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Abstract

Perovskite solar cells (PSCs), as an emerging type of photovoltaics, have reached be-
yond 20% efficiency within a decade. Technoeconomic analysis suggests that PSCs are
promising alternatives to the market-dominant silicon, because PSC manufacturing
processes are more cost effective due to their solution processing methods. However,
the prototypical perovskite material, methylammonium lead iodide (MAPbI3), is en-
vironmentally unstable and degrades in the presence of oxygen, light, and moisture.
Thus, despite its high initial performance, the degrading performance over time means
that the levelized cost of electricity (LCOE) of perovskites is prohibitively high. An
improved stability (targeting <0.25% degradation per year or less) could help improve
the LCOE of perovskites to surpass silicon.

Researchers have been incorporating low-dimensional (LD), such as 0D, 1D, or 2D
perovskites, to improve PSCs stability. We can obtain LD perovskites by changing
any A, B, or X ions in the ABX3 structures of high-performing 3D perovskites. The
A-site cations can be organic or inorganic, which give us a vast number of possible
perovskite compounds. Some common examples of 3D perovskite A-site cation are
methylammonium (MA) and formamidinium (FA). When the A-site is larger than
FA, it forms LD perovskite structures.

This thesis focuses on investigating how to incorporate the LD perovskites as a cap-
ping layer to improve the stability of MA-based perovskites, including how to screen
and select the A-site cations of LD perovskite capping layers that can improve the
MAPbI3 absorber stability, how to improve the stability of MAPb(IxBr1–x )3 mixed-
halide, a wide-bandgap absorber for tandem cells and indoor PV applications, and
how to incorporate capping layers in inverted p–i–n PSCs device architectures. These
3 questions are answered by combining high-throughput experiments with machine
learning analysis. The optoelectronic, structural, and chemical composition proper-
ties of the LD capping-3D perovskite absorber materials are probed to identify the
degradation mechanisms using advanced characterization methods. This deeper un-
derstanding of perovskite degradation and the strategies to solve the instability issue
are critical to push PSCs closer toward commercialization.
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Chapter 1

Introduction

1.1 Photovoltaics (PV) for climate change mitiga-

tion

The earth has experienced global cooling–warming cycles throughout centuries and

the evidence from the past 740,000 years can be observed from ice-sheet cores [16,

103]. Previously, the oscillations of 100,000-year and 20,000–40,000-year cycles are

attributed to natural causes; however, several studies have confirmed that the current

warming period is much more intense than previously observed warming periods [30,

103, 16]. Anthropogenic carbon emission, as shown in Figure 1-1 [37], has increased

significantly since 1760, the period when the industrial revolution began. Carbon

emission has been predicted to affect climate change significantly [28], even though

researchers still disagree on the exact number due to high uncertainty and complicated

feedback loops within the models. The global mean sea level has risen 8-9 inches since

1880, and in the United States, it translates to high-tide flooding that is 300-900%

more frequent than 50 years ago [77].

The effects of climate change are massive, such as more severe weather and rising

sea level [77]. Between 2016-2020, the average global economic losses from weather

catastrophes is around 285.60 billion US dollars, as shown in Figure 1-2 [106]. Looking

at the trend, this is likely going to keep increasing in the future. They could lead to

17



Figure 1-1: The 1758-2020 carbon dioxide emissions from global fossil fuel combustion
and industrial processes [37].

displacement and a climate refugee crisis [8]; hence, it is important to address and

mitigate the climate change issue early on. To solve this problem, during COP 21

2015 in Paris, more than 150 country representatives agreed to adopt a legally binding

international treaty on climate change to limit global warming below 2, preferably

1.5 degrees Celsius, compared to pre-industrial levels [139]. The Paris Agreement is

evaluated every 5 years, and each country is expected to take increasingly ambitious

climate action in subsequent meetings.

One significant contribution of anthropogenic carbon emission that has become

the center of climate change policy is from the energy sector. Energy is necessary

for almost every aspect of human life, and access to energy is synonymous with

access to civilization. Satisfying future energy demand that keeps growing while

decarbonizing the energy generation process presents an unprecedented challenge to

society. Transitioning to renewable energy is one strategy to mitigate climate change

effect. Therefore, Scientists and engineers globally have taken up the challenge to

assist in the development of lower-carbon energy technologies.

Between 2007-2019, the share of renewable power in energy generation has in-

creased from 5.2% to 13.4%, translating to 6.19 petawatts in 2017 [21]. The share

18



Figure 1-2: The global economic losses due to weather catastrophe in 2000-2020 [106].

of renewable energy in the energy mix continues to grow, despite the setbacks ex-

perienced by other energy types due to the COVID-19 pandemic in the past year

[1]. However, it is still insufficient to achieve the target of net zero by 2050. It will

require 300 GW/year addition of solar photovoltaics (PV) and about 170 GW/year

addition of wind power [1]. To achieve such an ambitious goal, a larger renewable

energy adoption is necessary. However, an increase in renewable energy share has

been slow due to its high installation and system cost, even after the government’s

subsidy [90], which prohibits getting closer to the zero-carbon emission goal. The

Paris Agreement has introduced a framework to achieve the carbon emission level

target, and one of them is fully realizing technology development and transfer [139].

Hence, technological advancement in renewable energy is critical to reduce its cost

and bring the zero-carbon solution into reality.

1.2 Background on perovskite solar cells (PSCs)

Achieving a high percentage of solar photovoltaics (PV) adoption in the energy mar-

ket is needed to minimize climate change globally [29, 1]. Silicon is currently the

dominant photovoltaic technology, with >90% market share. However, the cost of
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silicon manufacturing (and associated factories) presents a barrier for PV adoption.

Any technology that can reduce either the cost or initial capital expense investment

of solar manufacturing could help advance our climate goals.

Based on that, researchers are exploring less expensive alternative photovoltaic

materials, which need to cost less than the current market dominating silicon solar

panels. In the past decade, a newly emerging solar cell material called perovskite,

has reached beyond 20% efficiency [68], which is comparable to silicon performance.

Perovskite solar cells (PSCs) can be fabricated via solution processing methods, that

is more cost-effective and more versatile than silicon solar cells, and hence, very

promising [100]. Perovskite modules are predicted to cost less than crystalline silicon

modules and more mature thin-film technologies such as CdTe, as shown in Figure

1-3 [123]. c-Si, CdTe cost $0.60 and $0.64-0.76/WP , while inverted and perovskite

modules are predicted to cost around $0.41 and $0.57/WP , respectively [123, 23],

assuming comparable manufacturing scales can be achieved. The difference in cost

is mainly attributed to the solution processing of the perovskite deposition process,

enabled by the material’s defect-tolerant nature [12], which allows it to tolerate a

higher concentrations of contaminants, in comparison to silicon solar cells [107].

Despite the promising characteristics of perovskite solar cells, researchers still need

to understand and improve perovskite solar cell environmental stability. Current per-

ovskite alloys degrade within days, weeks, or months, depending on the compositions

and degradation conditions, and cannot compete with the �25-year lifetime of silicon

solar cells.

1.2.1 Perovskite structure and dimensionality

"Perovskite" originally refers to the mineral CaTiO3. More recently, its use has ex-

panded to include other crystals with identical cubic structure and shared ABX3

composition, where A and B refer to +1 and +2 cations, respectively, and X refers

to an anion in the -1 charge state. The recently-discovered type of material that is

utilized for solar cells is methylammonium lead iodide (MAPbI3), which contains the

polar molecule on the A site. Since then, some have broadened the usage of the term

20



Figure 1-3: The predicted module cost for inverted perovskite in comparison to other
PV technologies, assuming comparable manufacturing scale. [123].

"perovskite" to include other tin- and lead-halide materials with perovskite structure,

as shown in Figure 1-4; the A-site cation can be either be organic or inorganic. Addi-

tionally, "perovskite" has been used to refer to other materials inspired by MAPbI3

that do not assume the ABX3 composition and/or crystal structure; others call these

"perovskite-inspired materials." In this thesis, we use the term "perovskite" to re-

fer to the traditional MAPbI3, as well as perovskite-inspired materials that do not

assume the traditional ABX3 composition.

The traditional perovskite structure (shared by MAPI and CaTiO3) forms an

octahedron network with A-site cations as the ‘spacer’ in the center, making the

typical perovskites get their cubic structure.

Figure 1-4: The typical ABX3 structure of perovskites.

The high-performing perovskite solar cells have organic A-site cations, Pb (lead) as

21



B-site cation, and a mix of I, Br, and Cl as X-anion [113]. However, high-performing

perovskite cells degrade readily in the presence of moisture, light, and oxygen [143, 93,

44, 43], and researchers are working on solving this problem. Addressing the stability

issue is the core topic of this thesis.

Goldschmidt’s tolerance factor

One way to improve these cells’ intrinsic stability is by introducing lower-dimensional

(LD) perovskite—0D, 1D, or 2D, by mixing and breaking up the 3D octahedron

network within the structures [25, 127]. To split the 3D octahedron network system-

atically, a large A-site cation can be introduced. To quantify the relations between

ionic radii of A, B, and X ions, we can use Goldschmidt’s tolerance factor [5], as

shown in Equation 1.1. Large A-site cations, which form LD perovskite, have large

ionic radii and Goldschmidt’s tolerance factor larger than 1.00.

t =
rA + rXp
2(rB + rX)

(1.1)

Methylammonium (MA)-based perovskites

Methylammonium (MA, CH3NH3
+)-based perovskite is one of the most common

PSC materials. This specific material fuels the early record-breaking efficiency in

PSCs. MA-based perovskite material, especially MAPbI3, has several advantages

compared to other halide perovskite materials. MAPbI3 has a direct bandgap of 1.55

eV, which is close to the maximum solar conversion efficiency based on Shockley-

Queisser limit: 1.34 eV, long charge-carrier diffusion lengths, defect tolerant nature,

and high charge charge-carrier mobilities [40]. MAPbI3 also has a tolerance factor

of 0.91 [11], making it a 3D perovskite. The crystal structure of MAPbI3 changes

depending on the temperature. At low temperature, 170K, 330K, and 400K, MAPbI3

has orthorhombic Pnma, tetragonal I4/mcm, cubic Pm3m, and tetragonal P4mm

structures, respectively [95]. In addition, MAPbI3 can be fabricated via solution-

processing, which opens up a lot of possible manufacturing routes for the materials.

Despite all the advantages, it is well-known that methylammonium halides are
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extremely hygroscopic, in comparison to other A-site cations, and readily dissolve

in water [20]. This is problematic, because one of MAPbI3 degradation routes is

the formation of PbI2 with CH3NH3I or MAI (Equation 1.2), which is hygroscopic.

MAPbI3 is therefore sensitive to humidity, and it is known to degrade readily in

high-humidity conditions. This challenge needs to be solved either by improving its

intrinsic stability, adding a barrier layer, or having a good device encapsulation.

1.2.2 Perovskite solar cells stability and degradation routes

One way to improve PSCs’ stability is by mixing LD perovskite into 3D perovskite

in the absorber, which improves the intrinsic material stability, as shown in Table

1.1. Different studies have explored various combinations of degradation conditions:

low-high RH or relative humidity (low: ambient RH or < 30% RH, high: > 50%

RH), low-high temperature (low: ambient temperature, high: > 50 �C), low-high

illumination (low: no illumination, high: � 1.0 sun), and gas (air, dry air, or inert

gas, usually N2). Various 3D-LD mixed perovskite absorbers have also been explored,

some of them focus on mixing 1D Pb-free with 3D perovskite [55], mixing LD per-

ovskite generated by changing the A-site cation of the perovskite [57, 73, 147, 151],

and mixing organic-free 2D with 3D perovskites for further stability enhancement

[76]. The aforementioned studies have shown improvement in environmental stabil-

ity, although the efficiencies have not reached 20%. In recent years, however, as shown

in Figure 1-5, few mixed 3D-2/1D perovskites have reached beyond 20%, however,

they mostly contain a trace amount of LD perovskites, which act as dopants. They

still perform below the NREL record efficiency cells, though.

The degradation mechanisms of MAPbI3 (CH3NH3PbI3), which is one of the most

well-studied lead-halide organic-inorganic perovskites, under humid condition hap-

pens by two competing reactions: the desorption of MAI (CH3NH3I) and the genera-

tion of the hydrate phase of MAPbI3 due to water incorporation, which are shown in

Equation 1.2, 1.3, and 1.4 [116]. As MAPbI3 degrades into PbI2, CH3NH3I is formed

in reaction 1.2. On the other hand, the reaction 1.3 is reversible, and under vacuum
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Composition mixtures Tempera-
ture

Relative
humidity,
gas

Illumi-
nation

Time Normal-
ized
PCE
re-
tained

Ref.

1 (MA–Cs)PbI3 with
PEA

50-60 �C 30-50%
RH, air

1.0-
sun

205
hours

⇠0-0.5,
de-
pends
on Cs
amount

[57]

2 FA0.79MA0.16Cs0.05
PbI2.5Br0.5 with PA

20 �C 45% RH,
air

- 2000
hours

⇠0.5 [147]

3 MA3Bi2I9 with MAPbI3 ambient
T

30% RH,
air

- 1000
hours

0.72 [55]

4 EDBEPbI4 with
MAPbI3

ambient
T

ambient
RH, air

- 3000
hours

⇠0.9 [73]

ambient
T

65% RH,
air

- 1000
hours

⇠0.9

5 (Cs0.05(MA0.17FA0.83)0.95
Pb(I0.83Br0.17)3)0.85
(HAPbI2Br)0.15

25 �C 30% RH,
air

- 2500
hours

⇠0.9 [151]

6 Cs2PbI2Cl2 with
CsPbI2.5Br0.5

80 �C 70% RH,
air

- 48
hours

⇠0.3 [76]

80 �C 30% RH,
air

- 96
hours

0.93

25 �C ambient
RH, N2

- 60 days
/ 1440
hours

0.95

Table 1.1: Review of mixed-composition PSCs tested for stability.
MA: methylammonium, FA: formamidinium, PEA: phenylethylammonium, PA:

propylammonium, HA: hydrazinium, PCE: power conversion efficiency.
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condition, the MAPbI3 can be reformed from its hydrate by H2O desorption [116].

CH3NH3PbI3 ��! PbI2 + CH3NH3I (or CH3NH2 +HI) (1.2)

CH3NH3PbI3 +H2O ��*)�� CH3NH3PbI3 ·H2O (1.3)

4CH3NH3PbI3 + 2H2O ��! (CH3NH3)4PbI6 · 2H2O+ 3PbI2 (1.4)

Unfortunately, despite the improvement in stability by mixing LD with 3D per-

ovskite, mixing too much LD into 3D perovskites results in lower device performance,

as shown in Figure 1-5. Finding the balance between PSCs’ stability and performance

through compositional exploration is important and needs to be investigated.

Figure 1-5: Research cell efficiencies for different perovskite dimensionality.
The comparison between best-research cell efficiencies of perovskites from National

Renewable Energy Lab (NREL) and the published 3D-LD perovskites in the form of
mixing from year to year [68, 41, 120].
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1.2.3 PSCs device architecture and fabrication

Photovoltaic materials fall in the semiconductor materials category. When there is

external source excitation, the material turns from insulator (non-conductive), into a

conductive state. This is due to the relatively low energy gap between valence band

maximum (VBM) and conduction band minimum (CBM), allowing charge carriers to

jump from one energy level to another upon energy excitation. The insulator, on the

other hand, has a high energy gap between the VBM and CBM, making it hard for

the charge-carrier hard to jump from one to another band, in contrast, the conductor

has its VBM and CBM overlapping with each other, allowing it to be conductive even

without excitation. The schematic of these three different types of materials is shown

in Figure 1-6.

Figure 1-6: The VBM and CBM of different type of materials.
VBM is valence band maximum, and CBM is conduction band minimum. Eg represents

the bandgap energy for the semiconductor materials, which is the difference between VBM
and CBM.

Unlike silicon solar cells, the perovskite solar cells (PSCs) device structure closely

resembles the organic photovoltaic device. The perovskite film only facilitates the

light excitation that causes electrons’ jump from VBM to CBM, leaving holes be-

hind. To extract the charge carriers and create current, it requires other layers,

called electron transport layer (ETL) and hole transport layer (HTL), in addition to

conduction layers. The structure is shown in Figure 1-7.

Depending on where the ETL and HTL sandwich the perovskite, there are two dif-

ferent PSCs device architecture: n–i–p (which is more widely known as normal struc-

ture and is more investigated within the field), and p–i–n structure (which is called in-
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Figure 1-7: The n–i–p device architecture for PSC.

verted structure). For the n–i–p structure, the ETL and HTL are deposited before and

after the perovskite film, while for p–i–n structure, it is the other way around. The

ETL for n–i–p architecture is usually TiO2 or SnO2, while for p–i–n structure is usu-

ally PCBM ([6,6]-phenyl C61 butyric acid methyl ester), C60, and their derivatives [84].

The HTL for p–i–n architecture is usually spiro-OMeTAD (2,2’,7,7’-tetrakis(N,N-

pdimethoxyphenylamino)-9,9’-spirobifluorene) or PTAA (poly [bis(4-phenyl) (2,4,6-

trimethylphenyl) amine]), while for p–i–n structure is usually PEDOT:PSS (poly

(3,4-ethylenedioxythiophene) polystyrene sulphonate) [84]. The wide range of pos-

sible materials combination for each layer also allows low-temperature conditions

during the fabrication process, which is important for fabricating flexible perovskite

solar cells [153].

Looking at the layer atop of the perovskite absorber, one key feature that this

layer needs to have (HTL for n–i–p and ETL for p–i–n), if it is deposited via solution

processing, is the solvent compatibility between the top layer and the absorber. The

solution deposited at the top should not dissolve the perovskite absorber layer under-

neath. Once the solvent system is established, the available manufacturing process

for the device expands. Solution processing allows the perovskite and other layers

to be deposited via blade-coating, slot-die coating, screen-printing, spray-coating,

and inkjet printing [109]. Due to the high variability of the film morphology in

solution-based processing, researchers have also explored a vapor-based method that

is solvent-free but limits scaling-up methods [109]. Few examples of vapor-based pro-
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cesses are co-evaporation of organic and inorganic precursors (PVD) and alternating

precursor deposition [109].

1.3 Background on data-driven perovskite research

The PSCs-related research initiative utilizing data-driven processes, advanced statis-

tical methods, and machine learning emerge quite recently. The PSC research usually

focuses on experimental-based research or theoretical-based computational research,

such as density functional theory (DFT), to predict PSCs material properties and

see the feasibility of new composition materials. The data-driven perovskite research

initiative only started after PSCs reached more than 10% efficiency, indicating that

this material class is promising for the future generation of photovoltaic materials.

Since the halide organic-inorganic perovskite material class only gained traction in

the past decade, the exploration of wide compositional space and material properties

prediction dominates the data-driven perovskite research. This exploration benefits

the researchers in narrowing down the possible successful and synthesizable materials.

The examples for this type of machine learning research are bandgap prediction [105,

79, 125, 53], device recovery cycle prediction [52], perovskite formability [104, 99,

58, 112] or thermodynamic stability [74] prediction of a given A, B, and X ions,

classification of X-ray-diffraction (XRD) patterns [97, 130], and single crystal growth

prediction [64].

At the end of another spectrum, machine-learning-based perovskite research uses

active learning to drive the high-throughput experiment iteratively to achieve a target

value, which could range from optimizing composition to processing condition to

achieve a stable perovskite [131] or photoluminescence spectrum target [49].

1.3.1 Supervised learning for predicting material properties

Supervised learning is a method to find the relation between input (X) and output

(y). A linear regression, for instance, is a common technique that falls within the

supervised learning area. After a supervised learning model is trained, the model can
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predict the output of certain input variables, which is useful for PSCs-related research

where there is a wide, unexplored compositional space.

Supervised learning models are generally categorized as two: regression and clas-

sification. The main difference between the two methods is the type of output (y).

Regression models are used for continuous output, while classification models are

used for discrete output or categorical. Regression models have previously been used

for predicting bandgap [105, 79, 125, 53]. On the other hand, classification models

have previously been used for predicting single crystal growth (binary, yes/no) [64],

or perovskite dimensionality through XRD patterns [97, 130].

There are different types of supervised learning algorithms. Some examples are

as follows [31, 117].

1. Linear regression. This method fits a linear equation to relate the input with

the output of the model.

2. Support vector machine (SVM) or support vector regression (SVR). This works

by maximizing the distance between the classes.

3. Decision tree algorithm, such as random forest and gradient boosting tree. Tree-

based algorithms predict the output by splitting the population into subsets of

more homogeneous sub-population. The differentiator between subsets works

like a branch in a tree. It is usually used for classification, even though it is

now common to use it for regression by regressing each sub-population at the

end of the branch.

4. K-nearest neighbor. This algorithm works by assigning an unlabeled sample

point to the label of the nearest neighboring points. Choosing a good k is

therefore important in training the model.

5. Artificial neural network. This algorithm is based on the neurons, which act as

hidden layers between input and output. By tuning how many hidden layers

there are, each neuron’s weight, and the activation function, the neural network

can be trained.
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1.3.2 Unsupervised learning to find new insights

Unsupervised learning is a model training for labeled/unclassified data [154]. The

unsupervised learning method has not been as widely used as supervised learning

for PSCs. One example is using supervised learning to rationalize the key structural

parameter governing nonadiabatic electron-phonon coupling and the bandgap, which

is the I–I–I angle in methylammonium lead iodide (MAPbI3) perovskite [157]. In

other fields, unsupervised learning has been used to cluster the candidate materials for

solid-state lithium-ion conductors and discover novel conductors [156]. Unsupervised

learning has also been used to recommend materials for functional application based

on research literature [137].

1.3.3 Active learning for autonomous experiment

Active learning is a machine learning type where the algorithm can give suggestions

for the next round of experiments based on the data that it is already trained on.

This helps reduce bias from the experimenters and helps get into an optimum point,

which could be a minimum or maximum point(s) depending on the target, faster.

One commonly used algorithm for this purpose is Bayesian optimization (BO), which

utilizes Gaussian process regression to predict a new parameter based on the previ-

ously measured parameter [36]. BO has been applied to find the most stable lead

halide perovskite [131], the optimal band structure and thermal transport coefficient

for layered materials consisting of transition metal dichalcogenides [6], the success-

ful region for coarse-grained simulation of biomolecules [61], and the amorphous and

liquid hafnia (HfO2) generation over a wide range of conditions [118].

Researchers have tried optimizing PSCs for a bounded, low-dimensional space us-

ing active learning [131]. However, this leads to finding local minima/maxima within

the small space, although there is a high possibility that the global minima/maxima

of the target metric exist somewhere else. Therefore, the current challenge for ac-

tive learning in PSCs is its high-dimensional parameter space, considering multiple

layers in the PSC device, possible compositions for each layer, and variation of pro-
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cessing conditions for each layer and each composition. The current computational

power does not allow us to do grid search and full factorial sampling for the high-

dimensional space. Hence, knowing how to sample such high-dimensional space is

important to ensure that the researchers do not end up with local minima/maxima,

instead of global minima/maxima of the target metric in active learning methods.

1.4 Thesis outline

There are two ways of incorporating lower-dimensional (LD) perovskites in the pho-

toabsorber layer to improve MAPbI3 stability: mixing it in perovskite absorber (mix-

ing method), or depositing it on top of the absorber as a capping layer, or widely

known as buffer layer in photovoltaics research (capping method). The former method

has been explored widely, as shown in Table 1.1. However, a large addition of LD

perovskites in the mixing method leads to low efficiency, as shown in Figure 1-5, one

of the reasons is due to a reduction in charge-carrier mobility [46, 47]. In the cap-

ping method, the LD perovskite capping layer itself is expected not to interfere with

the bulk charge transport of the 3D perovskite, unlike the mixing method, but still

protect the material from the environment. Since this method only recently emerges,

much work still needs to be done in understanding how we pick the materials that

give the best performance in terms of stability and efficiency, and how we deposit

it for an inverted device. Therefore, this thesis focuses on the capping method for

improving PSCs, specifically the prototypical MA-based perovskites stability.

The primary areas in this thesis are shown in Table 1.2, where it covers the capping

layer material screening for improving the stability of MAPbI3 absorber (Chapter

3), the capping-mixed-halide pair screening for optimum stability (Chapter 4), the

capping layer exploration for MAPbI3 absorber in inverted PSCs (Chapter 5), and

implementing capping layer for improving the stability of absorbers beyond MAPbI3.
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Chapter Absorber Sample type GoalsFilm Device
3 MAPbI3 Yes - Capping materials

screening
4 MAPb(IxBr1�x)3 Yes Yes (n–i–p) Capping-absorber ma-

terials screening
5 MAPbI3 Yes - Deposition method de-

velopment
6 Cs0.17FA0.83PbI3 Yes Yes (p–i–n) Degradation mecha-

nism understanding

Table 1.2: Thesis chapters overview.
MA: methylammonium, FA: formamidinium.

1.4.1 Data-driven stability analysis for capped-MAPbI3 ab-

sorber

The first part of the thesis focuses on picking the capping layer material to extend

the stability of MAPbI3. Due to the large compositional space for the organic A-

site cation, as shown in Figure 1-8, a method to screen the materials under elevated

temperature and elevated humidity conditions is required to understand the design

guidelines for choosing the stable capping layer material. Once we have the design

guidelines for this capping layer, we need to optimize the deposition processing con-

dition.

A data-driven method is chosen to screen the capping layer materials and fab-

rication processing conditions simultaneously. The database’s molecular properties

coupled with the processing conditions, which are referred to as features, are trained

using supervised machine learning methods to predict the degradation onset on the

capped perovskite absorber films. The trained models are then used to analyze the

feature importance rank. This rank can investigate which features contribute signifi-

cantly to the degradation onset, shedding a light on which type of A-site cation will

improve the stability significantly.
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Figure 1-8: Amine organics available according to ZINC 15 database [126].
This figure only includes the substances with molecular weight up to 200 g/mol, and logP

from -1 to 3, totaling more than 200,000 possible amine organics.
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1.4.2 Capping layer screening for mixed-halide, MA-based ab-

sorber

After getting the design guidelines for choosing a capping layer material, the second

part of the thesis focuses on finding the optimum capping layer material for absorbers

with various bandgaps, especially considering that the perovskite bandgap is tunable

to fit various purposes, including perovskite-perovskite tandem cells, and indoor ap-

plication [85]. For those applications, we need different types of PSCs: narrow and

wide bandgap (NBG and WBG, correspondingly), which will capture the energy at

a specific light spectrum range.

One common way to increase the bandgap in PSCs is by mixing the halide in

X -anions of the perovskite absorber [3]. For NBG, the halide is usually iodine, while

for WBG, it is usually bromine or even chlorine, which has a smaller atomic mass

[3, 146]. This increase of bandgap is due to the change in Pb–I bond after Br or Cl

addition, making the structure distorted [87].

This thesis chapter focuses on screening the suitable capping layer for MA-based

wide bandgap perovskites. The optimum capping layer from previous chapter, along

with new 1D capping layers are introduced and tested. Advanced characterizations

are then used to investigate why certain capping-absorber pairs are better than the

others.

1.4.3 Improving the stability of MAPbI3 in inverted device

architecture

In the first two parts of the thesis, the capping layer is geared towards n–i–p device,

where the electron and hole transport layers (ETL and HTL) are located at the

bottom and top of the absorber, respectively. For this type of device, the capping

layer is deposited between the absorber and the HTL. However, in the inverted device,

i.e. p–i–n, the ETL and HTL are switched, so they are at the absorber’s top and

bottom.

Even though many PSCs research focuses on n–i–p device architecture, the p–i–
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n device also needs to be improved. Based on recent technoeconomic analysis, an

inverted perovskite solar module is expected to be cheaper ($0.41/WP ) [123], while

a normal (n–i–p) module is expected to cost $0.57/WP [23]. Thus, it is important

to push the boundary of p–i–n device stability to increase the probability of pushing

PSCs into the commercial market.

However, the inverted device architecture poses an extra challenge: where to de-

posit the capping layer best. Several studies have shown that there is currently no

consensus on where to best put the capping layer to improve both stability and per-

formance [67, 83, 45], as shown in Figure 1-9. When the capping layer is deposited

between the absorber and ETL, environmental stability is improved, which is ex-

pected. However, the device performance is similar to bare absorber with no capping

layer [83]. On the other hand, when the capping layer is deposited between both

interfaces with ETL and HTL, the stability is improved, but the device performance

is reduced [67]. The last option, which is inserting the capping layer between the

absorber and HTL, seems to work well to improve stability and help with the surface

passivation, which leads to a reduction in trap-assisted nonradiative recombination

and improved efficiency (c) [45]. The last option warrants a further investigation,

to understand the underlying mechanism behind the stability and performance im-

provement due to that particular capping layer configuration. In addition to that,

since the absorber and capping layer deposition relies on solution-based processing,

solvent compatibility becomes extremely essential. During each layer deposition, the

subsequent layer’s solvent choice should not dissolve the layers underneath.

This thesis focuses not only on finding the capping layer that works well in im-

proving stability but also soluble in the solvent that will be compatible with both

prior and subsequent layers.
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Figure 1-9: Possible locations for capping layer in a p–i–n PSCs device.
The 3 possible locations for the capping layer in p–i–n device are: in the interfaces with
both ETL and HTL (a) [67], in the interface with ETL (b) [83], and in the interface with

HTL (c) [45].

1.4.4 Departing from MAPbI3: the case of cesium-formamidinium-

based PSCs

After optimizing LD perovskites in the capping layer for specific MA-based absorbers,

and exploring the possible methods to deposit the capping layer for the inverted

devices, it is now time to bring the film-level optimization to the device level, even the

encapsulated device level. This is important to ensure that PSCs technology indeed

will be commercialized and present more alternatives in the solar panels market for

a smooth energy transition.

While MAPbI3 is a promising material for future solar panels, its challenging sta-

bility issue has also shifted researchers’ interests to discover alternative perovskite

materials. Some of the promising candidates are CsPbI3 and FAPbI3, and they

are sometimes also doped with MAPbBr3 and MAPbCl3, which also have high ef-

ficiency [59]. A study by Sun, et al. also shows that there is an optimum compo-

sition mixture between MAPbI3, FAPbI3, and CsPbI3 for better stability, which is

Cs0.17MA0.03FA0.80PbI3 [131]. This will also need to be optimized alongside other

layers within the device.

This thesis chapter focuses on the initial exploration of how Cs-FA-based PSCs’
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stability is different at the film and device level, especially in the inverted device

architecture that is predicted to cost lower in manufacturing. Different degradation

conditions are explored, such as high temperature but low humidity and high tem-

perature and humidity. We also observe how the degradation mechanisms in these

compositions are different from MAPbI3. In the case of FAPbI3 and CsFAPbI3, their

intrinsic phase stability determines the reliability of their PSCs. Both a-FAPbI3 and

a-CsPbI3 phase are dark and good solar cell materials at above 160 �C and room

temperature, respectively [148]. However, the d-FAPbI3 and d-CsPbI3 are yellow and

photovoltaically inactive below those temperatures [148]. Therefore, this intrinsically

unstable material poses a different set of challenges than the MA-based perovskite,

where the main culprit is humidity.

In the future, co-optimizing these absorbers and capping layers and other layers,

such as ETL, HTL, electrodes, and encapsulation, will be essential in finding the

most stable and high-performing PSCs. This thesis explores this direction, starting

by optimizing the capping layer for MA-based perovskite.
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Chapter 2

Fabrication, characterization, and

machine learning methods

2.1 Film and device fabrication methods

The film and device fabrication methods here represent the general fabrication pro-

tocols followed in this thesis. However, each project/thesis chapter might require a

slightly different set of samples. In some cases, samples are also sourced from collab-

orators, which are also fabricated in slightly different techniques.

2.1.1 Absorber film fabrication

The simplest perovskite absorber film is methylammonium lead iodide (MAPbI3).

This material can be deposited on either fluorine-doped tin oxide (FTO) glass or

microscope glass slides. The substrates are previously cut in 1-inch by 1-inch size and

cleaned in a sonicator with the following solutions, each for 15 minutes: 2% Hellmanex

in deionized (DI) water, DI water, and isopropyl alcohol. After that, the samples are

dried for 10 minutes before cleaned using UV-ozone cleaner for 15 minutes.

While the substrates are undergoing cleaning process, we prepare the perovskite

precursor solution. First, we prepare the PbI2 solution by mixing 1 gram of PbI2 (TCI,

99.99% trace metals basis) with 145 µL of dimethylsulfoxide or DMSO (Sigma-Aldrich,

39



anhydrous � 99.9%) and 1301 µL of N,N -dimethylformamide or DMF (Sigma-Aldrich,

anhydrous 99.8%); the DMF: DMSO is in 9:1 ratio. Second, on a separate vial, for

every gram of methylammonium iodide (MAI > 99.99%, GreatCell Solar), add 505 µL

of the PbI2 solution, and 6 µL of 9:1 DMF: DMSO solution. As a result, we obtain a

PbI2-excess solution (1:1.09 MAI: PbI2).

65 µL of this solution is then deposited on the substrate and spin-coated using

a 2-step deposition. 10 seconds after the second step of the spincoating, 150 µL of

chlorobenzene is dropped as an anti-solvent.

2.1.2 Device fabrication

For the n–i–p device, the layers from the bottom to the top are FTO electrode, TiO2

compact and mesoporous or SnO2 layer for electron transport layer (ETL), perovskite

absorber, capping layer, spiro-OMeTAD layer for hole transport layer (HTL), and gold

electrode.

The FTO substrate is first etched using 1:1 HCl (Sigma-Aldrich): DI water so-

lution. Spread some of the zinc powder (Sigma-Aldrich) onto the part that will be

etched evenly. Drop roughly 1 mL of the DI water-HCl mix onto it. Brush off the zinc

powder. Clean with DI water, and repeat the etching process for the second time.

After that, clean using 3 different solutions in the sonicator: Hellmanex 2% with DI

water, DI water, and isopropyl alcohol.

The compact TiO2 layer is done by doing spray pyrolysis. The etched-FTO glass

substrate is annealed on the hotplate at 500�C. Titanium diisopropoxide bis (acety-

lacetonate) (Sigma-Aldrich) is mixed with ethanol in a 1:10 ratio, with a total of 1

mL. Using a spray gun, the solution is sprayed to the substrate evenly. The substrate

is then annealed for another 30 minutes before being taken out. The stock solution

is made for the mesoporous solution by mixing 1:5 w/w of TiO2 paste: solvent mix

(3.5:1 terpineol: 2-methoxy ethanol, v/v). The mixed solution is then filtered to ob-

tain a homogeneous solution, and 60 µL of the solution is deposited on the substrate.

The substrate is then spincoated and annealed at 150 �C for 5 minutes.

The perovskite absorber is then deposited based on the protocol on Subsection
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2.1.1.

The precursor solution for spiro-OMeTAD is prepared by mixing 0.05 g of spiro-

OMeTAD (Sigma-Aldrich) with 11.33 µL of 1.8 M LiTFSI salt (Sigma-Aldrich) in ace-

tonitrile , 19.72 µL of tert-butylpyridine (Sigma-Aldrich), 4.90 µL of 0.25 M FK209 Co

salt (Dyenamo) in acetonitrile, and 546.9 µL of chlorobenzene. 60 µL of the solution

is then deposited on the substrate and spincoated.

For the gold electrode part, 100 nm of Au pellet is deposited using a thermal

evaporator. A mask is put over the substrate to define the active area for the solar

cells.

2.2 Materials characterization

To investigate the material, including structural, optoelectronic, and morphological

properties, various laboratory-based and synchrotron-based characterizations are con-

ducted at both film and device levels.

2.2.1 Laboratory-based characterization

UV-Vis spectrophotometer

The film’s transmission and reflection are measured using UV-Vis (PerkinElmer),

between 350-1000 nm. The absorptance can therefore be calculated by subtracting

the transmission and reflection from 100%. The bandgap can therefore be obtained

using the Tauc plot method [133]. The perovskite film is deposited on a glass substrate

for this measurement.

Fourier-transformed infrared (FTIR) spectroscopy

FTIR is a tool to measure the absorption or emission in the infrared spectrum. This

helps to identify certain compounds, especially in organics, within a sample of solid,

liquid, or gas. We can observe the signal from bond stretching, bending, and twist-

ing in the organics compound and use them as a molecular fingerprint to identify
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compounds’ presence. In this thesis, because we mostly focus on a thin-film surface,

we use ATR (attenuated total reflection) mode using ZnSe crystal, which probes the

chemical bonds on the surface. The perovskite film is deposited on a glass substrate

for this measurement.

X-ray diffraction (XRD)

X-ray diffraction can be used to measure the crystal structure. We use a powder X-

ray diffraction (PXRD) tool (SmartLab) to investigate what phases are present in the

sample. The optic setting is on general medium PB/PSA, using Cu K-↵ source, and

the XRD is usually measured between 2✓ = 5�-60�. The perovskite film is deposited on

a glass substrate for this measurement. The tool used is part of shared experimental

facilities, MIT Materials Research Laboratory.

Scanning electron microscopy (SEM)

The field-emission scanning electron microscope (FESEM, Zeiss Ultra 55, or Zeiss

Supra 55 VP) is used to observe the surface morphology, including the grain bound-

aries and the cross-section in the device. A low electron beam (3 keV) is used

to avoid damaging the samples. The perovskite films are deposited on FTO glass

substrates to avoid charge-buildup on the surface and are subsequently placed on an

SEM stub. FESEM tools used are part of shared experimental facilities, Harvard

University Center for Nanoscale System.

X-ray photoelectron spectroscopy (XPS)

XPS (Thermo Scientific K-Alpha+) is used to measure the elemental composition and

their chemical states on a sample’s surface using an X-ray source (Al K-↵). The field

gun is on, and the high-vacuum environment is maintained during the measurement.

Depending on the samples, we usually investigate the high-resolution signal of C 1s, N

1s, O 1s, Pb 4f, I 3d, Br 3d, and the XPS survey. The films are specifically deposited

on FTO glass. XPS tool used is a part of shared experimental facilities, Harvard

University Center for Nanoscale System.
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Device J-V characterization

Devices are measured using a J-V characterization tool that measures the current

density (J) and the voltage (V) using a source meter (Keithley 2420) as the devices

are illuminated using a solar simulator (Newport, Oriel Class AAA, 91195A, AM 1.5

G) at 100Wcm�2. Before the measurement is done, the tool is calibrated with a

Si-reference cell certified by NREL.

Degradation test

The degradation test is done in a chamber that is built at MIT PV Lab. The degra-

dation chamber consists of 4 important parts.

1. The hot plate. This hot plate can fit 4 ⇥ 7 samples with the size of 1 ⇥ 0.5

inches. This will maintain the temperature of the substrate at a certain level

throughout the test. There is a control system that helps to maintain the same

temperature at all times.

2. The relative humidity control system. Since the relative humidity (RH)

fluctuates depending not only on the system but also on the humidity outside

the chamber, having an RH control system is important to maintain the RH

throughout the degradation test. In this case, we use a simple Arduino program

connected with the Adafruit Si7021 humidity sensor, which drives the fan on

top of the water reservoir when the RH reaches a certain level.

3. The light source. The light source is important for capturing the images

clearly. Having a 1-sun light source, for instance, can be an option to introduce

light-induced degradation into the system. However, in this case, we minimize

such degradation and only use the 0.15-sun light source for the clarity of the

captured images.

4. The camera. The camera is a USB CMOS camera, without IR cut filter

(Thorlabs DCC1645C-SP3), which can be programmed using LabView to cap-

ture images every few minutes, for instance, throughout the degradation process.
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To ensure that the color of the captured images is the same as the actual color,

at the beginning of each run, an image of the X-Rite ColorChecker Passport

Photo is taken. A small ColorChecker Passport is also placed next to the sam-

ples as a color reference point. The colors are also calibrated using 3D thin-plate

spline color warping method in L*a*b color space, and the resulting data were

transformed back to red, green, blue (RGB) color space [86].

The images collected are in JPEG, PNG, and BMP formats. They are then

processed and calibrated. Finally, the average red, green, blue (RGB) values for each

time point for each data is extracted as a CSV file, based on the image analysis

protocols established in SPProC GitHub [136]. The time and RGB values for each

sample can then further be analyzed for different purposes.

2.2.2 Synchrotron-based characterization

We investigate the surface and the bulk crystal structure using a high-throughput

grazing-incidence wide-angle X-ray scattering (GIWAXS) at beamline 11-BM (CMS)

Complex Materials Scattering, NSLS-II, Brookhaven National Laboratory. The data

is processed using SciAnalysis to convert the WAXS images into the data in q-space.

The perovskite film is deposited on a 0.25-inch by 0.5-inch glass substrate (microscope

glass slides) for this measurement.

2.3 Machine learning methods

In some thesis chapters, machine learning-based analysis is used, specifically super-

vised learning using regression (continuous output) and Shapley value analysis. To

do these analyses, we need first to construct the dataset, either collecting from an

existing database, using the experimental data result, or obtaining from simulated

values.
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2.3.1 Dataset

Depending on the thesis chapters, the dataset comes from 3 different aforementioned

sources, (1) existing database (such as PubChem, ZINC15), (2) experimental result,

and (3) simulated values. Using the database is important in initial screening and

defining the compositional space. The experimental result is often used as the target

output for prediction in machine learning. Lastly, simulated values are important for

the novel materials which do not exist in the database yet, but are still important

for training the machine learning algorithm. In this case, we use ChemDraw and

ChemOffice software package (PerkinElmer) to find the approximate values of some

key properties, such as topological polar surface area and partition coefficient.

2.3.2 Regression model training

Scikit-learn package in Python is used to do regression model training [101]. Several

regression models are trained, including linear regression (LR), K-nearest neighbors

(KNN) regression [2], random forest (RF) regression [50], gradient boosting (GB)

regression with decision trees [38], support vector machine regression (SVR) [22], and

multilayer perceptron neural network (NN) with three hidden layers (each has 128,

256, and 64 units) using Adam solver [63]. Before training the models, the data is

pre-processed, such as normalization (calibrating the mean to zero and scaling to

unit variance). However, note that some models do not require normalization in their

data, such as tree-based models (random forest, gradient boosting). The next step

is tuning the hyperparameters for different models using the GridSearchCV function

in scikit-learn, which performs an exhaustive search for the best parameters with

the lowest 5-fold cross-validated root mean squared error (RMSE). The observation

versus prediction plot is generated to help to investigate if the model is overfitting.

2.3.3 Shapley value analysis

After training the regression models with the dataset and obtain the best model with

optimized hyperparameters, we can use another toolset to interpret the model and
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derive an insight from it. SHAP, which stands for Shapley Additive exPlanations

[80], serves as a feature importance rank that shows how each feature/input variable

affects the model’s output. SHAP is the state-of-the-art method of extracting feature

importance rank because it utilizes game-theory-based Shapley values to calculate

each feature/input variable’s contribution to the model’s output, resulting in a fairer

and more robust rank across various models.
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Chapter 3

Capping layer design for MAPbI3

3.1 Capping layer method and its large composi-

tional space

The capping layer method refers to the deposition of a thin layer of LD perovskite

atop of the perovskite absorber for improving stability or surface passivation. This

method emerges after researchers find that even though mixing LD perovskite into

3D perovskite absorber improves PSCs’ stability, the reduction in performance hin-

ders the further development of this mixing method. The added benefit of surface

passivation and band energy engineering for the capping method pushes the research

more towards this direction [149].

Incorporating LD perovskite as a capping layer has been shown to improve sta-

bility [94]. For example, depositing 2D phenylethylammonium (PEA) perovskite on

top of 3D formamidinium lead iodide (FAPbI3) perovskite improves the device sta-

bility for up to 60 days under ambient conditions (dark, 30-40% humidity, and 25
�C) [94]. Additionally, the surface passivation is also improved. For instance, the

same PEA-based 2D perovskite capping layer has been shown to improve the surface

passivation for methylammonium lead iodide (MAPbI3) film based on longer emis-

sion lifetime of capped film observed using the time-correlated single-photon counting

(TCSPC) method [19]. Comparing the same material deposited as absorber mixture
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as supposed to capping layer, the capping device’s efficiency reaches 21.3% [94], in

contrast, the mixed perovskite only reaches 4.7% [121]. Using the mixing method, the

PEA/MA perovskite mixture results in mixed 2D/3D perovskite structure, namely

Ruddlesden-Popper structure (such as (PEA)2 (MA)2 [Pb3I10]) [121]. Even though

this method improves the stability for over 46 days with air exposure at 52% relative

humidity (RH), it only achieves sub-5% efficiency [121], unlike the device improve-

ment in the capping layer method that also benefits from surface passivation due to

reduced defects and trap states [19].

There are two categories of capping layer deposited: the LD perovskite layer and

the barrier layer. The LD perovskite layer is formed by reacting the AX ammonium

halide salts with the excess PbI2, forming a thin LD perovskite layer on the surface

[94, 19]. However, the barrier layer only forms a sacrificial layer at the top of the

absorber to reduce interaction between the perovskite with the layer on top, for

instance, fullerene end-capped polyethylene glycol (C60-PEG) [39], C12-silane [152],

trioctylphosphine oxide (TOPO) [7], and tetrafluoroterephthalic acid (TFTPA) [160].

This thesis chapter explores the LD perovskite capping layer instead of the large

molecules as a barrier layer.

The deposition of the LD perovskite capping layer is utilizing solution-based pro-

cessing, similar to the perovskite absorber. The difference between capping layer

deposition and absorber deposition is highlighted in Table 3.1. The notable differ-

ence is in the thickness; the capping layer is much thinner than the absorber layer

due to low capping layer precursor solution concentration and high spincoating speed

for the deposition.

As previously mentioned, one way to create LD perovskite is by introducing large

A-site cations, which is the same in the capping layer case. The capping layer

comes from AX salt, where A is the large cation, and X is the halide, which re-

acts with the excess PbI2 from the perovskite absorber layer underneath and forms

LD perovskite. Several capping layer materials have been explored, such as n-

hexyltrimethylammonium bromide [60], (CF3)3CO(CH2)3NH3I [26], Eu-porphyrin

complex [35], 1,8-octanediammonium iodide [81], diethylammonium iodide [56], 3-
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Absorber layer Capping layer

Solvent DMF and DMSO mixture Isopropyl alcohol (IPA)
Concentration Usually 1-1.5 M 5-20 mM range
Deposition step 2-step, with chloroben-

zene as anti-solvent
1-step, high speed

Annealing tempera-
ture

100 �C 100 �C

Annealing time
length

10 minutes 10 minutes

Table 3.1: The difference between capping and absorber layer deposition process.

phenyl-2-propen-1-amine [32], and many other organic halide salts encompass differ-

ent functional groups. Considering all the possible organic compositional space for

A-site cations is really large, as shown in Figure 1-8, and researchers currently use

the trial-and-error method to explore this space. It is also harder to compare each re-

sult side-by-side due to differences in degradation conditions, e.g., illumination level,

humidity level, gas within the chamber, heating temperature, and variability during

the deposition process. To move forward and ultimately find the best capping layer

material, screening various materials under the same degradation condition with uni-

form processing conditions deposition, and find the design guideline for the AX salts

are important and the main focus of this thesis part [48].

3.2 Project workflow

To find the best AX halide salts for the capping layer, understanding the design

guideline in selecting the material is important. The following research questions are

investigated to find the design guideline.

1. What kind of AX halide salt and processing condition extend the environmental

stability under elevated temperature and humidity of the perovskite absorber

the most?

2. What is the mechanism behind the stability improvement of the capping layer?
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To answer those research questions, a specific project workflow is introduced,

which is shown in Figure 3-1.

Figure 3-1: The workflow for obtaining capping layers design guidelines.

We start by choosing the halide salts that cover the varieties explored in the

literature. Since this part of the thesis focuses on the capping layer material screening,

the absorber material is kept the same throughout the project: methylammonium lead

iodide (MAPbI3). After the film is fabricated under 4 different annealing temperatures

(50, 75, 100, and 125 �C) and 3 different concentrations (5, 10, and 15 mM), totaling

12 different processing conditions.

The next part is data acquisition, and time efficiency is important in this case.

During the initial capping layer material screening, it is important to allocate the ex-

perimental time strategically because we want to start with the measurement that will

give us more data at the beginning and less data but a deeper understanding at the

end. Therefore, since the highest amount of data generation per time comes from the

environmental degradation chamber, where we degrade films, this data acquisition is

the first screening step. We also utilize advanced analysis and train machine learning

models to find how the processing condition and material properties affect material

stability. The material properties can be obtained easily from the PubChem 2019

database [62], and the machine learning models are available on the scikit-learn pack-
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age for Python [101]. SHAP analysis is conducted on the trained machine learning

models to understand further the interaction between the input (processing condi-

tions and molecular properties) and the output (the stability result) [80], showing the

feature importance ranking. This will help get the design guideline and inform us

what kind of molecular properties and processing conditions are important.

After finding the most stable capping layer material, we do various advanced

characterizations to understand the mechanism behind the capping layer’s stability

improvement. To understand the films’ crystal structure, we do X-ray diffraction

(XRD), as well as grazing incidence wide-angle X-ray scattering (GIWAXS), to see

how the bulk crystal structure changes in comparison to the surface. Besides the

crystal structure, we also look at the change within the organic A-site cations us-

ing Fourier-transform infrared spectroscopy. The morphology of the films is also

investigated using scanning electron microscopy (SEM). Lastly, the general chemi-

cal composition before and after degradation is checked using X-ray photoelectron

spectroscopy (XPS).

3.3 Capping layer materials screening

3.3.1 The materials and solvent choice

This thesis focuses on slightly larger A-site cations, with maximum carbon atoms of

16, and various functional groups such as phenyl, branched, and long alkyl chain.

The total number of A-site cations investigated is 15, as shown in Figure 3-2, but

we explore both iodine and bromine as the X-anions, totaling 21 different capping

layer materials. The 15 A-site cations are chosen due to their availability from the

perovskite precursor manufacturers, which provide large A-site cations to ensure Gold-

schmidt’s tolerance factor larger than 1.00 and form LD perovskite.

As previously mentioned, the absorber is uniform across the project, which is

methylammonium lead iodide (MAPbI3, CH3NH3PbI3). This specific absorber is cho-

sen because despite its high efficiency, it is well-known to be environmentally unstable

51



Figure 3-2: The A-site cations explored for capping layer material.
The 15 A-site cations are 1. formamidinium (FA), 2. guanidinium (GA), 3.

ethylammonium (EA), 4. dimethylammonium (DMA), 5. iso-propylammonium (iPA), 6.
imidazolium (ID), 7. t-butylammonium (tBA), 8. phenylammonium (PhA), 9.

benzylammonium (BzA), 10. phenethylammonium (PEA), 11. n-octylammonium (OA),
12. dodcylammonium (DA), 13. tetrapropylammonium (TPA), 14.

phenyltriethylammonium (PTEA), and 15. tetrabutylammonium (TBA).
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in the presence of water, oxygen, and air [17, 88]. Improving its stability is therefore

essential. In addition, the fast degradation of MAPbI3 also allows us to collect more

data per time for each capping layer materials and each processing condition.

The solvent used for the capping layer is isopropyl alcohol (IPA) / 2-propanol

because it is commonly used for this layer [42]. Other solvents have also been explored,

such as chloroform, especially because IPA dissolves formamidinium iodide (FAI)

readily [149]. The solvent used for the absorber, on the other hand, uses a mixture of

N,N-dimethylformamide (DMF) with dimethyl sulfoxide (DMSO) in a 9:1 ratio. This

specific ratio is used after careful optimization with the absorber material to ensure

superior morphology and best uniformity.

2 key things need to be satisfied for this absorber-capping layer system.

1. The absorber needs to have an excess of PbI2, as a source of BX2 molecules for

the AX ammonium halide capping layer salts, which allows LD perovskite to

be formed at the surface. Therefore, there is no need to make the complete LD

perovskite precursor solution; it is sufficient to only dissolve the AX salt as the

precursor for the capping layer.

2. The solvent for the capping layer needs to be only slightly soluble on the surface

of the perovskite absorber to allow the reaction between excess PbI2 coming from

the absorber, with the AX salts from the capping layer material. Too much

absorber solubility in the capping layer solvent will dissolve the absorber layer,

while the opposite will not allow the LD perovskite to form. We are looking for

the solvent ’in the middle’, and IPA can act as one.

The capping layer precursor solution’s common density ranges from 1-10 mil-

ligram/milliliter (mg/mL) [42, 24], finding the right concentration is critical. Re-

searchers have also previously annealed the capped films at different temperatures,

varying between 75-150 �C [134, 42, 24]. For that reason, we purposely incorporate

the processing condition variables into the design of the experiment, which simulta-

neously increases the data points generated from the measurement. The films are

therefore fabricated under 4 different annealing temperatures (50, 75, 100, and 125
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�C) and 3 different concentrations (5, 10, and 15 mM), totaling to 12 different pro-

cessing conditions, as previously mentioned.

3.3.2 Degradation data acquisition

After the films are deposited, the first screening step tests the materials against the

elevated temperature and humidity conditions. The rationale behind this decision, as

opposed to doing other types of characterizations first, is that the degradation test

gives us more insight and data per unit time. The goal is to find the top material

from this degradation test, which will be characterized further to understand why it

exhibits such outstanding property in subsequent steps.

According to the aforementioned Equation 1.4, MAPbI3 or CH3NH3PbI3, in the

presence of water, degrades into two products, including PbI2. While MAPbI3 has a

dark color, PbI2 has a visible bright yellow color. The same degradation pathway is

expected in this thesis part due to the high humidity present in the chamber. The

degradation of MAPbI3 under high-humidity and room-temperature conditions can

be seen in Figure 3-3.

Figure 3-3: MAPbI3 degradation comparison at 0 and 125 minutes, under high hu-
midity and room temperature.

Left, right: 0 and 125 minute-degraded MAPbI3 samples.

During the degradation test, film images are captured every 3 minutes for around

1,000 minutes (16+ hours). Such fast degradation is attributed to the unstable nature

of MAPbI3, in comparison to other lead-halide perovskites, such as FAPbI3 [119].
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This degradation duration in 85%RH, 85 �C, and 0.16-sun conditions is sufficient to

capture the change in films color. The USB CMOS camera is sufficient to capture

degradation of the samples because the PbI2-based films degrade into specific products

with different colors, which is visible to the naked eye. After all the film images

are collected in JPEG format, the calibration process to transform the images into

average red, green, blue (RGB) colors at each time point for specific film is done

using Python. The output file is in CSV, which is ready for being used in training

the machine learning models. The average color change for various capping layers is

shown in Figure 3-4. Most of the capped films extend the stability of bare MAPbI3

films, however, PTEAI capping layer extended the stability the most (4 ± 2 and

1.3± 0.3 times over bare film and state-of-the-art OABr [149], respectively).

3.3.3 Machine learning training on a dataset

Generally, the machine learning (ML) model training can simply be described as

finding the model that relates the input (X) with the output (y). The input consists

of the data that we already have, or the ’knowns’, and the output is the outcome

that we would like to predict for the future dataset, or the ’unknowns’. Training

the models involves tweaking the model parameters until it reaches reasonably low

RMSE (root mean squared error) without overfitting. Overfitting will cause a model

to fail in predicting other sets of input, and several precautionary steps in avoiding

overfitting are taken in this project. Various machine learning algorithms have been

described in Section 1.3.

Input for ML models

In this project, the input will be the known variables: processing conditions and

capping layer material properties from the PubChem 2019 database [62]. 12 different

processing conditions for the capping layer deposition are introduced: 4 annealing

temperatures and 3 precursor solution concentrations. 12 material properties are

included for training the models from the database: molecular weight, x log P (or
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Figure 3-4: The average color change for bare and capped films.
The color change is extracted from averaging the RGB values for each of the films

fabricated at optimum condition that gives maximum onset: formamidinium iodide (FAI),
guanidinium iodide (GI), ethylammonium iodide (EAI), dimethylammonium iodide

(DMAI), iso-propylammonium iodide (iPAI), imidazolium iodide (IDI),
tert-butylammonium iodide (tBAI), phenylammonium iodide (PhAI), phenylammonium
bromide (PhABr), benzylammonium iodide (BzAI), benzylammonium bromide (BzABr),
phenylethylammonium iodide (PEAI), n-octylammonium iodide (OAI), n-octylammonium

bromide (OABr), phenyltriethylammonium iodide (PTEAI), dodecylammonium iodide
(DAI), dodecylammonium bromide (DABr), tetrapropylammonium iodide (TPAI),
tetrapropylammonium bromide (TPABr), tetrabutylammonium iodide (TBAI), and

tetrabutylammonium bromide (TBABr). The figure is adapted from Hartono, et al., "How
machine learning can help select capping layers to suppress perovskite degradation",

Nature Communications, 2020 [48] under CC-BY 4.0.
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partition coefficient, indicating hydrophobicity or hydrophilicity of the molecules),

topological polar surface area (TPSA), complexity, the number of rotatable bonds,

the number of heavy atoms, the number of hydrogen-bond donors, and the number

of each element (carbon, hydrogen, bromine, nitrogen, and iodine).

Output for ML models

The output of ML models is how fast each material degrades under elevated tem-

perature and humidity conditions. Hence, the average RGB values can be used as a

parameter to describe how fast the degradation happens. Since the films degrade to

yellow color, the red and green (RG) values increase over time, while the blue values

stay relatively the same. Because red and green value change over time overlaps,

either one is sufficient to describe the film’s degradation, as shown in Figure 3-5a.

For this project, we use red color as the degradation parameter. We observe

that the film color stays dark until turning yellow abruptly, which is indicated by

a sudden increase in red color. To characterize such abrupt change, we can either

look at the red onset or the red slope, as shown in Figure 3-5b. The red onset is the

time-intercept of the fitted line of the most significant change in red color, while the

red slope is the slope of the same fitted line. The equation describing the degradation

onset is shown on Equation 3.1, where A is the red slope, t is the time, and R is the

calibrated red channel curve. The red onset is, therefore, the time-intercept of the

equation, or �B
A . However, since the time point where the film starts to yellow is

more appropriate for comparing the films, this project focuses on the onset instead of

the slope. Henceforth, the ML models’ output is the red onset, which will be called

degradation onset interchangeably, of each sample.

y = At+B,A =

✓
dR

dt

◆

max

(3.1)

The red onset distribution for five different capping layer material groups: carbon

atom < 5, carbon atom � 5 and long-chain, phenyl-based, branched, and no cap-

ping/bare films, is shown in Figure 3-6. Generally, the phenyl-based and branched

57



Figure 3-5: Example of RGB values for capped and bare films, and their red onset
extraction.
The RGB values for bare and PTEAI-capped MAPbI3 films (a) and the red onset and the
red onset example for TBAI-capped film (b). The figure is adapted from Hartono, et al.,

"How machine learning can help select capping layers to suppress perovskite degradation",
Nature Communications, 2020 [48] under CC-BY 4.0.

groups are promising and show better stability than the bare films.

Training ML models

After collecting the data for both input (X) and output (y) of the machine learning

models, the next part is selecting the model that works with the data. Since the goal

predicts the future set of capping layer materials, the output, i.e., the degradation

onset, is continuous and not discrete. Therefore, the supervised machine learning al-

gorithm, specifically the regression model, is the most appropriate model for training.

The classification models are not suitable for the current dataset because the output

is not discrete.

Using scikit-learn package in Python [101], several regression models are trained:

linear regression (LR), K-nearest neighbors (KNN) regression [2], random forest (RF)

regression [50], gradient boosting (GB) regression with decision trees [38], support

vector machine regression (SVR) [22], and multilayer perceptron neural network (NN)

with three hidden layers (each has 128, 256, and 64 units) using Adam solver [63].

The data is pre-processed, the hyperparameters are tuned using GridSearchCV in
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Figure 3-6: The red onset distribution for different capping layer groups.
There are five different capping layer material groups based on their A-site cations: carbon
atom < 5, carbon atom � 5 and long-chain, phenyl-based, branched, and no capping/bare
films. The figure is adapted from Hartono, et al., "How machine learning can help select
capping layers to suppress perovskite degradation", Nature Communications, 2020 [48]

under CC-BY 4.0.

scikit-learn, and the model training is 5-fold cross-validated. The results are shown

in Table 3.2. The lowest cross-validated RMSE for non-normalized input is random

forest regression (104.8 minutes).

The graphs showing the comparison between non-normalized and normalized in-

put are shown in Figure 3-7. Generally, the tree-based algorithms perform better

than other models: 104 and 112 minutes for random forest regression and gradient

boosting algorithms. It is still considerably high, especially when comparing it with

the degradation onset range of 0-700 minutes. One of the reasons for high RMSE is

that the high variability of general MAPbI3 films [135]. In this study, the standard

deviation of the degradation onset of bare MAPbI3 films is around 45 minutes.

The comparison between degradation onset observation and prediction results of

linear regression and random forest regression is shown in Figure 3-8, which shows

the 80%:20% train: test split and the minimum overfitting. This figure also shows

how the random forest regression prediction is better than the linear regression one.

However, this project uses the capping layer materials, which are commonly used

and relatively small, using the random forest regression model to extrapolate and pre-

dict the degradation onset of much larger or entirely different A-site cation molecules
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Regression
algorithms

Hyperparameters
in scikit-learn

Train
RMSE
(minutes)

Test
RMSE
(minutes)

Cross-validated
RMSE (minutes)

Linear 61.8 84.0 164.3
K-nearest
neighbor

algorithm: ball
tree, neighbors: 3,
weights: uniform

46.4 91.2 148.3

Random for-
est

maximum depth:
4, estimators: 60

46.5 70.8 104.8

Gradient
boosting

maximum depth:
4, estimators: 30

41.7 78.5 112.3

Neural
network
(multilayer
perceptron)

hidden layer sizes:
128, 256, 64, max-
imum iteration:
10000, learning
rate: constant,
solver: adam,
alpha: 0.1, activa-
tion: relu

44.5 89.2 132.4

Support vec-
tor machine

C: 1000.0 41.3 142 169.0

Table 3.2: The machine learning algorithms, their optimized hyperparameters, and
cross-validated RMSE for non-normalized input.
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Figure 3-7: Cross-validated RMSE across different models for normalized and non-
normalized input.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.
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Figure 3-8: The comparison between observation and prediction of linear regression
and random forest regression.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.

should be done cautiously.

3.3.4 Interpreting trained model using Shapley value

After training the regression models with the dataset and obtaining the best model

with optimized hyperparameters, we can use another toolset to interpret the model

and derive an insight from it, SHAP (Shapley Additive exPlanations) [80]. We can

see the feature importance rank that shows how each feature/input variable affects

the model’s output.

The SHAP analysis for the random forest model that predicts red onset is shown

in Figure 3-9. Each point on the SHAP analysis figure comes from the observed

dataset. The x-axis shows the SHAP value, which corresponds to the degradation

onset. A positive SHAP value indicates higher degradation onset/more stable film

and vice versa. The yellow and purple data points indicate high and low feature

values, respectively. The total of 14 different input variables/features are ranked,

on the left side, with the most important one at the top. Based on this result,

the topological polar surface area (TPSA) comes out as the top, followed by the

number of hydrogen-bond donors and molecular weight. The first two actually give
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a clear result: to improve the stability, we need to pick the capping layers with the

smallest TPSA and lowest number of hydrogen-bond donors. TPSA and hydrogen-

bond donors are correlated (Pearson correlation coefficient of these two features is

0.81, as shown in Figure 3-10). The hydrogen-bond donor presents in a bond between

hydrogen and electronegative atoms (such as nitrogen), creating a more polar surface

area on the molecule. This evidence might support the previous findings on how

hydrogen bonding plays an important role in PSC degradation [124, 102, 159, 89, 92],

especially under high-humidity testing conditions such as the one in this study. The

next features in the rank are molecular weight, which indicates that capping layer

materials with higher molecular weights could also improve the stability to a certain

extent. The top rank of SHAP results is robust against different models, such as GB

with non-normalized dataset and SVR with the normalized dataset (Figure 3-11).

Figure 3-9: The SHAP analysis for non-normalized random forest regression model.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.
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Figure 3-10: The Pearson correlation coefficients across different features.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.
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Figure 3-11: The SHAP analysis for non-normalized gradient boosting with decision
trees (GB, left) and normalized support vector machine regression (SVR, right).
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.

The capping layer material that improves stability the most, PTEAI, has zero

hydrogen-bond donors and has 0 Å2 TPSA. Indeed, this combination is predicted

to improve the stability the most, based on the SHAP analysis. Comparing to the

published capping layer materials such as theophylline, caffeine, and theobromine

[141], if they were fabricated and degraded in the same manner as the materials in

this study, the onsets are predicted to happen at 103.2, 264.2, and 121.5, respectively,

lower than the PTEAI onset at (462±115) minutes. Based on the finding in this

study where quaternary ammonium group (NR4
+, R is an alkyl or an aryl group)

leads to improved stability, in future studies, it is worth exploring more complex,

higher molecular weight capping layer materials with such group.

3.4 Stable capping material characterization

To probe why certain capping layer materials perform better than the other, several

characterizations are conducted to observe the change in the crystal structure, mor-

phology, organic A-site cation, and surface chemical composition. The measurement
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is done to confirm that the findings in degradation data and see why PTEAI per-

forms the best as a capping layer in this study. For this part of the study, in general,

three different samples are being measured: bare, TPAI-capped, and PTEAI-capped

MAPbI3 films. The bare film serves as a control and benchmark during the mea-

surement, in contrast the TPAI-capped and PTEAI-capped films represent the fairly

good and the best stability performance across different materials. Both TPAI and

PTEAI also have the same number of carbons, 12, which warrants further investiga-

tion because their sizes and molecular weights are similar.

3.4.1 Surface versus bulk crystal structure

First, we check the crystal structures of the three samples using powder X-ray diffrac-

tion (PXRD). We use Rigaku SmartLab tool for the measurement, with Cu-K↵

sources. The 2✓-scan results for bare, TPAI-capped, and PTEAI-capped MAPbI3

films at 0, 460, and 640 minutes of degradation is shown in Figure 3-12. The purple

shade on the figure indicates the (110) phase of MAPbI3 based on the PXRD pattern

with ICSD collection code 250735 [128], and the yellow shade indicates the PbI2 phase

based on ICSD collection code 68819 [98].

Figure 3-12: The XRD comparison between bare, TPAI-capped, and PTEAI capped
MAPbI3 films at different time points of degradation.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.
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In bare MAPbI3 film, the MAPbI3 (110) phase has become PbI2 phase after 460

minutes of high-humidity and high-temperature degradation. On the other hand,

both TPAI-capped and PTEAI-capped films still preserve the MAPbI3 (110) peak

after 460 minutes. In the case of PTEAI-capped film, it even retains the (110) phase

after 640 minutes, even though the TPAI-capped already degraded. This serves as

evidence that PTEAI indeed improves stability the most. Additionally, looking at

the low angle peaks (< 10�), both TPAI-capped and PTEAI-capped films show extra

peaks that do not present at bare MAPbI3 film, indicating the LD perovskite peaks

presence, which helps to improve the stability of the films.

Looking at the low-angle peaks in PTEAI-capped films specifically, one interesting

thing happens. The 2✓ angle for the LD perovskite peaks for fresh sample (0 minutes)

and during degradation (460 and 640 minutes), the peaks location shift, which might

indicate that as PTEAI-capped MAPbI3 film degrades, one type of LD perovskite

that is initially formed changes, and becomes another LD perovskite phase.

However, PXRD data does not show whether certain phase dominates the bulk

versus the surface, which is important to investigate in the capping layer. We, there-

fore, measure the grazing incidence wide-angle X-ray scattering (GIWAXS) in 11-BM

beamline at NSLS-II, Brookhaven National Laboratory. At a different ✓ angle, GI-

WAXS probes different thicknesses of the films as shown in Figure 3-13. We use 13.5

keV X-ray beam energy. The scattering spectra are collected with an exposure time of

30 seconds by an area detector, DECTRIS Pilatus 8008, located 257 mm away from

the sample. The result is shown in q-space, where qr and qz indicate horizontal and

vertical axes. In this case, when ✓ = 0.12�, it probes the surface, while at ✓ = 0.2�, it

mostly probes a deeper thickness of the film and shows the bulk profile. The green

arrow indicates the MAPbI3 phase, while the white arrow shows the LD perovskite

phase. Looking at specifically the TPAI-capped and PTEAI-capped results, the sig-

nal of MAPbI3 is stronger at the bulk, in comparison, the LD perovskite signal is

stronger at the surface, confirming that the stratification of absorber and capping

layers are as expected.
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Figure 3-13: The GIWAXS comparison between bare, TPAI-capped, and PTEAI
capped MAPbI3 films at surface and bulk.
The green arrow indicates the MAPbI3 (110) phase, while the white arrow indicates the
PbI2 phase. The figure is adapted from Hartono, et al., "How machine learning can help
select capping layers to suppress perovskite degradation", Nature Communications, 2020

[48] under CC-BY 4.0.

3.4.2 Surface morphology change

After looking at how the crystal structure changes within the film, it is also impor-

tant to observe how the surface morphology changes using a ZEISS Ultra-55 field-

emission scanning electron microscope (FESEM). Various bare, TPAI-capped, and

PTEAI-capped films at different degradation time points: 0, 460, and 640 minutes,

are measured using the FESEM. The result is shown in Figure 3-14, and the scale

bar is 200 nm. In the fresh samples, the large grain boundaries, which can be clearly

observed in bare MAPbI3 are no longer visible in TPAI-capped and PTEAI-capped

films, indicating that the surface of the films is coated with LD perovskites based on

the previous crystal structure investigation. However, there is no clear trend with the

surface morphology of films degraded at 460 and 640 minutes, though it is clear that

pinholes start to form when films are degrading.
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Figure 3-14: The SEM comparison between bare, TPAI-capped, and PTEAI capped
MAPbI3 films at different degradation time points.

The scale bar is 200 nm. The figure is adapted from Hartono, et al., "How machine
learning can help select capping layers to suppress perovskite degradation", Nature

Communications, 2020 [48] under CC-BY 4.0.
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3.4.3 Organic A-site cation change

To probe how the organic A-site cations of capping layers at the surface change

over time, Fourier-transform infrared spectroscopy (FTIR) is conducted using Perkin-

Elmer Spectrum 400 tool. The comparison of FTIR spectroscopy results in attenu-

ated total reflection (ATR) geometry with ZnSe crystal for bare, TPAI-capped, and

PTEAI-capped MAPbI3 films at different degradation time points: 0, 460, and 640

minutes, are shown in Figure 3-15.

Figure 3-15: The FTIR comparison between bare, TPAI-capped, and PTEAI capped
MAPbI3 films at different degradation time points.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.

The NH3
+ stretch signal at 3176 cm�1 coming only from methylammonium (MA)

because it does not exist in tetrapropylammonium (TPA) or phenyltriethylammonium

(PTEA), therefore serves as the MA indicator from the absorber. In this case, it is

clear that even at 460 minutes, the NH3
+ stretch has disappeared in bare and TPAI-

capped MAPbI3 films on the surface. However, we know that based on GIWAXS

and XRD results, at 460 minutes, the TPAI-capped film still has MAPbI3 left within
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the bulk. This indicates that at this time point (460 minutes), the MAPbI3 at the

surface of TPAI-capped has degraded, even though some of it is left within the bulk.

On the other hand, the MA in PTEAI-capped MAPbI3 film still presents even after

640 minutes, indicated by the presence of NH3
+ stretch. Besides NH3

+ stretch, the

other bonds that can be the sign of MA presence are NH3
+ bend and CH3 NH+

3

bend. Both of them also show similar results as the NH3
+ stretch.

3.4.4 Surface chemical composition change

To measure how the chemical composition changes before and during the degradation,

such as how water might attach to the surface of the capping layer, X-ray photoelec-

tron spectroscopy (XPS), specifically using Thermo Scientific K-Alpha+ XPS with

Al-K↵ excitation source, can help to investigate this. The XPS result is fit to C 1s, I

3d, N 1s, O 1s, and Pb 4f peaks, which allow the atomic percentages for each element

to be calculated. Figure 3-16a shows the comparison of the oxygen channel (O 1s for

bare and PTEAI-capped films across different degradation time points, and Figure

3-16b shows their atomic percentage.

Figure 3-16: The O 1s XPS comparison between bare and PTEAI capped MAPbI3
films at different degradation time points.
The figure is adapted from Hartono, et al., "How machine learning can help select capping

layers to suppress perovskite degradation", Nature Communications, 2020 [48] under
CC-BY 4.0.
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The oxygen presence, which might come from water (H2O), air (O2), or PbOx

[132, 129], increases as the bare MAPbI3 film degrades. However, this oxygen presence

is suppressed in our most stable film, PTEAI-capped MAPbI3. The atomic percentage

of O 1s increases to around 24% at 640 minutes of degradation in the bare film, while

the PTEAI-capped film stays below 1%.

3.5 Conclusion

This study presents a framework to utilize both high-throughput and more traditional

approaches to investigate which capping layer material could improve stability the

most for a perovskite absorber and derive the design guidelines for future study.

21 capping layer materials with MAPbI3 absorber are tested under 5%RH, 85 �C,

and 0.16-sun conditions. Regression models are trained to relate the capping layer

molecular properties and processing conditions with the degradation onsets. SHAP

analysis is then conducted on the trained models to extract the feature importance

rank and see which features contribute to the improvement in stability the most: the

small topological polar surface area of the organic capping layer molecule and the

small number of hydrogen-bond donors. Phenyltriethylammonium iodide (PTEAI)

improves the bare MAPbI3 film stability by more than 4 ± 2. The crystal structure

advanced characterization shows that low-dimensional perovskite is formed at the top

of the capped film’s surface, while SEM, FTIR, and XPS show that PTEAI capping

layer modifies the surface of the film that causes the suppression in oxygen-containing

compounds at the surface. The improvement in stability using the capping layer

method is therefore important in pushing PSCs closer towards commercialization.
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Chapter 4

Stable capping layer for mixed-halide,

MA-based absorber

4.1 Motivation for tuning perovskite bandgap by chang-

ing absorber composition

Currently, the record efficiency of single-junction PSCs has gone beyond 25%, compa-

rable to the efficiency of silicon solar cells [68]. A trend of using perovskite as a tandem

cell also emerges due to its bandgap tunability [70], making it a suitable candidate

material for both narrow- and wide-bandgap solar cells. The wide-bandgap PSCs

have also been used for indoor PV applications, specifically for the internet of things

(IoT) devices [85]. The bandgap tuning characteristic is possible by mixing differ-

ent X-anions/halides within the perovskite film, as shown in Table 4.1. As we shift

from iodine-based to bromine-based or even chlorine-based halide perovskites, the

bandgap also gradually increases. Therefore, both high-efficiency perovskite single-

junction and tandem cells benefit from mixing the perovskite absorber to improve

efficiency or induce bandgap change.

However, it is known that introducing halide mixture into the perovskite absorber

also causes phase segregation, creating iodine-rich and bromine-rich areas under illu-

mination [150]. These areas will be the initiation sites for the degradation cascading

73



Composition Bandgap (eV)
MAPbI3 1.58
MAPbI2.8Br0.2 1.62
MAPbI2.6Br0.4 1.65
MAPbI2.4Br0.6 1.68
MAPbI2.2Br0.8 1.71
MAPbBr3 2.27

Table 4.1: The bandgap of MAPb(IxBr1�x)3.
The bandgap is based on the photoluminescence peak at 25 �C [3].

process. The phase separation occurs with a rate constant of 0.1-0.3 s �1, and the

dark recovery occurs at a longer timeline, in order of minutes to an hour [150]. The

fast phase separation but slow recovery process highlights the importance of con-

sidering stability while designing the perovskite absorber materials for photovoltaic

applications.

In this thesis chapter, we hypothesize that the optimal capping layer material for

stability changes as the film composition changes within the iodine-bromine series. We

also interrogate the underlying root causes. There is no systematic study investigating

how the change in bandgap due to changing halide composition affects the optimum

capping layer for stability. Answering these questions will help researchers better

design capping-absorber pairs for single-junction and tandem solar cells, as well as

other applications including indoor and IoT devices.

4.2 Project workflow

To find the stable, high-performing capping-absorber pairs for PSCs, we design a

workflow for this thesis chapter, shown in Figure 4-1. We start by fabricating films

consisting of MAPb(IxBr1�x)3 mixed-halide absorber with 10 1D perovskite capping

layer materials and PTEAI as the capping material benchmark from the previous

chapter. After the samples are degraded, the data is processed and analyzed using 2

methods: dissimilarity matrix for faster analysis of high-dimensional data and SHAP

analysis to extract the feature importance rank. The degradation mechanism is also
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further discussed based on the results presented in this chapter.

Stability screening using degradation test

Faster degradation analysis: dissimilarity matrix 
and SHAP analysis

Film optoelectronic and structural 
characterization

10 1D capping layers 
and PTEAI as a 

benchmark

MAPb(IxBr1-x)3
absorber mixture

Goal: stable device and identification of 
underlying mechanism

Figure 4-1: The project workflow for this thesis chapter.

4.3 Capping-absorber pair screening

4.3.1 The materials choice

We source our 1D perovskite materials from our collaborator, Marie-Hélène Tremblay

(Marder Group, Georgia Institute of Technology) in powder form, making it easier to

dissolve the material in solvents for deposition. There are 10 different capping layer

materials, as shown in Figure 4-2, and the complete list is shown in Table 4.2. They

form 1D perovskites, and they are either phenyl-, cyclohexane- or naphthyl-based A-

site cations. PTEAI, the most stable capping layer from the previous chapter, is also

included in the screening as the benchmark. Various functional groups are present

in addition to amines, such as nitrile (R� C ⌘ N), ester (R� CO2 � R0), methoxy

(R�O� CH3), nitro (R� NO2), and alcohol (R�OH). Compared to the capping

layers investigated in the previous chapter, the capping layer materials in this chapter

are similar in size and have similar functional groups. Some of them, such as 3-I and

75



6-I, as well as 4-I and 5-Cl, actually have the same functional groups in their A-

site cations. The only difference is one of them is ortho- (the functional groups are

adjacent to each other, in positions 1 and 2), and the other is meta- (the functional

groups are in positions 1 and 3). These differences could lead to an interaction change

between the A-site cations with the [PbX6]4� octahedra, and a change in material

density to a difference in how closely-packed the unit cell is.

Figure 4-2: The different A-site cations of the capping layer materials explored in this
chapter.

# Composition name Functional groups
1-Cl 2 CN–PEA–Cl Phenyl, ammonium, nitrile
2-Cl 2 CO2Me–PEA–Cl Phenyl, ammonium, ester
3-I 2 MeO–PEA–I Phenyl, ammonium, methoxy
4-I 2 NO2 –PEA–I Phenyl, ammonium, nitro
5-Cl 3 NO2 –PEA–Cl Phenyl, ammonium, nitro
6-I 3 MeO–PEA–I Phenyl, ammonium, methoxy
7-Cl 3 CO2Me–PEA–Cl Phenyl, ammonium, ester
8-Cl 2 HO–CycMA–Cl Cyclohexane, ammonium, alcohol
9-Cl 2 MeO–NEA–Cl Naphthyl, ammonium, methoxy
10-I 2 MeO–PMA–I Phenyl, ammonium, ester
PTEAI PTEA–I Phenyl, ammonium

Table 4.2: The functional groups making up the A-site cations.
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4.3.2 Fast image data screening

After the capping layers are deposited atop of 25%-increment MAPbI3-MAPbBr3-

mixed absorber at two different concentrations, 5 and 10 mM (mmol/L), and annealed

at two different temperatures, 75 and 100 �C for 10 minutes, the films are aged in

degradation chamber under 80%RH, 85 �C, and 0.15-sun. The images of the films are

taken every 3 minutes. The same data acquisition protocol and image data analysis

for extracting the average red, green, blue (RGB) values at every time point as the

previous chapter are then conducted. The only difference is the image files being

analyzed are BMP instead of JPEG because they have higher resolution. A total

number of 420 samples is then further analyzed.

The averaged RGB color change result across different capping layer materials and

absorbers is shown in 4-3. It shows two different examples of bare and PTEAI-capped

films, showing the variation in degradation color change. The starting color of films

also varies based on their absorber composition due to the change in the bandgap.

Interestingly, in MAPb(I0.75Br0.25)3-based films, the stability is generally lower than

other films, even MAPbI3, regardless of capping layer type deposited.

The 9-Cl and PTEAI capping layer materials are selected to be further investi-

gated because they outperform the other capping layer materials, especially in I-rich

absorber materials. For example, in the case of MAPbI3 samples, PTEAI capping

can improve the bare film stability by (4 ± 2) times, while 9-Cl can improve by > 6

times. However, in the case of MAPb(I0.75Br0.25)3-based films, PTEAI capping can

improve the bare film stability by > 2 times, while the 9-Cl capping can only improve

it by > 1.2 times.

Unlike in the previous chapter, where the degradation from MAPbI3 to PbI2

is clear, in this alloy series, many of the films do not degrade from black to yellow,

because both the bandgap of the initial film is different, and the degradation pathways

and products may also be different. The fact that the data is 4-dimensional, consisting

of RGB and time for each sample, also adds another layer of complication.

To look at all the data faster simultaneously, a dissimilarity matrix is suitable
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8-Cl
7-Cl
6-I
5-Cl
4-I
3-I
2-Cl
1-Cl
PTEAI
PTEAI

Bare
Bare
10-I
9-Cl
8-Cl
7-Cl
6-I
5-Cl
4-I
3-I
2-Cl
1-Cl
PTEAI
PTEAI

Bare
Bare
10-I
9-Cl
8-Cl
7-Cl
6-I
5-Cl
4-I
3-I
2-Cl
1-Cl
PTEAI
PTEAI
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PTEAI

Bare
Bare
10-I
9-Cl
8-Cl
7-Cl
6-I
5-Cl
4-I
3-I
2-Cl
1-Cl
PTEAI
PTEAI

MAPbI3

MAPbBr3

MAPb(I0.75Br0.25)3 MAPb(I0.5Br0.5)3

MAPb(I0.25Br0.75)3

Figure 4-3: The degradation result across different capping layers and absorber com-
positions based on averaged RGB values.
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for looking at the overview of a large, multi-dimensional dataset. The m by m ma-

trix shows how dissimilar/ similar one sample with another. Each (a, b) matrix cell

contains a value, representing how dissimilar/ similar sample a and sample b is, by

calculating the distance between the 2 vectors of a and b.

Commonly used distance measures for similarity analysis are Minkowski (such as

Manhattan, Euclidean), L1, inner product (such as Jaccard, cosine), squared chord,

and squared L2 [108]. One of the distance measures, cosine similarity, has been widely

used for various purposes, including face verification [145, 91], text classification [71],

and automated essay scoring [69]. The robustness of the cosine distance measure is

proven from its cross-disciplinary use for evaluating the similarity between datasets.

In this chapter, a dissimilarity matrix is used to evaluate the aforementioned 4-

dimensional degradation data consisting of RGB values and time, to compare one

sample from the others. The 4-dimensional data is first pre-processed and collapsed

into a 1-dimensional vector before its dissimilarity value with another vector calcu-

lated by taking the distance between the two vectors. This helps to look at the pattern

in the data faster. The dissimilarity matrix is constructed using a pairwise distance

algorithm from scikit-learn [101], that computes the distance matrix between two vec-

tors for each sample pair for the entire dataset. Cosine similarity is used as a metric

due to its robustness and wide implementation. It calculates the L2-normalized dot

product of the two vectors. The larger the distance between the two vectors is, the

higher the dissimilarity matrix value is, and vice versa.

A hypothetical example of a dissimilarity matrix is shown in Figure 4-4. If we have

two types of compositions, X and Y, where each of them has 2 samples, we get the

4 ⇥ 4 dissimilarity matrix. When the dissimilarity value is high, the color is yellow,

and when it is low, the color is purple, as shown in the color bar. Two things can be

compared in the dissimilarity matrix: comparison among the repeated compositions

(X and X, or Y and Y) and across different compositions (X and Y). The advantage

of using a dissimilarity matrix can be seen directly; regardless of the dataset size for

each sample, the distance between the two vectors can be observed in one value.

This chapter focuses on the RGB values between 0 and 999 minutes for the dis-
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Figure 4-4: A hypotethical example of dissimilarity matrix.

similarity matrix analysis. At 999 minutes, the films with poor stability have fully

degraded, while the ones with good stability can still maintain their colors. Each

sample has an RGB color for each time point, and this data can be appended into

one vector. The distance measure between this sample with other samples is then

calculated to form the dissimilarity matrix, which shows the film color change com-

parison during the first 999 minutes of degradation. The dissimilarity matrix of these

data using cosine distance measure is shown in Figure 4-5a.

A couple of observations can be made based on the dissimilarity matrix result, as

follows.

1. The MAPbI3-based films qualitatively have higher variations than the Br-containing

films.

2. The difference between 9-Cl and PTEAI capping layer are the most distinct

in the case of MAPb(I0.75Br0.25)3 absorber, in contrast, the two capping layer

materials are indifferent in improving the stability (up to 999 minutes) for Br-

rich absorbers, but especially for MAPbBr3.

3. Note that the dissimilarity matrix can only tell if one sample is different from

the other, but it cannot tell if one is better than the other. Therefore, it is still

important to check back the color changes in the degradation results in Figure

4-3 to to verify if the change is indeed an improvement.
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Figure 4-5: The dissimilarity matrix constructed using various distance measure of
bare, 9-Cl-, and PTEAI-capped films across the MAPbI3-MAPbBr3 series.

The distance measures used are cosine (a), Manhattan (b), and Euclidean (c).
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The result in the Figure 4-5 shows the dissimilarity matrix using a cosine distance

measure. However, it is also important to check the consistency in results using other

distance measures, such as Manhattan and Euclidean distance, as shown in Figure

4-5b, c. The main insights still hold across different distance measures calculated.

4.3.3 Shapley value analysis reveals the main degradation drivers

Shapley value analysis for extracting feature importance rank

Like the one conducted in the previous chapter, SHAP analysis is then performed

to understand the most important capping layer features for this data set. However,

we first need to train the dataset. We include 21 features as the input, includ-

ing the absorber amount, processing conditions, capping layer molecular properties,

and functional groups: the amount of MAPbBr3, number of chlorine and iodine

atoms, number of rotatable bonds, number of hydrogen-bond donors, topological in-

dex (that measures complexity), topological polar surface area, molecular weight,

partition coefficient, annealing temperature, concentration, and if certain functional

groups are present in the A-site cations, such as nitro, nitrile, benzene, naphthalene,

ester, methoxy, alcohol, primary or quaternary amine. Since the capping layer mate-

rials are novel and are mostly not available in the PubChem database, the capping

layer material properties are extracted from ChemDraw and ChemOffice applications

(PerkinElmer), including the topological polar surface area, topological index, parti-

tion coefficient, number of rotatable bond, and number of hydrogen-bond donor. The

functional groups are included in the feature list, as opposed to the number of certain

atoms (carbon, hydrogen, nitrogen, oxygen, heavy atoms) because these capping layer

materials have similar functional groups among each other, which could affect their

stability more significantly than the presence of certain atoms.

The output to the algorithm will be a metric indicating how fast, or slow, the

samples degrade. Unfortunately, the degradation onset metric that was introduced in

the previous chapter can no longer be used. There are several reasons why we need

to find a more suitable metric: we have different initial and final colors, the red and
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green values are no longer changing simultaneously, and the blue value is not relatively

constant throughout the degradation process. Instead, the differential area is used as

the instability metric, which is the area difference under the RGB sum curve between

the initial and final time point of interest. In this case, we are using 1,000 minutes

as the cut-off time, close to the 999 minutes cut-off time for the dissimilarity matrix

analysis, since most of the fast degrading films already change color, and the slow-

degrading films are in the process of changing color or still retain their initial color.

For this dataset, we observe the instability metric ranges between 5.6⇥ 103 - 3.0⇥ 105

minutes. The same instability metric has also been used in Bayesian optimization for

finding the most stable mixed-composition between CsPbI3, MAPbI3, and FAPbI3

[131], and using the same study’s differential area extraction code [136].

After collecting both input and output for the dataset, the non-normalized dataset

is then trained on different algorithms, such as linear regression, K-nearest neighbors

regression, random forest regression, gradient boosting with decision trees regression,

multi-layer perceptron (neural network) regression, and support vector regression

(SVR). The root mean squared error (RMSE) of these algorithms are shown in Fig-

ure 4-6. For the highest instability metric, the random forest regression and gradient

boosting with decision trees regression have an RMSE of 16.7% and 16.1%, re-

spectively. Random forest regression shows one of the lowest RMSE, and the same

algorithm is used for SHAP analysis to extract the feature importance rank, as shown

in Figure 4-7. The positive SHAP values indicate that the instability metric is high

and vice versa. Therefore, if we look at the top feature, MAPbBr3 amount, as we

shift from MAPbI3 to MAPbBr3, we start with moderate instability, go up, and end

up with low instability for 100% MAPbBr3.

Absorber’s light-induced halide segregation as the primary degradation

driver

As we previously observe in dissimilarity matrices, the amount of MAPbBr3 in the

absorber dominates the stability outcome. This feature comes out as the top feature

in the SHAP feature importance rank. The addition of MAPbBr3 into the MAPbI3
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Figure 4-6: The RMSE for random forest algorithm, with non-normalized input.

absorber leads to unstable films, in comparison to the pure end-member films like

MAPbI3 or MAPbBr3. This phenomenon has been previously investigated and is well-

known within the research field. The MAPb(IxBr1�x)3 material system is intrinsically

unstable due to light-induced halide phase segregation, where under illumination,

the mixed-halide perovskite segregates into I-rich region and Br-rich region [13, 14].

Different models have been investigated by researchers to explain how this anion phase

segregation in MAPb(IxBr1�x)3 alloys is initiated. There is a couple of reasons, for

example, due to its intrinsically metastable mixed-halide alloys [15], polaron formation

that leads to local strain [9, 10], positive free energies of mixing [33, 111, 142], electrons

trapped by defect states and holes trapped in I-rich domains causing electric fields

that drive demixing [65], trapped carrier concentration gradient leading to strain

or thermalization energy [4], and surface defect carrier trapping leading to electric

field-induced anion drift [51, 7].

These studies agree that light-induced anion phase segregation is reversible if

the mixed-halide materials are subjected to a light-dark duty cycle. However, in

this thesis chapter, all the films are subjected to prolonged illumination during the
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Figure 4-7: SHAP analysis result of the top 20 features based on a trained random
forest algorithm.
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degradation. They do not undergo the illumination duty cycle, making it one of the

main degradation pathways within the films.

A study by Hoke [51] also reports how the phase segregation starts happening

at x = 0.8 for MAPb(IxBr1�x)3 mixed-halide perovskite, while Draguta [33] reports

that at x = 0.88, the mixing free energy profile starts to change under illumination.

Regardless of the x-limit, this thesis chapter explores the MAPb(IxBr1�x)3 mixed-

halide in 25%-increments, starting with x = 0.75, lower than the x-limit; hence, we

can conclude that the mixed-halide absorber films that we investigate in this chapter

indeed undergo light-induced anion phase segregation.

A clearer look at this phenomenon can also be seen in Figure 4-8, which shows

the instability metric distribution comparison of various absorber compositions for

bare, PTEAI-capped, and 9-Cl-capped films. While the capping layer can help in

some absorbers, such as 9-Cl in MAPbBr3 films, it only decreases the instability by

a modest amount.

Figure 4-8: Instability metric distribution of various absorber compositions for bare,
PTEAI-capped, and 9-Cl-capped films.

Note that the mixed-halide absorber has such a large distribution of instability

metric, indicating the variance within the same sample set. This is actually common

within the MAPb(IxBr1�x)3 series, where the film quality and microcrystallinity are

sensitive from processing condition variations, which in return affect the photoseg-
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regation kinetics and the resulting film stability [54]. Therefore, it is not surprising

that we observe a high variation of film stability even for the same set of samples.

Capping layer material selection based on functional groups for improved

stability

A study by Belisle and colleagues [7] suggests that the photoinduced halide segrega-

tion is caused by carrier trapping and surface defects, leading to electric field-induced

anion drift. They suggest that passivating surfaces can suppress this degradation

route to reduce electron traps. In their study, they introduce an electron-donating

ligand, which is also a Lewis base, trioctylphosphine oxide (TOPO), to reduce non-

radiative recombination. Note that TOPO would be a large molecule sitting on top

of the absorber, as supposed to react with the excess-Pb to form LD perovskite, like

the ones explored in this thesis. The main difference is the capping layer materials in

this chapter have positive A-site cations, they are Lewis acid (electron-pair acceptor),

even though the functional groups do have electron lone pairs. However, this still

suggests that the capping layer could be one route in suppressing the light-induced

halide segregation. Based on the result in the previous section, the capping layer is

limited in reducing the instability of various absorbers.

Looking at the features affecting stability significantly, excluding the amount of

MAPbBr3, the next 3 most important features are the topological index that describes

complexity, ester group, and topological polar surface area. Both topological index

and topological polar surface area as top features agree with the findings in the

previous Chapter 3. However, we see that the presence of ester group in the A-site

cations, such as in 2-Cl (2 CO2Me–PEA–Cl) and 7-Cl (3 CO2Me–PEA–Cl), actually

reduce the film stability. This is especially clear in the case of I-rich absorber, as shown

in Figure 4-3. The requirements for ester groups to undergo hydrolysis are nucleophile

availability, such as water and heat, present during the degradation process. The

organic A-site cations in 2-Cl and 7-Cl can degrade this way.

Interestingly, based on the SHAP dependence analysis, the combination of the

amount of MAPbBr3 and the presence of the nitro group, such as in 4-I (2 NO2 –PEA–I)
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and 5-Cl (3 NO2 –PEA–Cl), affects the stability differently, as shown in Figure 4-9.

In an I-rich absorber, having a capping layer with a nitro group leads to an unstable

film, while in a Br-rich absorber, having a nitro group leads to a stable film. The nitro

functional group needs to be in the strong acid condition to undergo the hydrolysis

process, which is unlikely to happen. On the other hand, the nitro group actually has

the highest number of lone pairs, coming from the terminal oxygen atoms of –NO2,

among the functional groups explored in this study. Therefore, the capping layer

material with a nitro group is a Brønsted-Lowry base capable of accepting more pro-

tons than other functional groups in this set of materials. However, the underlying

mechanism for observing Br-dependent stability for the nitro-based-capped film still

needs to be investigated further.

Figure 4-9: The SHAP dependence result for amount of MAPbBr3 and the nitro
group presence.

If we consider the degradation pathway of MAPbI3 in Equation 1.2, where methy-

lammonium iodide, as one of the products from MAPbI3 degradation, is converted

to methylamine and hydroiodic acid in the presence of water, light, and oxygen [92],

it is also possible that the A-site cations of the capping layer are also deprotonated.

Therefore, depending on how likely the LD perovskite degrade into its AX salt, and

how easily the A-site cations get deprotonated, that will also determine how fast the
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degradation proceeds.

A complete discussion on degradation mechanisms is further elaborated in Section

4.5.

4.4 Stable capping material characterization

After seeing how the 9-Cl generally outperforms the stability of other 1D perovskite

capping layers, we need to investigate the reason behind this improvement carefully.

Optical and structural properties are investigated, as well as the topography and

surface photovoltage. Surface photovoltage result is especially needed to understand

how the electrostatic properties on the surface change after introducing a new capping

layer and the shift from I-rich to Br-rich absorber with higher anion electronegativity.

4.4.1 Optical and structural properties

The optical properties and the bandgaps need to be checked because these capping-

absorber pairs will be used for tandem cells or indoor PV cells. The absorptance

measurement for 9-Cl-capped and bare films is shown in Figure 4-10. The thicker

color lines indicate the 9-Cl-capped film, while the thinner color lines indicate the

bare films. Since the absorptance plots are quite similar for capped film and its

corresponding bare film, there is no significant change of the bandgap between the

capped and the bare films. As more Br is added to the MAPbI3, the absorptance is

blue-shifted, indicating the increase in the bandgap.

The crystal structure of 9-Cl-capped film for MAPb(IxBr1�x)3 can also be seen in

Figure 4-11. Two things can be immediately observed as more bromine is added to the

absorber, (1) the MAPbI3 peak at 14.12� is shifted to 14.96� peak of MAPbBr3, and

(2) the PbI2 peak at 12.56� is shifted to 13.4� peak of MAPbBr3. Interestingly, the

9-Cl low-dimensional perovskite forms different phases, depending on the perovskite

absorber composition. In the case of MAPbI3, the low-dimensional perovskite phase

appears at 6.08� and 6.52�, while in MAPbBr3, the phase appears at 8.84�.
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Figure 4-10: The absorptance of 9-Cl-capped film for MAPb(IxBr1�x)3 series.

Figure 4-11: The crystal structure of the 9-Cl-capped MAPb(IxBr1�x)3 series.
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4.4.2 Topography and surface photovoltage

We collaborate with a team led by Dr. Sarah Wieghold at Argonne National Labo-

ratory to examine the topography and the surface photovoltage of capped- and bare

films. The atomic force microscopy (AFM) result reveals the surface topography for

the bare and 9-Cl-capped film of MAPbI3 and MAPb(I0.5Br0.5)3 is shown in Figure 4-

12. In the 9-Cl-capped film, the surface roughness is reduced by more than 50% than

the bare film of MAPbI3, showing the reduction in pinholes, and better film coverage,

which will improve device performance. However, this is not always the case. In the

case of MAPb(I0.75Br0.25)3, the deposition of the 9-Cl capping layer actually makes

the film surface rough, possibly introducing pinholes that will hurt device efficiency.

Figure 4-12: The AFM of bare and 9-Cl-capped films from MAPbI3 to
MAPb(I0.5Br0.5)3.

The scale bar is 1 µm.

To understand how the illumination-induced surface potential change as a capping

layer is introduced, surface photovoltage (SPV) measurement is conducted. Figure 4-

13 shows the summary of SPV results showing the absolute potential change between

dark and white light-illuminated measurements for bare, PTEAI-capped, and 9-Cl-

capped MAPb(IxBr1�x)3 films. The I-rich absorber materials show negative potential

change, indicating p-type material, while the Br-rich show positive potential change,
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indicating n-type material. Compared to the bare films, introducing a 9-Cl capping

layer alters the SPV more significantly and makes the absolute potential change effect

more pronounced.

MAPbI3 MAPbBr3

Bare
PTEAI-capped
9-Cl-capped

Figure 4-13: The surface photovoltage result of bare and 9-Cl-capped films from
MAPbI3 to MAPbBr3.

4.5 Discussion on the degradation mechanism

Looking at the stressors present during degradation: illumination, humidity, oxygen,

and heat, we foresee 4 possible routes of degradation: anion drift, the breakdown

of organics (including deprotonation of A-site cations), crystal structure change, and

oxygen adsorption. The surface photovoltage result supports the aninon drift hypoth-

esis, but the other 3 routes cannot be excluded.

We hypothesize that the anion the capping layer holds a certain net electrostatic

charge, which causes anion drift observed previously [82]. This results in the ac-

cumulation of anions within the interface between the capping and absorber layers

and induces the second phase formation. Based on the SPV data, the capping layer

changes the net electrostatic charge on the surface.

It is also possible that the organics are breaking down, specifically the A-site

cations of the 2D/1D perovskite undergoing deprotonation, where it loses H+ and

converts the ammonium cation into an amine, which is already investigated in the case
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of phenethylammonium cation [114, 34]. Note that the deprotonation cannot happen

in quaternary ammonium such as PTEA+ in PTEAI, therefore, another degradation

mechanism takes place for this particular compound. The rest of the capping layers

explored have primary ammonium, and thus, can undergo deprotonation. The pKa

measures how likely a compound gives up a proton; therefore, low pKa corresponds to

a stronger acid, with a higher likelihood of giving up a proton. Based on the simulated

pKa values for 1D organics A-site cations, 4-I (2 NO2 –PEA–I) is more likely to give

up its proton (pKa = 9.35), while 9-Cl (2 MeO–NEA–Cl) and 6-I (3 MeO–PEA–I)

are less likely to be deprotonated (pKa = 9.92 and 9.99, respectively). On the other

hand, the branches breaking down from relatively stable phenyl/naphthyl rings in the

capping A-site cations is unlikely to happen because their reactions are kinetically

not favorable. These reactions require higher energy, and sometimes, a very basic or

acidic condition to proceed.

The crystal structures also possibly change, similar to the case of Ruddlesden-

Popper perovskite that has its n number of layers reduced due to the presence of water

[114, 144]. Depending on how thermodynamically stable these secondary phases are,

these could accelerate or decelerate the degradation process [144]. For instance, in

butylammonium iodide, the secondary phases are stoichiometrically more hydropho-

bic, improving material stability [144].

Another degradation pathway is driven by oxygen adsorption, which eventually

turns into superoxide formation [96]. The generation of superoxide anions initiates the

degradation under light, which oxidizes the perovskite surface and slowly hydrates the

inner perovskite, despite the very low humidity condition. Investigating the likelihood

of low-dimensional perovskites getting oxidized in future studies will be required in

unraveling how capping layer materials might help to suppress the oxygen adsorption-

based degradation.

It is challenging to pinpoint which degradation route among these 4 dominates

when all the stressors are present during the aging test. The dominating degradation

mechanism likely differs across these 1D capping layer materials and the mixed-halide

absorbers.
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4.6 Conclusion

In this chapter, we investigate the effect of mixed-halide absorber composition on the

optimum capping layer material. 10 new 1D perovskite and PTEAI capping materials,

which form 55 different combinations of capping-absorber pairs are explored. We

discover a new capping layer, 2 MeO–NEA–Cl (9-Cl), that improves the stability of

MAPbI3 and MAPbBr3 by about 25%, in comparison to the previous capping layer

champion material: PTEAI.

We discover that the intrinsic absorber stability plays a more important role in

film degradation than the capping layer type itself. There is a limitation in saving

absorbers with intrinsically poor stability using the capping layer method. There

are also 4 possible routes of degradation due to the presence of oxygen, heat, water,

and illumination: anion drift, the breakdown of organics (including deprotonation

of A-site cations), crystal structure change, and oxygen adsorption. While surface

photovoltage measurements certainly support the anion drift hypothesis, at present,

we cannot exclude any of these four mechanisms or their combinations.

We also use a new method to analyze a 4-dimensional dataset from degradation

test images called distance measure, which helps to construct the dissimilarity matrix.

This matrix is useful in looking at the whole dataset and pick which one stands out

the most. We also use SHAP analysis, which is already introduced in the previous

chapter, to look at how various functional groups in the capping layers affect the film

stability to a certain degree.
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Chapter 5

Improving stability of MAPbI3 in

inverted device architecture

5.1 A low-cost inverted structure needs a boost in

stability

In previous chapters, we focused on the more common PSC architecture, the n–i–p

device, and deposited capping layers on top of a bare perovskite absorber. However,

based on a recent technoeconomic analysis, perovskite photovoltaic modules with an

inverted architecture, p–i–n, is expected to be around 28% cheaper ($0.41/WP for

p–i–n versus $0.57/WP for n–i–p) due to the differences in ETL, HTL, and electrode

layer materials [123, 23]. However, limited studies incorporate capping layers for PSC

devices in p–i–n configuration, as mentioned in Section 1.4.3.

There are 3 different ways capping layers can be inserted into the p–i–n device

architecture, as shown in Figure 1-9: at the bottom (between HTL and absorber),

at the top (between ETL and absorber), and both bottom and top of the perovskite

absorber layer. When the capping layer is deposited at the top, the stability has

improved, but the performance is similar to those without the capping layer [83].

When the capping layer is deposited at both top and bottom of the absorber, the

performance is reduced even though the stability is improved [67]. Inserting the
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capping/low-dimensional perovskite layer at the bottom can improve both stability

and surface passivation, leading to decreased nonradiative recombination and im-

proved efficiency, as shown in a paper by Hangoma and colleagues [45]. The stability

is not due to the protection provided by the capping layer against humidity and ion

diffusion in the case of top layer deposition, but it is mainly due to larger grains and

a more compact film [45]. The paper suggests that the 2D perovskites serve as a

template that helps the crystal growth of the 3D perovskite on top. The 2D phase,

after the annealing step of the absorber deposition, also disappears, leaving a more

crystalline 3D perovskite phase [45]. Therefore, this particular way is different from

what we are aiming for.

In fact, the disappearance of the 2D phase after annealing might be due to capping

layer solubility in the DMF: DMSO solution being used to deposit the absorber on top.

Therefore, if we would like to continue using solution-processing-based deposition to

achieve the stratified layers of capping layer at the bottom and absorber at the top,

we need to investigate the solvent compatibility for both layers. A solvent chosen for

a layer’s deposition might or might not dissolve the layers underneath.

In this thesis chapter, we, therefore, shift our focus to explore a method to incor-

porate the capping layer in an inverted device, specifically inserting the capping layer

at the bottom. This structure is chosen because we have so far observed that the

capping layer in a n–i–p device architecture allows efficient electron-hole extraction,

which leads to a better performance, due to a good band alignment with the HTL

and absorber [155]. Hence, this suggests that depositing capping layer at the bottom

could lead to an efficiency improvement and possibly a stability boost for p–i–n PSC

devices.

The first step that we need to take is testing solubility to determine the solubility

limit of our materials, and to identify compatible capping-absorber pairings. This

is illustrated in Figure 5-1. We first need to deposit the capping material AIXI ,

that is deposited with solvent M . The absorber, AIIBXII
3 , is subsequently deposited

with solvent N . We expect that there would be two outcomes, (1) the solvent N

dissolves very little capping material (AIXI), and as a result, we get 2 stratified
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layers, or (2) solvent N dissolves the capping material completely, and we end up

with a mixed-3D/LD perovskite.

Capping

Absorber

Capping material 
AIXI deposited with 

solvent M

Depositing 
absorber AIIBXII3

with solvent N

Forms 2 layers (✓)

Forms 1 layer with 
3D/LD-mixed 
perovskite (✘)

Solvent N
dissolves AIXI

very little

Solvent N
dissolves AIXI

completely

Figure 5-1: The possible outcomes of bottom capping layer deposition.

5.2 Solubility test for bottom capping layer

Since we stick with the solution-processing deposition method, we need to do a solu-

bility test to find the solvent systems compatible with our materials. The following

solubility tests were conducted.

1. The AIXI capping layer needs to be dissolved in solvent M in 10-20 mM con-

centration.

2. The AIIBXII
3 absorber needs to be dissolved in solvent N in preferably 1.2

mol/L (M) concentration.

3. The absorber solvent, N , does not dissolve the capping layer already deposited

and annealed (AIXI).

Based on these criteria, we test different solvents with different polarities. The

capping layer material is the stable capping layer material from Chapter 3, phenyltri-

ethylammonium iodide (PTEAI) in 10 mM (mmol/L) concentration. The absorber

material is MAPbI3, with ⇠1.2 M (mol/L) concentration. The solvents tested, from
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less to more polar [18], are toluene, chlorobenzene, diethyl ether, isopropyl alcohol,

acetone, acetonitrile, and dimethylformamide (DMF). The result of the solvent tests

is shown in Table 5.1. We can only dissolve the AIIBXII
3 powder in DMF, or more

polar solvent with such high absorber concentration. However, this will immediately

dissolve the capping layer underneath. Therefore, depositing the capping layer at the

bottom with this method will not work. We need to find an alternative method to

still deposit the capping layer at the bottom.

Solvents 10 mM capping layer solubility ⇠1.2 M absorber solubility
Toluene No No
Chlorobenzene No No
Diethyl ether No No
Isopropyl alcohol Yes No
Acetone Yes No
Acetonitrile Yes No
DMF Yes Yes

Table 5.1: The solubility test result for both capping layer and absorber materials.
The polarity of the solvent increases as we go down the list.

5.3 A new strategy: switching capping and absorber

layer for the bottom capping layer

One workaround to still deposit the capping layer at the bottom and absorber at

the top is by switching the materials. We can treat the MAI, or methylammonium

iodide, as a capping layer while mixing PTEAI with PbI2 to form the bottom layer.

With this new strategy, we might not obtain good film morphology right away, and

this will thus need several rounds of optimization, especially if we bring the film to

the device level. In this thesis chapter, we describe the development of a deposition

method that can obtain a MAPbI3 phase with a LD perovskite phase at the bottom

of the film.
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5.3.1 Deposition method

In DMF mixed with dimethylsulfoxide (DMSO) solvent, the PbI2 in 1.34 M concen-

tration can be dissolved easily. The addition of 10 mM PTEAI into this solution

still produces a homogeneous solution. In this case, we are using 4: 1 DMF: DMSO

solvent, which is commonly used in halide perovskite deposition. In the future, this

DMF: DMSO ratio will need to be optimized because researchers have found that

the change in the ratio of these two solvents controls the crystal growth during the

deposition and annealing, which are responsible for the film morphology [75, 115].

To maintain the 1: 1.09 ratio of MAI: PbI2, with an excess of lead (II) iodide, the

film will need to have 1.34 M of PbI2 and 1.22 M of MAI. However, due to the MAI

solubility limit in IPA (isopropyl alcohol), the MAI concentration being dissolved is

0.62 M. Therefore, in this thesis chapter, the AIXI is PTEAI, the BXII
2 is PbI2, and

the AIIXII is MAI. The solvent M for both AIXI and BXII
2 is 4: 1 DMF: DMSO,

and the solvent N for AIIXII is IPA (isopropyl alcohol).

The next step is to investigate which deposition method is suitable for our ma-

terials. Since the solubility test shows that the absorber’s solvent will dissolve the

capping layer, it is impossible to do the same deposition method as the previous chap-

ters. Two alternative deposition methods are proposed, as shown in Figure 5-2. First,

we can do a 2-step deposition (#2, capping method) by depositing the mix of AIXI

capping layer with BXII
2 and annealing them, then depositing the AIIXII next and

annealing them again for the second time. Second, we do a 1-step deposition (#3,

anti-solvent method) by depositing both the AIXI capping layer with BXII
2 , then,

instead of depositing chlorobenzene as anti-solvent, we deposit the AIIXII as anti-

solvent and finally anneal them once. The table explaining these 2 different methods

is shown in Table 5.2.

Using the proposed method #2, where we deposit MAI as a capping layer, we

immediately see an encouraging result. As soon as the MAI gets deposited in the

second layer, the film color changes from yellow to brown. After spincoating, the film

is annealed at 100 �C for 10 minutes, and the film turns completely dark, as shown
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Figure 5-2: The different deposition methods explored for bottom capping layer.

Method #2, capping method #3, anti-solvent method
AIXI ,
BXII

2 , and
solvent M

10 mM PTEAI, 0.673 M or 1.345
M PbI2, in 4: 1 DMF: DMSO

10 mM PTEAI, 0.673 M or 1.345
M PbI2, in 4: 1 DMF: DMSO

AIIXII and
solvent N

0.617 M MAI in IPA 0.617 M MAI in IPA

Step 1 de-
position

10 mM PTEAI mixed with 0.673
M or 1.345 M PbI2, in 4: 1
DMF: DMSO is deposited, with
2-step deposition. Chloroben-
zene is used as anti-solvent. The
film is annealed at 100 �C for 10
minutes.

10 mM PTEAI mixed with 0.673
M or 1.345 M PbI2, in 4: 1 DMF:
DMSO is deposited, with 2-step
deposition. 0.617M MAI in IPA.
The film is annealed at 100 �C
for 10 minutes.

Step 2 de-
position

0.617M MAI in IPA is deposited
on top of first layer, with no anti-
solvent. The film is annealed at
100 �C for 10 minutes.

-

Table 5.2: The summary of proposed methods for depositing bottom capping layer.

100



in Figure 5-3. After fabricating the samples using both methods, we need to check

how their surface morphology changes, whether we get a compact film, the polycrys-

talline structure within the films, their chemical compositions, their optoelectronic

properties, and lastly, but more importantly, if we indeed get 2 stratified layers of LD

PTEAI perovskite at the bottom layer, and MAPbI3 perovskite absorber at the top

layer.

Figure 5-3: The film color change for method #2, using MAI as the capping layer.
The scale bar is 1 cm.

5.3.2 Surface morphology

To see how the surface morphology changes after MAI deposition either as a capping

layer or as an anti-solvent, we use scanning electron microscopy (SEM, ZEISS Ultra-

55). The result is shown in Figure 5-4.

The 0.67 M PbI2 with 10 mM PTEAI in the first layer introduces textured surfaces,

in comparison to the 1.34 M PbI2 with 10 mM PTEAI. However, note that the latter

introduces a lot more excess of PbI2, which could increase the intrinsic instability

at the expense of more compact, pinhole-free film, for an efficiency boost [78]. The

0.67 M PbI2 with 10 mM PTEAI film one is also likely to be thinner, as observed in

the case of mixed-perovskite FA0.83MA0.17Pb(I0.83Br0.17)3 [27]. ⇠0.65 and ⇠1.25 M

precursor solution correspond to roughly 100 and 380 nm films, respectively [27].

After depositing the 2nd layer, we can observe the difference between method #2,

MAI as capping layer, and method #3, MAI as anti-solvent. Adding MAI as anti-
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Figure 5-4: The surface morphology of bottom capping layer, for both capping and
anti-solvent methods.

The scale bar is 500 nm.

solvent allows the MAI to react with the PbI2 precursor underneath in intermediate

step. This results in smoother film, as shown in Figure 5-4. The only difference

between low versus high concentration of PbI2 in the anti-solvent method is that

high PbI2 concentration leads to larger grains, while for low concentration, it leads

to smaller grains.

On the other hand, method #2, where we add MAI as a capping layer and has

an annealing step between the two depositions, results in a rougher surface with a

large variety of grain sizes. Therefore, we conclude that it is best to use method #3,

where we add MAI as anti-solvent, to have a film with large grains and small grain

size variations.

5.3.3 Structural properties

Next, we characterize our films to determine whether or not we created the MAPbI3

phase. We use an X-ray diffraction tool (Rigaku SmartLab), using Cu K-↵ radiation,

to check the phases within the polycrystalline film. The result is shown in Figure 5-5.

We observe the MAPbI3 phase at 2✓ = 14.08� on all the films being compared:
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Figure 5-5: The XRD results for both 0.673 and 1.345 M PbI2 with 10 mM PTEAI
films with MAI as capping and as anti-solvent.

The red- and green-shaded area refers to PbI2 and MAPbI3 phase peaks.

0.673 and 1.345 M of PbI2 mixed with 10 mM PTEAI, with 0.617 M of MAI as

anti-solvent or as capping layer. The low-angle peak at 9.76� might be coming from

low-dimensional perovskite formed. We also observe that a higher concentration of

PbI2 leads to a better crystallinity and a reduction in PbI2 phase. The significant

excess of PbI2 might actually lead to another, different LD perovskite phase formation.

Between the 2 deposition methods, MAI as anti-solvent and as capping, the MAPbI3

phase presence is higher in the case of MAI as anti-solvent. If we look at the peaks

at 18�-20�, these peaks may originate from the Ruddlesden-Popper series formed

within the films, similar to the ones present in (BA)2(MA)Pb2I7, (BA)2(MA)2Pb3I10,

and (BA)2(MA)3Pb4I10, with ICSD collection codes 252315, 252316, and 252317,

respectively [127].

The XRD in each sample is measured at different !, 0.08�, 0.2�, 1�, and 2.5�, where

! is the incident angle between the sample and the X-ray source. We were hoping

that we would distinguish the bottom versus top layer diffraction results, however,

due to attenuation in both X-ray beam and diffracted signal, it is hard to investigate
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and measure the crystal structure in a high degree of certainty. A synchrotron-based

GIWAXS method, as being used in Chapter 3, might help distinguish the surface

from the bulk layer, but it will be harder to determine the phase(s) in the bottom

layer.

5.3.4 Optical properties

The absorptance comparison of both 0.673, 1.345 M PbI2 and 10 mM PTEAI, with

0.617 M MAI as anti-solvent and capping layer is shown in Figure 5-6. Both the

10 mM PTEAI with 0.673 and 1.345 M of PbI2 films are yellow, consistent with the

absorptance drop at 520 nm. For MAI-capped and MAI as anti-solvent cases, however,

the absorptance drop happens at a longer wavelength, around 800 nm, similar to the

bare MAPbI3 and MAPbI3 with PTEAI capping at the top. This, therefore, confirms

that the bandgap in these films is unaltered with the deposition of PTEAI capping

at the bottom and MAPbI3 absorber at the top.

PTEAI & 0.673M PbI2
PTEAI & 0.673M PbI2, 
0.617M MAI as AS
PTEAI & 0.673M PbI2, 
0.617M MAI as cap
PTEAI & 1.345M PbI2
PTEAI & 1.345M PbI2, 
0.617M MAI as AS
PTEAI & 1.345M PbI2, 
0.617M MAI as cap
MAPbI3 with PTEAI (top)
MAPbI3

Figure 5-6: The absorptance results for both 0.673 and 1.345 M PbI2 with 10 mM
PTEAI films with MAI as capping and as anti-solvent.

Deposited as cap refers to the capping layer method (#2), while AS refers to the
anti-solvent method (#3).

We also observe that for both 0.673 and 1.345 M PbI2 with 10 mM PTEAI films,

and 0.617 M MAI MAI deposited at the top, the absorptances are higher when we

deposit the MAI using the anti-solvent method, as supposed to the capping layer

104



method. In the case of 0.673 M PbI2 films, we even observe a 20%-difference in

absorptances for the wavelengths below 800 nm between the anti-solvent and capping

layer method. This, therefore, supports the previous findings that the MAI in PTEAI

and PbI2 films is best deposited using the anti-solvent method.

5.3.5 Degradation test result

The degradation results for both 0.673 and 1.345 M PbI2 with 10 mM PTEAI films

with MAI as capping and as anti-solvent are shown in Figure 5-7. The degradation

test was under 85 �C, 80±5% relative humidity, and 0.15-sun.

MAPbI3

MAPbI3 with PTEAI (top)

1.345M PbI2 & PTEAI

0.673M PbI2 & PTEAI

1.345M PbI2 & PTEAI, MAI as cap

0.673M PbI2 & PTEAI, MAI as cap

1.345M PbI2 & PTEAI, MAI as AS

0.673M PbI2 & PTEAI, MAI as AS

Figure 5-7: The degradation results for both 0.673 and 1.345 M PbI2 with 10 mM
PTEAI films with MAI as capping and as anti-solvent, under high humidity and
temperature.

We observe that the initial film colors are different, which is consistent with the

UV-Vis results. Without MAI deposition, the fresh films have a yellow color. Looking

at the films with MAI deposited as a capping layer, it is not as stable as the films with

MAI deposited as anti-solvent. This confirms that depositing MAI as an anti-solvent

indeed is better than depositing it as a capping layer. We also observe that a higher

PbI2 excess amount in the film leads to unstable film due to accelerated photode-

composition of PbI2 into lead and iodine, a phenomenon that has been investigated

in the literature [138]. Surprisingly, the stratified film with MAI deposited at the
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top and PTEAI and PbI2 at the bottom still achieves higher stability at half of the

precursor concentration, or approximately 0.3 of the thickness of MAPbI3 film. It is

also comparable with the stability of MAPbI3 with PTEAI capping layer at the top,

even though due to reduced thickness, the starting film color is slightly lighter.

5.4 Conclusion and outlook

The bottom capping layer, where the MAI is deposited on top of the mixture of

0.673 M PbI2 and 10 mM PTEAI with anti-solvent method, leads to around 5 times

improvement in stability compared to the bare MAPbI3. This result is similar to

having the PTEAI as a top capping layer of thicker MAPbI3 absorber. This deposition

method is, therefore, promising to achieve the bottom capping layer that we need.

However, further investigation in their band alignment and ensuring that we indeed

get stratified layers, needs to be done.

Based on various characterizations, depositing the MAI using the anti-solvent

method provides a better film quality than using the capping layer method. To

achieve even better film quality, 3 optimization steps still need to be done: (1) the

composition and processing conditions to achieve desired morphology, (2) the solvents

in precursor solutions to be able to have a higher concentration, and thus, a thicker

film, and (3) the capping layer type to achieve better stability.

Another route to explore is using evaporation method. Even though it is less scal-

able in comparison to the solution processing method, it is solvent-free, generally a

cleaner process, and the film thickness can be controlled more easily [140]. Using sub-

sequent evaporation method, we can technically first deposit the LD perovskite cap-

ping layer at the bottom, before co-evaporating the AX and BX2 precursors. There

is currently no published study on this, which might be a sign that this method is ac-

tually challenging to execute [140]. Researchers have also observed that the different

deposition steps need to be done in separate chambers to avoid cross-contamination,

and it is hard to ensure the stoichiometry of co-evaporation method, which might

lead to secondary phase formation [140]. Additionally, the methylammonium-based
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perovskite has its own set of challenges to be deposited using evaporation method.

First, the MA-based perovskite generally has smaller grains when deposited with this

method in comparison to solution-based processing [140]. Second, the evaporation of

MAI is harder to control due to its high vapor pressure and it is easily deprotonated to

methylamine during the deposition [140]. These need to be considered as researchers

explore this evaporation method to deposit the bottom capping layer.
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Chapter 6

Beyond MAPbI3: improving the

stability of

cesium-formamidinium-based

perovskites

6.1 Mixed A-site cations drive high-efficiency devices

Various high-efficiency PSCs depart from using purely MAPbI3 absorbers, and start

incorporating mixed-cation, mixed-halide perovskites, such as (FAPbI3)0.95(MAPbBr3)0.05

[59], Cs0.17FA0.83PbI3 [110], or Cs0.05FA0.85MA0.10Pb(I0.97Br0.03)3 [158], with optimum

capping layer and stable HTL material. Some of these devices have reached around

24%, with bandgaps between 1.5 and 1.6 eV, making them attractive alternatives to

the perovskites based only on MA.

Even the MA-free perovskites still have a stability issue, albeit due to different

reasons. In MA-based perovskites, the environmental humidity level plays a signif-

icant role. However, the intrinsic phase instability of CsPbI3 and FAPbI3 is due to

thermodynamic instability, as mentioned in Section 1.4.4. The desired a phase of

CsPbI3 and FAPbI3 are dark and photovoltaically active, however, they are only sta-
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ble at high-temperature [148]. At room temperature, they turn into their respective d

phases, which are yellow, and lead to significantly lower efficiency [148]. Incorporating

a small amount of MA has been shown to suppress phase separation of mixed-halide

perovskites [131]. Finding a way to improve the phase stability in these mixed-halide

compositions is, therefore, a key next step to improve the stability of lead-halide

PSCs.

6.2 Shifting from film-level to device-level screening

We previously focused on film-level optimization, trying to answer which capping

layer material will improve the stability of certain perovskite absorbers. However, as

previously shown in Chapter 4, the answer to this question is not straightforward.

Despite the necessary research on understanding each layer’s degradation process, the

outcome of the degradation test in a full device stack will still be different because of

interface effects. Therefore, the co-optimization of all layers within the device is key

to maximizing stability.

In this part of the thesis, we test our optimum capping layer in a full device stack

to observe the degradation process. We also shift to using a capping layer at the

top, between the absorber and the ETL, in a p–i–n inverted device, to investigate

how the top capping layer might prevent degradation. The devices are tested in

different degradation conditions, high and low humidity. Some parts of this thesis,

specifically the device fabrication and measurement, are performed in collaboration

with the Dauskardt group at Stanford University.

6.2.1 Effects of capping layers in low- and high-humidity en-

vironments

We first investigate the films, with their p–i–n optimum absorber, Cs0.17FA0.83PbI3,

and deposit 10 mM of PTEAI on top. This particular absorber composition does

not have excess PbI2. The combination of CsPbI3 and FAPbI3 in 17% and 83% is

110



also more stable [131] than methylammonium-based films that have been investigated

throughout this thesis. Cs0.17FA0.83PbI3 absorber also has good efficiency, making it

one of the best composition alternatives for PSCs [110].

The films are then degraded at high temperature (85 �C), 0.15-sun illumination,

and two humidity conditions: low (20±5)% and high (85±5)% relative humidity.

The result is shown in Figure 6-1. It shows that in the low-humidity condition,

the PTEAI capping layer does not improve the stability, however, in high humidity,

the PTEAI capping layer on top of absorber starts to extend the stability of the

Cs0.17FA0.83PbI3 film. This means that the capping layer effectively prevents the

formation of hydrates, which further leads to the formation of PbI2. Interestingly,

the capped-film in high humidity outperforms the capped-film in low humidity. This

warrants a further investigation to understand how the degradation route changes in

high humidity, which is supposed to be harsher, versus in low humidity conditions.

Figure 6-1: The degradation results for low and high humidity and high temperature
for Cs0.17FA0.83PbI3 films with PTEAI top capping layers.

Low humidity is (20±5)% RH, and high humidity is (80±5)% RH.

6.2.2 Silver electrode layer-induced degradation

Fabricating a full device stack requires a lot of resources and time, so we need to

find a way to degrade as few device layers as possible but get the degradation output

that represents the device-level degradation. Device architecture in p–i–n devices

consists of the following layers, from bottom to top: indium-doped tin oxide (ITO)
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glass as the bottom electrode, NiO as the hole transport layer (HTL), Cs0.17FA0.83PbI3

perovskite absorber, PTEAI capping layer, C60 and BCP as electron transport layer

(ETL), and the silver metal electrode at the top, with established fabrication protocols

[110]. Some of the layers’ deposition require thermal evaporation, while others only

need solution-based processing. Depositing the whole device stack is therefore not as

practical as fabricating films for the high-throughput experiment.

To find alternatives, we need to find a degradation route that happens due to

layers other than the absorber within the device. We suspect that one important

degradation mode presents in devices but not in films related to the metal electrode

layer, which is silver. There is reported evidence that iodine anions diffuse through

the ETL, and forming silver (I) iodide AgI on the surface [72]. The AgI barrier results

in poor charge transport, which affects the efficiency significantly. Incorporating a

metal layer on the film is therefore important to mimic the device-level degradation

process. We deposit a 30 nm silver layer at the top of the capping layer or the absorber

directly, in the case of a control set of samples, to understand how the capping layer

at the top might prevent the ion diffusion in the device [72], which is detrimental to

device stability.

We flip the samples, with the silver layer touching the hot plate, to still capture

the images of films. We degrade them in a low humidity condition (20±5)% RH, at

85 �C, and 0.15-sun illumination level. The result is shown in Figure 6-2, showing

the PTEAI capping for Cs0.17FA0.83PbI3 absorber indeed helps to prevent the iodine

anions from diffusing and forming AgI and makes the film lasts longer. It also confirms

that the capping layer can act as a barrier layer. Note that the degradation timescale

is longer than previous chapters with MA-based perovskites because Cs-FA-based

perovskites are more stable, and the samples are also flipped during degradation.

6.2.3 Fully encapsulated device degradation

We also degrade the fully encapsulated device, which has all the aforementioned

layers, and the butyl encapsulation. This prevents the water molecule from getting

in. The samples are degraded under damp heat condition with high temperature and

112



Figure 6-2: The degradation results for low humidity and high temperature for
Cs0.17FA0.83PbI3 film with PTEAI top capping and silver layer.

Low humidity is 20±5% RH. The films are flipped (the silver layer is facing down).

humidity (85%RH/85 �C).

The result is shown in Table 6.1. It shows that after 160 minutes, while the

device efficiency average with no PTEAI capping layer is reduced to 0.77, the average

of devices with PTEAI capping layer is reduced to 0.68 of initial efficiency. The

PTEAI-capped film performs worse, which raises a question, why this differs from

the previous film-level results. There could be several reasons, and they need to be

investigated further. First, other interfacial interactions, such as between ETL and

the capping layer, which affect the degradation process significantly could be present.

Second, there might be some interactions between butyl and capping layer on the

sides, which could also affect the degradation process.

Time (minutes) Efficiency ratio
No PTEAI top capping PTEAI top capping

160 0.77 0.68
404 0.75 0.60
613 0.72 0.58
763 0.70 0.55

Table 6.1: The efficiency ratio average between aged and fresh encapsulated device
under damp heat (85%RH/85 �C) degradation test.

6.3 Conclusion and outlook

We observe that the Cs-FA-based perovskite absorbers generally lead to better stabil-

ity. Under high humidity, high-temperature conditions, they degrade between 2,000+
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(for non-flipped films) to 10,000+ minutes (for flipped films). Compared to MA-based

only perovskite absorbers that degrade within hundred minutes, the Cs-FA-based per-

ovskite absorbers are more stable. However, incorporating small MA-based perovskite

might be beneficial to further suppress the phase separation in the future.

When we transfer this Cs-FA-based perovskite with PTEAI top capping layer

from film-level to the device-level, specifically in p–i–n device architecture, we start

observing how the absorber-capping pair degrades and interacts with other layers

and plays an important role in determining the stability. Under low humidity and

high temperature, capping layer may help slow down the iodine anions which diffuse

through the ETL and forming AgI with the silver electrode. We also observe that the

aging test conditions also affect the degradation processes differently.

Therefore, exploring the mixed perovskite compositions, tailoring them with suit-

able capping layer, and moving from film- to device-level degradation test are neces-

sary to explore and realize the device-level benefits of capping layers.
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Chapter 7

Discussion and Conclusion

7.1 Summary of key results

The contributions of this work are two-fold: the scientific discovery and the data-

driven approach.

From the scientific discovery side, 21 capping layer materials are screened for their

stability effect on MAPbI3 absorber. A new capping layer, phenyltriethylammonium

iodide (PTEAI), is discovered and has a great potential to extend the stability of cer-

tain types of perovskite absorber under a specific degradation test condition. PTEAI

top capping layer improves the stability of bare MAPbI3 by ⇠4 times. We also explore

10 new 1D perovskites and PTEAI capping layers with MAPb(IxBr1�x)3 absorbers,

totaling 55 different capping-absorber material combinations. One of the 1D capping

layers, 2 MeO–NEA–Cl, improves the stability of certain MAPb(IxBr1�x)3 compo-

sitions similarly or better than PTEAI. Besides, we discover that the capping layer

capability in improving the mixed-halide absorber is limited; the intrinsic stability of

the absorber still dominates the stability outcome. Lastly, we discover a new deposi-

tion method for the capping layer between the hole-transport layer and the absorber

in the inverted device architecture: first, we deposit the capping layer material mixed

with PbI2 powder, and second, we deposit the MAI solution as anti-solvent.

From the data-driven approach side, we utilize Shapley value analysis to determine

the most impactful molecular properties and processing conditions that lead to better
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film stability. We also use the distance metric to compare 4-dimensional data, time

and RGB color values, across different samples. Both methods are important as we

evaluate increasingly higher-dimensional datasets in the future.

7.2 Future generation of LD capping layer PSCs

The thesis focuses on improving the methylammonium-based perovskite absorber and

discusses the device performance results. In the future, the LD capping layer will be

tuned based on the conduction and valence bands, especially as we explore a larger

perovskite absorber compositional space beyond MAPbI3. This will help avoid band

misalignment, which can initiate degradation domains on the interface due to the

accumulation of charges and hinder efficient charge-carrier extraction.

It is also important to control the crystal growth orientation of the LD perovskite

capping layer in the future. The crystal preferably grows vertically to facilitate a

more efficient charge transport without sacrificing the stability it provides. Several

methods are already implemented in the case of 2D-3D mixed perovskite absorber,

such as by doping the 2D perovskites with certain ions, for example, K+ [66], or by

combining hot casting method with a certain solvent, for instance, DMSO [122].

7.3 Toward PSCs device integration

The capping-absorber pair screening in the Chapter 4 shows an important step to-

wards finding the most stable capping-absorber layer that might improve surface

passivation. We synthesize a total of 55 different capping-absorber material combi-

nations. 10 of them are 1D perovskite, which is less explored as capping layers in the

literature. In the future, co-optimization of all layers, including the encapsulation

material, will be the key to find the PSCs with optimum stability and performance.

Currently, the perovskite capping-absorber pair stability result does not consider

the interaction between these layers with both ETL and HTL and the electrodes. We

also observe in the Chapter 6 that as we move beyond MA-based perovskite and shift
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to the device level, the interaction between the layers becomes more complicated. This

creates a problem. Based on what we observe in the capping-absorber pair screening

in Chapter 4, the most stable capping layer for one mixed-halide absorber composition

is not necessarily the case for another absorber composition. This indicates a high

probability that several combinations of PSC layers, which are very different from

each other, lead to similar performance or stability. Hence, optimizing one layer at a

time may not lead to the most efficient and/or stable device. In the future, we will

need to co-optimize all the layers together.

Co-optimizing all the layers, which will reveal the global optimum stability and

efficiency, will be possible in the future as computational power increases and high-

throughput experiment (HTE) hardware improves. The suitable HTE setup for per-

ovskite fabrication will enable high sample output that, in turn, will generate a large

amount of data per time. Since halide perovskites can be fabricated via solution pro-

cessing, various high-throughput deposition methods, such as drop casting or doctor

blading, can be supported. Finally, to match the fast data generation, high compu-

tational power will be required to process and analyze the data. This unlocks the

possibility to investigate highly dimensional data coming for complex systems, such

as PSCs.

7.4 Closing remarks

The progress in PSCs is essential because they are predicted to be less expensive than

silicon solar cells, despite their similar efficiencies. This will help lower the LCOE

of solar panels and make it a more attractive renewable energy source from an in-

vestment standpoint. One of the challenges in bringing PSCs closer to the market

is their environmental stability, which has been addressed with different strategies

in this thesis. Hopefully, this important contribution will push PSCs closer to com-

mercialization and help curb carbon emissions by enabling a transition to cleaner

energy.
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Appendix A

Code

The code presented in this thesis is available at MIT Photovoltaics Research Labo-

ratory GitHub repository (https://github.com/pv-lab). The specific locations for

each part of the thesis is as following:

1. The capping-layer GitHub repository to accompany Chapter 3 project, is avail-

able at (https://github.com/PV-Lab/capping-layer), which includes the

screening of capping layer material for specific absorber, and utilizing random

forest regression and SHAP value analysis to interpret the trained models.

2. The GitHub repository for dissimilarity matrix will be available on PV Lab

GitHub page to accompany Chapter 4 project after the publication submission.

This code focuses on utilizing dissimilarity matrix for comparing a large, multi-

dimensional dataset, and to spot the differences and similarities right away using

distance metric, such as cosine, Euclidean, or Manhattan.

119



120



Bibliography

[1] International Energy Agency. World Energy Outlook 2020. OECD Publishing,
2020.

[2] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparamet-
ric regression. The American Statistician, 46(3):175–185, 1992.

[3] Lahoucine Atourki, Erika Vega, Bernabé Marí, Miguel Mollar, Hassan Ait Ah-
saine, Khalid Bouabid, and Ahmed Ihlal. Role of the chemical substitution on
the structural and luminescence properties of the mixed halide perovskite thin
MAPbI3�xBrx (0  x  1) films. Applied Surface Science, 371:112–117, 2016.

[4] Alex J Barker, Aditya Sadhanala, Felix Deschler, Marina Gandini,
Satyaprasad P Senanayak, Phoebe M Pearce, Edoardo Mosconi, Andrew J Pear-
son, Yue Wu, Ajay Ram Srimath Kandada, et al. Defect-assisted photoinduced
halide segregation in mixed-halide perovskite thin films. ACS Energy Letters,
2(6):1416–1424, 2017.

[5] Christopher J Bartel, Christopher Sutton, Bryan R Goldsmith, Runhai Ouyang,
Charles B Musgrave, Luca M Ghiringhelli, and Matthias Scheffler. New toler-
ance factor to predict the stability of perovskite oxides and halides. Science

Advances, 5(2):eaav0693, 2019.

[6] Lindsay Bassman, Pankaj Rajak, Rajiv K Kalia, Aiichiro Nakano, Fei Sha,
Jifeng Sun, David J Singh, Muratahan Aykol, Patrick Huck, Kristin Persson,
et al. Active learning for accelerated design of layered materials. npj Computa-

tional Materials, 4(1):1–9, 2018.

[7] Rebecca A Belisle, Kevin A Bush, Luca Bertoluzzi, Aryeh Gold-Parker,
Michael F Toney, and Michael D McGehee. Impact of surfaces on photoinduced
halide segregation in mixed-halide perovskites. ACS Energy Letters, 3(11):2694–
2700, 2018.

[8] Issa Ibrahim Berchin, Isabela Blasi Valduga, Jéssica Garcia, José Baltazar
Salgueirinho Osório de Andrade, et al. Climate change and forced migrations:
An effort towards recognizing climate refugees. Geoforum, 84:147–150, 2017.

[9] Connor G Bischak, Craig L Hetherington, Hao Wu, Shaul Aloni, D Frank Ogle-
tree, David T Limmer, and Naomi S Ginsberg. Origin of reversible photoinduced
phase separation in hybrid perovskites. Nano Letters, 17(2):1028–1033, 2017.

121



[10] Connor G Bischak, Andrew B Wong, Elbert Lin, David T Limmer, Peidong
Yang, and Naomi S Ginsberg. Tunable polaron distortions control the extent of
halide demixing in lead halide perovskites. The Journal of Physical Chemistry

Letters, 9(14):3998–4005, 2018.

[11] Pablo P Boix, Shweta Agarwala, Teck Ming Koh, Nripan Mathews, and Sub-
odh G Mhaisalkar. Perovskite solar cells: beyond methylammonium lead iodide.
The Journal of Physical Chemistry Letters, 6(5):898–907, 2015.

[12] Riley E. Brandt, Vladan Stevanović, David S. Ginley, and Tonio Buonassisi.
Identifying defect-tolerant semiconductors with high minority carrier lifetimes:
Beyond hybrid lead halide perovskites. MRS Communications, 5(2):265–275,
2015.

[13] Michael C Brennan, Sergiu Draguta, Prashant V Kamat, and Masaru Kuno.
Light-induced anion phase segregation in mixed halide perovskites. ACS Energy

Letters, 3(1):204–213, 2017.

[14] Michael C Brennan, Anthony Ruth, Prashant V Kamat, and Masaru Kuno.
Photoinduced anion segregation in mixed halide perovskites. Trends in Chem-

istry, 2(4):282–301, 2020.

[15] Federico Brivio, Clovis Caetano, and Aron Walsh. Thermodynamic origin of
photoinstability in the CH3NH3Pb(I1�xBrx)3 hybrid halide perovskite alloy. The

Journal of Physical Chemistry Letters, 7(6):1083–1087, 2016.

[16] Edward J Brook. Tiny bubbles tell all. Science, 310(5752):1285–1287, 2005.

[17] Daniel Bryant, Nicholas Aristidou, Sebastian Pont, Irene Sanchez-Molina,
Thana Chotchunangatchaval, Scot Wheeler, James R Durrant, and Saif A
Haque. Light and oxygen induced degradation limits the operational stability of
methylammonium lead triiodide perovskite solar cells. Energy & Environmental

Science, 9(5):1655–1660, 2016.

[18] Tongle Bu, Lan Wu, Xueping Liu, Xiaokun Yang, Peng Zhou, Xinxin Yu, Tian-
shi Qin, Jiangjian Shi, Song Wang, Saisai Li, et al. Synergic interface optimiza-
tion with green solvent engineering in mixed perovskite solar cells. Advanced

Energy Materials, 7(20):1700576, 2017.

[19] Xiangnan Bu, Robert JE Westbrook, Luis Lanzetta, Dong Ding, Thana
Chotchuangchutchaval, Nicholas Aristidou, and Saif A Haque. Surface pas-
sivation of perovskite films via iodide salt coatings for enhanced stability of
organic lead halide perovskite solar cells. Solar RRL, 3(2):1800282, 2019.

[20] A Cabana and C Sandorfy. The infrared spectra of solid methylammonium
halides. Spectrochimica Acta, 18(6):843–861, 1962.

122



[21] Frankfurt School-UNEP Centre/BNEF. Global trends in renewable energy
investment 2020. Technical report, Frankfurt School-UNEP Centre/BNEF,
Frankfurt, 2020.

[22] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):1–27, 2011.

[23] Nathan L Chang, Anita Wing Yi Ho-Baillie, Paul A Basore, Trevor L Young,
Rhett Evans, and Renate J Egan. A manufacturing cost estimation method
with uncertainty analysis and its application to perovskite on glass photovoltaic
modules. Progress in Photovoltaics: Research and Applications, 25(5):390–405,
2017.

[24] Peng Chen, Yang Bai, Songcan Wang, Miaoqiang Lyu, Jung-Ho Yun, and
Lianzhou Wang. In situ growth of 2D perovskite capping layer for stable and
efficient perovskite solar cells. Advanced Functional Materials, 28(17):1706923,
2018.

[25] Yani Chen, Yong Sun, Jiajun Peng, Junhui Tang, Kaibo Zheng, and Ziqi Liang.
2D Ruddlesden-Popper perovskites for optoelectronics. Advanced Materials,
30(2):1703487, Jan 2018.

[26] Kyung Taek Cho, Yi Zhang, Simonetta Orlandi, Marco Cavazzini, Iwan Zim-
mermann, Andreas Lesch, Nouar Tabet, Gianluca Pozzi, Giulia Grancini, and
Mohammad Khaja Nazeeruddin. Water-repellent low-dimensional fluorous
perovskite as interfacial coating for 20% efficient solar cells. Nano Letters,
18(9):5467–5474, 2018.

[27] Juan-Pablo Correa-Baena, Miguel Anaya, Gabriel Lozano, Wolfgang Tress,
Konrad Domanski, Michael Saliba, Taisuke Matsui, Tor Jesper Jacobsson,
Mauricio E Calvo, Antonio Abate, et al. Unbroken perovskite: Interplay of
morphology, electro-optical properties, and ionic movement. Advanced Materi-

als, 28(25):5031–5037, 2016.

[28] Peter M Cox, Richard A Betts, Chris D Jones, Steven A Spall, and Ian J
Totterdell. Acceleration of global warming due to carbon-cycle feedbacks in a
coupled climate model. Nature, 408(6809):184–187, 2000.

[29] Felix Creutzig, Peter Agoston, Jan Christoph Goldschmidt, Gunnar Luderer,
Gregory Nemet, and Robert C Pietzcker. The underestimated potential of solar
energy to mitigate climate change. Nature Energy, 2(9):17140, 2017.

[30] M DeCastro, M Gómez-Gesteira, I Alvarez, and JLG Gesteira. Present warming
within the context of cooling–warming cycles observed since 1854 in the Bay of
Biscay. Continental Shelf Research, 29(8):1053–1059, 2009.

123



[31] Ayon Dey. Machine learning algorithms: A review. International Journal of

Computer Science and Information Technologies, 7(3):1174–1179, 2016.

[32] Hua Dong, Jun Xi, Lijian Zuo, Jingrui Li, Yingguo Yang, Dongdong Wang, Yue
Yu, Lin Ma, Chenxin Ran, Weiyin Gao, et al. Conjugated molecules “bridge”:
Functional ligand toward highly efficient and long-term stable perovskite solar
cell. Advanced Functional Materials, 29(17):1808119, 2019.

[33] Sergiu Draguta, Onise Sharia, Seog Joon Yoon, Michael C Brennan, Yurii V
Morozov, Joseph S Manser, Prashant V Kamat, William F Schneider, and
Masaru Kuno. Rationalizing the light-induced phase separation of mixed halide
organic–inorganic perovskites. Nature Communications, 8(1):1–8, 2017.

[34] Hong-Hua Fang, Jie Yang, Shuxia Tao, Sampson Adjokatse, Machteld E Kam-
minga, Jianting Ye, Graeme R Blake, Jacky Even, and Maria Antonietta Loi.
Unravelling light-induced degradation of layered perovskite crystals and design
of efficient encapsulation for improved photostability. Advanced Functional Ma-

terials, 28(21):1800305, 2018.

[35] Xiaoxia Feng, Ruihao Chen, Zi-Ang Nan, Xudong Lv, Ruiqian Meng, Jing
Cao, and Yu Tang. Perfection of perovskite grain boundary passivation by eu-
porphyrin complex for overall-stable perovskite solar cells. Advanced Science,
6(5):1802040, 2019.

[36] Peter I Frazier and Jialei Wang. Bayesian optimization for materials design. In
Information Science for Materials Discovery and Design, pages 45–75. Springer,
2016.

[37] Pierre Friedlingstein, Matthew W Jones, Michael O’sullivan, Robbie M Andrew,
Judith Hauck, Glen P Peters, Wouter Peters, Julia Pongratz, Stephen Sitch,
Corinne Le Quéré, et al. Global carbon budget 2019. Earth System Science

Data, 11(4):1783–1838, 2019.

[38] Jerome H Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, pages 1189–1232, 2001.

[39] Qingxia Fu, Shuqin Xiao, Xianglan Tang, Yiwang Chen, and Ting Hu. Am-
phiphilic fullerenes employed to improve the quality of perovskite films and
the stability of perovskite solar cells. ACS Applied Materials & Interfaces,
11(27):24782–24788, 2019.

[40] Alex M Ganose, Christopher N Savory, and David O Scanlon. Beyond methy-
lammonium lead iodide: prospects for the emergent field of ns2 containing solar
absorbers. Chemical Communications, 53(1):20–44, 2017.

[41] Peng Gao, Abd Rashid Bin Mohd Yusoff, and Mohammad Khaja Nazeeruddin.
Dimensionality engineering of hybrid halide perovskite light absorbers. Nature

Communications, 9(1):5028, Dec 2018.

124



[42] Saba Gharibzadeh, Bahram Abdollahi Nejand, Marius Jakoby, Tobias Abzieher,
Dirk Hauschild, Somayeh Moghadamzadeh, Jonas A Schwenzer, Philipp Bren-
ner, Raphael Schmager, Amir Abbas Haghighirad, et al. Record open-circuit
voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite het-
erostructure. Advanced Energy Materials, 9(21):1803699, 2019.

[43] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Mar-
tineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and Moham-
mad Khaja Nazeeruddin. One-Year stable perovskite solar cells by 2D/3D
interface engineering. Nature Communications, 8:15684, Jun 2017.

[44] Giulia Grancini and Mohammad Khaja Nazeeruddin. Dimensional tailoring of
hybrid perovskites for photovoltaics. Nature Reviews Materials, 4(1):4–22, Jan
2019.

[45] Pesi Mwitumwa Hangoma, Insoo Shin, Hyun-Seock Yang, Danbi Kim,
Yun Kyung Jung, Bo Ram Lee, Joo Hyun Kim, Kwang Ho Kim, and Sung Heum
Park. 2D perovskite seeding layer for efficient air-processable and stable planar
perovskite solar cells. Advanced Functional Materials, 30(34):2003081, 2020.

[46] Noor Titan Putri Hartono. Interplay of optoelectronic properties and solar cell
performance in multidimensional perovskites. Master’s thesis, Massachusetts
Institute of Technology, 2018.

[47] Noor Titan Putri Hartono, Shijing Sun, María C. Gélvez-Rueda, Polly J
Pierone, Matthew P. Erodici, Jason Yoo, Fengxia Wei, Moungi Bawendi, Fer-
dinand C. Grozema, Meng Ju Sher, Tonio Buonassisi, and Juan Pablo Correa-
Baena. The effect of structural dimensionality on carrier mobility in lead-halide
perovskites. Journal of Materials Chemistry A, 7(41):23949–23957, 2019.

[48] Noor Titan Putri Hartono, Janak Thapa, Armi Tiihonen, Felipe Oviedo, Clio
Batali, Jason J. Yoo, Zhe Liu, Ruipeng Li, David Fuertes Marrón, Moungi G.
Bawendi, Tonio Buonassisi, and Shijing Sun. How machine learning can help
select capping layers to suppress perovskite degradation. Nature Communica-

tions, 11(1):1–9, 2020.

[49] Kate Higgins, Sai Mani Valleti, Maxim Ziatdinov, Sergei Kalinin, and Mahshid
Ahmadi. Chemical robotics enabled exploration of stability and photolumi-
nescent behavior in multicomponent hybrid perovskites via machine learning.
ChemRxiv, 2020.

[50] Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–
844, 1998.

[51] Eric T Hoke, Daniel J Slotcavage, Emma R Dohner, Andrea R Bowring, Hema-
mala I Karunadasa, and Michael D McGehee. Reversible photo-induced trap

125



formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Sci-

ence, 6(1):613–617, 2015.

[52] John M Howard, Elizabeth M Tennyson, Bernardo RA Neves, and Marina S
Leite. Machine learning for perovskites’ reap-rest-recovery cycle. Joule,
3(2):325–337, 2019.

[53] Junjie Hu, Chenxi Wang, Qianhong Li, Rongjian Sa, and Peng Gao. Accel-
erated design of photovoltaic Ruddlesden–Popper perovskite Ca6Sn4S14�xOx

using machine learning. APL Materials, 8(11):111109, 2020.

[54] Miao Hu, Cheng Bi, Yongbo Yuan, Yang Bai, and Jinsong Huang. Stabilized
wide bandgap MAPbBrxI3�x perovskite by enhanced grain size and improved
crystallinity. Advanced Science, 3(6):1500301, 2016.

[55] Yanqiang Hu, Ting Qiu, Fan Bai, Wei Ruan, and Shufang Zhang. Highly
efficient and stable solar cells with 2D MA3Bi2I9/3D MAPbI3 heterostructured
perovskites. Advanced Energy Materials, 8(19):1703620, 2018.

[56] Xin Huang, Qiuhong Cui, Wentao Bi, Ling Li, Pengcheng Jia, Yanbing Hou,
Yufeng Hu, Zhidong Lou, and Feng Teng. Two-dimensional additive diethy-
lammonium iodide promoting crystal growth for efficient and stable perovskite
solar cells. RSC Advances, 9(14):7984–7991, 2019.

[57] Lior Iagher and Lioz Etgar. Effect of cs on the stability and photovoltaic perfor-
mance of 2D/3D perovskite-based solar cells. ACS Energy Letters, 3(2):366–372,
2018.

[58] Jino Im, Seongwon Lee, Tae-Wook Ko, Hyun Woo Kim, YunKyong Hyon, and
Hyunju Chang. Identifying Pb-free perovskites for solar cells by machine learn-
ing. npj Computational Materials, 5(1):1–8, 2019.

[59] Min Ju Jeong, Kyung Mun Yeom, Se Jin Kim, Eui Hyuk Jung, and Jun Hong
Noh. Spontaneous interface engineering for dopant-free poly (3-hexylthiophene)
perovskite solar cells with efficiency over 24%. Energy & Environmental Science,
2021.

[60] Eui Hyuk Jung, Nam Joong Jeon, Eun Young Park, Chan Su Moon, Tae Joo
Shin, Tae-Youl Yang, Jun Hong Noh, and Jangwon Seo. Efficient, stable
and scalable perovskite solar cells using poly (3-hexylthiophene). Nature,
567(7749):511–515, 2019.

[61] Ryo Kanada, Atsushi Tokuhisa, Koji Tsuda, Yasushi Okuno, and Kei Ter-
ayama. Exploring successful parameter region for coarse-grained simulation
of biomolecules by Bayesian optimization and active learning. Biomolecules,
10(3):482, 2020.

126



[62] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He,
Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. Pub-
Chem 2019 update: Improved access to chemical data. Nucleic Acids Research,
47(D1):D1102–D1109, 2019.

[63] DP Kingman and J Ba. Adam: A method for stochastic optimization. con-
ference paper. In 3rd International Conference for Learning Representations,
2015.

[64] Jeffrey Kirman, Andrew Johnston, Douglas A Kuntz, Mikhail Askerka, Yuan
Gao, Petar Todorović, Dongxin Ma, Gilbert G Privé, and Edward H Sargent.
Machine-learning-accelerated perovskite crystallization. Matter, 2020.

[65] Alexander J Knight, Adam D Wright, Jay B Patel, David P McMeekin, Henry J
Snaith, Michael B Johnston, and Laura M Herz. Electronic traps and phase
segregation in lead mixed-halide perovskite. ACS Energy Letters, 4(1):75–84,
2018.

[66] Liang Kuai, Junnan Li, Yajuan Li, Yusheng Wang, Pandeng Li, Yuanshuai Qin,
Tao Song, Yingguo Yang, Zhuoying Chen, Xingyu Gao, et al. Revealing crys-
tallization dynamics and the compositional control mechanism of 2D perovskite
film growth by in situ synchrotron-based gixrd. ACS Energy Letters, 5(1):8–16,
2019.

[67] Maria-Grazia La-Placa, Lidon Gil-Escrig, Dengyang Guo, Francisco Palazon,
Tom J Savenije, Michele Sessolo, and Henk J Bolink. Vacuum-deposited 2D/3D
perovskite heterojunctions. ACS Energy Letters, 4(12):2893–2901, 2019.

[68] National Renewable Energy Lab. Best research-cell efficiency chart, Sep 2020.

[69] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad Seti-
awan. Cosine similarity to determine similarity measure: Study case in online
essay assessment. In 2016 4th International Conference on Cyber and IT Service

Management, pages 1–6. IEEE, 2016.

[70] Niraj N Lal, Yasmina Dkhissi, Wei Li, Qicheng Hou, Yi-Bing Cheng, and Udo
Bach. Perovskite tandem solar cells. Advanced Energy Materials, 7(18):1602761,
2017.

[71] Baoli Li and Liping Han. Distance weighted cosine similarity measure for text
classification. In International Conference on Intelligent Data Engineering and

Automated Learning, pages 611–618. Springer, 2013.

[72] Jiangwei Li, Qingshun Dong, Nan Li, and Liduo Wang. Direct evidence of
ion diffusion for the silver-electrode-induced thermal degradation of inverted
perovskite solar cells. Advanced Energy Materials, 7(14):1602922, 2017.

127



[73] Pengwei Li, Yiqiang Zhang, Chao Liang, Guichuan Xing, Xiaolong Liu, Fengyu
Li, Xiaotao Liu, Xiaotian Hu, Guosheng Shao, and Yanlin Song. Phase pure 2D
perovskite for high-performance 2D-3D heterostructured perovskite solar cells.
Advanced Materials, 30(52):1805323, 2018.

[74] Wei Li, Ryan Jacobs, and Dane Morgan. Predicting the thermodynamic stabil-
ity of perovskite oxides using machine learning models. Computational Materials

Science, 150:454–463, 2018.

[75] Wenzhe Li, Jiandong Fan, Jiangwei Li, Yaohua Mai, and Liduo Wang. Control-
lable grain morphology of perovskite absorber film by molecular self-assembly
toward efficient solar cell exceeding 17%. Journal of the American Chemical

Society, 137(32):10399–10405, 2015.

[76] Zhenzhen Li, Xiaolong Liu, Jia Xu, Shujie Yang, Hang Zhao, Hui Huang,
Shengzhong Liu, and Jianxi Yao. 2D-3D Cs2PbI2Cl2 –CsPbI2.5Br0.5 mixed-
dimensional films for all-inorganic perovskite solar cells with enhanced efficiency
and stability. The Journal of Physical Chemistry Letters, 2020.

[77] Rebecca Lindsey. Climate change: Global sea level | noaa climate.gov.
https://www.climate.gov/news-features/understanding-climate/
climate-change-global-sea-level, August 2020. (Accessed on 01/06/2021).

[78] Fangzhou Liu, Qi Dong, Man Kwong Wong, Aleksandra B Djurišić, Annie Ng,
Zhiwei Ren, Qian Shen, Charles Surya, Wai Kin Chan, Jian Wang, et al. Is
excess PbI2 beneficial for perovskite solar cell performance? Advanced Energy

Materials, 6(7):1502206, 2016.

[79] Shuaihua Lu, Qionghua Zhou, Yixin Ouyang, Yilv Guo, Qiang Li, and Jin-
lan Wang. Accelerated discovery of stable lead-free hybrid organic-inorganic
perovskites via machine learning. Nature Communications, 9(1):1–8, 2018.

[80] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems, pages 4765–
4774, 2017.

[81] Wei Luo, Cuncun Wu, Duo Wang, Yuqing Zhang, Zehao Zhang, Xin Qi, Ning
Zhu, Xuan Guo, Bo Qu, Lixin Xiao, et al. Efficient and stable perovskite solar
cell with high open-circuit voltage by dimensional interface modification. ACS

Applied Materials & Interfaces, 11(9):9149–9155, 2019.

[82] Yanqi Luo, Parisa Khoram, Sarah Brittman, Zhuoying Zhu, Barry Lai,
Shyue Ping Ong, Erik C Garnett, and David P Fenning. Direct observation of
halide migration and its effect on the photoluminescence of methylammonium
lead bromide perovskite single crystals. Advanced Materials, 29(43):1703451,
2017.

128



[83] Chaoyan Ma, Chongqian Leng, Yixiong Ji, Xingzhan Wei, Kuan Sun, Linlong
Tang, Jun Yang, Wei Luo, Chaolong Li, Yunsheng Deng, et al. 2D/3D per-
ovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.
Nanoscale, 8(43):18309–18314, 2016.

[84] Sawanta S Mali and Chang Kook Hong. p–i–n/n–i–p type planar hybrid struc-
ture of highly efficient perovskite solar cells towards improved air stability:
Synthetic strategies and the role of p-type hole transport layer (htl) and n-type
electron transport layer (etl) metal oxides. Nanoscale, 8(20):10528–10540, 2016.

[85] Ian Mathews, Sai Nithin Reddy Kantareddy, Shijing Sun, Mariya Layurova,
Janak Thapa, Juan-Pablo Correa-Baena, Rahul Bhattacharyya, Tonio Buonas-
sisi, Sanjay Sarma, and Ian Marius Peters. Self-powered sensors enabled by
wide-bandgap perovskite indoor photovoltaic cells. Advanced Functional Mate-

rials, 29(42):1904072, 2019.

[86] Paolo Menesatti, Claudio Angelini, Federico Pallottino, Francesca Antonucci,
Jacopo Aguzzi, and Corrado Costa. RGB color calibration for quantitative
image analysis: The “3D Thin-Plate Spline” warping approach. Sensors,
12(6):7063–7079, 2012.

[87] Edoardo Mosconi, Anna Amat, Md K Nazeeruddin, Michael Grätzel, and Fil-
ippo De Angelis. First-principles modeling of mixed halide organometal per-
ovskites for photovoltaic applications. The Journal of Physical Chemistry C,
117(27):13902–13913, 2013.

[88] Edoardo Mosconi, Jon M Azpiroz, and Filippo De Angelis. Ab initio molecular
dynamics simulations of methylammonium lead iodide perovskite degradation
by water. Chemistry of Materials, 27(13):4885–4892, 2015.

[89] Christian Müller, Tobias Glaser, Marcel Plogmeyer, Michael Sendner, Sebastian
Döring, Artem A Bakulin, Carlo Brzuska, Roland Scheer, Maxim S Pshenich-
nikov, Wolfgang Kowalsky, Annemarie Pucci, and Robert Lovrinčić. Water in-
filtration in methylammonium lead iodide perovskite: Fast and inconspicuous.
Chemistry of Materials, 27(22):7835–7841, 2015.

[90] Gregory F Nemet, Eric O’Shaughnessy, Ryan Wiser, Naïm Darghouth, Galen
Barbose, Ken Gillingham, and Varun Rai. Characteristics of low-priced solar
PV systems in the us. Applied Energy, 187:501–513, 2017.

[91] Hieu V Nguyen and Li Bai. Cosine similarity metric learning for face verification.
In Asian Conference on Computer Vision, pages 709–720. Springer, 2010.

[92] Wendy J Nimens, Sarah J Lefave, Laura Flannery, Jonathan Ogle, Detlef-M
Smilgies, Matthew T Kieber-Emmons, and Luisa Whittaker-Brooks. Under-
standing hydrogen bonding interactions in crosslinked methylammonium lead
iodide crystals: Towards reducing moisture and light degradation pathways.
Angewandte Chemie International Edition, 58(39):13912–13921, 2019.

129



[93] Guangda Niu, Xudong Guo, and Liduo Wang. Review of recent progress in
chemical stability of perovskite solar cells. Journal of Materials Chemistry A,
3(17):8970–8980, Apr 2015.

[94] Tianqi Niu, Jing Lu, Xuguang Jia, Zhuo Xu, Ming-Chun Tang, Dounya Bar-
rit, Ningyi Yuan, Jianning Ding, Xu Zhang, Yuanyuan Fan, et al. Interfacial
engineering at the 2D/3D heterojunction for high-performance perovskite solar
cells. Nano Letters, 19(10):7181–7190, 2019.

[95] Khuong P Ong, Teck Wee Goh, Qiang Xu, and Alfred Huan. Structural evo-
lution in methylammonium lead iodide CH3NH3PbI3. The Journal of Physical

Chemistry A, 119(44):11033–11038, 2015.

[96] Yixin Ouyang, Yajuan Li, Pengchen Zhu, Qiang Li, Yuan Gao, Jianyu Tong,
Li Shi, Qionghua Zhou, Chongyi Ling, Qian Chen, et al. Photo-oxidative degra-
dation of methylammonium lead iodide perovskite: mechanism and protection.
Journal of Materials Chemistry A, 7(5):2275–2282, 2019.

[97] Felipe Oviedo, Zekun Ren, Shijing Sun, Charles Settens, Zhe Liu, Noor Ti-
tan Putri Hartono, Savitha Ramasamy, Brian L DeCost, Siyu IP Tian, Giuseppe
Romano, et al. Fast and interpretable classification of small X-ray diffraction
datasets using data augmentation and deep neural networks. npj Computational

Materials, 5(1):1–9, 2019.

[98] B Palosz. The structure of PbI2 polytypes 2H and 4H: A study of the 2H-4H
transition. Journal of Physics: Condensed Matter, 2(24):5285, 1990.

[99] Heesoo Park, Raghvendra Mall, Fahhad H Alharbi, Stefano Sanvito, Nouar
Tabet, Halima Bensmail, and Fedwa El-Mellouhi. Exploring new approaches
towards the formability of mixed-ion perovskites by dft and machine learning.
Physical Chemistry Chemical Physics, 21(3):1078–1088, 2019.

[100] Nam-Gyu Park. Perovskite solar cells: An emerging photovoltaic technology.
Materials Today, 18(2):65–72, 2015.

[101] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in Python. the

Journal of Machine Learning Research, 12:2825–2830, 2011.

[102] Chao Peng, Jianfu Chen, Haifeng Wang, and P Hu. First-principles insight
into the degradation mechanism of CH3NH3PbI3 perovskite: Light-induced de-
fect formation and water dissociation. The Journal of Physical Chemistry C,
122(48):27340–27349, 2018.

[103] Jean-Robert Petit, Jean Jouzel, Dominique Raynaud, Narcisse I Barkov, J-M
Barnola, Isabelle Basile, Michael Bender, Jérôme Chappellaz, M Davis, Gilles
Delaygue, et al. Climate and atmospheric history of the past 420,000 years from
the Vostok ice core, Antarctica. Nature, 399(6735):429–436, 1999.

130



[104] Ghanshyam Pilania, Prasanna V Balachandran, Chiho Kim, and Turab Look-
man. Finding new perovskite halides via machine learning. Frontiers in Mate-

rials, 3:19, 2016.

[105] Ghanshyam Pilania, Arun Mannodi-Kanakkithodi, BP Uberuaga, Rampi Ram-
prasad, JE Gubernatis, and Turab Lookman. Machine learning bandgaps of
double perovskites. Scientific Reports, 6:19375, 2016.

[106] Adam Podlaha, Michal Lörinc, Gaurav Srivastava, Steve Bowen, and Brian Ker-
schner. Weather, climate & catastrophe insight - 2020 annual report. Technical
report, Aon, 2021.

[107] Jeremy R Poindexter, Robert LZ Hoye, Lea Nienhaus, Rachel C Kurchin, Ash-
ley E Morishige, Erin E Looney, Anna Osherov, Juan-Pablo Correa-Baena,
Barry Lai, Vladimir Bulović, et al. High tolerance to iron contamination in
lead halide perovskite solar cells. ACS Nano, 11(7):7101–7109, 2017.

[108] VS Prasatha, Haneen Arafat Abu Alfeilate, AB Hassanate, Omar Lasass-
mehe, Ahmad S Tarawnehf, Mahmoud Bashir Alhasanatg, and Hamzeh S Eyal
Salmane. Effects of distance measure choice on knn classifier performance-a
review. arXiv preprint arXiv:1708.04321, 2017.

[109] Longbin Qiu, Sisi He, Luis K Ono, Shengzhong Liu, and Yabing Qi. Scalable
fabrication of metal halide perovskite solar cells and modules. ACS Energy

Letters, 4(9):2147–2167, 2019.

[110] Nicholas Rolston, William J Scheideler, Austin C Flick, Justin P Chen, Han-
nah Elmaraghi, Andrew Sleugh, Oliver Zhao, Michael Woodhouse, and Rein-
hold H Dauskardt. Rapid open-air fabrication of perovskite solar modules.
Joule, 4(12):2675–2692, 2020.

[111] Anthony Ruth, Michael C Brennan, Sergiu Draguta, Yurii V Morozov, Maksym
Zhukovskyi, Boldizsar Janko, Peter Zapol, and Masaru Kuno. Vacancy-
mediated anion photosegregation kinetics in mixed halide hybrid perovskites:
coupled kinetic Monte Carlo and optical measurements. ACS Energy Letters,
3(10):2321–2328, 2018.

[112] Wissam A Saidi, Waseem Shadid, and Ivano E Castelli. Machine-learning struc-
tural and electronic properties of metal halide perovskites using a hierarchical
convolutional neural network. npj Computational Materials, 6(1):1–7, 2020.

[113] Michael Saliba, Juan Pablo Correa-Baena, Christian M. Wolff, Martin Stolter-
foht, Nga Phung, Steve Albrecht, Dieter Neher, and Antonio Abate. How to
Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted
(p–i–n) Architectures. Chemistry of Materials, 30(13):4193–4201, Jul 2018.

131



[114] Johannes Schlipf, Yinghong Hu, Shambhavi Pratap, Lorenz Bießmann, Nuri
Hohn, Lionel Porcar, Thomas Bein, Pablo Docampo, and Peter Mülller-
Buschbaum. Shedding light on the moisture stability of 3D/2D hybrid per-
ovskite heterojunction thin films. ACS Applied Energy Materials, 2(2):1011–
1018, 2019.

[115] Seong Sik Shin, Juan Pablo Correa Baena, Rachel C Kurchin, Alex Poliz-
zotti, Jason Jungwan Yoo, Sarah Wieghold, Moungi G Bawendi, and Tonio
Buonassisi. Solvent-engineering method to deposit compact bismuth-based thin
films: Mechanism and application to photovoltaics. Chemistry of Materials,
30(2):336–343, 2018.

[116] Masaki Shirayama, Masato Kato, Tetsuhiko Miyadera, Takeshi Sugita, Take-
masa Fujiseki, Shota Hara, Hideyuki Kadowaki, Daisuke Murata, Masayuki
Chikamatsu, and Hiroyuki Fujiwara. Degradation mechanism of CH3NH3PbI3
perovskite materials upon exposure to humid air. Journal of Applied Physics,
119(11):115501, 2016.

[117] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. A review of su-
pervised machine learning algorithms. In 2016 3rd International Conference on

Computing for Sustainable Global Development (INDIACom), pages 1310–1315.
Ieee, 2016.

[118] Ganesh Sivaraman, Anand Narayanan Krishnamoorthy, Matthias Baur, Chris-
tian Holm, Marius Stan, Gábor Csányi, Chris Benmore, and Álvaro Vázquez-
Mayagoitia. Machine-learned interatomic potentials by active learning: amor-
phous and liquid hafnium dioxide. npj Computational Materials, 6(1):1–8, 2020.

[119] Emanuele Smecca, Youhei Numata, Ioannis Deretzis, Giovanna Pellegrino, Si-
mona Boninelli, Tsutomu Miyasaka, Antonino La Magna, and Alessandra Al-
berti. Stability of solution-processed MAPbI3 and FAPbI3 layers. Physical

Chemistry Chemical Physics, 18(19):13413–13422, 2016.

[120] Ian C. Smith, Eric T. Hoke, Diego Solis-Ibarra, Michael D. McGehee, and
Hemamala I. Karunadasa. A Layered Hybrid Perovskite Solar-Cell Absorber
with Enhanced Moisture Stability. Angewandte Chemie International Edition,
53(42):11232–11235, Oct 2014.

[121] Ian C Smith, Eric T Hoke, Diego Solis-Ibarra, Michael D McGehee, and Hema-
mala I Karunadasa. A layered hybrid perovskite solar-cell absorber with en-
hanced moisture stability. Angewandte Chemie, 126(42):11414–11417, 2014.

[122] Chan Myae Myae Soe, Wanyi Nie, Constantinos C Stoumpos, Hsinhan Tsai,
Jean-Christophe Blancon, Fangze Liu, Jacky Even, Tobin J Marks, Aditya D
Mohite, and Mercouri G Kanatzidis. Understanding film formation morphology
and orientation in high member 2D Ruddlesden–Popper perovskites for high-
efficiency solar cells. Advanced Energy Materials, 8(1):1700979, 2018.

132



[123] Zhaoning Song, Chad L McElvany, Adam B Phillips, Ilke Celik, Patrick W
Krantz, Suneth C Watthage, Geethika K Liyanage, Defne Apul, and Michael J
Heben. A technoeconomic analysis of perovskite solar module manufactur-
ing with low-cost materials and techniques. Energy & Environmental Science,
10(6):1297–1305, 2017.

[124] Zhaoning Song, Niraj Shrestha, Suneth C Watthage, Geethika K Liyanage,
Zahrah S Almutawah, Ramez H Ahangharnejhad, Adam B Phillips, Randy J
Ellingson, and Michael J Heben. Impact of moisture on photoexcited charge
carrier dynamics in methylammonium lead halide perovskites. The Journal of

Physical Chemistry Letters, 9(21):6312–6320, 2018.

[125] Jared C Stanley, Felix Mayr, and Alessio Gagliardi. Machine learning stability
and bandgaps of lead-free perovskites for photovoltaics. Advanced Theory and

Simulations, 3(1):1900178, 2020.

[126] Teague Sterling and John J Irwin. ZINC 15–ligand discovery for everyone.
Journal of Chemical Information and Modeling, 55(11):2324–2337, 2015.

[127] Constantinos C. Stoumpos, Duyen H. Cao, Daniel J. Clark, Joshua Young,
James M. Rondinelli, Joon I. Jang, Joseph T. Hupp, and Mercouri G.
Kanatzidis. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homolo-
gous Semiconductors. Chemistry of Materials, 28(8):2852–2867, Apr 2016.

[128] Constantinos C Stoumpos, Christos D Malliakas, and Mercouri G Kanatzidis.
Semiconducting tin and lead iodide perovskites with organic cations: Phase
transitions, high mobilities, and near-infrared photoluminescent properties. In-

organic Chemistry, 52(15):9019–9038, 2013.

[129] Qing Sun, Paul Fassl, David Becker-Koch, Alexandra Bausch, Boris Rivkin, Sai
Bai, Paul E Hopkinson, Henry J Snaith, and Yana Vaynzof. Role of microstruc-
ture in oxygen induced photodegradation of methylammonium lead triiodide
perovskite films. Advanced Energy Materials, 7(20):1700977, 2017.

[130] Shijing Sun, Noor TP Hartono, Zekun D Ren, Felipe Oviedo, Antonio M
Buscemi, Mariya Layurova, De Xin Chen, Tofunmi Ogunfunmi, Janak Thapa,
Savitha Ramasamy, et al. Accelerated development of perovskite-inspired ma-
terials via high-throughput synthesis and machine-learning diagnosis. Joule,
3(6):1437–1451, 2019.

[131] Shijing Sun, Armi Tiihonen, Felipe Oviedo, Zhe Liu, Janak Thapa, Yicheng
Zhao, Noor Titan P Hartono, Anuj Goyal, Thomas Heumueller, Clio Batali,
et al. A data fusion approach to optimize compositional stability of halide
perovskites. Matter, 2021.

[132] Xiaofeng Tang, Marco Brandl, Benjamin May, Ievgen Levchuk, Yi Hou, Moses
Richter, Haiwei Chen, Shi Chen, Simon Kahmann, Andres Osvet, et al. Pho-
toinduced degradation of methylammonium lead triiodide perovskite semicon-
ductors. Journal of Materials Chemistry A, 4(41):15896–15903, 2016.

133



[133] J Tauc and A Menth. States in the gap. Journal of Non-Crystalline Solids,
8:569–585, 1972.

[134] Sam Teale, Andrew H Proppe, Eui Hyuk Jung, Andrew Johnston, Darshan H
Parmar, Bin Chen, Yi Hou, Shana O Kelley, and Edward H Sargent. Di-
mensional mixing increases the efficiency of 2D/3D perovskite solar cells. The

Journal of Physical Chemistry Letters, 11(13):5115–5119, 2020.

[135] Armi Tiihonen, Kati Miettunen, Janne Halme, Sakari Lepikko, Aapo Poskela,
and Peter D Lund. Critical analysis on the quality of stability studies of per-
ovskite and dye solar cells. Energy & Environmental Science, 11(4):730–738,
2018.

[136] Armi Tiihonen, Felipe Oviedo, Shreyaa Raghavan, and Zhe Liu. SPProC: Se-
quential learning with physical probabilistic constraints. https://github.com/
PV-Lab/SPProC, 2020.

[137] Vahe Tshitoyan, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong,
Olga Kononova, Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. Un-
supervised word embeddings capture latent knowledge from materials science
literature. Nature, 571(7763):95–98, 2019.

[138] Ganbaatar Tumen-Ulzii, Chuanjiang Qin, Dino Klotz, Matthew R Leyden,
Pangpang Wang, Morgan Auffray, Takashi Fujihara, Toshinori Matsushima,
Jin-Wook Lee, Sung-Joon Lee, et al. Detrimental effect of unreacted PbI2
on the long-term stability of perovskite solar cells. Advanced Materials,
32(16):1905035, 2020.

[139] UNFCCC. The paris agreement | unfccc. https://unfccc.int/
process-and-meetings/the-paris-agreement/the-paris-agreement. (Ac-
cessed on 01/06/2021).

[140] Yana Vaynzof. The future of perovskite photovoltaics—thermal evaporation or
solution processing? Advanced Energy Materials, 10(48):2003073, 2020.

[141] Rui Wang, Jingjing Xue, Lei Meng, Jin-Wook Lee, Zipeng Zhao, Pengyu Sun,
Le Cai, Tianyi Huang, Zhengxu Wang, Zhao-Kui Wang, et al. Caffeine improves
the performance and thermal stability of perovskite solar cells. Joule, 3(6):1464–
1477, 2019.

[142] Xi Wang, Yichuan Ling, Xiujun Lian, Yan Xin, Kamal B Dhungana, Fernando
Perez-Orive, Javon Knox, Zhizhong Chen, Yan Zhou, Drake Beery, et al. Sup-
pressed phase separation of mixed-halide perovskites confined in endotaxial ma-
trices. Nature communications, 10(1):1–7, 2019.

[143] Zhiping Wang, Qianqian Lin, Francis P. Chmiel, Nobuya Sakai, Laura M. Herz,
and Henry J. Snaith. Efficient ambient-air-stable solar cells with 2D–3D het-
erostructured butylammonium-caesium-formamidinium lead halide perovskites.
Nature Energy, 2(9):17135, Aug 2017.

134



[144] Bryan R Wygant, Alexandre Z Ye, Andrei Dolocan, Quyen Vu, David M Abbot,
and C Buddie Mullins. Probing the degradation chemistry and enhanced sta-
bility of 2D organolead halide perovskites. Journal of the American Chemical

Society, 141(45):18170–18181, 2019.

[145] Peipei Xia, Li Zhang, and Fanzhang Li. Learning similarity with cosine simi-
larity ensemble. Information Sciences, 307:39–52, 2015.

[146] Jixian Xu, Caleb C Boyd, J Yu Zhengshan, Axel F Palmstrom, Daniel J Witter,
Bryon W Larson, Ryan M France, Jérémie Werner, Steven P Harvey, Eli J
Wolf, et al. Triple-halide wide–band gap perovskites with suppressed phase
segregation for efficient tandems. Science, 367(6482):1097–1104, 2020.

[147] Disheng Yao, Chunmei Zhang, Shengli Zhang, Yang Yang, Aijun Du, Eric Wa-
clawik, Xiaochen Yu, Gregory J Wilson, and Hongxia Wang. 2D-3D mixed
organic–inorganic perovskite layers for solar cells with enhanced efficiency and
stability induced by n-propylammonium iodide additives. ACS applied materi-

als & interfaces, 11(33):29753–29764, 2019.

[148] Chenyi Yi, Jingshan Luo, Simone Meloni, Ariadni Boziki, Negar Ashari-Astani,
Carole Grätzel, Shaik M Zakeeruddin, Ursula Röthlisberger, and Michael
Grätzel. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites
for high performance perovskite solar cells. Energy & Environmental Science,
9(2):656–662, 2016.

[149] Jason J Yoo, Sarah Wieghold, Melany C Sponseller, Matthew R Chua, So-
phie N Bertram, Noor Titan Putri Hartono, Jason S Tresback, Eric C Hansen,
Juan-Pablo Correa-Baena, Vladimir Bulović, et al. An interface stabilized per-
ovskite solar cell with high stabilized efficiency and low voltage loss. Energy &

Environmental Science, 12(7):2192–2199, 2019.

[150] Seog Joon Yoon, Sergiu Draguta, Joseph S Manser, Onise Sharia, William F
Schneider, Masaru Kuno, and Prashant V Kamat. Tracking iodide and bromide
ion segregation in mixed halide lead perovskites during photoirradiation. ACS

Energy Letters, 1(1):290–296, 2016.

[151] Shanshan Yu, Hongli Liu, Shirong Wang, Hongwei Zhu, Xiaofei Dong, and Xi-
anggao Li. Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D
hybrid dimension structure for efficient and stable solar cells. Chemical Engi-

neering Journal, page 125724, 2020.

[152] Jing Zhang, Zhelu Hu, Like Huang, Guoqiang Yue, Jinwang Liu, Xingwei Lu,
Ziyang Hu, Minghui Shang, Liyuan Han, and Yuejin Zhu. Bifunctional alkyl
chain barriers for efficient perovskite solar cells. Chemical Communications,
51(32):7047–7050, 2015.

[153] Jing Zhang, Wei Zhang, Hui-Ming Cheng, and S Ravi P Silva. Critical review
of recent progress of flexible perovskite solar cells. Materials Today, 2020.

135



[154] Lei Zhang, Mu He, and Shaofeng Shao. Machine learning for halide perovskite
materials. Nano Energy, page 105380, 2020.

[155] Tiankai Zhang, Mingzhu Long, Minchao Qin, Xinhui Lu, Si Chen, Fangyan
Xie, Li Gong, Jian Chen, Ming Chu, Qian Miao, et al. Stable and efficient
3D-2D perovskite-perovskite planar heterojunction solar cell without organic
hole transport layer. Joule, 2(12):2706–2721, 2018.

[156] Ying Zhang, Xingfeng He, Zhiqian Chen, Qiang Bai, Adelaide M Nolan,
Charles A Roberts, Debasish Banerjee, Tomoya Matsunaga, Yifei Mo, and Chen
Ling. Unsupervised discovery of solid-state lithium ion conductors. Nature

Communications, 10(1):1–7, 2019.

[157] Guoqing Zhou, Weibin Chu, and Oleg V Prezhdo. Structure deformation con-
trols charge losses in MAPbI3: Unsupervised machine learning of nonadiabatic
molecular dynamics. ACS Energy Letters, 2020.

[158] Hongwei Zhu, Yameng Ren, Linfeng Pan, Olivier Ouellette, Felix T Eickemeyer,
Yinghui Wu, Xianggao Li, Shirong Wang, Hongli Liu, Xiaofei Dong, et al.
Synergistic effect of fluorinated passivator and hole transport dopant enables
stable perovskite solar cells with an efficiency near 24%. Journal of the American

Chemical Society, 143(8):3231–3237, 2021.

[159] Zhuan Zhu, Viktor G Hadjiev, Yaoguang Rong, Rui Guo, Bo Cao, Zhongjia
Tang, Fan Qin, Yang Li, Yanan Wang, Fang Hao, et al. Interaction of organic
cation with water molecule in perovskite mapbi3: from dynamic orientational
disorder to hydrogen bonding. Chemistry of Materials, 28(20):7385–7393, 2016.

[160] Minhua Zou, Xuefeng Xia, Yihua Jiang, Jiayi Peng, Zhenrong Jia, Xi-
aofeng Wang, and Fan Li. Strengthened perovskite/fullerene interface en-
hances efficiency and stability of inverted planar perovskite solar cells via a
tetrafluoroterephthalic acid interlayer. ACS Applied Materials & Interfaces,
11(36):33515–33524, 2019.

136


