
Imitation Learning for Sequential Manipulation
Tasks: Leveraging Language and Perception

by

Dain Kim
S.B., Computer Science and Engineering, MIT (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 31, 2021
Certified by. .

Julie A. Shah
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor
Certified by. .

Nadia Figueroa
Postdoctoral Associate

Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Imitation Learning for Sequential Manipulation Tasks:

Leveraging Language and Perception

by

Dain Kim

Submitted to the Department of Electrical Engineering and Computer Science
on May 31, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As robots are increasingly being utilized to perform automated tasks, effective meth-
ods for transferring task specifications to robots have become imperative. However,
existing techniques for training robots to perform tasks often depend on rote mimicry
of human demonstrations and do not generalize well to new tasks or contexts. In
addition, learning an end-to-end policy for performing a sequence of operations for a
high-level goal remains a challenge. Transferring sequential task specifications is a dif-
ficult objective, as it requires extensive human intervention to establish the structure
of the task including the constraints, objects of interest, and control parameters.

In this thesis, we present an imitation learning framework for sequential manip-
ulation tasks that enables humans to easily communicate abstract high-level task
goals to the robot without explicit programming or robotics expertise. We introduce
natural language input to the system to facilitate the learning of task specifications.
During training, a human teacher provides demonstrations and a verbal description
of the task being performed. The training process then learns a mapping from the
multi-modal inputs to the low-level control policies. During execution, the high-level
task instruction input is parsed into a list of sub-tasks that the robot has learned to
perform.

The presented framework is evaluated in a simulated table-top scenario of a robotic
arm performing sorting and kitting tasks from natural language commands. The
approach developed in this thesis achieved an overall task completion rate of 91.16%
on 600 novel task scenes, with a sub-task execution success rate of 96.44% on 1,712
individual “pick” and “place” tasks.

Thesis Supervisor: Julie A. Shah
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Nadia Figueroa
Title: Postdoctoral Associate

3

4

Acknowledgments

I would like to thank Professor Julie Shah for the opportunity to work in the In-

teractive Robotics Group for the past year. I also extend my sincerest gratitude

to my supervisor, Nadia Figueroa, who provided tremendous feedback and guidance

throughout this whole process. This work would not have been possible without both

of their invaluable mentorship.

I have had the pleasure of teaching the MIT Interactive Music Systems course

(6.809/21M.385) with Professor Eran Egozy in the past year. Working with him was

an immensely rewarding experience. I would also like to acknowledge my academic

advisor Adam Chlipala, my international student advisor Aurora Brule, and Ellen

Reid from the Undergraduate EECS Office for their administrative support.

I was fortunate to have been surrounded by great friends and colleagues during my

time at MIT. In particular, I want to thank my roommates Meital Hoffman and Andy

Reyna for being wonderful company during a most unusual year. I thank the tEp

community for making my undergraduate experience truly memorable and enjoyable.

I also extend my thanks to Charlie Yeoh, who has been with me every step along the

way and provided endless encouragement and advice.

Most importantly, I am incredibly grateful for my family back home in Korea.

They have been my rock throughout my five years at MIT and more, and I would

not be where I am today without their unconditional love and support.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Language-Conditioned Imitation Learning 18

1.3 Therbligs: Elemental Motions for Workplace Tasks 19

1.4 Experimental Validation and Results 20

2 Related Work 23

2.1 Representation Learning . 23

2.2 Grounding . 24

2.3 Task-Oriented Language Grounding 26

3 Approach 29

3.1 Modifications to Prior Work . 29

3.2 Architecture Overview . 32

3.2.1 Image Pre-processing . 32

3.2.2 High-Level Semantic Command Parser 33

3.2.3 Language Pre-Processing . 37

3.2.4 Language-Conditioned Attention Network 37

3.2.5 Sub-Task Sequencer . 37

3.2.6 Control Model . 39

4 Evaluation 41

4.1 Methods . 41

7

4.1.1 Training . 41

4.1.2 Test Data Collection . 42

4.1.3 Performance Metrics . 43

4.2 Results . 46

4.2.1 Sub-Task Generation . 46

4.2.2 Object Detection . 47

4.2.3 Attention . 49

4.2.4 Task Execution . 51

4.3 Discussion and Limitations . 55

4.3.1 Parser . 55

4.3.2 Detection . 55

4.3.3 Task Sequencing . 56

4.3.4 Grasping . 56

4.3.5 Motion Primitive . 56

5 Conclusion 59

8

List of Figures

1-1 A simplified architecture of the proposed language-conditioned imita-

tion learning framework. 18

1-2 The 18 workplace elemental motions (therbligs) and the standard sym-

bols used to describe them. Illustration obtained from [16]. 20

1-3 An illustration of the sorting and kitting task scenarios used in evaluation. 21

1-4 A bird’s-eye view of the simulation environment and the available objects. 22

3-1 Model architecture implemented in [46] for the imitation learning of

single target-oriented robot manipulation tasks from goal-specific in-

structions. 31

3-2 Model architecture proposed in this work for the imitation learning of

sequential robot manipulation tasks from high-level abstract instructions. 31

3-3 Visualization of the result of candidate object detection. The integer

on the top left of each region indicates the detection model’s inter-

nal object index, and the score on the top right shows the detection

confidence. The bounding boxes are color-coded for convenience. . . . 33

3-4 The semantic tree for a command with the structure V O. 35

3-5 The semantic tree for a command with the structure V O L. 35

3-6 The semantic tree for a command with the structure V O CC V O L. 36

3-7 The semantic tree for a command with the structure V O CC O L. . 36

3-8 Atomic sub-task commands generated by the semantic parser based on

the detected task objects and the high-level instruction. 36

3-9 A detailed diagram of the language-conditioned attention network. . . 38

9

3-10 A finite state machine generated for the 𝑘 sub-tasks {𝑒1...𝑒𝑘} in Φ. . . 39

3-11 Details of the control model, which generates the robot control signals.

This figure was taken from [46]. 40

4-1 Examples of four randomly generated sorting task scenes and their

corresponding task commands, roughly in the order of increasing task

complexity. 43

4-2 Examples of four randomly generated kitting task scenes and their

corresponding task commands, roughly in the order of increasing task

complexity. 44

4-3 Sample task execution sequences for sorting (left) and kitting (right)

tasks, with the original task command and the current sub-task com-

mand being performed. 45

4-4 A confusion matrix for the object detection module. The module clas-

sified the 3,600 task objects with 99.7% accuracy, with very few clas-

sification failures. 48

4-5 A sorting task with a false positive produced in the object detection

stage. The red cup on the right is detected twice by the detection

module, for a total of three perceived red cups in the scene. The parser

generates three pick-place sub-task pairs based on this information,

which ultimately leads to the robot attempting three pick tasks in total. 49

4-6 Two examples of bin detection failures caused by occlusion. In the first

scene, the robot arm at the end of the previous sub-task obscures the

target bin. In the second scene, the red cup placed during the previous

sub-task interferes with the detection of the bin. Since no target bin

is identified, the model performs the subsequent place operation on a

different bin with the incorrect color. 50

4-7 A confusion matrix for the attention network module. The module

identified the 1,990 target objects with 81.1% accuracy. 52

4-8 Attention network accuracy for 1,148 pick and 842 place target objects. 52

10

4-9 Attention network accuracy for 261 generic and 1,451 specific task

commands. 53

4-10 Examples of correctly executed place tasks. 54

4-11 Examples of place task inaccuracies during execution. These tasks were

considered to be successful if the gripper was directly above the bin at

release time. 55

11

12

List of Tables

3.1 A complete list of part-of-speech tags used in this work. 34

4.1 Model performance summary of the proposed language-conditioned se-

quential task learning framework. 47

4.2 Sub-task execution success rates for pick and place tasks. 54

4.3 Task completion rates for the sorting and kitting task scenarios. . . . 54

13

14

Chapter 1

Introduction

1.1 Motivation

As robots are increasingly being utilized in factory settings to perform automated

tasks, effective methods for communicating task specifications to robots have become

imperative. The most direct approach for achieving this is to manually program the

robot to execute the desired behavior. This is a very time-consuming process, as

it requires considerable effort and expertise to design, code, and test every step of

the task. Moreover, as the task environment becomes more complex and variegated,

explicitly programming the exact actions for each task quickly becomes impractical.

A widely accepted alternative is to use imitation learning (IL) [36] or learning

from demonstration (LfD) [26, 8, 5], techniques that train the robot to mimic human

behavior for a given task. The model observes demonstrations from a human teacher

and is trained to perform the task by learning a mapping 𝜋 : 𝒳 → 𝒴 between input

observations 𝒳 ∈ R𝑀 and output actions 𝒴 ∈ R𝑁 . The mapping function 𝜋 is often

referred to as the policy, which is learned from a training set of input-output (𝒳 ,𝒴)

pairs. The actions are formulated as motor signals that the robot must execute –

normally desired positions, velocities, or torques, depending on the robot. The input

observations may be in the form of:

• Perceptual inputs such as a raw image of the task scene 𝜋 : (𝒳 = 𝐼) → 𝒴 ,

15

where 𝐼 ∈ R𝑃×𝑄×3 with 𝑃,𝑄 ∈ N denoting the size of the image.

• Processed image features or locations of the task objects 𝜋 : (𝒳 = 𝐹) → 𝒴 ,

where 𝐹 ∈ R𝑅×𝐾 with 𝑅,𝐾 ∈ N denoting the feature dimensionality and

number of objects.

• The robot states 𝜋 : (𝒳 = 𝑟) → 𝒴 , where 𝑟 ∈ R𝑁 is the robot state which may

or may not have the same dimensionality as the action space. For simplicity,

in this work we assume that they are the same; i.e. 𝑟,𝒴 ∈ R𝑁 where 𝑁 is the

number of degrees-of-freedom of the robot.

An overview of the different observation modalities is provided in [38]. Regardless of

the observation modalities, IL approaches provide a more natural and intuitive way

to describe tasks to the agent. It is much easier for the human teacher to demonstrate

a task physically or kinesthetically (by moving the robot) than to articulate it in a

highly specific language that only the robot and the programmer can understand.

Using the imitation learning framework, robots have been able to learn control

policies for specific, singular goal-oriented tasks including pick/grasp, pour, and place

with relative ease [39]. However, teaching robots to perform multiple atomic opera-

tions in sequence, guided by a desired metric or high-level task goal, is still an open

challenge within the end-to-end imitation learning framework. This is difficult to

achieve since it requires heavy guidance from a human expert to manually specify the

set of rules, constraints, objects of interest, and control parameters for the high-level

task in order to ultimately execute the low-level control primitives. Thus, imitation

learning only partially addresses the issue of tedious programming when it comes to

learning complex sequential tasks. Most existing works that tackle the sequential

task learning problem forgo this extensive level of human input required for low-level

control and instead focus on learning only the high-level task specifications (i.e., high-

level goal and sequence of actions or sub-tasks) [44, 18]. These approaches rely on

pre-defined or pre-learned control policies to define the low-level behavior and do not

provide a human-understandable communication interface to define or adapt the de-

sired task specifications other than by providing another demonstration. This, again,

16

becomes cumbersome for the user. Further, since imitation learning schemes learn

from a specific set of training data, it is often difficult to generalize well to tasks that

the robot has not been trained on. If the robot is simply imitating human behavior

without a shared conceptual understanding of the task, it cannot perform tasks that

are more abstract in nature and involve reasoning about the task environment.

Recent efforts to address the aforementioned limitations of imitation learning have

benefited from introducing another form of input: language [46, 42]. In addition to

demonstrating the task, the human also provides a natural-language task description

or command, which introduces context about the properties of the task objects and

the environment. Hence, the learned mapping function becomes 𝜋 : (𝒳 = [𝐼, 𝑣]) → 𝒴 ,

where 𝐼 ∈ R𝑃×𝑄×3 indicates a raw image of the scene and 𝑣 is an unstructured natural

language command. With the help of this additional language element, the model

is able to develop a more comprehensive understanding of the underlying structure

of the world that cannot be attained simply from demonstrations, which allows it to

generalize better to new environments. The shared conceptual language also serves

to facilitate communication between the robot and human.

With the addition of language, the robot is able to interpret the task environment

in a more semantically meaningful manner grounded in real-world concepts. But the

rigidity of the communication language limits the complexities of the tasks that can

be performed. For example, in existing works with table-top object manipulation

scenarios [46, 33, 6], the robot must be given explicit instructions regarding which

action to perform and objects to manipulate (e.g. “grab the red cup,” “place the cup

into the yellow bin”, etc.), rather than being able to deduce the task from a more

abstract or natural command (e.g. “put all the red and blue objects in the yellow

bin”). To enable a more intuitive transferral of abstract tasks, the robot should be able

to parse the complex task command into a series of simpler sub-tasks that achieves

the final goal. Endowing robots with such capabilities, by leveraging perception and

language, is the main focus of this thesis.

17

1.2 Language-Conditioned Imitation Learning

We expand upon a state-of-the-art language-conditioned imitation learning approach

[46] that learns to perform single, discretized manipulation tasks such as pick and

pour from a goal-oriented natural language instruction (e.g., “pick up the blue cup”).

While we maintain the general structure of the learned policy 𝜋 : (𝒳 = [𝐼, 𝑣]) → 𝒴 ,

our contribution extends it with the ability to decompose abstract instructions (e.g.,

“place all the blue cups in the red bin”) into elemental operations that the model jointly

learns to perform. We accomplish this by introducing a high-level semantic model

that parses the abstract task command into a sequence of goal-oriented commands.

Figure 1-1: A simplified architecture of the proposed language-conditioned imitation
learning framework.

Our framework builds upon the semantic-to-control dual model structure proposed

by [46] and takes inspiration from the architecture proposed in [42] for conditional

driving from natural language instructions. The proposed architecture is composed

of four main modules: high-level semantic command parser, language-conditioned

attention network, sub-task sequencer, and low-level control model. The semantic

command parser assesses the different linguistic components of the natural language

input instruction and generates a sequence of simpler sub-task commands. Each sub-

task command focuses on a single elemental action to be taken by the robot. The

attention network combines the reduced commands and the image of the task scene to

generate a task embedding for each sub-task. The task embeddings are then executed

in order by the sub-task sequencer via an automatically generated FSM, which calls

on the lower-level control model to generate the action controls required to achieve

18

each sub-task. An overview of the proposed architecture is illustrated in Figure 1-1.

A more granular depiction and description of all components in the architecture is

detailed in Section 3.2. Using our framework, the robot is able to handle commands

it previously could not understand and exhibits improved performance compared to

[46] due to the introduction of semantic linguistic structure.

1.3 Therbligs: Elemental Motions for Workplace Tasks

In a pick-and-place setup, the tasks that we expect the robot to perform are compa-

rable to the basic object manipulation motions used by human workers in factories.

Thus, in this work, we define the atomic units of actions of our robot in the context

of therblig motions: 18 elemental motion elements that make up a set of fundamental

motions required for a worker to perform a manual operation or task [3]. Therbligs,

as depicted in Figure 1-2, are frequently used in the study of motion economy in the

workplace. A workplace task is analyzed by recording each of the therblig units for

a process, and the results are used for the optimization of manual labor by eliminat-

ing unneeded movements. We assume that the instruction coming from the human

will contain implicit requirements to perform a combination of these motions. As a

proof-of-concept implementation, we focus on only a subset of the therbligs which

constitute the “pick” and “place” tasks.

1. Pick = Search + Find + Transport Empty + Grasp

2. Place = Search + Find + Transport Loaded + Position + Release Load

19

Figure 1-2: The 18 workplace elemental motions (therbligs) and the standard symbols
used to describe them. Illustration obtained from [16].

1.4 Experimental Validation and Results

We establish our framework in a table-top environment with a seven-degree-of-freedom

robotic arm anchored to a flat workspace. The robot is instructed in natural language

commands to arrange objects from a cluttered formation into distinct bins. We use

pre-trained weights from [46] to map the generated task embeddings to the attention

network and the low-level control model. The performance of the proposed imitation

learning architecture was evaluated on two industry use cases: sorting and kitting,

depicted in Figure 1-3. In sorting, the robot is instructed to place all objects matching

the given description in a bin. Some examples of sorting natural language commands

include:

• “Put all the cups in the bin.”

• “Put all the red cups in the red bin.”

In kitting, the robot is given a pick-and-place task involving a list of objects

20

described in the instruction, and expected to arrange those objects into a bin.

• “Put two blue cups in the yellow bin.”

• “Put one red cup and one blue cup in the green bin.”

Figure 1-3: An illustration of the sorting and kitting task scenarios used in evaluation.

Both experimental scenarios were run in a simulated table-top environment using

the CoppeliaSim simulator [43, 23]. Figure 1-4 depicts the simulation environment and

the different objects used. The proposed framework was evaluated on 600 unseen task

scenarios and achieved an overall task completion rate of 91.16%. 1,712 individual

“pick” and “place” tasks were performed, with a sub-task execution success rate of

96.44%. The evaluation methodology and results are discussed in further detail in

Chapter 4.

21

Figure 1-4: A bird’s-eye view of the simulation environment and the available objects.

22

Chapter 2

Related Work

The key challenge that we tackle in this work is creating task representations that

integrate perception and language to control a robot with natural language com-

mands. This chapter presents an overview of previous literature and key concepts

that are related to this framework of language-conditioned imitation learning. Sec-

tion 2.1 presents a brief introduction to representation learning techniques in domains

with structured inputs such as ours. Section 2.2 introduces the concept of grounding

and reviews prior work in robotics that utilizes grounding to improve performance.

A special emphasis is placed on reviewing existing works on task-oriented language

grounding in Section 2.3.

2.1 Representation Learning

An agent needs to have a solid understanding of its environment in order to make in-

telligent and sound decisions. Building and maintaining representations of the input

data, or representation learning, is therefore an important and widely studied prob-

lem in artificial intelligence [7]. Representation learning is often employed in a variety

of problem setups to yield an interpretable representation of the data and the output.

[15] introduces Information Maximizing Generative Adversarial Networks (InfoGAN),

an unsupervised representation learning algorithm that learns interpretable and dis-

entangled representations from unlabeled image datasets. The algorithm is able to

23

identify distinct writing styles from the MNIST dataset and visual concepts such as

hair styles from the CelebA face dataset. Similarly, [2] learns interpretable data repre-

sentations from image datasets using both generative and discriminative models, and

shows that the enhanced interpretability improves the generalizability of the models.

In the imitation learning domain, some effort has been made to go beyond surface-

level mimicry and instead learn meaningful representations about the task environ-

ment. [35] implements a general functional gradient boosting approach to imitation

learning in relational domains. Given a set of traces from the human teacher, the sys-

tem learns a policy in the form of a set of relational regression trees that additively

approximate the functional gradients. The algorithm is applied to four relational do-

mains and is shown to perform better than comparable propositional models. In [28],

the agent is given input-output image examples and learns the task goal without any

explicit instructions. Concepts are derived as programs that will produce the correct

output image when executed with the given input image. Using this architecture,

most concepts are learned correctly with just a few examples and generalize well to

markedly different images depicting the same concepts.

2.2 Grounding

While representation learning is most often discussed in the context of deep learn-

ing algorithms [15, 2], in which the intermediate representation does not necessarily

have semantic significance, it can also be applied to domains with clear underlying

structures to achieve grounding. In the context of our work, we define grounding as

creating connections between abstract expressions and real-world referents such as

object color, size, location, and arrangement. [51] provides a detailed survey of the

grounding problem and introduces a general framework for evaluating the quality of

a grounded representation.

Compositionality is a useful tool for building and evaluating a grounded repre-

sentation when inputs exhibit some structure (i.e. geometric, spatial, and relational

features). A number of works utilize this concept to learn compositional image rep-

24

resentations and construct an image-to-concept mapping. [48] introduces a simple

regularization technique that allows the learned representation to be decomposable

into parts, using attribute annotations to disentangle the feature space of a network

into subspaces corresponding to the attributes. The Tree Reconstruction Error (TRE)

algorithm [4] is one evaluation method for assessing compositional structure in rep-

resentation learning problems where the structure of the observations is understood.

Several works focus on grounding concepts through human-robot interaction.

Lemaignan et al. envisions a natural dialogue between a human and a robot helper

[29]. When the human asks for help in vague terms such as “Give me that,” the

robot should be able to understand both the verbal and non-verbal context: under-

stand the semantics of the sentence, correctly interpret the request in the spatial

context of the speaker, and transform this into an appropriate response. To ad-

dress the language processing component, they implement a semantic parser that

extracts the grammatical structure from the input sentence and translates it into an

RDF statement that can be used to build upon an existing knowledge base. This

work demonstrates that extracting and representing symbolic knowledge from the

real world can improve the robot’s ability to perform high-level tasks. However, it

ultimately addresses human-robot interactions of a more social nature, focusing on

identifying and handling different types of utterances in natural dialogue such as

declarative statements and questions. [11] presents a more task-oriented scenario of

a robot that learns to perform everyday tasks from human demonstration. The robot

has no prior knowledge of high-level concepts, and learns them solely from observing

demonstrations by a human teacher. For instance, with enough demonstrations of

moving all markers to the left side of the table, the robot is able to ground visual and

spatial concepts such as “markers” and “left side of the table” and can perform the

same task with a different configuration. While this work shows the generalizability of

grounded concepts in the task goal learning problem, it does not utilize any linguistic

input to guide the grounding process, which is the point of interest in this thesis.

25

2.3 Task-Oriented Language Grounding

Language grounding is a well-studied problem across many fields that involve task

learning. In computer vision, many works explore the use of natural language in-

structions to automate image annotation [53], generation [52, 40], and manipulation

[10, 45, 30]. Zhang et al. learn visual representations of medical images from the

paired annotations [53]. Since medical image understanding often requires represen-

tations of visual features that are much more fine-grained than those required for

identifying objects in natural images, an emphasis is placed on the image encod-

ing mechanism and making efficient use of the small medical image dataset. [52]

proposes an attentional generative adversarial network (AttnGAN) for generating a

detailed image based on the text description. The description is encoded using a

bi-directional LSTM unit to generate a global sentence vector, which is used to gen-

erate a low-resolution image in the first stage. In the following stages, each image

sub-region is further refined using a word-context vector produced by an attention

layer. This architecture effectively yields a higher-resolution image with more details

at each stage. [40] proposes a similar architecture for the image generation, but leaves

the specific text encoder up to choice. [30] presents a model for manipulating specific

visual attributes of a given image based on a text description of the desired attributes.

The text is encoded using a pre-trained RNN text encoder designed in [34], and the

text-image affine combination module combines the encoded text and image features

to select text-relevant regions that need to be modified. [45] utilizes LSTM to encode

the text instruction that specifies how the given image should be manipulated. Simi-

larly to the language encoding mechanism proposed in this paper, [45] utilizes Global

Vectors for Word Representation (GloVe) [37] to map the input image edit request

to vectors. While impressive results are presented using the text-image inputs, these

works focus primarily on GAN-driven image generation and manipulation rather than

the text embedding process itself.

More relevant to the human-robot interactive component of our scenario is the

language-guided navigation task, in which a mobile agent is provided with natural

26

language directions and a view of the task scene. The agent learns to transform the

instruction into a navigation plan that can be executed to reach the desired desti-

nation. Considerable work has been done on this area [12, 24, 47, 13, 17, 42], with

varying approaches for formulating the task. [12] develops a gated attention mecha-

nism for mapping the language to the visual attributes. The proposed model consists

of a convolutional network to process the input image, a Gated Recurrent Unit (GRU)

network to process the instruction, and a multi-modal fusion unit that combines the

two representations. The fusion unit concatenates the embedded language and image

features and applies a fully connected linear layer with a sigmoid activation to pro-

duce the attention vector. This output vector is used by the policy learning module

to estimate the policy function. In [24], the task is modeled as a Markov Decision

Process (MDP), where each action yields a corresponding reward to the agent. The

text instruction is passed through an LSTM network to obtain a continuous vector

representation, and the output vector is reshaped into a kernel to perform a convo-

lution operation on the 2D image embedding and produce a language-conditioned

state representation. [47] dynamically instantiates a probabilistic graphical model

for the natural language command. The input command is decomposed into Spatial

Description Clauses [25], and a “Generalized Grounding Graph” is constructed ac-

cording to the command’s hierarchical and compositional linguistic structure inferred

from the SDCs. [17] and [42] take a step further towards generalizability and include

a higher-level master policy that proposes subgoals to be executed by specialized

sub-policies. [13] utilizes both the natural language input and repeated observations

of human demonstrations to accomplish the navigation task. The agent first infers

a navigation plan for the instruction based on the observed actions. Using this as

supervision, it then learns a semantic parser that can map novel instructions into

executable navigation plans. Because these works aim to translate navigational in-

structions to the robot, they mainly focus on grounding navigational verbs like “go”

and “follow” and inferring the relative spatial attributes of the objects in the scene

such as “the westernmost rock.”

A number of approaches have been proposed for employing natural language to

27

guide task learning in a table-top pick-and-place setup. [20] proposes a probabilistic

model to ground abstract concepts in natural language instructions. They formu-

late the grounding problem as estimating the likely set of groundings for an input

instruction. The model incorporates notions of cardinality (“one”, “two”) and ordi-

nality (“first”, “second”), as well as spatial references (“nearest”, “farthest”). Given

an instruction such as “pick up the second block from the row of blocks,” the model

identifies the keywords and reduces the search space of abstract concepts by pruning

away the unlikely portions. The architecture of [1] is motivated by the fact that hu-

mans exhibit selective attention when performing tasks: when observing a scene with

a particular task in mind, the features of the scene that are relevant to the task are

given more attention, while others are de-emphasized or even ignored. Thus, their

proposed vision system learns to pay attention to only the relevant regions of each

frame regarding the task at hand. [33] presents a model that takes into account the

variations in natural language, and ambiguities in grounding them to robotic instruc-

tions with appropriate environment context and task constraints. The environment

and task context is encoded into an energy function over a conditional random field,

and the language input is reduced to a more formal structure based on clausal de-

composition. [21] more explicitly limits the form of the input instruction as <target

relations referent>, and extracts the relevant object information from the correspond-

ing parts of the input. This approach to achieving the language embedding is similar

to that of the semantic command parser proposed in this paper. Taking advantage of

the linguistic structure inherent in natural language can facilitate the decomposition

of the input instruction and generation of sub-tasks.

28

Chapter 3

Approach

In this chapter, we describe the various components our framework that enable the

robot to derive elemental sub-tasks from an abstract natural language command,

and execute them in sequence to accomplish the final task goal. A schematic of the

framework is shown in Figure 3-2.

3.1 Modifications to Prior Work

Our framework is presented as an extension to [46], which implements a language-

conditioned imitation learning model that controls a robotic arm to perform pick-

and-pour tasks in a table-top setup. See Figure 3-1 for a detailed illustration of their

architecture. The model receives a top-down image of the workspace of the robot,

as well as a natural language command involving either a “pick” or “pour” action.

The input features are pre-processed and passed into the model’s attention network,

and a mapping between the input features and the task embedding is learned in the

trainable weights of the attention network. The task embedding is then converted

to dynamic movement primitive (DMP) parameters [22] for the robot control via a

second set of trained weights, and the trajectory is executed until the task is complete.

The raw image of the task scene and natural language instructions, paired with the

task’s corresponding DMP trajectories, are provided to the model at training time.

The training process generates the mappings from the image and instruction inputs to

29

the task embedding, and from the task embedding to the motion primitive parameter

output. These correlations are encoded in the learned weights in the semantic and

control models.

While [46] successfully translates high-level natural-language instructions to low-

level actions, it is only capable of performing a specific “pick” or “pour” operation for

each instruction. Commands it can handle reliably are limited to the format “pick

up the 𝑋 cup” and “pour it into the 𝑌 dish.” Compound commands that combine

these two operations, such as “pick up the blue cup and pour it into the yellow dish,”

will fail, even though these two types of commands are semantically identical and

should result in the same behavior from the robot. It follows that the model also

cannot handle commands involving multiple objects in the scene, such as “pour all

cups into the dish.” Our contribution expands the model’s scope to be able to handle

compound and multi-object commands.

The original model implements a control policy that generates a single goal-

oriented motion primitive that achieves an elemental action (“pick” or “pour”). In our

approach, the policy maps the input 𝒳 = [𝐼, 𝑣] to an automatically generated state

machine of motion primitives that sequences individual elemental actions to achieve

the final goal. Hence, our architecture produces an end-to-end language-conditioned

high-level control policy of the following form:

1. 𝜋 : (𝒳 = [𝐼, 𝑣]) → (𝒴 = 𝑅) for the “open-loop” case, where 𝑅 = [𝑟0, .., 𝑟𝑡] is the

full trajectory of the robot joint configurations that achieves the high-level goal

when executed in sequence.

2. 𝜋 : (𝒳 = [𝐼, 𝑣, 𝑟𝑡]) → (𝒴 = 𝑟𝑡+1) for the “closed-loop” case, where the param-

eters of the motion primitive are recomputed at each time step to account for

execution noise.

We assume the latter approach in the subsequent sections.

30

Figure 3-1: Model architecture implemented in [46] for the imitation learning of single
target-oriented robot manipulation tasks from goal-specific instructions.

Figure 3-2: Model architecture proposed in this work for the imitation learning of
sequential robot manipulation tasks from high-level abstract instructions.

31

3.2 Architecture Overview

The proposed language-conditioned imitation learning framework, illustrated in de-

tail in Figure 3-2, is composed of the image and language pre-processing units as

well as four major modules: the high-level semantic command parser, the language-

conditioned attention network, the sub-task sequencer, and the low-level control

model. First, the raw scene image 𝐼 is encoded by the image pre-processor to produce

a list of candidate objects 𝐹 . The semantic command parser receives the high-level

natural language instruction 𝑣 and the parsed task scene information 𝐹 to generate

a list of atomic sub-task commands {𝑣1...𝑣𝑘} described in natural language. Each

sub-task command is encoded by the language pre-processor to produce the corre-

sponding sentence embeddings {𝑠1...𝑠𝑘}. The language-conditioned attention network

combines the two encoded input modes 𝐹, 𝑠 to produce an intermediate representa-

tion for each sub-task: {𝑎1...𝑎𝑘}. The sub-task sequencer determines the order of the

sub-tasks to be performed and the target object for each sub-task, and instantiates

a state machine based on the resulting list of sub-task embeddings {𝑒1...𝑒𝑘}. Finally,

the low-level control model is called to generate the control parameters for each of

sub-task 𝑒𝑖.

3.2.1 Image Pre-processing

The image pre-processing stage is analogous to the first therblig motion, “Search.”

The object detection module identifies all candidate objects in the scene, which are

later used perform the subsequent “Find” operation. The module receives a top-down

image of the task scene 𝐼 ∈ R569×320×3. A pre-trained object detection network, Faster

R-CNN [41], is applied to 𝐼 to generate a set of candidate objects in the scene:

𝐹 = {[𝑓 𝑜
𝑐 , 𝑓

𝑏
𝑐]}𝑐=1:𝐶 (3.1)

where each of the 𝐶 detected objects is represented by a feature vector, comprised of

the detected object class 𝑓 𝑜
𝑐 and the bounding box of the object 𝑓 𝑏

𝑐 ∈ R4. The FRCNN

32

model used for the image processing was pre-trained from ResNet-101 on the COCO

dataset. Figure 3-3 shows a visualization of the candidate objects identified by the

detection module in a scene with three bins and two cups, with their respective

internal object indices and bounding boxes.

Figure 3-3: Visualization of the result of candidate object detection. The integer on
the top left of each region indicates the detection model’s internal object index, and
the score on the top right shows the detection confidence. The bounding boxes are
color-coded for convenience.

3.2.2 High-Level Semantic Command Parser

The semantic command parser serves two functions: check that the input command is

well-formulated (i.e. follows the expected grammar and syntax rules), and decompose

the command into a series of instructions for atomic sub-tasks. The initial command

is split into individual words and tagged using the part-of-speech (POS) tagging

convention. POS tagging identifies each word as a grammatical category such as

noun or verb. Table 3.1 shows a comprehensive list of the tags used in this work, as

well as their definitions and examples.

POS tagging is a nontrivial task, with extensive work being done in the NLP

domain to develop accurate and efficient techniques for identifying parts of speech

33

[27, 32, 49]. However, as this is not the main focus of our work and our natural

language input is relatively simple and well-defined, we use the python nltk library

[9] to tag the instruction and assume that POS tagging is done correctly.

POS Tag Definition Example
VB verb (base form) place
NN singular noun cup
NNS plural noun cups
DT determiner the
PDT pre-determiner all in “all the cups”
JJ adjective red
IN preposition in
RP particle up in “pick up”
PRP personal pronoun it
CC coordinating conjunction and
CD cardinal digit two

Table 3.1: A complete list of part-of-speech tags used in this work.

The standardized POS tags allow for a pattern-matching approach to segment the

input sentence. Using these tags, we define three patterns of sentence segments at the

highest level: command phrase V, objects O, and location L. These are conceptually

analogous to the linguistic units: verb phrase, noun phrase, and prepositional phrase,

respectively. We use the regex syntax to describe these patterns below.

1. Command phrase V: VB RP?

2. Objects O: (DT JJ? NN | PDT DT? JJ? NNS | CD JJ? (NN | NNS) | PRP)

3. Location L: IN DT JJ? NN

A command phrase V simply consists of a verb and optionally a particle associated

with the verb. The objects O can be specified in a few different patterns, from the

simplest form it to a phrase describing the number of objects and a reference to the

type of object such as two green cups or all the red cups. The location L specifies the

task goal location for performing the “place” operation.

We define a “valid” manipulation command as one that matches the following

syntax pattern:

34

VO (((CC O) * | (CC VO)) ? L) ? (3.2)

For instance, the simplest command structure V O contains only the command

phrase and the target object. More complex commands may contain multiple com-

mand phrases or target objects. Figures 3-4 through 3-7 show sample commands

following the four major patterns of increasing complexity and their semantic trees.

The rule is specific for our table-top pick-and-place scenario, but the parser can use

any set of pre-defined grammar rules and thus can be adapted to any environment

that uses semi-structured natural language input.

Once the input command is determined to be valid, the parser generates the nat-

ural language sub-task instructions. Based on the action in the command phrase and

the available objects in the task scene, a series of “pick” or “place” commands is gener-

ated that accomplishes the initial goal when executed in sequence. Figure 3-8 shows

two examples of the task scene and instruction input pairs and the corresponding

sub-task instructions generated by the parser.

Figure 3-4: The semantic tree for a command with the structure V O.

Figure 3-5: The semantic tree for a command with the structure V O L.

35

Figure 3-6: The semantic tree for a command with the structure V O CC V O L.

Figure 3-7: The semantic tree for a command with the structure V O CC O L.

Figure 3-8: Atomic sub-task commands generated by the semantic parser based on
the detected task objects and the high-level instruction.

36

3.2.3 Language Pre-Processing

The language pre-processing stage captures the information represented in the natural

language command. The sub-task instructions generated by the semantic command

parser are tokenized using the GloVe vector representation for words [37]. Each word

in the sub-task instruction 𝑣𝑖 is mapped to a row index of 𝐺 ∈ R30000×50, consisting of

30,000 most frequently used English words represented as GloVe word embeddings.

The tokenized sentence is then converted into a fixed-size matrix 𝑉 ∈ R15×50 that

encodes up to 15 words, where each row is a 50-dimensional word embedding. Finally,

a GRU layer is applied to 𝑉 to produce a sentence embedding, 𝑠𝑖 ∈ R32.

3.2.4 Language-Conditioned Attention Network

The attention network combines the sub-task sentence embedding 𝑠𝑖 and the image

embedding 𝐹 to identify the target object referred to by the command.

𝑎𝑖 = 𝑤𝑇
𝑎 𝑓𝑎([𝑓𝑐, 𝑠𝑖]) = {[𝑎𝑐𝑖]}𝑐=1:𝐶 (3.3)

For each of the 𝐶 candidate objects in 𝐹 , a likelihood 𝑎𝑖 is calculated by concatenat-

ing the sentence embedding 𝑠𝑖 with the object’s feature vector 𝑓𝑐 and applying the

attention network 𝑓𝑎 : R37 → R64. The result is multiplied with a trainable weight

𝑤𝑎 ∈ R64 to be converted into a scalar. The attention network 𝑓𝑎 is defined as follows:

𝑓𝑎(𝑥) = tanh(𝑊𝑥 + 𝑏) ⊙ 𝜎(𝑊 ′𝑥 + 𝑏′) (3.4)

where 𝑊,𝑊 ′ and 𝑏, 𝑏′ are trainable weights and biases, respectively.

3.2.5 Sub-Task Sequencer

The sub-task sequencer contains two components: the task object selector Π(·) and

the high-level policy generator. The task object selector first applies a sigmoid func-

tion to the likelihoods produced by the attention network: 𝑎 = 𝜎([𝑎1𝑖 ...𝑎
𝐶
𝑖]). The

sigmoid function serves to polarize the likelihoods so that the object with the highest

37

Figure 3-9: A detailed diagram of the language-conditioned attention network.

likelihood is accentuated. In the case where there are multiple objects in the task

scene that meets the object description, all such objects will have a likelihood close

to 1. The selector identifies all the objects that match the description given by the

sub-task command and chooses a target object Π(𝑎). Thus, the selector effectively

performs the second therblig operation, “Find”. As a simple proof-of-concept imple-

mentation, we use an algorithm that randomly selects the task object. However, more

complex task object selectors can be used here in place of the random selector. Such

possible extensions will be discussed later in this section.

A sub-task embedding 𝑒𝑖 ∈ R32 is computed by multiplying Π(𝑎) with the image

features 𝐹 , concatenating it with the sentence embedding 𝑠𝑖, and applying ReLU,

with trainable weight 𝑊 and bias 𝑏.

𝑒𝑖 = ReLU(𝑊 [𝐹 · Π(𝑎), 𝑠𝑖] + 𝑏) (3.5)

The high-level policy generator Φ then determines the order of the sub-tasks to be

performed in sequence. A finite state machine (FSM) is constructed with the ordered

list of sub-task embeddings {𝑒1...𝑒𝑘}. Each state in the FSM represents the sub-

task embedding to be passed to the low-level control model. At each time step,

after the control sequence for the current sub-task embedding is executed, the phase

value returned by the low-level control model is used to determine if the sub-task

38

Figure 3-10: A finite state machine generated for the 𝑘 sub-tasks {𝑒1...𝑒𝑘} in Φ.

is complete. If the finish condition is met, Φ is called to move onto the next sub-

task embedding to execute. This process repeats until all the sub-tasks have been

completed.

3.2.6 Control Model

We directly adopt the control model used in [46], which was in turn inspired by the

approach in [22]. The control model maps the sub-task embedding 𝑒𝑖 and the current

robot state 𝑟𝑡 to control signals for the next time step, and produces a trajectory of

dynamic motor primitive (DMP) parameters for the robot’s seven joints (see Figure 3-

11). The trajectory can be executed in an open-loop fashion, but to better account

for the non-deterministic nature of control tasks such as physical perturbations and

execution noise, the trajectory is recalculated at each time step.

To keep track of the robot’s current and previous movements, the robot state 𝑟𝑡

at each time step is encoded by a GRU cell that is initialized with the robot’s start

configuration 𝑟0. This produces the latent robot state ℎ𝑟 ∈ R7. The motor primitive is

learned in the trainable weights 𝑤 ∈ R𝐵×7, where 𝐵 is the number of kernels for each

DOF of the robot. The estimated current progress to achieving the goal is reflected

in the phase variable 0 ≤ 𝜑 ≤ 1, where 0 indicates that the control sequence has not

yet started and 1 indicates that the execution is complete. The phase progression for

each time step is specified by ∆𝜑. Based on the sub-task embedding 𝑒𝑖 and the robot

state ℎ𝑟, the model generates a full set of motor primitive parameters for the current

time step:

(𝑤𝑡, 𝜑𝑡,∆𝜑) = (𝑓𝑤([ℎ𝑡, 𝑒𝑖]), 𝑓𝜑([ℎ𝑡, 𝑒𝑖]), 𝑓Δ(𝑒𝑖)) (3.6)

where 𝑓𝑤 : R39 → R𝐵×7, 𝑓𝜑 : R39 → R1, and 𝑓Δ : R32 → R1 are multilayer per-

39

Figure 3-11: Details of the control model, which generates the robot control signals.
This figure was taken from [46].

ceptrons. The motor primitive (𝑤𝑡, 𝜑𝑡,∆𝜑) is evaluated at each phase 𝜑𝑡 + ∆𝜑 to

generate the next control signals 𝑟𝑡+1 to be executed. We define a sparse linear map

𝐻𝜑𝑡 ∈ R7×(𝐵×7) that contains the basis function vectors for each DOF. The control

signal generator 𝑓𝐵 performs a simple multiplication operation on 𝐻𝜑𝑡+Δ𝜑
to generate

the next control signal:

𝑟𝑡+1 = 𝑓𝐵(𝜑𝑡 + ∆𝜑, 𝑤𝑡) = 𝐻𝜑𝑡+Δ𝜑
𝑤𝑇

𝑡 (3.7)

The output of the control model accomplishes the final series of therblig motions:

“Transport Empty + Grasp” for the pick operation, and “Transport Loaded + Position

+ Release Load” for the place operation.

40

Chapter 4

Evaluation

In this chapter, we evaluate the performance of our language-conditioned sequential

task learning framework in an end-to-end fashion. Two evaluation types were per-

formed: sorting and kitting. The sorting task involves arranging all objects with

a common feature into a designated location on the table. The kitting task com-

piles a collection of objects as specified in the task instruction. Section 4.1 describes

the training and data collection processes and the evaluation metrics. Section 4.2

presents the overall test results and performance details of the different components

of the pipeline. Section 4.3 presents a discussion of the results and examines potential

improvements to the framework.

4.1 Methods

4.1.1 Training

The proposed framework was implemented using the pre-trained weights provided

by [46] for mapping the embedded language instruction to the attention and control

features. The control model was trained to perform pick-and-pour tasks, which we

have modified to perform pick-and-place operations instead. As such, no re-training

of the model was necessary for the evaluation.

The original model was trained using five auxiliary losses to optimize the learning

41

process. The attention network was trained using ℒ𝑎 = −
∑︀𝑐

𝑖 𝑥𝑖 log(𝑦𝑖), defined as the

cross-entropy loss for a multi-class classification problem over 𝑐 classes. The training

label was a one-hot vector created in the image pre-processing stage and indicated the

object being referred to by the task description. The control model was trained using

the combined mean-squared-error losses of four parameters: phase estimation ℒ𝜑 =

MSE(𝜑𝑡, 𝜑
*
𝑡), phase progression ℒΔ = MSE(∆𝜑,∆

*
𝜑), weights ℒ𝑤 = MSE(𝑊𝑡,𝑊𝑡+1),

and trajectory ℒ𝑡 = MSE(𝑅,𝑅*). The expected phase estimation and progression

𝜑*
𝑡 ,∆

*
𝜑 were inferred from the number of steps in the given demonstration. For the

trajectory loss, the generated trajectory 𝑅 = [𝑟𝜑=0...𝑟𝜑=1] was compared against the

trajectory of the demonstration 𝑅*. A weighted sum of the five losses was used as

the overall loss: ℒ = 𝛼𝑎ℒ𝑎 + 𝛼𝜑ℒ𝜑 + 𝛼ΔℒΔ + 𝛼𝑤ℒ𝑤 + 𝛼𝑡ℒ𝑡. Values 𝛼𝑎 = 1, 𝛼𝜑 =

1, 𝛼Δ = 14, 𝛼𝑤 = 50, 𝛼𝑡 = 5 were empirically chosen as the hyper-parameters for ℒ,

and the model training was supervised by minimizing ℒ with an Adam optimizer

using a learning rate of 0.0001. More details on the training process can be found in

[46].

4.1.2 Test Data Collection

We tested our framework in a simulated table-top environment with a fixed 7-DOF

robot arm. To emulate realistic pick-and-place task scenarios, we devised the task

types for the evaluation based on two factory use cases: sorting and kitting. 600

distinct task scenes were generated for the evaluation: 300 for the sorting task and 300

for kitting. The attention network was not trained on these scenes, so the performance

of the attention network in the testing phase is a direct reflection of the network’s

generalizability. Each scene contained at most six objects from the available objects

introduced in Figure 1-4, with at least one and up to four graspable cups with two

color variations and at least one and up to three bins of distinct colors for the cups

to be placed in. The positions and orientations of the objects were randomized, with

a positional constraint to prevent any collisions.

High-level task commands for the sorting and kitting scenarios were automatically

generated using the sentence templates: “put all the 𝑋 cups in the 𝑍 bin” for the

42

sorting task and “put 𝑛𝑋 𝑋 cups (and 𝑛𝑌 𝑌 cups) in the 𝑍 bin” for the kitting

task, where 𝑋, 𝑌, 𝑍 are optional color identifiers for the task objects and 𝑛𝑋 , 𝑛𝑌 are

cardinal values specifying the number of task objects. The task command generation

was guided by the available objects in the scene and the valid operations that can be

performed on them. For instance, the kitting instruction “put two blue cups in the

bin” cannot be executed correctly if there is only one blue cup in the scene, as is the

sorting instruction “put all the red cups in the bin” in a scene without any red cups.

The final instruction for the test scene was randomly drawn from all the valid forms

of commands generated in this manner.

Figures 4-1 and 4-2 showcase some examples of the randomly generated task scenes

and commands for the sorting and kitting task types. Figure 4-3 catalogs sample task

execution sequences performed by the robot for the two task types.

Figure 4-1: Examples of four randomly generated sorting task scenes and their cor-
responding task commands, roughly in the order of increasing task complexity.

4.1.3 Performance Metrics

The overall task completion rates were measured in each test scene, as well as more

fine-grained metrics for evaluating each major module of the proposed framework. In

43

Figure 4-2: Examples of four randomly generated kitting task scenes and their cor-
responding task commands, roughly in the order of increasing task complexity.

particular, we measured the performances of the object detection module, attention

network, and low-level control for the atomic sub-tasks.

We used the simulation input parameters used in generating the task scene to de-

fine ground truths for evaluating the object detection and attention network modules.

This was represented as a zero-padded and sorted 1× 6 array containing the internal

object IDs. In a scene with two red cups (ID: 21) and a yellow bin (ID: 16), for

instance, the detection ground truth for the objects in the scene is: [0,0,0,16,21,21].

The labels for evaluating the attention network were derived from the current scene

image at the beginning of each sub-task and filtered to include only the objects iden-

tified by the keyword in the sub-task command. For a sub-task instruction “pick up

the red cup” in the example scene, the attention ground truth would be [21,21] for

the two red cups in the scene. The following command, “place it in the yellow dish”,

would indicate only the yellow dish in the scene: [16]. These ground truth labels were

compared with the masked output of the attention network. A filtering threshold of

95% was used to determine whether the attention score was high enough relative to

the entire output array of the attention network.

44

Figure 4-3: Sample task execution sequences for sorting (left) and kitting (right) tasks,
with the original task command and the current sub-task command being performed.

45

The “pick” operation was defined by the robot’s gripper state, which ranges from

0 (open/released) to 1 (closed/gripped). If the correct object was inside the robot’s

gripper when it was closed, this was counted as a successful “pick” operation. A

“place” operation was considered successful if the gripper position was directly above

the target bin at the time of release. This was decided in part to prevent the unpre-

dictability of the simulation environment from affecting the measured task execution

accuracy. The bins used for the training and testing in the simulation were quite

small, which often led to cups being released in the correct location but falling out

of the bin or rolling away after placement with the slightest perturbations in the en-

vironment. Evaluating the gripper location at the time of the “place” task execution

was sufficient to assess the model’s accuracy for performing the task correctly.

4.2 Results

Table 4.1 summarizes the overall performance of the proposed approach and the

success rates of each major component of the framework. A total of 547 tasks out

of the 600 novel task scenes were correctly executed to completion (91.2%). The

model achieved an object detection accuracy of 99.7% on 3,600 total task objects,

attention accuracy of 81.1% on 1,990 target objects, and sub-task execution success

rate of 96.4% for 1,712 individual “pick” and “place” sub-tasks. In the remainder of

this section, we evaluate the performance of each of these modules in more detail.

4.2.1 Sub-Task Generation

The semantic parser produces the sub-task instructions based on the linguistic struc-

ture of the high-level task command and the objects in the task scene as detected by

the image pre-processor. To generate the correct amount of sub-tasks for the sorting

command “put all the 𝑋 objects in the bin”, the parser identified all the possible

targets from the objects in the scene and adjusted the number of actions accordingly.

The command “put all the blue cups in the bin” in a task scene with two blue cups

would generate two distinct “pick” tasks for the blue cup, while the same command

46

Model Performance Summary
Sorting Kitting Overall

Sub-Task Generation 1.000 1.000 1.000
Object Detection 0.996 0.998 0.997
Attention 0.761 0.859 0.811
Pick 0.963 0.953 0.958
Place 0.972 0.970 0.971
Pick + Place 0.935 0.934 0.935
Final Task Completion 0.910 0.913 0.912

Table 4.1: Model performance summary of the proposed language-conditioned se-
quential task learning framework.

in a scene with one blue cup would result in only one “pick” task.

No explicit performance evaluation was performed on the sub-task generation, as

the semantic parser strictly follows the grammar and task generation rules defined

by the user. The grammar rules utilized in this framework is described in detail in

Section 3.2.2.

4.2.2 Object Detection

The pre-trained FRCNN model was used for the object detection as discussed in 3.2.1.

We briefly describe its performance here.

The detection accuracy on the input task scene image at the beginning of each sim-

ulation environment was used as the performance metric. As shown in the confusion

matrix in Figure 4-4, all objects were detected and very few were mis-classified. Al-

most all classification failures resulted from the detection module identifying the same

object twice, which was caused by the variation in the simulation’s lighting source

and perspective distortions from the top-down camera. Figure 4-5 shows an example

task scene in which a false positive in the detection module affects the subsequent

generation and execution of the sub-tasks.

A more consequential type of failure occurred during the execution runtime. The

top-down view of the task scene was often obstructed by the robot arm or the task

objects during execution, which interfered with the detection of the occluded object

47

Figure 4-4: A confusion matrix for the object detection module. The module classified
the 3,600 task objects with 99.7% accuracy, with very few classification failures.

48

Figure 4-5: A sorting task with a false positive produced in the object detection stage.
The red cup on the right is detected twice by the detection module, for a total of
three perceived red cups in the scene. The parser generates three pick-place sub-task
pairs based on this information, which ultimately leads to the robot attempting three
pick tasks in total.

(Figure 4-6). The effect of this failure manifests in the result of the attention network,

which is discussed in the next section. Because our model architecture was designed

to build on previous components, a failure in an earlier module would cascade down

the pipeline and ultimately affect the final task performance.

4.2.3 Attention

Some bin detection errors occurred in the detection module due to occlusion, which

affected the performance of the attention network. In the initial implementation of

our model, the embedding for the next sub-task would be generated at the end of the

previous sub-task using the detected objects from the current scene. Occasionally, the

position of the robot arm at the end of a “pick” task would obstruct the view of the

target bin for the following “place” operation. In the same vein, objects placed in the

bin during the previous sub-task could also interfere with the bin detection, affecting

the execution accuracy of the subsequent “place” sub-tasks. This was more likely to

occur when there were several objects in the target bin, or the object was of a different

color than the bin. If the model could not identify the correct bin in the scene, it

would default to a different, incorrect bin, or fail entirely if no other bin was in the

scene (Figure 4-6). The first issue was addressed before evaluation by performing the

object detection at the beginning of each “pick” task, when the robot arm is centered

49

Figure 4-6: Two examples of bin detection failures caused by occlusion. In the first
scene, the robot arm at the end of the previous sub-task obscures the target bin.
In the second scene, the red cup placed during the previous sub-task interferes with
the detection of the bin. Since no target bin is identified, the model performs the
subsequent place operation on a different bin with the incorrect color.

50

and can be expected not to occlude any objects in the task scene. Addressing the

second case is left for future work. The detection failures caused by the second issue

largely explain the notably lower attention accuracy for the bins during the “place”

operation compared to the “pick” operation, as shown in the side-by-side comparison

of the two attention accuracies in Figure 4-8.

The attention network’s performance was also affected by the specificity of the task

command. Generic commands such as “put the cup in the bin” in a task scene with

several cups would result in multiple correct target objects. The attention network

did produce high scores for all such objects, but the threshold of 0.95 used in the

evaluation was quite stringent and sometimes resulted in objects with high attention

scores getting filtered out. In particular, we note that in task scenes with generic

“pick” commands and both red and blue cups present, the attention network always

assigned a slightly higher score for the blue cup than the red. This anomaly accounts

for the low attention rate on red cups for generic commands, which is displayed in

Figure 4-9.

Another reason for the attention network’s lower accuracy is that the weights

were trained on environments and commands that were less varied in the number

of duplicate objects and more specific in instruction. A way to mitigate this is by

augmenting the dataset of the previous model with our dataset and re-training the

entire model. Alternatively, a more interesting solution would be to update an existing

model to detect new commands and scenarios, as done in [14]. This is left for future

work.

4.2.4 Task Execution

Table 4.2 summarizes the results of the execution performance on individual “pick”

and “place” sub-tasks across all test scenes. A total of 856 pick-and-place sub-task

pairs were executed, with an average of 2.85 sub-tasks per scene. 820 out of 856

pick tasks (95.8%) were correctly executed, while 831 out of 856 place tasks (97.1%)

were correctly performed. The cumulative success rate (pick + place) describes the

percentage of cases in which the cup was correctly picked up and then placed into the

51

Figure 4-7: A confusion matrix for the attention network module. The module iden-
tified the 1,990 target objects with 81.1% accuracy.

Figure 4-8: Attention network accuracy for 1,148 pick and 842 place target objects.

52

Figure 4-9: Attention network accuracy for 261 generic and 1,451 specific task com-
mands.

correct bin. The pick-place sub-task pairs were executed successfully in 93.5% of all

cases.

We further calculated the final task completion rates of the sorting and kitting

scenarios (Table 4.3). The completion rate was measured based on whether the high-

level task goal was successfully achieved, i.e. whether all sub-tasks were correctly

performed. For a sorting task with the command “put all the 𝑋 objects in the bin”,

we calculate the intermediate pick completion rate 𝑛𝑝𝑖𝑐𝑘/𝑛𝑋 , where 𝑛𝑝𝑖𝑐𝑘 indicates the

number of objects correctly identified and picked up and 𝑛𝑋 denotes the total number

of pick operations to be performed. In the sorting scenario, 𝑛𝑋 is the total number

of objects in the scene with the feature 𝑋. The place completion rate is calculated

as 𝑛𝑝𝑙𝑎𝑐𝑒/𝑛𝑋 , where 𝑛𝑝𝑙𝑎𝑐𝑒 indicates the number of correct place operations performed

on the target bin. Since the pick-place operations occur in pairs, the correct sub-task

count is identical for both the pick and place completion rates. Similarly, for a kitting

task with the command “put 𝑛𝑋 𝑋 objects and 𝑛𝑌 𝑌 objects in the bin”, the pick

completion rate was calculated as 𝑛𝑝𝑖𝑐𝑘/(𝑛𝑋 +𝑛𝑌), based on the 𝑛𝑋 +𝑛𝑌 pick tasks as

specified by the command, and the place completion rate was 𝑛𝑝𝑙𝑎𝑐𝑒/(𝑛𝑋 + 𝑛𝑌). The

final task completion rate calculates the ratio of the objects with correct execution of

both sub-tasks, 𝑛𝑝𝑖𝑐𝑘+𝑝𝑙𝑎𝑐𝑒, over the total.

53

Sub-Task Execution Summary
Sorting Kitting Overall

Pick 413/429 (0.963) 407/427 (0.953) 820/856 (0.958)
Place 417/429 (0.972) 414/427 (0.970) 831/856 (0.971)
Pick + Place 401/429 (0.935) 399/427 (0.934) 800/856 (0.935)

Table 4.2: Sub-task execution success rates for pick and place tasks.

Task Completion Summary
Sorting Kitting Overall

Pick Sub-Task Completion Rate 285/300 (0.950) 282/300 (0.940) 567/600 (0.945)
Place Sub-Task Completion Rate 288/300 (0.960) 288/300 (0.960) 576/600 (0.960)
Task Completion Rate 273/300 (0.910) 274/300 (0.913) 547/600 (0.912)

Table 4.3: Task completion rates for the sorting and kitting task scenarios.

Because the model had been trained to perform “pour” tasks and was modified

to perform “place” for the evaluation setup, it occasionally exhibited erratic or non-

deterministic behaviors when executing the place task. A common calibration issue

was regarding the release positions of the cups and the small size of the bins used

to hold them. Slightest execution noises in the simulation had the potential to cause

the placed cup to fall out of the bin or knock out the existing cups in the bin. As

this is not a direct reflection of the model’s performance but rather an unfortunate

artifact of the simulation environment, we designed the accuracy measurement to be

based on the position of the robot gripper at the time of release, instead of whether

the placed cup stayed within the bin at task completion. In future iterations of this

framework, the simulation environment can be adjusted to be able to better handle

multiple place operations within the same bin.

Figure 4-10: Examples of correctly executed place tasks.

54

Figure 4-11: Examples of place task inaccuracies during execution. These tasks were
considered to be successful if the gripper was directly above the bin at release time.

4.3 Discussion and Limitations

We evaluated the model’s execution of two types of high-level pick-and-place tasks

based on realistic use scenarios. Each module of the pipeline achieved high accuracy,

and an overall task execution accuracy of 91.16% was achieved. While the proposed

framework is shown to effectively communicate abstract sequential tasks to the robot

in an end-to-end manner in a simulated environment, more improvements could be

made to address some of its current limitations and facilitate the adaptation of this

approach in real-life task scenarios.

4.3.1 Parser

The semantic command parser implemented in this work uses pre-defined grammar

rules to parse the command into sub-tasks. As such, it cannot parse malformed or

incomplete commands, which is common in natural language. The instruction parsing

could instead be learned from a large number of unstructured verbal commands using

an LTL formula [50, 31] to better handle noisy natural language inputs.

4.3.2 Detection

For simplicity, we constrained the features of the task objects in the testing environ-

ment to visual (color) and cardinal (count). However, the pre-trained object detection

module is capable of identifying a greater variety of colors and numbers, as well as a

number of different shapes and sizes. The model can be further expanded to handle

spatial and relational features (e.g. leftmost cup, largest bin) [6].

55

4.3.3 Task Sequencing

If several possible target objects were present in the task scene, the model picked the

one with the highest detection confidence to execute the task. This was an arbitrary

metric we chose for the implementation and could be further constrained to perform

the desired behavior for more specific task goals, such as picking the closest object.

Similarly, the order of the sub-tasks to be performed was implicitly inferred from the

input command: given the command “put the red cup and the blue cup in the dish”,

the robot would first position the red cup, followed by the blue cup. This sub-task

order selection process can also be further optimized for a particular metric, such as

performing the task with minimum traveling distance or choosing the largest target

object to position first for a “stacking” task. The task sequencing problem can be

formulated as an MDP, or the constraints for the task goal could be learned directly

from human demonstrations.

4.3.4 Grasping

In this work, object grasping was simplified to an open-or-close operation along the

one-dimensional gripper state. In realistic scenarios, however, the task scene may con-

tain objects of different shapes, sizes, and orientations, which would require inferring

the correct grasping technique based on the target object’s features.

4.3.5 Motion Primitive

Sometimes the robot exhibited erratic behavior when the initial joint configuration

and target object were not similar to any combination seen in the training data.

One way to alleviate erratic behaviors with initial/final condition discrepancies in

joint-space is to learn the motion primitive in task-space (Cartesian coordinates) and

rely on inverse kinematics solvers to move the robot’s end-effector to the desired

task-space locations. This could also improve the accuracy of the task-embedding →

control parameters mapping, as Cartesian coordinates are more interpretable than

joint angles. Also, recall that the control model generates parameters for a time-

56

dependent DMP. If these are noisy, they may cause erratic behavior and make the

robot move abruptly from one location to another or even exhibit unwanted cyclical

motions. To address this issue, one could use a motion primitive that is solely state-

dependent: 𝑟𝑡+1 = 𝑓𝐵(𝑟𝑡+1, 𝜃𝐵), where 𝜃𝐵 are model parameters independent of time

[19]. This would allow the robot to be robust to abrupt changes in the scene without

needing to re-calculate phase variables or entire trajectories.

57

58

Chapter 5

Conclusion

Transferring task specifications to a robot is a difficult endeavor that often involves

considerable supervision from human experts. In order for robots to be introduced

to and operate efficiently in manufacturing environments, the task transfer process

must be easily accessible for humans and robots alike. This requires an intuitive and

robust mechanism for the human instructor to explain a task to the robot and have

the instruction be correctly interpreted.

In this thesis, we designed and evaluated an end-to-end language-conditioned im-

itation learning framework for transferring sequential task instructions to the robot.

The task specifications were provided in the form of image and natural language

inputs, which were ultimately translated into low-level control parameters that the

robot can execute in sequence. The natural language component precludes the need

for an extensive knowledge of programming or robotics and enables the instructor to

provide task instructions with relative ease. This approach was conceptually inspired

by the therblig elemental motions, an analysis metric used in the study of motion

economy in the (human) workplace.

The framework was implemented in part using pre-trained weights from a language-

conditioned imitation learning framework designed to perform a single pick-and-pour

task [46]. The evaluation of the framework was performed on task environments

unseen during the training stage and produced comparable results to the original

framework. This suggests that the proposed approach can be successfully adapted

59

to accommodate unseen task environments in order to perform more complex tasks

than the ones achieved by the original model.

As discussed in Section 4.3, further adjustments can be made in the framework to

improve its accuracy and generalizability to novel task environments. The instruction

parsing could be learned from unstructured verbal commands to better handle noisy

natural language inputs. The object detection module could be expanded so that the

task scene can contain objects of different shapes, sizes, and orientations. This adap-

tation would also motivate the need to infer more complex grasping techniques based

on the target object’s physical features. Finally, the sub-task sequencing problem can

be optimized for a particular metric, such as achieving minimum traveling distance

or performing a “stacking” task ordered by the object size.

60

Bibliography

[1] Pooya Abolghasemi, Amir Mazaheri, Mubarak Shah, and Ladislau Bölöni. Pay
attention! - robustifying a deep visuomotor policy through task-focused atten-
tion, 2018.

[2] Tameem Adel, Zoubin Ghahramani, and Adrian Weller. Discovering inter-
pretable representations for both deep generative and discriminative models. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 50–59. PMLR, 10–15 Jul 2018.

[3] Lawrence S. Aft. Work Measurement and Methods Improvement. John Wiley &
Sons, Inc., 2000.

[4] Jacob Andreas. Measuring compositionality in representation learning. CoRR,
abs/1902.07181, 2019.

[5] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[6] Jacob Arkin, Thomas Howard, Rohan Paul, and Nicholas Roy. Efficient ground-
ing of abstract spatial concepts for natural language interaction with robot ma-
nipulators. The International Journal of Robotics Research, 37, 01 2016.

[7] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised fea-
ture learning and deep learning: A review and new perspectives. CoRR,
abs/1206.5538, 2012.

[8] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot
Programming by Demonstration, pages 1371–1394. 01 2008.

[9] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. O’Reilly Media, Inc.,
2009.

[10] Jacqueline Brixey, Ramesh Manuvinakurike, Nham Le, Tuan Lai, Walter Chang,
and Trung Bui. A system for automated image editing from natural language
commands, 2018.

61

[11] Crystal Chao, Maya Cakmak, and Andrea L. Thomaz. Towards grounding con-
cepts for transfer in goal learning from demonstration. In 2011 IEEE Interna-
tional Conference on Development and Learning (ICDL), volume 2, pages 1–6,
2011.

[12] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pa-
sumarthi, Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-attention ar-
chitectures for task-oriented language grounding, 2018.

[13] David Chen and Raymond Mooney. Learning to interpret natural language nav-
igation instructions from observations. volume 1, 01 2011.

[14] Lingzhen Chen and Alessandro Moschitti. Transfer learning for sequence labeling
using source model and target data, 2019.

[15] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets. CoRR, abs/1606.03657, 2016.

[16] Wikimedia Commons. The 18 therbligs, 2012. File: Therblig (English).svg.

[17] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra.
Neural modular control for embodied question answering, 2019.

[18] Staffan Ekvall and Danica Kragic. Robot learning from demonstration: A task-
level planning approach. International Journal of Advanced Robotic Systems,
5(3):33, 2008.

[19] Nadia Figueroa and Aude Billard. A physically-consistent bayesian non-
parametric mixture model for dynamical system learning. In Aude Billard, Anca
Dragan, Jan Peters, and Jun Morimoto, editors, Proceedings of The 2nd Confer-
ence on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pages 927–946. PMLR, 29–31 Oct 2018.

[20] Sergio Guadarrama, Lorenzo Riano, Dave Golland, Daniel Goehring, Yangqing
Jia, Dan Klein, Pieter Abbeel, and Trevor Darrell. Grounding spatial relations
for human-robot interaction. pages 1640–1647, 11 2013.

[21] Yordan Hristov, Daniel Angelov, Michael Burke, Alex Lascarides, and Subrama-
nian Ramamoorthy. Disentangled relational representations for explaining and
learning from demonstration. CoRR, abs/1907.13627, 2019.

[22] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: Learning attractor models for motor
behaviors. Neural Computation, 25(2):328–373, 2013.

[23] Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to
deep robot learning, 2019.

62

[24] Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation
learning for grounded spatial reasoning, 2017.

[25] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward understand-
ing natural language directions. pages 259–266, 03 2010.

[26] Dana Kulic, Danica Kragic, and Volker Kr. Learning action primitives. pages
333–353, 01 2011.

[27] Deepika Kumawat and Vinesh Jain. Pos tagging approaches: A comparison.
International Journal of Computer Applications, 118(6), 2015.

[28] Miguel Lázaro-Gredilla, Dianhuan Lin, J. Swaroop Guntupalli, and Dileep
George. Beyond imitation: Zero-shot task transfer on robots by learning concepts
as cognitive programs. CoRR, abs/1812.02788, 2018.

[29] Séverin Lemaignan, Raquel Ros, Emrah Akin Sisbot, Rachid Alami, and Michael
Beetz. Grounding the Interaction: Anchoring Situated Discourse in Everyday
Human-Robot Interaction. International Journal of Social Robotics, 4(2):pp.181–
199, April 2012. 20 pages.

[30] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip H. S. Torr. Manigan:
Text-guided image manipulation, 2020.

[31] Shen Li, Daehyung Park, Yoonchang Sung, Julie A. Shah, and Nicholas Roy.
Reactive task and motion planning under temporal logic specifications, 2021.

[32] Lluis Marquez, Lluis Padro, and Horacio Rodriguez. A machine learning ap-
proach to pos tagging. Machine Learning, 39(1):59–91, 2000.

[33] Dipendra Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave:
Context-sensitive grounding of natural language to manipulation instructions.
The International Journal of Robotics Research, 35, 11 2015.

[34] Seonghyeon Nam, Yunji Kim, and Seon Joo Kim. Text-adaptive generative
adversarial networks: Manipulating images with natural language, 2018.

[35] Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, and Jude
Shavlik. Imitation learning in relational domains: A functional-gradient boosting
approach. pages 1414–1420, 01 2011.

[36] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter
Abbeel, and Jan Peters. An algorithmic perspective on imitation learning. Foun-
dations and Trends in Robotics, 7(1-2):1–179, 2018.

[37] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha,
Qatar, October 2014. Association for Computational Linguistics.

63

[38] Harish Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Bil-
lard. Recent advances in robot learning from demonstration. Annual Review of
Control, Robotics, and Autonomous Systems, 3(1):297–330, 2020.

[39] Harish Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Bil-
lard. Recent advances in robot learning from demonstration. Annual Review of
Control, Robotics, and Autonomous Systems, 3(1):297–330, 2020.

[40] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. Generative adversarial text to image synthesis, 2016.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks, 2016.

[42] Junha Roh, Chris Paxton, Andrzej Pronobis, Ali Farhadi, and Dieter Fox. Con-
ditional driving from natural language instructions, 2019.

[43] Eric Rohmer, Surya Singh, and Marc Freese. V-rep: A versatile and scalable
robot simulation framework. pages 1321–1326, 11 2013.

[44] Ankit Shah, Shen Li, and Julie Shah. Planning with uncertain specifications
(PUnS). IEEE Robotics and Automation Letters, 2020.

[45] Seitaro Shinagawa, Koichiro Yoshino, Sakriani Sakti, Yu Suzuki, and Satoshi
Nakamura. Interactive image manipulation with natural language instruction
commands, 2018.

[46] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral,
and Heni Ben Amor. Language-conditioned imitation learning for robot manip-
ulation tasks, 2020.

[47] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Baner-
jee, Seth Teller, and Nicholas Roy. Understanding natural language commands
for robotic navigation and mobile manipulation. volume 2, 01 2011.

[48] Pavel Tokmakov, Yu-Xiong Wang, and Martial Hebert. Learning compositional
representations for few-shot recognition. CoRR, abs/1812.09213, 2018.

[49] Huihsin Tseng, Dan Jurafsky, and Christopher D Manning. Morphological fea-
tures help pos tagging of unknown words across language varieties. In Proceedings
of the fourth SIGHAN workshop on Chinese language processing, 2005.

[50] Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu.
Learning a natural-language to ltl executable semantic parser for grounded
robotics, 2021.

[51] Mary-Anne Williams, John McCarthy, Peter Gärdenfors, Christopher J. Stanton,
and Alankar Karol. A grounding framework. Auton. Agents Multi Agent Syst.,
19(3):272–296, 2009.

64

[52] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei
Huang, and Xiaodong He. Attngan: Fine-grained text to image generation with
attentional generative adversarial networks, 2017.

[53] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, and Cur-
tis P. Langlotz. Contrastive learning of medical visual representations from paired
images and text, 2020.

65

	Introduction
	Motivation
	Language-Conditioned Imitation Learning
	Therbligs: Elemental Motions for Workplace Tasks
	Experimental Validation and Results

	Related Work
	Representation Learning
	Grounding
	Task-Oriented Language Grounding

	Approach
	Modifications to Prior Work
	Architecture Overview
	Image Pre-processing
	High-Level Semantic Command Parser
	Language Pre-Processing
	Language-Conditioned Attention Network
	Sub-Task Sequencer
	Control Model

	Evaluation
	Methods
	Training
	Test Data Collection
	Performance Metrics

	Results
	Sub-Task Generation
	Object Detection
	Attention
	Task Execution

	Discussion and Limitations
	Parser
	Detection
	Task Sequencing
	Grasping
	Motion Primitive

	Conclusion

