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Abstract

Slot allocation is the primary form of strategic demand management practiced at
airports globally to address congestion and reduce delay. To perform slot allocation,
airport schedulers must account for detailed requests from hundreds of airlines for
thousands of flights over a six-month season while adhering to variable airport capac-
ities and the Worldwide Airport Slot Guidelines (WASG). This represents a highly
complex combinatorial scheduling problem that has vast implications for airlines and
passengers. While previous research has proposed a range of optimization models to
support slot allocation, they commonly assume a flight-centric approach, which may
extend or eliminate passenger connections without accounting for the costs.

This thesis develops an original approach to airport slot allocation that incor-
porates passenger considerations. The proposed multi-objective optimization model
allocates slots according to the WASG and airport capacity constraints while mini-
mizing one flight-centric metric—schedule displacement—and two passenger-centric
metrics—infeasible connections and connection time. Since this approach requires
passenger forecasts to account for costs, we use historical itinerary data and machine
learning methods to predict passenger flows across a network of flights. We apply
this predict-then-optimize framework using real-world data from Singapore Changi
Airport to create slot assignments that achieve Pareto optimality in acceptable com-
putation times. The results indicate that schedule-coordinated airports can reduce
passenger costs from slot allocation, with relatively small adjustments to schedule
displacement. Ultimately, the proposed multi-objective formulation provides a new
paradigm that can create more attractive flight schedules at major airports world-
wide, based on airport-level considerations, airline-level considerations, and, for the
first time, passenger-level considerations.

Thesis Supervisor: Alexandre Jacquillat
Title: Assistant Professor, Operations Research and Statistics
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Chapter 1

Introduction

1.1 Airport Congestion

“Airport and air traffic congestion is a growing problem on an international

scale and is widely viewed as one of the principal constraints to the future

growth of the global air transportation industry” [32].

In addition to providing a means of worldwide rapid transit, air travel plays a

central role in the global economy by facilitating employment, trade, and tourism.

Nevertheless, the world’s busiest airports are experiencing severe challenges due to

escalating congestion driven by an increasingly constrained relationship between ca-

pacity and demand. While the coronavirus pandemic has halted air traffic growth, it

has also plunged the aviation system into a new era of uncertainty as the industry

slowly scales operations back to pre-pandemic levels. In these times of disruptions

and uncertainties, the efficient use of scarce airport resources becomes even more

critical.

Airport capacity is primarily determined by the capacity of the airfield and partic-

ularly the runway system [32]. Runways create a bottleneck as three-dimensional air

traffic flows compress into a single file for arrival and departure. The most influential

factor in runway system capacity is the number and geometric layout of runways. It

is prohibitively difficult to expand runways at the most congested airports. Runway
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expansion requires additional land and generates significant economic and environ-

mental effects that necessitate complex and lengthy approval processes.

The most direct consequence of congestion is travel delay. Excepting the pan-

demic, travel delay is particularly severe at airports in North America, Europe, and

the Pacific Rim. In Europe, from 2014 to 2019, approximately 39% of flights were de-

layed on arrival, with an average delay of approximately 29 minutes [13, 14, 15, 16, 17,

18]. These metrics are often worse in the United States, and airports in Asia that were

previously delay-free observed significant delays in the years preceding 2020. Since

delays propagate throughout the air transportation network, delays at one congested

airport spread to others, even those with excess capacity.

Travel delays create significant costs for airlines and travelers. In the most thor-

ough accounting of the costs associated with delay, researchers estimated that the

total cost of domestic air travel delays in the United States was $31.2 billion in 2007

[3]. That total includes $8.3 billion in additional operating costs for airlines, $16.7

billion associated with passenger delays, and $6.2 billion in other indirect costs to the

economy. Although we are not aware of a similarly comprehensive study of the costs

of air travel delays in other regions, recent estimates of annual costs in Europe are on

the order of $10 billion [35]. An attempt to measure the global cost to airlines and

passengers by Amadeus estimated the cost at $60 billion in 2016, corresponding to

8% of worldwide airline revenue.

1.2 Background on Slot Allocation

The significant effects of congestion, and the inability of many airports to make ca-

pacity increases in the near term, have prompted research and application of strategic

demand management. Demand management aims to maintain the efficiency of air

travel in the face of congestion through administrative or economic interventions.

While there are many approaches to strategic demand management, they commonly

aim to mitigate congestion by limiting airline access to the airport.

The motivation for demand management emerges from the observation that the

14



Capacity 
exceeds 
Demand

Utilization 100%

Demand
exceeds
Capacity

Figure 1-1: Nonlinear relationship between delay and utilization [32]

relationship between the utilization ratio 𝜌 and delay is nonlinear [32]. Under steady-

state conditions, the average expected delay is proportional to 1
1−𝜌

, where 𝜌 is the

ratio of demand over capacity. The utilization ratio is known in queuing theory as a

fundamental measure of level of service. To illustrate this relationship we plot delay

as a function of 𝜌 in Figure 1-1. Notice that delay is highly sensitive to changes in de-

mand or capacity when an airport is operating near saturation. As demand increases

(e.g., a wave of departures) or capacity decreases (e.g., adverse weather conditions),

delay increases disproportionately. Supply-side efforts to increase capacity should be

explored as a first option, but in situations where capacity improvements are not

possible in the near term, demand management provides a reasonable alternative.

Demand management offers strategies to keep air travel accessible and efficient for a

wide range of customers, and it is relatively quick and inexpensive to implement.

Airports in the United States are unique in that they apply a laissez-faire approach

to demand management. Aircraft operators are free to schedule arrivals and depar-

tures at any time provided that there is capacity to access the terminal buildings.

By leaving airport scheduling largely unconstrained, this approach relies upon the

assumption that delay costs will be internalized by the airlines, thereby preventing

delays from exceeding levels viewed as tolerable by the airlines. As a result, airports

in the United States achieve higher levels of throughput than comparable airports in

15



Europe and Asia, but worse on-time performance [31].

A counter-argument to the laissez-faire approach to scheduling is that the air-

lines do not fully account for costs to other stakeholders—namely passengers—when

left to self-regulation. At highly congested airports outside of the United States,

there is widespread agreement that the benefits of well-executed demand manage-

ment outweigh the costs [32]. In particular, demand management creates a more

evenly distributed demand profile, thereby mitigating travel delays.

Active approaches to strategic demand management fall into two main categories:

economic and administrative. Research indicates that economic approaches, such as

congestion pricing and slot auctions, can achieve economically efficient outcomes in

theory by allocating scarce airport resources to the flights that generate the most

value. However, stakeholder resistance to the monetary transfers and effects on com-

petition has prevented the widespread adoption of economic approaches.

The prevailing administrative approach to strategic airport demand management

is schedule coordination. The International Air Transportation Authority (IATA), a

trade association, governs schedule coordination through slot guidelines. According to

IATA, 204 airports representing 43% of global traffic conducted schedule coordination

under the slot guidelines in 2019 [21]. A “slot” grants permission to arrive at or depart

from an airport at a specified date and time. If the requests for operations exceed an

airport’s declared capacity at a given time, some itineraries are displaced to a time

with surplus capacity. The 2020 edition of IATA’s Worldwide Airport Slot Guidelines

(WASG) states that the “prime objective of airport slot coordination is to ensure the

most efficient declaration, allocation and use of available airport capacity in order

to optimize benefits to consumers, taking into account the interests of airports and

airlines” [1].

Each schedule-coordinated airport conducts slot coordination independently ac-

cording to the general timeline represented in Figure 1-2. The process begins around

one year before a season, with each slot-coordinated airport reporting their declared

capacities, which specify the number of slots to allocate by the time of day. Indepen-

dently, airlines conduct fleet and network planning to determine their desired flight
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t – 1 year

t – 6 months

t

t – 3 months

Airport reports declared capacities

Airlines submit slot requests to slot coordinator

Airlines conduct fleet and network planning

Slot coordinator performs  initial slot allocation
(thesis focus)

Airlines perform final adjustments

Day of operations

Slot conference provides opportunities for adjustments

Figure 1-2: Slot allocation timeline

schedules. Approximately five months before a season, the airlines submit requests to

slot coordinators at each airport for arrival and departure times. Approximately four

months before a season, the slot coordinators perform initial slot allocation, which

is the focus of this thesis. Slot coordinators aim to meet the airlines’ requests while

respecting the airport’s capacity constraints. Requests that exceed the airport’s de-

clared capacity are displaced (i.e., shifted to times with excess capacity) according to

priorities designated in the WASG, but the method of displacement is unregulated.

Following initial slot allocation, the airlines have opportunities to make adjustments,

including at bi-annual slot conferences, but initial allocation remains the most im-

portant stage of the process.

To perform slot allocation, airport slot coordinators must account for variable

airport capacities and detailed itinerary requests from hundreds of airlines for thou-

sands of flights over a six-month season (summer or winter) while adhering to the

WASG. This represents a highly complex combinatorial problem that has vast impli-

cations for passengers, airlines, and airports. In practice, coordinators apply a variety

of approaches, often assisted by special-purpose software that processes requests se-
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quentially according to their priority class [37]. Since this approach does not consider

the full range of possibilities, it results in sub-optimal slot assignments that sacrifice

the efficiency and utilization of scarce airport resources.

In response, researchers have developed a range of optimization models to sup-

port slot allocation. While these previous models have explored various approaches

to account for the complexity of the problem, they commonly assume a flight-centric

approach, which minimizes schedule displacement metrics. However, minimizing dis-

placement does not necessarily translate into the most attractive itineraries for pas-

sengers. By focusing strictly on displacement, previous optimization models may

eliminate important passenger connections or make connections longer. This increases

costs for passengers and may also decrease revenue for the airlines.

1.3 Thesis Outline

The objective of this thesis is to improve decision-making in airport demand man-

agement through a novel approach to airport slot allocation. We develop an original

optimization model that assigns slots according to airport capacities and the WASG

while balancing the multi-objectives of minimizing schedule displacement and the

costs incurred by passengers. However, a major challenge is that this model requires

estimated passenger flows, which are unknown at the time of initial slot allocation

(i.e., months before the day of operations). Therefore, we use historical data, and

machine learning models to predict passenger flows, which are then used as inputs

to optimize slot allocation. This predict-then-optimize approach enables the incorpo-

ration of passenger-level metrics, which guide decision-making with a more accurate

representation of the costs associated with slot allocation.

Chapter 2 provides a review of the literature on airport slot allocation optimiza-

tion, passenger cost modeling, demand forecasting, and the integration of predictive

and prescriptive analytics. We briefly review optimization models from previous re-

search that form the basis for our proposed model and discuss research that has

utilized passenger-level metrics in related topics to improve decision-making. We
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reference studies that demonstrate the potential for machine learning in passenger

forecasting and the integration of predictive and prescriptive analytics.

Chapter 3 describes the modeling framework which integrates predictive and pre-

scriptive analytics. We address the challenges involved with incorporating passenger

considerations into slot allocation. We introduce our methodology and the experi-

mental conditions used to validate the approach.

Chapter 4 presents predictive analytics for passenger flow forecasting, an input

for optimization. The chapter begins with a description of the historical passenger

itinerary and socioeconomic data used for prediction. We engineer numeric, categor-

ical, and binary features that are strong predictors of passenger flows. We estimate

parametric and non-parametric prediction models for Singapore Changi Airport and

evaluate their performance over a year of operations. We report how the models

perform overall, and specifically on new itineraries that did not exist in the training

observations. Random forests achieves the best performance and is therefore selected

to provide input for the optimization model in the following chapter.

Chapter 5 proposes an optimization formulation and solution approach for the

slot allocation problem. The chapter begins with our methodology and a simple

example to demonstrate the concept of including passenger considerations in slot

optimization. We then explain the process for integrating the passenger prediction

and slot allocation optimization models. We provide a mathematical formulation and

solution algorithm for the proposed multi-objective mixed-integer program.

Chapter 6 presents the results from applying the proposed framework using real-

world data to generate slot allocation solutions for Singapore Changi Airport. After

accounting for passenger costs, we find that a model focused exclusively on schedule

displacement would have eliminated 2,065 passenger connections and extended pas-

senger connection time by 30,444 hours over the season. Using the proposed model,

we identify new solutions along the Pareto frontier, which facilitates a discussion

of trade-offs between objectives and indicates the potential for large reductions in

passenger costs for relatively small increases in displacement. One such solution re-

stores 52% of the infeasible passenger connections and reduces 16% of the connection
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time incurred from slot allocation, with only a 1% increase in schedule displacement.

Given the airport characteristics, we recommended solutions and provide a synthesis

of the benefits. This chapter closes with a sensitivity analysis of important modeling

parameters, demonstrating that the benefits are robust to uncertainty.

Chapter 7 synthesizes the results, summarizes major contributions, and proposes

areas for future work. Computational challenges limited the scope of our optimiza-

tion model, so we suggest methods for strengthening and expanding the prescriptive

analytics. Additionally, the COVID-19 pandemic is catalyzing unprecedented change

in the aviation system, which will test the flexibility and robustness of the prediction

and optimization models.
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Chapter 2

Literature Review

This thesis relates to the literature on airport slot allocation optimization, passenger

cost modeling, demand forecasting, and the integration of predictive and prescriptive

analytics. In this chapter, we provide a brief review of these fields.

Optimization models developed for the slot allocation problem have historically

been formulated as integer programs. One of the earliest models was developed by

Zografos et al., in 2012 [45]. This model allocated slots for a regional airport according

to an objective function that minimizes schedule displacement. When applied, it

achieved optimality in under five minutes and demonstrated improvements of 14-

95% over the existing slot schedule. To reduce complexity, this model dealt with

each priority class of slots separately, which prevents the consideration of all possible

combinations. Additionally, implementation of this and similar models using exact

methods remains intractable for the largest schedule-coordinated airports.

In 2018, Ribeiro et al. [37] proposed the Priority-based Slot Allocation Model

(PSAM), which considers all slot classes simultaneously, enabling the full range of

scheduling combinations. The PSAM uses a multi-objective function to capture

trade-offs between various measures of schedule displacement (e.g., total displace-

ment, maximum displacement, number of slots displaced or rejected). The PSAM in-

cludes constraints to account for the WASG (i.e., IATA guidelines) and strengthened

the formulation with valid inequalities that enable implementation at medium-sized

airports. In 2019, Ribeiro et al. [36] developed a large-scale neighborhood search
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algorithm that can solve PSAM for large airports. This model achieved optimality

in 10 hours for a season at a large international airport. The model proposed by this

thesis is an extension of the PSAM formulation.

These previous models demonstrated that state-of-the-art optimization methods

can achieve solutions for the largest schedule-coordinated airports over an entire sea-

son and that the improvement over existing methods generally grows with the air-

port’s size. This trend matches intuition since larger airports are more likely to

exceed the limitations of the existing methods utilized by slot coordinators. More

recent models have introduced alternative objectives such as inter-airline fairness and

equity [23, 24, 26, 43, 44], airline acceptability of schedule displacement [42, 44], air-

line flexibility preferences [25], and blocking (i.e., scheduling flexibility) [19]. Despite

capturing a wide range of objectives, previous models take a flight-centric approach.

By neglecting passenger costs associated with increasing or eliminating connections,

both passengers and airlines lose value.

Literature from other fields of aviation research demonstrates how incorporating

passenger considerations alters the decision-making regarding airport resources. In

2014, Barnhart et al. [4] estimated that the average delay per passenger is roughly

twice the average delay per flight. Flight delay is typically calculated as the difference

between a single flight’s scheduled and observed arrival time. However, the delay

time for passengers often relies on connections between multiple flight-legs, creating

multiple opportunities for delay. Flight cancellations and missed connections cause

significant disruptions (and costs) for passengers but are not considered by flight

delay metrics. Additionally, as load factors increase at large transfer airports, which

are often congested, it becomes more challenging to re-book passengers who miss

connections, further compounding passenger delay times.

In the field of airline scheduling and disruption recovery, it is well established that

there is no one-to-one mapping between flight-level and passenger-level considerations.

Early models for airline disruption recovery focused exclusively on minimizing airline

operating costs. These models neglected costs associated with disrupted passengers,

who must be reaccommodated on alternate itineraries because of missed connections
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or flight leg cancellations. In 2006, Bratu and Barnhart [8] extended the conventional

airline disruption recovery model to minimize jointly airline operating costs and pas-

senger delay and disruption costs. The results from applying this model to a case

study of 83,869 passengers over a single day of operations indicated that airlines could

reduce passenger delay by 19.4% without significant increases in operating costs. In

2017, Marla et al. [29] formulated a model to incorporate passenger delay costs into

flight planning. This research showed that adjustments to flight speed through in-

creased fuel burn could reduce passenger disruptions by 66-83% and achieve savings

of 5.7%–5.9% for the airline.

Researchers have also incorporated passenger considerations into decision-making

for tarmac delay policies [41], airline timetable development and fleet assignment [40],

and air traffic flow management (ATFM) [22]. Collectively, these studies indicate

that passengers should be incorporated into decision models to account for costs.

By including passenger costs in decision-making, airlines and airports can improve

profitability through increased customer retention. To our knowledge, this study is

the first to incorporate passenger considerations directly into the optimization of slot

allocation.

In the ATFM study [22], Jacquillat demonstrates the predict-then-optimize frame-

work that is also applied in this thesis. This approach, which leverages analytics to

predict an unknown variable that is used as an input for optimization, has recently

experienced widespread application in academic literature under the umbrella of data-

driven decision-making [5]. Since future passenger flows are required to evaluate the

passenger costs associated with slot allocation decisions, we employ predictive ana-

lytics for forecasting.

Transportation demand has traditionally been estimated using logit models, fol-

lowing one of the earliest works by McFadden in 1973 [30]. More recent studies employ

discrete choice models in the context of air transportation to capture supply-demand

interactions [2, 6, 7, 12, 40]. The application of choice models in passenger prediction

depends upon (i) information regarding competing itineraries and (ii) features that

explain market share, such as price and time-of-day information. However, since ini-
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tial slot allocation occurs months before the beginning of a season, these attributes

are unavailable.

As an alternative, we employ machine learning methods for passenger predic-

tion, leveraging several socioeconomic variables and itinerary features. Recent studies

demonstrate the advantages of machine learning for passenger forecasting, as in Lhéri-

tier et al. 2019 [27]. Logit models lack the flexibility to handle collinear attributes and

correlations between alternatives, but machine learning methods are less restrictive

and able to leverage many variables with complex relationships. This suggests that

the integration of predictive and prescriptive analytics provides opportunities to im-

prove slot allocation. By predicting passenger flows and incorporating passenger-level

metrics into a multi-objective optimization model we can more accurately account for

the costs of slot allocation decisions.

24



Chapter 3

Modeling Framework

As with previous slot optimization models, the proposed model takes as inputs the

airline slot requests and the airport’s declared capacities. It then produces a slot

assignment accordingly, with the primary objective of minimizing the displacement

relative to the requests while complying with the airport’s capacity and the World-

wide Airline Slot Guidelines (WASG). However, our approach in this thesis differs

from the previous literature by accounting for the impact of slot allocation on pas-

senger itineraries—therefore balancing flight-level and passenger-level considerations.

One complication is that passenger itineraries are unknown at the time of slot alloca-

tion, which occurs months before the flights’ operations, prior to passenger bookings.

Therefore, accounting for costs requires predictions of passenger flows in flight net-

works. Ultimately, the proposed slot allocation approach integrates two analytics

models: a predictive model of passenger flows in flight networks and a prescriptive

optimization model of slot allocation. Figure 3-1 provides an overview of the modeling

framework.

3.1 Predictive Modeling

Forecasting passenger flows in commercial air travel is a challenging time series prob-

lem. Each itinerary has a unique level, trend, seasonality, and noise [38]. Level de-

scribes the central tendency, which can be used to differentiate high-volume itineraries
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Figure 3-1: Modeling framework

from those that typically carry medium or low levels of passengers. Trend is the

change from one year to the next, as itineraries experience different degrees of growth

or stagnation. Seasonality is short-term cyclic behavior, which can be subtle for

itineraries serving a diverse customer base or more pronounced for business or leisure-

dominated markets. Noise is the random variation or measurement error that obscures

these characteristics, motivating the need for strong features that adequately describe

passenger flows over time.

There are a vast number of fluctuating itinerary combinations, which generate

categorical variables with many categories (i.e., hundreds of airports and airlines).

Some series of itineraries are consistent, while others are intermittent, which causes

problems for some prediction models. Previous studies demonstrate favorable results

forecasting demand for existing itineraries, but a greater challenge is to predict de-

mand for new itineraries (i.e., new combinations of airports and airlines). In this case,

we are not simply extrapolating but predicting the passenger flows for an emergent

series. For this subset of itineraries, the most important predictor—historical pas-

senger counts—is unavailable. In the dataset used for this thesis, approximately 10%

of the medium to high-volume itineraries each year are new. Low-volume itineraries

(less than 30 passengers per month) are even more sporadic. This prompts the de-
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velopment of continuous features that are not dependent upon historical traffic and

remain available for new itineraries.

The most reliable sources of historical itinerary data are aggregated by month,

which means we are unable to leverage patterns over shorter time scales. The unavail-

ability of information required to estimate market share (e.g., price and time-of-day

features) and incomplete set competing itineraries precludes the use of discrete choice

modeling. Nevertheless, large datasets and supervised machine learning methods pro-

vide opportunities to produce accurate and valuable forecasts of passenger flows.

For prediction, we leverage a dataset from the Official Airline Guide (OAG) that

reports historical itinerary-level information in commercial aviation. A supplemen-

tal socioeconomic dataset provides population and GDP information for catchment

areas surrounding the airports. Using these datasets, we engineer features that are

valuable for predicting passenger flows. After evaluating several machine learning

methods, we find that random forests yield the best results. To ensure the model is

flexible to changes in the transportation network, we conduct stratified testing on new

itineraries. We then deploy the best model to make passenger forecasts for itineraries

across the period of slot assignment.

3.2 Prescriptive Modeling

Slot allocation is a highly complex combinatorial scheduling problem. The model

must consider airline requests for every operation (i.e., arrival and departure) at an

airport over a six-month season. The requests include the type of operation, date,

time, and frequency for recurring operations (e.g., daily, weekly, weekdays). Airports

may use various timescales (e.g., 5 minutes, 15 minutes, 60 minutes) to declare their

capacities, and the limitations may differ depending on the type of operation. The

WSAG defines the priority of slots and provides rules to maintain equal treatment

for all requests in the same class. Rules regarding schedule regularity are intended

to facilitate crew and aircraft planning. These guidelines create an interdependence

across days in a season, thus considerably increasing the combinatorial complexities
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of the slot allocation problem.

To balance the costs of slot allocation decisions, the optimizer must account for

the perspectives of multiple stakeholders—namely airlines and passengers. When

incorporating passenger-level metrics such as connection time, we find it is coupled

with allocation decisions, thereby creating a nonlinearity due to the interdependence

of two decision variables. The problem’s computational complexity demands state-

of-the-art algorithmic approaches to approximate the complete problem and achieve

optimal solutions in acceptable times.

The proposed optimization model is an extension of the priority-based slot al-

location model (PSAM) presented in [37]. This integer programming formulation

includes constraints for airport declared capacities and the WSAG. We expand the

PSAM formulation to minimize schedule displacement and two measures of passenger

costs associated with slot allocation. We account for passenger costs using forecasts

from the prediction model to measure increased or eliminated passenger connections

due to displacement decisions. We develop a solution approximation approach based

on coordinate descent and approximate the nonlinear objective using a weighted sum

approach. We apply the 𝜖-constrained method to balance the three objectives and

generate solutions along the Pareto frontier.

The integration of the prediction and optimization models faces several challenges

as there is no one-to-one mapping between the models. First, passenger itineraries are

unknown at the time of initial slot allocation, which occurs months before the day of

operations. This requires an itinerary construction procedure to establish all potential

itineraries that can materialize from the airline slot requests. Second, the dataset

used for the prediction model is aggregated by month, whereas the optimization

model treats itineraries according to day and time. To disaggregate the forecasts, we

test four variations of distributing the forecasted flows across the potential itineraries

using a weight-based approach.

In the following chapters, we demonstrate the proposed approach using real-world

data to produce a slot assignment for Singapore Changi Airport. Changi Airport is a

major connection hub in Southeast Asia where many users (passengers and airlines)
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depend upon connecting itineraries. For the predictive analytics, we use historical

itinerary data from 2016-2019, with the final year reserved exclusively for model eval-

uation (i.e., test dataset). We find that random forest achieves excellent predictive

performance, with a mean absolute error of 121 passengers per month. For prescrip-

tive analytics, we use airline slot requests for the summer 2019 season (April-October).

The proposed solution approach generates Pareto optimal solutions in a few hours of

computation time. Analysis of the results indicates that schedule-coordinated airports

can reduce passenger costs from slot allocation, with relatively small adjustments to

schedule displacement. Additionally, sensitivity analysis of important modeling pa-

rameters indicates the benefits are robust to uncertainty.
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Chapter 4

Predictive Modeling: Passenger Flow

Forecasting

This chapter presents predictive analytics for passenger flow forecasting—a critical

input for passenger-centric slot allocation optimization. The chapter begins with

a description of the historical passenger itinerary and socioeconomic data used for

prediction. We engineer numerical, categorical, and binary features that are strong

predictors of passenger flows. We then train parametric and non-parametric predic-

tion models and evaluate their performance over four years of data from Singapore

Changi Airport. We report how the models perform overall, with a particular focus

on new itineraries (i.e., new combinations of airports and airlines that did not ex-

ist in the training observations). Random forests achieve the best performance and

are therefore selected to provide inputs for the optimization model in the subsequent

chapter.

To define the prediction problem, let 𝑧 be an itinerary serving an airport pair

(𝑜, 𝑑) (origin, destination). Itineraries can be either nonstop or connecting. Con-

necting itineraries involve transferring at an intermediate airport, denoted by ℎ, be-

tween flight-legs operated by the same or different airlines. As such, an itinerary

𝑧 = (𝑜, ℎ, 𝑑, 𝑎1, 𝑎2) describes a combination of airports and airlines. For exam-

ple, a nonstop itinerary from SIN to LHR operated by Singapore Airlines is de-

noted as 𝑧1 = (SIN,−,LHR, SQ,−); and a connecting one-stop itinerary from SIN
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h: DXB
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Figure 4-1: Visualization of the airports included in two example itineraries

to LHR through DXB with both legs operated by Emirates is denoted as 𝑧2 =

(SIN,DXB,LHR,EK,EK). Figure 4-1 provides an illustration of these itineraries.

The dependent variable for the prediction problem is 𝑦𝑧,𝑚, the number of passengers

traveling on itinerary 𝑧 in month 𝑚.

4.1 Predictive Data

The itinerary dataset contains information for commercial flights arriving or depart-

ing Singapore Changi Airport from 2016-2019. The initial dataset included 1.49M

observations, but we use 343,829 observations for predictive modeling after filtering

low-volume itineraries. Independent variables include the month, year, airport, air-

line, alliance membership, and airline classification as a low-cost carrier (LCC). The

dependent variable is itinerary passengers, a count variable aggregated by month. The

predicted passengers for itineraries in 2019 will be used as an input for optimizing

slot allocation.

To supplement the itinerary data, we create socioeconomic variables using a ge-

ographic information system (GIS)-based procedure. For each airport, we define a

circular catchment area with a radius of 100km using coordinates from the Open-

Flights Airport Database. This enables the computation of relative population and

GDP for each airport in the itinerary dataset based on high-resolution (30 arcsec)

global spatial datasets. Table 4.1 describes the columns in the itinerary and socioe-

conomic datasets prior to feature engineering.
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Table 4.1: Initial itinerary and socioeconomic datasets

Variables Description

Itinerary Passengers Dependent variable; number of passengers traveling on
itinerary 𝑖 defined by a combination of airports (𝑜, ℎ, 𝑑) and
airlines, aggregated by month; constrained demand (i.e., min-
imum of supply and demand); Mean: 575; Std dev: 2,234;
Range [30, 48,691]

Market Passengers The total number of itinerary passengers that travel between
a city-pair, including all airlines, route types (nonstop, con-
necting), and nearby airports in a month; Mean: 6,550; Std
dev: 15,637; Range [30, 220,192]

Airports Origin, hub (if connecting), destination (𝑜, ℎ, 𝑑); Count: 893

Airlines Single airline if nonstop, two for connecting itineraries; Count:
234

Alliance Membership Alliance membership of the primary airline; Star Alliance
47.7%, SkyTeam 8.2%, Oneworld 13.3%, Other 30.8%

LCC Dummy variable classifying the primary airline as a low-cost
carrier (LCC) 15.7%

Date Month, Year [January 2016 - December 2019]

Distance Flying distance (km) for each leg of the itinerary; Mean: 3,988;
Std dev: 3,478; Range [101, 17,577]

Population Values for origin and destination airports at 100km radii;
Mean: 8.4M; Std dev: 7.3M; Range [1,219, 33.2M]

GDP Values for origin and destination airports at 100km radii; gross
domestic product (GDP) in USD, purchasing power parity
(PPP); Mean: 301B; Std dev: 252B; Range [71M, 1,288B]
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The presence of many low-volume itineraries in the OAG dataset creates a chal-

lenge for prediction. There are many seasonal or multi-stop itineraries that are oper-

ated infrequently and have low passenger counts (less than 30 passengers per month).

Since the purpose of our prediction model is to provide accurate forecasts for medium

and high-volume itineraries, we prioritize accuracy on those itineraries. Including low-

volume itineraries while fitting our model would introduce noise into our predictions.

We filter the dataset, removing itinerary observations with less than 30 passengers

or involving more than one connection. The remaining dataset represents 23% of

the initial observations but 97% of the passengers. This procedure reduces noise and

improves our predictive performance on the significant itineraries.

4.2 Feature Engineering

Aggregation and decomposition are useful methods for reducing complexity in a sys-

tem by adjusting the scale at which we conduct analysis [10]. While engineering

features, the level of aggregation (or decomposition) of the predictors is informed by

that of the dependent variable we aim to predict. Observations in the OAG dataset

are aggregated by itinerary over a given month, so we focus on features near this level

of aggregation.

System
Multiairport Network 

Airport

Airline or Route

Itinerary

Service Class

Seat

Year

Season

Month

Week

Day

Time of Day

TimescaleAggregation

Decomposition

Figure 4-2: System aggregation and decomposition

Using the itinerary and socioeconomic datasets, we create features that are valu-

able for predicting passenger flows. We describe the most important features below,

and a complete list of features tested is provided in Appendix A.
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4.2.1 Historical Traffic

Historical metrics of passenger flows are useful predictors, especially in a developed

transportation market such as Singapore. In general, the passengers observed for an

itinerary will increase gradually from year to year, resulting from steady growth in

demand and capacity. We create several lagging features, which leverage historical in-

formation, the most important of which is the lagging dependent variable (i.e., lagging

itinerary passengers). This variable captures the historical passenger count for each

itinerary (set of airports and airlines over a given month) in the previous year. Sim-

ilarly, we create a lagging variable for the monthly market passengers corresponding

to each itinerary in the previous year.

We also consider a lagging variable that captures the annual traffic at the origin

and destination airports (𝑜 and 𝑑). Since this variable observes a higher level of

aggregation than the variables for itinerary and market passengers, it is less precise,

but the observations are more consistent. As commercial air travel exhibits a high

level of symmetry (i.e., flows 𝑜 → 𝑑 are approximately equal to those from 𝑑 → 𝑜),

we calculate the geometric mean of the traffic values at the origin and destination

airports for each itinerary. Equation (4.1) calculates the annual airport traffic for

itinerary i as a function of the traffic levels over the previous year (yr − 1).

traffic𝑖,𝑡 =
√︀

traffic𝑜,yr−1 × traffic𝑑,yr−1 (4.1)

Next, we consider a lagging variable for growth. Basic temporal variables (e.g.,

year and month) are weak proxies for growth, as they neglect differences between

itineraries. To create a predictor of growth for each itinerary, we calculate the 12-

month percent growth of the dependent variable between the two most recent years

(i.e., the final two years of the training dataset). Equation (4.2) calculates the lagging

percent growth for itinerary i as a function of the itinerary passenger counts 𝑦 in the

two previous years.

lagging growth𝑖,𝑚 =
𝑦𝑖,𝑚−12 − 𝑦𝑖,𝑚−24

𝑦𝑖,𝑚−12

(4.2)
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Since temporal patterns differ between airport pairs, month is a weak predictor

as it is ignorant of the route. Instead, we use a seasonality variable that is specific for

each airport pair (𝑜, 𝑑). We calculate seasonality as the percent deviation from the

annual mean passengers for the airport pair, denoted by 𝜇𝑜𝑑. This standardization is

carried out for each airport pair, such that an itinerary has a seasonality value of zero

in month 𝑚 if the mean monthly passengers traveling 𝑜 → 𝑑 in month 𝑚−12, denoted

by 𝜈𝑜𝑑,𝑚−12, is equal to 𝜇𝑜𝑑,yr−1. Negative and positive values denote deviations from

the annual mean in the respective direction. Equation (4.3) calculates the seasonality

for itinerary i as a function of the historical monthly and annual means, for a given

airport pair (𝑜, 𝑑).

seasonality𝑖,𝑚 =
𝜈𝑜𝑑,𝑚−12

𝜇𝑜𝑑,yr−1

(4.3)

A vulnerability of historical traffic variables is that they experience gaps whenever

there is an inconsistent or new series, meaning the combination of airports and airlines

did not exist during the same month in the previous year. For instance, at Changi

Airport, approximately 10% of the itineraries each year are new (excluding low-volume

itineraries), so the historical passenger count (i.e., lagging dependent variable) for

those observations is zero. This provides an opportunity for a dummy variable (binary

feature) that identifies if the itinerary is new. However, in the case of the remaining

historical traffic variables (market passengers, airport traffic, passenger growth, and

seasonality), there is not one sensible constant to apply when data is unavailable.

For these variables, we found it best to impute the value using the other independent

variables as predictors. After evaluating several imputation approaches, we applied

k -nearest neighbors for imputation, as it yielded the best results during validation on

the downstream prediction model.

4.2.2 Itinerary Characteristics

A dummy variable indicating whether the itinerary is nonstop or connecting is a

simple yet influential predictor of passenger flows. In this dataset, we find that
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Figure 4-3: Descriptive feature visualizations

nonstop itineraries have higher passenger counts than their corresponding connecting

itineraries (Figure 4-3a). There are many connecting options for every nonstop route,

which increases competition.

Flying distance is a continuous feature that possesses a nonlinear relationship with

passenger flows, as we observe in Figure 4-3b. At very short distances (under 500

km), the number of itinerary passengers is low due to competition with ground modes

of travel. The density plot has a bi-modal distribution, with the first peak indicating

flights to mainland Asia and the second peak representing flights to Europe and the

Americas.

To account for the efficiency of connecting itineraries, we calculate a routing factor

as described by [33]. The routing factor for a given itinerary is defined as the ratio of

the flying distance to the corresponding nonstop distance (i.e., great circle distance).

This calculation yields a routing factor of one for nonstop itineraries and a continuous

value greater than one for connecting itineraries. Equation (4.4) calculates the routing

factor for itinerary i as a function of the distances between each airport.

routing factor𝑖 =
dist𝑜ℎ + distℎ𝑑

dist𝑜𝑑
(4.4)

This variable serves as a proxy for the efficiency of a connecting itinerary. Routes
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through hubs that are centrally located between the origin and destination have a

routing factor marginally higher than one, whereas more inefficient routes yield higher

values. Figure 4-4 displays two connecting itineraries, with similar 𝑜 → 𝑑 distances,

but with different routing factors. BKK-SIN-CGK has a routing factor of 1.001

and a mean of 740 passengers per month across all airlines. In contrast, BKK-SIN-

MNL has a routing factor of 1.726 and a mean of 54 passengers per month. These

itineraries match the general trend that itineraries with lower routing factors carry

more passengers than similar itineraries offering less efficient routes. This observation

matches intuition since the most frequent travelers tend to be more time-sensitive.
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(a) Itinerary with 1.001 routing factor
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Figure 4-4: Comparison of two connecting itineraries by routing factor

4.2.3 Socioeconomic

For socioeconomic features, we consider the population, gross domestic product (GDP),

and GDP per capita of the areas surrounding the airports (o and d) for each itinerary.

Again, since flows are symmetric, we limit the number of variables by considering the

geometric mean of the origin and destination airports.

To elucidate interactions between airport pairs, we also consider the percent dif-

ference between the origin and destination GDP. With this approach, we intend to

capture unique relationships in passenger flows between developed and undeveloped
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markets. We find that higher passenger counts are correlated with itineraries that

service airports with similar GDP levels.

4.2.4 Airlines and Airports

Airline and airport information is inherently available for all itineraries; however,

they are difficult to leverage as features due to the vast number of different airports

and airlines. The Changi itinerary dataset contains 893 and 234 unique airports

and airlines, respectively. To create practical features, we explore several methods

of grouping these variables into reasonable categories. Two methods of grouping

airlines are by alliance membership (i.e., Star Alliance, SkyTeam, Oneworld) and

class (LCC versus full-service). While effective for the 2016-2019 dataset, the LCC

classification will need to be re-engineered over time as airline business strategies are

undergoing transformation and many carriers do not fall neatly into one category. We

also create dummy variables for the most frequently operating airlines at Singapore

Airport: Singapore Airlines (SQ), Scoot (TR), and SilkAir (MI). We experimented

with grouping airports geographically by origin and destination continent, but only

one category (Asia to Asia) was significant for this dataset.

4.3 Prediction Models

Machine learning models are advantageous for forecasting passenger flows since they

can leverage large datasets with numerous features and are flexible to evolution in

the transportation network. Airlines create new itineraries as they adapt and grow,

and machine learning models can leverage patterns—however inconsistent—within

the features available to them. Given the problem size and user context, we focus on

simple and scalable methods.

We begin with linear regression, including regularization methods such as subset

selection, ridge regression [20], and least absolute shrinkage and selection operator

(LASSO) [39]. Regularization is a set of automated techniques for feature selection

that manage the trade-off between underfitting and overfitting. The aim is to bal-
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ance in-sample performance and robustness in order to maximize out-of-sample per-

formance. This is achieved by adding a penalty term to the ordinarily least-squares

function used for regression.

Nevertheless, this prediction problem lends itself to models that can leverage non-

linear relationships with variables that are available for new itineraries. For this rea-

son, we also evaluate k -nearest neighbors (k -NN) for regression and random forests

[9]. k -NN is a data-driven non-parametric method that predicts by identifying similar

records (i.e., “neighbors”) in the training data. Neighbors are determined by standard-

izing the features and calculating the Euclidean distance between itineraries.

Random forests is an ensemble method based on trees that segment the predictor

space into regions. To create homogeneous regions, the model selects the feature

and a threshold that will minimize impurity. Random forests generate diversified

regression trees by randomly selecting subsets of features and training on different

subsets of observations. Ensemble learning is grounded in the wisdom of crowds,

whereby aggregate predictions of a group often outperform individual—even expert—

predictions.
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Figure 4-5: Predictive model validation

To avoid overfitting and assess the predictive performance of the models on unseen

data, we first partition the data into training, validation, and test sets. Since we are
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dealing with time series data, we partition the observations sequentially. The earlier

period is for training and the later periods are for validation and testing, as shown in

Figure 4-5a. Since the lagging features require data from the previous year, we are

unable to use the first year in the dataset (2016) for modeling. We conduct 10-fold

cross-validation using the validation set to select features and tune model parameters.

After the model specifications are finalized, we retrain the best model from each class

on the complete training and validation sets (2017-2018). Finally, we evaluate out-

of-sample performance on the test set (2019), which provides a fair assessment of

out-of-sample performance for model selection.

While k -NN and random forests do not have strong issues with collinearity as

linear models do, we must still approach feature selection with caution, as they are

susceptible to uninformative variables. Figure 4-5b illustrates the use of the valida-

tion set to identify the optimal subset of features. We find that k -NN and random

forests achieve their best performance on the validation set with 18 and 17 features,

respectively. As with the other methods, we seek the most parsimonious model that

does not sacrifice predictive performance.

4.4 Prediction Results

After finalizing the model from each method, we evaluate out-of-sample performance

to select the best model. We report the predictive performance metrics in Table

4.2. Due to continuous changes in the transportation network, a key requirement of

our model is to predict well on new itineraries. Robustness to new combinations of

itineraries is especially important for a fast-growing airport such as Singapore Changi.

To assess this aspect of predictive performance, we perform a stratified evaluation on

new itineraries.

To provide a benchmark for evaluation, we reference a naïve linear model that

considers only an intercept value and one feature—the lagging dependent variable

(i.e., historical itinerary passengers). Considering only each itinerary’s historical pas-

senger values, the naïve model generates an out-of-sample R2 of 0.960, mean absolute
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error (MAE) of 137 passengers per month, and root mean squared error (RMSE) of

436 passengers per month. When regressing on new itineraries, the lagging depen-

dent variable is zero, and the model predicts the coefficient (55 passengers for the

Changi dataset). Without additional features to inform the prediction, performance

decreases significantly on new itineraries.

The regularized linear models (linear regression via subset selection, LASSO, and

ridge regression) limit themselves to focus on three features: the lagging dependent

variable, a dummy variable for connecting (versus nonstop), and a dummy variable

indicating if the itinerary is new (versus continuing from the previous year). As with

the naïve model, the remaining linear models perform well on the population as a

whole (RMSE of 424), but performance deteriorates on new itineraries.

Table 4.2: Final model performance on test data

Entire Population Existing Itineraries New Itineraries

c.v. o.o.s. o.o.s. o.o.s.

Method 𝑅2 𝑅2 MAE RMSE 𝑅2 MAE RMSE 𝑅2 MAE RMSE

Naïve (LDV only) 0.956 0.960 137 436 | 0.974 129 392 | 0.119 206 709
Linear regression 0.961 0.963 144 424 | 0.974 129 400 | 0.392 271 589
Ridge regression 0.962 0.963 153 424 | 0.970 140 402 | 0.409 259 581
LASSO 0.962 0.963 153 424 | 0.970 140 402 | 0.409 259 581
k -NN 0.991 0.966 122 402 | 0.971 117 392 | 0.594 169 482
Random forests 0.998 0.969 121 388 | 0.972 120 386 | 0.708 129 408

We obtain the best performance on the test set with random forests. The random

forests model yields excellent predictive performance with an out-of-sample R2 of

0.969, mean absolute error (MAE) of 121 passengers per month, and root mean

squared error (RMSE) of 388 passengers per month. Most noticeably, performance

for this model drops only slightly, to an MAE and RMSE of 129 and 408 passengers per

month respectfully, on new itineraries. In contrast to simpler methods, random forests

provide the flexibility to leverage linear and nonlinear relationships with features that

are available for new itineraries. Since many of the continuous features have complex

nonlinear relationships with passenger flows, the random forests model is best able to

leverage them to make precise predictions on itineraries involving new combinations

of airports and airlines.
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As a data-driven, non-parametric method, k -NN also performs reasonably well;

however, it falls short of random forests on new itineraries, with an RMSE of 482

passengers per month.

(a) Random Forests (b) Best Linear Model

Figure 4-6: Predicted versus observed values for new itineraries

The superiority of random forests becomes visible by plotting the predicted versus

observed values and differentiating by new and existing itineraries (Figure 4-6). For

random forests (Figure 4-6a), the values for new itineraries are scattered appropriately

along the 45-degree line. In contrast, the best linear model (Figure 4-6a) exhibits a

clear pattern of underestimating the number of passengers for new itineraries. The

simplicity of the linear models—their dependence on the lagging dependent variable,

supplemented only by two dummy variables—restricts their ability to make differenti-

ated predictions for new itineraries. Random forests provide accurate predictions and

the flexibility to account for new combinations of airports and airlines. Collectively,

these results prompt us to select random forests for integration with the optimization

model.

A common criticism of random forests, ensemble, and broadly machine learning

models is that they are a “black box.” This critique stems from the tension that exists

between model accuracy and interpretability. In general, to improve accuracy, models

grow increasingly complex, thereby decreasing interpretability. The field of game
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theory offers a method to illuminate machine learning models by calculating Shapley

Additive Explanation (SHAP) values [28]. SHAP values improve interpretability by

attributing to each feature the change in the predicted value when conditioning on

that feature.

(a) Entire Population (b) New Itineraries

Figure 4-7: Feature importance and impact for random forests model

We plot the SHAP values for random forests in Figure 4-7. The features are placed

in descending order by their importance to predictive performance. When evaluating

the model on the entire test set population (Figure 4-7a), lagging itinerary passen-

gers is the most important feature. However, Figure 4-7b illustrates that lagging

itinerary passengers becomes the least important feature when predicting flows for

new itineraries. This observation reinforces that models which rely upon historical

passenger flows will perform poorly on new itineraries.

Applying a color scale to the SHAP values provides a reference for feature input

values, and the horizontal axis depicts whether the effect is to increase or decrease

the target value. For each feature, observations with relatively high input values

are depicted in red, and observations with relatively low input values are depicted

in blue. As an example, if the route is nonstop (Connecting = 0), the low input

value will increase the predicted passenger count. Conversely, a connecting itinerary

(Connecting = 1) will decrease the prediction. As another example, a high market
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passenger value (shown in red) will increase the predicted value. These plots do

not prove causality, but they do provide model interpretability by illustrating the

correlation between model input and output values.
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Chapter 5

Prescriptive Modeling:

Multi-objective Slot Allocation

Optimization

This chapter proposes an optimization formulation and solution approach for the slot

allocation problem. The chapter begins with our methodology and a simple example

to demonstrate the concept of including passenger considerations in slot optimization.

We then explain the process for integrating the prediction and prescription models.

We describe and provide a mathematical formulation for the proposed multi-objective

integer programming model. The interdependence of two decision variables creates

computational challenges, so we develop a solution approximation algorithm based

on coordinate descent.

5.1 Methodology

As a resource scheduling problem, slot allocation is well suited for optimization and

can be modeled with integer programming. The slot allocation problem is stated as:

Given a set of airline requests for arrivals and departures over a season and a set of

constraints representing the airport’s resource limitations, identify an optimal com-

bination of slot assignments, with the primary objective of minimizing the difference
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in time between the requested and proposed schedules. As an unconstrained problem

(i.e., without capacity constraints), each request would be granted as requested by the

airlines. However, constraints enforce the realities of the airport’s declared capacity,

WSAG, and other operational considerations to moderate the demand profile at a

level that keeps delays low.

As reviewed in Chapter 2, previous studies formulate the problem as an integer

programming model that minimizes flight-level objectives (e.g., total displacement,

maximum displacement, number of slots displaced or rejected). However, this my-

opic approach may lead to solutions that extend or eliminate passenger connections

between flights, thereby increasing costs for passengers. In this section, we propose a

new modeling approach that incorporates passenger considerations into slot allocation

decision-making.

The proposed model minimizes three objectives in order of priority: total schedule

displacement, infeasible passenger connections, and increase in passenger connection

time. The primary objective, total displacement, is the most commonly accepted

flight-level metric used by previous studies. Prioritizing total displacement promotes

the acceptability of a solution by producing a schedule that is representative of the

airlines’ requests. The second objective advocates that important connections are not

eliminated while conducting slot allocation. The third objective aims to maintain the

efficiency of connections.

Incorporating passenger-level objectives (e.g., infeasible connections, connection

time) to slot allocation creates interdependencies between flight-level decisions (e.g.,

flight displacement) and passenger-level considerations (e.g., aircraft capacities, pas-

senger connection times). We find that capturing these interdependencies creates non-

linearities in the objective function, thereby considerably increasing the complexity

of the optimization model. To overcome this challenge, we propose a novel algorithm

based on coordinate descent that optimizes flight-level and passenger-level decisions

sequentially and iterates until convergence. In the following chapter, we demonstrate

the effectiveness of our formulation and algorithmic approach using real-world data

from Singapore Changi Airport.
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5.2 Proof of Concept

To introduce the effects of considering passengers during slot allocation optimization,

we provide an illustrative toy example. The scenario involves five arrival and three

departure requests, represented as arrows (5-1). Let us imagine these requests are

submitted to a hub airport such as Changi.

feasible connections
8 pax

Arrive
06:45

Arrive
07:00

Depart
07:45

Arrive
09:30

Arrive
10:00

Arrive
10:55

Depart
10:45

Depart
11:40

8 pax

4 pax

constrained constrained

6 pax

6 pax

Figure 5-1: Example scenario for slot allocation optimization

There are desired connections between five flight pairs, represented as arcs. The

forecasted number of passengers for each connection are displayed below the connec-

tion arc (e.g., “8 pax” corresponds to 8 passengers forecasted to make the connection).

If the scheduler granted the slots as requested (i.e., ignoring capacity constraints),

there would be 32 passenger connections. Note that we consider 45 minutes to be the

minimum connection time (i.e., time between arrival and departure) to enable a pas-

senger connection. However, let us also consider that two blocks of time are capacity

constrained from itineraries in a higher priority class (e.g., historic slots). Therefore,

the four movements that are requested during those times must be displaced out-

side of the constrained periods, indicated with red boxes. The following cases will

illustrate solutions (i.e., slot schedules) under three different allocation strategies.

First, we evaluate the strategy commonly used by slot coordinators and exist-

ing slot allocation models, focusing exclusively on the minimization of schedule dis-

placement measures such as total displacement, denoted as Case (A). To minimize

displacement while respecting the capacity constraints, we displace each conflicting

itinerary to the closest slot with available capacity. The resulting schedule is rep-

resented in Figure 5-2, with the displaced itineraries shown in blue. The resulting
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schedule has a total displacement of 20 minutes, which is relatively low. However,

since passenger-level metrics are not considered, 10 passenger connections become in-

feasible (less than 45 minutes), and the connections that remain feasible are increased

by a total of 100 passenger minutes.

8 pax x 5 min

Arrive
06:45

Arrive
06:55

Depart
07:50

Arrive
09:30

Arrive
10:00

Arrive
11:00

Depart
10:40

Depart
11:40

8 pax

4 pax6 pax x 10 min

6 pax

infeasible connections

Figure 5-2: Minimizing displacement, Case (A)

Next, we evaluate an allocation strategy that minimizes displacement and infea-

sible connections, denoted as Case (B). To minimize displacement while maintaining

connections, we displace conflicting itineraries in a direction that maintains their

connections. This results in a schedule that has arrival and departure waves, with

at least 45 minutes between connections to maintain their feasibility (Figure 5-3).

The resulting schedule has a total displacement of 40 minutes, which is twice that

obtained for Case (A). Since passenger connections are maintained, zero connections

become infeasible. However, connection time is increased by 370 passenger minutes,

as this solution sacrifices efficiency to preserve connections.

8 pax x 5 min

Arrive
06:45

Arrive
09:30

Arrive
10:00

Depart
11:40

4 pax x 15 min6 pax x 10 min

6 pax x 15 min

8 pax x 15 min

Arrive
06:55

Depart
07:50

Arrive
11:00

Depart
10:40

Figure 5-3: Minimizing displacement and infeasible connections, Case (B)

Last, we evaluate a strategy that minimizes displacement, infeasible connections,
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and increasing connection time, denoted as Case (C). This strategy considers the

number of passengers for each connection to determine how the conflicting itineraries

should be displaced. Since the 10:45 departure receives only four connecting passen-

gers from the 10:00 arrival, the optimizer chooses to sacrifice this connection rather

than lengthen the connection time for the eight passengers who arrive at 09:30. The

schedule that results from this objective function strikes a balance between the two

previous examples (Figure 5-4). The resulting schedule has a total displacement of

30 minutes, which splits the difference between Case (A) and Case (B). Four passen-

ger connections become infeasible, and connection time is increased by 190 passenger

minutes. Table 5.1 summarizes the objective values under each strategy.

8 pax x 5 min

Arrive
06:45

Arrive
09:30

Arrive
10:00

Arrive
Depart
10:40

Depart
11:40

6 pax x 10 min

6 pax x 15 min

8 pax

4 pax

Arrive
06:55

Depart
07:50

Figure 5-4: Minimizing displacement, infeasible connections, and increase in connec-
tion time, Case (C)

Table 5.1: Objective values for example scenario

Total Disp. Inf. Conn. Inc. Conn. Time
Case Objective Terms (min) (pax) (pax-min)

A Disp. 20 10 100
B Disp. + Inf. Conn. 40 0 370
C Disp. + Inf. Conn. + Inc. Conn. Time 30 4 190

This is a simplified example to demonstrate that minimizing flight displacement

metrics alone does not necessarily translate into the most beneficial itineraries for

passengers. To fully account for the costs associated with slot allocation, we must

incorporate passenger considerations, but this is more complex than represented in

the example. In reality, passengers may have alternatives if a connection between a
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flight-pair is extended or eliminated. For example, in Case (C) (Figure 5-4), imag-

ine that the departures at 10:40 and 11:40 are operated by the same airline alliance

and have the same destination. Under these circumstances, the passengers arriving

at 10:00 can be reaccommodated to the 11:40 departure. This new solution reduces

infeasible connections to zero but increases the connection time by 240 passenger min-

utes. Aircraft capacity is another important consideration. If sufficient capacity does

not exist to reaccommodate passengers on alternative flights, then those passenger

connections will still be considered infeasible. Adding these realistic considerations

increases the feasible region, creates interdependence amongst modeling decisions and

involves trade-offs between objectives. The model must address these complexities to

fully account for costs and create valuable solutions.

5.3 Integration

The proposed optimization model requires three primary inputs: (i) slot requests

from airlines, (ii) airport declared capacities, and (iii) forecasted passenger flows.

The third input, which enables the calculation of passenger costs associated with

displacement decisions, requires integrating the prediction and optimization models.

The first challenge with integration is that passenger itineraries are unknown at the

time of initial slot allocation. An itinerary construction procedure is necessary to

establish all potential itineraries that can exist given the set of slot requests. A

second challenge is that the passenger flow forecasts are aggregated by month due to

the aggregation of the historical itinerary data source (more detailed itinerary data for

slot-coordinated airports is unavailable). Since the optimizer must assign passengers

to specific operations (i.e., with date and time) to calculate cost, we must distribute

the passenger forecasts over the potential itineraries.

5.3.1 Itinerary Construction

For optimization, itineraries are uniquely identified by the following features: ori-

gin airport, intermediate airport (if connecting), destination airport, airline(s), and
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LHR

SIN
8:308:00

i1

< 45’
infeasible connection

j1 j2 j3 j4

p1 = (LHR, SIN, SYD, SA, SA, 7:30)
p2 = (LHR, SIN, MNL, SA, SA, 7:30)
p3 = (LHR, SIN, AKL, SA, SA, 7:30)

8:45 9:00 9:15

CGK SYD MNL AKL

Figure 5-5: Itinerary construction example

reference time. For nonstop itineraries, reference time corresponds to the time of

operation at the slot-coordinated airport (i.e., arrival or departure time). For con-

necting itineraries, reference time corresponds to the arrival time of the first flight

leg.

To define the set of itineraries 𝒫 (indexed 𝑝), we begin with the set of airline slot

requests 𝒮. The slot requests are indexed by 𝑖 (or 𝑗), and each request represents

a specific flight operation, characterized by arrival time (or departure time), airline,

origin airport (or destination airport), and priority according to the WASG. Nonstop

itineraries are self-evident, as any single slot request constitutes a feasible nonstop

itinerary. We define the subset of nonstop itineraries as 𝒫𝑁 ⊂ 𝒫 .

To construct the set of connecting itineraries, defined as 𝒫𝒞 ⊂ 𝒫 , we pair arrival

and departure slot requests (𝑖, 𝑗) based on the following feasibility criteria: (i) ar-

rival and departure flights operated by the same airline alliance, (ii) connection time

between 45 minutes and 6 hours, and (iii) maximum routing factor of 1.5.

Figure 5-5 demonstrates how a single arrival slot request can generate many fea-

sible connecting itineraries. In this example, the 𝒮𝐶(𝑖, 𝑗) = {(𝑖1, 𝑗2), (𝑖1, 𝑗3), (𝑖1, 𝑗4)}

is the set of (3) feasible connections for the arrival slot request 𝑖1. The 8:30 depar-

ture slot request 𝑗1 does not create a feasible connecting itinerary with 𝑖1 since it

allows less than 45 minutes for transfer. While only a single arrival is represented in

this example, each departure can similarly create multiple itineraries with different

combinations of arrivals.
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Figure 5-6: Identification of alternative itineraries example

To account for reaccomodating passengers, we define the set of all feasible alter-

natives for each itinerary 𝑝. This involves alternate single slot requests for nonstop

itineraries 𝒮𝑁
𝑝 (𝑖) or alternate pairs of slot requests for connecting itineraries 𝒮𝐶

𝑝 (𝑖, 𝑗)

that can accommodate passengers traveling on the itinerary 𝑝. We define these sets

by assuming a time window of ±4 hours; that is, given itinerary 𝑝, characterized by

time 𝑡, we consider slot requests characterized by reference time 𝑡′ ∈ [𝑡 − 4, 𝑡 + 4] as

feasible alternatives.

Figure 5-6 provides an illustration of alternatives for itinerary 𝑝1, constructed

from the slot request 𝑖2 (to SYD). In this example, (𝑖2, 𝑗6) represents the minimum

connection time alternative. If this alternative becomes infeasible due to displacement

decisions or capacitated from reaccomodations, passengers can be recaptured by the

following alternatives: 𝒮𝐶
𝑝 (𝑖, 𝑗) = {(𝑖1, 𝑗5), (𝑖1, 𝑗6), (𝑖1, 𝑗7), (𝑖2, 𝑗7), (𝑖3, 𝑗7)}, assuming

that they meet the feasibility criteria defined above.

To account for the costs of displacement and reaccomodation, we define the con-

nection time of each alternative as 𝛾𝑖,𝑗. For each day 𝑑 and itinerary 𝑝, we then define

𝛿𝑝𝑑 as the minimum connection time across the set of alternatives (𝑖, 𝑗) ∈ 𝒮𝐶
𝑝 (𝑖, 𝑗)

(e.g., (𝑖2, 𝑗6) in Figure 5-6). Equation (5.1) expresses this relationship, where 𝛾𝑖,𝑗
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gives the connection time between slot requests 𝑖 and 𝑗, and 𝐵𝑖𝑑 (𝐵𝑗𝑑) is equal to 1 if

slot request 𝑖 (𝑗) is requested on day 𝑑, 0 otherwise. As will be described in Section

5.4, the optimization model will consider 𝛿𝑝𝑑 and the set of alternatives 𝒮𝑝(𝑖, 𝑗) to

control and measure the cost of reaccommodating passengers on itinerary 𝑝.

𝛿𝑝𝑑 = min
(𝑖,𝑗)∈𝒮𝐶

𝑝 (𝑖,𝑗)
𝛾𝑖,𝑗𝐵𝑖𝑑𝐵𝑗𝑑 (5.1)

5.3.2 Passenger Distribution

A major challenge for integrating the predictive and prescriptive models is a di-

chotomy in the unit of analysis surrounding passenger itineraries. Historical data

on passenger itineraries are available at the monthly level, and so is our prediction.

However, the optimization model considers passenger flows for each specific itinerary,

corresponding to a specific day and time of day. To circumvent this challenge, we

must distribute forecasted monthly passengers across the set of all possible itineraries

𝒮 constructed from the slot requests. Using Equation (5.2), we perform a weighted

distribution across all possible itineraries based on a weighting factor 𝜁𝑝𝑑, which is

forced to zero if itinerary 𝑝 is not provided on day 𝑑.

𝑁𝑝𝑑 =
𝜁𝑝𝑑∑︀

𝑑∈𝐷𝑚

∑︀
𝑝∈𝑃𝑧

𝜁𝑝𝑑
𝑦𝑧𝑚 (5.2)

Where the notation is defined as:

Prediction Model

𝑧 = origin 𝑜, hub ℎ, destination 𝑑, and airline(s)

𝑦𝑧𝑚 = number of passengers forecasted to travel 𝑜, ℎ, 𝑑 in month 𝑚
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Optimization Model

𝑝 = origin 𝑜, hub ℎ, destination 𝑑, airline(s), and time 𝑡

𝑁𝑝𝑑 = number of passengers forecasted to travel on itinerary 𝑝 in day 𝑑

ℳ = set of months indexed by 𝑚, {1, . . . ,𝑀}

𝒟𝑚 = set of days in month 𝑚

𝜁𝑝𝑑 = weight of itinerary 𝑝 in day 𝑑

Equation (5.2) states that the number of passengers forecasted for each time-

specific itinerary 𝑝 on day 𝑑 is given by a weighted distribution of the aggregate

monthly forecast 𝑦𝑧𝑚 across all days the itinerary is requested. As such, the pre-

diction model directs the aggregate forecast for each itinerary 𝑝 across all days in a

month, while the disaggregate time-specific forecasts 𝑁𝑝𝑑 are allowed to deviate from

𝑦𝑧𝑚 (with a zero-sum) based on the weight. Since we cannot estimate the weights

empirically due to the data aggregation, we experiment with four different approaches.

1. Uniform - Monthly passengers for each itinerary 𝑝 are distributed equally

across all days 𝑑 and times 𝑡 that the itinerary is offered (i.e., uniform dis-

tribution). For example, if a given itinerary has a forecast of 𝑦𝑧𝑚 = 1, 000

and the airline slot requests generate ten occurrences of the itinerary during

a month, then each itinerary is allocated a forecast of 𝑁𝑝𝑑 = 100 passengers

regardless of the day and time.

𝜁𝑝𝑑 = 1 (5.3)

2. Seat Capacity - Monthly passengers are distributed proportionally according

to the seat capacity requested for itinerary 𝑝 on day 𝑑 at time 𝑡. This method

assumes the airlines have information regarding the demand profile for each

requested flight (across days and time) and plan seat capacity accordingly.

56



𝜁𝑝𝑑 = SeatCap𝑝𝑑 (5.4)

3. Time-of-Day A - Monthly passengers are allocated according to a time-of-

day distribution empirically estimated in flight scheduling literature [34], that

represents morning and evening departure peaks. We use 𝛼 to supplement the

weight 𝜁𝑝𝑑 according to the distribution. The more favorable periods of the day

for departures (i.e., peak periods) are assigned higher 𝛼 values.

𝜁𝑝𝑑 =

⎧⎨⎩ 1 if itinerary 𝑝 not operated during peak periods

1 + 𝛼 if 𝑝 is operated during peak periods
(5.5)

4. Time-of-Day B - This method uses the same structure as method 3, Equation

(5.5), however we apply a distribution from choice modeling literature [2], in

which only a morning departure peak is represented. In effect, the two time-

of-day methods allocate greater portions of passengers to itineraries that are

assumed to have higher utilities.

While the later methods have clear advantages over the uniform approach, they

all exhibit weaknesses. The seat capacity method neglects the fact that demand is not

the only factor airlines consider when pairing aircraft with slot requests. Additional

considerations arise from fleet and network planning. The time-of-day distributions

may have regional bias and do not capture day-of-the-week factors. In Section 6.4

we conduct sensitivity analysis of the four distribution methods. We found that the

improvements provided by the proposed optimization model are not sensitive to the

differences between these methods. We derived the experimental results reported in

Section 6 using the seat capacity method.
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5.4 Model Description

The proposed optimization model is an extension of the Priority Slot Allocation Model

(PSAM) [37]. PSAM is an integer program with flight-centric objectives. In this

section, we extend the PSAM formulation to consider two passenger-level objectives.

Henceforth, the proposed model is referred to as the priority-based slot allocation

model with passenger considerations (PSAM-Pax).

PSAM-Pax minimizes three objectives in order of priority: (1) total displace-

ment, (2) infeasible passenger connections, (3) and increase in passenger connection

time. Objectives (2) and (3) are not equivalent to maximizing the absolute number

of connections and minimizing the absolute connection time, which would encourage

solutions radically different than the airlines’ requested schedules. Instead, the model

uses the reference itineraries constructed in Section 5.3.1 to measure and minimize

the passenger costs that result from slot allocation. In effect, the model explores mi-

nor deviations from solutions that minimize displacement to capture improvements

to the passenger-level objectives. The model ensures solution feasibility through con-

straints that account for airport declared capacities, WASG (i.e., IATA guidelines),

and passenger connections. The WASG constraints define rules for schedule regular-

ity, aircraft turnaround times, and priorities across groups of slot requests: historic,

change-to-historic, new entrant, and other. The change-to-historic group is further

subdivided into “CR” and “CL” requests, necessitating additional constraints.

Minimize Total Displacement + Infeasible Connections

+ Increase in Connection time

Subject to Airport capacities

WASG constraints

Passenger connections

In addition to assigning airline requests to slots, the model treats the assignment

of passengers to itineraries as a decision variable. We assume that each passenger has

an a priori reference itinerary assignment (and reference connection time if connect-
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ing) established during the passenger distribution procedure, as described in Section

5.3.2. The reference passenger assignment corresponds to the unconstrained solution.

Once constrained, the model might decide to reaccommodate passengers to alternate

itineraries in conjunction with displacement decisions after considering all costs. For

instance, if a reference connecting itinerary becomes infeasible due to displacement,

then all passengers of that connection will be reaccomodated to an alternate itinerary

or rejected if sufficient capacity on a feasible alternate itinerary is unavailable. In

some cases, aircraft capacities may force the model to reaccommodate passengers to

different itineraries.
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5.5 Model Formulation

We now present the proposed model formulation, including a description of the sets,

parameters, variables, objectives, and constraints.

5.5.1 Sets

𝒯 = set of time periods indexed by 𝑡, {1, . . . , 𝑇}

𝒟 = set of days indexed by 𝑑, {1, . . . , 𝐷}

𝒮 = set of slot requests, indexed by 𝑖 and 𝑗, {1, . . . , 𝑆}

𝒮𝑎𝑟𝑟/𝒮𝑑𝑒𝑝 ⊂ 𝒮 = subset of arrivals / departures

𝒮𝐻 ⊂ 𝒮 = subset of “historic” slots

𝒮𝐶𝐻 ⊂ 𝒮 = subset of “change-to-historic” slots

𝒮𝑁𝐸 ⊂ 𝒮 = subset of “new-entrant” slots

𝒮𝑂𝑆 ⊂ 𝒮 = subset of “other” slots

𝒮𝐶𝑅/𝒮𝐶𝐿 ⊂ 𝒮𝐶𝐻 = subset of “CR” / “CL” requests among change-to-historic slots

𝒩 ⊂ (𝒮 × 𝒮) = subset of pairs (𝑖× 𝑗) ∈ 𝒮 × 𝒮 such that there is an aircraft turnaround

between 𝑖 and 𝑗

𝒞 = set of capacity timescales, indexed by 𝑐 (e.g. capacities for 15-minute periods,

60-minute periods, etc.), {1, . . . , 𝐶}

𝒫 = set of passenger itineraries indexed by 𝑝, {1, . . . , 𝑃}

𝒫𝑁/𝒫𝐶 ⊂ 𝒫 = subset of nonstop / connecting itineraries

𝒮𝑝 ⊂ 𝒮 = subset of slot requests 𝑖 ∈ 𝒮 that can accommodate passengers on itinerary 𝑝 ∈ 𝒫

𝒮𝐶
𝑝 (𝑖, 𝑗) ⊂ 𝒮𝑝 = subset of slot requests 𝑖 ∈ 𝒮𝑝 that can accommodate passengers on itinerary 𝑝 ∈ 𝒫𝐶

𝒮𝑁
𝑝 (𝑖, 𝑗) ⊂ 𝒮𝑝 = subset of slot requests 𝑖 ∈ 𝒮𝑝 that can accommodate passengers on itinerary 𝑝 ∈ 𝒫𝑁

PSAM-Pax adds to PSAM a new set of passenger itineraries 𝒫 , which is given

by the itineraries that are built through the itinerary construction procedure. From

𝒫 two subsets are considered: (i) the subset of nonstop itineraries 𝒫𝑁 (i.e., the slot
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coordinated airport is the origin or destination) and (ii) the subset of connecting

itineraries 𝒫𝐶 (i.e., the coordinated airport is used to connect). Within the subset of

slot requests 𝒮, we add two subsets to designate the slot requests that can accommo-

date passengers from itinerary 𝑝 ∈ 𝒫 , specifically the subsets 𝒮𝐶
𝑝 and 𝒮𝑁

𝑝 for nonstop

and connecting itineraries respectively.

5.5.2 Parameters

𝐴𝑖𝑡 =

⎧⎨⎩ 1 if slot 𝑖 ∈ 𝒮 is requested to operate no earlier than period 𝑡 ∈ 𝒯

0 otherwise

𝐻𝑖𝑡 =

⎧⎨⎩ 1 if slot 𝑖 ∈ 𝒮 was operated in the previous year no earlier than period 𝑡 ∈ 𝒯

0 otherwise

𝐵𝑖𝑑 =

⎧⎨⎩ 1 if slot 𝑖 ∈ 𝒮 is requested to operate on day 𝑑 ∈ 𝒟

0 otherwise

𝐶𝑅dep
𝑡𝑑𝑐 /𝐶𝑅arr

𝑡𝑑𝑐/𝐶𝑅tot
𝑡𝑑𝑐 = departure / arrival / total declared runway capacity at the airport in

period 𝑡 ∈ 𝒯 , day 𝑑 ∈ 𝒟, and timescale 𝑐 ∈ 𝒞

𝐿𝐶 = length of timescale 𝑐 ∈ 𝒞 (e.g., 15 minutes, 60 minutes)

𝑇max/𝑇min = maximum / minimum change in the aircraft turnaround time between 𝑖

and 𝑗, as compared to the requested aircraft turnaround time

Δ𝐻𝑖𝑗 = historic aircraft turnaround time between 𝑖 and 𝑗

Δ𝐴𝑖𝑗 = requested aircraft turnaround time between 𝑖 and 𝑗

𝑄𝑖 = number of seats in slot request 𝑖

𝑁𝑝𝑑 = number of passengers predicted to travel in itinerary 𝑝 ∈ 𝒫 on day 𝑑 ∈ 𝒟

𝛿𝑝𝑑 = reference connection time for itinerary 𝑝 ∈ 𝒫𝐶 on day 𝑑 ∈ 𝒟, given by the

slot pair 𝑖, 𝑗 ∈ 𝒮𝐶
𝑝 with the smallest connection time

𝜎𝑝 = minimum feasible connection time for passengers traveling on

itinerary 𝑝 ∈ 𝒫

PSAM-Pax adds four parameters to PSAM, providing information about the seat

capacity of each slot request 𝑄𝑖, the number of passengers traveling on each itinerary

𝑁𝑝𝑑, the reference connection time 𝛿𝑝𝑑, and the minimum feasible connection time 𝜎𝑝.

For this study, we consider 𝜎𝑝 = 45 minutes.
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5.5.3 Decision Variables

𝑌𝑖𝑡 =

⎧⎨⎩ 1 if slot 𝑖 ∈ 𝒮 is rescheduled to operate no earlier than period 𝑡 ∈ 𝒯

0 otherwise

𝑋+
𝑖 /𝑋−

𝑖 = displacement of slot 𝑖 ∈ 𝒮 if rescheduled to a later / earlier time

𝑊+
𝑖 /𝑊−

𝑖 =

⎧⎨⎩ 1 if slot 𝑖 ∈ 𝒮 is displaced to a later / earlier time

0 otherwise

𝑍𝐶
𝑝𝑖𝑗𝑑 = number of passengers on itinerary 𝑝 ∈ 𝒫𝐶 assigned to the arrival slot 𝑖

and departure slot 𝑗 ∈ 𝒮𝐶
𝑝 requested to operate on day 𝑑 ∈ 𝒟

𝑍𝑁
𝑝𝑖𝑑 = number of passengers on itinerary 𝑝 ∈ 𝒫𝑁 assigned to the slot 𝑖 ∈ 𝒮𝑁

𝑝

requested to operate on day 𝑑 ∈ 𝒟

𝑍𝑝𝑑 = number of passengers on itinerary 𝑝 ∈ 𝒫 assigned to the “sink” itinerary

on day 𝑑 ∈ 𝒟; i.e., passengers without a feasible connection

𝜆𝑝𝑖𝑗 =

⎧⎨⎩ 1 if the connection 𝑖, 𝑗 ∈ 𝒮𝐶
𝑝 is infeasible for itinerary 𝑝

0 otherwise

𝜏𝑝𝑖𝑗𝑑 = increase in connection time of passengers for itinerary 𝑝 ∈ 𝒫𝐶 on day 𝑑 ∈ 𝒟,

if accommodated to arrival slot 𝑖 and departure slots 𝑗 ∈ 𝒮𝐶
𝑝

From the PSAM formulation, the first three decision variables specify the pairing

of slot requests to slot times. PSAM-Pax adds the remaining variables to control

three passenger-level decisions: the assignment of passengers from itineraries to slots,

infeasible connections, and increase in connection time.
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5.5.4 Objective Function and Constraints

The proposed optimization model, referred to as PSAM-Pax, is formulated as follows:

min
∑︁
𝑖∈𝒮

∑︁
𝑑∈𝒟

(𝑋+
𝑖 +𝑋−

𝑖 )𝐵𝑖𝑑 +
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟

𝑍𝑝𝑑

+
∑︁

𝑝∈𝒫𝐶

∑︁
𝑖,𝑗∈𝒮𝐶

𝑝

∑︁
𝑑∈𝒟

𝜏𝑝𝑖𝑗𝑑𝑍
𝐶
𝑝𝑖𝑗𝑑 (5.6)

s.t. 𝑌𝑖1 = 1 ∀𝑖 ∈ 𝒮 (5.7)

𝑌𝑖𝑡 ≥ 𝑌𝑖,𝑡+1 ∀𝑖 ∈ 𝒮, 𝑡 ∈ 𝒯 (5.8)∑︁
𝑡∈𝒯

(1−𝐴𝑖𝑡)𝑌𝑖𝑡 = 𝑋+
𝑖 ∀𝑖 ∈ 𝒮 (5.9)

∑︁
𝑡∈𝒯

𝐴𝑖𝑡(1− 𝑌𝑖𝑡) = 𝑋−
𝑖 ∀𝑖 ∈ 𝒮 (5.10)

𝑋+
𝑖 = 𝑋−

𝑖 = 0 ∀𝑖 ∈ 𝒮𝐻 (5.11)

𝑋+
𝑖 ≤ 𝐻𝑖𝑡 −𝐴𝑖𝑡 ∀𝑖 ∈ 𝒮𝐶𝑅, 𝑡 ∈ 𝒯 (5.12)

𝑋−
𝑖 ≤ 𝐴𝑖𝑡 −𝐻𝑖𝑡 ∀𝑖 ∈ 𝒮𝐶𝑅, 𝑡 ∈ 𝒯 (5.13)

𝑊+
𝑖 ≥ 𝑌𝑖𝑡 −𝐴𝑖𝑡 ∀𝑖 ∈ 𝒮𝐶𝐿, 𝑡 ∈ 𝒯 (5.14)

𝑊−
𝑖 ≥ −𝑌𝑖𝑡 +𝐴𝑖𝑡 ∀𝑖 ∈ 𝒮𝐶𝐿, 𝑡 ∈ 𝒯 (5.15)

𝑋+
𝑖 = (𝐻𝑖𝑡 −𝐴𝑖𝑡)𝑊𝑖 ∀𝑖 ∈ 𝒮𝐶𝐿, 𝑡 ∈ 𝒯 (5.16)

𝑋−
𝑖 = (𝐴𝑖𝑡 −𝐻𝑖𝑡)𝑊𝑖 ∀𝑖 ∈ 𝒮𝐶𝐿, 𝑡 ∈ 𝒯 (5.17)∑︁

𝑖∈𝒮arr

𝑠+𝐿𝑐∑︁
𝑡=𝑠

(𝑌𝑖𝑡 − 𝑌𝑖,𝑡+1)𝐵𝑖𝑑 ≤ 𝐶𝑅arr
𝑠𝑑𝑐 ∀𝑡 ∈ 𝒯 | 𝑡 < 𝑇 − 𝐿𝑐 + 1, 𝑑 ∈ 𝒟, 𝑐 ∈ 𝒞 (5.18)

∑︁
𝑖∈𝒮dep

𝑠+𝐿𝑐∑︁
𝑡=𝑠

(𝑌𝑖𝑡 − 𝑌𝑖,𝑡+1)𝐵𝑖𝑑 ≤ 𝐶𝑅dep
𝑠𝑑𝑐 ∀𝑡 ∈ 𝒯 | 𝑡 < 𝑇 − 𝐿𝑐 + 1, 𝑑 ∈ 𝒟, 𝑐 ∈ 𝒞 (5.19)

∑︁
𝑖∈𝒮

𝑠+𝐿𝑐∑︁
𝑡=𝑠

(𝑌𝑖𝑡 − 𝑌𝑖,𝑡+1)𝐵𝑖𝑑 ≤ 𝐶𝑅tot
𝑠𝑑𝑐 ∀𝑡 ∈ 𝒯 | 𝑡 < 𝑇 − 𝐿𝑐 + 1, 𝑑 ∈ 𝒟, 𝑐 ∈ 𝒞 (5.20)

Δ𝐴𝑖𝑗 =
∑︁
𝑡∈𝒯

(𝐴𝑗𝑡 −𝐴𝑖𝑡) ∀(𝑖, 𝑗) ∈ 𝒩 (5.21)

∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡)−Δ𝐴𝑖𝑗 ≥ 𝑇min ∀(𝑖, 𝑗) ∈ 𝒩 (5.22)

∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡)−Δ𝐴𝑖𝑗 ≤ 𝑇max ∀(𝑖, 𝑗) ∈ 𝒩 (5.23)

Δ𝐻𝑖𝑗 =
∑︁
𝑡∈𝒯

(𝐻𝑗𝑡 −𝐻𝑖𝑡) ∀(𝑖, 𝑗) ∈ 𝒩 ∩ (𝒮𝐶𝐻 × 𝒮𝐶𝐻) (5.24)

∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡) ≥ min(Δ𝐴𝑖𝑗 ,Δ𝐻𝑖𝑗) ∀(𝑖, 𝑗) ∈ 𝒩 ∩ (𝒮𝐶𝐻 × 𝒮𝐶𝐻) (5.25)
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∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡) ≤ max(Δ𝐴𝑖𝑗 ,Δ𝐻𝑖𝑗) ∀(𝑖, 𝑗) ∈ 𝒩 ∩ (𝒮𝐶𝐻 × 𝒮𝐶𝐻) (5.26)

∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡)− 𝜎𝑝 +𝑀𝜆𝑝𝑖𝑗 ≥ 0 ∀𝑝 ∈ 𝒫𝐶 , (𝑖, 𝑗) ∈ 𝒮𝐶
𝑝 (5.27)

𝑍𝐶
𝑝𝑖𝑗𝑑 ≤ 𝑁𝑝𝑑(1− 𝜆𝑝𝑖𝑗) ∀𝑝 ∈ 𝒫𝐶 , (𝑖, 𝑗) ∈ 𝒮𝐶

𝑝 , 𝑑 ∈ 𝒟 (5.28)∑︁
𝑖,𝑗∈𝒮𝐶

𝑝

𝑍𝐶
𝑝𝑖𝑗𝑑 +

∑︁
𝑖∈𝒮𝑁

𝑝

𝑍𝑁
𝑝𝑖𝑑 + 𝑍𝑝𝑑 = 𝑁𝑝𝑑 ∀𝑝 ∈ 𝒫, 𝑑 ∈ 𝒟 (5.29)

∑︁
𝑝∈𝒫𝐶

∑︁
𝑗∈𝒮𝐶

𝑝

𝑍𝐶
𝑝𝑖𝑗𝑑 +

∑︁
𝑝∈𝒫𝐷

𝑍𝑁
𝑝𝑖𝑑 ≤ 𝑄𝑖 ∀𝑖 ∈ 𝒮arr, 𝑑 ∈ 𝒟 (5.30)

∑︁
𝑝∈𝒫𝐶

∑︁
𝑖∈𝒮𝐶

𝑝

𝑍𝐶
𝑝𝑖𝑗𝑑 +

∑︁
𝑝∈𝒫𝐷

𝑍𝑁
𝑝𝑗𝑑 ≤ 𝑄𝑗 ∀𝑗 ∈ 𝒮𝑑𝑒𝑝, 𝑑 ∈ 𝒟 (5.31)

𝜏𝑝𝑖𝑗𝑑 ≥
∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡)− 𝛿𝑝𝑑 ∀𝑝 ∈ 𝒫𝐶 , (𝑖, 𝑗) ∈ 𝒮𝐶
𝑝 , 𝑑 ∈ 𝒟 (5.32)

𝜏𝑝𝑖𝑗𝑑 ≥ 0 ∀𝑝 ∈ 𝑃𝐶 , (𝑖, 𝑗) ∈ 𝑆𝐶
𝑝 , 𝑑 ∈ 𝐷 (5.33)

𝑋+
𝑖 , 𝑋−

𝑖 ∈ N0 (5.34)

𝑌𝑖𝑡,𝑊
+
𝑖 ,𝑊−

𝑖 ∈ {0, 1} (5.35)

Equation (5.6) formulates the multi-objective function, which minimizes three

terms: (1) total displacement, (2) number of infeasible passenger connections, and

(3) increase in connection time. Objective (3) is nonlinear due to the multiplication

of two decision variables 𝜏𝑝𝑖𝑗𝑑𝑍
𝐶
𝑝𝑖𝑗𝑑 (the increase in connection time and number of

passengers assigned to each itinerary), thereby significantly increasing the model’s

computational complexity. In section 5.7 we demonstrate a solution approach that

approximates the nonlinear formulation with a sequence of mixed-integer programs.

Constraints (5.7) through (5.26) are taken from the PSAM model [37]. Constraint

(5.7) ensures that all slots are assigned to a time period. Constraint (5.8) ensures

that 𝑌𝑖𝑡 is non-increasing in 𝑡. Constraints (5.9) and (5.10) define the logical relation-

ships between the displacement variables (i.e., each slot request can be scheduled at

the requested time, displaced to a later slot, or displaced to an earlier slot). These

constraints provide valid equalities that provide tight linear programming relaxations

[37]. Constraint (5.11) ensures that historic slots are not displaced. Constraints (5.12)

and (5.13) specify that change-to-historic slots with a “CR” code are assigned to a

time slot between the historical and the requested time slots. Constraints (5.14) to
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(5.17) specify that change-to-historic slots with a “CL” code are assigned to either

the historic time slot or the requested time slot. Constraints (5.18) to (5.20) ensure

that the number of arrivals, departures, and total number of movements, respectively,

scheduled in any time period does not exceed the corresponding runway capacities.

Constraints (5.21) to (5.23) ensures that the aircraft turnaround time (i.e., arriv-

ing and departing flights using the same aircraft) does not increase or decrease by

more than the allowable limits. Constraints (5.24) to (5.26) ensures that the aircraft

turnaround time between two change-to-historic slots remains between the requested

aircraft turnaround time (𝐴𝑖𝑗) and the historic aircraft turnaround time (𝐻𝑖𝑗), as

specified by the WASG.

Constraints (5.27) to (5.33) are the additional constraints necessary to incorpo-

rate passenger-level metrics. Constraint (5.27) defines the feasibility of connections

between slot pairs. Note that 𝜆𝑝𝑖𝑗 is a decision variable that is equal to 1 if a connec-

tion between slots 𝑖 and 𝑗 is infeasible, and 0 otherwise. The parameter 𝑀 denotes a

large number whose minimum value is 𝑇 +𝜎𝑝. Constraint (5.28) ensures that passen-

gers are only assigned to feasible connections. For example, from constraint (5.27), if

connection 𝑖𝑗 is infeasible (i.e.,
∑︀

𝑡∈𝒯 (𝑌𝑗𝑡−𝑌𝑖𝑡)−𝜎𝑝 < 0) then 𝜆𝑝𝑖𝑗 = 1. Consequently

from constraint (5.28), 𝑍𝐶
𝑝𝑖𝑗𝑑 ≤ 0, meaning that zero passengers from itinerary 𝑝 are

assigned to connection 𝑖𝑗 on any day. Constraint (5.29) ensures that all passengers are

assigned to slots (connecting or nonstop) if possible, otherwise to the “sink” option.

Constraints (5.30) and (5.31) ensure that aircraft seat capacities are not exceeded for

arrival and departure slot requests, respectively. Finally, constraint (5.32) computes

the increase in connection time of connecting itineraries. The decision variable 𝜏𝑝𝑖𝑗𝑑 is

given by the difference between the allocated connection time
∑︀

𝑡∈𝒯 (𝑌𝑗𝑡−𝑌𝑖𝑡) and the

reference connection time 𝛿𝑝𝑑 for itinerary 𝑝 ∈ 𝒫 . We restrict 𝜏𝑝𝑖𝑗𝑑 to non-negative

values to ensure the model does not benefit from minimizing connection time beyond

the requested reference connections. Constraints (5.33) to (5.35) define the domain

of the decision variables.
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5.6 Size of the Formulation

We compare the PSAM-Pax model to the baseline PSAM model, which considers

total displacement exclusively and omits passenger-level objectives and constraints.

With the addition of passenger variables and constraints, the size of PSAM-Pax

is significantly larger than PSAM. Table 5.2 reports the number of variables and

constraints for both models. The size of PSAM-Pax scales up with the number

of passenger itineraries resulting in an additional 𝑃𝑆2 binary variables, 𝑃𝑆2𝐷 +

𝑃𝑆𝐷+𝑃𝐷 continuous variables, and 𝑃𝑆2 +3𝑃𝑆2𝐷+2𝑆𝐷+𝑃𝐷 constraints relative

to PSAM. Note that, in theory, 𝑃 scales up quadratically with the number of slot

requests 𝑆. However, the set of passenger itineraries 𝒫 is sparse because only a small

subset of flight pairs in 𝒮 ×𝒮 creates feasible connecting itineraries, according to the

criteria in Section 5.3.1.

Table 5.2: Size of the PSAM and PSAM-Pax models

Metric PSAM PSAM-Pax

# binary variables 𝑆𝑇 + 2𝑆 𝑆𝑇 + 2𝑆 + 𝑃𝑆2

# integer variables 2𝑆 2𝑆
# continuous variables − 𝑃𝑆2𝐷 + 𝑃𝑆𝐷 + 𝑃𝐷
# constraints (upper bound) 4𝑆 + 7𝑇𝑆 + 3𝑇𝐷𝐶 + 6𝑆2 4𝑆 + 7𝑆𝑇 + 3𝑇𝐷𝐶 + 6𝑆2 + 𝑃𝑆2 + 3𝑃𝑆2𝐷 + 2𝑆𝐷 + 𝑃𝐷

5.7 Solution Approximation

The nonlinear combination of decision variables 𝜏𝑝𝑖𝑗𝑑𝑍
𝐶
𝑝𝑖𝑗𝑑 in Objective (3) (i.e., in-

crease in passenger connection time) causes challenges for solving PSAM-Pax. Since

the variables are binary and continuous, we explored the possibility of linearizing the

term by replacing it with a single variable and adding a set of big-M constraints. How-

ever, this transformation increased the size of the problem, and the model was unable

to solve realistic problem instances in acceptable computation times. Therefore, we

propose a solution approach that applies a coordinate descent procedure to approxi-

mate the optimal solution of PSAM-Pax. The procedure relies on the following three

steps:
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1. Minimize displacement - The flight-centric model, referred to as PSAM, is

solved as a single objective optimization without passenger considerations. Slots

are allocated while minimizing total displacement exclusively, corresponding to

PSAM-Pax Objective (1), with the objective value denoted as 𝑋*. While this

step produces a complete solution in terms of a slot schedule, the PSAM-Pax

objective values are only partially identified since passenger costs are unknown.

2. Account for passenger costs – A passenger-centric model, referred to as

Pax, is solved in this step. Given the schedule solution obtained in Step (1),

passengers are assigned to a slot request or slot request pair (for nonstop and

connecting itineraries respectfully) while minimizing PSAM-Pax Objectives (2)

and (3). A weight is applied to prioritize (2) infeasible passenger connections

over (3) increase in passenger connection time. Displacement remains fixed to

the solution from Step (1). Since slots remain fixed according to the Step (1)

solution the only constraints considered are: (5.28)–(5.31). These constraints

ensure passengers are only allocated to feasible connections and aircraft capac-

ities are enforced. Using the variable 𝑌𝑖𝑡, we compute 𝜆𝑝𝑖𝑗 and 𝜏𝑝𝑖𝑗𝑑, which are

treated as fixed parameters during this step. The decision variables during this

step are 𝑍𝐶
𝑝𝑖𝑗𝑑, 𝑍𝑁

𝑝𝑖𝑑, and 𝑍𝑝𝑑. This step results in an initial feasible solution for

PSAM-Pax that minimizes total displacement. The value for total displacement

remains 𝑋* from Step (1), and the corresponding number of infeasible passen-

ger connections is denoted as 𝑍* and the total increase in passenger connection

time Γ*.

3. Solve PSAM-Pax approximation – The schedule solution obtained from the

previous steps is used as a warm start for the complete multi-objective PSAM-

Pax formulation. The 𝜖-constrained method is applied, and Objectives (1) and

(2) are implemented as constraints. The objective values 𝑋* and 𝑍*, obtained

from Steps 1 and 2 respectfully, specify the objective values of reference for the

first and second terms, that is, (1) the total displacement and (2) number of

infeasible passenger connections. We then consider 𝜃 as the allowable percentage

67



increase in total displacement and 𝜑 as the allowable percentage decrease in the

number of infeasible passenger connections. Equations (5.36) and (5.37) are

added to PSAM-Pax formulation to constraint the two objectives. By looping

over vectors of 𝜃 and 𝜑, denoted as 𝑉 𝜃 and 𝑉 𝜑, we identify solutions along the

Pareto frontier.

∑︁
𝑖∈𝑆

∑︁
𝑑∈𝐷

(𝑋+
𝑖 + 𝑋−

𝑖 )𝐵𝑖𝑑 ≤ 𝜃𝑋* (5.36)

∑︁
𝑝∈𝑃

∑︁
𝑑∈𝐷

𝑍𝑝𝑑 ≤ 𝜑𝑍* (5.37)

As such, PSAM-Pax becomes a single-objective minimization of the increase

in passenger connection time, given by the product of two decision variables:

(i) 𝜏𝑝𝑖𝑗𝑑, the increase in connection time for itinerary 𝑝 ∈ 𝒫𝐶 on day 𝑑 ∈ 𝒟, if

accommodated to slots 𝑖 and 𝑗 ∈ 𝒮𝐶
𝑝 , and (ii) 𝑍𝐶

𝑝𝑖𝑗𝑑, the number of passengers on

itinerary 𝑝 ∈ 𝒫𝐶 accommodated to the arrival slot 𝑖 and departure slot 𝑗 ∈ 𝒮𝐶
𝑝

requested to operate on day 𝑑 ∈ 𝒟. To reduce the computational expense,

we replace the nonlinear objective function with the following weighted sum

expression:

min𝛼
∑︁
𝑝∈𝑃𝐶

∑︁
𝑖,𝑗∈𝑆𝐶

𝑝

∑︁
𝑑∈𝐷

𝜏 ′𝑝𝑖𝑗𝑑𝑍
𝐶
𝑝𝑖𝑗𝑑 + (1 − 𝛼)

∑︁
𝑝∈𝑃𝐶

∑︁
𝑖,𝑗∈𝑆𝐶

𝑝

∑︁
𝑑∈𝐷

𝜏𝑝𝑖𝑗𝑑𝑍
′𝐶
𝑝𝑖𝑗𝑑 (5.38)

Where 𝜏 ′𝑝𝑖𝑗𝑑 and 𝑍 ′𝐶
𝑝𝑖𝑗𝑑 are approximations for 𝜏𝑝𝑖𝑗𝑑 and 𝑍𝐶

𝑝𝑖𝑗𝑑, respectively, ob-

tained by Step (2), and 𝛼 is a calibration parameter. Note that, when 𝛼 = 1,

then the second term of Equation (5.38) becomes zero, and the increase in

connection time of itinerary connections 𝜏𝑝𝑖𝑗𝑑 is approximated by the values

computed in Step (2). This may provide an adequate approximation for small

increases in displacement since, in this case, slots will not deviate much from

the PSAM solution (i.e., displacement is minimized). However, when larger

increases are allowed, then more flexibility to slot displacements is given, and

therefore the value of 𝜏𝑝𝑖𝑗𝑑 computed in Step (2) may differ significantly from
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the optimal value of the nonlinear PSAM-Pax. Conversely, when 𝛼 = 0 the

first term of Equation (5.38) becomes zero, and the number of passengers as-

signed to each connection 𝑍𝐶
𝑝𝑖𝑗𝑑 is approximated by the values computed in Step

(2). This tends to provide impractical solutions since passengers can freely be

assigned to remote slots at no cost. To evaluate the impact of small values of

alpha, we consider a minimum value of 0.001. In Section 6.4 we present results

that indicate the best solutions are achieved with intermediate 𝛼 values, as they

provide a balance between the two approximated terms.

Step (3) may be repeated over multiple iterations, using the convergence of Γ*

or maximum iterations as stopping criteria. The solution obtained by the previous

iteration is used for the warm start, and the parameters 𝜏 ′𝑝𝑖𝑗𝑑 and 𝑍 ′𝐶
𝑝𝑖𝑗𝑑 are updated.

Note that we are iterating over multiple mixed-integer linear programs to solve a

non-convex (bilinear) mixed-integer quadratic program. However, we find that the

benefits of iteration are marginal, as a near-optimal solution is identified by the first

approximation.

Algorithm 1 summarizes our coordinate descent procedure to solve PSAM-Pax.

Corresponding to Step (3), the for-loop builds the Pareto frontier by looping through a

vector of 𝜖-constraints for Objectives (1) and (2), while the approximation of Objective

(3) is minimized. Within this process, the while-loop iterates over the approximation,

seeking improvements to the solutions.
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Algorithm 1 Algorithm to solve PSAM-Pax approximation and identify solutions
along the Pareto frontier
– Inputs: airport declared capacities, slot requests, passenger itineraries, passenger flow predictions,

calibration parameter 𝛼, vectors 𝑉 𝜃 and 𝑉 𝜑 establishing the 𝜖-constrained conditions
– Solve PSAM (PSAM-Pax Objective 1):

min
𝑋+,𝑋−

∑︁
𝑖∈𝒮

∑︁
𝑑∈𝒟

(︀
𝑋+

𝑖 +𝑋−
𝑖

)︀
𝐵𝑖𝑑 s.t.: Eq. (5.7)–(5.26), (5.34)–(5.35)

– Update the variable 𝑌𝑖𝑡 ∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇 and total displacement 𝑋*

– Using 𝑌𝑖𝑡, estimate passenger costs:

𝜆𝑝𝑖𝑗 =

{︃
1 if

∑︀
𝑡∈𝒯 (𝑌𝑗𝑡 − 𝑌𝑖𝑡)− 𝜎𝑝 > 0

0 otherwise
(Equation (5.27))

𝜏𝑝𝑖𝑗𝑑 = max

(︃∑︁
𝑡∈𝒯

(𝑌𝑗𝑡 − 𝑌𝑖𝑡)− 𝛿𝑝𝑑, 0

)︃
(Equations (5.32) and (5.33))

– Solve Pax (PSAM-Pax Objectives 2 & 3), where 𝑀 is a large number and 𝑌𝑖𝑡, 𝜆𝑝𝑖𝑗 , and 𝜏𝑝𝑖𝑗𝑑 are
treated as parameters:

min
𝑍𝑝𝑑,𝑍𝐶

𝑝𝑖𝑗𝑑

𝑀
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟

𝑍𝑝𝑑 +
∑︁

𝑝∈𝒫𝐶

∑︁
𝑖,𝑗∈𝒮𝐶

𝑝

∑︁
𝑑∈𝒟

𝜏𝑝𝑖𝑗𝑑𝑍
𝐶
𝑝𝑖𝑗𝑑 s.t.: Eq. (5.28)–(5.33)

– Update the number of passengers assigned to each itinerary 𝑍𝐶
𝑝𝑖𝑗𝑑, 𝑍

𝑁
𝑝𝑖𝑑, 𝑍𝑝𝑑, the total number of

infeasible passenger connections 𝑍*, and the total increase in passenger connection time Γ*
1

– Initialize 𝑛 = 1 , 𝑍 ′𝐶
𝑝𝑖𝑗𝑑 = 𝑍𝐶

𝑝𝑖𝑗𝑑, and 𝜏 ′𝑝𝑖𝑗𝑑 = 𝜏𝑝𝑖𝑗𝑑
for 𝜃 = 𝑉 𝜃 and 𝜑 = 𝑉 𝜑 do

while Γ*
𝑛 ̸= Γ*

n−1 or 𝑛 < 𝑛max do
– Solve PSAM-Pax approximation (Equation 5.38):

min
𝑍𝐶

𝑝𝑖𝑗𝑑,𝜏𝑝𝑖𝑗𝑑
𝛼
∑︁

𝑝∈𝑃𝐶

∑︁
𝑖,𝑗∈𝑆𝐶

𝑝

∑︁
𝑑∈𝐷

𝜏 ′𝑝𝑖𝑗𝑑𝑍
𝐶
𝑝𝑖𝑗𝑑+(1−𝛼)

∑︁
𝑝∈𝑃𝐶

∑︁
𝑖,𝑗∈𝑆𝐶

𝑝

∑︁
𝑑∈𝐷

𝜏𝑝𝑖𝑗𝑑𝑍
′𝐶
𝑝𝑖𝑗𝑑 s.t.: Eq. (5.7)–(5.37)

– Update the total increase in passenger connection time Γ*
𝑛 and PSAM-Pax decision

variables 𝐷𝜃𝜑
𝑛

(︁
𝑌𝑖𝑡, 𝑍

𝐶
𝑝𝑖𝑗𝑑, 𝑍

𝑁
𝑝𝑖𝑑, 𝑍𝑝𝑑, 𝜆𝑝𝑖𝑗 , 𝜏𝑝𝑖𝑗𝑑

)︁
– Update 𝑍 ′𝐶

𝑝𝑖𝑗𝑑 = 𝑍𝐶
𝑝𝑖𝑗𝑑 and 𝜏 ′𝑝𝑖𝑗𝑑 = 𝜏𝑝𝑖𝑗𝑑

– 𝑛 = 𝑛+ 1

end while
– Return 𝐷𝜃𝜑

𝑛 with the minimum Γ*
𝑛

end for
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Chapter 6

Experimental Results

In this chapter, we implement the PSAM-Pax approximation, as described in Sec-

tion 5.7, at Singapore Changi Airport using slot requests for the 2019 summer season

(April-October). The results indicate the potential for PSAM-Pax to provide better

solutions than a model focused exclusively on schedule displacement. By controlling

the trade-off between objectives, we use PSAM-Pax to analyze the effects of increases

in displacement on the passenger-level objectives. Recommended solutions are em-

phasized with bold font in the tables and a shaded region on the Pareto frontier. A

synthesis of the benefits provided by these solutions is provided in Section 6.3.

6.1 Computation Performance

Solving the complete slot allocation problem for a season at one of the busiest

schedule-coordinated airports requires considerable computational resources. To re-

duce the expense while still providing meaningful results, we consider only a single

declared capacity: total movements for one hour. In reality, Changi has additional

capacities for different types of movements (i.e., arrivals versus departures) and for

different timescales (e.g., 5 minutes, 15 minutes). Considering these additional capac-

ities increases computation time beyond 24-hours. Since the single capacity version of

the problem is less constrained, there will be less displacement, and therefore should

provide a lower bound on the benefits of considering passenger-level metrics.
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Under single-capacity conditions, the computation time for Step (1) of the solution

approximation (i.e., PSAM) is approximately 2 hours. Computation time for the

remaining steps (2) and (3) ranges from 36 to 523 minutes, depending on the modeling

constraints. The PSAM solution only needs to be computed once to provide an initial

feasible solution, so the tables in this chapter report only the additional computation

time necessary for PSAM-Pax.

As shown by the following tables, the model requires less time to return solutions

when the 𝜖 (i.e., objective) constraints are more strict. As the objective constraints

are relaxed, the feasible region becomes larger, thereby increasing the space the al-

gorithm must search for solutions. We found that the best solutions correspond to

configurations that have a computation time of 64 to 201 minutes. The results pro-

vided in this section are obtained without iterating over Step 3, as the benefits of

iteration were marginal.

6.2 Main Results

To understand the relationship between the three PSAM-Pax objectives—(1) total

displacement, (2) infeasible passenger connections, (3) and increase in passenger con-

nection time—we solve PSAM-Pax while using the 𝜖-constrained method to allow for

incrementally higher levels of schedule displacement. Table 6.1 reports the objective

values calculated relative to the unconstrained problem and percent changes in com-

parison to the baseline PSAM solution. For these results, we weight Objective (2)

much higher than Objective (3). The first row provides a reference for comparison as

it describes the PSAM solution (obtained by Step (1) of the solution approximation),

which minimizes displacement exclusively without considering passenger objectives.

While the PSAM solution minimizes displacement, 2065 passenger connections be-

come infeasible, and connection time is increased by 1,826,660 passenger minutes.

In the subsequent rows of Table 6.1, displacement is relaxed from the baseline to

capture improvements in Objectives (2) and (3). For the second row, we constrain

displacement to the same value generated by Step (1), and optimize the two passenger
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Table 6.1: Objective values for PSAM-Pax solutions compared to the baseline PSAM
solution

Tot. Disp. Inf. Conn. Inc. Conn. Time CPU Time
Model (min) (pax) (pax-min) (min)

PSAM 157,390 0% 2,065 0% 1,826,660 0% -

157,390 +0.00% 2,057 -0.39% 1,826,660 0.00% 46
157,783 +0.25% 1,714 -17.00% 1,819,155 -0.41% 48
158,177 +0.50% 1,352 -34.53% 1,518,490 -16.87% 71

158,964 +1.00% 992 -51.96% 1,534,890 -15.97% 61
160,538 +2.00% 871 -57.82% 1,623,690 -11.11% 48

PSAM 163,686 +4.00% 406 -80.34% 1,751,925 -4.09% 69
-Pax 166,833 +6.00% 148 -92.83% 1,666,485 -8.77% 65

169,981 +8.00% 106 -94.87% 1,991,910 +9.05% 103
173,129 +10.00% 46 -97.77% 2,051,855 +12.30% 114
180,999 +15.00% 0 -100.00% 1,508,095 -17.44% 84
204,607 +30.00% 0 -100.00% 914,850 -49.92% 115
236,085 +50.00% 0 -100.00% 680,780 -62.73% 124

objectives. The improvement to infeasible connections (-0.39%) indicates that for the

same level of displacement (157,390 minutes) it is possible to find a slightly better

solution using the PSAM-Pax approach. In terms of the Pareto frontier, the solution

in row two dominates the solution produced by optimizing displacement alone. By

considering passengers, it is possible to reduce passenger-level costs without increasing

displacement. However, the improvements are minor, with only eight passengers

regaining connections that were rendered infeasible when optimizing displacement

alone. The model demonstrates more substantial benefits to the passenger objectives

with further relaxations of displacement in the subsequent rows.

In rows 3–13 of Table 6.1, we relax the constraint on displacement and move along

the Pareto frontier away from the anchor point identified by Step (1) of the solution

approximation. Allowing a 1% increase in total displacement, we find a solution that

decreases infeasible connections by approximately 52% and reduces the increase in

connection time by approximately 16%. This is a recommended solution, which we

will discuss in Section 6.3.

Since we are weighting Objective (2) over Objective (3), we observe an inflection
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point between rows 4 and 5, where continued improvements to infeasible connections

are only possible by increasing connection time. The solutions beyond row 5 sacrifice

efficiency to maintain connections, as seen in Case (B) (Figure 5-3) of the demonstra-

tion of concept. For instance, if we increase total displacement by 10%, we achieve a

nearly 98% reduction for Objective (2), but Objective (3) increases by approximately

12%. Airline acceptability of the schedule is an additional concern at higher levels of

displacement. These results underscore the importance of identifying an appropriate

balance between the multiple objectives.

Table 6.2: Multi-objective tradespace

Infeasible Connections

2,065 1,859 1,652 1,239 826 413 0 CPU (min)
Tot. Disp. 0% -10% -20% -40% -60% -80% -100% Min Max

157,390 1,826,660 inf inf inf inf inf inf 36 36
+0% +0%

157,783 1,711,620 1,715,445 inf inf inf inf inf 38 39
+0.25% -6.30% -6.09%
158,177 1,379,325 1,392,475 1,399,620 inf inf inf inf 46 59
+0.5% -24.49% -23.77% -23.38%

158,570 1,305,880 1,314,015 1,335,550 1,362,345 inf inf inf 43 104
+0.75% -28.51% -28.06% -28.69% -25.42%
158,963 1,211,475 1,219,560 1,235,340 1,301,575 inf inf inf 44 110
+1% -33.68% -33.24% -32.37% -28.75%

160,537 1,082,340 1,088,990 1,111,370 1,147,755 1,245,875 1,753,740 inf 47 201
+2% -40.75% -40.38% -39.16% -37.17% -31.79% -3.99%

163,685 911,785 920,095 940,245 977,515 1,057,750 1,262,945 inf 46 125
+4% -50.08% -49.63% -48.53% -46.49% -42.09% -30.86%

166,833 774,920 778,150 785,540 862,315 947,960 1,093,670 inf 51 105
+6% -57.58% -57.40% -57.00% -52.79% -48.10% -40.13%

169,981 714,525 720,095 726,380 759,110 855,575 968,610 inf 55 116
+8% -60.88% -60.58% -60.23% -58.44% -53.16% -46.97%

173,129 626,830 663,605 663,610 713,585 791,990 890,020 2,051,855 57 338
+10% -65.68% -63.67% -63.67% -60.93% -56.64% -51.28% +12.33%

180,998 533,535 536,125 583,325 617,790 649,155 732,440 1,508,095 69 255
+15% -70.79% -70.65% -68.07% -66.18% -64.46% -59.90% -17.44%

204,607 262,425 295,455 282,565 339,325 385,120 461,975 914,850 84 453
+30% -85.63% -83.83% -84.53% -81.42% -78.92% -74.71% -49.92%

236,085 184,745 184,745 184,720 199,295 255,120 261,350 680,780 71 523
+50% -89.89% -89.89% -89.89% -89.09% -86.03% -85.69% -62.73%

Min CPU (min) 36 43 59 64 86 84 321
Max CPU (min) 88 84 92 119 453 338 523

Table 6.2 displays the minimized connection time increases when constraining dis-

placement and infeasible connections to specified levels. To develop these results, we

applied the 𝜖-constrained method as described in Step (3) of Section 5.7. The results

indicate that the relationship between displacement and the passenger objectives is
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nonlinear. We are able to achieve significant improvements to infeasible connections

and connection time when traded for relatively small increases in displacement. For

example, with a 1% increase in displacement, we are able to reduce connection time

by 33% while holding infeasible connections fixed. By adjusting the 𝜖-constrained

conditions, we find another solution at 1% displacement that provides a 40% reduc-

tion of infeasible connections and approximately 29% reduction in connection time. It

is relatively easy to reduce the number of infeasible connections to 80% by increasing

total displacement to 2%. However, making all connections feasible comes at the cost

of an increase of at least 10% in total displacement and connection time increase of

13%. Recommended solutions are emphasized in bold and will be discussed in Section

6.3.

Figure 6-1 provides a three-dimensional tradespace to visualize the results pro-

vided by Table 6.2. While the utopia for displacement and connection time is at the

bottom left, infeasible connections improve as we move toward the top right. As we

improve any two of the objectives, the third becomes worse. The lines represent the

Pareto frontier, with possible solutions represented as points. Recommended solu-

tions are shown in the yellow shaded region and correspond to the bold solutions in

Table 6.2.

The same trends observed in aggregate results are visible when examining indi-

vidual itineraries. To observe the effects on individual itineraries, we analyze a subset

of those with the highest passenger costs when displacement is optimized in isolation.

Of the itineraries that have an increase in connection time greater than 100 minutes

under the baseline PSAM solution, we select 15 that are expected to transport the

most passengers over the season. In Table 6.3 we report the increase in connection

time for this set of itineraries. The columns describe the scenarios as we increase

displacement and infeasible connections relative to the baseline.

The itineraries originating at EWR involve a high-profile flight operated by Sin-

gapore Airlines known as the longest commercial flight in distance and time. Given

the circumstances of this flight, the gravity of displacement decisions that indiscrim-

inately eliminate or lengthen connections becomes clear. Direct flights from North
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Figure 6-1: Three-dimensional Pareto frontier

America to many locations in Southeast Asia are unavailable, so maintaining feasible

connections for key flights such as this becomes even more important.

The first column of results (displacement 0% and infeasible connections 0%) re-

flects the baseline PSAM solution obtained by Step (1) of the solution approxima-

tion, which focuses exclusively on minimizing total displacement. Under this solution,

four important connecting itineraries become infeasible (i.e., EWR-DPS, MFM-PDG,

IPH-SUB, and MFM-SUB), and the connections that remain feasible have relatively

large increases to their connection time. Under the second scenario, displacement in-

creases to 2%, and we find that only two connections are infeasible and the increases

in connection time are substantially less. In Figure 6-2 we plot the first two scenarios

for all itineraries and label those in the subset. We observe the subset itineraries in

the top right of Figure 6-2a, with high values for Objective (3) and many passengers.

When we relax displacement in Figure 6-2b, we observe improvements to Objective
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Table 6.3: Results for high-impact itinerary subset

Objective Value Scenarios

Displacement: 0% 2% 4% 6% 8% 10% 10%
Infeasible Conn.: 0% 0% 0% 0% 0% 0% 20%

Origin Dest Pax Increase in Conn. Time (min)

EWR CGK 738 175 0 0 0 0 0 0
EWR DPS 626 inf 0 0 0 0 0 0
EWR BKK 609 125 0 0 0 0 0 0
PEN SUB 477 105 45 inf inf inf inf 0
EWR BKK 438 80 0 0 0 0 0 0
SGN SUB 385 100 40 40 40 0 0 0
MFM PDG 147 inf 105 105 45 105 0 105
HKT SUB 140 105 45 inf 45 0 inf 0
SEA CGK 138 190 inf inf inf inf inf 190
IPH SUB 137 inf 45 45 45 0 0 0

MFM SUB 137 inf 45 45 45 0 0 0
TAO SUB 118 105 45 45 45 0 0 0
SEA BKK 114 130 130 130 130 130 95 130
MNL PDG 113 105 inf inf inf inf inf 105
TSN SUB 102 105 45 45 45 0 0 0

(3) for all itineraries, including some that were infeasible in the baseline solution.

In general, this trend continues in the subsequent columns of Table 6.3 as displace-

ment is relaxed. In the final scenarios, we reduce infeasible connections by 20% while

maintaining displacement at 10%, which causes the connection time increase for some

itineraries to return to their baseline values.

Note that for this set of itineraries, the metrics at 4% displacement are worse

than at 2% displacement. While this may seem counter-intuitive, this sample does

not fully capture the trade-offs that the optimizer is making. At 4% displacement,

the model found it more valuable to improve other itineraries at the expense of some

of those included in the sample.
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(a) 0% displacement, 0% infeasible connections
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(b) 2% displacement, 0% infeasible connections

Figure 6-2: PSAM versus PSAM-Pax solutions for high-volume itinerary subset

6.3 Recommended Solutions

While it is impractical to suggest a single solution, we emphasize a range of solutions

in Table 6.1, Table 6.2, and Figure 6-1. Note that the modeling parameters that

produced these solutions are specific to Changi Airport. As a large hub airport with a

high percentage of connections and relatively high schedule displacement, Changi has

the potential to trade small percentages of displacement to decrease costs and enable

better itineraries for a large number of connecting passengers. The recommended

solutions have a total displacement increase of 0.75-2% relative to the baseline (i.e.,

PSAM) solution. Given the small percentage increase in displacement, these solutions

reduce infeasible passenger connections by 40-60% and cut connection time increases

by 16-37%.

The recommended solutions were selected for several reasons. First, the solutions

are Pareto optimal, meaning that one of the objectives cannot be improved without

worsening one or both of the other objectives. Second, we believe a 2% or lower

optimality gap for displacement would be acceptable to the airlines. Third, the rec-

ommended solutions lie in a region of the tradespace where the relationships between

displacement and the passenger-centric metrics are highly nonlinear, as shown in Fig-

ure 6-1. This means that we achieve the largest reductions in passenger costs for
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small unit increases to displacement.

6.4 Robustness Checks

To evaluate the impact of important model parameters on PSAM-Pax performance,

we conduct sensitivity analysis of the calibration parameter 𝛼. We use the 𝛼 pa-

rameter in a weighted-sum approach during Step (3) of the solution approximation to

balance two terms representing the nonlinear objective (i.e., Objective (3), increase in

passenger connection time). Table 6.4 displays the percent decrease in Objective (3)

with respect to the baseline PSAM solution under different values of 𝛼. The largest

improvements to Objective (3) for each level of displacement are shown in bold. We

observe that the solutions are not very sensitive to 𝛼 for values between 0.3 and 0.6,

but solution quality decreases as 𝛼 approaches the extremes (i.e., 0 and 1). The best

solutions are achieved with an intermediate 𝛼 value, as it provides a balance between

the two approximated terms.

Table 6.4: Sensitivity of the calibration parameter 𝛼

𝛼 value

Tot. Disp. 0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

+0.25% -6% -6% -6% -6% -6% -6% -6% -4% -2% -3% -3%
+0.5% -7% -10% -10% -24% -24% -24% -24% -24% -24% -24% -23%
+0.75% -11% -12% -28% -29% -30% -30% -30% -30% -27% -27% -25%
+1% -12% -34% -34% -34% -34% -34% -34% -30% -27% -26% -24%
+2% -21% -22% -41% -41% -42% -41% -42% -39% -36% -22% -20%
+4% -31% -32% -50% -50% -51% -51% -52% -48% -43% -34% -19%
+6% -37% -38% -58% -58% -58% -58% -58% -57% -47% -43% -5%
+8% -41% -61% -61% -61% -62% -59% -59% -59% -52% -46% -1%
+10% -57% -58% -64% -66% -65% -62% -62% -64% -57% -55% 32%
+15% -52% -56% -71% -71% -72% -71% -69% -68% -62% -61% 9%
+30% -67% -61% -60% -86% -85% -83% -78% -76% -68% -72% 7%
+50% -72% -82% -90% -90% -90% -89% -88% -85% -79% -82% 1%

Min CPU (min) 40 51 32 36 43 30 39 42 39 45 71
Max CPU (min) 116 101 105 88 104 103 95 78 82 110 298

As described in Section 5.3.2, there are several logical distributions we can use to

disaggregate the passenger flow predictions. To determine if the results are robust to

uncertainty in this process, we evaluate an array of solutions under the alternative dis-
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tributions and display our findings in Table 6.5. The table shows the objective values

for five levels of increasing displacement and two levels of infeasible passenger connec-

tions. First, we report the results for the Seat Capacity distribution, which was used

to produce the results reported in this chapter. While keeping the solution fixed, we

recalculate the objective values under the alternative distributions: Uniform, Time-

of-Day A, and Time-of-Day B. The results are shown to have insignificant variation

between the four distribution methods.

Table 6.5: Sensitivity of passenger distribution method

Seat Capacity Uniform Time-of-Day A Time-of-Day B

Tot. Disp. Inf. Con. Inc. Con. Inf. Con. Inc. Con. Inf. Con. Inc. Con. Inf. Con. Inc. Con.
(pax) (pax-min) (pax) (pax-min) (pax) (pax-min) (pax) (pax-min)

0% 2,065 182,660 1,805 1,865,015 1,800 1,824,510 1,806 1,937,575

1,082,340 1,043,925 1,066,285 1,080,685
2% -40.75% -44.03% -40.66% -44.24%

911,785 875,985 895,815 911,665
4% -50.08% -53.03% -49.80% -52.95%

2,065 774,920 1,805 725,340 1,800 748,105 1,806 748,405
6% 0% -57.58% 0% -61.11% 0% -57.72% 0% -61.37%

714,525 654,495 693,160 671,360
8% -60.88% -64.91% -60.66% -65.35%

626,830 628,880 684,975 629,160
10% -65.68% -66.28% -61.10% -67.53%

1,111,370 1,104,545 1,129,810 1,140,785
2% -39.16% -40.77% -38.08% -41.12%

940,245 936,610 959,340 971,765
4% -48.53% -49.78% -47.42% -49.85%

1,652 785,540 1,444 778,975 1,439 805,915 1,445 801,875
6% -20% -57.00% -20% -58.27% -20% -55.85% -20% -58.61%

726,380 709,925 752,950 726,695
8% -60.23% -61.95% -58.73% -62.49%

663,610 647,875 683,630 660,430
10% -63.67% -65.26% -62.53% -65.91%

The consistency in the results demonstrates that the improvements provided by

PSAM-Pax are not sensitive to the differences between the distributions. This is a

positive indicator of the robustness of the optimization model.
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Chapter 7

Conclusion

7.1 Summary of the Results

Airport congestion is an escalating global problem that manifests itself in delays that

generate costs for airlines and passengers on the order of billions of dollars annually.

Unable to expand capacity due to resource constraints, many of the most congested

airports globally turn to slot allocation. Slot allocation reduces delay by leveling

the demand profile, recognizing that delay increases nonlinearly as airport utilization

approaches saturation [32]. IATA has formalized slot guidelines (i.e., WASG) for

schedule-coordinated airports, but the execution of initial slot allocation is often

oversimplified and can have significant implications for airlines and passengers.

As a highly complex scheduling problem, slot allocation is well suited for integer

programming. While previous models have successfully captured the constraints asso-

ciated with slot allocation and produced solutions for the largest schedule-coordinated

airports, they commonly focus on flight-centric objectives. By minimizing displace-

ment, previous models can produce schedules that align closely with the airline re-

quests but do not entirely account for the costs of slot allocation. Focusing exclusively

on displacement will indiscriminately increase passenger connection times or eliminate

connections altogether, which increases costs for passengers.

The results of our research indicate that the relationship between schedule dis-

placement and passenger costs are nonlinear. A limited increase in displacement
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from the point of single-objective optimality can yield significant improvements to

passenger-level metrics, such as infeasible connections and connection time. In this

case, a slot optimization model that incorporates passenger considerations can enable

better itineraries—reducing costs for passengers and improving airline revenues—

especially at large hub airports.

While incorporating passenger-level metrics requires forecasting, our results indi-

cate that passenger flows can be accurately predicted. Historical itinerary and socioe-

conomic data is available to train machine learning models, which can leverage large

datasets with numerous features, and are flexible to changes in the transportation

network. The most important predictors for existing itineraries are historical passen-

ger counts at the itinerary and market levels, route efficiency, distance, GDP of the

airport catchment areas, and itinerary type (nonstop versus connecting). Itinerary

type becomes the most important predictor for new itineraries, as historical passenger

counts are unavailable.

Of the prediction methods tested, random forests provide the best performance.

Applying cross-validation for feature selection and parameter tuning, we found that

random forests performed best with a subset of 17 features, but performance remained

high with as few as ten features. When tested on new data, random forests achieved

a mean absolute error (MAE) of 121 passengers per month, suggesting excellent pre-

dictive performance. The performance of random forests dropped only slightly to an

MAE of 129 passengers per month on new itineraries, providing an informative fore-

cast even when historical passenger counts are unavailable. k -NN performed nearly as

well as random forests, but the linear models performed poorly on new itineraries. In

contrast to linear models, the parametric models provide flexibility to leverage linear

and nonlinear relationships with continuous features available for new itineraries.

Integrating the prediction and optimization models requires constructing all pos-

sible itineraries, identifying reference itineraries to measure the costs of reaccomodat-

ing passengers on alternatives, and disaggregating the forecasts. After experimenting

with four methods of distributing aggregate passengers over specific itineraries, we

found that the optimization results are robust to this procedure.
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The experimental results demonstrated that focusing exclusively on flight-level

metrics when conducting slot allocation will generate sub-optimal solutions from the

standpoint of passengers. Incorporating passenger-level objectives illuminates op-

portunities for trade-offs that would otherwise be overlooked. Analysis of the 2019

summer season at Singapore Changi Airport demonstrated that a slot optimizer fo-

cused exclusively on total displacement would have eliminated 2,065 passenger con-

nections and increased connection time by 1,826,660 passenger minutes compared to

the unconstrained assignment. Minimizing displacement alone resulted in a Pareto-

dominated solution that could be improved from the passengers’ perspective without

increasing displacement. By including objectives to minimize infeasible passenger

connections and increasing passenger connection time, we found that schedule dis-

placement exhibits a nonlinear relationship with the passenger-level objectives. This

enabled us to trade small increases in displacement for considerable improvements

to the passenger-level metrics. Applying the PSAM-Pax approach, we were able to

decrease the number of infeasible passenger connections by approximately 52% and

reduce passenger connection time increases by approximately 16% with only a 1%

increase in total displacement, compared to the baseline solution offered by PSAM.

The interdependence of displacement and passenger decisions created a nonlinear

term in the PSAM-Pax objective function that prevented direct implementation of

the model. However, we were able to produce solutions by approximating the ob-

jective function with a coordinate descent procedure. The solution approximation

produces solutions along the Pareto frontier for a large airport in less than five hours

of computation time. We used a weighted sum approach to approximate the nonlinear

term and found that the best solutions are achieved when the calibration parameter

is at intermediate values.

7.2 Contributions of the Thesis

The major contributions of this thesis are:

∙ Using a predict-then-optimize framework, we propose an original approach to
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airport slot allocation that incorporates passenger considerations.

∙ Machine learning methods are applied to predict passenger flows across a net-

work of flights. We achieve excellent predictive performance using random

forests, even on new itineraries that did not exist in the training observations.

∙ To measure passenger costs associated with slot allocation, months before the

day of operations, we demonstrate procedures for distributing passenger fore-

casts across potential itineraries constructed from slot requests.

∙ The proposed multi-objective optimization model allocates slots according to

airport capacity constraints and the WASG while minimizing one flight-centric

metric—schedule displacement—and two passenger-centric metrics—infeasible

connections and connection time.

∙ A solution approach is formulated to efficiently solve the proposed optimization

model for the largest schedule-coordinated airports.

∙ The proposed optimization model, referred to as PSAM-Pax, is implemented

using real-world data from Singapore Changi Airport to create slot allocation

solutions that achieve Pareto optimality in acceptable computation times. The

results indicate that PSAM-Pax can provide significant improvements to slot

allocation by trading small increases in schedule displacement for considerable

improvements to passenger-level metrics.

7.3 Further Research

As are most real-world problems, airport slot allocation is multi-objective, which

leads to many acceptable solutions arrayed along the Pareto frontier. While the

PSAM-Pax model quantifies the trade-offs between passenger-level and flight-level

objectives, the proper balance remains an open research question. Future studies

could apply PSAM-Pax to investigate and recommended proper weighting between

objectives based on specific airport features. Relevant features may include annual
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traffic, delay, percentage of connecting itineraries, schedule displacement, and pas-

senger characteristics. For a large transfer airport with high displacement, such as

Singapore Changi, passenger-level metrics probably deserve greater weight. In con-

trast, a non-transfer airport or one with low displacement may allocate greater weight

towards minimizing schedule displacement. By identifying solutions along the Pareto

frontier, PSAM-Pax provides a means to facilitate conversations with stakeholders,

but additional research is required to identity the “best” solution given specific airport

characteristics.

For the application of PSAM-Pax in this thesis, we reduce computational expense

by considering a single declared capacity for the airport. The solution approach should

be strengthened to solve PSAM-Pax with multiple capacity constraints, such as those

for various timescales and types of operation. Heuristic search techniques, which use

a combination of randomness and rules to guide the search for global optima, have

demonstrated success in related studies. The large-scale neighborhood search method

developed in [36] provides a basis for this solution approach.

With improved algorithms and advanced computing power, it becomes possible

to expand the modeling framework to account for multi-airport systems. Since the

PSAM-Pax is limited to a single airport, it neglects network effects. Future work could

analyze multiple airports to understand interactions and work to optimize groups of

schedule-coordinated airports simultaneously.

Another direction for future research is to improve the treatment of passenger

demand. The modeling framework used in this thesis does not account for supply-

demand interactions. Rather than treating passenger flows as an elastic function

of demand, PSAM-Pax accepts the forecast as a fixed parameter. In reality, pas-

senger demand influences airline slot requests, and displacement decisions influence

demand. This thesis demonstrated how incorporating passenger considerations into

slot allocation can enable improved itineraries, so it is reasonable that the quality of

displacement decisions will affect the overall demand level and how the demand is

distributed across itineraries.

One option to incorporate supply-demand interactions is through a feedback loop
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in the modeling framework. This would involve expanding the prediction model to

include supply-related variables, which are output by the optimization model. The

prediction model uses these variables to evaluate the quality of itineraries and updates

the forecasts accordingly. The feedback loop enables the models to iterate between

supply optimization and demand estimation until convergence. Decisions regarding

the number of iterations and convergence criteria are challenges of this approach.

A second option is to incorporate a parametric function into the optimization for-

mulation mathematically. Since the functional form of a realistic demand model is

nonlinear, this approach will increase the computational complexity.

PSAM-Pax is subject to the uncertainty of a forecast. The pandemic resulting

from COVID-19 reinforced the lesson that “the forecast is always wrong” [11]. To

avoid overconfidence in forecasts, we must convey confidence intervals alongside pre-

dictions. We then use the confidence intervals to conduct robust optimization, which

will produce a slot allocation that is not sensitive to small changes in the forecasts.

This will not prevent errors when it comes to black swan events like COVID-19, but

it is a step in the right direction. Additionally, future travel patterns may look very

different than those represented by the data used in this thesis. The usefulness of

predictive features varies as the transportation network evolves, which is currently oc-

curring at an unprecedented rate. As one example, the binary indicator for LCC may

no longer be valuable as airlines merge elements of low-cost and full-service business

models, as was the trend even before COVID-19. Future studies need to incorporate

current data and explore new features as airlines and airports redefine their identities

in the post-pandemic world.

Finally, additional research should include a comparison of slot allocation under

PSAM-Pax with other demand management approaches, such as congestion pricing,

slot auctions, and laissez-faire. To gain support for implementing a new paradigm for

slot allocation, we must prove that it provides clear benefits over alternative methods.
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Appendix A

Complete Set of Predictive Features
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Table A.1: Complete set of predictive features

Feature Type Description
Historical Traffic
Lagging Itinerary Passengers Num Historical passenger count for the itinerary; 12-

month lagging dependent variable
Lagging Market Passengers Num Historical passenger count for the same city-pair

(e.g., London-Singapore) and month in the prior
year, irrespective of airline and airport

Annual Airport Traffic Num Geometric mean of the annual traffic at the origin
and destination airports in the previous year

Itinerary Passengers Growth Num Percent growth of itinerary passengers over the
two years prior to prediction (i.e., final two years
of the training dataset)

Seasonality Num Percent deviation from the mean for the airport
pair (𝑜, 𝑑) in month 𝑚

New Itinerary Bin 1 if the itinerary (same set of airports, airlines,
and month) did not exist the year prior; 0 if the
itinerary has continuity

Socioeconomic
Population Num Geometric mean of the population in a 100km

circular buffer around 𝑜 and 𝑑
GDP Num Geometric mean of the GDP in a 100km circular

buffer around 𝑜 and 𝑑
GDP per Capita Num Geometric mean of the GDP per capita in a

100km circular buffer around 𝑜 and 𝑑
GDP Difference Num Percent difference between the GDP at 𝑜 and 𝑑

Itinerary Characteristics
Connecting Bin 1 if the itinerary is connecting; 0 if nonstop
Distance Num Flying distance 𝑜 → ℎ → 𝑑 (km)
Routing Factor Num Measure of efficiency for connecting itineraries;

flying distance divided by nonstop distance

Airlines & Airports
Alliance Membership Cat Alliance membership of the primary airline; Star

Alliance, SkyTeam, Oneworld, and Other
Low Cost Carrier (LCC) Bin 1 if the primary airline is considered a LCC ac-

cording to OAG; 0 otherwise
Most Frequent Airlines (SQ,
TR, MI)

Bin Individual dummy variables for airlines with the
most frequent operations at Singapore airport
(Singapore Airlines, Scoot, and SilkAir)

Airport Continents Cat Categorical representation of airport locations
(e.g., Europe-Asia for a London-Singapore
itinerary)
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