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ABSTRACT

Computational modeling is key in materials science for developing mechanistic insight that
enables new applications. ab initio methods capture exceptional phenomenological richness
to high numerical accuracy, but at high cost and limited scale. Empirical potentials are
faster and scale better, but cannot compare to ab initio in numerical and physical accuracy.
Machine learning (ML) interatomic potentials (IPs) of recent years offer a balance: excellent
phenomenology and accuracy, while scaling well and at moderate cost. Interatomic potentials
are generally formulated as functions of atomic coordinates only—i.e. spin-agnostic. For
materials whose structures or energetics are influenced by spin, this is insufficient. Iron’s
strong magnetism is coupled to its mechanical properties. This confounds spin-agnostic IPs
because they implicitly use an expectation value across spin states for a given geometry.

Thus, this work offers a novel ML engine employing: (1) novel basis functions that translate
spin information into neural network (NN) inputs, (2) and novel NN architectures that
improve their ability to learn and express relationships between geometry, spin, and energy.

When applied to a broad dataset with high variance in both geometry and spin, the new
bases achieve a 4x reduction in energy prediction error compared to the spin-agnostic Behler-
Parrinello (BP) framework, and 5x using both the new bases and new NN architecture. When
applied to a high spin-variance dataset, the new bases reduce energy prediction error by over
10x. Even when applied to a dataset with low spin-variance, the new bases reduce energy
prediction error by 45%. These predictive improvements come at an increased computational
cost of about 5% compared to spin-agnostic BP using only the new bases, but roughly 3x
using both the new bases and NN.

This work presents two physical predictions to further elucidate the capabilities and value of
the Spin-Aware NN IP (SANNIP). First, Monte Carlo (MC) spin relaxations using SANNIP
exhibit behavior consistent with hysteresis in that the relaxed spin state is dependent on
its initial alignment. Second, MC spin relaxations resolve the temperature beyond which
ferromagnetically initialized systems lose their magnetization to between 1100 and 1150K,
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which is roughly consistent with experimental measurement of the Curie Temperature (TC)
of 1043K.

The evaluation of numerical accuracy and physical predictions demonstrate the utility of
the novel bases and NN architectures. Future work can generate a broader dataset and
deploy SANNIP potentials in molecular dynamics (MD) seeking insight into the role of spin
in mechanical properties, defect interactions, etc. Additional bases and can explicitly treat
externally applied electric and magnetic fields. Further NN architecture innovations can
incorporate transfer learning into treatment of multi-component systems. This work is foun-
dational to and enabling of many new avenues of investigation in computational materials
science with the aim of improving materials design, fabrication, remediation, recycling, and
disposal.

Thesis Advisor: Ju Li
Title: Battelle Energy Alliance Professor of Nuclear Science and Engineering and Professor
of Materials Science and Engineering

Thesis Reader: Koroush Shirvan
Title: John Clark Hardwick (1986) Career Development Professor

Thesis Committee Member: Michael J. Short
Title: Class of ’42 Associate Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

Why is atomistic simulation useful? What does it matter to society? To what extent does

it enrich the experience of being human?

Technology, to me, is a practical embodiment of science. It accomplishes some purpose.

It is the harnessing of scientific knowledge to affect some kind of change in the physical

world. Science absent any technological application is theory.

Technology starts with mathematics, because without mathematics one really cannot

express quantitative hypotheses or derive meaning from measurements. Mathematics enables

physics, which in turn enables chemistry, and then biology.

In the realm of technology, materials science turns out to be exceedingly broad in its

applications. We clothe ourselves and live in structures that keep the elements away, trans-

port ourselves around using somewhat durable objects with heat engines, thrusters, and/or

batteries across land, sea, air, and space, and communicate using a broad range of devices

and modalities.

All materials eventually fail, and physics of failure analyses inform strategies to make

better materials. [1] Electron microscopy, x-ray diffraction, and other experimental tech-

niques give us a window into the atomic scale, but we are limited in our ability to observe

phenomena on ultra-short timescales and precisely manipulate individual atoms.

15
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Conceptual understanding of the physics of failure, radiation damage, hydrogen embrit-

tlement, catalysis, and other phenomena at the atomistic level is sought via simulation using

the best theories science has to offer. As our technology develops farther from its origins in

sticks, stones, and fire, atomistic simulation provides a key environment to run experiments

in silico that are either impossible or prohibitively expensive.

1.1 Motivational Background

Dislocations, grain boundaries, and point defect interactions have been widely studied with

regard to their influence on alloys’ ductility, yield strength, and toughness. [2] Nuclear engi-

neering is further concerned with radiation damage, transmutation, and hydrogen and helium

affecting the mechanical properties of nuclear reactor pressure vessels (RPVs) throughout

their service lives. [3]

Physical experiments on actual materials are expensive, time consuming, and produce

radioactive waste. Samples must be fabricated, subjected to reactor-like conditions, and

undergo a battery of mechanical property tests. These experiments must generally be per-

formed across a wide range of fluences, oxidation pervasiveness, or other corrosion states.

While informative, these experiments are not perfect because as-operated reactor conditions

are hard to reproduce faithfully in all aspects.

Despite these challenges, regulatory agencies must be sure that new and novel materials

will protect operators and the general public from the radioactivity of a fission reactor. It

cannot be overstated the extent to which prevention of RPV materials failure concerns all

life on Earth. Operating RPVs are therefore only built from materials licensed by regulatory

agencies after their review of comprehensive testing programs.

Computational prediction of irradiated and corroded materials properties helps: (1) elu-

cidate how and why materials failures occur, (2) motivate strategies to mitigate failure and

minimize consequences, and (3) explore mechanical properties of RPV material candidates.
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To make progress toward those ends, they must achieve a minimum level of accuracy that

makes them useful. Once the threshold of usefulness is reached for accuracy, the next con-

cern is computational efficiency (speed, hardware, and energy requirements). This largely

determines the scale at which a method can be applied, and in turn what questions a given

method can answer.

1.1.1 Atomistic Simulation and Scale in Time and Space

Different physics dominate different scales. General Relativity is concerned with the largest

of scales, while Quantum Mechanics is concerned with the smallest. [4, 5] Typical human

experiences on the surface of the Earth are Newtonian. [6] Since the physics dominating

different scales are so different, the math used to describe the energetics and dynamics of

each realm are also different.

Gµν ≡= Rµν −
1

2
Rgµµ =

8πG

c4
Tµν [4] (1.1)

i~
∂

∂t
〈x|ψ〉 =

∫
H(x, x′)ψ(x′)dx′ [4] (1.2)

~F = m~a [6] (1.3)

First principles ab initio codes are in many ways the most accurate window into the Å-

scale phenomenology of atomistic behavior. [7] By looking through this window, science

and engineering have gleaned a wealth of mechanistic insight and practical prescriptions.

However, atomistic simulation remains limited in its ability to tell us about human-scale

phenomena (meters and minutes, for example). Quantum Mechanics solvers cannot directly

model creep. They cannot easily tell us about large scale defects in metals—how they form

and their affect on mechanical properties. [8]

But these questions matter. They are the concern of scientists and engineers who design

and construct the technological artifice of the modern world. The physics of failure in

materials science will always be a concern to any society with limited resources.
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One way to connect the meso/marco-scale and the Å domain is molecular dynamics

(MD) [9], which uses what is known as an interatomic potential (IP) to calculate the system’s

total energy and then uses that energy’s derivatives to calculate atomic forces and evolve

the system in time. [10]

Monte Carlo (MC) is another valuable tool that enables us to explore the configuration

space of a system given a specific temperature and environment by using random “moves”

and an IP to calculate the energy of the new configuration, and through this iteration sample

the Boltzmann Distrubution. [11]

1.1.2 Known Unknowns in Atomistic Simulation

How can one know that what an IP is told to do is correct?

Specifically, how can one verify that the functional form of a given interatomic potential

is correct and physical? In principle it is possible to execute x-ray diffraction experiments

on materials of interest sampling a broad domain of temperatures and stresses, however

those methods only obtain averages in time and space. It is not possible to exhaustively

and conclusively verify the details of a prediction atom-by-atom for any given snapshot

time, much less at scale across representative samplings of the Boltzmann Distrubution.

Impurities and other confounders obscure reality further, since IPs have historically tended

to treat very few elements—or even just one.

IPs can be used to make various predictions such as lattice constant, elastic tensor, melt-

ing point, boiling point, heat capacity, and so forth—however lattice and other constants can

be included in the fit’s objective function, and many predictions depend more on aggregate

performance than high-precision and accuracy for each individual atom. [12]

Questions of arbitrary displacements of single atoms from perfect lattices are nearly

unanswerable experimentally. Perfect infinite medium experiments corresponding to cohesive

energy curves are similarly impossible. When talking about IPs and thinking about how to

construct them, it is important to always keep these ideas in mind. As exciting as it can
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be to formulate, fit, use, and evaluate interatomic potentials, it must be stated clearly what

cannot readily be known about them and from them.

1.1.3 Magnetism in Atomistic Simulation

The vast majority of IPs developed are functions of atomic coordinates and element/redox

only—i.e. spin-agnostic. When IPs are modeling chemical Groups 1, 2, and 3, noble gasses,

or otherwise modeling weakly magnetic systems, this is a reasonable or even preferable

approximation. To explicitly treat atomic spins in those cases would dramatically escalate

costs for little to no gain.

At this point the reader may reasonably ask, what’s the big problem with IP spin-

agnosticism? The first part of the answer to this question is that strongly magnetic materials

have an energy landscape that is highly dependent on their magnetic state. Fig. 1.1 shows

energy vs. magnetic moment for iron. The energy difference between local energy extrema

is > 200 meV/atom—which is about eight times the average kinetic energy of particles at

room temperature, or about five times what is often called “chemical accuracy” or 1 kcal/mol.

[13,14] That is an enormous magnitude of error for calculations in atomistic simulation.
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Figure 1.1: Magnetic energy per atom vs. magnetic moment for Fe. [15]

Imagine the following thought experiment. Let’s say there exist N sets of atomic coordi-

nates ~Ri, and then for each set of coordinates there is a set of M atomic magnetic moments

{~Si,0 . . . ~Si,M}. A dataset of this type can be characterized:

~Ri ∧ {~Si,0 . . . ~Si,M} ∀ i ∈ {1, . . . , N} (1.4)

Then the energy of each combination of coordinates and atomic magnetic moments is cal-

culated, that set of energy calculations is used to train a spin-agnostic IP, and the IP learns

everything perfectly. What will it predict as the potential energy of a system when it only

sees the atoms’ coordinates? It will output the average value of the energies for that set of

coordinates across all of its spin configurations, and therefore nearly always be wrong.

E(~Ri) =
1

M

M∑
j=1

E(~Ri, ~Si,j) (1.5)

This could be improved by using an expectation value in place of an average, but that
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requires careful measure of the probability of each spin configuration.

Even if an IP assumes and is fitted using a ferromagnetic ground state for all geometries,

the magnetization of a real material is a partial function of temperature. That means

that identical geometries, which can occur at different temperatures (albeit with different

frequencies), will have different spin states and therefore energies.

This weakness in all spin-agnostic IPs for α-Fe is well known to many groups. [15, 16]

Computaitonal modeling of α-Fe that is both accurate and precise in expressing the full

range of its physical phenomenology remains a grand challenge to this day.

There are further confounders. Defects and clusters, for example, are known to differ

in spin from bulk lattice. [17–19] The situation worsens in multi-element cases involving

transition metals, for example considerable magnetic frustration effects occur in defect-free

iron-chromium systems. [20]
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Figure 1.2: Collinear vs. anti-ferromagnetic Fe13; the collinear arrangement is 37.8 meV
lower in system energy. [18]
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Figure 1.3: Local minima in structure, magnetic moment, and energy for Fe5. [18]

Figure 1.4: Magnetic moment of Cr atoms in Fe as a function of Cr nearest neighbors. [20]

Another complexity comes from the idea that spin and lattice excitations have simi-

lar characteristic relaxation times. [21] There is also the phenomenon of magnetic hysteresis.

Given this reality, time-dependent defect interaction spin artifacts further diminish the phys-
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icality of spin-agnostic IPs.

1.1.4 Historical Potentials for Fe

Fig. 1.5 shows us a plot of cohesive energy vs lattice parameter for 18 different interatomic

potentials developed for Fe. [15,17,22–33] They are available from either NIST or openKIM.

[34,35]

There exists considerable diversity in terms of the global minimum energy, lattice param-

eter, and overall shape, smoothness, and values and derivatives near the ends of the displayed

domain. Each one of these is the result of a significant effort in terms of resources and time,

with different: approaches to generating data, strategies for fitting, and intended applica-

tions. Some might be specifically aiming to produce a physical Peierl’s barrier, while others

may be looking for reasonable defect production via radiation cascade. Other significant

aims are modeling of defect formation energy, defect migration barriers and mobility, and

extended defects such as dislocations, grain boundaries, interstitial aggregates, and voids.
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Figure 1.5: 18 historical potentials for Fe. [15, 17,22–33]

Density functional theory (DFT) is the primary method for producing datasets by which

to fit or train IPs. [36, 37] Spin-polarized DFT calculations were collinear-only for many

years. [38, 39] A multitude of empirical potentials have been fitted using datasets generated

under this regime.

Non-collinear atomic magnetic moment DFT provides the capability for exploring the

energy dependence of three atomic magnetic moment degrees of freedom instead of just
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one. [40, 41]

Constrained atomic magnetic moments calculations allow for explicit control of atomic

magnetic moments—even when the specified spin configuration is not the ground state.

This is an iterative procedure that appends a penalty term to the energy prediction, and

requires progressively increasing the energy penalty coefficient λ until the the energy penalty

becomes sufficiently small. The computational expense of this procedure is much higher than

spin-polarized or ever non-collinear spin calculations. [19, 42]

More recent work has shown that properties prediction can depend on complex theoretical

accounting of magnetism’s influence. [43]

It is therefore clear that non-trivial systematic error arises in potentials for Fe due to the

underlying methodologies used to generate the fitting data, and that improvements to those

methodologies require at least as much attention as do IP fitting methodologies themselves.

1.1.5 Machine Learning (ML) and Atomistic Simulation

With ML it is postulated that the physics present in ab initio calculations can be learned

and expressed by applications that give the end user access to near ab initio phenomenology

at a fraction of the computational cost. This is expressed graphically in Fig. 1.6, where

“EAM” refers to the Embedded-Atom Method which was used for many of the potentials

shown in Fig. 1.5. For the purpose of this discussion, EAM is a fast approximator of atomic

level behavior but not as accurate or general as DFT.
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Figure 1.6: Aim of ML in atomistic simulation.

An ML IP paradigm is defined by its:

1. Featurization, which is the means by which raw data are processed into the quantitative

inputs of the predictive model. Featurization is performed on a training dataset prior

to training, and on new data prior to making predictions.

2. Regressor, which is a function that returns one or more continuously variable scalar

quantities that are or map to a prediction. ML IPs tend to use one of three methods:

• Linear regression, which finds a line of best fit. For this to work, the featurization

must produce features that linearly correlate with the quantity to be predicted

(system energy in the case of IPs).

• Kernel regression, which uses a non-linearity and all elements of the training

dataset to define a predictor.

• Neural networks, which will be described in the next Chapter.
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3. Training methodology, which is the means by which the trainable parameters of the

regressor are adjusted using the training data.

An instance of a trained ML IP is also dependent on the dataset used to train it.

The following four sections briefly describe the four main ML IP methods in literature

as of this writing. There is a recent cross-comparison of these four main methods looking

at energy and force prediction error, and physical property predictions for six elements

of various crystal and band structures: Li, Mo, Cu, Ni, Si, and Ge. [44] Iron is notably

absent, although nickel is ferromagnetic. Fig. 1.7 shows a comparison of accuracy and cost

comparison across the four major methods mentioned in the next subsections (qSNAP is an

expansion of SNAP). “NNP” denotes the Behler-Parrinello method, which will be described

shortly in brief and later at length. One key aspect of this comparison is that the training

dataset available to each method was the same.

Figure 1.7: “Test error versus computational cost for the Mo system. . . . Timings were
performed by LAMMPS calculations on a single CPU core of Intel i7-6850k 3.6 GHz. Black
arrows denote the “optimal” configuration for each ML-IAP . . . ” [44]
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1.1.5.1 Behler-Parrinello (BP)

BP can succinctly be expressed as:

1. A set of basis functions used to convey atomic coordinates and species identity into,

2. Neural networks that calculate the potential energy of a system of atoms.

Relevant implementation details of BP are presented in the next Chapter. [45]

1.1.5.2 Gaussian Approximation Potential (GAP)

GAP uses “smoothed” atomic density function and bispectrum featurization to feed kernel

regression. [46] Kernel regression defines a non-linear transform of features based on a kernel

function and the complete list of features used to train the predictor. [47] It is remarkably

accurate and precise in predicting, for example, vacancy formation energies, and the Peierl’s

barrier in α-Fe. [48] While these are remarkable achievements, GAP’s practical utility for

the typical end user of molecular dynamics simulations is limited by its extremely long

calculation time. As seen in Fig. 1.7, GAP is about two orders of magnitude slower than BP

in the presented application.

1.1.5.3 Spectral Neighbor Analysis Potential (SNAP)

SNAP uses the same featurization framework as GAP, but feeds a linear regressor (instead

of a kernel regressor). [49] This sacrifices some of the accuracy and precision of GAP in favor

of several orders of magnitude reduction in execution time. Users of SNAP can partially

compensate for the less expressive regressor by using more features than a similarly purposed

GAP potential, but of course this is done at the expense of computational efficiency.

qSNAP is an extension of SNAP that uses fits a regressor using quadratic terms in

addition to linear terms. [50]
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1.1.5.4 Moment Tensor Potential (MTP)

MTP computes tensors using Kronecker products of atomic coordinates and then condensing

them down into scalars that feed a linear regression. [51]

1.1.6 Spin-Aware Interatomic Potentials

While most interatomic potentials are spin-agnostic, spin-aware potentials are not without

precedent. The major options available for Spin-Lattice Dynamics (SLD) as of this writing

are SPILADY and the LAMMPS SPIN package.

1.1.6.1 SPILADY

SPILADY is an SLD program which uses a geometric empirical potential and overlays spin

Hamiltonian terms that allow changes to direction or both direction and magnitude of spins.

It also uses a correction term that compensates for the implicit or explicit assumptions about

magnetism built into the geometric potential. [52]

H = Hlatt + Hspin + Hcorr (1.6)

Hlatt =
∑
i

~p2i
2m

+ U(~R) (1.7)

Hspin = −1

2

∑
i,j

Jij(~R)~Si · ~Sj +
∑
i

Ai(~R)S2
i +Bi(~R)S4

i + Ci(~R)S6
i +Di(~R)S8

i (1.8)

Hcorr =
1

2

∑
i,j

Jij(~R)|~Si||~Sj| (1.9)

Jij(~R) is called an exchange function, which has an arbitrary functional form and is fitted

using ab initio data. [53,54] When electrons spatial coordinates are exchanged, but the wave-

function remains the same, there is an energy penalty—because two electrons cannot occupy

the same state and therefore relax to unique wavefunctions that are optimal for their specific

spatial distribution. The “exchange interaction” is quantum mechanical in nature and lacks
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a classical analog. Ai, Bi, Ci and Di are Landau coefficients used to predict the energy of

an atoms spin to allow for spin magnitude to change in dynamics calculations. These fitted

exchange forms are not general; a form appropriate to the lattice structure must be cho-

sen. This leaves the door open for large errors when lattice structure is not unambiguously

defined, such as for crack tips, amorphous regions, surfaces, clusters, nanowires, etc.

SPILADY has been used to simulate laser pulse demagnetization in bulk BCC iron and

show good agreement with experiment. The laser pulse excites the electrons of the system

which disorders the atomic spins causing magnetization to drop, then rebound and settle at

a lower value due to the increased temperature .

Figure 1.8: Laser pulse demagnetization in Fe. [52]

1.1.6.2 LAMMPS SPIN package

LAMMPS is a well-known MD program that has been a standard tool in academia and

industry for many years. [55] LAMMPS implements SLD via the SPIN package that expands

the definitions of atoms to include spins, and offers several different spin Hamiltonian terms

with fitted coefficients that govern spin interactions. [21] The contributions of the spin-based
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potential terms are overlaid onto a geometric potential, commonly EAM, for the purposes

of computing forces on atoms and derivative of energy with respect to spin. LAMMPS as of

this writing offers only the ability to permute spin direction.

There is also a recent publication using SNAP in conjunction with the fitted exchange

function of the LAMMPS SPIN package that examines the specific heat of iron, and observes

an abrupt change near the Curie Temperature. [56] The authors do however mention that

they forced the magnetization to match experimental value for each temperature sampled,

which is different from magnetization being a dependent variable. This was done by using

different temperatures for the lattice and spin thermostats (which are functions that ran-

domly permute atom velocities and spins to simulate interaction of the system with a heat

bath). [57]

Figure 1.9: Specific heat as a function of temperature in Fe as determined using SNAP in
the LAMMPS SPIN package. [56]

1.1.6.3 magnetic Moment Tensor Potentials (mMTP)

While there is not an open-source platform for researchers to investigate the performance of

mMTP, its authors report using a small number of geometric configurations and for each of

those a large number of spin configurations and obtain a respectably low energy RMSE. This
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is a generalization of the above mentioned MTP approach. This work is available in pre-print

as of early 2020, when the bulk of the work of this thesis was already completed. [58]

1.1.7 The Potential Development Roadmap

The process of developing an ML IP is conceptually the same as for any other. It starts

with data generation, then fitting (or ML), and finally executing simulations and making

predictions.

Figure 1.10: Machine-learned interatomic potential development roadmap

Any step along this process can be fraught with peril. Data generation can be a major

hurdle, particularly if calculations in one’s area of interest are not stable—or if the quantity

of data required for an application is huge due to the degrees of freedom in the system.

ML model training involves fine tuning of many hyperparameters that all materially affect

numerical accuracy. Large molecular dynamics (MD) simulations can take days or even

weeks, and failure to achieve predictive aims can reveal both new data requirements and re-

evaluation of or evolution of ML methods. For example, the LAMMPS Benchmarks website

reports 32k Cu atom simulations taking 1.86 µs per 5 fs timestep using one processor. [59]

32M atoms simulated for 5 µs of simulation time would take 1,860,000 s, which is ∼517

hours or ∼ 3 weeks, to execute using the hardware mentioned. Using multiple (or very



CHAPTER 1. INTRODUCTION 34

many) processors reduces computation time, but not necessarily by a factor equal to the

number of processors.

1.2 Scope of Thesis

The intent of this work is to innovate in the space of interatomic potential development

methodology, and showcase the new methodology with proof-of-concept (POC) applications

that require explicit treatment of spin.

The new work presented in this thesis is a comprehensive effort to:

1. Develop a new Spin-Aware, NN IP (SANNIP) development methodology since none

exists as of this writing (and no spin-aware ML IP methodology existed at thesis

outset),

2. Develop a spin-variation specific approach to generating a training dataset using Den-

sity Functional Theory (DFT),

3. Achieve significant numerical accuracy improvements using SANNIP as compared to

the state-of-the-art spin-agnostic NN IP approach (BP) on a dataset for iron containing

both high-geometric and spin variation,

4. Train and use the new IPs to perform Monte Carlo spin relaxations in iron using

different spin initializations to show SANNIPs are capable of exhibiting phenomenology

consistent with hysteresis,

5. Train and use the new IPs to perform Monte Carlo spin relaxations of ferromagnetic

iron at different temperatures to resolve the Curie Temperature of iron, and

6. To quantify SANNIP’s execution time in MC / MD environments in relation to other

methods.

The work presented is the result of years of continuous iteration between these and similar

objectives, and ends with conclusions and suggestions for future work.



CHAPTER 1. INTRODUCTION 35

1.2.1 New Interatomic Potential Development Methodology

As explained in Section 1.1.3, existing spin-agnostic methodologies cannot fully model the

complex physical phenomenology of magnetic materials—particularly for α-Fe. If pure iron

is to be modeled from low temperature (∼0K) up to 5,000 or 10,000K, then the situation

is even worse. This work offers a solution to that problem via the addition of spin basis

functions to the Behler-Parrinello method. These spin basis functions translate information

about each atoms’ magnetic environment to its NN with the intent of improving accuracy

and resolution of the PES.

The spin bases are fundamentally enabling with regard to the expansion of BP into

strongly magnetic systems across a large domain of temperature and spin states.

This work also introduces novel neural network architectures that have an increased

capacity to learn and express relationships between geometry, spin, and energy in atomistic

environments. These developments are motivated by the insight that lead to development

of convolutional neural networks applied to image analysis: “If you know something about

the structure of your problem, for sure, you should try to design your neural network so

that it takes advantage of that structure.” [60] Here, basis functions can be grouped by their

informational character and subsequently each group input into its own 1D convolutional

layer. This is analogous to the grouping of pixels by proximity for input into 2D convolutional

filters.

1.2.2 New Spin-Aware Dataset Generation Approach

DFT allows users to fix the positions of a group of atoms in a specified periodic structure,

and then evaluate both the potential energy of that system and the forces on each atom. It

is explicitly seeking the electronic ground state of the system, which includes the magnetic

contribution due to unpaired electron spins. This causes DFT to gravitate toward a zero

Kelvin spin temperature without regard to the energy state (and implied temperature) of a

perturbed lattice—and that tends to be non-physical for typical finite-temperature systems.
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In practice this means that paramagnetic (PM) data for Fe is hard to get with DFT

because it will often just relax the spins to collinear without regard to the initialization.

Literature exists for a way around this, so-called “constrained magnetism” calculations

which superimpose an energy penalty into the objective function (energy) based on how

well the spins in DFT’s solution match those specified by the user. This does allow for

explicit exploration of perturbed magnetic states, however these calculations are exception-

ally costly—rendering this method intractable for the purpose of generating a large training

dataset in a “reasonable” amount of time.

This work therefore presents a DFT workflow that traps it in desired spin states while

still converging to the energy minimum for that state. This executes at least one order

of magnitude faster than the conventional “constrained magnetism” approach, and enabled

the conducting of a broad survey of spin states essential to the proper functioning of NN

methodologies, given their inherent sensitivity to gaps in the training domain.

1.2.3 Proof-of-Concept Regarding Numerical Accuracy

Herein is presented a multi-faceted cross-analysis comparing the new spin bases and NNs,

separately and together, against BP using a large dataset and two subsets chosen for their

high-spin or high-geometric variation character.

BP is chosen as the comparator arm because it is the state-of-the-art NN IP methodology

as of this writing. It is by no means a “fault” of BP that it is spin-agnostic, because, as

mentioned in Section 1.1.3, spin is not important in many contexts and would slow such

work considerably. It is only for systems of significant magnetic character that SANNIP

has an advantage. SLD using empirical approximations for spin interactions have not been

considered because they rely on fixed functional forms that are tailored to particular lattice

phases, and additionally were at thesis outset dependent on classical geometric potentials.

There is now a published SLD approach using SNAP to treat geometry, however it still relies

on fixed-form empiricism to treat spin. It is also not clear if empirical spin-aware potentials
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properly treat defects, which seems unlikely given the strong phase dependence of empirical

spin relations.

This work shows an over 10x reduction in energy prediction RMSE for a high spin-

variation subset compared to spin-agnostic BP. This explicitly shows that the novel spin

bases allow for paramagnetic configurations to be clearly distinguished from ferromagnetic

configurations in a way that is not possible using spin-agnostic potentials.

On a large dataset that varies highly in both the geometry and spin configuration spaces,

the combined use of new spin bases and novel NN architecture achieves a 5x reduction in

energy prediction RMSE compared to spin-agnostic BP.

Lastly, even when applied to a largely ferromagnetic data subset with high geometric

variation, the new spin bases still yield a 40% reduction in energy prediction RMSE—

conclusively proving that explicit treatment of spin is essential to accurately predicting

energy in iron and that the extent of efficacy increase is proportional to the level of spin-

variation in the training dataset.

1.2.4 Novel Application 1: Consistency with Magnetic Hysteresis

This work’s first spin-specific physical exhibition is consistency with experimental observa-

tions of magnetic hysteresis. Monte Carlo was used to relax the spin configurations of a

fixed lattice at 300K from three different initializations: ferromagnetic (FM), paramagnetic

(PM), and anti-ferromagnetic (AFM). The resultant magnetization was found to be greater

for the FM initialized case, and the PM and AFM cases relaxed to a lower magnetization.

The PM/AFM magnetization termini were also the same. This trend is consistent with

experimental observations of magnetic hysteresis in that magnetization is a function of the

magnetic history of the material—that a relaxed spin state depends on its initialization.
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1.2.5 Novel Application 2: Resolution of Curie Temperature of

Iron

This work closes with presentation of the first ever resolution of the Curie Temperature

(TC) of iron via atomistic simulation using a NN IP. There are ab initio mean-field ap-

proaches predictions of TC , and Spin-Lattice Dynamics TC predictions using fitted exchange

functions—however the present work uses neither of those approximations. [56,61–63] SAN-

NIP allows for SLD using a single, inseparable function of both coordinates and spins trained

solely on ab initio data without any adjustment of parameters to better match experimental

results. The spin state of fixed lattices was initialized to perfect FM alignment and then

relaxed using MC at a distribution of temperatures. Largely FM character is retained in

the relaxed configurations up to 1100K, and at 1150K the relaxed state is strongly PM.

This first-in-class prediction conclusively proves the potency of our approach in mapping

macroscopically observable magnetic states to the atomistic relationships between spin and

energy.

1.2.6 Quantify Computational Cost Relative to Other Methods

Increased accuracy is not enough to justify the use of a new method. End users care about

execution time, and how methods compare against each other. To that end, SANNIP has

been compared against BP, both with and without the new NN architecture. Using a rela-

tively simple Figure of Merit-based (FOM) approach, it is shown that the greatest benefit

comes from using SANNIP with the conventional BP NN, followed by SANNIP with the new

CNN. While the CNN does improve energy prediction RMSE relative to the SANNIP using

the BP NN by about 20%, the execution time triples. This last bit of accuracy therefore

comes at dramatically increased cost (although certainly not an order of magnitude increase

in cost). While some users may benefit from that last bit of accuracy, SANNIP using the

BP NN is likely to be an optimal configuration for most users.



Chapter 2

Neural Network Regressors and

Behler-Parrinello

Behler-Parrinello neural network interatomic potentials were first introduced in 2007, in a

now-seminal Physical Review Letter. [45] It ushered in a new era of ML and NN approaches

to learning and expressing the potential energy surfaces (PESs) of pure materials. Many,

many papers have been published that apply, expand, or compete with this method. Since

the core of this thesis’ innovations build upon BP methodology, it and one of its applications

are here explained.

But first, let’s take a closer look at the application of NNs to regression tasks in general,

and then to the application of NNs to an example interatomic potential, Lennard-Jones. The

reader is encouraged to reflect upon this seriously despite the seemingly obvious nature of the

trade-offs discussed because deep understanding of these realities is key to any practitioner’s

success in diagnosing and remediating deficiencies in a NN IP. NN IP fitting is different from

EAM or other classical approaches in part due to the specific nature of NNs as regressors.

The reader is advised to consider, if low sampling density can cause trouble even in 1D as

shall soon be shown, what then is the expected difficultly in learning a PES across both

geometry and spin?

39
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2.1 Neural Network Regression Essentials

The task of reviewing seminal texts on the fundamentals of neural networks is left to the

reader, regarding: their construction, training through backward propagation, and so forth.

There are many excellent resources in the tutorials of all major packages such as Tensorflow,

PyTorch, and so on. [64, 65] This work does however offer a small, targeted tutorial on the

relationship between dataset size, noise, quantity of trainable parameters, extrema, bound-

aries, overfitting, and functional forms in the context of neural networks as regressors—and

ultimately for expressing potential energy surfaces (PESs).

Fitting a NN regressor can be a risky proposition, and one that depends on the shape of

the underlying function, the number of samples in the domain of interest, and the noise in

the range / dependent values / experimental observations.

This is because a NN is a universal approximator, and therefore NNs lack any inherent

functional form. [66] This is in stark contrast to analytically-derived, closed-form functions

which are often smooth and continuous in their values and at least first-order derivatives.

Fixed functional forms themselves are a significant amount of information, thus enabling

effective treatments of certain problems using only a relatively small amount of fitting data.

To accomplish a practically useful fit using an NN requires a lot more data, but also allows

for freedom from functional forms that are themselves approximations and non-universal.

For the base case demonstration, an underlying function of f(x) = sin(x) is to be learned.

Gaussian noise has been superimposed.

The NN is a softplus-activated bilayer, 4 neurons per layer.

Softplus: f(x) = ln
(
1 + ex

)
(2.1)

In the plots on the left of each Figure, the green dots are training data points, and the

red dots are test or validation data points unseen during the training process. (Test and

validation are interchangeable here, although this is not universally the case.) The losses
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reported in the lower plots are validation losses as a function of training epochs.

The blue line in the plots at right, denoted h(x)−f(x), is the loss between the prediction

and the underlying function evaluated at the domain of the validation points. If, for example,

the prediction is fitting the underlying function better than the validation data, then the

blue line will be lower than the red line. If, on the other hand, the prediction is closer to

the validation points than the underlying function the blue line will be higher than the red

line—which is characteristic of overfitting.

2.1.1 Few samples, high noise

Fig. 2.1 is obviously the most troublesome case. The density of the green dots is not constant

across the domain, and in sparely populated areas the fit bows significantly away from the

underlying function. The validation error reaches a minimum early on in the training process,

and climbs in an oscillatory manner thereafter. The testing point near about (3.8, -0.95) is

particularly affected by the NN fit pulling away from the underlying function to approach

the training point near (4, 0), which it is able to do because of the ultra-sparse density in

that local area.

Figure 2.1: NN fit of sin(x): few samples and high noise.

The interpretation of this pursuant to IP development is that sparsely sampled, noisy data

regions are likely to be associated with high error and non-physical behavior. It is important

to know what that looks like. If sin(x) were the form of a potential being fitted, then the
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local extrema (equilibrium, for example) positions and energies would be very wrong. The

maximum force exerted by the potential would occur in the wrong place and be too strong.

In fact, very high force would be present at the actual underlying minimum. If the body

in the potential ever got near the boundaries of the domain the energy and forces would be

wrong there too. It might reasonably wondered how this could get worse.

2.1.2 Overfitting few samples, high noise

If one were to try and obtain a better fit in this situation by increasing the number of nodes

(neurons) per layer to 16, then one might obtain Fig. 2.2. This situation has gone from bad

to worse, allowing the increased expressivity of the NN to form a uniquely odd shape that

squiggles around haphazardly in order to reach as many green dots as possible.

Figure 2.2: NN fit of sin(x): overfitting with few samples and high noise.

Now there are extra extrema that don’t exist physically, very high forces, and a flat

boundary condition at one end—totally wrong!

2.1.3 Few samples, low noise

If dense sampling cannot be achieved, then sometimes noise can be reduced. This is shown

in Fig. 2.3, and the situation is much improved. The extrema are still off, but the overall

shape is well-behaved and the boundaries are looking better.
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This predictor actually fits the training points better than the underlying function, as

indicated by the blue line in the bottom left quadrant being higher than the green line. It

is another example of overfitting, but overfitting here is due to a paucity of data samples

rather than noisy data or surplus untamed dynamism in the NN. It is worth noting that

the validation error reaches a minimum and bounces off of it and then essentially flatlines,

rather than increasing steadily.

Figure 2.3: NN fit of sin(x): few samples and low noise.

Physically, this is a much more useable potential than the above examples—although if

used in the low temperature regime then it wouldn’t be reasonable to expect perfect results.

Zooming in on the region around the minimum reveals that the distortion of the potential’s

shape might be enough to foil delicate calculations.

2.1.4 Many samples, high noise

Fig. 2.4 shows that increased sampling improves the overall shape of the fit despite high

noise, but extrema are still wrong and there remain high errors in value and derivative near

domain boundaries. Once again there is a minimum validation error, however in this case

there is no acute bounce and the difference between the stable fit and the minimum is slight.
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Figure 2.4: NN fit of sin(x): many samples and high noise.

Practically this means that enough noisy data can more or less give okay phenomenology—

but only well inside the training domain. Venture out near the outer extremities and noise

takes over, obscuring the underlying reality one is trying to approximate.

2.1.5 Many samples, low noise

Fig. 2.5 shows ideal conditions, with the best fitting of shape, extrema, and boundary con-

ditions. In this situation the validation loss reaches its minimum at training’s end, and the

underlying function is fit better than either the training or validation points.

Figure 2.5: NN fit of sin(x): many samples and low noise.

Physically this means that NN IPs can be excellent given low noise and sufficiently dense

sampling in the domain of interest. If sampling is extended beyond the immediate domain of
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interest then the result is improved by shifting the ever-present poor boundary performance

to regions outside the intended scope.

This may explain why sampling very high energy states, non-physical crystal structures

(like FCC iron at low temperature), and a wide range of otherwise unusual coordination

numbers can be important for fitting potentials—perhaps even critical for NN IPs.

2.1.6 Rectified Linear Units

Rectified Linear Units (ReLU) draw their inspiration from rectifiers used in Electrical Engi-

neering in AC to DC converters (and other places). [67] They are ubiquitous in NN packages

such as Tensorflow, PyTorch and others. [64, 65] They compute quickly—however they do

have a discontinuous first derivative at the origin.

ReLU: f(x) =


0 x < 0

x

(2.2)

What happens if ReLU-activated NNs are used to fit sin(x)? Fig. 2.6 shows the same 4-node-

per-layer bilayer, just changing activation—training on the noisy, sparsely sampled space of

our first example.

Figure 2.6: ReLU-activated NN fit of sin(x): few samples and high noise.

This result is quite poor, and not useable as a potential. The minima are entire regions,
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and the forces are constant for large contiguous subsets of the domain, and zero (or nearly

zero) for more than half of the domain.

2.1.7 Overfitting using ReLU

Fig. 2.7 shows an attempt to improve performance vs the ReLU base case by using 16 neurons

per layer. The functional form appears more inspired by the architecture of Frank Gehry

than by sin(x), and once again the validation error reaches an early minimum and rises

strongly and consistently.

In this scenario the prediction fits the training points better than the underlying function

by a lot—overfitting at its worst. There are not many samples, the data is noisy—and

the functional form of the activation function is poorly suited to expressing the underlying

functional form of the data.

Figure 2.7: ReLU-activated NN fit of sin(x): overfitting few samples and high noise.

2.1.8 Square Wave

Trying to fit a square wave with a softplus-activated NN regressor reveals a lot actually. It

shows that sharp changes in a function’s derivative are hard to treat properly, even with

high sample density and low noise. This is something to watch for anytime physical reality

is likely to be represented by functional forms with sharp boundaries or regions with high

second-order (or higher) derivatives.
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The fit ends up skewed, and with artifacts that are not representative of the underlying

function. This is similar in nature to the Gibb’s phenomenon arising in Fourier Series

approximations to the square wave.

Figure 2.8: NN fit of square wave: many samples and low noise.

2.1.9 Lennard-Jones

The previous examples have focused on functions that are simple mathematically, but not

representative of functions that express useful atomistic potential energy surfaces (PESs).

The Lennard-Jones (LJ) model is relatively simple mathematically and has a physically-

relevant functional form with: (1) a single energy minimum, (2) a steep asymptotic ascent

on one side of the minimum, and (3) a gradual approach to zero on the other. [68, 69]

VLJ(r) =
A

r12
− B

r6
(2.3)

The following fit uses same softplus-activated bi-layer as before:
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Figure 2.9: NN fit of Lennard-Jones: Poor fit for equilibrium.

This is perhaps okay at first glance, but not certainly not excellent in that the location

and value of the minimum are wrong, and the potential is off by a lot at the lower bound.

The forces under compression get too strong too fast, and not strong enough at increased

compression. Above equilibrium interatomic distances, the forces oscillate between too strong

and too weak. Note that statistically this is in the same highly-sampled/low-noise regime

shown in previous examples.

How can this be fixed? What if the number of neurons in each layer are doubled?

Figure 2.10: NN fit of Lennard-Jones: More neurons.

That didn’t help. The fit of the above equilibrium interatomic distance region is better—

but the minimum and form near it are worse!

It this therefore clearly seen that precisely fitting the equilibrium position with a NN can
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be quite difficult. What if the original network is kept and instead the distribution training

frequency is changed to emphasize samples closer to the equilibrium point?

Figure 2.11: NN fit of Lennard-Jones: More frequently trained near equilibrium.

In order achieve an overall low error in the regions atoms are most likely to be found,

and still trend correctly in outlier sub-domains, the frequency with which training samples

have been presented to the NN was altered to over-emphasize samples near the equilibrium

point. This is a critical insight to keep in mind as the reader ventures forward throughout

the text of this thesis. The practical prescription is that sampling must be especially dense

near equilibria and important local minima—otherwise the resulting potential will not be

able to perform well near those points. When a potential is not concerned with equilibria

(such as for high temperature solid phases, liquids, and gasses) then this is much less of an

issue.

2.1.10 Data Subsets with different Means and Dispersions

An additional relevant scenario is the combining of data subsets that have the same un-

derlying function, but have different noise distributions—non-zero and different means, and

different dispersions.

This situation involves many degrees of freedom and thus its detailed exploration is left

to the reader, however it is worthwhile to note that degree of subset domain non-overlap,
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sample count from each dataset, and the magnitude of the noise averages and dispersions

are all extremely significant.

Historically, nearly all interatomic potential fitting occurs in this domain. Different DFT

scenarios inherently span non-overlapping subdomains, and unavoidable de facto changes in

k-spacing can affect what is effectively the mean value of the noise.

Specifically, if one executes 1x1x1 BCC unit-cell calculations and vary its size over a

broad range from 0.75λeq to 1.5λeq, and does not change the number of k-points used for

each calculation, then the k-spacing changes from beginning to end by a factor of two.

If that reality is compared with the results of typical k-points convergence testing, it is

seen that doubling the number of k-points for nearly any simulation box and set of atoms

will change the energy result and the atomic magnetic moment predictions (no matter how

narrowly the energy convergence tolerance is set).

2.1.11 Predictions Outside the Training Domain / Poor NN Ex-

trapolation

NNs are exceptionally poor at extrapolating. When one presents an NN with inputs that are

outside its training domain, the results are unpredictable. This is, as stated above, due to

NNs’ lack of an inherent functional form that would otherwise contain information to support

extrapolation. Fig. 2.12 shows a rough account of predictions made inside and outside the

training domain. Note that the error outside of the training domain is huge. (The orange

“VASP” line is just one subset of training data, which extended to where the greed-dashed

and blue lines diverge.)
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Figure 2.12: NN fit of square wave: few samples and high noise.

In the case that NN IPs, the energy prediction was extremely low for lattice parameters

outside the training domain—which is completely non-physical. In MD simulations this can

lead to all of the atoms of a system collapsing or even imploding into a very small volume,

and failure mode requires specific countermeasures to prevent.

One such countermeasure is to pair an NNIP with a ZBL overlay that smoothly takes

over for interactions below a certain distance. DFT data for interactions in those regions are
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particularly costly anyway, given the huge perturbation from equilibrium that they represent.

Then one needs to consider low density cases, where a relatively small amount are likely to

improve the overall PES considerably.

2.1.12 Gradient Descent Sub-types

There are typically three types of “gradient descent” that depend on how much of the dataset

is presented at each calculation of model weight updates.

1. Gradient descent (GD) or batch gradient descent (BGD) generally refer to using the

entire training dataset at each weight update calculation.

2. Stochastic gradient descent (SGD) generally means randomizing the order of the sam-

ples in the training dataset and then calculating weight updates using each sample

individually.

3. Mini-batch gradient descent (MBGD) generally means randomizing sample order and

partitioning the random-ordered training dataset into multiple “mini-batches” or just

batches. When batch size is specified and 6= 1, this is the algorithm being used.

There may be differences of opinion with regard to how these processes are named, but these

are the essential three.

Each one has benefits and weaknesses that arise from the quantity of samples used at

each weight update calculation, that are accentuated by the lack of inherent functional form

in neural networks.

2.1.12.1 Effect of Batch Size on Training

Let’s say the Boston Symphony Orchestra is going to play The Four Seasons by Vivaldi, and

a patron has sponsored the recording effort. Microphones are placed throughout the hall,

each one receiving a different pressure-vs-time curve. They are like the trainable parameters

of a neural network. The shape of the hall, the placement of the instruments, temperature,
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humidity, ambient pressure all affect how pressure waves travel from the instruments to

the microphones. This is like the neural network. The instruments are the source of the

information that is to be captured using the microphones. They are like data samples.

How many instruments play at once is the batch size.

Let’s say each instrument plays its part in isolation. The microphones glean the best

possible notion of each part. Some microphones might be in destructive interference zones

(dead spots), and this can happen to NNs, but there really isn’t any better way to capture

the full detail of all instruments. This is SGD, and it obviously takes the longest time of

any approach to recording Vivaldi. Maybe the Beatles recorded the White album this way,

but that’s a small number of parts. An additional problem with this approach is that the

sound engineer would have an inordinate amount of work to do before the recording is ready

for release. Even the best sound engineer will find it exceedingly difficult to replicate the

essence of live experience for discerning ears.

Taken to the other extreme, when all instruments play at once (as before the live audience)

then the microphones get a much better sense of the aggregate and how loud each instrument

is relative to each other. The sound engineer’s job is simplified by orders of magnitude. This

is GD.

Mini-batch gradient descent is like having different groups of instruments play at the

same time. The relative loudness of instruments can be pieced together more easily this way.

Constructive and destructive interference will vary with different groupings, so that dead

spots shouldn’t be as much of an issue. The sound engineer has more work than in the GD

case, but far less than SGD.

The overall time and effort required to satisfy the patron varies considerably with the

number of instruments that play at once—and the specific choices of which instruments play

at once.

Said differently, batch size is a materially significant parameter that affects the training

time and efficacy of predictive models.
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2.1.13 NN Fitting Tutorial Summary

The above is here summarized into phenomenological observations:

• Insufficient sampling is a cause of overfitting, and cripples NN regressors. Noise must

be very low when few samples can be obtained in order for resultant fits to have even

limited predictive capacity. For IPs fitted in this regime: local minima are probably

wrong in both input and energy spaces, and predictions worsen significantly as the

input domain boundary is approached.

• Overfitting can also be the result of a mismatch between data quantity and regressor

complexity.

• High noise dramatically increases data requirements, and IP extrema and domain limit-

approach error are present even with high sample density.

• Activation functions are essentially basis functions for expressing data’s underlying

functional form.

• Accurately fitting extrema with NN IPs requires an extra-high sampling density in the

immediate vicinity of each extremum.

• Results outside the training domain are unpredictable and may have errors many orders

of magnitude higher than the intra-domain RMSE.

• Large batch size tends to emphasize learning of general trends whereas smaller batch

sizes or SGD tends to emphasize fine structure.

Despite the promise, press, and ubiquity of NN methods in recent years—they should not

be delved into with reckless abandon. The following practical prescriptions are proposed:

• With insufficient sampling and high noise, efforts must concentrate on improving data

generation workflows.

• Widen the training domain beyond the desired application space, and constrain the

application space away from both extrema and boundaries.

• If fitting of extrema is required, sample intensely around each one.
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• Regressor complexity should generally start with the minimum possible to achieve a

baseline result, and tentatively explore from there.

• Choose an activation function appropriate to functional form. (The caveat to this is

that features that are already basis expansions of raw data may work well with ReLU

anyway.)

• Batch size must be optimized in a way so as to quickly adjust to averages and aggregate

behavior while also learning smaller-scale details of the target functional form.

2.2 Behler-Parrinello Overview

BP is succinctly expressed as a “black box” that calculates the potential energy of a system

of atoms, given their coordinates, as shown in Fig. 2.13a. Fig. 2.13b, shows the internals of

the BP black box.

(a) Behler-Parrinello as a “black-box” that con-
verts coordinates into energy. [70]

(b) Behler-Parrinello “black box” internals. [71]

Figure 2.13: Behler-Parrinello overview.

First, all atoms’ coordinates (Ri) are operated on by the “symmetry functions” to produce

Gi. Those Gi are “features” or “descriptors” that are input into a NN which returns the

energy contribution of that atom to the system’s energy. All individual atoms’ contributions

are summed to provide a single scalar quantity which can physically interpreted as the

potential energy of the system. For N atoms, D “features” (which will be defined later),
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and a neural network function fNN :

Coordinates: X ∈ R3N (2.4)

Featurization: G(X) ∈ RN,D (2.5)

E =
N∑
i=1

fNN(Gi) (2.6)

~F = −∇E (2.7)

Once the system’s potential energy is computed, the gradient of the potential gives is the

force on each atom. This is computed via the chain rule as shown in Equation 2.45 by first

using backward propagation to obtain the partial derivative of energy with respect to the

NN inputs, and multiplying that by the derivative of the inputs with respect to the atomic

coordinates.

For extremely large systems that are important in MD simulations, this scheme scales

linearly with the number of atoms in the system—in contrast to the scaling of DFT regimes,

which at worst scale as the cube of the number of electrons. [72]

2.3 Featurization and “Symmetry Functions”

Behlerian “symmetry functions” are really a basis set decomposition of atomistic environ-

ments that construct what in machine-learning parlance are often referred to as “features.”

Features are just the quantitative information input into an ML process.

“Featurization” broadly refers to transforming, converting, or otherwise preparing “in-

formation” such that it can be presented in an exclusively quantitative form to a machine

learning process (in the case of BP, a NN regressor). Information can be collections of pixels

that form an image, the words of a phrase or sentence, the atomic coordinates of a periodic

system, the presence or absence of a condition, or anything else that can be expressed quan-

titatively or qualitatively. Featurization can be accomplished according to any arbitrary set
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of rules (including conditional logic), and generally “raw” features are further processed to

improve the efficacy and efficiency of the training process.

This section highlights the significant aspects of BP featurization that are relevant to

this work.

2.3.1 Translational, Rotational, and Ordinal Invariance

Since the potential energy of a system of atoms is independent of coordinate translation, axis

rotation, and labeling of atoms of the same element (or isotope if need be), it is necessary

to ensure that any potential energy calculation scheme has the same properties:

E(~r0, ~r1, . . . ~rN) = E(~r0 + ~o, ~r1 + ~o, . . . , ~rN + ~o) ∀ ~o ∈ R3 (2.8)

E(~r0, ~r1, . . . ~rN) = E(M~r0,M~r1, . . . ,M~rN) ∀ rotation matrices M (2.9)

E(~r0, ~r1, . . . ~rN) = E(~r1, ~r0, . . . , ~rN) for atoms of the same element/isotope (2.10)

This can be implemented in various ways, and BP implements translational and rotational

invariance as a property of the featurization using the distance function and dot products, and

ordinal invariance using the commutative property of sums via summing atomic contributions

to system energy (regardless of the form of atomic energy contribution regressors).

d(~r1, ~r2) = d(~r1 + ~o, ~r2 + ~o) (2.11)

d(~r1, ~r2) = d(M~r1,M~r2) (2.12)

θ(~r1, ~r2, ~r3) = θ(~r1 + ~o, ~r2 + ~o, ~r3 + ~o) (2.13)

θ(~r1, ~r2, ~r3) = θ(M~r1,M~r2,M~r3) (2.14)

E =
∑
i

Ei (2.15)



CHAPTER 2. NEURAL NETWORK REGRESSORS AND BEHLER-PARRINELLO 58

2.3.2 Cutoff

Fig. 2.14 and Eq. 2.16 show the cutoff function proposed by Behler and Parrinello in 2007. [45]

It smoothly varies from one to zero over the domain bounded by the cutoff radius. Its purpose

is to prevent step changes in the symmetry function values as atoms cross the cutoff radius.

fc

(
Rij

)
=


0.5 ·

[
cos
(
πRij
Rc

)
+ 1
]

for Rij ≤ Rc

0 for Rij > Rc

(2.16)

∂fc

(
Rij

)
∂Rij

= f ′c(Rij) =


− π

2Rc
· sin

(
πRij
Rc

)
for Rij ≤ Rc

0 for Rij > Rc

(2.17)

Figure 2.14: Behler-Parrinello cutoff function. [45]

The BP cutoff function possesses many critical mathematical properties required of well-

behaved cutoff functions. It is:

1. smooth and everywhere first-order differentiable,

2. zero-valued at the cutoff radius (Rc), and



CHAPTER 2. NEURAL NETWORK REGRESSORS AND BEHLER-PARRINELLO 59

3. of zero-valued first-derivative at the origin and Rc.

2.3.3 Radial Basis

Figs. 2.15 and 2.16 and Eq. 2.18 show the radial “symmetry” function proposed by Behler

and Parrinello in 2007. [45] The BP radial basis function is a Gaussian radial basis function

(GRBF) combined with the BP cutoff. [73] It has three tunable parameters: the offset

Rs which defines its maximum value, the decay constant η which defines how quickly it

attenuates with distance from the maximum, and the cutoff radius Rc for the cutoff function.

The BP radial basis also has a smooth first-order derivative.

G2
i =

N∑
j 6=i

e−η(Rij−Rs)
2

fc

(
Rij

)
(2.18)

∂G2
i

∂Rij

= −2η(Rij −Rs)e
−η(Rij−Rs)2fc

(
Rij

)
+ e−η(Rij−Rs)

2

f ′c

(
Rij

)
(2.19)

=

(
− 2η(Rij −Rs)fc

(
Rij

)
+ f ′c

(
Rij

))
e−η(Rij−Rs)

2

(2.20)

Several potential configurations for the BP radial basis function are shown in Fig. 2.15. It is

worth while noting that the maximum value of the BP Radial Basis is not the offset value,

due to the action of the cutoff. Fig. 2.16, shows the basis functions from Fig. 2.15 (and

one additional) normalized to the same value, and superimposed on them the underlying

Gaussian radial basis function centered at the actual peak of the corresponding BP radial

basis. Note the increasing skewness as Rs approaches the cutoff radius. The Rs values

and corresponding maxima are listed below in Table 2.1. This is very likely not to be a

severe complication, and indeed BP has been shown to be effective many times in many

contexts. Nevertheless, this observation motivated the development of new basis functions

that control symmetry or asymmetry explicitly to improve efficacy and suit specific purposes.

This concept is further developed in this work and presented in Appendix C.
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Figure 2.15: (l) The Behler-Parrinello radial basis function, shown here with Rs = 0 and
several values of decay constant η. (r) BP radial basis with varied Rs and constant η.

Figure 2.16: Normalized radial bases and GRBF overlaid to show increasing skewness as Rs

approaches cutoff radius Rc.
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Rs max(G2
i )

1.5 1.42745

2.0 1.89936

2.5 2.36834

3.0 2.83146

3.5 3.28578

4.0 3.72838

4.5 4.15046

5.0 4.54323

5.5 4.88911

Table 2.1: Table of G2
i maxima as a function of Rs.

2.3.4 Physical Interpretation of Radial Bases: Radial Distribution

Functions and Bonner Spheres

Basis functions used in BP are like detectors for specific conditions. Each one asks, “are

there atoms present with a particular relation to the central atom?” The η values can be

adjusted to make a detector very narrow and precise, or very general. Fig. 2.17 shows a

set of radial basis functions that is tuned to be maximally sensitive at the peaks of the

radial distribution function (RDF) of BCC and FCC iron, essentially comprising basis set

decomposition of those RDFs. This is the interpretation of the author, that the radial basis

functions of BP and similar methods are detectors for specific relationships, and comprise

basis set decompositions of radial, angular and spin aspects of atomic environments. This

interpretation was used to inform the design of the spin basis functions presented in the

Chapter on Methods.
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Figure 2.17: BP basis set and summation compared with BCC/FCC Fe RDF.

An analogous process to BP basis functions capturing information about atomic envi-

ronments is the use of Bonner Spheres to measure neutron spectra. [74]

Measuring neutron spectra is a difficult process, requiring relatively sophisticated meth-

ods and thinking to get it all to work. Bonner spheres have varied moderator thicknesses

and detectors at equal distance to the radiation source. This changes the shape of the neu-

tron spectrum incident at each detector. This is critical because the detectors’ readings are

really integrated in energy to a scalar. By calibrating each Bonner Sphere using sources of

known spectra and materials of known cross-section, it is possible to then use the spheres

to decompose other spectra. As one adds more spheres of different thickness, the precision

and resolution of the spectrum under test improves. Fig. 2.18 shows detector response as a

function of incident neutron energy for a set of identical detectors inside different thickness

Bonner Spheres.
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Figure 2.18: Detector response to a set of Bonner Spheres as a function of incident neutron
energy. [75]

2.3.5 Angular Basis

Fig. 2.19 and Eq. 2.21 show the radial “symmetry” function proposed by Behler and Par-

rinello in 2007. [45] The BP angular bases are perhaps inspired in part by Stillinger-Weber

potentials, which use a similar cos θijk term [76]:

G4
i = 21−ξ

N∑
j 6=i

N∑
k 6=i,j

[
1 + λ cos θijk

]ξ
e−η(R

2
ij+R

2
ik+R

2
jk)fc(Rij)fc(Rik)fc(Rjk) (2.21)
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Figure 2.19: (l) The Behler-Parrinello angular basis function, shown here with all things
equal except the decay constant η. (r) BP angular basis with varied ξ.

The BP angular basis also has a smooth first-order derivative. Since this basis has five

terms, we first find the derivative of the angular term.

α =
[
1 + λ cos θijk

]ξ ∂α

∂ cos θijk
= λξ

[
1 + λ cos θijk

]ξ−1
(2.22)

∂α

∂θijk
= −λξ sin θijk

[
1 + λ cos θijk

]ξ−1
(2.23)

The radial term here is a little different than the G2 radial term, however it is still straight-



CHAPTER 2. NEURAL NETWORK REGRESSORS AND BEHLER-PARRINELLO 65

forward.

β = e−η(R
2
ij+R

2
ik+R

2
jk)

∂β

∂Rij

= −2ηRijβ (2.24)

∂β

∂xi
=

∂β

∂Rij

∂Rij

∂xi
+

∂β

∂Rik

∂Rik

∂xi
(2.25)

∂β

∂xj
=

∂β

∂Rij

∂Rij

∂xj
+

∂β

∂Rjk

∂Rjk

∂xj
(2.26)

∂β

∂xk
=

∂β

∂Rik

∂Rik

∂xk
+

∂β

∂Rjk

∂Rjk

∂xk
(2.27)

The cutoff functions are differentiated as before.

γ = fc(Rij) ψ = fc(Rik) χ = fc(Rjk) (2.28)

Having found derivatives of all of the individual terms, we now assemble the complete picture.

∂G4
i

∂xi
= 21−ξ

N∑
j 6=i

N∑
k 6=i,j

[ ∂α
∂xi

βγψχ+ α
∂β

∂xi
γψχ+ αβ

∂γ

∂xi
ψχ+ αβγ

∂ψ

∂xi
χ+

��
��

��*
0

αβγψ
∂χ

∂xi

]
(2.29)

∂G4
i

∂xj
= 21−ξ

N∑
j 6=i

N∑
k 6=i,j

[ ∂α
∂xj

βγψχ+ α
∂β

∂xj
γψχ+ αβ

∂γ

∂xj
ψχ+

��
��

��*
0

αβγ
∂ψ

∂xj
χ+ αβγψ

∂χ

∂xj

]
(2.30)

∂G4
i

∂xk
= 21−ξ

N∑
j 6=i

N∑
k 6=i,j

[ ∂α
∂xk

βγψχ+ α
∂β

∂xk
γψχ+

�
��

�
��*

0

αβ
∂γ

∂xk
ψχ+ αβγ

∂ψ

∂xk
χ+ αβγψ

∂χ

∂xk

]
(2.31)

2.4 “Atomic Neural Networks”

A neural network is just a function; it accepts numbers and outputs numbers. The funda-

mental unit of a neural network is the “neuron.” As shown in Fig. 2.20, a neuron accepts

a group of scalars, computes a weighted sum of those scalars, adds a bias, applies an “acti-

vation function,” and outputs the result. While it is conceivable to construct neurons with

non-linear terms, the weighted sum neuron is general practice.
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Figure 2.20: The “neuron.”

Activation functions can be any function. If multiple neurons are placed in series without

non-linear activation, then the successive linear transforms could be expressed as one linear

transform. Even an infinite series of linear transformations is the same as just one. Non-linear

activation functions change that, making any series of neurons with non-linear activation a

unique mathematical object. That said, NN regressors often use linearly-activated outputs,

although some problems may benefit from non-linear activation. There are many commonly

used activation functions:

Linear: f(x) = x (2.32)

ReLU: f(x) =


0 x < 0

x

(2.33)

Softplus: f(x) = ln
(
1 + ex

)
(2.34)

f(x) = tanh(x) (2.35)

A “layer” refers to a set of neurons that all accept the same inputs, and a “hidden-layer”

is one that the end user typically doesn’t see because it is neither input nor output. A
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“fully-connected” layer is one that accepts all of the inputs from the previous layer.

So, conventional BP uses two-hidden-layer, fully-connected NNs with single outputs, as

shown in Fig. 2.21. In the world of ML, this is relatively simple—and it works.

Figure 2.21: Conventional Behler-Parrinello fully-connected, single-task bilayer.

The blue nodes are the inputs, cyan the first hidden layer, yellow the second hidden

layer, and the red node is the output. The new work of this thesis departs from the “fully-

connected” paradigm as shown in Chapter 3.

This fully connected bilayer architecture is used in nearly all BP and BP-based publica-

tions to date. [44,45,70,71,77–80]

2.5 Pre- and Post-processing

Pre- and post-processing of ML inputs and outputs condition data so that the subsequent

ML process is more effective in terms of the accuracy or performance of the trained model

and more efficient in terms of the training time to get there. They are generally regarded

as essential, particularly for randomly initialized and iterative approaches such as linear re-
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gression using gradient descent and NNs. BP accomplishes this using the rescaling method

according to their literature, however the methodology for pre- and post-processing is arbi-

trary and in theory any method is acceptable so long as it is reversible.

Rescaling shifts the maximum and minimum of a feature’s distribution to arbitrary values

and linearly interpolates for all data points between the extremes. The weakness of this

approach is that the mean of the distribution for an input/output need not be zero, which

tends to complicate NN learning as described above.

2.5.1 Feature Rescaling from -1 to 1

Since features are calculated on a per atom basis, the mean and standard deviation can be

calculated in a straightforward manner. This methodology of rescaling is mentioned in BP

literature, and implemented from -1 to 1 in aenet. [70, 71]

GNN ∈ [−1, 1] (2.36)

Gmin = min(Gi) Emax = max(Gi) (2.37)

GNN =
2

Gmax −Gmin

(
Gi −Gmin

)
− 1 (2.38)

Gi =
Gmax −Gmin

2

(
GNN + 1

)
+Gmin (2.39)
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2.5.2 Energy Rescaling from -1 to 1

ENN

n
∈ [−1, 1] (2.40)

Emin = min

(
Ei
ni

)
Emax = max

(
Ei
ni

)
(2.41)

ENN = ni

[
2

Emax − Emin

(
Ei
ni
− Emin

)
− 1

]
(2.42)

Ei = ni

[
Emax − Emin

2

(
ENN

ni
+ 1

)
+ Emin

]
(2.43)

2.6 Energy Prediction and Force Calculation

The contribution of individual “atomic neural networks” are summed to produce the system’s

potential energy:

E =
N∑
i

Ei (2.44)

The gradient of energy with respect to spatial coordinates then is calculated using the chain

rule.

∂E

∂xi
=
∂G

∂xi︸︷︷︸
above

∂GNN

∂G︸ ︷︷ ︸
below

∂ENN

∂GNN︸ ︷︷ ︸
NN code

∂E

∂ENN︸ ︷︷ ︸
below

(2.45)

When using rescaling:

∂GNN

∂G
=

2

Gmax −Gmin

(2.46)

∂E

∂ENN

=
Emax − Emin

2
(2.47)
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2.7 Application on Copper

BP is an excellent methodology for learning and expressing relationships between geometry

and energy for non-magnetic materials. This is abundantly shown in the 2012 paper on Cu

by Artrith and Behler. [78]

Approximately 38k data samples were calculated via DFT, including manifold configu-

rations: bulk (FCC, BCC, SC, HCP), surfaces (FCC, BCC, HCP), clusters, bulk vacancies

(FCC, BCC, SC) and surface vacancies (FCC, BCC). For each configuration type, many

different box geometries and atom quantities were used.

Their showcase featurization used 8 radial bases and 43 angular bases. This featurization

was then used to train fully-connected bi-layers of various layer widths, results for 10, 20, 30,

and 40 as seen in Fig. 2.22. The biggest improvement presented came from increasing each

layer’s width from 10 to 20 neurons, and their stated optimal fit came from using 30 neurons

per layer. They report training and testing energy RMSEs of 3.6 and 3.9 meV/atom, respec-

tively. They also trained on force data and offer force RMSEs of 42.8 and 42.0 meV/Bohr.

Energy training and test MAEs were reported as 2.09 and 2.22 meV/atom, and force training

and testing MAEs were reported as 29.3 and 29.4 meV/Bohr, respectively.
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Figure 2.22: Training RMSE (meV/atom) vs training iteration for NNs of various sizes. [78]

Results for cohesive energy, lattice parameter, bulk modulus, unrelaxed and relaxed bulk

vacancy formation energy, unrelaxed and relaxed surface energies, and unrelaxed and re-

laxed surface vacancy formation energies are presented. Bulk properties and surface energies

tended to be within 1% of DFT, and vacancy formation energies tended to be within 5%

(with outliers up to 10%). Energy over the course of an MD run and along several atomic

surface migration paths were presented, showing good agreement with DFT as seen in Fig.

2.23. Forces in clusters and for surface defects were also shown to be in good agreement with

DFT.
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Figure 2.23: BP showing good agreement with DFT for atoms on various paths across Cu
surfaces. [78]

These relevant, impactful results for non-magnetic materials show that BP is a valid

starting point to build upon using spin bases that translate atomic spin environments into

NN features.



Chapter 3

Methods

3.1 Novel Spin Bases

It remains an open question as to how best capture spin information using basis functions

so as to fully articulate the physically relevant features of an atom’s environment to a NN.

A more realistic assessment is that the featurization of an atomic environment is like a

“lossy compression” in which some information is lost, but hopefully not enough to harm

the application. The first attempt in this work was to implement a basic framework quickly

and assess it for effectiveness. Following that, the framework was expanded to use multiple

bases of each type with varied powers of spin terms and cutoff radii. Then, the spin bases

were wrapped in Gaussian radial basis functions.

3.1.1 Spin Bases 000

The initial approach to formulating spin bases was loosely based on physics relations for

energetics of and interactions between magnetic fields. Only one spin base of each type was

used in this initial, exploratory approach. The intent was to compare using these spin bases

against not using them and see the difference in terms of RMSE of system energy prediction.

73
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The spin bases are as follows:

S1
i = ~Si · ~Si (3.1)

S2
i =

N∑
j 6=i

[
~Si · ~Sj

]
fc(Rij) (3.2)

S3
i =

N∑
j 6=i

[
(~Si × ~Sj) · r̂ij

]
fc(Rij) (3.3)

S4
i =

N∑
j 6=i

[
(~Si · r̂ij)(~Sj · r̂ij)

]
fc(Rij) (3.4)

Information about the radial proximity of spins to the central atom will be incorporated via

the cutoff function for all cases except self-spin.

The first spin basis, S1
i , is inspired the relations for the energy stored in a magnetic field:

E =
1

2µ0

B2 (3.5)

The second spin basis, S2
i , is inspired by two related phenomena: (1) the energy of interaction

between a magnetic moment and a magnetic field, and (2) the Heisenberg spin Hamiltonian

used by the SPILADY and LAMMPS SPIN packages as referred to in Eq. 1.8:

E = −m ·B (3.6)

Hspin = −1

2

∑
i,j

Jij(~R)~Si · ~Sj (3.7)

The spin basis S2
i causes the NN to subsume the exchange function, eliminating the need to

assign a fixed form to it thus bypassing a major weakness of fitted exchange SLD approaches.

This makes the NN SLD approach flexible and adaptable to any context, for example for

point-defects, surfaces, clusters, and ambiguously defined atomistic scenarios.
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S2
i can also be expressed as follows by factoring ~Si out of the sum:

S2
i = ~Si ·

N∑
j 6=i

~Sjfc(Rij) (3.8)

The third spin basis, S3
i , is based on the antisymmetric exchange spin Hamiltonian term

(Dzyaloshinskii-Moriya interaction) shown in Eq. 3.9. [81–83] This is relevant in spin-spiral

systems and magnetic skyrmions. [84–86]

N∑
i,j,i6=j

~Dij · (~Si × ~Sj) (3.9)

Lastly, S4
i is inspired by magnetic dipole interactions. [87]

Hdip =
∑
i,j,i6=j

gigj
r3ij

(
(~Si · R̂ij)(~Sj · R̂ij)−

1

3
(~Si · ~Sj)

)
(3.10)

3.1.2 Spin Bases 000a, Varied Cutoffs and Self-Spin

Following the initial success of Spin Bases 000, the next logical step was to scale up and

expand the framework by using multiple spatial cutoffs, and multiple powers of self-spin

drawing inspiration from the Heisenberg-Landau spin Hamiltonian used by Ma and Dudarev

in SPILADY to relate energy to atomic magnetic moments thus allowing for spin magnitude

to be a degree of freedom in their simulations shown in Eq. 3.11. Again, the Spin Bases 000

setup was using exactly one basis of each type as a prima facie test of the spin bases.

HH−L = Ai(~R)S2
i +Bi(~R)S4

i + Ci(~R)S6
i +Di(~R)S8

i (3.11)

Results for this setup are not explicitly presented in this work, however the purpose of

the Spin Bases 000a was to further explore the space spanned by those basis forms and their

efficacy in reducing energy prediction error compared to BP.
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3.1.3 Spin Bases 000b, significantly more expressive

Spin Bases 000 also used spin-squared terms only, and no other powers—which is physically

questionable. There are other powered relationships between spin and energy and the fol-

lowing were postulated to more fully explore that space. An additional spin basis, S5
i , was

also conceived of and experimented with

S1a
i =

[
~Si · ~Si

]ξ
(3.12)

S2
i =

N∑
j 6=i

[
~Si · ~Sj

]ξ
fc(Rij) (3.13)

S3
i =

N∑
j 6=i

[
(~Si × ~Sj) · r̂ij

]ξ
fc(Rij) (3.14)

S4
i =

N∑
j 6=i

[
(~Si · r̂ij)(~Sj · r̂ij)

]ξ
fc(Rij) (3.15)

S5
i =

N∑
j 6=i

[
(~Si × r̂ij) · (~Sj × r̂ij)

]ξ
fc(Rij) (3.16)

3.1.4 Spin Bases 001

One common practice in ML featurization is to transform features using Gaussian radial

basis functions. [88] This approach is used here to transform the above defined bases in a

manner hopefully more suitable in mathematical form to expressing relationships between

geometry, spin and energy using NN regressors. Interpreted as detectors, these Gaussian

radial basis function spin bases are highly tunable and can be sensitive to only specific cases

or be used to cast a broad net with much overlap between bases. An additional intent is

to be absolved of any responsibility for setting powers of spins in the manner described for
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Spin Bases 000b, since the decay constant η can achieve a similar effect.

S1
i = e−η1((~Si·~Si)

ξ
2−α1)2 (3.17)

S2
i =

N∑
j 6=i

e−η2(~Si·~Sj−α2)2fc(Rij) (3.18)

S3
i =

N∑
j 6=i

e−η3((~Si×~Sj)·̂rij−α3)2fc(Rij) (3.19)

S4
i =

N∑
j 6=i

e−η4((~Si ·̂rij)(~Sj ·̂rij)−α4)2fc(Rij) (3.20)

These are the bases used to generate what is presented in the Chapter on Results.

3.1.5 Modified Rescaling

This work presents a new data pre- and post-precessing concept called simply “modified

rescaling.” This is different from regularization, which is an approach that allows or improves

predictions for underdetermined data (more features than samples), and limits overfitting in

cases where the fitting function is too complex relative to the underlying functional form. In

modified rescaling, feature distributions are adjusted to have a zero mean, and a unity 1D

distance limit from the mean. That means dividing the zero shifted data by a scaling factor

set to the maximum absolute value difference between a data value and the data mean.

Note, while the current work has implemented this to pre- and post-process NN inputs

(features), it has not been implemented for NN outputs (energy).

GNN ∈ [−1, 1] (3.21)

µG =
1∑M
i=1Ni

M∑
i=1

Ni∑
j=1

Gi,j (3.22)

Gd = max(|Gi − µG|) (3.23)

GNN =
Gi − µG
Gd

Gi = GdGNN + µG (3.24)
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3.2 Novel Neural Network Architectures

Neural Networks have been catapulted to prominence by the paper on ImageNet in 2012

using deep CNNs. [89] This outstanding success ushered in a new era in science and brought

the phrase “Big Data” into common parlance.

3.2.1 The Multi-Task Network vs Multi-Network Task

The original BP methodology was generalized to multiple elements by expanding featuriza-

tions in various ways—and using a separate NN for each element. This arrangement allows

for element-specific featurizations, but does not allow for any cross-talk or transfer learning

between the isolated NNs. NN literature from principally CS/ML focused investigators does

however offer what they call a “multi-task (MT) neural network” (MTNN). As shown in Fig.

3.1, MT learners use multiple output nodes, one for each task, with a common set of inputs

and main layers.

Figure 3.1: Fully-connected, multi-task bilayer.

Application of MT architectures was the very first modification the work of this thesis
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made to BP. Multiple MT BP setups were conceived of and implemented by the author in

2019, as documented by commits to the author’s github. This architecture was arrived at

independently and published by another group in 2020. [90]

The key to using an MTNN with BP features to treat multi-component systems is twofold:

1. The output used for a given atom is determined by its elemental identity,

2. The featurization must be the same for all elements. (Element is used broadly and

could mean isotope if necessary.)

Radial and angular feature sets can be expanded in many ways, although this is not required.

The only requirement is that the featurization for each atom must be the same. There is

ambiguity allowed in that the central atom is only identified by selecting an output. So, one

could construct radial terms that are independent of the neighbor atom identity, and ones

for each specific neighbor identity. This is similar to using a total RDF and partial RDFs in

materials characterization. An analogous process can treat angular terms.

Early work pursuant to this thesis deployed MTNNs for two ternary potentials: HON,

and FeNiCr. In the case of HON, the earliest version used neighbor identity-agnostic basis

functions and a later one used different neighbor-ID specific “partial bases.” Those efforts

were discontinued in favor or pursuing better basis functions in the context of pure iron.

Another potential use of MTNNs is to predict per atom quantities other than energetic

contributions. For example, one early BP work used two separate NNs to predict atomic net

charge and “short-range” energy contributions to isolate electrostatic interactions. [77] Early

work of this thesis used a simliar approach implemented with an MTNN for HON systems,

where one output predictied partial charge and the other predicted “short-range” energy.

This approach was ultimately deemed to be unnecessarily complex since the conventional

BP approach performed just as well for that target case.
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3.2.2 Principal Component Weight Initialization

What if one were to initialize the weights of several nodes of a NN to the first few principal

components (PCs) describing the vast majority of the variance of the dataset? Would that

save time or achieve a better result?

Several different approaches were tried:

• Initialize a set of first-hidden layer weights only.

• Initialize a set of first-hidden layer weights, and the convolutional layers separately with

PCs over their bases. (Convolutional later definitions presented later in this Section.)

Initial efforts used all available PCs, and it is now suspected that the low-variance-explaining

PCs were probably not meaningful. Randomly initialized neurons for all but the high-

variance explaining PCs is the procedure recommended for future work.

3.2.3 Convolutions by Basis Class

In BP, the angular and radial information are input all at once; every neuron of the first

hidden-layer receives each basis function regardless of class (radial or angular). The new

“convolutional” NN (CNN) of this work uses class-specific “convolutional” layers that accept

all of the inputs of a given class (radial, angular, or spin). The outputs of the class-specific

convolutional layers and the complete set of basis function values are then fed into the first

fully-connected hidden layer, and downstream of that proceeds in the same manner as the

BP NN. Fig. 3.2 is a diagram of the new CNN. The top set of blue and cyan nodes represent

a first class, for angular bases in this example. The angular basis function inputs go to the

angular convolution layer, and the outputs of that layer then tie into the fully-connected

main setup—which still receives the complete set of bases as before, although this is now in

addition to the convolutional outputs.
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Figure 3.2: Basis Class-Grouped Convolutional NN.

The guiding concept is that knowledge of a dataset’s structure can be exploited by con-

trolling the connectivity between neuron groups within the NN, as is done with convolutional

“filters” in image processing. [88] It is postulated that information from proximal pixels is

more important than from distal ones. A filter that only sees a group of pixels near a pixel

under evaluation can do things like detect edges or gradients in particular directions, and

then subsequent layers can construct higher order objects until ultimately the algorithm can

distinguish between cats, dogs, and airplanes. This outperforms a fully-connected setup that

simply gets all pixel values dumped into it at once. Instead of pixels, the current application

is concerned with basis functions, and grouping them by type is the first connectivity-limited

architecture of this work.
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3.2.4 Convolutions by Basis Sub-Class

The next innovation beyond the class-wise 1D convolutions is convolution within sub-classes.

In this scheme, the radial, angular, and spin classes are broken down further. The radial

class is broken down into groups of common decays across offsets and groups of common

offset across decays. Similarly, the angular class is broken down into common decays across

exponents and common exponents across decays. The spin class is broken down into the

spin sub-classes, S1
i through S4

i .

This NN architecture significantly increased computation time, yet did not yield mean-

ingful reduction in energy prediction errors.

3.2.5 Expansions of Convolutions

The CNN architectures proposed above are only the simplest possible applications of their

design concept. In ML literature, it is common to see “max pooling” or other pooling layers

following CNN filter layers. Deep CNNs generally apply many iterations of: CNN, max pool,

and activation.

Pooling functions could offer gains beyond those of the basic forms described above. Fig.

3.3 shows the basic setup for pooling sections implemented in this work. In this diagram,

inputs are fed into a 1D convolutional layer and each of the subsequent pooling neurons

accepts inputs from three of the 1D convolutional neurons. There is no overlap; each 1D

convolutional neuron’s output goes to exactly one of the max pooling neurons. While the

label used is “MaxPool,” and that was the one experimented with, other pooling functions

could be used.
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Figure 3.3: Pooling Network Architecture Subsection

Many different architectures are possible by combining layers in different orders. For

example, conventional ML CNNs often iterate with a CNN→max pool→ activation pattern.

As to what operates best in any given case, we do not generally know. We only have

knowledge of what has worked best in the past.

In this work many combinations were tried: CNN → activation → CNN → activation,

CNN → max pool → activation, CNN → activation → CNN → max pool → activation,

CNN → max pool → activation → CNN → activation, and so on. It was found that they

all dramatically increase training time, but provided limited or no benefit. That result

is context dependent, so other applications may find benefits that outweigh costs. These

new evolved CNN approaches also all significantly increase the complexity of their C/C++

implementation required for MD.
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3.2.6 Trainable Parameters Per Network Input (TPI)

Using equivalent geometric bases, the spin-aware NN IP approach of SANNIP has more

trainable parameters than BP, because of the spin bases. However, if the downstream archi-

tecture remains the same then SANNIP actually has fewer trainable parameters per input

(TPI) than BP. This relation for the conventional bilayer is shown below:

TPI(i) =
(i+ 1)h1 + (h1 + 1)h2 + (h2 + 1)

i
(3.25)

lim
i→0

TPI(i) =∞ and lim
i→∞

TPI(i) = 1 (3.26)

That means that if SANNIP achieves better performance: (1) on the same data, (2) using

the same geometric bases, and (3) using a conventional bilayer network, then it is gleaning

more information per basis than BP.

For the new CNN, as implemented, the number of trainable parameters in the spin

convolution layer increases as the square of the number of spin inputs:

TPIBP(i) =
(ir + 1)ir + (ia + 1)ia + (i+ 1)h1 + (h1 + 1)h2 + (h2 + 1)

i
(3.27)

TPISANNIP(i) =
(is + 1)is + (ir + 1)ir + (ia + 1)ia + (i+ 1)h1 + (h1 + 1)h2 + (h2 + 1)

i

(3.28)

The Table 3.1 shows the TPI for all cases presented in this work.

TPI BP SANNIP

Bilayer 41.7 36.3

CNN 64.1 58.3

Table 3.1: Trainable parameters per input for bilayer NN and CNN for BP and SANNIP.
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3.3 Spin-Aware Dataset Generation

The ability of Behler-Parrinello (BP) NNIP methods to learn and express H (~r) is well

established, in terms of prediction of: system energy and atomic forces, lattice constants,

bulk modulus, bulk vacancy formation energies, surface energies, surface vacancy formation

energies, etc. It is therefore herein taken for granted that the geometric degrees of freedom

in metallic systems can be well treated.

When generating a dataset intended to be used to fit or train an IP, it is important to

consider the specific aims of that potential. The intent of this work is POC of a methodology

for a magnetic moment / spin-aware, neural network-based interatomic potential (SANNIP)

that can directly learn and express relationships between geometry, spin, and energy. Given

the vastness of the sample space of H (~r, ~s), the scope of this work is constrained to method-

ology validation—and leaves high-fidelity, dense sampling of that space for other purposes

to future work. The principal concern here is to span a meaningful space of geometric con-

figurations and spin configurations to lend validity to evaluations of numerical accuracy, and

support impactful modeling applications that explicitly require a spin-aware approach.

As mentioned in the Background Chapter, NN IPs require extra sampling in the vicinity

of local minima, therefore the ferromagnetic states for each geometric configuration must be

sampled. Additionally, sampling of spin states must include a gradual and smooth increase

in the magnitude of perturbations from the FM ground state. It is also important to consider

higher-energy spin configurations for iron such as paramagnetic and anti-ferromagnetic states

because without explicit knowledge of those states the NN might under-predict the energy

of such configurations. The situation regarding derivatives (forces and updates to spin) in

the domain of interest is also improved by explicit knowledge of higher energy spin states.



CHAPTER 3. METHODS 86

3.3.1 Methodology Overview

Successful POC therefore depends on broad sampling in both ~r and ~s. ~r must be sufficiently

covered to show that SANNIP compares favorably to BP across a broad range of geometries.

Sampling just ~r implies some standardized condition for ~s, which should generally be the

global spin ground state. For Fe at 0K this is perfect FM alignment.

Varied initial magnetic moment inputs to DFT codes have been used to obtain a distri-

bution of ~s for each ~r. This reduced calculation time by at least one order of magnitude

in comparison to “constrained magnetism” DFT calculations which append a penalty term

to the objective function under minimization (total system energy). The constrained mag-

netism penalty term can often be non-trivial, adding significant difficulty to taming that

approach.

Having obtained a broad dataset, training can be executed on subsets with differing

character to see how SANNIP does or does not improve in various situations compared to

BP. For example, training can be executed on a data-subset comprised of the FM subset for

each ~r. Similarly, a data-subset can be constructed from all ~s for a given ~r.

3.3.2 Geometry Specification

Each sample in the dataset of this thesis began with specification of each atom’s Cartesian

coordinates. While there are many methods for producing such coordinates, here, conven-

tional EAM potentials and MD ensembles as implemented in LAMMPS have been used.

Using NPT and NVT ensembles mitigates bias introduced by sampling at only a handful

of lattice parameters (or system sizes). These ensembles also provide a random, physically-

relevant distribution of atomic position perturbations from equilibrium lattice sites. Geo-

metric stochasticity of this form is critical for two key reasons: (1) to avoid overfitting by

including lots of small-scale variations alongside larger-scale variations, (2) so that the er-

ror in DFT calculations themselves can be normally distributed allowing invocation of the

Central Limit Theorem, and (3) error caused by variation in k-spacing may be more easily
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averaged resulting in a smoother potential.

3.3.3 Spin Specification

Ferromagnetic alignment is the ground state for BCC iron below its Curie Temperature of

1043 K, and this is the first spin configuration calculated for each geometry. A primary

interest here is establishing the FM ground state for each geometry, and then evaluating

higher-energy spin states. Again, this is critical for both correct prediction of ground states

by NNs and reasonable derivatives (forces).

Random variables in polar angle and azimuth are generated and then converted to carte-

sian coordinates to sample spin-space as perturbations from FM. Polar angle is sampled as

the inverse cosine the absolute value of a random draw from a normal distribution N (0, σ).

Azimuthal angle is sampled from a uniform distribution U [0, 2π).

Θ = arccos(|N (0, σ)|) (3.29)

Φ = U [0, 2π) (3.30)

σ ∈ {0, 0.015, 0.05, 0.1, 0.2} (3.31)

To sample paramagnetic (PM) states, uniform random sampling of azimuth is again used,

however sampling of polar angle is changed to the following:

Θ = arccos(1− U [0, 2)) (3.32)

Finally, a variety of anti-ferromagnetic (AFM) spin configurations are sampled by using

different orders of opposite spin in each geometric configuration. Since LAMMPS was used

to generate geometries and LAMMPS can make arbitrary changes to the ordinal labels of

atoms, it turned out not to be the case that spin configurations uniformly involved adjacent

atoms having opposite spin inside each unit cell, or between adjacent unit cells—however it
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is the case that each system’s magnetic moment initialization has a net value of zero.

3.3.4 DFT Workflow

DFT uses a charge distribution and a set of wavefunctions to calculate energy, and itera-

tively updates both the charge distribution and the wavefunctions until the system energy

value change is less than a threshold value (the convergence critireon). (It is possible to fix

the charge distribution in DFT, but this is not useful in the present context.). The spin

configuration of atoms is dependent on the electronic structure, specifically which electrons

are spin up vs spin down in what orbital and how those orbitals are shaped and overlapped.

The VASP workflow for generating data for training this work’s spin-aware potential is

as follows:

1. Execute a non-spin polarized calculation with a 24 electronic step limit, and save the

charge distribution.

2. Load the prior charge distribution, initialize atomic magnetic moments to the desired

state, execute a spin-polarized calculation with a 24 electronic step limit, and save the

charge distribution.

3. Load the prior charge distribution, initialize atomic magnetic moments to the desired

state, execute a spin-polarized calculation with a 300 electronic step limit, and save

the charge distribution.

4. Load the prior charge distribution, initialize atomic magnetic moments to the desired

state, execute a spin-polarized calculation with a 300 electronic step limit. Done.

This multi-run workflow was necessary to both: (1) improve the quantity of calculations that

complete (vs fail to reach the energy convergence criterion prior to exhausting all allowed

electronic steps), and (2) improve the similarity between the desired spin configuration and

the final result.

At each DFT execution, the magnetic moments are initialized to the desired values again,

while wavefunction parameters are randomly initialized.
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3.3.5 “Tour de Fer”

Perhaps the most significant subset of this dataset is dubbed the ”Tour de Fer.” It contains

are seven geometric configurations, and each geometric configuration is itself subjected to

seven different MD command sequences. The purpose is to quickly survey a broad range of

geometric configurations and present a very significant challenge to any fitting or learning

algorithm because it includes many defect types, phase changes, and creation of damage

by fracture, compression, and extreme shear. Fig. 3.4 shows an example of a 4x4x4 BCC,

FM-aligned di-vacancy configuration. The colors of each atom are representative of their

spin magnitude, with blue being low magnitude and red being high.

Figure 3.4: “Tour de Fer” configuration example.

3.3.5.1 “Tour de Fer,” Geometric Configurations

It is important to include a wide range of bulk and point-defect configurations to support

the claim that the POC evaluation of numerical accuracy is on hard-to-fit data, robust and

conclusive. Full lattice γ-Fe is included since many of the other herein presented data subsets

pass through its temperature range (1185-1667 K).
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1. 3x3x3 BCC, full lattice

2. 4x4x4 BCC, mono-vancancy

3. 4x4x4 BCC, di-vancancy

4. 4x4x4 BCC, SIA 110

5. 4x4x4 BCC, SIA 111

6. 4x4x4 BCC, SIA 100

7. 3x3x3 FCC, full lattice

3.3.5.2 “Tour de Fer,” MD Evolutions

The seven MD evolutions below were chosen to quickly span a wide range of extreme dis-

tortions. The intent of doing this was to encompass phenomenology that could significantly

challenge any IP fitting methodology, again supporting the validity of our POC numerical

accuracy evaluation. Phase change, fracture, slip, and damage accumulation are exhibited

in the systems under test.

1. NPT, 300K → 2500K → 300K

2. NPT, 300K → 3500K → 300K

3. NVT, 300K, eq. → tension to 1.5→ compression to 0.8, [100] crystallographic direction

4. NVT, 300K, eq. → tension to 1.5→ compression to 0.8, [210] crystallographic direction

5. NVT, 300K, eq. → shear to 0.3 → eq., [100] crystallographic direction

6. NVT, 300K, eq. → shear to 0.3 → eq., [110] crystallographic direction

7. NVT, 300K, eq. → shear to 0.3 → eq., [210] crystallographic direction

Future work can build upon this by including deformations in more crystallographic direc-

tions.

3.3.5.3 [100] Compression / Tension

Fig. 3.5 shows a detailed picture of tension to fracture for each of the geometric configu-

rations. The potential used was the Proville / Rodney / Marinica 2011 potential. Energy
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increased while pressure decreased until fracture occurred. The strain at which fracture

occured was highest for full-lattice BCC, followed by mono-vacancy, self-interstitial atom

configurations, then di-vacancy, and last full-lattice FCC. After fracture pressure was zero

and energy was stable until the surfaces became proximal again at which point they repulsed

each other before recombining. Damage was evident after recombination. Compression re-

sulted in a large increase in pressure with a higher increase in energy for a strain of 0.8 than

for 1.2 as seen by comparing time index 120,000 with time index 20,000.

Figure 3.5: “Tour de Fer” 100 compression and tension MD.

3.3.5.4 [100] Shear

In Fig. 3.6 shear strain increases to 0.3 at time index 60,000, then decreases back to zero.

Again, results are with the Proville / Rodney / Marinica 2011 potential. Different geometric

configurations are plotted together as before. Slip occurs for different configurations at
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different times, with the same rank ordering as before except the full lattices exhibit slip at

the same points. Damage accumulation is significant for the full-lattice systems, however

those with defects tolerated slip well.

Figure 3.6: “Tour de Fer” 100 shear MD.

Interestingly, the FCC configuration exhibited significant negative pressure under shear

until slip occurred.

3.3.6 Low T Ramp

The “Low T Ramp” uses 2x2x2 BCC and FCC configurations generated in LAMMPS under

NPT conditions going from 300K to 1500K. The spin configuration specifications for this
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dataset are slightly different from the overall dataset.

~sFM =


0

0

1

 ~s111r =


U [0, 1)

U [0, 1)

U [0, 1)

 ~sPM =


U [0, 1)− 0.5

U [0, 1)− 0.5

U [0, 1)− 0.5

 (3.33)

These directions would be normalized as necessary and then multiplied by the spin magni-

tude.

3.3.7 High T Ramp

The “High T Ramp” uses a 2x2x2 BCC configuration generated in LAMMPS under two

regimes:

1. NPT: 300K → 3800K

2. NVT: 3800K → 10000K

Nine spin configurations were then generated as described above: FM, four perturbed FM,

PM, and three AFM.

The intent of the “High T Ramp” is to explore extreme geometric perturbations so as to

provide further meaningful challenge to BP and SANNIP.
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Figure 3.7: High T Ramp MD.

3.3.8 Nanowire

Nanowire geometric configurations were generated in LAMMPS again using the Marinica

2011 potential. A 12 Å3 box was populated with a thin wire of 20 atoms that was continuous

in one dimension. An NVT ramp from 300K to 5000K and then back down to 300K was

used to evaporate and then condense the wire. After condensation, the wire changed the

axis over which it was continuous several times, finally settling on an orientation different

from that at outset.

Nanowire spin states were sampled in the same manner as the High T Ramp.
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Results

4.1 Spin Distribution of DFT Data

The first important result of this thesis is the spin distribution achieved in the dataset that

was generated as described in the previous Chapter. There are several important questions

to address:

• What quantitative measures best characterize magnetic phase and elucidate transi-

tions?

• Are there FM states across a broad distribution of energies?

• Is there a smooth transition from FM to PM and AFM across a broad distribution of

energies?

A reasonable measure of magnetization and FM character is the ratio of net system spin

magnitude to the sum of atomic spin magnitudes:

||
∑
~s||∑
||~s||

(4.1)

When this quantity has a value of 1, the system is perfectly FM. When it is 0, the system

can be perfectly PM or AFM, or many other possible configurations. A second quantitative

95
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measure is therefore needed, and found in the variance of the polar angle from the system

net spin:

FM: σ2
θ = 0 (4.2)

PM: σ2
θ =

π2

4
− 2 (4.3)

AFM: σ2
θ =

π2

4
(4.4)

Fig. 4.1 shows 2D histograms of spin state distributions in E, ||
∑
~s||, ||

∑
~s||∑
||~s|| , σ

2
θ . The

above described data generation scheme indeed covers a broad range of energy and spin

configurations, including PM and AFM states. In particular, low/zero-magnetization states

are spread across the full range of V ar(θ) from FM through PM to AFM. The clearest

avenue for improvement is to add more PM states, particularly for the high energy states

which correspond to the nanowire configurations.
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Figure 4.1: 2D histograms of spin state distributions in E, ||
∑
~s||, ||

∑
~s||∑
||~s|| , and σ2

θ .

4.1.1 Long T Ramp Analysis

5000 geometric configurations of 16 atoms were assigned nine different sets of initial magnetic

moments, resulting in 45k samples. Fig. 4.2 shows the range of configurations from FM to

PM (omitting AFM).

The top left subplot is a histogram of atomic magnetic moment magnitudes across all

samples in this series. This distribution is important because various ab initio studies tend

to report average or preferred magnetic moments, however there is far less literature on

detailed distributions of spin magnitudes (as determined by DFT) in perturbed bulk lattices

of common materials. This plot can be broken down or expanded separately to show spin

magnitude distributions for different geometric configurations or as a function of energy.
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Further analysis along these lines could be interesting because there may be low or high spin

magnitude atoms even in common thermal geometries and that could be mechanistically

important in thinking about defect migration / aggregation or hydrogen adsorption in future

work.

The top right plot is a 2D histogram of eV/atom vs net system magnetic moment mag-

nitude. This shows that a broad range of system net spins are possible, although this distri-

bution collapses to a single average at low energy. Paramagnetic character is observable at

energy less than 200 meV/atom above the energetic ground state.

The bottom left shows a scatter plot of the energy values for each sample and is organized

in six sets of 5000 samples (corresponding to geometric configurations), with each series of

5000 evaluated with an increased variance in polar angle, until the final series which is

initialized to be fully paramagnetic. It is apparent that the final series has a significantly

wider band of energies after index 25,000 than the other series do at their starts, with these

areas of lower energy corresponding to the 300K start of the NPT ramp.

At bottom right system net spin magnitude is displayed for each simulation index. The

strategy of gradually increasing polar angle dispersion has resulted in increasing tendency

toward PM spin configurations.
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Figure 4.2: Long T ramp spin state synopsis.

4.1.2 3x3x3 BCC full lattice TDF w/ varied spin

Fig. 4.3 are uses the same axes as Fig. 4.2 on all subplots.

This time, in the top left there is a bi-modal distribution in spin magnitude over these

series, suggesting that different deformations are associated with significantly different spin

distributions.

In the top right it is worth noticing that there are again low net system spin states at

relatively low energy, and at bottom right there is the desired increasing tendency toward

PM states as polar angle spin dispersion increased.
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Figure 4.3: 3x3x3 BCC full-lattice “Tour de Fer” spin state synopsis.

4.1.3 PCA of Spin-Aware Fe Dataset

Fig. 4.4 shows the PCA-space transform of the input features for the full dataset using

this work’s reference BP featurization. The data samples form a complex shape that in no

way resembles a bi-variate normal distribution, and there are many paths between densely

sampled regions that have sparsely sampled (or unsampled) regions between them. This

means that the geometries present in the dataset (the Spin Bases are not utilized here)

have some non-smooth transitions between forms. For example, the data to the far right

is the nanowire data, which has a small number of atoms in a vacuum, whereas the large

group of samples to the left is more or less bulk material (with a single point defects or

di-vacancy). Digging deeper, the highly compressed “Tour de Fer” states are in the far-left
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group that extends linearly up and to the left from (-1, -1) to as far as (-3, 3). Geometric

states nearest ground are near (-0.75, -0.75). The tensile fracture configurations are related

to the tuft at (1, -1). The lump peaking at about (-0.3, 1.5) is associated with intensely

sheared configurations. It is interesting therefore to see that specific types of geometric

perturbations from ground state move along very different paths, and also that the extremes

of those deformations tend to only connect through the ground state.

A major point about all that structure is that densely sampled yet isolated data regions

are harder to fit, especially using NNs.

Figure 4.4: PCA transformed spin-agnostic features.

Other authors examine PCA on “feature vectors” from the GAP/SNAP methodology and

then analyze clusters within to characterize microstructure. [91,92] Such a process is entirely

conceivable to perform using BP/SANNIP featurizations, and may even be preferable given

the simpler form which can be fast to compute and easy to tune when looking for specific

things. This is left to future work.
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Fig. 4.5 shows the PCA-space transform of the input features for the full dataset using

a SANNIP basis set. The SANNIP features contain both geometry and spin information,

which has the effect of broadly smearing the data in p1, p2-space. While the sum of variance

explained by p1 and p2 remains roughly the same at ∼ 85%, the variance explained by p2

more than doubled. The bounding curve that surrounds the dataset is shorter relative to the

bounded area than with BP. It makes sense then that SANNIP could perform better than

BP numerically, because there are fewer isolated data points far from the bulk.

Figure 4.5: PCA transformed spin-aware features.

The BP-featurized data in p1, p2-space is more concentrated than the SANNIP-featurized

data. However, as seen in the next section, the SANNIP energy RMSE is more concentrated

about zero compared to the spin-agnostic BP energy RMSE. By smearing the input in a

physically relevant way, the output error distribution has been condensed.
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4.2 Energy Prediction Error

The first step in proving the efficacy of our method is through its advantage over conventional,

spin-agnostic BP in terms of energy prediction error.

In our case the most obvious and ubiquitous metric of performance for regressors is Root

Mean Square Error (RMSE). Mean Absolute Error (MAE) is also a metric of performance,

although RMSE is more sensitive to outliers and therefore more difficult to reduce than

MAE.

NN hyper-parameters were kept constant across the wide range of scenarios presented, for

both practical and conceptual reasons. Starting with the practical, optimal hyper-parameters

cannot be known in advance and require extensive trial-and-error to investigate. Even per-

functory hyper-parameter optimization includes many different layer sizes and training du-

rations, and an exhaustive search goes into six dimensions. Since the basis functions and

NN architectures are the substantive scientific contributions of this thesis, computational re-

sources were focused on exploring that space. Optimizing hyper-parameters for each prospec-

tive basis set and NN configuration would have increased computational needs by more than

one order of magnitude per experiment. Keeping them the same throughout also makes the

comparison between ML methods fair and accurate in terms of the potential developer’s level

of effort.

The hyper-parameters used are:

• Learning rate: 0.0001

• Training duration: 16000 epochs (one “epoch” here means “using every training sample

exactly once”)

• Batch size: 100 samples

• Fully connected hidden layer quantity: 2 layers

• Fully connected hidden layer size: 25 neurons/layer

• Activation function: ReLU
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• Validation fraction: 0.2

There are however some unavoidable differences that may obscure ML process comparisons:

• Dataset composition: Some datasets contain more configurational variation which ex-

pose weaknesses of a system under test.

• Trainable parameters because of inputs: The Spin Bases add inputs to either NN

scheme, thus increasing the number of trainable parameters in models with the same

number of hidden-layer nodes.

• Trainable parameters because of architecture: The CNN architecture uses more train-

able parameters than conventional BP NNs.

This work presents comparisons of four cases on three data subsets using two evaluation

procedures. The BP basis set and the Spin Basis sets are constant. The four cases are:

• BP Bases using BP NN

• BP Bases using this work’s CNN

• BP + Spin Bases (SANNIP) using BP NN

• BP + Spin Bases (SANNIP) using this work’s CNN

The three data subsets are labelled:

• High-Spin Variation

• High-Geometry and High-Spin Variation

• High-Geometry and Low-Spin Variation

The two evaluation metric definitions are discussed in the following two subsections.

4.2.1 Aggregate Prediction of a Bag of Models

The trainable parameters of NNs are generally initialized to random values, which means that

an identical training process using the same training dataset most likely will produce different
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results. This is not unique to NNs; many process in the world of ML are non-deterministic

in this way. The training procedure itself can also infuse significant stochasticity, due to

validation sample selection, batch composition, and sample/batch presentation order.

Therefore, if an ML process is executed to produce trained models, and every model is

different, a set of trained models must be obtained in order to draw statistically significant

conclusions about the effectiveness of the ML process that produced the models.

Since the splitting of the overall dataset into the training dataset and validation dataset

can create a bias, the validation dataset is chosen randomly for each model. No two models

have the same validation dataset, so points that are likely to be particularly instructive for

training or penalizing in validation get shuffled from model to model, providing the broadest

and most general picture with which to compare ML processes.

When all models have different and uniformly random validation datasets, then for a

large enough “bag of models” each data sample will on average be included in a validation

set a number of times equal to the validation set fraction. When that is the case, every

model in the “bag” can be used to make a prediction for each data sample (instead of

just its validation samples), and those predictions can be averaged to produce an aggregate

result for each data point that is representative of the ML method—and not necessarily any

particular instance of a trained model. For the aggregate prediction given sample i and M

models:

Eagg,i =
1

M

M∑
m=1

Em,i (4.5)

The MAE and RMSE of the aggregate predictions of a bag of models on the entire available

dataset is therefore the first metric used in this work for comparing ML methods that produce

instances of trained models.
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4.2.2 Validation Error of a Bag of Models

Our second metric is MAE and RMSE of the validation error on the concatenation of the

set of validation sample predictions from each model in above mentioned “bag.”

This value is generally not the same as the above, and can be either higher or lower

since validation points chosen at random can be in hard-to-predict, high-error regions of the

dataset or easy-to-predict, low-error regions.

This is another reason why multiple trained models from each method are needed to

evaluate overall ML process performance.

Eval = Em0 ∪ Em0 . . . EmM (4.6)

4.2.3 Runtime & Overall Figure-of-Merit (FOM)

Runtime for SANNIP and BP in MD environments depends on: (1) the time to calculate

the basis function values for each atom, and (2) the time to calculate the system’s energy

and forces using the NN. Since angular BP bases are three-body terms, while radial and spin

bases are two-body, the impact of spin basis value calculation on MD execution time is very

small. A typical number of atoms inside a cutoff radius of 6 Å is about 80 for iron, meaning

that adding 80 radial or spin bases increases the featurization time by the same amount as

adding just one additional angular basis. The increase in featurization time from adding 20

spin bases can be neglected, while the same cannot be said for the NN computation time

where the effect of one more basis is independent of type. Because training requires the

NN calculations proportional in number to those needed for MD, training time differences

reasonably approximate differences in overall execution time in MD environments using the

different methods.

If users of MD and MC value a balance between execution time and RMSE, then one
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reasonable Figure of Merit (FOM) for IPs is the inverse of product of the two:

FOM =
1

exec. time× RMSE
(4.7)

For the results of this work, the cross-model concatenated validation error RMSE and training

time for one complete use of the training dataset will be used to calculate FOM.

Training times were computed on the Ju Li Group’s computational cluster using nodes

with two Intel R© Xeon R© CPU E5-2650 2.00GHz processors each. For each time trial, a single

node was fully utilized, including its memory. GPU computations may achieve different

results.

4.2.4 High Geometry- and Spin-Variation Dataset

Ultimately, the highest impact comes from being able to make accurate predictions across

configurations of high variation in both geometry and spin. Fig. 4.6 shows energy prediction

error per atom (Epred − EDFT ) vs average system energy, both in meV/atom using BP and

the BP NN. First, there is clear separation between the different spin states: FM states are

overpredicted, PM states vary considerably, and AFM states are hugely underpredicted. Note

also how the PM and AFM states for the same geometries are significantly higher in energy

and systematically under-predicted in energy, evident by the downward sloping bound to the

right of the lowest energy samples for those spin states. Next, as seen at far left, BP is over-

predicting the ground state energy by approximately 100 meV/atom, which is a very high

amount of error. As mentioned in the tutorial, extrema can be hard to precisely capture with

NN methods—and unseen spin makes the situation far worse. Also, the difference between

energy states in samples < −7meV/atom drops as energy increases, forming an overall

triangular shape in this error vs average system energy per atom plot. The difference between

the ground state error of about +100 meV/atom and nearly -400 meV/atom amounts to a

range of almost 0.5 eV/atom in energy prediction error due to spin—in what are the low
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energy lattices. This means that the energy penalty of spin perturbations from FM are

greatest near equilibrium lattices and decrease with increasing system energy, and therefore

temperature. Looking to the higher energy group which are nanowire geometries however

there is a magnetic phase energy band about 200 meV/atom tall. In this area, the error due

to spin perturbations seem relatively constant in energy, suggesting that there are different

regimes beyond BCC and FCC for which empirical exchange relations would have to be

defined by practitioners of that approach.

Fig. 4.7 shows error vs. energy using SANNIP and the BP NN on the same dataset.

The systematic bias evidenced by clear separation of errors according to spin configuration

is gone, and RMSE is dramatically reduced. However, the ground state in this case is still

over-predicted.
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Figure 4.6: High geometry and high spin variation aggregate prediction using BP bases and
BP NN.
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Figure 4.7: High geometry and high spin variation aggregate prediction using SANNIP and
BP NN.

Fig. 4.8 shows BP bases using the new CNN of this work. While bounds in error are

reduced slightly, the situation is not meaningfully different than BP using the BP NN. There

are still large errors and groupings according to spin. Fig. 4.9 shows SANNIP using the new

CNN, yielding further reduction in energy prediction RMSE and also reducing ground state

error compared to SANNIP using the BP NN. This last qualitative observation may be
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significant for some users.

Figure 4.8: High geometry and high spin variation aggregate prediction using BP bases and
new CNN.
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Figure 4.9: High geometry and high spin variation aggregate prediction using SANNIP bases
and CNN.

Fig. 4.10 shows the validation error histograms for all four above mentioned cases. Spin-

agnostic BP cannot achieve a normal distribution in error, which is suggestive of the sys-

tematic bias seen above in the clearly differentiated error groups labelled by spin. Math-

ematically, the BP error distributions do not have a mode of zero, and are highly skewed

toward positive errors. SANNIP practically eliminates this skewness and produces more
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normally distributed errors. The CNN is only marginally useful in the systematically biased

spin-agnostic BP cases, however it does narrow the error distribution for SANNIP.

Figure 4.10: SANNIP vs BP, validation error histogram on high geometry and high spin
variation dataset.

Table 4.1 summarizes these energy prediction error results for the complete set of com-

binations of bases and NNs for this dataset. It also states: the training time per use of the

entire dataset (or epoch), the Figure-of-Merit (FOM) for each case, and the ratio of a case’s

FOM to that of BP using the BP NN. Use of the SANNIP bases increases execution time

only slightly, whereas the new CNN nearly triples it. The highest FOM is therefore achieved

by SANNIP using the BP NN, followed by SANNIP using the new CNN. BP using the new

CNN is the worst performer by this metric. Fig. 4.11 shows execution time per epoch (s) vs.

validation RMSE (meV/atom) for the four methods, and contours of equal FOM intersect

the values of each.
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Bases BP BP SANNIP SANNIP

NN Type BP NN CNN BP NN CNN

Agg. RMSE (meV/atom) 57.00 56.72 13.72 11.18

Val. RMSE (meV/atom) 57.76 57.50 15.56 12.83

s
epoch

10.2 27.0 10.4 30.5

FOM×103 1.70 0.644 6.18 2.56

FOM/FOMBP, BP NN 1.00 0.378 3.63 1.50

Table 4.1: High geometriy- and spin-variation dataset RMSE comparison, SANNIP vs BP.

Figure 4.11: Execution time per epoch vs. RMSE across all methods applied to the high-
geometry and high-spin variation dataset.

To summarize, SANNIP dramatically reduces or eliminates the systematic bias due to

variation in spin configuration as seen in directly in Figs. 4.6, 4.7, 4.8, and 4.9. The er-
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ror distributions shown in Fig. 4.10 further support this interpretation. Using a FOM that

balances energy prediction RMSE with a reasonably proxy of execution time in MD envi-

ronments, SANNIP using the BP NN is the best option, followed by SANNIP with the new

CNN. Lastly, SANNIP with the new CNN best resolves the ground state.

4.2.5 High Spin-Variation Dataset

What happens when considering a dataset with low variation in geometry but high variation

in spin? Fig. 4.12 shows error vs. energy using BP and the BP NN on a subset of the overall

dataset. This dataset’s geometric configurations are both BCC and FCC, produced by MD

simulations as temperature was varied from 300K to 1500K. Each geometry is used with

three spin states: FM, perturbed FM, and PM. In this case, the FM states are all similar

and positive in error, while the PM state errors vary considerably and include the highest

errors in this application.

Figure 4.12: High spin variation aggregate prediction using BP bases and NN.
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Fig. 4.13 shows error vs. energy using SANNIP and the BP NN on this high-spin-variation

subset of the overall dataset. The grouping of errors by spin is gone and this time RMSE is

reduced by greater than 10x.

Figure 4.13: High spin variation aggregate prediction using SANNIP bases and BP NN.

Fig. 4.14 shows validation error histograms for BP and SANNIP, both using the BP NN.

SANNIP again makes the mode of the distribution zero and makes it more normal.



CHAPTER 4. RESULTS 117

Figure 4.14: SANNIP vs BP, validation error histogram on high-spin variation dataset.

Table 4.2 shows results for the complete set of combinations of bases and NNs.

Bases BP BP SANNIP SANNIP

NN Type BP NN CNN BP NN CNN

Agg. RMSE (meV/atom) 31.65 31.67 2.35 2.44

Val. RMSE (meV/atom) 31.90 31.00 2.75 2.60

s
epoch

0.837 2.26 0.858 2.76

FOM×102 3.75 1.43 42.4 13.9

FOM/FOMBP, BP NN 1.00 0.381 11.3 3.72

Table 4.2: High spin-variation dataset RMSE comparison, SANNIP vs BP.

Interestingly, in this case the novel CNN presented above did not improve the overall

result compared to the conventional BP NN. There are many possible reasons, including but

not limited to needing: more training epochs, a smaller network, or more samples from the

data generation scheme. Further exploration of the cause of this result is left to future work.

For reference, the recent work by Novikov et al. presenting mMTP showed an energy

prediction RMSE of 2.0 meV/atom on a dataset ranging from about -8.05 meV/atom to
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-7.80 meV/atom. The ratio of RMSE to the energy domain spanned is therefore about

2
250

= 0.008. [58] SANNIP achieves an energy RMSE of 2.75 meV/atom over a domain span

of 385 meV/atom, resulting an an RMSE per unit domain on comparable data of ∼ 0.007.

Fig. 4.15 summarizes the results for the high-spin variation subset graphically. SANNIP

using the BP NN is the best performer on a FOM-basis, followed by SANNIP with the new

CNN—although there has not been demonstrated any accuracy advantage to using the new

CNN with SANNIP. SANNIP is therefore a significant advance for users of MD who wish to

model systems where large or extreme variations in spin state are expected.

Figure 4.15: Execution time per epoch vs. RMSE across all methods applied to the low-
geometry and high-spin variation dataset.

4.2.6 High Geometry-Variation, Low Spin-Variation Dataset

To round out the numerical evaluation of SANNIP, it is here asked what happens when

considering a dataset with high variation in geometry but low variation in spin? This question
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is answered using a subset of the overall dataset focused on FM aligned configurations across a

wide range of geometries including: vacancies, interstitials, and extreme distortions including

tensile fracture and recombination. Fig. 4.16 shows BP and the BP NN applied to this

dataset. The RMSE in this case is 28.5 meV/atom, with the highest errors in the lowest and

highest energy configurations. For reference, there are only about 20k samples compared to

the 38k used in the 2012 BP paper on Cu mentioned in the Background Chapter, so the

relatively small sample count and magnetism of iron result in high RMSE.

Figure 4.16: High geometry variation aggregate prediction using BP bases and NN.

Fig. 4.17 shows SANNIP and the BP NN applied to this dataset. Remarkably, even for

FM aligned data, SANNIP reduces RMSE by 45%. Certain low energy states still have high

error, however, as seen in the NN tutorial, this is an issue that can likely be fixed with

sampling more intensely in that area of the training space.
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Figure 4.17: High geometry variation aggregate prediction using SANNIP bases and BP NN.

Fig. 4.18 shows validation error histograms for BP and SANNIP, both using the BP NN.

SANNIP again makes the mode of the distribution zero and makes it more normal.

Figure 4.18: SANNIP vs BP, validation error histogram on high-geometry variation dataset.
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Table 4.3 shows results for the complete set of combinations of bases and NNs. The CNN

reduces RMSE slightly, but at great computational expense.

Bases BP BP SANNIP SANNIP

NN Type BP NN CNN BP NN CNN

Agg. RMSE (meV/atom) 28.52 24.63 15.47 13.97

Val. RMSE (meV/atom) 30.28 26.22 17.50 17.16

s
epoch

4.01 10.9 4.22 12.6

FOM ×103 8.24 3.51 13.6 4.62

FOM/FOMBP, BP NN 1.00 0.426 1.64 0.561

Table 4.3: High geometric-variation dataset RMSE comparison, SANNIP vs BP.

Fig. 4.19 shows the above tabulated results graphically. Again, SANNIP with the BP

NN outperforms all other bases on a FOM basis.



CHAPTER 4. RESULTS 122

Figure 4.19: Execution time per epoch vs. RMSE across all methods applied to the low-
geometry and high-geometry variation dataset.

4.3 Monte Carlo Spin Relaxations

Since the unique capability of SANNIP (compared to BP) is its direct treatment of atomic

spins, a significant component of achieving POC is phenomenologically accurate physical

modeling of magnetic phenomena. This work focuses on magnetic properties that are emer-

gent and based on proper behavior of the aggregate or ensemble, because those properties to

connect the Å-scale domain of IPs with macro-scale observables. By fixing a perfect lattice

and relaxing its spin state from various initial conditions and at various temperatures, it is

shown that SANNIP does indeed offer new functionality that is both consistent with physical

observation and enabling of meaningful predictions.
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4.3.1 Spin Monte Carlo

The Monte Carlo algorithm presented in this work is defined as follows:

1. Define system geometry. This is fixed throughout the simulation.

2. Define the initial atomic spins. These are set to perfect +z-aligned FM, perfect ±z-

aligned AFM, or PM.

3. Define the MC move. This will be zero-th order or first order. The zero-th order move

is an unbiased, random draw using same distribution as the PM initialization. The

first order move is a small angle perturbation from the atom’s present alignment and

a random draw for magnitude (again, from (µ||~s||)).

Once the MC process is well-defined, the main algorithm proceeds:

1. Propose an MC move.

2. Evaluate the energy of the new configuration

3. Accept the move if the new energy is lower than the pre-move energy.

4. Obtain a pseudo-random number ∈ U [0, 1) and accept the move if that number is

< e
− ∆E
kBT .

5. Repeat until a specified quantity of moves is accepted.

This methodology allows us to initialized a lattice to a specific spin state and allow it to

relax to equilibrium, given sufficient MC moves.

Further implementation details are parameter selection (initial lattice, initial spin distri-

bution, spin distribution as a function of MC move, etc.) and limits on move-size, because

NN predictions are only valid within the training domain.

4.3.2 Spin Relaxation Consistency with Magnetic Hysteresis

Magnetic hysteresis occurs when a magnetic material is capable of maintaining different

magnetization states, depending on the history of its magnetic environment and state. For



CHAPTER 4. RESULTS 124

example, if a sample of pure iron is magnetized in a high magnetic field and then the

externally applied field strength is attenuated to zero (without changing its direction), then

the iron sample will settle at and retain a certain magnetization. If on the other hand a

sample of iron heated above its Curie Temperature is quenched in the absence of a magnetic

field, the resulting magnetization is significantly different.

There is a large energy penalty associated with creating disordered atomic magnetic mo-

ment alignment in FM materials at low temperature, and similarly a large energy penalty

associated with non-equilibrium spin magnitudes. If a strongly magnetized material is sub-

ject to external fields in the direction opposite the moment of the magnetized material, and

confined so as to prevent macroscopic movement, then the material’s atomic magnetic mo-

ments become disordered and frustrated, and some of that energy is transferred into lattice

perturbations that are perceptible as heat. This heat is known referred to as “hysteresis

loss” in many electrical engineering applications, for example, in transformer cores.

Since SANNIP is a methodology that explicitly treats spin state, it is reasonable to ask:

“does SANNIP relax different initial spin conditions to different relaxed states?” Fig. 4.20

shows MC using SANNIP relaxes atomic magnetic moments to different end states, in a

manner that is dependent on the initial magnetization state—as represented by the system’s

net magnetization. This result is consistent with physical observations of hysteresis, in that

highly magnetized systems stay magnetized, and systems that relax from frustrated states

become only partially magnetized.
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Figure 4.20: SANNIP relaxes different spin initializations to different spin end states.

As mentioned in the Introduction, Ma, Dudarev, and Woo showed magnetization as a

function of time for a sample of BCC iron after a laser pulse as shown in Fig. 4.21. [52]

Magnetization decreased after the laser pulse and then rebounded, but the rebound setted a

lower magnetization than the initial because of increased temperature. Ma and Dudarev did

not make any claims as to whether or not their result exhibits magnetic hysteresis, although

they could compare the final magnetization to an SLD run started at a higher temperature.

In any case, the IP that produced their result used four components:

1. the Dudarev and Derlet 2005 empirical potential, [15]

2. a fitted Heisenberg exchange function governing spin direction changes, [61]

3. a set of Landau coefficients governing spin magnitude changes, [93] and

4. an electron heat capacity relation. [94]
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Figure 4.21: SPILADY laser demagnetization pulse result showing good agreement with
experiment. [52]

In contrast, the IP of this work is trained on features constructed from coordinates, spins

and DFT energy values—and no information was injected into the model via the choice of an

exchange function. SANNIP does not need to be changed to be relevant for configurations

outside the domain of an arbitrary exchange function.

4.3.3 Resolution of Curie Temperature of Iron

When the magnetic field strength of spontaneously magnetized FM materials are measured

as a function of temperature, the magnetic field strength diminishes with increasing tem-

perature. Once the material’s temperature reaches a critical threshold it no longer exhibits

spontaneous magnetism and becomes PM. This threshold is known as the material’s Curie

Temperature. [95]

Fig. 4.22 shows the result of MC relaxation of perfectly FM initialized systems as a

function of temperature. SANNIP produces two significant results. First, the relaxed states

can be rank-ordered according to their temperature, which is in agreement with physical
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observations. Second, and more importantly, when the MC temperature reaches 1150K, the

end state becomes almost fully PM.

Figure 4.22: MC determination of Curie Point of iron.

All previous work resolving the Curie Temperature of iron using atomistic simulation has

relied upon an exchange function of fixed functional form which is specific to a particular

context, for example BCC iron with a FM ground state as shown in Figs. 4.23a and 4.23b.

[61–63] The fitted exchange functions used ensure that their results are smooth even though

they are fitted with a relatively small database compared to that of the present work. This

highlights the a key difference between SANNIP and empirical spin-aware potentials—while

NNs require densely sampled data to learn appropriate functional forms, their formlessness

can readily adapt to any lattice type, geometric configuraiton, or magnetic ground state

without need of a case-specific intermediate approximation.
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(a) Ma et al. showing magnetization as a function
of Temperature. [61]

(b) Ma et al. showing their exchange function and
fitting data. [61]

Figure 4.23: Ma et al. work on Spin-Lattice Dynamics from 2008. [61]



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work presents novel basis functions that capture atomic magnetic moment information

and featurize it for input into neural networks that can express a potential energy surface as a

function of geometric and spin configurations. This work also presents novel neural network

architectures that exhibit improved ability to learn and express potential energy surfaces.

It is shown that the novel spin basis functions enable a transformational improvement in

the numerical accuracy of BP methods in terms of energy prediction RMSE over training

datasets that include the broad distribution in spin required for spin-aware NN methods to

function effectively. Lastly, SANNIP learns and exhibits spin/energy relationships that are

consistent with experimental observations of hysteresis, and it successfully resolves the Curie

Temperature of iron to between 1100 and 1150K which is reasonable given the actual TC of

1043K.

Fig. 5.1 shows that SANNIP using the BP NN offers an excellent balance of speed and

accuracy compared to BP or SANNIP using the new CNN. This will likely appeal to a broad

user base, and users who need just a little bit more accuracy can find that using the CNN.

129
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Figure 5.1: Execution time per epoch vs. RMSE across all methods applied to the high-
geometry and high-spin variation dataset.

Because SANNIP does not rely on a fitted exchange function, it is has the capacity to

be as general as the dataset used to train it—including configurations with defects, surfaces,

voids, amorphous solid states, etc.

This work therefore concludes that the novel basis functions and neural networks are a

new and significant contribution to the field of atomistic simulation and enabling of future

work will now be described.

5.2 Future Work

It is commonly said that some questions, when answered, lead to more and potentially greater

questions. With regard to this thesis, that appears to be the case, as outlined below.
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5.2.1 Feature PCA Microstructure Characterization

Software packages such as LAMMPS and Ovito implement what is known as Common Neigh-

bor Analysis (CNA). [55,96,97] While CNA classifies atoms by local crystal structure, feature

PCA characterization could go much farther. As mentioned above in discussing PCA of BP

and SANNIP features, clustering and other methods can be used to group and distinguish

between geometries and coupled geometry / spin configurations—for example, identifying

atoms adjacent to vacancies. [91,92] BP and SANNIP could also be used to similar and fur-

ther ends. Special basis functions also could be constructed and used to recognize particular

geometric and spin configurations in a biased manner. Unbiased approaches could be used

to discover new groups of configurations that are present only in specific situations or near

certain defects.

This could be critical to understanding the role of spin in defect migration trajectories,

radiation cascades, and defect aggregation / dissolution. The spin state during defect vacancy

could be studied in an automated fashion and obtain statistically relevant conclusions that

would be both tedious and difficult to perform manually. For example, it requires some care

to identify vacancies and examine the spin states of all nearby atoms—but an automated

method might notice patterns that a human will not. The added dimensionality of spin

makes such automation even more valuable.

Methodologies such as these are not dependent on the IP used to generate configurations

or trajectories; they can be applied simply as a characterization procedure.

Given sufficient study of feature PCA microcharacterization methods, a database could

be created with annotated data to train ML classifiers (logistic regressor, SVM, NN, etc.).
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5.2.2 Atomistic Simulation under Externally Applied Magnetic

Fields

By expanding the spin bases to include explicit treatment of externally applied magnetic

fields, it would be possible to directly model hysteresis and its consequences at the atomic

scale. It could be useful to understand how defect formation, migration, and interactions

change under various magnetic fields. One possible application could be defect removal

using specific externally applied magnetic field trajectories, for example evaporating voids

or dislocation loops. Conversely, it may turn out to be the case that defect formation is

accelerated, or new kinds of defects form.

One potential practical aim would be to design a “defect sink” that operates in a manner

simliar to cathodic protection but protects against defect accumulation instead of oxidation,

by using a confluence of externally applied electric and/or magnetic fields, laser pulses, me-

chanical stress/strain, and phonon excitation to simultaneously (1) increase defect mobility,

(2) reduce annihilation reaction energy barriers, and (3) cause defects to exit bulk lattice at

surfaces.

Electroplating and surfactants are other examples of using electrical and chemical ma-

nipulations of the PES at material interfaces.

Beyond that concept, magneto-laser-strain effects may be useful in producing large single

crystals or otherwise dissolving grain boundaries. This could enable lower cost casting and

machining to form complex and precise shapes and still producing single crystals.

Processes may be envisioned that compete with hot isostatic processing (HIP), allowing

similar results at lower cost and by smaller facilities.

5.2.3 New Spin Bases

While meaningful success has been achieved in this work, the author does not expect this to

be the final word regarding the development of spin bases (even forgetting about externally
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applied fields). It could be that there are relationships specific to certain structures that

could be detected by purpose built bases which enable higher resolution of key properties.

For example, it may be that di-interstitials are best detected by a particular quantitative

measure that is not emphasized by the current set of spin bases.

As of this writing, several specific spin bases are proposed. They are inspired by the

effort to quantify the magnetic character of the DFT training data.

The first prospective basis is an analog of system net spin, a GRBF transform of the sum

of the product of spins and cutoffs:

SF1
i = e−η(

∑N
j 6=i ||~Sj ||fc(Rij)−α)2 (5.1)

The second prospective basis is a GRBF transform of the magnitude of the sum of the

product of the spins and cutoffs:

SF2
i = e−η(||

∑N
j 6=i

~Sjfc(Rij)||−α)2 (5.2)

The third prospective basis is an alternative to Spin Basis 001 S2
i , and a transform of the

000 S2
i :

SF3
i = e−η(

~Si·
∑N
j 6=i

~Sjfc(Rij)−α)2 (5.3)

Fourth is a proxy of magnetization inside the cutoff:

SF4
i =

∣∣∣∣∑N
j
~Sjfc(Rij)

∣∣∣∣∑N
j

∣∣∣∣~Sj∣∣∣∣fc(Rij)
(5.4)

The fifth proposed basis is a proxy of average polar angle inside the cutoff:

SF5
i =

N∑
k

~Sk ·
∑N

j
~Sjfc(Rij)∣∣∣∣~Sk∣∣∣∣∣∣∣∣∑N

j
~Sjfc(Rij)

∣∣∣∣ (5.5)
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Lastly, a proxy of variance of polar angle inside the cutoff is proposed:

SF6
i =

N∑
i

(
~Si ·
∑N

j 6=i
~Sjfc(Rij)∣∣∣∣~Si∣∣∣∣∣∣∣∣∑N

j 6=i
~Sjfc(Rij)

∣∣∣∣
)2

(5.6)

5.2.4 Combination of Spin Bases and Gauss-Fourier Bases

While presented in the appendices, the Gauss-Fourier (GF) bases yield improvement in

learning geometry compared to conventional BP bases. They could be combined with the

spin bases and evaluated for efficacy. This is left to future work because it is not necessary

to prove the validity of the spin bases.

Since GF angular bases can be constructed to detect specific coordinations, it may be the

case that special spin bases can be constructed along similar lines, or additionally that geo-

metric and spin bases could be explicitly designed to work together to detect more complex

phenomena.

5.2.5 Spin-Aware GAP & SNAP

Just as GAP and SNAP use 4D spherical harmonics to represent the projection of the scalar

field for position, we propose that the same approach be applied to each component of spin,

and the resultant featurization be input into a: linear regressor, NN, and kernel regression.

5.2.6 DFT Studies of Spin-State Energy Barriers

In the complex, multi-body environment of an atom inside a 6 Å cutoff with up to > 80

neighbors, the displacements of neighbors from their geometric equilibrium positions is likely

to significantly influence the spin-space location of spin ground state and the quantity, spin-

space proximity, energy-barriers to, and energy levels of neighboring spin-space minima. In

lattices more characteristic of low temperature, the energy barrier height and spin-space dis-

tances between spin-space local minima may be large. However, those barriers and distances
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may be lower in lattices more characteristic of higher temperature—potentially yielding

atomistic insight into the phenomenon of the Curie Temperature as a confluence of lower

energy barriers between spin states and higher prevalence of excited states. Detailed inves-

tigation along these lines could be a subject for DFT studies using constrained magnetic

moment calculations which is left to future work.

5.2.7 Hyper-Parameter Optimization

Detailed, case-specific hyper-parameter optimization is left to future work. While the hyper-

parameters presented are sufficient for POC, it is certainly worth exploring an accuracy

and execution time comparison between fully-optimized applications of BP and SANNIP.

Both conventional ML hyper-parameters and featurization basis set parameters should be

considered.

5.2.8 Point and Extended Defect Modeling in α-Iron

The methodology of this thesis can be used to investigate the configuration and energetics of

point defects, screw and edge dislocations, grain boundaries, and other structures to compare

results against existing literature using EAM and other methods.

5.2.9 Expansion to Multi-Component Systems

While this work has focused on the particular unary system if pure iron, future work to

expand its application space to include multiple elements is an immediate next step. The

MIMONN described in Appendix E is envisioned as one way to proceed in that endeavor.
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Appendix A

Basis Function Parameter Sets

There are several basis sets that were used over the course of this thesis. The BP comparator

sets are taken from literature. We have created and tested over 100 different basis sets and

parameter sets, and present the most significant cases.

A.1 Spin-agnostic Fe, BP comparator to SANNIP

The radial parameters are all possible combinations of:

η ∈ {1.5, 6.25, 25.0} (A.1)

Rs ∈ {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}Å (A.2)

Rc = 6.0Å (A.3)
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The angular parameters are all possible combinations of:

η ∈ {0.000357, 0.028569, 0.089277} (A.4)

λ ∈ {−1, 1} (A.5)

ξ ∈ {1, 2, 4} (A.6)

Rc = 6.0Å (A.7)

A.2 Spin-aware Fe, SANNIP

SANNIP results presented in this thesis used the same geometric bases and parameters as

A.1, and added 8 S1
i bases and 12 S2

i bases. The S1
i bases all use η1 = 0.035711, and the

following list of (ξ, α1):

(1, 0.0), (2, 0.0), (1, 1.0), (2, 1.0), (1, 2.0), (2, 4.0), (1, 3.0), (2, 9.0) (A.8)

SANNIP S2
i basis parameters were all combinations of:

η2 ∈ {0.000357, 0.035711, 0.028569, 0.089277} (A.9)

α2 ∈ {0.0, 35.0, 70.0} (A.10)

Rc = 6.0 (A.11)



Appendix B

Dataset Manifest

Below, “m” is the number of samples in the dataset, and “n” is the number of atoms per

sample.

ID m n size type potential Description

013 700 54 3x3x3 BCC 7 Full lattice Tour de Fer, FM aligned

014 700 127 4x4x4 BCC 7 Mono-vacancy Tour de Fer, FM aligned

015 700 126 4x4x4 BCC 7 Di-vacancy Tour de Fer, FM aligned

016 700 129 4x4x4 BCC 7 SIA110 Tour de Fer, FM aligned

017 700 129 4x4x4 BCC 7 SIA111 Tour de Fer, FM aligned

018 700 129 4x4x4 BCC 7 SIA 100 Tour de Fer, FM aligned

019 700 108 3x3x3 FCC 7 Full lattice Tour de Fer, FM aligned

ID m n size type potential Description

020 2000 16 2x2x2 BCC 7 MM = 0 0 4.0

021 2000 32 2x2x2 FCC 7 MM = 0 0 4.0

022 2000 16 2x2x2 BCC 7 MM = 111r

023 2000 32 2x2x2 FCC 7 MM = 111r

024 2000 16 2x2x2 BCC 7 MM = 000r

025 2000 32 2x2x2 FCC 7 MM = 000r

149
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ID m n size type potential Description

034 705 54 3x3x3 BCC 0 001

035 705 54 3x3x3 BCC 0 1

036 705 54 3x3x3 BCC 0 2

037 705 54 3x3x3 BCC 0 000r

038 705 54 3x3x3 BCC 0 1.5

039 705 54 3x3x3 BCC 0 4

ID m n size type potential Description

040 5000 16 2x2x2 BCC 0 300-10000K — FM

041 5000 16 2x2x2 BCC 0 300-10000K — 1

042 5000 16 2x2x2 BCC 0 300-10000K — 2

043 5000 16 2x2x2 BCC 0 300-10000K — PM

044 5000 16 2x2x2 BCC 0 300-10000K — 1.5

045 5000 16 2x2x2 BCC 0 300-10000K — 4

ID m n size type potential Description

056 705 54 3x3x3 BCC 0 Tour de Fer, AFM + -

057 705 54 3x3x3 BCC 0 Tour de Fer, AFM + + - -

058 705 54 3x3x3 BCC 0 Tour de Fer, AFM random

059 5000 16 2x2x2 BCC 0 300-10000K — AFM + -

060 5000 16 2x2x2 BCC 0 300-10000K — AFM + + - -

061 5000 16 2x2x2 BCC 0 300-10000K — AFM random

Nanowire cases:
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ID m n size type potential Description

062 2000 20 (12Å)3 nanowire 0 FM

063 2000 20 (12Å)3 nanowire 0 1

064 2000 20 (12Å)3 nanowire 0 1.5

065 2000 20 (12Å)3 nanowire 0 2

066 2000 20 (12Å)3 nanowire 0 4

067 2000 20 (12Å)3 nanowire 0 PM

068 2000 20 (12Å)3 nanowire 0 AFM + -

069 2000 20 (12Å)3 nanowire 0 AFM + + - -

070 2000 20 (12Å)3 nanowire 0 AFM random



Appendix C

Novel Spin-Agnostic Bases

In this appendix we present new and novel basis functions that we had developed prior to

our work on spin aware basis functions.

C.1 “Fourier Spline” (FS)

While the conventional BP cutoff has proven merit, its form is arbitrary. Therefore, we

explore other ways to meet the need to smoothly limit the domain of a basis function.

Before embarking on this task, let’s consider some guiding principles.

First, we may wish to have a cutoff that allows us to focus on particular radial subdomains

and isolate them from others. In reactor physics something similar is accomplished for cross-

sections by integrating over several energy ranges to obtain group cross-sections. The BP

cutoff at best gives a radial picture somewhat analogous to the neutron spectrum produced by

Bonner Spheres, which are good and clearly interpretable by the BP NN—but we postulate

that some of the NN’s capacity is consumed by translating the Bonner Sphere-likeness instead

of having inputs more directly related to the energy calculation.

Second, we may wish to alter the functional form of the underlying basis. The functional

form of the BP cutoff is fixed; we wish to enable explicit control of asymmetry.
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Figure C.1: “Fourier-Spline” presented in this work.

Second, the cutoff function can also in principle introduce counterproductive distortion

of the basis function that it is cutting off. For example, the cutoff’s derivative can sometimes

have its maximum absolute magnitude precisely in the region where the underlying basis is

most sensitive and active in capturing information. For example, if the BP cutoff’s Rx is

equal to the GRBF’s offset Rs then the shape of the GRBF is distorted maximally—and
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distorted differently from the GRBFs with other offsets.

Parameters: ε↓, Rs, ε↑, ξ↓, ξ↑ (C.1)

fB

(
Rij

)
=



0 for Rij < Rs − ε↓

1− cosξ↓
(
π(Rij−(Rs−ε↓))

2ε↓

)
for Rs − ε↓ ≤ Rij < Rs

1− cosξ↑
(
π(Rij−(Rs−ε↑))

2ε↑

)
for Rs ≤ Rij < Rs + ε↑

0 for Rs + ε↑ > Rij

(C.2)

ξ↓, ξ↑ ∈ 2N (even numbers) (C.3)

∂fB
∂Rij

=



0 for Rij < Rs − ε↓

ξ↓
π
2ε↓

sin
(
π(Rij−(Rs−ε↓))

ε↓

)
cosξ↓−2

(
π(Rij−(Rs−ε↓))

2ε↓

)
for Rs − ε↓ ≤ Rij < Rs

ξ↑
π
2ε↑

sin
(
π(Rij−(Rs−ε↑))

ε↑

)
cosξ↑−2

(
π(Rij−(Rs−ε↑))

2ε↑

)
for Rs ≤ Rij < Rs + ε↑

0 for Rs + ε↑ > Rij

(C.4)

The cutoff derivative formula here uses the double angle formula to reduce the exponent of

cos.

While this cutoff does come at an increased computational expense compared to BP, it

allows for significant reduction (or even complete elimination) of cross-talk between bases

whose offsets are far apart. This may improve information capture and increase the benefit

of using some of the advanced network architectures proposed below.

(Note, we also have several animations of this cutoff that exhibit part of the dynamic

range it can span.)

C.2 “Gauss-Fourier” Spatial Bases

Since the functional forms of BP are so few, we sojourn ever so briefly into the vast and

uncountably infinite space of mathematics applicable to our purpose.
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C.2.1 “Gauss-Fourier” Radial (GFR) Basis

The first complete basis offered in this work is the combination of the conventional Gaussian

radial basis function with the GF Cutoff.

BR
ij =

N∑
j 6=i

e−η(Rij−Rsr )
2

fB
(
Rij

)
(C.5)

∂BR
ij

∂Rij

= −
N∑
j 6=i

[
2η(Rij −Rsr)fB

(
Rij

)
+ f

′

B

(
Rij

)]
e−η(Rij−Rsr )

2

(C.6)

Parameters

Cutoff: ε↓, Rs, ε↑, ξ↓, ξ↑ (C.7)

Radial: η,Rsr (C.8)

The radial basis offset value Rsr may be the same as the cutoff offset value Rs, in which case

it will be represented simply as Rs. This arrangement is generally in keeping with the design

concept for the cutoff, and is practiced throughout this work—although we acknowledge that

this relationship is arbitrary and other practice may be preferable in other contexts.

Fig. C.2 clearly shows the underlying Gaussian radial basis function’s form is preserved

throughout the domain. This is more dynamic and controllable than the conventional BP

form, and can even eliminate cross-talk between bases (meaning that basis with large offsets

can have zero value when basis with short offsets are completely activated, and vice-versa),

thus disambiguating the radial information presented to the NN.

Fig. 2.16 shows normalized BP radial bases, highlighting the distortion caused by the BP

cutoff function.
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Figure C.2: “Gauss-Fourier” Radial Basis presented in this work. Cutoff in black.

C.2.2 Gauss-Fourier Bi-Radial Bases

The first new and novel three-body term in this work is the bi-radial basis:

BB
ijk =

N∑
j 6=i

N∑
k 6=i,j

e−ηij(Rij−Rsij )
2

e−ηik(Rik−Rsik )
2

fB
(
Rij

)
fB
(
Rik

)
(C.9)

While this is a three body term and falls short of expressing angular relationships, it may

nonetheless be useful as a unique descriptor of atomic environments and calculates faster

than angular terms (particularly when calculating derivatives).

Regrettably, we have not experimented extensively (or in our own opinion sufficiently)

with this basis, although we do present it as part of the overall picture and body of work of

this thesis.
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C.3 “Gauss-Fourier” Angular Bases

The design concept for this set of angular basis functions is to be tunable such that maximal

activation of a particular basis corresponds to a particular geometric relation at equilibrium.

For example, in any lattice structure there is always a nearest neighbor atom group, and

angles between members of that group. There is always a second-nearest neighbor atom

group, and angles between nearest neighbors and second-nearest neighbors as well as angles

between different second-nearest neighbors.

These bases can be interpreted as “coordination detectors” or “molecular bond detectors.”

C.3.1 Angular Basis 000

The first new angular basis of this work is comprised of five terms: one angular term, two

radial terms, and two cutoffs. The radial terms are essentially as above, and need not

have the same offset (Rs) or decay (η) parameters. The angular term supplies an additional

attenuation based on a difference between an actual angle and a reference angle characteristic

of a specific coordination number and structure.

BA
ijk =

N∑
j 6=i

N∑
k 6=i,j

e−ηθ(θijk−θs)
2

e−ηij(Rij−Rsij )
2

e−ηik(Rik−Rsik )
2

fB
(
Rij

)
fB
(
Rik

)
(C.10)

As before when differentiating a product five terms, we differentiate each term separately,

starting with the angular term.

θijk = arccos

(
~Rij · ~Rik

RijRik

)
ω =

~Rij · ~Rik

RijRik

= cos θijk (C.11)

∂θijk
∂zi

=
∂θijk
∂ω

∂ω

∂zi
=

−1√
1− ω2

∂ω

∂zi
(C.12)

∂θijk
∂zj

=
∂θijk
∂ω

∂ω

∂zj
=

−1√
1− ω2

∂ω

∂zj
(C.13)

∂θijk
∂zk

=
∂θijk
∂ω

∂ω

∂zk
=

−1√
1− ω2

∂ω

∂zk
(C.14)
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Right away we see trouble. The divisors to the partials of angle with respect its cosine have

asymptotes when cos θijk = ±1. That means that a line of atoms will break the derivatives

of this basis.

α = e−ηθ(θijk−θs)
2

(C.15)

∂α

∂zi
=

∂α

∂θijk

∂θijk
∂zi

= −2ηθ(θijk − θs)α
∂θijk
∂zi

(C.16)

β = e−ηij(Rij−Rsij )
2

(C.17)

∂β

∂Rij

= −2ηij(Rij −Rsij)β (C.18)

γ = e−ηik(Rik−Rsik )
2

(C.19)

∂γ

∂Rik

= −2ηik(Rik −Rsik)γ (C.20)

ψ = fB
(
Rij

)
(C.21)

∂ψ

∂Rij

= (see above) (C.22)

χ = fB
(
Rik

)
(C.23)

∂χ

∂Rik

= (see above) (C.24)
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∂BA
ijk

∂xi
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xi
βγψχ+ α

∂β

∂xi
γψχ+ αβ

∂γ

∂xi
ψχ+ αβγ

∂ψ

∂xi
χ+ αβγψ

∂χ

∂xi

]
(C.25)

∂BA
ijk

∂xj
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xj
βγψχ+ α

∂β

∂xj
γψχ+ αβγ

∂ψ

∂xj
χ

]
(C.26)

∂BA
ijk

∂xk
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xk
βγψχ+ αβ

∂γ

∂xk
ψχ+ αβγψ

∂χ

∂xk

]
(C.27)

Parameters

Radial ij: ε↓, Rs, ε↑, ξ↓, ξ↑, η (C.28)

Radial ik: ε↓, Rs, ε↑, ξ↓, ξ↑, η (C.29)

Angular: ηθ, θs (C.30)

This setup can be okay if one does not care about the analytic derivatives, because of the

asymptotic behavior of arccos for perfect linear arrangements of atoms. While these do

not exist in nature, they happen in MD and therefore this basis is not suitable for MD. The

following was created to work around that problem.

C.3.2 Angular Basis 001

In order to have a smoothly differentiable basis suitable for implementation in MD that uses

an angular offset, and no approximations in the way that PANNA does, we propose the

following: [80] (PANNA explains in a reference close to the end that an approximation is

made in MD because their “modified-BP” angular basis does not have an asymptote-free

analytic derivative.)

BA
i =

N∑
j 6=i

N∑
k 6=i,j

e−ηθ(1−cos(θijk−θs))e−ηij(Rij−Rsij )
2

e−ηik(Rik−Rsik )
2

fB
(
Rij

)
fB
(
Rik

)
(C.31)
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α = e−ηθ(1−cos(θijk−θs)) = e−ηθ(1−cos θijk cos θs−sin θijk sin θs) (C.32)

∂α

∂xi
= −ηθ

(
1− ∂ cos θijk

∂xi
cos θs −

∂ sin θijk
∂xi

sin θs

)
α (C.33)

Please see the Appendices for the partial derivatives of sin and cos of θijk. The remaining

derivatives are as before.

∂BA
ijk

∂xi
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xi
βγψχ+ α

∂β

∂xi
γψχ+ αβ

∂γ

∂xi
ψχ+ αβγ

∂ψ

∂xi
χ+ αβγψ

∂χ

∂xi

]
(C.34)

∂BA
ijk

∂xj
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xj
βγψχ+ α

∂β

∂xj
γψχ+ αβγ

∂ψ

∂xj
χ

]
(C.35)

∂BA
ijk

∂xk
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xk
βγψχ+ αβ

∂γ

∂xk
ψχ+ αβγψ

∂χ

∂xk

]
(C.36)

C.3.3 Angular Basis 002

This basis is designed as before, except for the omission of the Gaussian terms. Thus, it and

its derivatives are faster to compute.

BA
i =

N∑
j 6=i

N∑
k 6=i,j

e−η(1−cos(θ−θs))fB
(
Rij

)
fB
(
Rik

)
(C.37)

∂BA
ijk

∂xi
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xi
ψχ+ α

∂ψ

∂xi
χ+ αψ

∂χ

∂xi

]
(C.38)

∂BA
ijk

∂xj
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xj
βγψχ+ αβγ

∂ψ

∂xj
χ

]
(C.39)

∂BA
ijk

∂xk
=

N∑
j 6=i

N∑
k 6=i,j

[
∂α

∂xk
βγψχ+ αβγψ

∂χ

∂xk

]
(C.40)

Regrettably, we have not conducted extensive testing of this basis, although we present it as

part of this work.



Appendix D

Novel Spin-Agnostic Bases Results vs

BP

D.1 Numerical Evaluation

When we consider the power of any computational method, we must always consider the

practical reality of the “wall time” required before calculations are complete. This value

is always dependent on manifold factors: motherboard, CPU, memory size, memory speed,

GPU, SSD/HDD, OS, and programming environment (C/C++/python/PyTorch). We do

not claim to be expert in optimizing the performance of this full-stack from bare metal to

interpreter script, although we do expect our results to be reasonably comparable to common

deployment environments throughout academia and industry.

In the case of ML IPs we break overall end user wall-time down into the:

1. Featurization time tf

2. Energy calculation time te.

tf is dependent on:

1. The cutoff radii, and by extension the number of atoms inside the cutoff radii of an

atom of interest. This is the largest factor directly affecting featurization time.

161



APPENDIX D. NOVEL SPIN-AGNOSTIC BASES RESULTS VS BP 162

2. The number of one body bases. It is critical to identify and include any one-body

parameter that can significantly improve predictive efficacy because these nearly always

have the least cost.

3. The number of two-body bases. These are limited, of course, in their ability to capture

information because they cannot resolve detail beyond the radial, or details integrated

over the radial dimension. Despite that, again, considering their relatively small com-

putational cost it is of high import to deploy them to maximal effectiveness.

4. The number of three-body bases.

5. The number of higher-order bases.

In the simple case of a fully-connected, single-task bilayer NN, te is dependent on:

1. The number of inputs to the first hidden layer, i.

2. The number of neurons in the first hidden layer, h1.

3. The activation function of the first hidden layer.

4. The number of neurons in the first second layer, h1.

5. The activation function of the first second layer.

The activation function that computes most quickly is ReLU, which we have used extensively

because of the exploratory nature of this work and the search space we are sampling. We

therefore choose the following metrics of performance:

FOM1 =
1

RMSE× tf
(D.1)

FOM2 =
1

RMSE× t2f
(D.2)

The reader will note that we have omitted te, making these metrics most valid for comparisons

using equal or roughly equivalent NNs. Since featurization is accomplished en masse prior

to training, these values are readily available quantities.



APPENDIX D. NOVEL SPIN-AGNOSTIC BASES RESULTS VS BP 163

tf + te is available from our MC application, and used to define the following:

FOM3 =
1

RMSE× (tf + te)
(D.3)

FOM4 =
1

RMSE× (tf + te)2
(D.4)

D.2 {GF Bases / FS Cutoff} vs BP

Title hours rad ang Rc max RMSE

BP 2012 Artrith/Behler 1.022 8 43 6.000 26.300

BP 2016 Artrith/Behler 0.849 8 18 6.500 28.400

BP This Work 0 0.789 15 32 6.000 11.071

BP This Work 1 0.791 33 32 6.000 1.635

BP This Work 2 1.059 50 32 8.171 1.795

New Bases 1 0.108 30 4 7.198 2.075

New Bases 2 0.171 30 4 7.698 2.086

Title RMSE hours FOM1 FOM2
FOM1

FOM1ref

FOM2

FOM2ref

BP 2012 Artrith/Behler 26.300 1.022 0.037 0.036 1.000 1.000

BP 2016 Artrith/Behler 28.400 0.849 0.041 0.049 1.114 1.341

BP This Work 0 11.071 0.789 0.114 0.145 3.077 3.984

BP This Work 1 1.635 0.791 0.774 0.979 20.788 26.865

BP This Work 2 1.795 1.059 0.526 0.497 14.140 13.647

New Bases 1 2.075 0.108 4.460 41.275 119.839 1133.083

New Bases 2 2.086 0.171 2.802 16.373 75.279 449.473



Appendix E

Multi-Input Multi-Output Neural

Networks (MIMONN)

Fig. E.1 shows a concept presented in this work for a new type of network that uses multiple

input stages, a common middle, and multiple outputs. This is a simple expression of the

concept, and each component (input/midle/output) can be expanded into more complex

structures.

The insight here is that common interfaces can be defined to allow for a significant amount

of modularity. This occurs broadly in software, telecommunications, and other technologies.

So long as every one of the “input stages” has the same number of connections to the

“common middle,” then each “input stage” can have any number of input features, layers,

and structure/connectivity—so long as those input features still map to the same label.

This could enable a single MIMONN network to learn and express the relationships

between geometry, spin, and energy for many elements. Each element would use its own

“input stage” and can have a unique number of features and parameters optimized for it—

and its own output.

The hope is that the “common middle” section learns what is universal or common to

all of the elements of the system.
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Figure E.1: Multi-Input Multi-Output Neural Network Architecture

The MIMONN could also be used in an iterative way, for example using one input and

output to calculate part of an input used by another stage. For example, a feature vector

for one element could be used to predict the partial charge of that element. Then the partial

charge value could be used by another input stage to predict that atom’s contribution to

system potential energy. Something similar has been proposed by Behler recently, but again

uses separate networks—herein it is proposed to do that with a unified network.



Appendix F

Parameter Choice Policy and Data

Pre-/Post-Processing

F.1 Uniformly Distributed Parameter Selection

The early work on BP tended to use uniform distributions to set parameters. For example

the decay parameter η tended to be uniform in log-space. The ξ parameter tended be 2

raised to an integer series.

While BP defined an Rs parameter (Gaussian RBF offset), they only used zero-valued

offsets. In our very first familiarization with BP, we applied it to H2O and used Rs values

at or near the equilibrium OH bond distance and equilibrium intramolecular HH distance.

When working in solid state systems we experimented with uniform, linearly distributed Rs.

F.2 Random Parameter Selection

In the literature, basis set size and basis parameter selection are generally considered arbi-

trary. Indeed, they are, and justifiably so if one wishes to use a general, application-non-

speciifc, and human unbiased approach.

In the spirit of attempting to be unbiased, we chose to use random numbers from an
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arbitrary range for basis set parameters. The resulting set would be used to featurize the

dataset (at the time) and then the correlation coefficients between the features would be

calculated.

The objective was to minimize the sum of the absolute value of the correlation coefficient

matrix. This rewards having the least “quantity” of linear correlation between features, and

in theory contains the most information—since a feature that can be expressed as a linear

combination of other features does not contain information.

While this appealed from a conceptual point of view, it can be cost prohibitive, depending

on one’s computational resources.

F.3 Physically Motivated Parameter Selection

The radial bases are communicating to the NN the integrals of the product of the radial basis

and the radial distribution function (RDF) of the atoms surrounding an atom of interest.

(Reactor physics makes frequent use of similar such recompositions, both spatially and in

energy.) Therefore the radial basis set is essentially a basis decomposition of that local RDF.

Bonner spheres accomplish the same for measuring neutron spectra.

We explore a design concept for choosing basis set size and parameters as a basis set

decomposition of the materials actual RDF. Given this, we pay particular attention to the

peaks of the material’s actual RDF—hoping to achieve improvement in both accuracy and

computational efficiency.

To those who argue that this introduces bias and narrows application space, we agree.

All potentials have bias in how the data samples were chosen and the parameters of their

evaluation, and all potentials are tailored to particular domains of application. Therefore we

do not see this an any different from common practice in the field of interatomic potential

development. While our approach may add a few steps to the development process, these

steps are straightforward and outlined below.
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F.3.1 RDF, Fe

Since the early days of this work, Fe was of primary interest. Having generated some AIMD

of Fe in both BCC and FCC configurations, we used Ovito to calculate the RDFs of each

case, shown in Fig. F.1 below.

Figure F.1: RDF of BCC and FCC Fe

The modes of the RDF at equilibrium are given using some basic geometric relationships,

shown in the Table F.1:
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Mode # BCC FCC BCC λ = 2.83163 FCC λ = 3.44557

1
√
3
2
λ

√
2
2
λ 2.45226 2.43639

2 λ λ 2.83163 3.44557

3
√

2λ
√
6
2
λ 4.00453 4.21994

4
√
11
2
λ
√

2λ 4.69573 4.87277

5
√

3λ
√
10
2
λ 4.90453 5.44792

6 2λ
√

3λ 5.66326 5.96790

Table F.1: Nearest neighbor distances in perfect BCC & FCC lattices.

F.3.2 Rs at RDF Modes

Given that energy penalties are the result of perturbations from equilibrium, and Gaussian

radial basis functions allow for fine tuning of their offsets, we asked why not set the offsets

Rs equal to the modes of the RDF?

Figure F.2: BP Rs set to RDF modes.

Fig. F.2 show one such result. In contrast, Fig. F.3 below shows the conventional approach

published in older BP literature. [45,70,78] More recent BP literature does use Rs 6= 0. [44]
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Figure F.3: BP radial bases centered on the origin.

We postulated that the former arrangement would more easily and efficiently glean ac-

curate energy penalty relations for perturbations from equilibrium than the latter.

F.3.3 Exact maxima at RDF Modes

Realizing that the maxima of BP radial bases are not Rs except when Rs = 0, we also tried

an alternate formulation of the above. The exact position of the maximum is dependent on

both Rs and η, so the overall radial basis set in Fig. F.4 looks very different from what is

shown in Fig. F.2. Interestingly, we did not find this exact form performed better than when

Rs was set to RDF modes.

Figure F.4: BP radial bases’ actual maxima set to RDF modes.
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F.4 Calibration of Parameters

Beyond using physically-motivated parameters as described above, we can also apply our

physics / engineering common sense toward a methodology for setting reasonable starting

points for optimization of other basis set parameters that materially affect performance.

Once we have an initial guess, we can search neighboring values in a linear or logarithmic

fashion as appropriate.

F.4.1 Radial Terms

Since radial terms are so efficient to calculate, it is really worth every effort we can make a

priori to improve their ability to capture information in ways that help the NN learn and

express PESs.

F.4.1.1 η, Set by Absolute Displacement

Nearest neighbors in either the BCC or FCC equilibrium cases (zero-K, zero-pressure infinite

medium lattice parameter) are less than 2.5 Å away. A huge displacement from equilibrium

would be 1.0 Å. So, if we want the exponential part of the radial basis functions to attenuate

to 1
8

of the zero displacement value (i.e. when Rij = Rs) when Rij −Rs = ±1.0 Å then:

0.125 = e−η·1
2

(F.1)

ln 0.125 = −η · 12 (F.2)

η = − ln 0.125 = −2.07944154167983 ∼ 2 (F.3)

The reader may ask why 1
8
? Why not 1

4
or 1

2
? Frankly, this was simply our chosen starting

point guided by the idea that most of the sensitivity that matters should happen before an

atom gets anywhere close to being displaced by 1.0 Å from its equilibrium lattice site. It

also leaves some room for movement past that, since extreme distortions and high-energy

situations are within the domain of interest for some users.
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F.4.1.2 η, Set by Relative Displacement

Another concept for η is to tie it to Rs for that particular basis function. This way a lattice

distortion applied universally will actually permute arguments for different basis functions to

the same magnitude. For example, 0.1 shear strain would displace an atom at any number of

lattice distances by 0.1Rij, whereas the absolute distances differ by the ratio of lattice units

(0.1λ 6= 0.2λ). This thinking leads to a different calibration. Let’s say we want to attenuate

a 0.2 relative distance
(Rij−Rs

Rs
= 0.2

)
to 1

4
of the equilibrium value:

0.25 = e−η·0.2
2

= e−η·
(
Rij−Rs
Rs

)2

(F.4)

ln 0.25 = −η · 0.22 (F.5)

η = − ln 0.25

0.22
=

1.386

0.22
∼ 34.657 (F.6)

In practice, to achieve that η using Equation 2.18 it would be necessary to divide 34.657 by

R2
s.

F.4.1.3 ε↓ and ε↑, Absolute and Relative

ε↓ and ε↑ directly set the span of perception left and right of the offset. Therefore guidelines

on absolute displacement sensitivity can be readily implemented. We do wish to draw to

the attention of the reader the fact that ξ↓ and ξ↑ strongly affect the form of attenuation

between the offset and the inner and outer cutoffs, so that setting ε↓ and ε↑ to be larger than

the intended domain of interest can be advantageous.

If we wish to define parameters for Equation C.2 using relative displacements from the

offset values, then we can cast ε as a fraction of Rs. This can be accomplished by scaling

the argument for the cutoff:

π(Rij − (Rs − ε↓))
2ε↓

→ π(Rij − (Rs −Rsε↓))

2Rsε↓
(F.7)
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This was experimented with, however it has the effect of increasing the cutoff radius which

is the fastest way to increase execution time and therefore must only be considered as a last

resort.

F.4.2 Angular Terms

Angular basis term parameter calibration can explicitly enable coordination number de-

tection. In the Table F.2, 1→1 denotes the relationship between most proximal nearest

neighbors. This means the two nearest neighbors that are also most proximal to each other

(or any set of most proximal atoms in a perfect lattice). 1→2 denotes the relationship be-

tween a nearest neighbor and a second nearest neighbor that is also in the group of atoms

closest to the first-nearest neighbor.

Rij Degrees Radians

1→1
√
3
2
λ 2.45226 70.53o 1.230959 Fe BCC

1→2 λ 2.83163 54.74o 0.955317 Fe BCC

1→1
√
2
2
λ 2.43639 60o 1.047198 Fe FCC

1→2 λ 3.44557 45o 0.785398 Fe FCC

Table F.2: Angles between nearest and second-nearest neighbors in BCC/FCC lattices.

F.4.2.1 1→ 1 Angular Terms

Both 1 → 1 relationships are at roughly the same radial distance, so differentiating be-

tween BCC and FCC entails detecting the angle between those atoms. Therefore, we start

calibration setting an attenuation target of 0.125 at ∆θ = 0.18376 (Radians):

0.125 = e−ηθ·0.18376
2

(F.8)

ln 0.125 = −ηθ · 0.183762 (F.9)

ηθ =
− ln 0.125

0.183762
= 61.57947 (F.10)
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The BCC and FCC 1→ 1 Rij (closest neighbor distances) are nearly the same, so we cannot

set an attenuation target using that. Instead, the the BCC 1→ 2 Rij is the next best target.

Therefore radial η’s can be tuned with an attenuation target of 0.125 at ∆R = 0.37937.

0.125 = e−ηij ·0.37937
2

(F.11)

ln 0.125 = −ηij · 0.379372 (F.12)

ηij =
− ln 0.125

0.379372
= 14.4487 (F.13)

Smaller values of ηij increase the importance of ηθ, and vice-versa.

We might alternatively consider what magnitude of perturbation we wish to calibrate for

and set the limits that way—forcing the NN to disambiguate what’s what on its own (vs

minimizing crosstalk). So long as the basis function decompositions of different geometrically

perturbed systems are unique, then in principle any approach could work.

The BCC and FCC 1→ 1 basis are differentiated most by their angular offset.

F.4.2.2 BCC 1→ 2 Angular Term

For the BCC 1 → 2 case we don’t need quite so sharp an attenuation because the radial

distances are more different. Said differently, there aren’t any atoms at 2.8 Å from an

atom of interest in FCC Fe, so this basis applied to an FCC context should already be

strongly attenuated by radial terms.. Therefore we choose an attenuation target of 0.25

at ∆θ = 0.27564 to reflect the differences in angle between the nearest source of radial

interference (which is BCC 1→ 1):

0.25 = e−ηθ·0.27564
2

(F.14)

ln 0.25 = −ηθ · 0.275642 (F.15)

ηθ =
− ln 0.25

0.275642
= 18.24614 (F.16)
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Radial attenuation is set as for the 1→ 1 cases.

F.4.2.3 FCC 1→ 2 Angular Term

The FCC 1→ 2 angular term is similar to BCC 1→ 2, in that there are no other neighbor

distances close (BCC or FCC) to the second-closest neighbor distance. Therefore we set the

angular attenuation target to be 0.25 at ∆θ = 0.169919.

0.25 = e−ηθ·0.169919
2

(F.17)

ln 0.25 = −ηθ · 0.1699192 (F.18)

ηθ =
− ln 0.25

0.1699192
= 48.01441 (F.19)

Radial attenuation is set as for the 1→ 1 cases.

F.4.2.4 Notes

Application of this method is not restricted to solid state. CHARMM uses sets of equilibrium

values (which can be implemented in our methodology using offsets) and looks up parameters

by the participating atoms’ element and relationship (distance, angle, dihedral angle, etc.).

For example, to detect hydrogen bonding in water a term could have an offset of 180o and

use the equilibrium distance to along the OH-bond and the distance between the H and

neighboring O. Specific basis functions can be engineered as detectors for any molecular

configuration: intramolecular OH bonds, intramolecular NH bonds, all known examples of

hydrocarbon bonding, group specific bonds as in amides, etc.

This enormous number of possible bases for dealing with typical biological environments

may be reasonably accomplished using a multi-input, common-middle, multi-output archi-

tecture as we describe in future work.
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F.4.3 Pre- and Post-Processing of “Raw” Featurized Data (Single

Element Systems)

While ML methods are renowned for being general and applicable to new scenarios with little

to no changes in the workflow, that is not the complete story. ML methods, particularly

randomly initialized and trained methods such as NNs, often benefit in terms of efficiency

by changing the distribution of the data seen by the ML method. This applies to input

features, and also to output labels in the case of regressors.

The difference between training on “raw” data and pre-processed data can easily be an

order of magnitude in training time to achieve the same accuracy. This is the case for

numerical reasons, for example if a bias is initialized to zero and the actual mean of an input

or output is very large then a NN will take many iterations to approach the correct offset.

Said in a different way, the average value (zero-eth order prediction) for a prediction has to

be correct before any of the function’s shape (higher order terms in the prediction) can be

fitted.

If is possible to use any technique for any feature or label, and to use one approach for a

particular feature or label and a different approach for a other features or labels. The only

rule is that whatever has been done to preprocess must be undone to convert NN outputs

to the actual predictions that can be interpreted directly without further mathematical

processing.

For our case, the pre-processing and post-processing of features are straightforward, but

also significant due to their role in calculating forces. We also face some complexity specific

to our problem in that individual networks calculate energy on a per atom basis, but the

quantity we have from our data is the system energy. While this is just a slight evolution

of basic pre-processing for a single element system, the multi-element picture becomes more

complex.

In this Section, the non-italic “NN” subscript indicates the variable is for direct input

to the neural network, while the non-subscripted E or G indicates the raw value from DFT
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or basis function calculations, respectively. M indicates the number of samples, and Ni

indicates the quantity of atoms in a given sample of index i.

F.5 Standarization

Standardization is common practice in many ML applications, and generally means shifting

and scaling a feature so that its distribution as seen by the ML predictive model has zero

mean and unity variance.

While we started using standardization, we found that scaling by standard deviation left

too many feature and energy values far above unity (indicative of high kurtosis)—which

degraded performance in terms of both accuracy of the predictive model and training time.

F.5.1 Feature Standardization

Since features are calculated on a per atom basis, the mean and standard deviation can be

calculated in a straightforward manner.

µG =
1∑M
i=1Ni

M∑
i=1

Ni∑
j=1

Gi,j (F.20)

σG =

√√√√ 1(∑M
i=1Ni

)
− 1

M∑
i=1

Ni∑
j=1

(Gi,j − µG)2 (F.21)

Then, for any given feature:

GNN =
Gi − µG
σG

(F.22)

Gi = σGGNN + µG (F.23)
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F.5.2 Energy Standardization

Since an energy value is for a collection of atoms in a system, which is allowed to vary

in number of constituent atoms, we must obtain a per atom average energy and analog of

standard deviation:

µe =

∑m
i=1Ei∑m
i=1 ni

(F.24)

σe =

√∑m
i=1

(
Ei
ni
−µE
)2

m−1 (F.25)

ENN =
E − nµe
nσe

=
E

nσe
− µe
σe

(F.26)

Ei = ENNnσe + nµe = n(ENNσe + µe) (F.27)

F.6 Pre- and Post-Processing of Energy Labels for Multi-

Element Systems

When there are multiple elements, calculation of average per-atom energies is still straight-

forward. Here is presented the method used in this work.

Given 4 elements where µi denotes the average per-atom energy for the i-th element and

ni denotes the number of atoms of that element, each data sample gives an equation:

µ1n1 + µ2n2 + µ3n3 + µ4n4 = E (F.28)

All of the µi values are therefore easily found using an overdetermined least squares fit

(assuming there are many more data samples than elements).

Herein is proposed two ways to calculate the per-atom scaling factor:

σ2
1n1 + σ2

2n2 + σ2
3n3 + σ2

4n4 =
(
E − (µ1n1 + µ2n2 + µ3n3 + µ4n4)

)2
(F.29)

σ1n1 + σ2n2 + σ3n3 + σ4n4 =

√(
E − (µ1n1 + µ2n2 + µ3n3 + µ4n4)

)2
(F.30)
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Neither of these “σ”’s are really a standard deviation, but they function as a proxy. Pre-

and post-processing are completed using standardization or rescaling. For standardization:

ENN =
Ei − (µ1n1 + µ2n2 + µ3n3 + µ4n4)

σ1n1 + σ2n2 + σ3n3 + σ4n4

(F.31)

Ei = ENN(σ1n1 + σ2n2 + σ3n3 + σ4n4) + µ1n1 + µ2n2 + µ3n3 + µ4n4 (F.32)

For rescaling the per-atom scaling factor as defined in F.29 or F.30 are not necessary:
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