of the simulation framework

described in Section 2.4. Under the modified simulation framework, each searcher

draws a preference vector, 𝛾𝑖, with each element of 𝛾𝑖 being generated by first drawing

from a uniform distribution over the interval [0,1] and then normalizing so that the

sum of the elements of 𝛾𝑖 is one, i.e.,

𝛾𝑖0 ∼ 𝑈 [0, 1] for 𝑘 = 1, 2, 3, ..., 9,

𝛾𝑖 =
𝛾𝑖0∑︀
𝑗 𝛾𝑖0

.
(2.1)

Each searcher also draws a “search quality cutoff,” 𝜂𝑖, from the uniform distribution

over the interval [-2, 2], i.e.,

𝜂𝑖 ∼ 𝑈 [−2, 2], (2.2)

and calculates a “searcher score” for all listings presented by the search algorithm by

taking the inner product of 𝛾𝑖 with the product attribute vector 𝛽𝑗,

Searcher Score𝑖𝑗 = 𝛾𝑖 · x𝑗. (2.3)

The searcher books the listing presented by the search algorithm that has the highest
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searcher score, so long as that searcher score is greater than or equal to 𝜂𝑖. If no

listings meeting this requirement are presented, or if the search algorithm presents an

empty set, the searcher does not book. In the modified simulation framework, there

are no changes to the search algorithm itself.

Table 2.A.1: Performance comparison: outcome = booked listings (modified simula-
tion)

Treatment Design Estimator Bias RMSE Coverage
Price Reduction Bernoulli Difference in means 0.0256 0.0275 4%
Price Reduction GCR Difference in means 0.0189 0.0314 24%
Price Reduction GCR Regression + clustered S.E. 0.0189 0.0314 96%
Price Reduction GCR, FNTR (𝜆 = .50) Difference in means 0.0183 0.0312 23%
Price Reduction GCR, FNTR (𝜆 = .50) Hajek 0.0200 0.0323 100%
Price Reduction GCR, FNTR (𝜆 = .75) Difference in means 0.0192 0.0344 23%
Price Reduction GCR, FNTR (𝜆 = .75) Hajek 0.0164 0.0347 100%
Price Reduction GCR, FNTR (𝜆 = .95) Difference in means 0.0189 0.0345 24%
Price Reduction GCR, FNTR (𝜆 = .95) Hajek 0.0205 0.0388 100%

Table 2.A.2: Performance comparison: outcome = listing revenue (modified simula-
tion)

Treatment Design Estimator Bias RMSE Coverage
Price Reduction Bernoulli Difference in means 5.00 6.06 49%
Price Reduction GCR Difference in means 3.40 7.84 48%
Price Reduction GCR Regression + clustered S.E. 3.40 7.84 98%
Price Reduction GCR, FNTR (𝜆 = .50) Difference in means 3.28 7.84 45%
Price Reduction GCR, FNTR (𝜆 = .50) Hajek 3.40 7.99 100%
Price Reduction GCR, FNTR (𝜆 = .75) Difference in means 3.41 8.00 48%
Price Reduction GCR, FNTR (𝜆 = .75) Hajek 3.27 8.04 100%
Price Reduction GCR, FNTR (𝜆 = .95) Difference in means 3.21 7.63 50%
Price Reduction GCR, FNTR (𝜆 = .95) Hajek 4.16 8.71 100%

I repeated my main analysis using this modified simulation framework, as opposed

to the one described in Section 2.4. Since there is no unobserved quality component

in this simulation framework, I am only able to measure the bias and RMSE of

TATE estimates obtained for the price reduction treatment intervention. Figure 2.A.1

depicts the bias and RMSE of different combinations of experiment design, exposure

model, and treatment effect estimator under this modified simulation framework. my

results under this modified framework are also shown in Tables 2.A.1 and 2.A.2. my

results are qualitatively similar to my main results, suggesting that my findings are

robust to different underlying data generating processes.
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Figure 2.A.1: The bias and RMSE of different combinations of experiment design, ex-
posure model, and treatment effect estimator, for both outcomes and both treatments
under the modified simulation framework.
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Chapter 3

Reducing Interference Bias in Online

Marketplace Pricing Experiments
1

3.1 Introduction

As of 2020, some of the world’s most highly valued technology firms (e.g., Airbnb,

Uber, Etsy) are online peer-to-peer marketplaces. These platforms create markets for

many different types of goods, including accommodations, transportation, artisanal

goods, and dog walking. Like almost all technology firms, online peer-to-peer mar-

ketplaces typically rely on experimentation, or A/B testing, to measure the impact

of proposed changes to the platform and develop a deeper understanding of their cus-

tomers. However, a randomized experiment’s ability to provide an unbiased estimate

of the total average treatment effect (TATE) relies on the stable unit treatment value

assumption (SUTVA) (Rubin 1974), sometimes referred to as the “no interference”

assumption (Cox 1958). Online marketplaces are inherently connected; sellers are

likely to make strategic decisions based on the actions of their competitors, and mul-

1With Ruben Lobel (Airbnb) and Inessa Liskovich (Airbnb). We are grateful to Lanbo Zhang,
Minyong Lee, and Sharan Srinivasan for their assistance with the design and analysis of the experi-
ments in this paper. We also thank numerous other Airbnb employees who have assisted with this
project. We also appreciate the helpful feedback we have received from Sinan Aral, Dean Eckles,
Andrey Fradkin, Alex Moehring, Hong Yi Tu Ye, attendees of the WCBA 2019, CIST 2020, and
the HBS Digital Doctoral Workshop, and anonymous reviewers at Management Science. This ex-
periment was classified as exempt by the MIT Committee on the Use of Humans as Experimental
Subjects under Protocol #1807452488.
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tiple sellers may sell different items that complement or substitute for one another.

As a result, SUTVA is unlikely to hold in online marketplace settings. Previous work

(Blake and Coey 2014, Fradkin 2015, Holtz 2018) has shown that naive experimen-

tation in online marketplaces can lead to TATE estimates that are overstated by up

to 100%.

SUTVA violations are not unique to online marketplaces, and are a familiar prob-

lem for researchers conducting experiments in networked settings (e.g., social network

experiments). In the network experimentation literature, researchers have proposed

experiment designs (Eckles et al. 2017, Ugander et al. 2013) and analysis techniques

(Aronow et al. 2017, Eckles et al. 2017) that aim to reduce bias due to statistical

interference (henceforth referred to as interference bias), and Saveski et al. (2017) de-

scribe a procedure for “randomizing over randomized experiments,” or running meta-

experiments, to detect interference bias on networks. Holtz (2018) proposes the use

of bias-reduction techniques from the networks literature to reduce bias in online

marketplace experiments, and investigates the viability of this approach through a

simulation study using scraped Airbnb data. However, this approach has, as of yet,

not been used in the field to conduct randomized experiments in online marketplaces.

In this paper, we present the results from two meta-experiments conducted on

Airbnb, an online marketplace for sharing homes. Both meta-experiments make use

of clusters of Airbnb listings, which are created by first using observational search

behavior to create a 16-dimension “demand embedding” for each each Airbnb listing,

and then segmenting the listing embedding space using a recursive partitioning tree.

Each meta-experiment randomly assigns clusters of Airbnb listings to one of two

randomization schemes; 25% of clusters are Bernoulli randomized (i.e., treatment

assignment is randomly assigned at the listing level), whereas the remaining 75% of

clusters are cluster randomized (i.e., treatment assignment is randomly assigned at

the cluster level). Both of the meta-experiments we present are related to pricing

on Airbnb. We focus on pricing-related treatment interventions for two reasons.

First, it is crucial for both hosts and the platform intermediary to understand the

price elasticity of Airbnb guests; hosts set the price of their listings, while Airbnb
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recommends prices to hosts and sets platform fees. Second, TATE estimates for

pricing-related experiments are likely to be affected by interference bias, since hosts

observe other hosts’ prices and guests usually consider many listings before choosing

a listing to book.

The first meta-experiment measures the effect of a change to Airbnb’s platform fee

structure. In the treatment group, long-tenured hosts were subject to a platform guest

fee increase, while the platform guest fee for less tenured hosts remained unchanged.

In the control group, long-tenured hosts were subject to a platform guest fee decrease,

while the platform guest fee for less tenured hosts remained unchanged. Results

from the Bernoulli randomized meta-treatment arm suggest that the treatment led

to a statistically significant loss of 0.207 bookings per listing over the course of the

experiment.2 However, a joint analysis of the entire meta-experimental sample finds

that there is a statistically significant difference between the TATE estimates obtained

in the two meta-treatment arms. We estimate that 32.60% of the Bernoulli TATE

estimate on bookings is attributable to interference bias. While not statistically

significant, we also report results that suggest that interference bias is more severe in

markets that are demand constrained than in markets that are supply constrained.

Results from the fee meta-experiment establish the existence of interference bias

in online marketplaces, and the efficacy of cluster randomization in reducing that

bias. However, the guest platform fee treatment intervention is one that affects all

hosts on Airbnb. Often, online marketplace designers are interested in the effect of

behavioral nudges, which only cause a change in the behavior of some users. These

experiments are typically analyzed with intention-to-treat (ITT) analysis. To test for

interference bias in an experiment that requires ITT analysis, we conduct a second

meta-experiment that measures the effect of a proposed update to the algorithm un-

derlying Airbnb’s price suggestions for hosts. On average, the treatment increased the

prices suggested to hosts. Results from the Bernoulli randomized meta-treatment arm

suggest that the treatment led to a statistically significant loss of 0.106 bookings per

2To avoid disclosing raw numbers, all raw booking, nights booked, and gross guest spend values
are multiplied by a constant.
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listing over the course of the experiment. In the cluster randomized meta-treatment

arm, this treatment effect disappears; the point estimate is smaller in magnitude, and

not statistically significant. However, a joint analysis of the entire meta-experimental

sample fails to detect a statistically significant difference between the two sets of treat-

ment effect estimates. Post-hoc power analysis reveals that the meta-experiment is

underpowered to detect interference bias that is not extremely severe in magnitude.

Although not statistically significant, our point estimates suggest that in the Bernoulli

randomized pricing experiment, 54.16% of the observed treatment effect is due to in-

terference bias. This result highlights the difficulty of detecting interference bias when

a given treatment intervention only affects some users, even if the magnitude of that

bias is potentially large.

While previous research has focused on quantifying the magnitude of interference

bias through simulation (Fradkin 2015, Holtz 2018) or post-hoc analysis (Blake and

Coey 2014), this work is among the first empirical papers to focus on reducing inter-

ference bias in a marketplace experiment through experiment design. The experiment

design techniques we employ are strongly influenced by the network experimentation

literature (Eckles et al. 2017, Ugander et al. 2013, Saveski et al. 2017), and future

extensions of our work might focus on adopting analysis-based approaches to reduc-

ing interference bias in network experiments (Athey et al. 2018, Aronow et al. 2017,

Eckles et al. 2017, Chin 2019) to an online marketplace setting. Future work might

also focus on how to best cluster items or sellers in a marketplace. Clustering items or

sellers in an online marketplace is difficult, as there is often no explicit network struc-

ture indicating which items are likely to substitute or complement for one another,3

and measuring cross-price elasticities in markets with millions of heterogeneous goods

is difficult.

The rest of this paper proceeds as follows. In Section 3.2, we review the related

literature. In Section 3.3, we describe in greater detail the features of Airbnb’s plat-

form that are relevant to the two meta-experiments presented in this paper. Our

3When part of an online market’s design, recommendation networks (Oestreicher-Singer and
Sundararajan 2012a,b) do provide an explicit product network.
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meta-experiment design is described in Section 3.4. We present results from the

fee experiment in Section 3.5, and results from the pricing algorithm experiment in

Section 3.6. Finally, we discuss our findings and future extensions in Section 3.7.

3.2 Related Literature

The research in this paper connects to three bodies of academic literature: one on

interference bias in online marketplace experiments, one on experimentation in net-

works, and one on pricing-related online marketplace interventions.

Our work is most closely related to recent research that has shown that naive

marketplace experimentation can yield total average treatment effect estimates that

are overstated by up to 100% (Blake and Coey 2014, Fradkin 2015, Holtz 2018).

Blake and Coey (2014) arrive at this conclusion through post-hoc analysis of an

experiment conducted on eBay, while Fradkin (2015) finds evidence for interference

bias through a simulation of Airbnb’s marketplace that has been calibrated using

search and transaction data from the firm. Finally, Holtz (2018) also shows through

a simple simulation of marketplace experiments on Airbnb that naive marketplace

experiments are biased due to interference, and that the magnitude of this bias can

be reduced through experiment design and analysis techniques.

Bias in total average treatment estimates due to statistical interference is not a

problem unique to online marketplace experiments. In fact, there has been substantial

research on experiment design and analysis techniques that provide unbiased TATE

estimators in settings where the stable unit treatment value assumption (Rubin 1974)

is violated.4 SUTVA assumes that the potential outcomes of a given unit of analysis

are independent of the treatment assignments other units receive. However, in many

settings (e.g., networks, marketplaces) SUTVA is unlikely to hold. When SUTVA

is violated, the TATE estimated from a Bernoulli randomized experiment can differ

substantially from the actual TATE (i.e., the average effect of the treatment under the

counterfactual that every unit is treated). Network science researchers have developed

4SUTVA is sometimes alternatively referred to as the ‘no interference’ assumption (Cox 1958).
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experiment designs (Ugander et al. 2013, Eckles et al. 2017) and treatment effect

estimators (Aronow et al. 2017, Chin 2019) that eliminate or reduce bias due to

SUTVA violations arising from network interference.

Ugander et al. (2013) propose graph cluster randomization (GCR) as an experi-

ment design for reducing interference bias in networked experiments. In GCR, a net-

work is first clustered, then randomized at the cluster -level. This can greatly reduce

the probability that any ego’s experimental treatment assignment is different from

the treatment assignment of its alters. This will reduce the extent to which statis-

tical interference affects experimental TATE estimates. Through simulations, Eckles

et al. (2017) show that GCR can be effective in reducing interference bias in net-

worked experiments, even when the network does not satisfy the strict requirements

requirements outlined in Ugander et al. (2013). One drawback of assigning treatment

at the cluster-level is that most treatment effect estimators will provide less statis-

tical power than they would have under a Bernoulli randomized design. However,

techniques such as regression adjustment and pre-stratification (Moore 2012) can be

used in tandem with GCR to mitigate the loss of statistical power. Graph cluster

randomization can also be used to test whether or not interference bias affects the

TATE estimates obtained from a given experiment. Saveski et al. (2017) conduct

a “Meta-experiment” on LinkedIn, which randomizes over two experiment designs

(Bernoulli randomization and cluster randomization). By comparing the treatment

effect estimates obtained in each meta-treatment arm, they are able to test for the

existence of network interference for any experiment conducted on LinkedIn.

Finally, our work also connects to the literature on pricing-related online mar-

ketplace interventions. A number of recent empirical papers measure the effects of

pricing-related interventions on online platforms (Dubé and Misra 2017, Filippas et al.

2019). Airbnb itself uses a customized regression model to provide pricing recommen-

dation to hosts (Ifrach et al. 2016, Ye et al. 2018). It is crucial for both platform in-

termediaries and platform sellers to understand the price elasticity of their customers;

sellers would like to price effectively, whereas intermediaries would like to implement

effective fee structures and pricing-related market mechanisms. However, TATE esti-
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mates obtained through naive experimental tests of pricing-related interventions will

likely yield biased estimates of price elasticity, since marketplace sellers compete with

one another, and observe each others’ pricing decisions.

This paper builds on prior research by adapting experiment design techniques

from the networks literature (Ugander et al. 2013, Eckles et al. 2017, Holtz 2018) and

conducting meta-experiments (Saveski et al. 2017) in an online marketplace to test for

the existence of interference bias. Developing methods for obtaining accurate TATE

estimates in online marketplace settings is increasingly important as both researchers

and practitioners continue to explore novel pricing-related interventions (Dubé and

Misra 2017, Filippas et al. 2019) in online marketplace settings.

3.3 Setting

Airbnb is an online marketplace for accommodations. More than five million listings

appear on Airbnb, and since the company’s founding in 2008, over 400 million guest

arrivals have occurred on the platform. On average, over two million people are

staying in Airbnb listings on a given night (Airbnb 2019).

3.3.1 Platform Guest Fees

Airbnb earns revenue by collecting fees from guests and hosts for every transaction

that occurs on the platform. In order to set fees optimally, it is crucial for the

platform to understand guest price elasticity. Airbnb’s fees for guests are visible in

three different locations throughout the booking process. First, guest platform fees

are included in the total price shown to guests when a listing appears in search.

Figure 3.1 shows a typical Airbnb search result. Second, if a guest opens a tooltip

on any search result, they are shown a price breakdown that separates the listing’s

nightly price and the guest platform fee. Figure 3.2 shows this tooltip. Finally,

when viewing a listing’s product detail page, a detailed pricing breakdown (including

fees) is displayed next to the “Request to Book” button. Figure 3.3 shows this price

breakdown.
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Figure 3.1: A typical search result on Airbnb. For this search result, the guest
platform fee is included in the total price of $508.

Figure 3.2: The price breakdown tooltip for a typical search result on Airbnb. In this
tooltip, the guest platform fee (listed here as a service fee of $58) is broken out from
the nightly price.
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Figure 3.3: The section of the Airbnb product detail page that provides a full pricing
breakdown for would-be guests. In this pricing breakdown, the guest platform fee
(listed here as a service fee) is $58.
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3.3.2 Price Tips & Smart Pricing

Since the summer of 2015, Airbnb has provided tools to help hosts price more effec-

tively. In June 2015, Airbnb launched “Price Tips,” a feature that provides dynamic

pricing suggestions for hosts (Airbnb 2015b). In November 2015, Airbnb launched

“Smart Pricing,” a tool that automatically updates hosts’ prices subject to a set of

constraints determined by the host (Airbnb 2015a). Both “Price Tips” and “Smart

Pricing” present recommendations from the same machine learning model, which in-

corporates local supply and demand features to provide dynamic pricing suggestions

to hosts (Ifrach et al. 2016, Ye et al. 2018). We refer the reader to Ye et al. (2018) for

a more detailed description of the pricing algorithm itself. Importantly, Airbnb’s pric-

ing suggestions attempt to maximize each host’s individual objectives, rather than

playing the role of a central planner.

Figure 3.4: A screenshot of the “Price tips” UI. “Price tips” color codes the nights on a
host’s calendar based on the pricing model’s estimated probability that a given night
will be booked. If a host selects a given calendar night, the host is shown the model’s
suggested price. Airbnb also presents explanations for why it is recommending a
particular price (e.g., “Time of year,” “More than 30 days from today”). In order for a
given host to fully adopt Airbnb’s recommended prices with the “Price tips” product,
the host is required to visit Airbnb every day, review Airbnb’s recommendations, and
accept them. Image from Ye et al. (2018).
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Figure 3.5: A screenshot of the “Smart pricing” UI. When setting up“Smart Pricing,”
hosts provide a minimum and maximum price. After “Smart Pricing” is turned on,
hosts automatically adopt Airbnb’s recommended price if it is between the host’s
minimum and maximum price. If Airbnb’s recommendation is higher than the host’s
upper threshold, the price is set to the upper threshold. If Airbnb’s recommendation
is lower than the host’s lower threshold, the price is set to the lower threshold. A
screenshot of the “Smart Pricing” UI is shown in Figure 3.5. Image from Ye et al.
(2018).
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“Price tips” color codes nights on a host’s calendar based on the estimated prob-

ability that a given night will be booked given the current price, and suggests an

“optimal” price for each night. Importantly, “Price tips” requires hosts to manu-

ally accept prices in order to comply with the algorithm’s suggestions recommended

through the “Price tips” product. A screenshot of the “Price tips” UI is shown in Fig-

ure 3.4. “Smart pricing” was introduced to make it easier for hosts to adopt Airbnb’s

pricing recommendations en masse. Once “Smart pricing” is turned on, hosts auto-

matically adopt Airbnb’s recommended price, subject to constraints provided by the

host. A screenshot of the “Smart Pricing” UI is shown in Figure 3.5.

3.4 Experiment Motivation & Design

It is crucial for an online marketplace intermediary, such as Airbnb, to understand

the price elasticity of its customers. This enables the firm to implement optimal

pricing-related market mechanisms, such as fee structures and seller pricing sugges-

tions. Understanding customer price elasticities can also be beneficial to sellers, who

set their own prices. If the business outcomes of all Airbnb listing were independent,

the firm could take an atheoretic approach to estimating price elasticity by running

a randomized controlled trial, or A/B test, in which the prices of some listings were

exogenously increased or decreased. However, as described in Holtz (2018), host- or

listing-level experiments on Airbnb violate SUTVA due to the inherent interconnect-

edness of online marketplaces.

There are a number mechanisms that can lead to SUTVA violations on Airbnb.

For one, if some hosts lower (raise) their prices, they may increase (decrease) demand

for their listings, and, consequently, decrease (increase) demand for their competitors’

listings. Furthermore, host pricing decisions may exhibit viral properties; a host may

observe their competitor’s pricing behavior, and copy it. Finally, Airbnb listings in a

given market can also serve as complements to each other. For instance, guests may

describe their positive (negative) experience with a given listing to their peers, which

could increase (decrease) demand for similar listings.
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Adapting experiment design and analysis techniques from the network experimen-

tation literature, as proposed by Holtz (2018), is one avenue for reducing interference

bias in online marketplace pricing experiments. However, none of the techniques

put forward by Holtz (2018) have been used yet to design or analyze an online mar-

ketplace experiment. As a first step toward empirically confirming the existence of

interference bias in online marketplace experiment TATE estimates, and measuring

the extent to which cluster randomization, an experiment design technique, can re-

duce that bias, we conduct pricing-related meta-experiments (Saveski et al. 2017) on

Airbnb. Quantifying the magnitude of interference bias, as well as the extent to which

cluster randomization can reduce that bias, is useful for two reasons. First, even if

interference bias is a theoretical concern, it may not be a practical one; statistical bias

in TATE estimates due to interference may be small. Second, even if interference bias

is large, cluster randomization may not be an effective tool to reduce that bias. If

this were the case, cluster randomization would not be a worthwhile undertaking for

firms; cluster randomization results in reduced statistical power relative to Bernoulli

randomization, and is also more logistically complicated for firms to implement (both

because of the need to identify relevant clusters, and because most corporate A/B

testing tools do not support cluster randomization).

In each meta-experiment, Airbnb listings are arranged into clusters. Each of these

clusters is then assigned to one of two meta-treatment arms: Bernoulli randomization,

or cluster randomization. Within the Bernoulli-randomized meta-treatment arm,

treatment is randomly assigned at the listing level. Within the cluster-randomized

meta-treatment, treatment is randomly assigned at the cluster level. By jointly an-

alyzing the data from both meta-treatment arms, we are able to measure whether

there is a statistically significant difference between the TATEs measured separately

in each meta-treatment arm.

3.4.1 Treatment Assignment Mechanism

In this subsection, we describe the procedure used to arrange Airbnb listings into

clusters, and then subsequently determine a given listing’s meta-treatment assignment
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and treatment assignment.

Clusters of Airbnb Listings

To perform cluster randomization, it is first necessary to arrange all of Airbnb’s

listings into mutually exclusive clusters. Previous work (Holtz 2018) has proposed

creating a network of listings that substitute for or complement one another, and then

clustering that network with any of a number of graph clustering algorithms (e.g.,

Louvain clustering (Blondel et al. 2008)). In this subsection, we outline a different

approach to clustering, which we use to generate our listing clusters. We first generate

a dense, 16-dimensional demand embedding for each listing, and then cluster listings

based on their location in that 16-dimensional space. Our method for generating

Airbnb listing embeddings is similar to that described in Grbovic and Cheng (2018).

Our embeddings are trained on data consisting of sequences of listings that indi-

vidual users view in the same search session. If, for instance, a user viewed listings

𝐿𝐴, 𝐿𝐵, and 𝐿𝐶 in one search session, this would generate the sequence:

< 𝐿𝐴, 𝐿𝐵, 𝐿𝐶 > . (3.1)

We use a word2vec-like architecture (Mikolov et al. 2013b) to estimate a skip-gram

model (Mikolov et al. 2013a) on this data. Given 𝑆 sequences of listings, the skip-gram

model attempts to maximize the objective function

𝐽 = max𝑊,𝑉

∑︁
𝑠∈𝑆

1

|𝑠|

|𝑠|∑︁
𝑖=1

∑︁
−𝑘≤𝑗≤𝑘, 𝑘 ̸=0

log 𝑝 (𝐿𝑖+𝑗|𝐿𝑖) , (3.2)

where 𝑘 is the size of a fixed moving window over the listings in a session, 𝑊 and 𝑉

are weight matrices in the word2vec architecture, and 𝑝(𝐿𝑖+𝑗|𝐿𝑖) is the hierarchical

Softmax approximation to the regular softmax expression.

The objective function above is augmented by including listing-level attributes

(e.g., a listing’s market) in the search session sequences. The model is then trained

using a market-level negative sampling approach. This generates a 16-dimensional

vector representation for each Airbnb listing.
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Figure 3.1: Example clusters generated using the hierarchical clustering scheme de-
scribed in this paper. Image from Srinivasan (2018).

Once listing embeddings are estimated using the aforementioned approach, a re-

cursive partitioning tree (Kang et al. 2016) is used to arrange the Airbnb listings

into clusters. The algorithm starts from a single cluster containing all listings, and

then recursively bisects clusters into two sub-clusters. The algorithm stops bisecting

sub-clusters when the tree reaches a depth of 20, or when a new sub-cluster will con-

tain less than 20 listings. Listings can then be assigned to clusters of arbitrary sizes

by assigning them to the smallest sub-cluster to which they belong that has at least

some threshold number of listings. For the algorithmic pricing meta-experiment, we

set this threshold at 250 listings, whereas for the fee meta-experiment, we set this

threshold at 1,000 listings.5 Figure 3.1 depicts example clusters generated using this

method in the Bay Area.

Pre-stratification & Treatment Assignment

Once listings have been assigned to clusters, those clusters are given meta-treatment

assignments and, based on those cluster-level meta-treatment assignments, listings

5In choosing cluster sizes, we are attempting to balance two objectives: creating clusters that
capture listings likely to interfere with one another, and designing an experiment with sufficient
statistical power. Since ex ante, we expected the fee treatment intervention to have a larger effect,
we chose larger clusters for that meta-experiment. For more details on the process used to determine
cluster size, see Appendix 3.A.
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are assigned listing-level treatment assignments.

To gain statistical power (particularly in the cluster-randomized meta-treatment

arm), we group clusters into strata using a multivariate blocking procedure (Moore

2012). As a first step, we collected pre-treatment listing-level data.6 We then aggre-

gate data at the cluster level, and for each cluster calculate over the pre-treatment

period the average number of nights booked per listing, the average number of book-

ings per listing, the average booking value per listing, and the number of experiment-

eligible listings in the cluster.78 After centering and scaling each of these metrics, we

calculate the Mahalanobis distance between each pair of clusters. Finally, the smallest

“available” distance between two clusters9, and assigns the two corresponding clusters

to the same stratum.

Within each stratum, two clusters are assigned to the meta-control via complete

random assignment. The remaining six clusters are assigned to the meta-treatment.

Within the meta-control arm, Bernoulli randomization is used to assign 50% of list-

ings to the treatment and 50% of listings to the control. Within the meta-treatment

arm, three of the six clusters are assigned the treatment via complete random as-

signment. The remaining three clusters are assigned the control. Each listing in

a meta-treatment cluster is assigned the treatment assignment corresponding to its

cluster.

6For the fee meta-experiment, pre-treatment data was collected from January 16, 2019 to Febru-
ary 17, 2019. For the pricing algorithm experiment, pre-treatment data was collected from August
1, 2018 to September 25, 2018.

7Our experiment excludes listings in a long-term experiment holdout group, as well as listings in
Airbnb’s “Plus” tier.

8For the algorithmic pricing experiment, we also calculate the percentage of listings accepting
at least one price tip during the pre-treatment period, and the percentage of listings with “Smart
Pricing” enabled at the end of the pre-treatment period.

9A distance is “available” if that pair of clusters has not been used in a previous step.
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3.5 Fee Meta-experiment

3.5.1 Description

The fee meta-experiment ran from March 16, 2019 to March 21, 2019 on a population

of 4,578,028 listings. Of those listings, 1,146,537 were assigned to the Bernoulli-

randomized meta-treatment arm, and the remaining 3,431,491 were assigned to the

cluster-randomized meta-treatment arm. Within the Bernoulli-randomized meta-

treatment arm, 573,346 were assigned to the treatment and 573,191 listings were

assigned to the control. Within the cluster-randomized meta-treatment arm, 2,982

clusters were assigned to the treatment and 2,982 clusters were assigned to the con-

trol, resulting in 1,720,147 listings assigned to the treatment and 1,711,344 listings

assigned to the control. In total, across both meta-treatment arms, 2,293,493 listings

were assigned to the treatment, and 2,284,535 were assigned to the control. Figure

3.1 shows the empirical CDFs for pre-treatment bookings, nights booked, and book-

ing value across all four meta-treatment / treatment groups.10 For each of these

pre-treatment outcomes, the empirical CDFs are quite similar.

In the fee meta-experiment, listings in the treatment had their fees increased if

they were long-tenured listings (i.e., if they had been on the platform as of a certain

cutoff date). Listings in the control had their fees decreased if they were long-tenured

listings. In both treatment arms, less tenured listings (i.e., those created after the

cutoff date) did not have their fees changed.11 Conceptually, one can think of the

treatment and control conditions of this meta-experiment as comparing the effect of

two different fee-based incentive programs Airbnb might run. In the treatment group,

new listings have lower fees (which could drive business to newer listings), whereas

in the control, older listings have lower fees (which could reward long-time Airbnb

hosts and reduce churn). After the conclusion of the fee meta-experiment, a “reversal

experiment” was run from April 15, 2019 to April 22, 2019. In the reversal experiment,

listings that had been assigned the treatment condition in the meta-experiment were

10To avoid disclosing raw numbers, x-axis values are multiplied by a constant.
11Due to confidentiality concerns on behalf Airbnb, we are unable to disclose the exact magnitude

of the fee changes in this experiment, nor are we able to disclose the cutoff date.
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Figure 3.1: The empirical CDFs for pre-treatment bookings, nights booked, and
booking value in each of the four treatment/meta-treatment groups for the fee meta-
experiment.
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assigned the control, and vice-versa. The purpose of the reversal experiment was to

mitigate any negative impact of the meta-experiment on Airbnb hosts.

3.5.2 Results

In this section, we present results from the fee meta-experiment. We focus on a single

outcome metric, bookings per listing, but the results for two alternative outcome

metrics, nights booked per listing and gross guest spend per listing, are qualitatively

similar and can be found in Appendix 3.B.12 Since, relative to the control, the

treatment increased fees, we expect the TATE on bookings per listing to be negative.

We first present the results from separately analyzing the Bernoulli randomized

arm of the meta-experiment and the cluster randomized arm of the meta-experiment.

While the Bernoulli randomized arm will have ample statistical power, we expect its

TATE estimate to suffer from interference bias. On the other hand, analysis of the

cluster randomized arm should provide a less biased estimate of the TATE, since the

amount of marketplace interference will be reduced, but will also have less statistical

power. Simply comparing the point estimates obtained independently from the two

meta-treatment arms is not sufficient to rigorously measure interference bias. In order

to do so, we proceed to jointly analyze both the Bernoulli randomized and cluster

randomized meta-treatment arms. Finally, we investigate the extent to which our

results are contingent on how supply- or demand-constrained a given Airbnb market

is.

Bernoulli & Cluster Randomized Results

We analyze both the Bernoulli randomized and cluster randomized meta-treatment

arms separately by estimating the following model,

𝑌𝑖 = 𝛼 + 𝛽𝑇𝑖 +
∑︁
𝑙

𝛾𝑙1(𝐵𝑖 = 𝑙) + 𝛿𝑋𝑖 + 𝜖𝑖 (3.3)

12To avoid disclosing raw numbers, all raw booking, nights booked, and gross guest spend values
are multiplied by a constant.
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on listing-level data, where 𝑌𝑖 is the outcome of interest, 𝑇𝑖 is the treatment assign-

ment for listing 𝑖, 𝐵𝑖 is a variable indicating which stratum listing 𝑖’s cluster of belongs

to, 𝑋𝑖 is a vector consisting of listing 𝑖’s pre-treatment bookings, nights booked, book-

ing value, and gross guest spend, and 𝜖𝑖 is an error term.13 For all analyses, we cluster

standard errors at the Airbnb listing cluster-level.

Figure 3.2: Total average treatment effect estimates for the fee experiment, estimated
separately in the Bernoulli randomized meta-treatment arm and the cluster random-
ized meta treatment arm. Error bars represent 95% confidence intervals. The dotted
blue line corresponds to a treatment effect of 0 bookings per listing.

Table 3.1 shows the TATE estimate for bookings per listing in both the Bernoulli

randomized and cluster randomized meta-treatment arms. In the Bernoulli random-

ized meta-treatment arm, the TATE is -0.207 bookings per listing, whereas in the

cluster randomized meta-treatment arm, the TATE is -0.142 bookings per listing.
13Data from the cluster randomized meta-treatment arm can also be analyzed by first aggregating

the data at the cluster level and then estimating a weighted version of Equation 3.3. We present
this analysis in Appendix 3.C. This analysis results in estimates that are nearly identical to those
obtained by analyzing the experiment with listing-level data.
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Table 3.1: Independent results of the fee meta-experiment

Dependent variable:

Bookings
Bernoulli randomized Cluster randomized

(1) (2)

Treatment −0.207*** −0.142***
(0.011) (0.011)

Pre-treatment bookings 0.173*** 0.174***
(0.001) (0.001)

Pre-treatment nights booked −0.003*** −0.003***
(0.000) (0.000)

Pre-treatment booking value 0.000 0.000***
(0.000) (0.000)

Pre-treatment gross guest spend −0.000** −0.000***
(0.000) (0.000)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. No Yes
R2 0.407 0.405
Adjusted R2 0.406 0.405

Note: *p<0.1; **p<0.05; ***p<0.01
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Both of these TATE estimates are statistically significant at the 95% confidence level.

Figure 3.2 shows the estimated TATE in both meta-treatment arms, along with the

corresponding 95% confidence intervals.

Although the TATE estimates obtained from the two meta-experiment arms are

different, it is not clear when analyzing the two meta-experiment arms separately

whether or not there is a statistically significant difference between the two estimates.

By extension, it is still unclear whether or not the Bernoulli TATE estimate suffers

from interference bias and/or if cluster randomization helps to mitigate this bias.

In order to rigorously test for a difference, it is necessary to jointly analyze both

meta-treatment arms simultaneously.

Joint Analysis

In order to determine with statistical rigor whether the two meta-treatment arms

yield different treatment effect results, we estimate the model,

𝑌𝑖 = 𝛼 + (𝛽 + 𝜈𝑀𝑖)𝑇𝑖 + 𝜉𝑀𝑖 +
∑︁
𝑙

𝛾𝑙1(𝐵𝑖 = 𝑙) + 𝛿𝑋𝑖 + 𝜖𝑖, (3.4)

where 𝑌𝑖 is the outcome of interest, 𝑀𝑖 is a binary variable set to 1 when listing 𝑖

is in the Bernoulli meta-treatment arm and 0 when 𝑖 is in the cluster-randomized

meta-treatment arm, 𝑇𝑖 is a binary variable set to 1 when listing 𝑖 is exposed to

the treatment, 𝐵𝑖 is a variable indicating the stratum of clusters to which listing 𝑖

belongs, 𝑋𝑖 is a vector consisting of listing 𝑖’s pre-treatment variables, and 𝜖𝑖 is the

error term. Once again, we cluster standard errors at the Airbnb listing cluster-level.

In the above model, 𝛽 measures the “true” effect of the treatment,14 and 𝜈 mea-

sures the difference between the effect of the treatment in the Bernoulli arm and

the effect of the treatment in the cluster randomized arm. In other words, 𝜈 should

measure the extent to which cluster randomization reduces interference bias. 𝜉 mea-

sures any baseline difference between listings in the Bernoulli-randomized arm of the

14Even when using cluster randomization, TATE estimates may be biased, since clusters do an
imperfect job of capturing listings that complement and substitute for one another. Furthermore,
interference may extend beyond a given listing’s immediate substitutes or complements.
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meta-experiment and listings in the cluster-randomized arm of the meta-experiment.

Since clusters were assigned to meta-treatment arms using the random assignment

procedure described in Section 3.4, we expect 𝜉 to be zero. However, it is possible

that imbalances between listings in the two meta-treatment arms persist even after

random assignment.

Figure 3.3: Coefficient estimates for the joint analysis of the fee meta-experiment.
Error bars represent 95% confidence intervals. The dotted blue line correponds to a
treatment effect of 0 bookings per listing. The red shaded area corresponds to values
that are below the MDE (80% power, 95% confidence).

Table 3.2 shows the results obtained for the fee meta-experiment by estimating

Equation 3.4 using listing level data.15 Figure 3.3 displays our point estimate for each

parameter in Equation 3.4, along with 95% confidence intervals. We estimate that

15Joint meta-experiment data can also be analyzed using a weighted combination of individual
listing-level data from the Bernoulli randomized meta-treatment arm and aggregated cluster-level
data from the cluster randomized meta-treatment arm. This analysis results in estimates that are
nearly identical to those obtained using listing-level data from both meta-treatment arms. We
present this analysis in Appendix 3.D.
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Table 3.2: Results of the fees Meta-experiment

Dependent variable:

Bookings

Treatment −0.139***
(0.011)

Bernoulli Randomized 0.022
(0.014)

Bernoulli × Treatment −0.067***
(0.016)

Pre-treatment bookings 0.174***
(0.001)

Pre-treatment nights booked −0.003***
(0.000)

Pre-treatment booking value 0.000***
(0.000)

Pre-treatment gross guest spend −0.000***
(0.000)

Stratum F.E. Yes
Robust s.e. Yes
Clustered s.e. Yes
R2 0.405
Adjusted R2 0.405

Note: *p<0.1; **p<0.05; ***p<0.01
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the “true” TATE is -0.139 bookings per listing, whereas -0.067 bookings per listing

of the TATE measured in the Bernoulli randomized meta-treatment arm is due to

interference bias. In other words, we estimate that 32.60% (±12.93%) of the TATE

estimate achieved through a Bernoulli randomized experiment is due to interference

bias, and is eliminated by instead running a cluster randomized experiment.

The Moderating Effect of Supply and Demand Constrainedness

Given that interference bias arises in part due to substitution and complementarity

between Airbnb listings, one might expect that the extent to which interference causes

bias in the Bernoulli randomized TATE estimate depends on the conditions in a given

Airbnb market. For instance, interference bias may be more severe in markets that

are demand constrained, and less severe in markets that are supply constrained.

In order to test this hypothesis, we re-estimate Equation 3.4 for subsets of Airbnb

listings that are located in particularly supply constrained or demand constrained

markets. Airbnb calculates a supply elasticity index and demand elasticity index for

all markets that are above some threshold size using a Cobb-Douglas matching model

a la Fradkin (2015). Of the markets for which these indices are calculated, we keep

data for listings that are in markets larger than the median market (computed at the

listing level). We then define a listing as being in a supply constrained market if its

market’s supply elasticity index is above the 75th quantile of supply elasticity indices

(computed at the listing level), and define a listing as being in a demand constrained

market if its market’s demand elasticity index is above the 75th quantile of demand

elasticity indices (computed at the listing level).

Column 1 of Table 3.3 shows our results for supply constrained listings, and Col-

umn 2 of Table 3.3 shows our results for demand constrained listings. Neither joint

analysis is able to detect interference bias with statistical significance. However, if we

take our non-statistically significant point estimates as given, our results do suggest

that interference bias accounts for 15.09% of the Bernoulli TATE estimate in demand

constrained markets, whereas interference bias actually reduces the magnitude of the

Bernoulli TATE estimate by 27.41% in supply constrained markets. We interpret
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Table 3.3: Results of the fee meta-experiment for supply- and demand-constrained
listings

Dependent variable:

Bookings
Supply constrained Demand constrained

(1) (2)

Treatment −0.241*** −0.200***
(0.051) (0.038)

Bernoulli Randomized −0.029 −0.031
(0.060) (0.059)

Bernoulli × Treatment 0.052 −0.036
(0.059) (0.052)

Pre-treatment bookings 0.170*** 0.174***
(0.002) (0.002)

Pre-treatment nights booked −0.003*** −0.003***
(0.000) (0.000)

Pre-treatment booking value 0.000 0.000***
(0.000) (0.000)

Pre-treatment gross guest spend −0.000** −0.000***
(0.000) (0.000)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes Yes
R2 0.421 0.389
Adjusted R2 0.420 0.388

Note: *p<0.1; **p<0.05; ***p<0.01
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this as weak evidence that interference bias is more likely to lead to inflated TATE

estimates in demand constrained markets than supply constrained markets, although

further research should be conducted to better understand this relationship.

3.6 Algorithmic Pricing Experiment

The fee meta-experiment results prove that interference bias can have large effects

on the accuracy of TATE estimates for online marketplace experiments, and that

cluster randomization can help to minimize interference bias. However, the treatment

intervention in the fee meta-experiment, a uniform fee change to a well-defined set of

Airbnb listings, is only one of the many types of intervention that may be of interest

to practitioners. In fact, many of the interventions that online marketplace designers

may want to test are behavioral nudges, which require ITT analysis. In the Airbnb

context, one such intervention is a change to Airbnb’s algorithmic pricing suggestions

for hosts.

Previous academic research suggests that smaller firms (e.g., Airbnb hosts) often

behave “behaviorally” and act sub-optimally when making managerial decisions (Kre-

mer et al. 2019), including pricing decisions (DellaVigna and Gentzkow 2017). Airbnb

uses a machine learning model (Ifrach et al. 2016, Ye et al. 2018) to suggest prices to

hosts and help them achieve their business goals. Field experiments have shown that

managerial training can lead to increased performance for small firms (Bloom et al.

2013, Bruhn et al. 2018), suggesting that Airbnb’s algorithmic pricing suggestions

can change the behavior of hosts and affect their business outcomes.

When Airbnb tests a new iteration of its pricing algorithm, not all hosts are

directly affected. Some hosts do not use Airbnb’s pricing suggestions at all, and hosts

who access Airbnb’s pricing tips through “Price Tips” often have low compliance rates

due to the manual effort required to follow Airbnb’s suggestions. Even those hosts

who opt into “Smart Pricing” may not fully comply with Airbnb’s new suggestions,

since Airbnb’s suggestions are often constrained by business logic imposed by the

host. Although Airbnb’s pricing algorithm experiments do not directly affect all
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hosts, ITT analysis is required for two reasons. First, the set of hosts who do accept

Airbnb’s suggestions (and the extent to which they comply with those suggestions)

is endogenous. Second, the firm is interested in the overall effect of the intervention,

including the rate at which hosts accept a given set of suggestions.

In order to test the efficacy with which cluster randomization mitigates interfer-

ence bias for interventions that require ITT analysis, we present the results from a

second meta-experiment in which the treatment intervention is a change to Airbnb’s

pricing suggestions.

3.6.1 Description

The algorithmic pricing meta-experiment ran from September 28, 2018 to October

31, 2018 on a population of 4,557,234 listings. Of those listings, 1,139,240 were as-

signed to the Bernoulli-randomized meta-treatment arm, and the remaining 3,417,994

were assigned to the cluster-randomized meta-treatment arm. Within the Bernoulli-

randomized meta-treatment arm, 569,821 listings were assigned to the treatment and

569,419 listings were assigned to the control. Within the Cluster-randomized meta-

treatment arm, 11,631 clusters were assigned to the treatment, and 11,631 clusters

were assigned to the control, resulting in 1,709,018 listings assigned to the treatment,

and 1,708,976 listings assigned to the control. In total, across both meta-treatment

arms, 2,278,839 listings were assigned to the treatment, and 2,278,395 listings were

assigned to the control. Importantly, the sample size for the algorithmic pricing meta-

experiment is approximately equal to the sample size for the fee meta-experiment.

Figure 3.1 shows the empirical CDFs for pre-treatment bookings, nights booked, and

booking value across all four meta-treatment / treatment groups.16 For each of these

pre-treatment outcomes, the empirical CDFs are quite similar.

For listings in the treatment group, the suggested prices surfaced through both

“Price Tips” and “Smart Pricing” were generated by a new version of Airbnb’s pricing

algorithm. Relative to the status quo algorithm, the treatment algorithm generally

increased prices. For instance, on unconstrained smart pricing nights (e.g., calen-
16To avoid disclosing raw numbers, x-axis values are multiplied by a constant.
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Figure 3.1: The empirical CDFs for pre-treatment bookings, nights booked, and
booking value in each of the four treatment/meta-treatment groups for the algorithmic
pricing meta-experiment.
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dar nights in which hosts had opted into smart pricing and the suggested price was

not subject to a minimum or maximum price threshold), prices increased by 4% on

average.17

3.6.2 Results

In this section, we present results from the algorithmic pricing experiment. As was

true for the fee meta-experiment, we report effects of the treatment on bookings per

listing, but found qualitatively similar results for nights booked per listing and gross

guest spend per listing, which can be found in Appendix 3.B.18 Since, on average, the

treatment pricing algorithm increased prices, we expect the TATE on bookings per

listing to be negative. We first present the results separately analyzing the Bernoulli

randomized arm of the meta-experiment and the cluster randomized arm of the meta-

experiment. We then proceed to jointly analyze both meta-treatment arms, in order

to test for the existence of interference bias in the Bernoulli randomized experiment’s

TATE estimate.

Bernoulli & Cluster Randomized Results

We analyze both the Bernoulli randomized and cluster randomized meta-treatment

arms separately by estimating equation 3.3 on listing-level data.19 As was the case

with the fee meta-experiment, standard errors are clustered at the Airbnb listing-

cluster level.

Table 3.1 shows the TATE estimate for bookings per listing in both the Bernoulli

randomized and cluster randomized meta-treatment arms. In the Bernoulli random-

ized meta-treatment arm, the TATE is -0.106 bookings per listing, and this result

is statistically significant at the 95% confidence level. In the cluster randomized

meta-treatment arm, our point estimate of the TATE is -0.051 bookings per listing,
17Unconstrained smart pricing nights represent only a fraction of the total calendar nights on

Airbnb. As a result, the average price increase across all calendar nights is less than 4%.
18To avoid disclosing raw numbers, all raw booking, nights booked, and gross guest spend values

are multiplied by a constant.
19As was the case with the fee meta-experiment, we present aggregate-level analysis of the cluster

randomized meta-treatment arm in Appendix 3.C. The results from this analysis are nearly identical.
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Figure 3.2: Total average treatment effect estimates for the algorithmic pricing ex-
periment, estimated separately in the Bernoulli randomized meta-treatment arm and
the cluster randomized meta treatment arm. Error bars represent 95% confidence
intervals. The dotted blue line corresponds to a treatment effect of 0 bookings per
listing.
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Table 3.1: Independent results of the algorithmic pricing meta-experiment

Dependent variable:

Bookings
Bernoulli randomized Cluster randomized

(1) (2)

Treatment −0.106*** −0.051*
(0.028) (0.029)

Pre-treatment bookings 0.822*** 0.828***
(0.004) (0.002)

Pre-treatment nights booked −0.018*** −0.017***
(0.001) (0.000)

Pre-treatment booking value 0.000* 0.000***
(0.000) (0.000)

Pre-treatment gross guest spend −0.000** −0.000***
(0.000) (0.000)

Smart pricing pre-treatment 0.587*** 0.586***
(0.033) (0.020)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. No Yes
R2 0.580 0.578
Adjusted R2 0.578 0.578

Note: *p<0.1; **p<0.05; ***p<0.01
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however, this result is not statistically significant at the 95% confidence level. Figure

3.2 shows the estimated TATE in both meta-treatment arms, along with the corre-

sponding 95% confidence intervals. In order to rigorously test whether or not cluster

randomization led to a reduction in interference bias, we proceed to jointly analyze

both meta-treatment arms.

Joint Analysis

In order to determine whether or not the two meta-treatment arms yield TATE

estimates between which there is a statistically significant difference, we once again

estimate equation 3.4.20 As was the case with the fee meta-experiment, standard

errors are clustered at the Airbnb listing-cluster level.

Figure 3.3: Coefficient estimates for the joint analysis of the algorithmic pricing
meta-experiment. Error bars represent 95% confidence intervals. The dotted blue
line correponds to a treatment effect of 0 bookings per listing. The red shaded area
corresponds to values that are below the MDE (80% power, 95% confidence).

20For the algorithmic pricing meta-experiment, 𝑋𝑖 also includes listing 𝑖’s smart pricing opt-in
status at the outset of the experiment.
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Table 3.2: Results of the algorithmic pricing meta-experiment

Dependent variable:

Bookings

Treatment −0.050*
(0.030)

Bernoulli Randomized −0.013
(0.037)

Bernoulli × Treatment −0.059
(0.041)

Pre-treatment bookings 0.827***
(0.002)

Pre-treatment nights booked −0.017***
(0.000)

Pre-treatment booking value 0.000***
(0.000)

Pre-treatment gross guest spend −0.000***
(0.000)

Smart pricing pre-treatment 0.577***
(0.017)

Stratum F.E. Yes
Robust s.e. Yes
Clustered s.e. Yes
R2 0.577
Adjusted R2 0.577

Note: *p<0.1; **p<0.05; ***p<0.01

160



Table 3.2 shows our results, and Figure 3.3 displays our point estimate for each

parameter in Equation 3.4, along with 95% confidence intervals. Point estimates im-

ply that the “true” TATE is -0.050 bookings per listing, whereas -0.059 bookings per

listing of the TATE measured in the Bernoulli randomized meta-treatment arm is

due to interference bias. This would suggest that 54.16% (±65.05%) of the TATE

achieved through a Bernoulli randomized experiment is due to interference that is

eliminated by instead running a clustered experiment. However, none of these point

estimates are statistically significant. A post-hoc power analysis of the algorithmic

pricing experiment reveals that the meta-experiment is underpowered to detect rea-

sonable effect sizes relative to the treatment effect estimated obtained in the Bernoulli

randomized arm of the meta-experiment. Table 3.3 shows the calculated minimum

detectable effect (MDE) for 𝛽, 𝜈, and 𝜉. Each of these MDEs is also overlaid in red

on Figure 3.3. Comparing the Bernoulli TATE estimate with the meta-experiment

MDEs implies that interference bias would need to have approximately the same

magnitude as our Bernoulli TATE estimate to be detectable.

Table 3.3: Minimum detectable effects for algorithmic pricing meta-experiment anal-
ysis (power = 80%, confidence level = 95%)

Regressor Bookings
Treatment 0.084
Bernoulli x Treatment 0.114
Bernoulli randomized 0.082

This result highlights the difficulty of identifying (and reducing) interference bias

using cluster randomization and meta-experimentation when the treatment interven-

tion of interest is a behavioral nudge or some other type of intervention that will

require ITT analysis. Although both the fee meta-experiment and the pricing meta-

experiment have experimental samples of almost exactly the same size, one is able

to detect statistically significant interference bias, while the other is not. Given that

standard errors decrease with square root of the sample size, we estimate that a sam-

ple approximately 3.45 times as large would be required to detect interference bias in

the algorithmic pricing meta-experiment.
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3.7 Discussion

In this paper, we have taken the first empirical steps to understand the extent to

which statistical inference can bias total average treatment effect estimates in online

marketplace experiments. We have achieved this by presenting the results from two

different pricing-related meta-experiments conducted on Airbnb, an online market-

place for accommodations. In each meta-experiment, some clusters of listings were

assigned their experimental treatment using Bernoulli randomization, whereas oth-

ers were assigned to their experimental treatment using cluster randomization. The

motivation for our focus on pricing-related interventions was twofold; understanding

customer price elasticities is crucial for both platform intermediaries and sellers, and

there are strong reasons to suspect that pricing-relating experiments violate the stable

unit treatment value assumption.

Analysis of our first meta-experiment, in which guest platform fees for treatment

listings were increased relative to their peers in the control, provided clear evidence

for interference bias in online marketplace experiments, and the potential for cluster

randomization to mitigate this bias. While analysis of the Bernoulli meta-treatment

arm alone suggested that the TATE was a decrease of 0.207 bookings per listing,

a joint analysis of both meta-treatment arms revealed that 32.60% of the reported

TATE in the Bernoulli meta-treatment arm was due to interference bias that cluster

randomization was able to eliminate. This figure represents a lower bound on the

magnitude of interference bias, as our clusters likely do an imperfect job of capturing

Airbnb listings that interfere with one another. While many recent papers measure

the impact of innovative market mechanisms through field experiments (Horton and

Johari 2015, Filippas et al. 2019), very few of them explicitly account for interference

bias. Based on our results, we argue that taking steps to reduce interference bias is

crucial if researchers hope to estimate total average treatment effects accurately.

Analysis of the fee meta-experiment also reveals that the amount of bias in

TATE estimates may depend on the extent to which a market is supply- or demand-

constrained. Although our evidence is weak and comes from non-statistically signif-
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icant point estimates, TATE estimates appear to be overstated due to interference

bias to a greater extent in Airbnb markets that are demand constrained than in

Airbnb markets that are supply constrained. Better understanding the relationships

between supply elasticity, demand elasticity, and interference bias is a promising di-

rection for future work. We also analyze a second meta-experiment, in which the

treatment changes Airbnb hosts’ algorithmically suggested prices, to understand how

well our method can be applied to a behavioral nudge that requires ITT analysis.

While point estimates suggest that the TATE estimate from the Bernoulli random-

ized meta-treatment arm is severely inflated due to interference bias, our results

are not statistically significant, despite both meta-experiments having approximately

equal sample sizes. This result highlights the difficulty of detecting interference bias

for behavioral nudges and other treatment interventions that require ITT analysis.

Unfortunately, these types of interventions are very common in online marketplaces.

Future work might focus on developing even more sensitive tests for interference bias

that will work more effectively when conducting such experiments.

In addition to cluster randomization, there are a number of analysis techniques

that have been developed in the network experimentation literature, such as exposure

modeling (Aronow et al. 2017), regression adjustment (Chin 2019), and exact tests for

interference (Athey et al. 2018) that, if adopted to a commerce-based setting, could

help to more accurately identify and reduce interference bias in online marketplace

experiments. Furthermore, there are a number of open questions regarding how to

best identify the sellers most likely to interfere with one another in an online market-

place setting. The clustering method described in this paper is by no means the only

(or best) way to cluster sellers before performing cluster randomization. Higher qual-

ity clusters could lead to even greater interference bias reductions. Finally, while the

approach described in this work can reduce bias due to interference between sellers,

it does not consider the reduction of bias due to interference between buyers. Given

that, in general, online marketplaces have much less information about buyers, many

of the approaches discussed thus far are unlikely to be effective. Developing methods

that reduce interference bias on the buyer side of online marketplaces is a promising
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direction for future research.

Accounting for interference bias increases the logistical complexity of online mar-

ketplace experimentation. However, for many interventions, e.g., those that are de-

signed to help platform intermediaries measure price elasticities, determining only the

direction of a treatment effect is not sufficient; an accurate point estimate is required.

Using pricing related meta-experiments on Airbnb as a test case, we have shown that

interference bias can account for at least 32.60% of a TATE estimate in an online

marketplace experiment. In light of this result, we believe that accounting for inter-

ference bias can be worth the additional effort for many marketplace designers and

researchers.

164



Appendix

3.A Method for cluster size selection

In this section, we detail the methodology that was used in deciding to conduct the

fee meta-experiment with clusters with a listing threshold of 1,000, as opposed to 250.

Although this analysis was originally conducted using clusters and data from February

2019, we present analyses using clusters generated on January 5, 2020, listing views

occurring between January 5, 2020 and January 12, 2020, and bookings occurring

between January 5, 2020 and January 26, 2020. However, the results we report and

the corresponding conclusions are qualitatively similar to those obtained using 2019

data.

In choosing a cluster size threshold, the fundamental trade-off is between statistical

power and capturing Airbnb demand. While smaller clusters will yield more statistical

power (since there will be more of them), they will also do a poorer job of capturing

demand, since a given user search session is more likely to contain listings from many

different clusters. On the other hand, larger clusters will provide less statistical power,

but will do a better job of capturing demand. Power analysis suggested that a week-

long experiment shifting fees in the same manner as our fee experiment would have an

MDE of 0.9% for interference bias if clusters with a threshold size of 250 were used,

whereas the same experiment would have an MDE of 1.05% for interference bias if

clusters with a threshold size of 1,000 were used. In order to determine whether

this reduction in “ideal” MDE is worthwhile, we needed to measure differences in the

extent to which the two sets of clusters capture demand.

We began our investigation by defining two different measures related to demand
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capture:

% in single cluster =
1

𝑛𝑢𝑠𝑒𝑟𝑠

∑︁
all users

1 (𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 1) (3.5)

Demand capture =
1

𝑛𝑢𝑠𝑒𝑟𝑠

∑︁
all users

(︂
1 − 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑛𝑙𝑖𝑠𝑡𝑖𝑛𝑔𝑠

)︂
(3.6)

The first measures the percentage of users for whom all listings viewed fall within a

single cluster. The second is a less strict measure that captures the extent to which

all viewed listings are contained within a small number of clusters. Importantly, both

measures will be close or equal to 1 if users never compare listings across different

clusters and 𝑛𝑙𝑖𝑠𝑡𝑖𝑛𝑔𝑠 is sufficiently large, and will be equal to 0 if the number of listings

a user compares is equal to the number of clusters needed to cover them. Figure 3.A.1

shows both of these measures for listing views occurring between January 5, 2020 and

January 12, 2020, for cluster size thresholds ranging from 100 to entire markets. As

expected, as the size of clusters increases, both of these demand capture metrics move

closer to 1. Importantly, even when markets are defined as “clusters,” they are unable

to capture 100% of demand, regardless of which measure we use.

Based on statistical power considerations, we decided that a cluster size threshold

of 1,000 was the maximum threshold worth considering. Once this decision was made,

we began to more directly compare the status quo threshold of 250 listings (which had

been used for the algorithmic pricing meta-experiment) to the maximum threshold

of 1,000 listings.21 In doing so, we created an alternative demand capture measure

that asked the following question: given a set of clusters, what percentage of listing

viewers have at least 𝑥% of their listings captured by one cluster? Figure 3.A.2 plots

this measure for both the 250 listing threshold clusters and the 1,000 listing threshold

clusters, with demand capture thresholds of 67%, 75%, and 90%. As expected, the

clusters with the 1,000 listing threshold do a better job of capturing demand than

the 250 listing threshold clusters.

21The 250 listing threshold was chosen for the algorithmic pricing meta-experiment in an ad-hoc
manner.
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Figure 3.A.1: The relationship between cluster size and demand capture for two
different metrics. The left column excludes users who only view a single Airbnb
listing, whereas the right column includes them. The top row includes all listing
viewers, whereas the bottom row only includes Airbnb users who go on to eventually
book a listing.
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Figure 3.A.2: A direct comparison of the demand capture of clusters with a 1,000
listing threshold, and clusters with a 250 listing threshold. Curves show the percent-
age of viewers for whom at least 𝑥% of their views are contained by one cluster. Red
curves include all listing viewers, whereas blue curves only include Airbnb users who
go on to eventually book a listing. Dashed lines include users who only view a single
Airbnb listing, whereas solid lines do not.
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In order to make a principled decision, we assumed that the “ideal” MDEs men-

tioned earlier in this appendix were reduced by poor demand capture according to

the relationship below:

𝑀𝐷𝐸𝑎𝑐𝑡𝑢𝑎𝑙 =
𝑀𝐷𝐸𝑖𝑑𝑒𝑎𝑙

Demand capture
. (3.7)

In other words, as a given set of clusters’ demand capture moved closer to 1, the

MDE would approach the ideal MDE. Given this assumed relationship between actual

MDE, ideal MDE, and demand capture, we determined that the 1,000 listing threshold

clusters would be preferable to the 250 listing threshold clusters when

Demand capture1,000
Demand capture250

>
𝑀𝐷𝐸𝑖𝑑𝑒𝑎𝑙250

𝑀𝐷𝐸𝑖𝑑𝑒𝑎𝑙1,000

→
Demand capture1,000
Demand capture250

>
1.05%

0.9%
(3.8)

Table 3.A.1 shows the ratio of demand capture for clusters with a threshold of

1,000 listings to the demand capture for clusters with a threshold of 250 clusters

according to five different demand capture measures: the average share of search

listings belonging to a cluster, the average user-level Herfindahl-Hirschman index

across clusters, and the percentage of users for which one cluster accounts for at least

67%, 75%, and 90% of listings viewed. Across all five of these demand capture metrics,

and across different user subpopulations, the demand capture ratio is consistently

above 1.05%
0.9%

= 1.17. Based on this calculation, we determined that clusters with a

threshold of 1,000 listings were preferable.

Table 3.A.1: The ratio of demand capture for 1,000 listing threshold clusters and 250
listing threshold clusters, using different demand capture metrics and user subpopu-
lations.

Single views? Type of viewers avg. cluster share avg. HHI % over 67% % over 75% % over 90%
No All 1.32 1.36 2.36 2.46 2.38
No Bookers 1.38 1.43 2.48 2.59 2.50
Yes All 1.16 1.19 1.37 1.33 1.26
Yes Bookers 1.23 1.27 1.54 1.49 1.37
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3.B Interference bias for nights booked and gross

guest spend

In addition to bookings per listing, we also conducted the main analyses in our paper

for both nights booked per listing and gross guest spend per listing. In this appendix,

we present the results of our analyses for these additional outcomes. Qualitatively, our

results for nights booked per listing and gross guest spend per listing are extremely

similar to our results for bookings per listing.

3.B.1 Fee meta-experiment

Figure 3.B.1: Total average treatment effect estimates (nights booked per listing and
gross guest spend per listing) for the fee experiment, estimated separately in the
Bernoulli randomized meta-treatment arm and the cluster randomized meta treat-
ment arm. Error bars represent 95% confidence intervals. The dotted blue line
corresponds to a treatment effect of 0.

170



Table 3.B.1: Independent results of the fee meta-experiment (nights booked and gross
guest spend)

Dependent variable:

Nights booked Gross guest spend
Bernoulli Cluster Bernoulli Cluster

(1) (2) (3) (4)

Treatment −0.768*** −0.579*** −79.677*** −63.388***
(0.062) (0.052) (8.044) (7.741)

Pre-treatment bookings 0.281*** 0.288*** 23.220*** 22.626***
(0.005) (0.003) (0.750) (0.372)

Pre-treatment nights booked 0.038*** 0.037*** −4.289*** −3.698***
(0.002) (0.001) (0.433) (0.129)

Pre-treatment booking value −0.000*** −0.000*** −0.060 −0.148***
(0.000) (0.000) (0.085) (0.021)

Pre-treatment gross guest spend 0.000*** 0.000*** 0.153** 0.226***
(0.000) (0.000) (0.070) (0.017)

Stratum F.E. Yes Yes Yes Yes
Robust s.e. Yes Yes Yes Yes
Clustered s.e. No Yes No Yes
R2 0.115 0.118 0.166 0.176
Adjusted R2 0.114 0.118 0.165 0.176

Note: *p<0.1; **p<0.05; ***p<0.01

Table 3.B.1 shows the estimated effect of the fee treatment in both the Bernoulli

randomized meta-treatment arm and the cluster randomized meta-treatment arm

on both nights booked per listing and gross guest spend per listing. Our TATE

estimates for each outcome are also depicted, along with 95% confidence intervals, in

Figure 3.B.1. We estimate in the Bernoulli randomized meta-treatment arm that the

treatment led to a statistically significant loss of 0.768 nights booked per listing and

$79.68 in gross guest spend per listing, whereas we estimate in the cluster randomized

meta-treatment arm that the treatment led to a statistically significant loss of 0.579

nights booked per listing and $63.39 in booking value per listing.

In order to test whether or not there is a statistically significant difference between

the TATE estimates in the two meta-treatment arms, we conduct a joint analysis of

both meta-treatment arms simultaneously. Table 3.B.2 shows our results. Our results

are also depicted in Figure 3.B.2, along with 95% confidence intervals. We find

statistically significant evidence of interference bias in the Bernoulli TATE estimate

for nights booked per listing at the 95% confidence level, but do not find statistically
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Figure 3.B.2: Coefficient estimates for the joint analysis of the fee meta-experiment
(nights booked per listing and gross guest spend per listing). Error bars represent
95% confidence intervals. The dotted blue line corresponds to a treatment effect of
0. The red shaded area corresponds to values that are below the MDE (80% power,
95% confidence).
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Table 3.B.2: Results of the fees Meta-experiment (nights booked and gross guest
spend)

Dependent variable:

Nights booked Gross guest spend

(1) (2)

Treatment −0.579*** −62.696***
(0.052) (7.749)

Bernoulli Randomized 0.111 18.063*
(0.069) (10.217)

Bernoulli × Treatment −0.191** −16.704
(0.082) (11.085)

Pre-treatment bookings 0.287*** 22.787***
(0.002) (0.342)

Pre-treatment nights booked 0.038*** −3.849***
(0.001) (0.147)

Pre-treatment booking value −0.000*** −0.123***
(0.000) (0.028)

Pre-treatment gross guest spend 0.000*** 0.206***
(0.000) (0.023)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes Yes
R2 0.117 0.173
Adjusted R2 0.117 0.173

Note: *p<0.1; **p<0.05; ***p<0.01
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significant evidence of interference bias in the Bernoulli TATE estimate for gross guest

spend per listing. Our point estimates suggest that interference accounts for 24.79%

of the Bernoulli TATE estimate for nights booked per listing (stat sig.) and 21.04%

of the Bernoulli TATE estimate for gross guest spend per listing (not stat. sig).

3.B.2 Algorithmic pricing meta-experiment

Figure 3.B.3: Total average treatment effect estimates (nights booked per listing and
gross guest spend per listing) for the algorithmic pricing experiment, estimated sep-
arately in the Bernoulli randomized meta-treatment arm and the cluster randomized
meta treatment arm. Error bars represent 95% confidence intervals. The dotted blue
line corresponds to a treatment effect of 0.

Table 3.B.3 shows the estimated effect of the algorithmic pricing treatment in

both the Bernoulli randomized meta-treatment arm and the cluster randomized meta-

treatment arm on both nights booked per listing and gross guest spend per listing.

Our TATE estimates for each outcome are depicted, along with 95% confidence in-

tervals, in Figure 3.B.3, We estimate in the Bernoulli randomized meta-treatment

arm that the treatment let do a statistically significant loss of 0.288 nights booked
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Table 3.B.3: Independent results of the algorithmic pricing meta-experiment (nights
booked and gross guest spend)

Dependent variable:

Nights booked Gross guest spend
Bernoulli Cluster Bernoulli Cluster

(1) (2) (3) (4)

Treatment −0.288** −0.176 −37.377** 2.268
(0.139) (0.118) (17.052) (16.466)

Pre-treatment bookings 1.342*** 1.370*** 87.218*** 85.714***
(0.013) (0.008) (1.842) (1.095)

Pre-treatment nights booked 0.152*** 0.147*** −19.907*** −19.948***
(0.004) (0.003) (0.963) (0.471)

Pre-treatment booking value −0.006*** −0.006*** −1.782*** −1.722***
(0.000) (0.000) (0.168) (0.091)

Pre-treatment gross guest spend 0.005*** 0.005*** 2.083*** 2.038***
(0.000) (0.000) (0.141) (0.078)

Smart pricing pre-treatment 3.376*** 3.437*** 362.779*** 348.078***
(0.164) (0.096) (23.840) (13.857)

Stratum F.E. Yes Yes Yes Yes
Robust s.e. Yes Yes Yes Yes
Clustered s.e. No Yes No Yes
R2 0.282 0.283 0.381 0.373
Adjusted R2 0.280 0.282 0.379 0.373

Note: *p<0.1; **p<0.05; ***p<0.01
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per listing and $37.38 in gross guest spend per listing, whereas we do not detect a

statistically significant treatment effect for either outcome in the cluster randomized

meta-treatment arm.

Figure 3.B.4: Coefficient estimates for the joint analysis of the algorithmic pricing
meta-experiment (nights booked per listing and gross guest spend per listing). Error
bars represent 95% confidence intervals. The dotted blue line corresponds to a treat-
ment effect of 0. The red shaded area corresponds to values that are below the MDE
(80% power, 95% confidence).

In order to test whether or not there is a statistically significant difference between

the TATE estimates in the two meta-treatment arms, we conduct a joint analysis of

both meta-treatment arms simultaneously. Table 3.B.4 shows our results. Our results

are also depicted in Figure 3.B.4, along with 95% confidence intervals. We do not

find statistically significant evidence for interference bias for either outcome. While

not statistically significant, our point estimates suggest that interference accounts for

36.86% of the Bernoulli TATE estimate for nights booked per listing and 104.73% of

the Bernoulli TATE estimate for gross guest spend per listing.
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Table 3.B.4: Results of the algorithmic pricing meta-experiment (nights booked and
gross guest spend)

Dependent variable:

Nights booked Booking value

(1) (2)

Treatment −0.178 1.682
(0.121) (16.904)

Bernoulli Randomized −0.057 15.840
(0.154) (20.941)

Bernoulli × Treatment −0.104 −37.238
(0.184) (23.988)

Pre-treatment bookings 1.366*** 86.295***
(0.007) (0.941)

Pre-treatment nights booked 0.149*** −20.025***
(0.002) (0.429)

Pre-treatment booking value −0.005*** −1.717***
(0.000) (0.080)

Pre-treatment gross guest spend 0.005*** 2.033***
(0.000) (0.068)

Smart pricing pre-treatment 3.382*** 344.350***
(0.084) (12.096)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes Yes
R2 0.281 0.374
Adjusted R2 0.280 0.373

Note: *p<0.1; **p<0.05; ***p<0.01
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3.C Cluster-level analysis of cluster-randomized

meta-treatment arm

Rather than analyzing data from the cluster randomized meta-treatment arm of our

experiments at the individual level with clustered standard errors, it is also possible

to aggregate data at the cluster level and instead estimated a weighted version of

Equation 3.3, where each cluster is weighted according to the number of experiment-

eligible listings in that cluster. In this appendix, we compare the cluster randomized

TATE estimates obtained using these two different approaches.

3.C.1 Fee meta-experiment

Figure 3.C.1: Comparison of the TATE estimates from the cluster randomized meta-
treatment arm of the fees experiment, obtained analyzing data at either the individual
listing level or at the cluster level. Error bars represent 95% confidence intervals. The
dotted blue line corresponds to a treatment effect of 0 bookings per listing.
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Table 3.C.1: Cluster randomized fees experiment (individual- and cluster-level anal-
ysis)

Dependent variable:
Individual-level Cluster-level

(1) (2)

Treatment −0.142*** −0.137***
(0.011) (0.011)

Pre-treatment bookings 0.174*** 0.206***
(0.001) (0.006)

Pre-treatment nights booked −0.003*** 0.003*
(0.000) (0.002)

Pre-treatment booking value 0.000*** −0.000
(0.000) (0.000)

Pre-treatment gross guest spend −0.000*** 0.000
(0.000) (0.000)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes No
R2 0.405 0.973
Adjusted R2 0.405 0.968

Note: *p<0.1; **p<0.05; ***p<0.01
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Table 3.C.1 compares the TATE estimates obtained from the cluster randomized

meta-treatment arm of the fee meta-experiment when analyzing the data at both the

individual listing level and at the cluster level. Our results are also depicted in Figure

3.C.1. We find that both approaches yield almost identical TATE point estimates

and standard errors.

3.C.2 Algorithmic pricing meta-experiment

Figure 3.C.2: Comparison of the TATE estimates from the cluster randomized meta-
treatment arm of the algorithmic pricing experiment, obtained analyzing data at
either the individual listing level or at the cluster level. Error bars represent 95%
confidence intervals. The dotted blue line corresponds to a treatment effect of 0
bookings per listing.

Table 3.C.2 compares the TATE estimates obtained from the cluster randomized

meta-treatment arm of the algorithmic pricing meta-experiment when analyzing the

data at both the individual listing level and at the cluster level. Our results are also

depicted in Figure 3.C.2. We find that both approaches yield almost identical TATE

point estimates and standard errors.
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Table 3.C.2: Cluster randomized algorithmic pricing experiment (individual- and
cluster-level analysis)

Dependent variable:
Individual-level Cluster-level

(1) (2)

Treatment −0.051* −0.051*
(0.029) (0.029)

Pre-treatment bookings 0.828*** 1.114***
(0.002) (0.017)

Pre-treatment nights booked −0.017*** −0.006
(0.000) (0.005)

Pre-treatment booking value 0.000*** 0.000**
(0.000) (0.000)

Pre-treatment gross guest spend −0.000*** −0.000*
(0.000) (0.000)

Smart pricing pre-treatment 0.586*** −0.777***
(0.020) (0.172)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes No
R2 0.578 0.951
Adjusted R2 0.578 0.941

Note: *p<0.1; **p<0.05; ***p<0.01
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3.D Results with mixed units of analysis

In addition to performing joint analysis of our meta-experiments with listing-level

data, it is possible to analyze the meta-experiments with a mixture of listing-level

data and data aggregated at the cluster level. For both meta-experiments, we estimate

Equation 3.4 on listing-level data from the Bernoulli randomized meta-treatment arm

and cluster-level data from the cluster randomized meta-treatment arm. Observations

are weighted by the number of listings making up that observation (i.e., listings receive

a weight of 1, whereas clusters receive a weight equal to the number of experiment

eligible listings in that cluster). In this appendix, we compare results obtained using

this approach with those obtained analyzing the meta-experiment entirely with listing

level data.

3.D.1 Fee meta-experiment

Table 3.D.1 compares results obtained by analyzing the fee meta-experiment at the

listing level and with mixed units of analysis. Our results are also depicted in Figure

3.D.1. We find that both approaches yield almost identical results.

3.D.2 Algorithmic pricing meta-experiment

Table 3.D.2 compares results obtained by analyzing the fee meta-experiment at the

listing level and with mixed units of analysis. Our results are also depicted in Figure

3.D.2. We find that both approaches yield almost identical results.
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Figure 3.D.1: Comparison of fee experiment meta-analysis estimates obtained ana-
lyzing data at the individual level of analysis, and the mixed level of analysis. In
the mixed analysis, Data from Bernoulli randomized listings is included at the listing
level, whereas data from cluster randomized listings is aggregated at the cluster level.
Error bars correspond to 95% confidence intervals. Shaded areas represent effect sizes
below the MDE threshold (80% power, 95% confidence).
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Table 3.D.1: Results of the fees Meta-experiment (individual and mixed analysis)

Dependent variable:

Bookings

(1) (2)

Treatment −0.139*** −0.139***
(0.011) (0.011)

Bernoulli Randomized 0.022 0.021
(0.014) (0.014)

Bernoulli × Treatment −0.067*** −0.068***
(0.016) (0.016)

Pre-treatment bookings 0.174*** 0.175***
(0.001) (0.001)

Pre-treatment nights booked −0.003*** −0.003***
(0.000) (0.000)

Pre-treatment booking value 0.000*** 0.000
(0.000) (0.000)

Pre-treatment gross guest spend −0.000*** −0.000
(0.000) (0.000)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes No
R2 0.405 0.515
Adjusted R2 0.405 0.515

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure 3.D.2: Comparison of algorithmic pricing experiment meta-analysis estimates
obtained analyzing data at the individual level of analysis, and the mixed level of
analysis. In the mixed analysis, Data from Bernoulli randomized listings is included
at the listing level, whereas data from cluster randomized listings is aggregated at
the cluster level. Error bars correspond to 95% confidence intervals. Shaded areas
represent effect sizes below the MDE threshold (80% power, 95% confidence).
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Table 3.D.2: Results of the algorithmic pricing meta-experiment (individual and
mixed analysis)

Dependent variable:

Bookings

(1) (2)

Treatment −0.050* −0.050*
(0.030) (0.030)

Bernoulli Randomized −0.013 −0.014
(0.037) (0.037)

Bernoulli × Treatment −0.059 −0.060
(0.041) (0.041)

Pre-treatment bookings 0.827*** 0.838***
(0.002) (0.004)

Pre-treatment nights booked −0.017*** −0.018***
(0.000) (0.001)

Pre-treatment booking value 0.000*** 0.000
(0.000) (0.000)

Pre-treatment gross guest spend −0.000*** −0.000*
(0.000) (0.000)

Smart pricing pre-treatment 0.577*** 0.358***
(0.017) (0.037)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes No
R2 0.577 0.692
Adjusted R2 0.577 0.691

Note: *p<0.1; **p<0.05; ***p<0.01

186



Bibliography

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge
& Data Engineering (6):734–749.

Aguiar L, Waldfogel J (2018) Platforms, promotion, and product discovery: Evidence from
spotify playlists. Technical report, National Bureau of Economic Research.

Airbnb (2015a) Airbnb unveils expansive suite of personalized tools to empower hosts. URL
https://www.airbnb.com/press/news/airbnb-unveils-expansive-suite-of-pe
rsonalized-tools-to-empower-hosts.

Airbnb (2015b) Using data to help set your price. URL https://blog.atairbnb.com/us
ing-data-to-help-set-your-price/.

Airbnb (2019) Airbnb press room: Fast facts. URL https://press.airbnb.com/fast-fa
cts/.

Anderson A, Maystre L, Anderson I, Mehrotra R, Lalmas M (2020) Algorithmic effects
on the diversity of consumption on spotify. Proceedings of The Web Conference 2020,
2155–2165.

Aral S, Van Alstyne M (2011) The diversity-bandwidth trade-off. American journal of soci-
ology 117(1):90–171.

Aronow PM, Samii C, et al. (2017) Estimating average causal effects under general interfer-
ence, with application to a social network experiment. The Annals of Applied Statistics
11(4):1912–1947.

Athey S, Eckles D, Imbens GW (2018) Exact p-values for network interference. Journal of
the American Statistical Association 113(521):230–240.

Bakshy E, Messing S, Adamic LA (2015) Exposure to ideologically diverse news and opinion
on facebook. Science 348(6239):1130–1132.

Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Economet-
rica: Journal of the Econometric Society 841–890.

Blake T, Coey D (2014) Why marketplace experimentation is harder than it seems: The role
of test-control interference. Proceedings of the fifteenth ACM conference on Economics
and computation, 567–582 (ACM).

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of commu-
nities in large networks. Journal of statistical mechanics: theory and experiment
2008(10):P10008.

Bloom N, Eifert B, Mahajan A, McKenzie D, Roberts J (2013) Does management matter?
evidence from india. The Quarterly Journal of Economics 128(1):1–51.

Bojinov I, Simchi-Levi D, Zhao J (2020) Design and analysis of switchback experiments.
Available at SSRN 3684168 .

187



Bruhn M, Karlan D, Schoar A (2018) The impact of consulting services on small and medium
enterprises: Evidence from a randomized trial in mexico. Journal of Political Economy
126(2):635–687.

Brynjolfsson E, Hu Y, Simester D (2011) Goodbye pareto principle, hello long tail: The effect
of search costs on the concentration of product sales. Management Science 57(8):1373–
1386.

Castells P, Hurley NJ, Vargas S (2015) Novelty and diversity in recommender systems.
Recommender systems handbook, 881–918 (Springer).

Chin A (2019) Regression adjustments for estimating the global treatment effect in experi-
ments with interference. Journal of Causal Inference 7(2).

Clarke B (2016) Why these tech companies keep running thousands of failed experiments.
URL https://www.fastcompany.com/3063846/why-these-tech-companies-keep-
running-thousands-of-failed.

Clauset A, Newman ME, Moore C (2004) Finding community structure in very large net-
works. Physical review E 70(6):066111.

Claussen J, Peukert C, Sen A (2019) The editor vs. the algorithm: Targeting, data and
externalities in online news. Data and Externalities in Online News (June 5, 2019) .

Conlon CT, Mortimer JH (2013) Demand estimation under incomplete product availability.
American Economic Journal: Microeconomics 5(4):1–30.

Cox DR (1958) Planning of experiments. .

Das AS, Datar M, Garg A, Rajaram S (2007) Google news personalization: scalable online
collaborative filtering. Proceedings of the 16th international conference on World Wide
Web, 271–280 (ACM).

Datta H, Knox G, Bronnenberg BJ (2018) Changing their tune: How consumers’ adoption of
online streaming affects music consumption and discovery. Marketing Science 37(1):5–
21.

De P, Hu Y, Rahman MS (2010) Technology usage and online sales: An empirical study.
Management Science 56(11):1930–1945.

DellaVigna S, Gentzkow M (2017) Uniform pricing in us retail chains. Technical report,
National Bureau of Economic Research.

Dewan S, Ramaprasad J (2012) Research note—music blogging, online sampling, and the
long tail. Information Systems Research 23(3-part-2):1056–1067.

Dhar V, Geva T, Oestreicher-Singer G, Sundararajan A (2014) Prediction in economic
networks. Information Systems Research 25(2):264–284, ISSN 15265536, URL http:
//dx.doi.org/10.1287/isre.2013.0510.

Ding P, Lu J (2017) Principal stratification analysis using principal scores. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 79(3):757–777.

Dubé JP, Misra S (2017) Scalable price targeting. Technical report, National Bureau of
Economic Research.

Eckles D, Karrer B, Ugander J (2017) Design and analysis of experiments in networks:
Reducing bias from interference. Journal of Causal Inference 5(1).

Edison Research (2019) The podcast consumer 2019. URL https://www.edisonresearch
.com/the-podcast-consumer-2019.

188



Farronato C, Fradkin A (2018) The welfare effects of peer entry in the accommodation
market: The case of airbnb. Technical report, National Bureau of Economic Research.

Feller A, Mealli F, Miratrix L (2017) Principal score methods: Assumptions, extensions, and
practical considerations. Journal of Educational and Behavioral Statistics 42(6):726–
758.

Filippas A, Jagabathula S, Sundararajan A (2019) Managing market mechanism transitions:
A randomized trial of decentralized pricing versus platform control. Proceedings of the
2019 ACM Conference on Economics and Computation (ACM).

Flaxman S, Goel S, Rao JM (2016) Filter bubbles, echo chambers, and online news con-
sumption. Public opinion quarterly 80(S1):298–320.

Fleder D, Hosanagar K (2009) Blockbuster culture’s next rise or fall: The impact of recom-
mender systems on sales diversity. Management science 55(5):697–712.

Fradkin A (2015) Search frictions and the design of online marketplaces. Work. Pap., Mass.
Inst. Technol .

Frangakis CE, Rubin DB (2002) Principal Stratification in Causal Inference. Biometrics
58(1):21–29, ISSN 1541-0420, URL http://dx.doi.org/10.1111/j.0006-341X.200
2.00021.x.

Freyne J, Jacovi M, Guy I, Geyer W (2009) Increasing engagement through early recom-
mender intervention. Proceedings of the third ACM conference on Recommender sys-
tems, 85–92 (ACM).

Gentzkow M, Shapiro JM (2006) Media bias and reputation. Journal of political Economy
114(2):280–316.

Gerber AS, Green DP (2012) Field experiments: Design, analysis, and interpretation (WW
Norton).

Grbovic M, Cheng H (2018) Real-time personalization using embeddings for search ranking
at airbnb. Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 311–320 (ACM).

Hájek J (1971) Comment on “an essay on the logical foundations of survey sampling, part
one,”. The Foundations of Survey Sampling 236.

Hervas-Drane A (2015) Recommended for you: The effect of word of mouth on sales con-
centration. International Journal of Research in Marketing 32(2):207–218.

Holtz D, Lobel R, Liskovich I, Aral S (2020) Reducing interference bias in online marketplace
pricing experiments. arXiv preprint arXiv:2004.12489 .

Holtz DM (2018) Limiting bias from test-control interference in online marketplace experi-
ments. Master’s thesis, Massachusetts Institute of Technology.

Horton JJ, Johari R (2015) At what quality and what price?: Eliciting buyer preferences as
a market design problem. Proceedings of the Sixteenth ACM Conference on Economics
and Computation, 507–507 (ACM).

Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American statistical Association 47(260):663–685.

Hosanagar K, Fleder D, Lee D, Buja A (2013) Will the global village fracture into tribes?
recommender systems and their effects on consumer fragmentation. Management Sci-
ence 60(4):805–823.

Ifrach B, Holtz DM, Yee YH, Zhang L (2016) Demand prediction for time-expiring inventory.
US Patent App. 14/952,576.

189



Jannach D, Lerche L, Gedikli F, Bonnin G (2013) What recommenders recommend–an
analysis of accuracy, popularity, and sales diversity effects. International Conference
on User Modeling, Adaptation, and Personalization, 25–37 (Springer).

Johari R, Li H, Liskovich I, Weintraub G (2020) Experimental design in two-sided platforms:
An analysis of bias. arXiv preprint arXiv:2002.05670 .

Kahle D, Wickham H (2013) ggmap: Spatial visualization with ggplot2. The R Journal
5(1):144–161, URL http://journal.r-project.org/archive/2013-1/kahle-wickh
am.pdf.

Kang JH, Park CH, Kim SB (2016) Recursive partitioning clustering tree algorithm. Pattern
Analysis and Applications 19(2):355–367.

Knox G, Datta H (2020) Streaming services and the homogenization of music consumption
.

Kohavi R, Longbotham R, Sommerfield D, Henne RM (2009) Controlled experiments on the
web: survey and practical guide. Data mining and knowledge discovery 18(1):140–181.

Kremer M, Rao G, Schilbach F (2019) Behavioral development economics. Handbook of
Behavioral Economics 2.

Lacerda A (2017) Multi-objective ranked bandits for recommender systems. Neurocomputing
246:12–24.

Lamere P, Green S (2008) Project aura: recommendation for the rest of us. Presentation at
Sun JavaOne Conference.

Lee D, Hosanagar K (2019) How do recommender systems affect sales diversity? a cross-
category investigation via randomized field experiment. Information Systems Research
30(1):239–259.

Li JQ, Rusmevichientong P, Simester D, Tsitsiklis JN, Zoumpoulis SI (2015) The value of
field experiments. Management Science 61(7):1722–1740.

Lin Z, Goh KY, Heng CS (2015) The demand effects of product recommendation networks:
An empirical analysis of network diversity and stability. Forthcoming in MIS Quarterly
.

Mahalanobis PC (1936) On the generalized distance in statistics. Proceedings of the National
Institute of Sciences (Calcutta) 2:49–55.

Manski CF (2013) Identification of treatment response with social interactions. The Econo-
metrics Journal 16(1):S1–S23.

Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering.
Structural and multidisciplinary optimization 26(6):369–395.

McInerney J, Lacker B, Hansen S, Higley K, Bouchard H, Gruson A, Mehrotra R (2018)
Explore, exploit, and explain: personalizing explainable recommendations with bandits.
Proceedings of the 12th ACM Conference on Recommender Systems, 31–39 (ACM).

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781 .

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations
of words and phrases and their compositionality. Advances in neural information pro-
cessing systems, 3111–3119.

Mitchell M, Baker D, Moorosi N, Denton E, Hutchinson B, Hanna A, Gebru T, Morgen-
stern J (2020) Diversity and inclusion metrics in subset selection. Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, 117–123.

190



Moore RT (2012) Multivariate continuous blocking to improve political science experiments.
Political Analysis 20(4):460–479.

Nazari Z, Charbuillet C, Pages J, Laurent M, Charrier D, Vecchione B, Carterette B (2020)
Recommending podcasts for cold-start users based on music listening and taste. Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 1041–1050.

Negroponte N (1996) Being digital (Vintage).

Nevo A (2000) A practitioner’s guide to estimation of random-coefficients logit models of
demand. Journal of economics & management strategy 9(4):513–548.

Nguyen TT, Hui PM, Harper FM, Terveen L, Konstan JA (2014) Exploring the filter bubble:
the effect of using recommender systems on content diversity. Proceedings of the 23rd
international conference on World wide web, 677–686 (ACM).

Oestreicher-Singer G, Sundararajan A (2012a) Recommendation networks and the long tail
of electronic commerce. MIS Quarterly 36(1):65–83.

Oestreicher-Singer G, Sundararajan A (2012b) The visible hand? demand effects of recom-
mendation networks in electronic markets. Management science 58(11):1963–1981.

Pariser E (2011) The filter bubble: How the new personalized web is changing what we read
and how we think (Penguin).

Pouget-Abadie J, Saveski M, Saint-Jacques G, Duan W, Xu Y, Ghosh S, Airoldi E (2017)
Testing for arbitrary interference on experimentation platforms. preprint .

Resnick P, Varian HR (1997) Recommender systems. Communications of the ACM 40(3):56–
59.

Ribeiro MH, Ottoni R, West R, Almeida VA, Meira W (2019) Auditing radicalization path-
ways on youtube. arXiv preprint arXiv:1908.08313 .

Rubin DB (1974) Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of educational Psychology 66(5):688.

Salganik MJ, Dodds PS, Watts DJ (2006) Experimental study of inequality and unpre-
dictability in an artificial cultural market. science 311(5762):854–856.

Saveski M, Pouget-Abadie J, Saint-Jacques G, Duan W, Ghosh S, Xu Y, Airoldi EM (2017)
Detecting network effects: Randomizing over randomized experiments. Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1027–1035 (ACM).

Senecal S, Nantel J (2004) The influence of online product recommendations on consumers’
online choices. Journal of retailing 80(2):159–169.

Shannon CE (1948) A mathematical theory of communication. Bell system technical journal
27(3):379–423.

Sharma A, Hofman JM, Watts DJ, et al. (2018) Split-door criterion: Identification of causal
effects through auxiliary outcomes. The Annals of Applied Statistics 12(4):2699–2733.

Slee T (2015) Airbnb data collection: Methodology and accuracy. URL http://tomslee.
net/airbnb-data-collection-methodology-and-accuracy.

Sneider C, Tang Y, Tang Y (2019) Experiment rigor for switchback experiment analysis.
URL https://doordash.engineering/2019/02/20/experiment-rigor-for-switc
hback-experiment-analysis/.

191



Srinivasan S (2018) Learning market dynamics for optimal pricing. URL https://medium
.com/airbnb-engineering/learning-market-dynamics-for-optimal-pricing-9
7cffbcc53e3.

Sunstein CR (2001) Republic.com (Princeton university press).
Teachman JD (1980) Analysis of population diversity: Measures of qualitative variation.

Sociological Methods & Research 8(3):341–362.
Thompson C (2008) If you liked this, you’re sure to love that. The New York Times 21.
Tufekci Z (2018) Youtube, the great radicalizer. The New York Times 10.
Ugander J, Karrer B, Backstrom L, Kleinberg J (2013) Graph cluster randomization: Net-

work exposure to multiple universes. Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 329–337 (ACM).

Ugander J, Yin H (2020) Randomized graph cluster randomization. arXiv preprint
arXiv:2009.02297 .

Van Alstyne M, Brynjolfsson E (2005) Global village or cyber-balkans? modeling and mea-
suring the integration of electronic communities. Management Science 51(6):851–868.

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. nature
393(6684):440–442.

Wu LL, Joung YJ, Chiang TE (2011) Recommendation systems and sales concentration:
The moderating effects of consumers’ product awareness and acceptance to recommen-
dations. 2011 44th Hawaii International Conference on System Sciences, 1–10 (IEEE).

Ye P, Qian J, Chen J, Wu Ch, Zhou Y, De Mars S, Yang F, Zhang L (2018) Customized
regression model for airbnb dynamic pricing. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 932–940 (ACM).

Zhou R, Khemmarat S, Gao L (2010) The impact of youtube recommendation system on
video views. Proceedings of the 10th ACM SIGCOMM conference on Internet measure-
ment, 404–410 (ACM).

192


