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Abstract

Finding causal relationships between a dataset and an observed outcome is especially
important when there is potential for meaningful interventions. One such area of focus
is a biological setting, where there are many opportunities for diagnosis, prevention,
and treatment research. Amyotrophic Lateral Sclerosis (ALS) is a progressive neu-
rodegenerative disease for which which there is no cure and relatively little is known
about what causes the disease. Previous work has shown certain genes to be associ-
ated with ALS and previous work have used machine learning to try and determine
the causal features of ALS. In this thesis we experiment with Double Machine Learn-
ing [8] to find causal features of ALS. We apply this method on both synthetic and real
datasets that are associated with ALS and explain the advantages and shortcomings
of this methodology on genetics data where correlation is present.
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Chapter 1

Introduction

As we are headed towards a more data driven world, the question of how data re-

lates to observed outcomes becomes more prevalent. Given some observed data and

outcomes, to gain any sort of interpretability as to why an outcome is happening,

we must learn how the data and outcomes relate to one another. In particular, for

areas of research where there is possibility of intervention, this problem becomes es-

pecially important. We notice, however, that some relationships might be more useful

than others, especially when designing interventions. The two types of relationships

commonly explored are correlative and causal relationships, where a correlative re-

lationship just indicates that there exists a relationship, but a causal relationship

between two entities indicates that one entity directly impacts the other. While cor-

relations are generally easier to detect, causal relations can tell us more about why

something is happening rather than just noticing a change.

Finding causal relationships between datasets and outcomes is not a new problem,

but it is one that has expanded to many fields. In finance, we might want to know why

a certain stock price increases, based off of trading history, in technology, we might

want to know why a person clicks on one ad versus another based off their prior

behavior, and in biology, we might want to know why a person contracts a certain

disease based off of their health history. If these relationships were just correlative

instead of causal, it could be useful in helping us notice trends, but would not explain

the phenomenon. Not only does finding a causal relationship between the data and
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outcomes give us better understanding of why something is happening, it also allows

us to then predict what might happen on future, unseen data.

In a biological setting, where there are many opportunities for meaningful in-

terventions, finding robust methods to generalize to unseen data becomes especially

important. For the invariably fatal disease Amyotrophic Lateral Sclerosis (ALS),

where causes are relatively unknown, finding a causal relationship between features

in a person’s genome and the disease could open up doors for diagnosis and treatment

for the disease.

1.1 Amyotrophic Lateral Sclerosis (ALS)

1.1.1 Background on ALS

ALS is a progressive neurodegenerative disease that affects motor neurons, which are

nerve cells that control muscle movement. Motor neurons in the brain and the spinal

cord connect to the muscles, so when motor neurons are damaged, the brain cannot

send signals to the muscles anymore. Eventually muscles will atrophy, and individuals

can lose their ability to speak, eat, move, and even breathe [15].

Around 5-10% of cases of ALS are familial, or inherited from one parent [17]. There

are known mutations in genes that cause familial ALS; for example, a mutation in a

gene known as C9ORF72 causes around 25-40% of familial cases [17]. On the other

hand, a vast majority of cases are sporadic, where it is unclear why a person gets

the disease. There is no clear cause of sporadic ALS, but it is theorized that certain

factors like age and sex and certain environmental factors like smoking can have an

effect on contracting the disease [15]. For sporadic ALS, advancements have found

genes such as SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1

[21] to be causal, but they only explain about 10% of ALS cases [21, 16]. However,

research using twin studies suggests that the heritability of sporadic ALS is estimated

to be around 61% [2], which motivates the search over genes to find causality.

Currently, without a clear cause of ALS, it is also very hard to diagnose ALS early
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on, as for most people the first symptoms include muscle twitches, tight muscles, and

muscle weakness, which are subtle. Moreover, there is not a test that is able to

diagnose a person with ALS, but rather the diagnosis is based off of a history of

symptoms and a series of tests to rule out other diseases [17].

In the United States, around 5000 people get diagnosed with ALS every year [10]

and typically patients die within 3-5 years from when symptoms first appear [17]. It

is clear that ALS is a serious disease that affects many, so finding the root cause of

the disease is a large area of research.

1.1.2 Impact of Causal Feature Discovery on ALS

As we see, there is a clear need for more investigation in many facets regarding ALS.

There is a need to learn what factors cause ALS, which can help with the diagnosis

of the disease, a need to learn how to prevent ALS if possible, and a need to learn

how to treat ALS. These problems have overlap with one another, but it seems like

finding the causal features of ALS is a fundamental problem.

To determine the cause of ALS, it is important that we determine causal features

of ALS and not just features that are associated with ALS. The essence of a causal

feature is that the feature is used in the generative process of the data, so changing

the feature will have a direct impact on the observed data. Since it is estimated that

heritability is high for sporadic ALS, we want to determine what parts of the human

genotype have a causal relationship with the phenotype of contracting ALS, and by

doing so we will gain a better understanding of who gets ALS, why they do, and how

we might prevent it.

Finding genetic markers for ALS is a large area of research, but since there are so

many genetic markers in a person’s DNA, it would be infeasible to check all of the

markers one by one to determine a causal effect. Using statistical methods, if we find

a small subset of features that are causal, then we can significantly reduce the scope

of biological tests that would have to be run to confirm that these features are in fact,

causal. Furthermore, if these statistical techniques work, these methodologies will be

general enough to apply to other diseases such as Alzheimer’s and Parkinson’s, where
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relatively little is known about the causes of these diseases.

1.2 Related Work

As mentioned, conducting research on ALS causes and causal feature selection are not

new problems. Biologists have done genomic sequencing [32, 25, 5] to find mutations

in genetics that are associated with ALS. In data science, there have been many

techniques developed to select causal features to represent a dataset [8, 20]. The

main contribution in our work is to apply more data science driven approaches to

finding causal features of ALS.

1.2.1 Genome Wide Association Studies (GWAS)

In genetics research, a genome-wide association study is used to associate certain

gene mutations to a particular disease. The way GWAS are conducted is a large

group of people who have the disease and who do not have the disease are sampled.

Then, each individual’s genome is scanned at certain single nucleotide polymorphisms

(SNPs), which are places on the genome where a sufficiently large fraction of the

population have a mutation. These SNPs can also be seen as markers on the gene,

and a person has about 4-5 million SNPs in their genome [7]. The places where

the SNPs are chosen for GWAS are based on experimental constraints, and usually

around 500,000-1,000,000 [6] are looked at in a GWAS.

Once every person’s genome is scanned in the study, SNPs where there are consis-

tent differences between people who have the disease and people who don’t are said

to be the SNPs that are associated with the disease. There have been many GWAS

conducted for ALS and these studies have found certain genes to be associated with

ALS, like KIF5A [19] and C21orf2 [29]. Buniello et al. [5] compiled a list of 317 SNPs

from 39 GWAS found to be associated with ALS.

Hu et al. [12] emphasize the point that causation does not imply correlation and

correlation does not imply causation, so there is a need for causal inference methods

to be applied onto genomic data. In general with GWAS, it is very hard to distinguish
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between causal SNPs and SNPs that are simply associated with the disease because

they have a high correlation with the causal SNP. Thus, while there has been signifi-

cant strides made in finding what SNPs are associated with ALS, there is still a need

to determine causal SNPs.

1.2.2 Causal Feature Selection

In machine learning algorithms, a common assumption to make is that the training

data is drawn from the same distribution as the testing data; however this assumption

is not always valid. For example, a classifier might be trained on ALS patient data

from one specific population but if we want a general classifier, the testing data might

have patients from different populations. If we want a classifier to be robust against

covariate shift, or when the training and testing distributions are not the same, using

features that have a close causal relationship with the target variable is more likely

to create a reliable classifier. Furthermore, if we uncover a model that is trained

on causal features, the model will be more predictive of the effects of interventions.

In genetics data, since there can be many causal features and many confounders

(variables that affect both the causes and the effects) within the data, we look at

causal feature selection algorithms that address the multiple-cause setting and the

confounding setting.

Deconfounder

To address the multiple-cause setting, in [31], Wang and Blei propose a framework

in which multiple causal inference can actually have fewer constraints than classical

causal inference, where there is just a single possible cause. In classical causal in-

ference, all confounders of the data must be identified, measured, and controlled for,

so there is a strong assumption that all confounders must be able to be observed.

Wang and Blei propose the deconfounder, which is a method to search for causal

relationships that uses the weaker assumption that there must not be unobserved

single-cause confounders, a variable that affects just one cause and the outcome.
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The methodology is first to fit a model that approximates the joint distribution of

the potential causal features, which is used to infer the latent variables of those causal

features, and these latent variables will be used as substitutes for the confounders.

Then, for each individual in the dataset, infer the latent variables based off of the

model. Finally, to perform causal inference, the substitutes for the confounders found

using the model are augmented to the dataset to use as input data.

The reason this methodology works is if the model in the first step accurately

captures the distribution of potential causes, it would mean that the causes are con-

ditionally independent given the latent variables. If somehow these latent variables

did not capture all of the multi-cause confounders, then there would be dependence

among the causes induced by the uncaptured multi-cause confounder, which is a con-

tradiction. Thus, these latent variables must capture all multiple-cause confounders,

and it is why the latent variables can be used as substitutes for the confounders.

However, this methodology would break down if there were single-cause confounders,

since conditional independence could still be observed if there was an uncaptured

single-cause confounder. Figure 1-1 shows a graphical representation of this argu-

ment.

Since the only assumption that is made in the deconfounder setting is that there

are no single-cause confounders, it seems like this methodology would be able to

be used on SNPs data, since if a person has a large number of SNPs, it’s unlikely

that a confounder has an effect on only one. Wang and Blei use the confounder on

genetics data, where they try to find causal SNPs that can predict a person’s height.

When simulating their data, they artificially group individuals together to introduce

confounding effects on the SNPs data, and so the outcome is also dependent on this

population bias. Wang and Blei apply their deconfounder method and find that

it often outperforms regression, when the unobserved confounder is included. The

method heavily relies on the model created in the first step, so checking how well the

model used to infer latent variables is crucial.

In fact, one point of failure is when the deconfounder is applied on data that comes

from spatially correlated individuals, meaning that individuals’ features are close
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Figure 1-1: The deconfounder argument adapted from Wang and Blei [31]. If a
latent variable 𝑧 is found such that 𝑐1, 𝑐2, . . . , 𝑐𝑑 are conditionally independent, it
is impossible for a multi-cause confounder, 𝑢, to exist, since that would introduce
dependence. However, a single-cause confounder 𝑠 is still able to exist.

together spatially. One example of spatial correlation would be to sample individuals’

features from a unit cube, where no spatial correlation would mean the features are

sampled uniformly from within the cube, and a high level of spatial correlation could

mean sampling features from close to the corners of the cube. Again, here, the first

step is predictive of downstream causal inference failing, since the methods used to

model the latent variables do not do so well with the spatial correlation.

In real genomics data, there is the concept of linkage disequilibrium, which refers

to correlations between different SNPs in the dataset. Usually, SNPs that are closer

together on the chromosome are more correlated with one another, which is an ex-

ample of spatial correlation. Thus, it is not clear how well the deconfounder method

will do on real genomics data, which is plausibly spatially correlated.

Machine learning methods on ALS data

Naturally, the idea of finding causal features for certain diseases has been explored

before [31, 30]. As mentioned, Wang and Blei apply their algorithm on GWAS data.

21



Vasilopoulou et al. [30] provide a review on GWAS that use machine learning ap-

proaches that aim to understand the causes of ALS through genomics features. Cur-

rently, some challenges there are with applying machine learning methods onto ge-

nomics data including making sure the data is of a certain quality, overcoming the

sheer amount of features in datasets, and being able to explain and interpret the

results.

Feature selection methods are commonly used to reduce the large number of initial

features to be used in machine learning methods. Some methods are purely statistical

ones and filter features based off significant interactions between features and the

target. Other strategies use biological knowledge and only include features that are

in regulatory pathways or features that have been found to be associated with ALS

through GWAS. One of the most common ways biological knowledge is used is to filter

genes based off of ALS-specific knowledge early on. A benefit to this approach is the

results are more likely to have biological intepretability, but it also risks introducing

bias to the machine learning models to be used.

Machine learning models that have been used for classifications that seem to do

well include Gradient Boosting, CNNs, Deep Neural Networks, Logistic Regressions,

SVMs, and Random Forest. In particular, deep learning models seem promising in

both finding genes that are associated with ALS and patient classification. Unfortu-

nately, these studies have shown little reproducibility, which could be attributed to

the different datasets, features, and feature selection algorithms used between these

studies but could also be attributed to the more general challenge of finding causal

genes amongst a wide pool of possibilities.

This thesis aims to apply different causal feature selection algorithms on genomic

data, both real and synthetic. There are many nuances of genomic data such as

sparsity, correlation, and high dimensionality that would be interesting to see if these

algorithms’ assumptions hold and can provide good results. We hope that not only

will we find a causal relationship between features and outcomes, but the relationship

is interpretable and robust.
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Chapter 2

Background

As mentioned, there are many algorithms to perform causal feature selection. We will

focus on a technique developed by Chernozhukov et al. [8] and explain other necessary

models and definitions that we will use in this thesis.

2.1 Linear Models

2.1.1 Linear Regression with 𝐿1 Regularization (Lasso Regres-

sion)

Given a dataset 𝑋 ∈ R𝑛×𝑑 and an outcome 𝑌 ∈ R𝑛×1, we wish to find 𝑤 ∈ R𝑑×1 and

𝑤0 ∈ R that minimizes the objective function

𝐿𝑙𝑎𝑠𝑠𝑜(𝑋, 𝑌,𝑤,𝑤0) :=
1

𝑛
‖𝑋𝑤 + 𝑤0 − 𝑌 ‖22 + 𝜆

𝑑∑︁
𝑖=1

|𝑤𝑖| (2.1)

Here, 𝜆 ≥ 0 is a hyperparameter that controls the strength of regularization. A larger

𝜆 will enforce more sparsity in the found 𝑤. Shown in Equation 2.1 is 𝐿1 regulariza-

tion, but we could also add 𝐿2 regularization which would be ‖𝑤‖2 =
∑︀𝑑

𝑖=1𝑤
2
𝑖 .
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2.1.2 Logistic Regression

Given a dataset 𝑋 ∈ R𝑛×𝑑 and an outcome 𝑌 ∈ {0, 1}𝑛×1, we wish to find 𝑤 ∈ R𝑑×1

and 𝑤0 ∈ R that minimizes the objective function

𝐿𝐶𝐸(𝑋, 𝑌,𝑤,𝑤0) := −
1

𝑛

𝑛∑︁
𝑖=1

(︂
𝑦𝑖 log

(︀
𝜎(𝑥𝑖𝑤 + 𝑤0)

)︀
+ (1− 𝑦𝑖) log

(︀
1− 𝜎(𝑥𝑖𝑤 + 𝑤0)

)︀)︂
(2.2)

Here, 𝑦𝑖 ∈ R is the 𝑖-th index of 𝑌 , 𝑥𝑖 ∈ R1×𝑑 is the 𝑖-th row of 𝑋, and 𝜎 denotes

the sigmoid function, or 𝜎(𝑧) =
1

1 + 𝑒−𝑧
. While not stated in the objective function

in equation 2.2, we can add regularization here as well, usually 𝐿1 or 𝐿2.

2.2 Algorithms for Causal Feature Selection

2.2.1 Double/Debiased Machine Learning (DML)

Chernozhukov et al. [8] describe an algorithm that finds an de-biased estimator of

a target parameter as follows. Given a set of features in a dataset, we would like

to determine the relationship between a policy variable (which is typically causal),

denoted as 𝐷, in the dataset and the target variable, denoted as 𝑌 . This problem is

a bit more complicated, since the other features in the dataset, denoted as 𝑋, could

have a not necessarily linear relationship with the policy variable 𝐷 and the target

variable 𝑌 as well. To model these relationships, we have

𝑌 = 𝐷𝜃0 + 𝑔0(𝑋) + 𝑈, E[𝑈 |𝑋,𝐷] = 0 (2.3)

𝐷 = 𝑚0(𝑋) + 𝑉, E[𝑉 |𝑋] = 0 (2.4)

where 𝑈 and 𝑉 are noise variables. Here, 𝜃0,𝑚0, and 𝑔0 are unknown. The main goal

is to estimate 𝜃0, but we see that 𝑌 might depend on 𝑋 in a not necessarily linear

way through 𝑔0 and 𝐷 might depend on 𝑋 through 𝑚0, also not necessarily linearly.

On a high level, given observations of 𝐷, 𝑋, and 𝑌 , we want to first model the

relationship between 𝐷 and 𝑋 and we calculate 𝑉 as the residual. Then, we model
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the relationship between 𝑌 and 𝑋 and also calculate the residual 𝑊 = 𝑌 − 𝑔0(𝑋).

To estimate 𝜃0, we regress 𝑊 onto 𝑉 , which we see will minimize regularization

bias, which comes from using any machine learning approach for modeling. In fact,

we will see that fitting models for both 𝑔0 and 𝑚0 is important in minimizing the

regularization bias. A naive form of DML would be to only fit for 𝑔0, ignoring the

relationship that 𝐷 and 𝑋 may have, and regress 𝑌 −𝑔0(𝑋) onto 𝐷. But, we will see

that this way causes the error between our estimated ̂︀𝜃0 and the true 𝜃0 to converge

very slowly.

To put more DML more formally, our dataset,𝒜, consists of 𝑛 samples of (𝑋𝑖, 𝐷𝑖, 𝑌𝑖),

for 𝑖 = 1, 2, . . . , 𝑛. To estimate 𝜃0, we first split the set of indices in half to get 𝐼 and

𝐼𝐶 such that 𝐼 ∪ 𝐼𝐶 = {1, 2, . . . , 𝑛}. Then separate the dataset 𝒜 into two datasets

𝒜𝐼 := {𝑋𝐼 , 𝐷𝐼 , 𝑌𝐼} and 𝒜𝐼𝐶 := {𝑋𝐼𝐶 , 𝐷𝐼𝐶 , 𝑌𝐼𝐶} using the respective indices. With

𝒜𝐼 , use machine learning methods on 𝐷𝐼 and 𝑋𝐼 to find an estimator ̂︁𝑚0𝐼 fitted on

𝐷𝐼 = ̂︁𝑚0𝐼(𝑋𝐼). Then, we obtain an estimate for ̂︀𝑉 = 𝐷−̂︁𝑚0𝐼(𝑋), from equation 2.4.̂︀𝑉 here represents our policy variable 𝐷 with the effect of 𝑋 partialled out. Next,

we obtain an estimate ̂︀𝑔0𝐼 using 𝑌𝐼 and 𝑋𝐼 by using machine learning models to fit

𝑌𝐼 = ̂︀𝑔0𝐼(𝑋𝐼). To get our final estimator, we use the other half of the dataset 𝒜𝐼𝐶

to regress 𝑌𝐼𝐶 − ̂︀𝑔0𝐼(𝑋𝐼𝐶 ) onto ̂︀𝑉 , but using the model ̂︁𝑔0𝐼 trained on 𝒜𝐼 . We see

that then, our problem becomes solving least squares over variables 𝑌 and 𝐷 with

the effect from 𝑋 removed.

We obtain the following equation as an estimate of ̂︀𝜃0𝐼 ,
̂︀𝜃0𝐼 =

(︃
1

𝑛

∑︁
𝑖∈𝐼𝐶

̂︀𝑉𝑖𝐷𝑖

)︃−1
1

𝑛

∑︁
𝑖∈𝐼𝐶

̂︀𝑉𝑖(𝑌𝑖 − ̂︀𝑔0𝐼(𝑋𝑖)) (2.5)

Here, instead of using ordinary least squares to solve for 𝜃0, 𝜃0 is obtained using

instrumental variable (IV) specifications, where 𝑉 is our instrumental variable. One

form of the instrumental variable linear estimator is (𝑉 𝑇𝐷)−1𝑉 𝑇 (𝑌 − ̂︀𝑔0𝐼(𝑋𝑖)) [24],

which is what we see in equation 2.5.

We repeat the entire process but switch 𝐼 and 𝐼𝐶 to obtain an estimate ̂︀𝜃0𝐼𝐶 . Our

final estimate of 𝜃0 is ̂︀𝜃0 = 1
2
(̂︀𝜃0𝐼 + ̂︀𝜃0𝐼𝐶 ). The algorithm is detailed in Algorithm 1.
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Algorithm 1: Double Machine Learning
Result: An estimator, 𝜃, that models the relationship between the policy

variable and the outcome.
Input: 𝑋 ∈ R𝑛×𝑑,

𝐷 ∈ R𝑛×1,
𝑌 ∈ R𝑛×1

𝜃 ← 0
𝑃1, 𝑃2 ← two equally sized partitions of the indices [1, 2, . . . , 𝑛]
for (𝐼, 𝐼𝑐) ∈ [(𝑃1, 𝑃2), (𝑃2, 𝑃1)] do

𝑋𝐼 , 𝐷𝐼 , 𝑌𝐼 ← 𝑋[𝐼, :], 𝐷[𝐼], 𝑌 [𝐼]
𝑋𝐼𝐶 , 𝐷𝐼𝐶 , 𝑌𝐼𝐶 ← 𝑋[𝐼𝐶 , :], 𝐷[𝐼𝐶 ], 𝑌 [𝐼𝐶 ]
𝑔 ← a machine learning model trained on 𝑋𝐼 , 𝑌𝐼

𝑚← a machine learning model trained on 𝑋𝐼 , 𝐷𝐼

𝑉𝐼𝐶 ← 𝐷𝐼𝐶 −𝑚(𝑋𝐼𝐶 )

𝜃𝐼 ←
(︀
𝑉 𝑇
𝐼𝐶
𝐷𝐼𝐶

)︀−1
𝑉𝐼𝐶 (𝑌𝐼𝐶 − 𝑔(𝑋𝐼𝐶 ))

𝜃 += 𝜃𝐼
end
return 𝜃/2

The main reason to first find a model that fits 𝑋 onto 𝐷 and then 𝑋 onto 𝑌 is to

minimize regularization bias. To gain any sort of generalizability in the models 𝑚0

and 𝑔0, some regularization must be used while fitting these models, but by doing so,

bias is also introduced. The naive version of DML only finds the model 𝑔0 and then

regresses 𝐷 onto 𝑌 − 𝑔0(𝑋) to find ̂︀𝜃0, but the error |̂︀𝜃0 − 𝜃0| converges slowly due

to the regularization bias introduced. Namely, the error |̂︀𝜃0 − 𝜃0| is a function of the

error between the models, |̂︀𝑔0(𝑋) − 𝑔0(𝑋)|, and this usually does not have mean 0

and diverges quickly.

When we perform the two-step process of fitting models 𝑔0 and 𝑚0 (hence Double

Machine Learning), we see that the error term |̂︀𝜃0 − 𝜃0| depends instead on |̂︀𝑔0(𝑋)−

𝑔0(𝑋)| · |̂︁𝑚0(𝑋) −𝑚0(𝑋)|, which is the product of two estimation errors. Now, this

error can vanish quickly for many types of data generation processes. Figure 2-1

shows the densities of predicted estimators 𝜃 for an ordinary least squares regression,

naive DML, and DML over 500 simulations using a dummy dataset. We see that

DML is centered around the true 𝜃, and while naive DML is better than ordinary

least squares, it is not centered around the true 𝜃, indicating some sort of bias exists
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Figure 2-1: A comparison between using ordinary least squares, naive DML, and DML
to find the estimator 𝜃. With 500 simulations, plotted are the density distributions of
𝜃 for the different methods using a multivariate normal feature set 𝑋, a causal feature
𝐷 that has a Cauchy relationship with 𝑋, and an outcome 𝑌 = 𝜃𝐷 + sin2(𝑋) + 𝑈
for some normal variable 𝑈 .

with that estimator.

2.2.2 Causal Feature Selection Using Orthogonal Search

Raj et al. [20] propose an approach for finding direct causal parents of an outcome

variable, using only observed data. The setup is given an outcome 𝑌 and a set of

variables 𝑋, where the variables in 𝑋 can have non-linear relationships between them,

we want to find the variables in 𝑋 that have a direct effect on 𝑌 . Since we do not

know what the causal features are, we test each feature for causality using DML.

On iteration 𝑖, the algorithm uses double machine learning with the 𝑖-th variable

in 𝑋, 𝑋𝑖, as the policy variable and 𝑋 ∖𝑋𝑖 as the other variables in the feature set to

estimate 𝜃0, which is the relationship between 𝑋𝑖 and 𝑌 . A significance test is then

performed to see if 𝑋𝑖 has an effect on 𝑌 , and if it does, then it is considered a direct

causal parent of 𝑌 .
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Chapter 3

Methodology

For our problem, the data that we will look at are an individual’s SNPs and the

outcome of whether that individual has ALS or not. Our datasets consist of matrices,

where each row denotes an individual’s SNPs, and each place on the SNP sequence

can take on the value of 0, 1, or 2. A value of 0 means that the individual has

the reference base-pair allele (the allele found on the reference genome), a value of 1

means that the individual has an alternative allele, and a value of 2 means that the

individual has two alternative alleles at that SNP location. Our labels, or phenotype

vector, can either be composed of real numbers, if the phenotype is quantitative like

height, or the phenotype vector can be categorical if our outcomes are categorical like

if a person has a disease or not.

Thus, we can represent our problem using 𝑋 ∈ {0, 1, 2}𝑛×𝑑, 𝑌 ∈ R𝑛×1 where 𝑛 is

the number of individuals in our dataset and 𝑑 is the number of SNPs each individual

has. The goal is to find a vector 𝑤 ∈ R𝑑×1 that minimizes ℒ(𝑋𝑤, 𝑌 ), where ℒ is

mean squared error loss if 𝑌 is a quantitative phenotype and ℒ is cross entropy loss

if 𝑌 is categorical, constrained such that index 𝑖 of 𝑤 is non-zero iff. the SNP at

location 𝑖 is causal. Hence, we need to not only find a good estimator 𝑤, but also

find which indices of 𝑤 should be nonzero.
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3.1 Datasets

3.1.1 EpiGEN

Since there are not that many publicly available real datasets that have phenotypes

associated with ALS, we will need to generate synthetic data to first test our imple-

mentation before applying our implementation to a real dataset. Creating multiple

datasets with different settings will allow us to see the pitfalls of our algorithms based

off of the different settings. To generate multiple synthetic datasets, we will use use

EpiGEN [3]. EpiGEN is a toolkit that allows us to simulate realistic genotype and

phenotype matrices based off an inputted risk model. The user has to specify how

many individuals the dataset should consist of, what the individuals’ ancestry is, how

many SNPs each individual should have, what the underlying disease or causal SNPs

should be, how rare the disease SNPs should be, and how the disease SNPs interact

with each other to produce the phenotype.

The way EpiGEN generates the dataset is as follows. From a precomputed corpora

of genotypes that correspond to the inputted individuals’ ancestry, EpiGEN subsam-

ples SNPs from this corpora according to the users’ preferences of the SNPs. Then,

to compute the phenotypes, EpiGEN applies the risk model that the user defines to

the SNPs to generate the phenotypes. In our datasets, the risk model we defined

assumes a linearly causal relationship between the disease SNPs and the phenotype.

There are a few advantages of using EpiGEN over other synthetic data generation

tools. The first is that it simulates epistasis, or interaction between SNPs that have

a joint effect on a phenotype but individually do not have a large effect. Moreover,

EpiGEN simulates realistic linkage disequilibrium (LD) patterns, and since one facet

of interest is how well does DML work on data with correlated features, this is espe-

cially important. Finally, one feature of EpiGEN that will be useful in our pipeline

is the ability to set the minor allele frequency (MAF) of the true causal SNPs. The

minor allele frequency of a SNP is a probability indicating how often the second most

common allele occurs in a population. Having control of this variable can give us

insight on whether our pipeline will do better if the true disease SNPs are rarer, more
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common, or somewhere in between.

Different settings of EpiGEN

The three main ways we generate datasets are by varying the MAF ranges of the

disease SNPs, choosing disease SNPs that come from the same LD block, and choosing

disease SNPs that come from different LD blocks.

For all of these datasets, we sample 10,000 individuals, 10,000 SNPs, and 10 causal

or disease SNPs, where the relationship between the causal SNPs and the phenotype

is linear. To simulate the covariate shift, we sample the training datasets and testing

datasets from different populations. The training set comes from the HapMap 3 [13]

population ‘ASW’, which consists of people of African ancestry in Southwest, USA

and the testing set comes from the HapMap 3 population ‘CEU’, which consists of

Utah residents with European ancestry.

Varying the MAF ranges of disease SNPs

We created ten datasets where we vary the MAF ranges of the disease SNPs by

increments of 0.1, i.e. datasets where the disease SNPs’ MAF ranges vary from 0-0.1,

from 0.1-0.2, all the way to 0.9-1. We call these datasets MAF_0_01, MAF_01_02, ...

MAF_09_1 respectively. A dataset with a higher MAF range will consist of disease

SNPs that are more prone to mutations. Here, the non-disease SNPs stay the same

throughout each of these settings, so that we are able to compare between different

MAF ranges.

We vary the MAF in our experiments because the MAF of a SNP indicates how

rare or common the variant is, and SNPs with a wide range of MAF ranges have been

show to be associated with ALS [9]. We want to observe if there are any differences in

how well our pipeline works over different MAF ranges so that if there are any failures,

we understand the limitations when applying this pipeline to the real dataset.
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Figure 3-1: An example of the the LD block structure for the DIFF_LD dataset. The
green lines denote where the disease SNPs lie in the blocks. As shown, there are 10
distinct LD blocks shown on the diagonal with one disease SNP sampled from each
block.

Sampling disease SNPs that come from different LD blocks

Here, we sample 10 LD blocks and then from each LD block we sample a disease

SNP for a total of 10 disease SNPs from 10 different LD blocks. We call this dataset

DIFF_LD. An example of the LD patterns for DIFF_LD is shown in Figure 3-1. Here,

we see 10 distinct blocks, indicating high correlation between features within each

block, and the disease SNPs are located in the middle of each block.

In previous work, a point of failure for other algorithms was due to the linkage

disequilibrium structure between SNPs [31]. This added correlation could also present

a challenge to DML, because we know that linkage disequilibrium in real datasets can

present confounding effects [1].

Sampling disease SNPs that come from same LD blocks

Here, we sample one LD block and choose 10 disease SNPs from that LD block. We

call this dataset SAME_LD. An example of the LD pattern for SAME_LD is shown in
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Figure 3-2: An example of the LD block structure for the SAME_LD dataset. The green
lines denote where the disease SNPs lie in the block; here they are all in the middle
of the block.

Figure 3-2. Here, we have only one block of correlation that spans the entire feature

set, where the disease SNPs are all sampled from the middle of the block.

3.1.2 New York Genome Center ALS Dataset

The real dataset comes from the New York Genome Center (NYGC), a member of the

Answer ALS Research Consortium. The dataset consists of 5,890 individuals, where

1,676 are cases, or they have ALS, and 4,214 are control, or they do not have ALS.

Preprocessing the real data

We had access to 5,890 patients’ genomics data, which were all stored as Genome

Variant Call Format (gVCF) files. Each gVCF file contains a list of SNPs each indi-

vidual has, and each SNP had fields for its chromosome, position on the chromosome,

ID if available, reference allele, and alternative allele. Additionally, we had access to

metadata that told us what the control samples and case samples were. Here, we list

the steps of preprocessing that was done to get the data into the SNP matrix, 𝑋, and
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phenotype vector 𝑌 .

1. To construct the phenotype, or 𝑌 , vector, we looked at the metadata and

mapped the samples that correspond to a control to 0 and mapped the samples

that correspond to a case to 1. Here, the most important part is making sure

that the index of each sample is consistent between the phenotype vector and

the SNP matrix.

2. We performed joint genotyping [28] to merge the samples together. To keep with

the Broad’s GATK best practices [26], we used Sentieon’s GVCFtyper which

corresponds to GATK’s GenotypeGVCFs [27]. Joint genotyping is advantageous

because it validates the quality of data from the sequencing step by reducing

the number of false positive variants and recovering variants in low-coverage

sequencing areas by comparing those places to all other samples in the dataset

[4].

3. Once all of the gVCF files were merged, to convert the merged files into SNPs

matrices that only contain 0, 1, or 2, we used the tool vcftools

(https://github.com/vcftools/vcftools, version v0.1.16) that takes in as input

the merged gVCF file and outputs a SNP matrix where the individuals are

the rows and features are the columns with associated metadata saying what

position on the chromosome each feature is from. One quirk about vcftools

is that the first column in the outputted matrix is the index corresponding to

what individual the features are for, so we just drop that column.

3.2 Uncovering Correlated Features

Overall, since this problem tackles feature selection, we do two passes of feature

selection, as seen in Figure 3-3. Using our SNP and phenotype matrices as inputs, we

use lasso regression to do a first pass at feature selection, outputting only the features

that are correlated to our phenotype. Then, we restrict our feature set to only the

features that are outputted by lasso. It’s very important that the true disease SNPs
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Figure 3-3: The two-step experimental pipeline, which involves two rounds of feature
selection

do not get filtered out on this step, because we only test these features for causality

in the second step.

3.2.1 Proposed Regularizations

Since regularization in this pass of feature selection plays a big role in what features

end up selected, we want to choose a regularization method that will balance not

choosing too many features to be inputted into the second step while making sure that

the true causal SNPs are still selected. These are the four possibilities of regularization

we will consider:

1. 𝐿1 Regularization: We use cross validation to find the best 𝐿1 regularization

strength and output the coefficients that minimize cross validation loss

2. 𝐿2 Regularization: We do the same thing as 𝐿1 Regularization but with 𝐿2

Regularization.

3. “Adaptive 𝐿1” Regularization: We use cross validation to find the best 𝐿1 reg-

ularization strength. Instead of using the best regularization strength though,

we find the smallest regularization strength that still gives a cross validation

error of within 1√
𝑛

the minimum cross validation loss. This means that we will

likely get a larger set of coefficients than just using 𝐿1. Figure 3-4 shows an

example of the chosen regularization strengths. We see that for most cases the
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Figure 3-4: Examples of chosen regularization strength for the “Adaptive 𝐿1” Regu-
larization setting.

chosen regularization is exactly the one that minimizes out of sample loss, but

for MAF_09_1, we see that it chooses a smaller regularization that still achieves

an acceptable out of sample loss.

4. “Adaptive 𝐿2” Regularization: We do the same thing as “adaptive 𝐿1” except

use 𝐿2 regularization instead.

3.3 From Correlated Features to Causal Features

After we have the features from the lasso regression, we then perform causal selection

using orthogonal search only on these features to determine if any of these features

have a causal effect on the phenotype. We’re modifying the algorithm slightly, because

instead of searching over all 𝑑 SNPs in the dataset 𝑋, we only search over a subset

of features (specifically the ones outputted from the lasso classifier), so the number
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of iterations reduces. This greatly helps with computation time, but with the added

risk that lasso regression misses a true disease SNP in the first feature selection pass.

Algorithm 2 details this entire causal feature selection algorithm.

Algorithm 2: The overall two-step feature selection algorithm to find causal
features.
Result: A set of causal features to the outcome, 𝑌
Input: 𝑋 ∈ {0, 1, 2}𝑛×𝑑,

𝑌 ∈ {0, 1}𝑛×1,
𝐿𝑝 ∈ {𝐿1, 𝐿2, “Adaptive” 𝐿1, “Adaptive” 𝐿2}

𝑆 ← {}
𝑤,𝑤0 ← argmin𝑤,𝑤0

𝐿𝐶𝐸(𝑋, 𝑌,𝑤,𝑤0) + 𝐿𝑝, where 𝐿𝐶𝐸 comes from Equation
2.2
�̂� ← {𝑖 |𝑤𝑖 ̸= 0}
for 𝑖 ∈ �̂� do

𝐷 ← 𝑋𝑖 ∈ {0, 1, 2}𝑛×1

𝑊 ← 𝑋 ∖𝑋𝑖 ∈ {0, 1, 2}𝑛×(𝑑−1)

𝜃 ← DML(𝑊 , 𝐷, 𝑌 ) where DML comes from Algorithm 1
if 𝜃 significant then

𝑆 ← 𝑆 ∪ 𝑖
end

end
return 𝑆
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Chapter 4

Results

In this chapter, we analyze the features selected by our pipeline in both the Logistic

Regression step and the DML step. In the Logistic Regression step, we want to reduce

the feature space significantly while keeping the true disease SNPs in our feature pool,

so that the computation time of DML reduces but we still test the true disease SNPs

for causality.

Then, to analyze the SNPs outputted by DML, we want to achieve high precision,

which measures how many of the outputted SNPs are truly causal and we want to

achieve high recall, which measures how many of the true disease SNPs were actually

found. Of course, to measure precision and recall, we need to know the true disease

SNPs which is possible for the EpiGEN datasets but not for the NYGC dataset. So,

we also look at other standard evaluation metrics such as cross entropy error and the

area under the ROC Curve (ROC-AUC) score to determine how well a model trained

only on the significant features performs.

Furthermore, since the presence of correlation in the feature set is a potential issue

for DML, we analyze the effect correlation has on DML.
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4.1 EpiGEN

4.1.1 Analysis of Logistic Regression Using Different Regular-

izations

For the first round of feature selection, we fit a Logistic Regression to our training

SNPs matrix and phenotype vector and experiment with different types of regular-

ization. Here, we examine each regularization choice and explain whether it would

be a good choice or not.

𝐿1 regularization

𝐿1 regularization does very well for most of the datasets–particularly the datasets that

have disease SNPs in the non-extreme MAF ranges, as seen in Table 4.1. When we

look at the error and ROC-AUC metrics, we see that our model learns and generalizes

pretty well for each dataset, except for the MAF_09_1 dataset. With the exception

of MAF_09_1, out of sample ROC-AUCs are all pretty high (>0.8), suggesting good

generalization. When we look at the number of features found, we see that 𝐿1 does

well in keeping the number of found SNPs small, while maintaining a good recall.

For most datasets, we are able to retrieve all of the disease SNPs meaning that

they will not be lost as a cause of this round of feature selection. Unfortunately, 𝐿1

regularization is only able to select one SNP for the MAF_09_1 dataset and it is not a

causal SNP. Clearly, using 𝐿1 regularization is a point of failure for this dataset. This

could be due to the fact that since mutations in the disease SNPs are much more

likely, there isn’t that much meaningful signal so the Logistic Regression just pushes

all of the weights to 0. With the exception of MAF_09_1, 𝐿1 would be a good choice

of regularization since it reduces the feature space while maintaining good recall.

𝐿2 regularization

We see that 𝐿2 regularization is able to achieve perfect recall in all datasets, as shown

in Table 4.2. Here, we see that the training accuracy and ROC-AUC are very high,
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MAF Datasets

(0, 0.1) (0.1, 0.2) (0.2, 0.3) (0.3, 0.4) (0.4, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.8) (0.8, 0.9) (0.9, 1) DIFF_LD SAME_LD

Train Error 0.27 0.18 0.15 0.14 0.13 0.12 0.13 0.13 0.12 0.32 0.18 0.094
Train ROC-AUC 0.83 0.95 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.58 0.94 0.99
Validation Error 0.30 0.23 0.21 0.20 0.17 0.18 0.19 0.19 0.19 0.32 0.21 0.13
Validation ROC-AUC 0.71 0.87 0.90 0.91 0.94 0.92 0.93 0.92 0.93 0.54 0.90 0.96
Test Error 0.35 0.24 0.21 0.21 0.27 0.29 0.49 0.21 0.22 0.33 0.40 0.33
Test ROC-AUC 0.81 0.88 0.90 0.91 0.91 0.92 0.92 0.92 0.91 0.51 0.86 0.89

Number of SNPs found 159 532 457 414 446 440 516 534 550 1 275 339
Disease SNPs found 6 10 10 10 10 10 10 10 10 0 8 8
Precision 0.038 0.019 0.022 0.024 0.022 0.022 0.019 0.012 0.018 0 0.029 0.024
Recall 0.6 1 1 1 1 1 1 1 1 0 1 0.8

Table 4.1: Evaluation metrics for fitting a Logistic Regression model using 𝐿1 regu-
larization on the different EpiGEN datasets. Here, the (0, 0.1) column under MAF
Datasets represents MAF_0_01, for example.

MAF Datasets

(0, 0.1) (0.1, 0.2) (0.2, 0.3) (0.3, 0.4) (0.4, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.8) (0.8, 0.9) (0.9, 1) DIFF_LD SAME_LD

Train Error 0.28 0.22 0.17 0.12 0.12 0.13 0.13 0.13 0.12 0.28 0.16 0.090
Train ROC-AUC 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.00
Validation Error 0.32 0.32 0.32 0.30 0.29 0.29 0.29 0.29 0.29 0.33 0.25 0.17
Validation ROC-AUC 0.54 0.59 0.63 0.70 0.75 0.76 0.75 0.74 0.76 0.51 0.84 0.95
Test Error 0.32 0.33 0.32 0.31 0.32 0.38 0.30 0.30 0.32 0.33 0.45 0.35
Test ROC-AUC 0.55 0.58 0.65 0.69 0.71 0.75 0.75 0.74 0.74 0.49 0.79 0.81

Number of SNPs found 9826 9828 9829 9826 9828 9825 9823 9827 9824 9828 9827 9846
Disease SNPs found 10 10 10 10 10 10 10 10 10 10 9 10
Precision 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Recall 1 1 1 1 1 1 1 1 1 1 0.9 1

Table 4.2: Evaluation metrics of fitting a Logistic Regression model using 𝐿2 regu-
larization on the different EpiGEN datasets. Here, the (0, 0.1) column under MAF
Datasets represents MAF_0_01, for example.

but out of sample accuracy and ROC-AUC are lower, suggesting overfitting. The out

of sample ROC-AUCs are much worse (<0.8) in this table compared to using 𝐿1 in

Table 4.1. Even though we prioritize the recall in the first step of feature selection,

it is still important to look at the error and ROC-AUC metrics, since that will give

an indication of how relevant these features actually are. When we then look at the

number of features found, precision, and recall, it corroborates the theory that we are

overfitting here, since around 98% of the SNPs are used in the model. So not only

do we get too many features to use for the second step in our pipeline, the features

that are selected might be overfitted to our training set and not truly causal. This

is not really a surprise, since 𝐿2 is not generally used for feature selection. While 𝐿2

maintains perfect recall, it does not reduce the feature space significantly, making it

a suboptimal choice for regularization.
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MAF Datasets

(0, 0.1) (0.1, 0.2) (0.2, 0.3) (0.3, 0.4) (0.4, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.8) (0.8, 0.9) (0.9, 1) DIFF_LD SAME_LD

Train Error 0.27 0.18 0.15 0.14 0.13 0.12 0.13 0.13 0.12 0.32 0.15 0.093
Train ROC-AUC 0.83 0.95 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.67 0.96 0.99
Validation Error 0.30 0.23 0.21 0.20 0.17 0.18 0.19 0.19 0.19 0.33 0.19 0.14
Validation ROC-AUC 0.71 0.87 0.90 0.91 0.94 0.92 0.93 0.92 0.93 0.51 0.93 0.96
Test Error 0.35 0.24 0.21 0.21 0.27 0.29 0.49 0.21 0.22 0.33 0.35 0.30
Test ROC-AUC 0.81 0.88 0.90 0.91 0.91 0.92 0.92 0.92 0.91 0.9 0.91 0.87

Number of SNPs found 159 532 457 414 446 440 516 534 550 78 307 377
Disease SNPs found 6 10 10 10 10 10 10 10 10 10 10 8
Precision 0.038 0.019 0.022 0.024 0.022 0.022 0.019 0.012 0.018 0.12 0.033 0.024
Recall 0.6 1 1 1 1 1 1 1 1 1 1 0.8

Table 4.3: Evaluation metrics of fitting a Logistic Regression model using “adaptive
𝐿1” regularization on the different EpiGEN datasets. Here, the (0, 0.1) column under
MAF Datasets represents MAF_0_01, for example.

“Adaptive 𝐿1” regularization

Then, we move on to look at the results in Table 4.3, which are the metrics from

using “Adaptive 𝐿1” as regularization in the first step. Looking at the errors and

ROC-AUCs, training and out of sample performance are both good (>0.8), suggesting

that the features found here are not just relevant to the training dataset. When we

look at the number of features found using “adaptive” 𝐿1, it is mostly around 300-500

features, which is a significant decrease from the original 10,000 SNPs in the dataset.

In fact, for most datasets, using 𝐿1 regularization and “adaptive 𝐿1” regularization

achieve the same results, with maybe a few more coefficients found in some datasets

when using “adaptive” 𝐿1. However, we see that for the MAF_09_1 dataset, there is

a significant improvement here, since using by using “adaptive 𝐿1” regularization, we

are able to retrieve back all of the causal SNPs in this round of feature selection.

The good recall coupled with the fact that we are able to get good performance

with a small number of features make “adaptive” 𝐿1 a promising choice to use as

regularization.

“Adaptive 𝐿2” regularization

Compared to 𝐿2 regularization, “adaptive 𝐿2” regularization achieves very similar

results, seen in Table 4.4. The out of sample performance of the model is low and

the number of features selected is still too high; so while there is near-perfect recall,
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MAF Datasets

(0, 0.1) (0.1, 0.2) (0.2, 0.3) (0.3, 0.4) (0.4, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.8) (0.8, 0.9) (0.9, 1) DIFF_LD SAME_LD

Train Error 0.28 0.25 0.22 0.17 0.12 0.13 0.13 0.13 0.12 0.28 0.18 0.11
Train ROC-AUC 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.99
Validation Error 0.32 0.32 0.32 0.30 0.29 0.29 0.29 0.29 0.29 0.33 0.25 0.17
Validation ROC-AUC 0.54 0.59 0.63 0.70 0.75 0.76 0.75 0.74 0.76 0.51 0.84 0.95
Test Error 0.32 0.33 0.32 0.31 0.32 0.38 0.30 0.30 0.32 0.33 0.42 0.34
Test ROC-AUC 0.55 0.58 0.65 0.69 0.71 0.75 0.75 0.74 0.74 0.49 0.79 0.80

Number of SNPs found 9826 9828 9829 9826 9828 9825 9823 9827 9824 9828 9827 9846
Disease SNPs found 10 10 10 10 10 10 10 10 10 10 9 10
Precision 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Recall 1 1 1 1 1 1 1 1 1 1 0.9 1

Table 4.4: Evaluation metrics of fitting a Logistic Regression model using “adaptive
𝐿2” regularization on the different EpiGEN datasets. Here, the (0, 0.1) column under
MAF Datasets represents MAF_0_01, for example.

using 𝐿2 or “adaptive 𝐿2” as a regularization step will be computationally infeasible

and not worthwhile since the performance is also not great.

Thus, we choose “adaptive 𝐿1” as our method of regularization, since it is able to

significantly reduce the feature space while maintaining good recall of our true disease

SNPs.

4.1.2 Analysis of DML Results

MAF Datasets

(0, 0.1) (0.1, 0.2) (0.2, 0.3) (0.3, 0.4) (0.4, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.8) (0.8, 0.9) (0.9, 1) DIFF_LD SAME_LD

Train Error 0.28 0.22 0.18 0.17 0.18 0.15 0.16 0.16 0.18 0.33 0.29 0.13
Train ROC-AUC 0.75 0.88 0.93 0.93 0.92 0.94 0.93 0.93 0.93 0.90 0.90 0.96
Validation Error 0.29 0.22 0.20 0.19 0.18 0.17 0.17 0.16 0.19 0.33 0.29 0.13
Validation ROC-AUC 0.71 0.88 0.91 0.92 0.93 0.94 0.94 0.94 0.93 0.49 0.73 0.96
Test Error 0.35 0.31 0.20 0.19 0.22 0.24 0.69 0.34 0.21 0.33 0.39 0.25
Test ROC-AUC 0.81 0.89 0.91 0.92 0.91 0.93 0.93 0.93 0.90 0.49 0.68 0.84

Number of SNPs found 5 11 10 10 10 12 11 11 13 1 7 6
Disease SNPs found 5 10 10 10 9 10 10 10 9 0 2 6
Precision 1 0.91 1 1 0.9 0.83 0.91 0.91 0.69 0 0.29 1
Recall 0.5 1 1 1 0.9 1 1 1 0.9 0 0.2 0.6

Table 4.5: Evaluation metrics of running causal orthogonal search using an “adaptive
𝐿1” regularization in the first step. Here, the (0, 0.1) column under MAF Datasets
represents MAF_0_01, for example.

After the first pass of feature selection using a logistic regression with “adaptive

𝐿1” regularization, we now run causal feature selection via orthogonal search on the

selected features from the first step, using a significance test with a p-value of 1e-

5. Again, we look at metrics such as error, ROC-AUC, number of features found,
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precision, and recall. We look at performance metrics like error and ROC-AUC to

gain a sense of how well the chosen features can predict the outcome and we look

at number of features found, precision, and recall to gain a sense of how well this

pipeline works for causal feature selection. Table 4.5 shows the results of the pipeline

on the synthetic datasets. For the performance metrics like error and ROC-AUC,

most scenarios do well in both training and out of sample. In fact, the performance is

very comparable to the performance of the Logistic Regression using 𝐿1 or “adaptive

𝐿1” regularizations as in Tables 4.1 and 4.3, even though the feature set that the

model is trained on is much smaller. This suggests that the features we find after

DML are sufficient for the decision.

To further support this thought, we notice that for most scenarios, namely when

the MAF ranges are non-extreme, this pipeline does extremely well in preserving good

recall. However, in extreme MAF ranges like in the dataset MAF_0_01 and MAF_09_1,

this pipeline fails in finding many of the true disease SNPs that are causal. This is

probably due to the MAF range being too extreme, meaning that there is not really

a differentiation in these features between case and control outcomes. Thus, it might

be hard to get any signal here. Because we were able to select more disease SNPs

in the first round of feature selection, the failure here suggests that this is a point of

failure in the causal feature selection step.

Moreover, looking at both the DIFF_LD and SAME_LD dataset, few of the true

disease SNPs were found to be significant, suggesting another point of failure. We

hypothesize that the causal orthogonal feature selection step is hurt by the correla-

tion. When compared to Logistic Regression using any regularization method, DML

performs worse for DIFF_LD and around the same for SAME_LD.

How the confidence of DML affects the results of DIFF_LD and SAME_LD

To investigate this failure further, we range the significance test’s p-value to see how

confident the algorithm is in picking out causal features. Figures 4-1 and 4-2 show the

same evaluation metrics we have been looking at with for the DIFF_LD and SAME_LD

datasets when using p-values in [1e-7, 1e-5, 1e-2, 1e-1]. To reiterate, we look at cross
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Figure 4-1: Evaluation metrics for DIFF_LD over a range of p-values. The cross
entropy error and ROC-AUC score using significant features are on the top. The
number of SNPs found, number of disease SNPs found, precision, and recall are on
the bottom. See Table A.1 for more details.

Figure 4-2: Evaluation metrics for SAME_LD over a range of p-values. The cross
entropy error and ROC-AUC score using significant features are on the top. The
number of SNPs found, number of disease SNPs found, precision, and recall are on
the bottom. See Table A.2 for more details.
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entropy loss and ROC-AUC of the fitted Logistic Regression model on the selected

DML features, the number of selected SNPs, the number of disease SNPs selected,

precision, and recall. For DIFF_LD, we see that the out of sample cross entropy loss

and ROC-AUC increases as we increase the p-value, suggesting a better fit as we

are becoming less confident. This could be attributed to the fact that we do not see

any causal features selected in the smallest p-value of 1e-7 and we see an increase of

true disease SNPs selected as we increase the p-value. For SAME_LD, we see that out

of sample ROC-AUC also increases as we increase the p-value, which could also be

attributed to selecting more true disease SNPs as we increase the p-value. For both

datasets, we see that as we increase the p-value, corresponding to a less confident

selection, we are able to pick out more of the true causal features. However, with the

increase in p-value, we also end up being more imprecise and pick out SNPs that are

not truly causal.

Analysis of the correlation structure of significant features of SAME_LD

For the SAME_LD dataset, we are able to achieve perfect precision for p-values smaller

than 1e-2, but once we relax the significance test by increasing the p-value, we see

that we get a mix of true disease SNPs and non-disease SNPs that were selected to

be causal. This means that the algorithm is having trouble distinguishing between

causal and non-causal features here, but at least these are low confidence predictions.

Furthermore, for the SAME_LD dataset, Figures 4-3 and 4-4 show the correlation

matrices of the features that DML picks out to be causal on the top row and the

correlation matrices of the features that DML picks out to be causal plus the true

disease SNPs that weren’t found added in on the bottom row. The green dotted lines

indicate the indices of the disease SNPs that DML was able to select and the red

dotted lines indicate the indices of the disease SNPs that DML was not able to select.

Figure 4-3 shows the correlation matrices of the significant features using a p-value

of 1e-5, and even though all the disease SNPs are correlated by construction, we see

that in particular, the disease SNPs that were found by DML are more correlated

to one another than the disease SNPs that were not found by DML. In Figure 4-
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4, plotted are the correlation matrices of the selected causal features when using a

significance test with a p-value of 1e-1. We see that the causal SNPs that DML finds

are very correlated, particularly centered around where all of the true disease SNPs

lie (circled). Since we were not seeing non-disease SNPs get selected when the p-value

was lower, in this regime, DML does a good job of picking out what is truly causal

versus what is just correlated with a causal feature. We also see, though, that there

are other blocks of high correlation that aren’t centered around any of the true disease

SNPs (circled), and these blocks of high correlation are more pronounced than the

correlation structure in the underlying dataset. So, we are seeing arbitrary SNPs being

selected here. This suggests that regardless of whether a selected feature is causal

or not, once DML deems a feature to be causal, it’s also likely to find the features

correlated with the selected feature to be causal. For this regime though, we see the

correlation among non-causal features when we relax the statistical significance test

heavily.

Analysis of the correlation structure of significant features of DIFF_LD

On the other hand, in the DIFF_LD dataset, performance is a bit worse because

we are confidently predicting both true disease SNPs and non-disease SNPs to be

causal. Even when we set the confidence to be very high (p-value=1e-7), we see

that DML picks out non-disease SNPs to be causal, as in Figure 4-1; and in fact,

no true disease SNPs are found at this confidence level. Figures 4-5 and 4-6 show

the correlation matrices of the features deemed causal by DML using p-values of 1e-

5 and 1e-1 respectively. They also show the correlation matrices of the significant

features deemed causal plus the true disease SNPs that were not found to be causal

by DML. For the test using a p-value of 1e-5 in Figure 4-5, we see that the features

that DML does pick out in the top row do not show strong correlation with one

another. However, if we observe the bottom row and look at the correlation between

the selected causal features and the true disease SNPs that were not found, we see

there is more correlation there. This implies that DML cannot differentiate between

a causal feature and what is only correlated with a causal feature, and falsely picks
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Figure 4-3: The first row denotes correlation plots over the significant features that
DML deems causal using a p-value of 1e-1 for the SAME_LD dataset for both training
and testing. The green lines denote where the true disease SNPs lie. The second row
shows the correlation plots over significant features that DML deems causal using a
p-value of 1e-5 and the disease SNPs that DML did not find added in. The green
lines denote the disease SNPs that DML found, and the red lines denote the disease
SNPs that DML did not find to be causal that we added in for analysis. Circled are
the places where we see more correlation between the significant features.

the correlated features to be causal. More insidiously, DML still chooses features that

are not causal with a high confidence.

In Figure 4-6, where the features are selected with a p-value of 1e-1, we see that

there is much more correlation in both rows, meaning that the found causal features

are correlated with each other and the found causal features are more correlated with
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Figure 4-4: The first row shows the correlation matrices of the significant features
that DML deems causal using a p-value of 1e-1 for the SAME_LD dataset for both
training and testing. The green lines denote where the true disease SNPs lie. Circled
are the correlation structures between the significant features that could be an issue.
The second row shows the correlation plots over significant features that DML deems
causal using a p-value of 1e-1 and the disease SNPs that DML did not find added in.
The green lines denote the disease SNPs that DML found, and the red lines denote
the disease SNPs that DML did not find to be causal that we added in for analysis.

the true disease SNPs. We see that as the significance test becomes more lenient,

DML is more likely to select SNPs that are simply correlated with a true disease

SNP as causal. Here though, we see that the method’s imprecision is due to most

of the selected features having some correlation with a true disease SNP, unlike in

the SAME_LD dataset, where arbitrary features without any correlation to the true
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disease SNPs were being picked. But, the correlation structure between the selected

causal features in Figure 4-6 supports the finding that once DML considers one feature

causal, it’s likely to consider other correlated features as causal too.

This could be an issue, since the real dataset is likely to have linkage disequilibrium

blocks, where SNPs are more correlated with one another. So, if DML outputs SNPs

that are correlated with one another, since there is no ground truth model in the real

dataset, it would be hard to tell which SNPs are truly causal.

In summary, on EpiGEN, DML performs exceptionally well in the datasets where

we do not see much correlation; see Table 4.5. We are able to maintain high precision

and recall for those settings as well as low cross entropy error and a high ROC-AUC

score. When the features are correlated, DML selects features that are correlated to

the true causal features that were selected and features that are correlated to the true

causal features that were not selected; see Figures 4-3, 4-4, 4-5, and 4-6.

4.2 NYGC Dataset

For this project, we were limited in the amount of computational resources we were

able to obtain (see Appendix B), so running the pipeline on the entire human genome

with all chromosomes concatenated together would be infeasible. For this reason, we

focused on areas of the chromosome where we know are associated with ALS. We had

access1 to a table of compiled genes and SNPs on the genes where previous studies have

shown associations to ALS, which was generated by Matthew Harms (MD, Associate

Professor of Neurology at Columbia). Genes in this pathogenic variant table include

SOD1, PFN1, TARDBP, OPTN, VCP, and UBQLN2. Since there is no ground truth

model of determining whether a SNP is causal or not, we break down the analysis

into looking at certain genes where we have some biological knowledge for evaluation

and looking at all of the genes where we use statistical methods for evaluation.
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Figure 4-5: The first row denotes correlation plots over the significant features that
DML deems causal using a p-value of 1e-5 for the DIFF_LD dataset for both training
and testing. The green lines denote where the true disease SNPs lie. The second row
shows the correlation plots over significant features that DML deems causal using a
p-value of 1e-5 and the disease SNPs that DML did not find added in. The green
lines denote the disease SNPs that DML found, and the red lines denote the disease
SNPs that DML did not find to be causal.

4.2.1 Analysis of SOD1 Gene

We first chose to run the pipeline on the SOD1 gene, since SOD1 has been widely

studied and shown to have mutations that are associated with ALS [23, 25]. Within

the dataset, we were able to locate 224 SNPs on the SOD1 gene for each individual.

1via personal communication
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Figure 4-6: The first row denotes correlation plots over the significant features that
DML deems causal using a p-value of 1e-1 for the DIFF_LD dataset for both training
and testing. The green lines denote where the true disease SNPs lie. The second row
shows the correlation plots over significant features that DML deems causal using a
p-value of 1e-1 and the disease SNPs that DML did not find added in. The green
lines denote the disease SNPs that DML found, and the red lines denote the disease
SNPs that DML did not find to be causal.

In this set of experiments, we run our pipeline to retrieve the causal SNPs and then

fit a Logistic Regression to those features and then compare those metrics to fitting

a Logistic Regression model and Random Forest model on the entire SOD1 dataset.

Because the dataset is so imbalanced (1,676 cases and 4,214 controls), we use ROC-

AUC as a metric.

Table 4.6 shows evaluation metrics for the different models, including training and
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Model

Logistic Regression
(𝐿1 Regularization) Random Forest Causal Orthogonal Search (DML)

(𝐿1 Regularization in first step)
Causal Orthogonal Search (DML)
(𝐿2 Regularization in first step)

Training ROC-AUC 0.67 0.65 0.66 0.661
Testing ROC-AUC 0.64 0.62 0.62 0.63
Number of Features 52 24 33 42

Table 4.6: Training and testing ROC-AUC scores for baseline models and Causal
Orthogonal Search using 𝐿1 and 𝐿2 regularization in the first step for the SOD1
gene. Also included is the number of features that each model deems relevant to the
prediction problem. For Logistic Regression, it is the number of non-zero coefficients
and for Causal Orthogonal Search, it is the number of causal features.

testing ROC-AUC and the number of features selected from each method. When com-

paring the ROC-AUCs between the Logistic Regression and Random Forest model

using all of the features, the linear model performs slightly better, indicating that

we don’t gain much more by using a non-linear model. Then, when comparing the

performance between the Logistic Regression on all of the features and Logistic Re-

gression on the selected causal features in both regularization settings, the out of

sample performance is slightly better when using all of the SNPs. However, both

versions of DML, using 𝐿1 and 𝐿2 regularization in the first step, were able to pick

fewer features while maintaining a relatively close ROC-AUC to the model trained

on all of the features, suggesting that the SNPs that DML found capture substantial

predictive power.

After the coefficients from DML were found, we were able to use the found SNPs’

chromosome and positions to compare to the table of compiled SNPs that have as-

sociations to ALS. Many of the SNPs found were intronic variants, meaning SNPs

found on non-coding region, which unfortunately, the pathogenic variant table does

not contain many of. We got one match to the table, the SNP with rsid rs121912442,

which has an amino acid variant of Ala5Val and cDNA variant of 14C>T. This is in

line with other studies which hypothesize this variant to be pathogenic [11, 33].

4.2.2 Analysis of PFN1 Gene

Then, we looked at the PFN1 gene, since according to Li et al. [14], there are many

eQTLs [18] on chromosome 17, which PFN1 is also on. In our dataset, there were 64
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Model

Logistic Regression
(𝐿1 Regularization) Random Forest Causal Orthogonal Search (DML)

(𝐿1 Regularization in first step)
Causal Orthogonal Search (DML)
(𝐿2 Regularization in first step)

Training ROC-AUC 0.65 0.65 0.62 0.62
Testing ROC-AUC 0.65 0.64 0.60 0.60
Number of Features 57 19 10 9

Table 4.7: Training and testing ROC-AUC scores for baseline models and Causal
Orthogonal Search using 𝐿1 and 𝐿2 regularization in the first step for the PFN1
gene. Also included is the number of features that each model deems relevant to the
prediction problem. For Logistic Regression, it is the number of non-zero coefficients
and for Causal Orthogonal Search, it is the number of causal features.

SNPs that are on the PFN1 gene. We run the same comparison to the baselines as

we did for SOD1, and those results are shown in Table 4.7. Again, the out of sample

ROC-AUC is similar between a Logistic Regression model fit on all of the features

and a Random Forest model fit on all of the features, showing us that a non-linear

model is not necessary for this prediction problem. Also similar to the SOD1 analysis,

we see that DML is able to significantly reduce the feature space, but sacrifices some

performance when a linear model is trained on the DML feature space. In this case,

the out of sample performance decreases more than in the SOD1 case, suggesting that

these selected SNPs do not capture as much predicted power as the selected SNPs

on the SOD1 gene did. Also, interestingly, between using 𝐿1 and 𝐿2 regularization

in the first step, the performance is the same but DML using 𝐿1 regularization finds

one more causal SNP than DML using 𝐿2, and all other selected SNPs are the same.

Of all the eQTLs in [14], three of them are on the PFN1 gene and DML using

𝐿1 regularization was able to recover all three of them, while DML using 𝐿2 regu-

larization was able to recover two out of the three. The three eQTLs on the PFN1

gene are rs79843668, rs238243, and rs1859433 [14], and DML using 𝐿2 was unable

to retrieve rs1859433. However, since the performance is the same between the two

methodologies, it is unclear whether the extra eQTL found by DML using 𝐿1 regular-

ization is just not causal or if the SNPs found by DML are correlated to that eQTL

and capture the effects of that eQTL.

To investigate this, we looked at the correlation matrices of the found significant

features, and we were specifically interested in the correlation between the eQTLs
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Figure 4-7: The correlation matrices of significant features for PFN1 using 𝐿1 regu-
larization as a first step (left) and 𝐿2 regularization as a first step (right). The green
lines denote the eQTL matches we found. The rightmost eQTL in the left figure is the
extra eQTL that DML using 𝐿1 regularization found. All other significant features
are the same.

and the other SNPs, seen in Figure 4-7. We immediately notice the strong correlation

between the first eQTL and the third eQTL in the left figure, where the significant

SNPs were found using 𝐿1 as a first step. We also see that the third eQTL is correlated

to other significant features as well, which explains why adding this eQTL in does not

affect the performance of the final Logistic Regression. We observed the same effect

that was happening when running DML on the synthetic datasets: DML tends to pick

out features that are correlated with one another. So while we were able to retrieve

SNPs that are thought to be associated with ALS, we need to validate whether these

SNPs are truly causal.

4.2.3 Analysis of Genes Associated with ALS

Finally, we ran the pipeline on all 12 genes from the table, which include VCP,

TARDBP, OPTN, CCNF, SOD1, TBK1, ALS2, CHCHD10, PFN1, UBQLN2, VAPB,

and FUS. We concatenated all the SNPs on these genes for a feature set size of 6,968

for each individual. Again, we compare the results a Logistic Regression model trained

on the significant features found from DML to a Logistic Regression model trained
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Model

Logistic Regression
(𝐿1 Regularization) Random Forest Causal Orthogonal Search (DML)

(𝐿1 Regularization in first step)
Causal Orthogonal Search (DML)
(𝐿2 Regularization in first step)

Training ROC-AUC 0.85 0.84 0.75 0.80
Testing ROC-AUC 0.78 0.70 0.72 0.76
Number of Features 287 225 31 264

Table 4.8: Training and testing ROC-AUC scores for baseline models and Causal
Orthogonal Search using 𝐿1 and 𝐿2 regularization in the first step for all the genes
in the pathogenic variant table.

on all features and a Random Forest Classifier model trained on all features, as seen

in Table 4.8. Immediately, we can notice that the ROC-AUCs across all columns

are higher than just using SOD1 or PFN1 by themselves, meaning that these added

genes have a strong effect on the classifiers. Similar to what we were seeing before on

the SOD1 and PFN1 datasets, the performances of the Logistic Regression on all of

the features and the Random Forest Classifier on all of the features are similar, again

suggesting that a non-linear model does not help much here.

The out of sample ROC-AUC of DML with 𝐿1 regularization is slightly lower than

the out of sample ROC-AUC from the overall Logistic Regression, but, even with fewer

features, does better than the SOD1 and PFN1 Logistic Regression models using all

of the features. This is expected, since this dataset consists of more genes that are

associated with ALS, so it’s likely that these added features are important. DML

with 𝐿1 regularization was able to significantly reduce the number of features, and

we were able to retrieve the same SOD1 SNP as in the previous section as well as

a SNP from TBK1, rs201970436, which is also included in the table of pathogenic

variants that we have. Again, we saw that many of the other SNPs that were selected

by DML were intronic variants, and when we looked at metrics such as the CADD

score, which looks at how disastrous mutations of those SNPs are in general [22], or

conservation scores of these SNPs, which tells us how unchanged a SNP was through

evolution, nothing really stood out.

The out of sample ROC-AUC of DML with 𝐿2 regularization is slightly lower

than that of Logistic Regression trained on all features and slightly higher than that

of DML with 𝐿1 regularization, probably because the number of features that DML
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Figure 4-8: Correlation Matrix of the significant features found by DML when using
𝐿2 Regularization in the first step. This selection is done from all of the genes in the
pathogenic variant table.

with 𝐿2 regularization finds is in between those models. We see that the feature space

is not reduced by that much here, and the amount of features found is comparable to

what Logistic Regression with 𝐿1 regularization finds, without the DML step. When

we look at Figure 4-8, we see strong block patterns, indicating high levels of correlation

between the selected SNPs. This is a pattern we’ve seen many times already, both

in the EpiGEN dataset and the NYGC dataset. When correlation between features

is present in the dataset, DML tends to select significant features that are correlated

with one another. This problem could have been exacerbated when using 𝐿2 in the

first step, because the correlated features might not have been filtered out there. But

since we do not know what are the true causal SNPs and what are just correlated

with the causal SNPs, we cannot reduce the correlation too much in the first step.

Out of the 264 SNPs found from DML using 𝐿2 regularization, we retrieve the

same variants in the table as we did in DML using 𝐿1 in addition to rs138901914

from FUS, but this variant is thought to be benign. The other SNPs we found were

mostly intronic variants and not in the table.

Another issue we faced here was not that many SNPs that were in our pathogenic

variant table were found in the NYGC dataset. We set up a mapping from the variants
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Model

Logistic Regression
(𝐿1 Regularization)

Logistic Regression
(𝐿2 Regularization) Random Forest Causal Orthogonal Search (DML)

(𝐿1 Regularization in first step)
Causal Orthogonal Search (DML)
(𝐿2 Regularization in first step)

Training ROC-AUC 0.61 0.61 0.63 0.55 0.57
Testing ROC-AUC 0.60 0.60 0.61 0.55 0.56
Number of Features 11 33 15 2 5

Table 4.9: Training and testing ROC-AUC scores for baseline models (with the added
Logistic Regression using 𝐿2 regularization model) and Causal Orthogonal Search
using 𝐿1 and 𝐿2 in the first step for all the SNPs in the pathogenic variant table.

on the table to the chromosome and positions of the SNPs, but only found 37 SNPs

in our dataset. Table 4.9 show us the same evaluation metrics we have been using

for these 37 SNPs. Noticeably, the ROC-AUCs across the models are lower than that

from the SOD1, PFN1, and concatenation of all the genes datasets that we saw. This

suggests that the SNPs that we do have in the NYGC dataset that also intersect with

the pathogenic variant table do not contain enough predictive power.

We also added the metrics for using Logistic Regression with 𝐿2 regularization

to do a comparison of the models when using a similar amount of features for the

prediction problem. In particular, we compare column 3 from Table 4.8 which are the

metrics for a Logistic Regression using 31 SNPs from all of the ALS-associated genes

to column 2 from Table 4.9 which are the metrics for a Logistic Regression using 33

SNPs from the pathogenic variant table. We notice that the performance using 31

features from all the genes does significantly better, which also suggests that perhaps

we are missing SNPs from the pathogenic variant table in our dataset to account for

the worse performance in Table 4.9 or that the intronic variants found from using all

the genes play a big role in this prediction problem. This could also mean that there

is more predictive power in the other parts of genes that are not the 37 SNPs from

the pathogenic variant table. Since the pathogenic variants table do not include that

many introns, there is a need to study the effects of these intronic variants and their

causal nature in further detail.

To summarize, we applied DML on the genes SOD1, PFN1, and a concatenation

of ALS-associated genes from the NYGC dataset. We noticed that between a Lo-

gistic Regression and Random Forest classifier on these datasets, Logistic Regression

outperformed slightly, indicating that a non-linear model does not add substantial
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predictive power. We also noticed that DML usually was able to significantly reduce

the feature space while maintaining slightly lower performance than the Logistic Re-

gression using all the features; see Tables 4.6, 4.7, 4.8, and 4.9. When compared to

EpiGEN, we noticed the same pattern of DML selecting features with high correlation;

see Figures 4-7 and 4-8.
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Chapter 5

Discussion

In this thesis, we applied a new framework of selecting causal features from genetics

data. We applied Causal Feature Selection Via Orthogonal Search [20] on EpiGEN

generated datasets and the New York Genome Center ALS dataset. We noticed that

when we induced correlation between features in the EpiGEN datasets to simulate

linkage disequilibrium, DML picked significant coefficients that were very correlated

with each other, correlated to true disease SNPs that were also picked by DML, and

correlated to true disease SNPs that DML missed. This shows that when causal

features and non causal features are correlated, instead of picking the causal features,

DML is susceptible to picking the features that are simply correlated with the causal

features and miss the truly causal ones.

When we analyzed the results of DML on the NYGC dataset, we noticed similar

patterns. The significant features found were also quite correlated with one another,

especially when looking at the PFN1 gene and the SNPs from all ALS-associated

genes when using 𝐿2 regularization in the first step. Thus, to analyze if our SNPs

were truly causal, we compared results to a pathogenic variants table generated by

Matthew Harms and a table of eQTLS generated by Li et al. [14]. We were able

to retrieve SNPs rs121912442 from SOD1, rrs20197043 from TBK1, and rs138901914

from FUS that intersected with the pathogenic variants table as well as three eQTLs

on PFN1 which were rs79843668, rs238243, and rs1859433. Most of the SNPs we

retrieved from DML were intronic variants, and we did notice that the presence of
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these intronic variants increased the predictive power of the model. Because there

have not been too many studies done on intronic variant effects on ALS and we

noticed that DML tends to pick out correlated features, more work would have to be

done here to determine whether these SNPs are truly causal.

The main setback in our analysis was the inability to confidentally determine if a

found SNP was causal or not. In the future, it would be very valuable to see how this

pipeline works on other datasets associated with other diseases where the causes are

more clear, such as Type 1 Diabetes or certain cancers. From there, we could observe

potential different pitfalls or advantages of the DML algorithm that we might not

have seen here.

Furthermore, since we tested our pipeline on genes known to be associated with

ALS, a natural next step would be to test our pipeline on parts of the human genome

that aren’t known to be associated with ALS. However, since there is less that is

known about those genes, it would be important to first validate the pipeline well.

The prospect of using purely statistical methods on genomics data to classify ALS

is very exciting. If validated, then this method is generalizable enough to apply on any

genomic dataset that consists of the SNPs of each individual and the corresponding

phenotypes. This method worked well in selecting a small subset of SNPs while

still maintaining decent predictive power. Selecting a small amount of features that

can explain the underlying distribution of the data is a very important and relevant

problem, especially in a biological setting. Finding and understanding the causal

features of such a debilitating disease like ALS can open up avenues for researching

diagnoses, preventions, and treatment of ALS.
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Appendix A

Tables

p-value

1e-07 1e-05 1e-02 1e-01

Train Error 0.20 0.29 0.24 0.21
Train ROC-AUC 0.93 0.72 0.85 0.89
Validation Error 0.34 0.29 0.24 0.23
Validation ROC-AUC 0.65 0.73 0.86 0.87
Test Error 0.53 0.39 0.47 0.40

Test ROC-AUC 0.61 0.68 0.84 0.83
Number of SNPs found 3 7 21 56
Disease SNPs found 0 2 6 7
Precision 0.33 0.29 0.29 0.125
Recall 0 0.2 0.6 0.7

Table A.1: Evaluation metrics for a range of confidence scores for the DIFF_LD dataset

p-value

1e-07 1e-05 1e-02 1e-01

Train Error 0.13 0.13 0.12 0.10
Train ROC-AUC 0.96 0.96 0.97 0.98
Validation Error 0.13 0.13 0.13 0.14
Validation ROC-AUC 0.96 0.96 0.97 0.96
Test Error 0.25 0.25 0.32 0.44

Test ROC-AUC 0.84 0.84 0.88 0.89
Number of SNPs found 4 6 34 93
Disease SNPs found 4 6 8 8
Precision 1 1 0.24 0.086
Recall 0.4 0.6 0.8 0.8

Table A.2: Evaluation metrics over a range of confidence scores for the SAME_LD
dataset
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Appendix B

Computational Resources

B.1 Engaging Cluster

To run the experiments on the synthetic datasets, we used the Engaging Cluster,

which uses a slurm job scheduler to allocate resources to the cluster users. We were

generally able to obtain CPU resources with 15 tasks per node and 10 GB of memory

for 12 hours at a time relatively easily. Running the pipeline end to end using the

synthetic dataset took on average 5-6 hours for each dataset setting.

B.2 C3DDB

For the real dataset, we needed a cluster that could handle more computational

intensive requests, so we used the C3DDB (Commonwealth Computational Cloud for

Data Driven Biology) cluster. Here is where we stored all the processed datafiles from

the NYGC. We were able to obtain CPU resources with 16 tasks per node and 200GB

of memory for 5 days at a time relatively easily. Since we experimented with different

feature sets on the real data, running the pipeline using around 300 features into the

DML step took around an hour and running the pipeline using around 5000 features

into the DML step took around 90 hours.

65

https://engaging-web.mit.edu/eofe-wiki/
https://www.mghpcc.org/resources/computer-systems-at-the-mghpcc/c3ddb/


66



Appendix C

List of Found SNPs

Here we compile the SNPs that DML found to be causal using both 𝐿1 and 𝐿2

regularization as a first step. A * denotes they were found in the pathogenic variants

table or they are one of the eQTLs in [14].

C.1 DML Selected SNPs using 𝐿1 Regularization in

the first step with a p-value of 1e-3

rs121912442*, rs201970436*, rs200729007, rs41258154, rs55655838, rs185084517, rs78703800,

rs1984061, rs676302, rs6602633, rs61933196, rs73120375, rs9788149, rs148489734,

rs73530283, rs112957921, rs775807888, rs16956408, rs79843668, rs720426, rs530122552,

rs79873474, rs73616272, rs6650814, rs4816405, rs131442

C.2 DML Selected SNPs using 𝐿2 Regularization in

the first step with a p-value of 1e-3

rs121912442*, rs201970436*, rs138901914*, rs200729007, rs142544531, rs144628752,

rs72870033, rs545713318, rs533364416, rs144401164, rs563793948, rs386628445, rs111510738,

rs143585777, rs2273348, rs192716110, rs184723358, rs78026355, rs148597168, rs146134526,

rs183880610, rs118129726, rs190718349, rs186087319, rs535733859, rs7603563, rs79546324,
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rs41258154, rs7589068, rs140257386, rs561327572, rs6752508, rs10200479, rs74422443,

rs372823004, rs201295943, rs150282277, rs76163254, rs190341431, rs533950860, rs78461894,

rs55655838, rs113524715, rs111659619, rs77709457, rs113016388, rs182849420, rs183092733,

rs189282198, rs7601642, rs6743712, rs74666822, rs12470499, rs796962683, rs79078118,

rs12469940, rs12473742, rs112292399, rs185084517, rs12470229, rs11888145, rs115585280,

rs541223303, rs142151681, rs150288841, rs6435102, rs7560439, rs78703800, rs190369242,

rs541588367, rs147940110, rs6435104, rs6435105, rs1030027, rs79825965, rs371286964,

rs75261995, rs563385193, rs768675930, rs374391034, rs1984059, rs1984060, rs1984061,

rs139707968, rs548638257, rs113230475, rs373785808, rs149380309, rs538458489, rs146658966,

rs143997916, rs572085032, rs553743801, rs552494483, rs371677514, rs183638268, rs79913169,

rs114119115, rs181586435, rs185948264, rs7905921, rs10752285, rs372211102, rs190945137,

rs57057378, rs57199113, rs549441201, rs189419702, rs151065414, rs568470843, rs140438390,

rs676302, rs80263050, rs553891747, rs386741045, rs386741045, rs10752287, rs184536495,

rs185730053, rs61933191, rs117271805, rs144620061, rs56198126, rs139000280, rs200587014,

rs185338419, rs73120375, rs10128757, rs140728178, rs10878175, rs76423079, rs117936898,

rs568048370, rs538208188, rs561656725, rs61933202, rs4075094, rs78253940, rs558710329,

rs7487627, rs79528635, rs148082871, rs78427520, rs73313896, rs544117930, rs6581571,

rs148489734, rs13331598, rs530962466, rs144172354, rs76549515, rs4589553, rs556367468,

rs182878285, rs28550541, rs543598536, rs544042257, rs12926827, rs28647184, rs4786283,

rs571588465, rs4371158, rs4544244, rs12932220, rs139018313, rs192518497, rs12922325,

rs569382499, rs929867, rs143668562, rs141242311, rs61732970, rs2735393, rs775807888,

rs201544187, rs150529460, rs554281103, rs546409934, rs140177490, rs6026232, rs141683494,

rs559895553, rs6015263, rs544757877, rs552819618, rs185072455, rs73179863, rs138312362,

rs149641189, rs73296813, rs720426, rs2064383, rs555406860, rs530122552, rs552404182,

rs6026252, rs78550036, rs6100057, rs532751236, rs2284883, rs540377639, rs185202276,

rs6026255, rs386815632, rs2268920, rs542488313, rs530852146, rs149659282, rs13043088,

rs146845627, rs79873474, rs184645205, rs7265867, rs2268916, rs565219336, rs2143611,

rs6026271, rs77854718, rs193290516, rs2300760, rs12625788, rs2234490, rs573360646,

rs118055109, rs189009703, rs115932469, rs6650814, rs4816405, rs17880795, rs17880227,

rs549984048, rs17880490, rs1041740, rs4817420, rs114886035, rs131442, rs192883799,
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