A High-Performance Retargetable Simulator for

Parallel Architectures
by
Chrysanthos Nicholas Dellarocas

Diploma of Electrical Engineering
National Technical University of Athens, Greece (1989)

Submitted to the Department of
Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1991

(© Massachusetts Institute of Technology 1991

Signature of Authorc......coiiiiiii
Department of Electrical Engineering and Computer Science

‘May 10, 1991

Certified by B L L b A ST A o S S o A R ¢ ertererensaes
Wllham E. Weihl

Associate Professor of Computer Science

Theﬁ‘)t ervi) MR

Accepted by ... vt e st tae i e
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MASSAGHUSETTS iidSTITUTE
UF TECHNOLOGY

ARCHIVES JUL 24 1991

tIRLALIICS

A High-Performance Retargetable Simulator for Parallel
Architectures
by

Chrysanthos Nicholas Dellarocas

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 1991, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

The complexity of the interaction between software and hardware in MIMD machines
makes experimental evaluation of parallel programs an important complement to theo-
retical analysis. Traditional techniques used to monitor the direct execution of programs
are intrusive and may lead to inaccurate results when applied to parallel programs. Sim-
ulation allows flexible, nonintrusive and repeatable evaluation of parallel programs but
usually incurs prohibitive overheads that limit its use to the simplest applications.

In this thesis, we describe Proteus, a high-performance simulation-based system for
the evaluation of parallel algorithms and system software. Proteus is built around a
retargetable parallel architecture simulator and a flexible data collection and display
component. The simulator uses a combination of simulation and direct execution to
achieve high performance, while retaining simulation accuracy. Proteus can be configured
to simulate a wide range of shared-memory and message-passing MIMD architectures
and the level of simulaton detail can be chosen by the user. Detailed memory, cache and
network simulation is supported. Parallel programs can be written using a programming
model based on C and a set of runtime system calls for thread and memory management.
The system allows nonintrusive monitoring of arbitrary information about an execution,
and provides flexible graphical utilities for displaying recorded data.

To validate the accuracy of the system, a number of published experiments were re-
produced on Proteus. In all cases the results obtained by simulation are very close to
those published, a fact that provides support for the reliability of the system. Perfor-
mance measurements demonstrate that the simulator is one to two orders of magnitude
faster than other similar multiprocessor simulators.

Thesis Supervisor: William E. Weihl
Title: Associate Professor of Computer Science

Acknowledgements

I would like to thank Bill Weihl, my thesis supervisor, for his encouragement and support
of my research, as well as for being a great group leader. I also thank Barbara Liskov,
my academic advisor during my first 12 months at MIT, for her welcome, support and
counsel, as well as for suggesting this interesting thesis topic.

Eric Brewer has been my officemate ever since I came to MIT as well as my partner
in making Proteus a reality. Collaborating with him has been rewarding and fun. Adrian
Colbrook, Anthony Joseph and Wilson Hsieh were the first persons (un)fortunate enough
to use Proteus for their research. Their skill at uncovering the most obscure and nasty
bugs of the system is greatly appreciated.

The Parallel Sofware Group of MIT’s Laboratory for Computer Science has been the
ideal place in which to conduct this research, both in terms of human resources and group
spirit, as well as in terms of technical support and organization.

I thank my roommates George Stamoulis, Stelios Smirnakis and Mike Goldstein for
many pleasant moments we spent together. I also thank my good friends Helen Halkias
and Maria Roussohetzaki for being there when I needed them most.

Last but not least, I would like to thank my family for always being by my side.

Contents

1 Introduction 15
2 Background 19
2.1 Monitoring of direct program execution 19
2.1.1 Hardware-assisted monitoring 20

2.1.2 Moritoring based on instruction interrupts 20

2.1.3 Microprogramming-based monitoring 21

2.1.4 Monitoring based on program augmentation 21

2.2 Simulation techniques. 22
2.2.1 Cycle-by-cyclesimulators. 23

2.2.2 Trace-driven simulators. 23

2.2.3 Execution-driven simulators 26

224 Relatedwork 27

3 Proteus Overview 29
3.1 Main components of thesystem 29
3.2 UsingProteus 30
3.2.1 Installing Proteus 30

3.2.2 Writing a parallel program 30

3.2.3 Choosing the desired machine configuration 33

3.2.4 Compiling into an executable simulator 33

3.2.5 Running asimulation. 34

3.2.6 Displaying and evaluating simulationdata 34

3.3 Typical usesof thesystem 36
3.3.1 Evaluation of parallel applications 36

3.3.2 Research in parallel programming languages 37

3.3.3 Research in parallel operating systems 37

3.3.4 Research in architecture-related issues

3.4 Exploring parallelism with Proteus
3.4.1 The eight queens problem
3.4.2 Evaluation of the eight queens program

4 System Design

41 Designgoals
4.2 Simulationstrategy
4.2.1 Combining simulation with direct execution
4.2.2 Timing local instruction blocks
4.2.3 Efficiently implementing user threads
4.2.4 Interleaving different simulated processors
4.2.5 Advantages and limitations of our approach
4.3 Architecturalmodel L
43.1 Processormodel.
43.2 Memorymodel
4.3.3 Interconnectionmodel,
4.3.4 Modelling contention
4.4 Programmingmodel, ...
4.4.1 Low-level simulatorcalls
442 Language extensions
4.5 Runtimesystem interface.

5 Experiments

5.1 Systemvalidation
5.2 Performance measurements.
5.2.1 Sources of simulationoverhead
5.2.2 Overhead of nonlocal operations
5.2.3 Programslowdown
5.2.4 Comparison with Other Systems.

6 Conclusions

A Eight Queens Problem: Solution

50
50
52
52
53
56
36
58
59
60
61
63
66
68
69
69
71

74
74
78
78
79
82
86

88

90

List of Figures

2-1
2-2
2-3

3-1

3-2

2-3

3-4

3-5

3-6

3-7

3-8

3-9

Typical structure of a uniprocessor trace-driven simulation system.. . . . 24
Typical structure of a multiprocessor trace-driven simulation system. . . 25
Typical structure of an execution-driven simulation system. 26

Creation, simulation and evaluation of a program using Proteus. Steps in
dashed boxes are invisible to theuser. 31
Sample screen from the config program. Screens not shown control the
simulator engine parameters, the set of events to collect, and the operating
system parameters. L L L. 32
Typical parallel program development and evaluation cycle using Proteus. 38
A recursive algorithm that generates all solutions of the 8-queens problem. 39
Speedup and average concurrency graphs for the 8-queens program with
asinglememorylist. 40
Number of active threads versus time during execution of the 8-queens
PrOgram. v i i it it it ittt e e e e e e e e 41
Number of threads spinning in the memory manager semaphore during
execution of the 8-queens program (processors=64). 42
Speedup and average concurrency graphs for the 8-queens program with
multiple memory lists and random thread placement. e 43
Busy processors versus time for the 8-queens program with random thread

placement (processors=64). e 44

3-10 Processor lifelines for the 8-queens program with random threac placement

(processors=64). I 45

3-11 Busy processors versus time for the 8-queens program with improved

thread placement (processors=64). 46

3-12 Speedup and average concurrency graphs for the 8-queens program with

multiple memory lists and improved thread placement. 47

3-13 Bus latency due to contention versus time for the improved 8-queens pro-

gram (processors=64).
3-14 Average bus contention latencies for various machine sizes.
3-15 Speedup and average concurrency graphs for the 8-queens program on

hypercube machines.

4-1 An example of code augmentation. In this example, we assume that each

statement costsonecycle.,
4-2 Typical bus-based architecture supported by the simulator.
4-3 Typical network-based architecture supported by the simulator.
4-4 A simple example of bus contention modelling

5-1 Performance of spin locks on a bus-based machine (empty critical section)
5-2 Performance of spin locks on a bus-based machine (small critical section)
5-3 Average latency of shared memory operations for various machine config-
urations and sizes. L L.
5-4 Average latency of ipi operations for various machine configurations and

5-5 Program slowdown per processor for the Qsort program.

5-6 Program slowdown per processor for the Fib program.
5-7 Program slowdown per processor for the 8Queens program.

10

48
48

49

%)
63
64
67

76
(s

80

84

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5

5.1

Some predefined graphs and execution statistics

Architectural parameters of the processor component
Architectural parameters of the memory components
Architectural parameters of the network components
Summary of low-level simulatorcalls
Summary of supported runtime-system functions.

Characteristics of test applications used to measure program slowdown.
All three measures depend on the simulated machine configuration «nd
typically increase with the size of the machine. Listed ranges are for
machines with 1-64 processors (2-64 for Qsort).

11

12

Reverse cannot befall
that fine prosperity

whose sources are interior

— Emily Dickinson

13

14

Chapter 1
Introduction

The performance of an algorithm on a parallel computer is heavily influenced by several
factors that are not typically considered in a theoretical complexity analysis of the algo-
rithm itself. The actual details of a parallel architecture (interconnection topology, rout-
ing method, cache coherence protocol, etc.) and those of the runtime system (scheduling,
locking, communication overheads, etc.) often lead to unexpected performance degra-
dations that are not always easily detectable by theoretical analysis. Furthermore, the
interaction between software and hardware is so complex in MIMD machines that accu-
rate analytical modelling of architectural and runtime system parameters is usually not
possible. For these reasons, experimental evaluation of parallel programs is an impor-
tant complement to theoretical analysis, much more than it is in the case of sequential
algorithms.

Simply executing a program on a parallel machine and monitoring its performance is
often difficult, due to a number of technical and economic considerations.

e Existing parallel machines are expensive and in limited supply; not all research

groups can afford them.

o Because of the influence of architectural parameters in program performance [Kuck84],
a reliable evaluation of a new algorithm would require testing it in a wide range of
different parallel architectures.

o Even if access to the required number of parallel machines is possible, it can be
difficult to obtain valid measurements from a live parallel system due to the probe
effect [Gait86]: Obtaining any kind of measurement from a running program implies
executing some extra monitoring code either at the program or at the microcode

15

level, which has the effect of distorting actual instruction execution time. For paral-
lel machines, this distortion inevitably affects the interaction of different processing
nodes and can therefore change the observable behavior of the program.

Simulation is emerging as an attractive alternative to actual experimentation in all
branches of science and engineering. Simulation is especially attractive in the area of

parallel program evaluation for a number of important reasons.

¢ Any parallel architecture can be simulated on an ordinary workstation. Researchers

who rely on simulations do not need to purchase additional equipment.

e Simulation offers the ability to perform arbitrary analysis without disturbing timing
relationships that may be crucial to program performance.

o Different simulations of the same program produce identical results. Therefore a
problem identified during one run can be studied more thoroughly by repeating
the same simulation and capturing more data related to the problem. Many real
parallel machines on the other hand are nondeterministic: The same program may
produce different results across different runs. Therefore an interesting phenomenon

produced during one run may not be repeatable.
On the minus side, simulation has a number of limitations.

e Multiprocessor simulators slow down the execution of parallel programs consider-
ably. High program slowdowns often limit the usefulness of the approach to only
the simplest parallel applications.

e Simulators are based on models of real systems and must be thoroughly validated
before any data obtained using them can be trusted to reach conclusions and make

decisions.

The purpose of this thesis is to describe Proteus!, a parallel program evaluation
system that we developed as a tool for further research in parallel systems.

Proteus was born out of the need for a simulation-based platform on which to test
the design of a new parallel programming language for MIMD machines. We needed a

'In Greek legend, Poseidon’s herdsman, an old man and a prophet. Proteus was famous for his power
of assuming different shapes at will. When caught, however, he was helpful to many Greek heroes by
his foreknowledge. Proteus lived in a vast cave, and his custom was to count over his herds of sea-calves
at noon, and then go to sleep. There was no way of catching him but by stealing upon him at this time
and binding him; otherwise he would elude anyone by a rapid change in shape.

16

system that would be accurate enough so as to capture the important interactions of a
parallel program with the operating system and the hardware. Our system should also
be appropriate as a target for compilers. For those reasons, we decided to design an
instruction-level simulator that simulates the behavior of a parallel machine at the level
of individual machine instructions.

Since our language system is going to be portable, it is important for us to compare
the performance of programs on different architectures. Hence, Proteus can be configured
to simulate a wide range of shared-memory and message-passing MIMD architectures.

To allow simulations of nontrivial parallel programs in a reasonable amount of time,
high-performance simulation was a major goal of this project. In addition, since different
simulations have different accuracy and performance requirements, the user should be
able to control the tradeoff between accuracy and performance by selecting the desired
level of simulation detail.

An important goal of the system is to simplify the collection and display of execution
and performance data. During simulation of a user prograrm, the system outputs an event
file that captures the important interactions between software and hardware. The system
provides a number of predefined event types; the user can easily add other event types
specific to his own application, or restrict the recorded event types to those relevant to his
experiment. Event files are read by a sophisticated data display program that displays
execution statistics in a variety of graphical forms.

Proteus is primarily used to evaluate parallel algorithms. It aims to provide its
users with enough information to allow them to choose between different algorithms or
implementations for a given task. It can also be used for research in operating system
issues, such as scheduling and load balancing, as well as for testing hardware-related
concepts, such as network routing methods or software and hardware cache coherence

techniques.

Division of responsibilities

Proteus was developed jointly by the author and Eric A. Brewer as part of their $.M.
thesis research at the MIT Laboratory for Computer Science. Most of the important
overall system design and implementation decisions were taken jointly by the two authors.
The author has been primarily responsible for the following aspects of the system:

e Design and implementation of an efficient simulation strategy that balances our

performance and accuracy requirements.

17

® Design and implementation of all architectural simulation components.

¢ Design of the programming model and implementation of a preprocessor that trans-
lates our language extensions into standard C.

e Design and implementation of the runtime system.

This thesis will concentrate on the description of the system aspects for which the author

has been responsible. A brief overview of the other system components will also be given.

Organization of this Thesis

The rest of this thesis is organized as follows:

Chapter 2 is a survey of different techniques that have been used to measure the
performance of parallel systems. Its purpose is to describe the context in which this
research is performed and to demonstrate that efficient evaluation of parallel systems is
a difficult problem.

Chapter 3 provides an overview of the Proteus system. It describes the different
components of the system and their interaction. It also demonstrates the system’s power
by explaining how the system was used to analyze and improve the performance of a
simple program.

Chapter 4 is devoted to the system’s design. For each of the major parts of the system,
alternative designs are compared and the chosen design path is discussed in detail.

Chapter 5 presents and discusses a number of experiments performed to evaluate the
accuracy and performance of our system. The results of those experiments are analyzed
and compared to other similar systems.

Finally, Chapter 6 concludes the thesis by summarizing the main points made in the
previous chapters.

18

Chapter 2
Background

In order to evaluate the performance of a program, some sort of data must be captured
during the program’s execution. This data can be analyzed later to provide insight
into the program’s behavior. This section is a survey of different techniques that have
been used to gather information about program execution. Its purpose is to set the
context in which the research reported in this thesis was performed. In addition, it
aims to prove that efficient and reliable evaluation of parallel programs is a difficult
problem. Most of the techniques that have been used with success to evaluate programs
running on uniprocessors are either not appropriate or too expensive to be applied on
multiprocessors. Hence, building a system that allows reliable and efficient evaluation
of parallel programs is an interesting challenge. This chapter concludes with a brief
overview of several systems that have similarities to our work.

Most existing evaluation techniques belong to one of two broad classes: Monitoring
of direct program execution and simulation. A third class of techniques, analytical mod-
elling, is not accurate enough to capture the detailed interaction of a program with the
rest of the system and is usually used only to provide first order insights into the operation
of a system. We will not consider analytical modelling in the rest of this chapter.

2.1 Monitoring of direct program execution

A large number of evaluation techniques rely on execution data gathered during the direct
execution of a program on a real machine. Most of these techniques were developed for
uniprocessor systems and usually do not perform well when applied to multiprocessors.
In the following paragraphs, we shall examine the most important monitoring techniques
and shall point out their principal strengths and weaknesses.

19

2.1.1 Hardware-assisted monitoring

A hardware monitor is a device that plugs onto a working backplane bus to record all
activity o1 the bus of a system [Carpenter87, Malony89]. This technique has the ad-
vantage ol nonintrusiveness. The operation of a program is usually not affected by the
tracing. Captured data is therefore guaranteed to be accurate. Hardware monitoring is
capable of capturing both user and operating system activity. In that way, an accurate
evaluation of the interaction of a program with the operating system is possible. The pri-
mary drawbacks of this approach are its complexity, cost and lack of flexibility. Hardware
monitoring can capture a fixed set of low-level machine events (bus accesses, hardware
signals), but these cannot always be easily related to application events. Due to memory
limitations, hardware monitors often record only counts of events, rather than the events
themselves. Finally, hardware monitors are costly. In order to use them on a parallel
computer, the complex hardware required would grow at least linearly with the number

of processors.

2.1.2 Monitoring based on instruction interrupts

Some computer systems (e.g. some VAX machines [VAX82]) provide the capability of
interrupting the execution of every machine instruction of a user program. The pro-
gram then traps to a system routine that can capture all necessary information about
the executed instruction. This technique does not need any extra hardware and is very
flexible, since the monitoring routine can be modified to capture any kind of desired
information. However, it suffers from some serious limitations. Operating system code,
which is typically executed with interrupts disabled, cannot be monitored. Calling a trap
routine before every program instruction slows down the execution of a program consid-
erably (up to 100,000 times in some cases). More important, however, interrupt-based
monitoring is an intrusive technique that considerably distorts the instruction execution
times. For parallel machines, this distortion inevitably affects the interaction of differ-
ent processing nodes and can therefore change the observable behavior of the program.
Gait [Gait86] reports that when sufficiently large distortions are present, programs that
contain synchronization errors can appear to execute correctly. Therefore, intrusive mon-
itoring techniques not only produce unreliable performance data, but may also affect the

correctness of parallel programs.

20

2.1.3 Microprogramming-based monitoring

Agarwal et. al [Agarwal86] introduced a different monitoring technique that remedies
some of the shortcomings of interrupt-based monitoring. Their technique relies on mod-
ification of a machine’s microcode to capture address traces of executed instructions.
Microcode modifications have a much smaller overhead than single-stepping interrupts,
slowing down the execution of a program only by a factor of 10-20. Also, since mon-
itoring is done at a level “below” the operating system, accurate tracing of user and
system code is possible. However, this technique is still intrusive, although less so than
interrupt-based monitoring. Its most important limitation is that it is only feasible on
microprogrammed systems that provide control memories large enough to accomodate
the required microcode changes. Most existing multiprocessors rely on one-chip micro-
processors or RISC-based processors that either do not use microcode or contain their
microcode in ROM.

2.1.4 Monitoring based on program augmentation

Programs can be modified by augmenting their code with instructions that gather in-
teresting information “on-the-fly” during their execution [Eggers90, Stunkel89]. These
modifications can be special monitoring statements that must be explicitly added by the
user or can be inserted automatically by a preprocessor or compiler system. Software-
based monitoring has many advantages. One of the most important is that the user has
full control over the kind and frequency of captured information. While all previously
discussed techniques capture low-level machine events, such as address traces, when mon-
itoring is done in software, events can be recorded in terms of abstractions used by the
programmer. This makes it easier to report results in terms the user will understand and
provide better insight into the behavior of the program. However, software-monitoring
usually cannot monitor the execution of operating system code, or account for the effect
of multiprogramming on the execution of the monitored program. Also, this technique
is still intrusive; the distortion of instruction execution times is dependent on the fre-
quency and cost of monitoring code. If the recorded events are relatively infrequent,
software-based monitoring can be reliably used for the evaluation of parallel programs.

21

2.2 Simulation techniques

Simulation allows the behavior of a target system to be emulated on another, possibly
totally different machine. Simulation is a very attractive technique for the evaluation of
parallel systems. It allows the behavior of a large number of different parallel architec-
tures to be studied on the machine where the simulator runs. It also provides immense
flexibility on the nature and amount of captured information. Finally, it has two proper-
ties that are of extreme importance when evaluating parallel systems: Nonintrusiveness
and repeatability.

Nonintrusiveness means that any amount of monitoring information can be captured
during a simulation without affecting the operation of the simulated system. The simula-
tor assumes that all code executed to capture monitoring data is free; it simply does not
take any time to execute on the simulated machine. As was discussed in Section 2.1.1,
intrusive monitoring can cause distortions in the observed behavior of parallel programs.
For that reason the nonintrusive monitoring offered by simulation is especially important.

Repeatability means that the same simulation will produce the exact same results
across different runs. Therefore a problem identified during one run can be studied more
thoroughly by repeating the same simulation and capturing more data related to the
problem. Many real parallel machines on the other hand are nondeterministic: The same
program may produce different results across different runs. Therefore an interesting
phenomenon produced during one run may not be repeatable.

On the minus side, simulation techniques suffer from severe performance and accu-
racy considerations. Systems that simulate the behavior of a parallel machine in full
detail typically exhibit slowdowns of several hundred or thousand times per simulated
processor. Such slowdowns can limit the usefulness of simulation to the evaluation of
only the simplest, and therefore less interesting, parallel programs. In order to achieve
better performance, a simulation system must sacrifice some accuracy by not simulat-
ing some parts of the system, or by simulating them in less detail. Users rarely require
full simulation accuracy so such tradeoffs, if made successfully, can produce useful and
practical systems.

Finally, simulators are based on models of real systems. Before any data obtained
from simulations can be trusted, the simulator itself must be thoroughly validated to
ensure that the results it produces indeed do correspond to reality.

The following paragraphs describe some of the most important classes of multipro-

cessor simulation systems in more detail.

22

2.2.1 Cycle-by-cycle simulators

The most straightforward and accurate multiprocessor simulation method is cycle-by-
cycle simulation. In a cycle-by-cycle simulation, the behavior of an entire machine is
simulated for each clock cycle before advancing the global simulation clock to the next
cycle. The simulator “sweeps” the entire machine at each iteration, simulating the be-
havior of each machine component for a single cycle. This method has the advantage of
accuracy, since the timing of all events in the simulation closely models their timing in
reality. However, the simulation overhead can be severe, as the simulation of even the
simplest machine events may require hundreds of instructions.

An example of a cycle-by-cycle simulator is ASIM, developed at MIT by the Alewife
group inordc: .o validate the hardware design of a shared-memory multiprocessor [CHL90).
Although very accurate, ASIM slows down the execution of a simulated program by a
factor of 200-5,000 for each processor [Nussbaum91]. Therefore, a program that would
take one second on a real 64-processor machine may take more than 3 days on ASIM.

Cycle-by-cycle simulators provide detailed simulations of low-level machine events and
are typically developed to evaluate new hardware designs. However, their performance
is too low and their level of detail too high to allow them to be used for the evaluation

of large parallel programs.

2.2.2 'Trace-driven simulators

Trace-driven simulators are an important class of simulators that achieve reasonable
performance by simulating only a part of the target machine. Trace-driven simulators are
mainly used in studies of cache memory systems [Agarwal88, Eggers89]. In such studies,
the behavior of the memory system can be fully simulated if a trace cf the addresses
produced during execution of a program is known. On uniprocessor systems such a trace
can be captured from the direct execution of a program using one of the techniques
discussed in Section 2.1. Since the trace need not contain any timing relationships, any
machine can be used to produce it.

Given an address trace, the simulator need only implement an accurate timing model
of the memory system of the target machine. More importantly, using the same trace,
many different memory systems can be accurately simulated. Figure 2-1 depicts the typ-
ical structure of a (uniprocessor) trace-driven simulator, highlighting the decomposition
of tasks between the trace generation and simulation components.

When attempting to extend trace-driven simulation techniques to multiprocessor sys-

23

User Application

!

Trace Generator

Processor model

Trace File

Memory system
Simulator

Memory model

#

Execution
Statistics

Figure 2-1: Typical structure of a uniprocessor trace-driven simulation system.

tems, several problems arise. In multiprocessor systems, each processor produces a sepa-
rate address trace. Those traces are not independent; instead, they are closely interleaved
in time as processors interact and communicate with each other using shared memory
locations. Therefore the correct relative order of addresses contained in different traces
becomes very important. As a simple example of this fact, consider a situation where
the decision of processor 1 to access location @ may depend on the contents of location
b. Location b is written to by processor 2 only and serves as a signalling point between
the two processors. Depending on whether a write to location b precedes or follows an
attempt by processor 1 to read that location, an access to location a may or may not be
issued. Therefore, a change in the relative timing of accesses by the two processors may
produce different address traces.

In the uniprocessor case, address traces did not need any timing information. How-
ever, when simulating multiprocessors, processor traces must be accompanied by times-
tamps that will allow their correct interleaving. This, in turn, requires that the trace
generator has the capability of at least partially simulating the memory model of the
target architecture. The accuracy of the later memory system simulation will be limited
by any inaccuracy in the timing assumptions made by the trace generator. The situation

24

User Application

{

Trace Generator

Processor model

Partial memory
model

Partial Trace File Trace File
interconnect model Proc.0 tee Proc.N

Target system
Simulator

Memory model

Interconnect
model

'

Execution
Statistics

Figure 2-2: Typical structure of a multiprocessor trace-driven simulation system.

is depicted in Figure 2-2.

The special requirements of multiprocessors reduce the attractiveness of trace-driven
simulation methods. In the uniprocessor case a single trace can be used to simulate
several different systems. Multiprocessor traces contain timing information which is
specific to the simulated system and cannot be reliably reused. Uniprocessor tracing
has the advantage that traces can be produced from the direct execution of a program
with relatively little extra effort. Therefore only simulation of the memory system is
required. In the multiprocessor case, the trace generator must be able to simulate the
target architecture in a fair amount of detail (Figure 2-2). Since the trace generator
already contains a simple memory model, we argue that the separation of the simulation
into a trace generation and a post-processing stage that produces execution statistics
does not present any advantages any more. On the contrary, it requires the storage of
large intermediate trace files, which may be a disadvantage in systems with limited disk
capacity.

25

User Application

|

Executio;l-driven
Simulator

Processor model

Memory model

Interconnect
model

Execution
Statistics

Figure 2-3: Typical structure of an execution-driven simulation system.

2.2.3 Execution-driven simulators

In the previous section we argued that the practice of separating the simulation of a
parallel system into two phases, one that concentrates on the functional behavior of a
program and one that focuses on the timing of execution on the target machine, does not
make much sense for multiprocessors, where the execution path of a program, and thus
its functional behavior, is highly dependent on the timing of different system events. In
execution-driven simulators, also known as program-driven or algorithm-driven simulators
[Covington88], the execution of a program is interleaved with the simulation of the target
system architecture. Therefore, a simulation run directly produces both the program
results and the execution statistics (Figure 2-3).

In trace-driven simulations the obtainable types of execution statistics and the accu-
racy of the simulation are limited by the types and accuracy of events contained in the
intermediate trace file. Execution-driven simulators do not suffer from such limitations
and therefore provide added flexibility and accuracy. They are also limited, of course, by
the accuracy of the models they use to model the different parts of the target architecture.

The most important issue in the design of a successful execution-driven simulator is to
balance accuracy and performance, in order to build a system that provides fairly reliable

26

results in a reasonable amount of time. Many systems use a combination of simulation
and direct execution to achieve that goai: They execute directly the local parts of parallel
programs and simulate only nonlocal events, that is, events that affect more than one
component of the target system. If such a combination is used, care must be taken to
ensure both that the execution of local program parts is accurately timed and that the
simulation of global events occurs in the correct order.

Proteus belongs to the class of execution-driven simulators. It takes advantage of a
combination of simulation and direct execution to achieve better performance and uses a
number of elaborate techniques to ensure that the resulting system does not substantially
sacrifice simulation accuracy. The design of Proteus is explained and discussed in detail
in Chapter 4.

2.2.4 Related work

In this section we will briefly present several multiprocessor simulation systems that
present similarities with our own work. We will refer to them in Chapter 4, when we
discuss design alternatives for different parts of our system.

The CARE simulator [Delagi87] provides an elaborate graphical interface for speci-
fying different architectures and a programming model (LAMINA) based on LISP. The
programmer writes a parallel program in LISP, which is then simulated by direct execu-
tion of the LISP code. Timing is done by use of a hardware microsecond timer. The use
of a timer does not provide accurate timing of directly-executed instruction blocks. Per-
formance of the system is relatively poor, due to the high overhead of interpreting LISP
code. Even more important though, the use of a high-level LISP-based programming
mode] and the decision to base timings on the actual execution time of code written in
LISP can lead to erroneous conclusions. There are many hidden costs in the high-level
semantics of LISP that are counted by the CARE simulator, even though they might not
exist in an efficient compiled version of the same algorithm written in another language.

Aspen is a retargetable simulator with a programming model based on C [Elshoff91].
Aspen executes code directly and uses UNIX !iming routines to time the execution of
local instruction blocks. The problem with th.. apj.roach is that it does not have adequate
accuracy to simulate a fine-grain multiprocessor. UNIX timing routines have a granularity
of one millisecond, which corresponds to several thousand instructions on a modern
microprocessor. Fine-grain parallel machines execute local instruction blocks that can be
as short as a few tens of instructions, and cannot be accurately timed using this approach.

Rizzo [Rizzo89)] presents a retargetable parallel architecture simulator design that also

27

uses a programming model based on C. As in our system, local instructions are executed
directly and a library of calls supports kernel primitives that perform nonlocal operations.
The main limitation of his system is the primitive way of counting execution time. The
user has to explicitly specify the estimated time requirements of local blocks by use of a
takes_time call. Kernel primitives are assigned fixed costs by the user. Since the only
user-settable architectural parameters are the number of processors and the fixed kernel
primitive costs, the flexibility of the system is limited. The system described by Dubois
et al. [Dubois86] suffers from similar limitations.

In the Threads simulator [Mathieson88] programs are written in the Threads pro-
gramming language and translated into machine code. Dynamic instruction counting is
used to time local instruction blocks and special simulated kernel operations implement
nonlocal interactions. Total execution time is separated into user and kernel time to
isolate the costs of the run-time system. However, the machine model used supports
only shared-memory multiprocessors and provides a very simple generic model for inter-
connection that cannot model real-life non-uniform access machines or the possibility of
hot spots.

Tango [Davis90], developed at Stanford concurrently with our work, is the system
that comes closest to ours in terms of accuracy and flexibility. It uses a combination
of simulation and direct execution, times local instruction blocks using code augmen-
tation, and can be configured to simulate several different architectures. The current
implementation, however, does not accurately model operating system code in terms
of low-level machine instructions. Also, Tango uses UNIX processes to implement the
different executing threads with the result that simulation performance is significantly

reduced.

28

Chapter 3

Proteus Overview

This chapter gives an overview of the Proteus system. Its purpose is to give the reader an
idea of what the system looks like, and thus set the stage for the discussion of the system’s
design that follows in the next chapter. In addition, it intends to demonstrate that the
combination, in Proteus, of a high-performance simulator and a flexible, graphics-based
data display subsystem has resulted in a powerful tool which makes the experimental
evaluation of parallel programs easy, fast and reliable. To that end, an example of a
simple but interesting parallel program is presented. It is then explained how Proteus
has helped in discovering the program’s performance problems, identifying their causes
and coming up with improvements that eliminated them.

This chapter does not intend to serve as a User Guide of the system and does not
contain detailed information about the system’s use. A detailed Proteus User Guide is

available as a separate document.

3.1 Main components of the system

Proteus is composed of a number of programs and utilities. Most of them are not visible
to the user but are called indirectly from other parts of the system. From a typical user’s
viewpoint, Proteus consists of three main componrents:

e config, a menu-driven program through which a user can set the parameters of
the simulated machine configuration and compile his application into an executable

simulator.

e parsim, which is the executable instance of a simulator, created by linking together
the user application with the simulator engine and the components of the simulated

29

machine architecture.

e stats, the data display program, which reads event files generated during a simu-
lation, and displays execution statistics in a variety of graphical forms.

The most important “hidden” parts of Proteus are catoc, a C-preprocessor that
translates our extended version of C into normal C when compiling user application files,
and augment, a program that augments user program files with code that correctly times
their execution. Finally, Proteus also has a special version of the C library and a number
of simple script files that perform tasks such as installation of the system and compilation
of a user application into a simulator.

Proteus is implemented and runs on DECstation workstations under UNIX. Both
the configuration program and the data display subsystem use the X Windows interface
standard to draw graphs and to allow mouse interaction.

3.2 Using Proteus

This section describes the steps a user needs to follow in order to create, run and evaluate

a parallel application using Proteus. These steps are depicted in Figure 3-1.

3.2.1 Installing Proteus

Before writing an application, Proteus must be installed in the same directory where
the source files of the application will be stored. A master copy of all Proteus system
files is assumed to exist in a directory that is known and accessible throughout the host
machine. A simple shell script is provided to install Proteus in an empty directory.
During installation, symbolic links to all relevant Proteus system files are created in the
target directory. Using those links, system files will bc compiled and linked together with
user files to create an executable simulator.

3.2.2 Writing a parallel program

Proteus provides a high-level language programming model to allow the writing of parallel
programs. The model consists of a set of low-level simulator calls, a number of extensions
to the C programming language, and a runtime system interface.

The local parts of a parallel program, that is, the operations that are performed locally
on a processor and do not interact with ot} ~r parts of the system, are written using normal

30

Augmented-C
application

l

Choose Conflguration

machine e ﬂ?rameter
conflguration es

= m == v """ 1

1 T lat '
! ranslate le
]

toC

".'.'.'_'.f.’.'.'.'_'_;

1
i]
| === i '''' ' ;
Instruction ! ' Simulator
cost file T augment ! source

: C compile : Special
' ' ' . C library

5

Events

Evaluate
results

Figure 3-1: Creation, simulation and evaluation of a program using Proteus. Steps in
dashed boxes are invisible to the user.

31

Exacute Group Version 1.20
Bus Based e
Indirect Network
Unidirectional
Use Caches e
k-ary Radix 2 n-cube Dimension 8
Number of Frocessors: Packet Length in Words 1024
Swilch Delay 1 Wire Delay 1
X
Bits in Memory Size 18 Memory Modules:

If set, use an exact packet-based network simulation, otherwise use the
analytical model that is faster but does not simulate hot spots.

Exact Simulation @ J

Figure 3-2: Sample screen from the config program. Screens not shown control the
simulator engine parameters, the set of events to collect, and the operating system pa-
rameters.

C statements. Operations that require interaction of multiple system components can
be simulated using low-level simulator calls. We will use the term nonlocal operations to
refer to those operations in this thesis. Low-level simulator calls are provided to support
shared-memory accesses, sending of interprocessor interrupts, spinlock creation and use,
and control of hardware features of the simulated processors.

C language extensions provide new storage classes and operators that support the
declaration and use of shared memory variables using the normal C syntax. Language
extensions are translated into low-level simulator calls during program compilation by a
preprocessor (see below).

The runtime system interface provides a set of calls for thread and shared memory
management. Using those calls, an application can create and control the behavior of a
thread on a processor. It can also allocate and deallocate blocks of shared memory.

The programmer’s interface to Proteus is described in more detail in Section 4.4.

32

3.2.3 Choosing the desired machine configuration

Proteus can be configured to simulate a wide range of shared-memory and message-
passing MIMD machine architectures. In order to simulate a particular type of parallel
machine, the user must specify several architectural and runtime system parameters to
the system. These parameters are independent of the user application; the same user
program can usually be simulated in a variety of architectures without any modifications.
We provide a menu-driven tool (config) for controlling the parameters of a simulation,
as well as building and executing the specified simulator. In addition, config allows
users to add their own parameters. For example, when testing multiple variations of an
algorithm, a user may add a parameter that chooses which one to include in the present

simulation. Figure 3-2 gives a sample screen from the config program.

3.2.4 Compiling into an executable simulator

After specifying the required simulation parameters, the user can use the Execute menu
of config to compile and link his application into an executable simulator. Alternatively,
the makesim script can be used for the same purpose. During the compilation process,
user files are compiled and linked together with simulator source files and configuration
parameter files.

The compilation process consists of 5 steps, as depicted in Figure 3-1. User source files
are first processed by catoc, our C preprocessor!. Catoc translates references to shared
memory variables to the appropriate sequences of low-level simulator calls and produces
normal C files as output. These files are then compiled by the standard C compiler
and the equivalent assembler files are produced. In the next step, augment transforms
the assembly code by inserting additional instructions that accurately track the amount
of simulated time used by the code. The process of augmentation is explained more
fully in Section 4.2.2. A standard assembler is used to convert the augmented code into
object files. All simulator source files that are dependent on the configuration parameters
modified by the user are recompiled. Finally, all user and simulator object files are linked
together with a special version of the C library to produce an executable instance of the

simulator. The executable simulator is called parsim.

1The obscure name means “.ca to .c”, since the preprocessor transforms an augmented-C file, which
has filename extension .ca, into an equivalent C file with filename extension .c

33

3.2.5 Running a simulation

An executable simulator created by the previous steps can be run as a normal UNIX
process by simply giving its name. During its execution, parsim simulates the behavior
of the user program on the selected machine configuration and generates a file of execution
statistics that can be read and interpreted by the data display subsystem.

The simulator can be interrupted at any time during its execution by pressing the key-
board interrupt (CTRL-C) key. When simulation is interrupted, the user is transferred
to the snapshot component of the simulator. The snapshot mode provides a simple menu
that allows the user to examine in detail the state of the parallel machine and the sirn-
ulator engine at the interrupt point. The snapshot menu also provides features, such as
single stepping and the ability to set breakpoints, that help the difficult task of debugging
parallel programs.

3.2.6 Displaying and evaluating simulation data

The primary use of a simulation is to provide insight that helps the user resolve specific
questions about an algorithm or implementation. During a simulation, our system gen-
erates a file of interesting execution events and statistics. This file is then interpreted by
stats, our data display program.

Our data collection and display system has two major goals: first, collect exactly the
right data needed to answer the user’s questions, and second, display the data in the
form that best answers these questions.

One of the best ways for humans to interpret large amounts of data is through the
use of color graphs. Thus, color graphs are the output of our data display subsystem.
For a given set of data, there are many useful graphs, hence, users should be able to view
their data in a variety of ways. The system provides a set cf predefined graphs, some of
which are listed in Table 3.1. In addition, the user can define new graphs via a simple
but powerful graph language.

The system currently classifies data into two groups: time-independent and time-
dependent. Time-independent data summarizes entire simulations; time-dependent data
reflects the state of a simulation at a specific time. For example, the overall cache hit
ratio for a simulation is a single number that is independent of time. If the ratio is
recorded over time, each point in the record is time-dependent, but the mean of the
points is independent of time.

Time-independent data is collected using metrics. Users specify the name and value

34

e Concurrency graph (busy processors versus time)

¢ Active threads (per system and per processor) versus time

o Threads waiting on a system lock versus time

e Processor lifelines

e Cache hit ratio over time

e Bus and Network contention over time

e Total number of calls to each program function and avg. number of cycles per call

e Total time spent in user and runtim= system code

Table 3.1: Some predefined graphs and execution statistics

of a metric at run time. After the simulation, the metrics can be referred to by name.
Users may also specify an array of metrics, which is used to collect the same data for an
array of objects, such as processors or semaphores. For example, a useful array metric is
the utilization of each processor. There is one name for an entire array; users reference
elements by name and index.

Time-dependent data is collected using events. Events have types that allow all of
the events of one type to be handled as a unit. For example, one type is processor usage;
events of this type record the times at which processors become idle or busy. This kind
of event can be used to generate a graph of the number of busy processors versus time,
commonly known as a concurrency graph. Furthermore, users may define their own event
types and may specify an array of events analogous to an array of metrics.

To help control the volume of data, events may be filtered as they are produced.
For example, cache information is filtered to reduce the data output by a factor of one
hundred. This is done by counting the number of cache hits in one hundred accesses and
using this count as the value of the event. The general filtering mechanism outputs one
value for every k updates. The user recalculates the event value at every update using
the previous value, the update information, and any state the user wishes to keep.

35

[he user specifies the display of data using a general graph language. The display pro-
gram, stats, reads a file that specifies the graphs desired by the user. The user switches
among these graphs using a menu. Facilities are provided for zooming in on portions of
graphs, calculating the area and average value of a graph, producing a hardcopy?, and
switching between graph and table format.

The graph language currently supports six kinds of graphs: metrirs and array met-
rics graphs, events-versus-time graphs, bar graphs, array graphs, and multi-simulation
graphs. Metrics-based graphs display the values of a set or array of metrics in either a
bar-graph or tabular format. Event-based graphs display a function of a set of events ver-
sus time. Array graphs consist of an array of event-versus-time graphs, and thus contain
three dimensions. The y-axis is the array index, the x-axis represents time, and the color
of the point indicates its value. Array graphs are particularly useful for quickly verifying
behavior and for viewing the simulation as a whole. Multi-simulation graphs display one
point for each member of a set of simulations; speedup graphs fit this form. Finally,
groups of event or multi-simulation graphs can be displayed on the same axis, with each
member of the group in a distinct color. Among the graphs of Section 3.4 below, Fig-
ure 3-6 is an example of an event graph, Figure 3-10 is an example of an array graph,
while the speedup graphs (e.g. Figure 3-5) are examples of groups of muiti-simulation

graphs.

3.3 Typical uses of the system

Proteus is used to support research in several areas of parallel processing. It was originally
conceived as a tool for the evaluation of a new parallel programming language. However,
the system provides enough power and flexibility to be used in many other areas.

3.3.1 Evaluation of parallel applications

The performance of a program on a parallel machine depends on many factors that
are not considered in a theoretical complexity analysis of the program and usually defy
satisfactory analytical modelling. As we will observe in the next section, the interaction
of a program with the runtime system, the method of assigning new threads to processors,
and the details of the architecture can have a profound effect in the observed program

2The graphs in this thesis were created directly from stats, using the Hardcopy menu command,
combined the command-line flag -1atex.

36

performance. Proteus accurately models factors such as those mentioned above, and
allows users to study the behavior of applications running on a variety of machine models.
It can, therefore, provide a useful complement to the theoretical analysis of new parallel
algorithms. Furthermore, the efficiency of the simulator component makes it feasible to
use the system to predict the performance of real applications on different architectures.

3.3.2 Research in parallel programming languages

The C language, augmented by the low-level simulator call interface of Proteus, can be
used as the target language of parallel language compilers. In that way, the system can
be used to evaluate the performance of high-level parallel programming languages in a
variety of different machine architectures.

3.3.3 Research in parallel operating systems

Proteus provides a complete runtime system which is built on top of ite low-level simulator
call interface and is viewed by the simulator as an application program. Time spent in
runtime system code is accurately measured and, if desired, separated from time spent
in user code. Detailed information about threads waiting in various system locks and
queues can be plotted using the stats program. Therefore, the effects of the runtime
system on user program performance can be observed. Runtime system routines can
be partly or completely rewritten. In that way, researchers can test new cperating and

runtime system designs.

3.3.4 Research in architecture-related issues

Proteus provides support for research in two architecture-related areas: Cache coherence
protocols and network routing algorithms.

The appearance of large-scale shared memory machines has renewed interest in re-
search on cache coherence protocols. The shared memory component of Proteus supports
the detailed simulation of cache coherence protocols. A well-defined interface of calls con-
nects the protocol with the rest of the system (see Section 4.3.2). Researchers in that area
can implement their own protocols and then use Proteus to evaluate their performance.
Proteus provides a much easier and more reliable way of performing such evaluation than
the currently popular method of trace-driven simulations (see Section 2.2.2).

Proteus supports research in network routing algorithms by providing an accurate

37

Modify program l Wete o
progra

Change machine N
configuration —r config
Run more >l parsim
simulations

Evaluate
stats simulation results

Figure 3-3: Typical parallel program development and evaluation cycle using Proteus.

network simulation component and a flexible router interface (see Section 4.3.3). The
user can replace the routing algorithm with his own, and the behavior of the router
during simulation of real applications can be easily monitored.

3.4 Exploring parallelism with Proteus

The flexibility and interactive nature of Proteus encourage an exploratory approach to
parallel progfam evaluation: The user typically runs one or several simulations of an
application and subsequently enters the stats program to evaluate their results. With
the help of a number of carefully chosen pradefined system graphs, as well as his own
program-specific graphs, the user can study several aspects of the program’s behavior and
discover any areas of trouble. Once a problem has been detected, more simulations may
be needed to identify its cause. The program may need to be modified, different types of
events may need to be added, or different machire configurations may be tried to provide
further insight into the program’s behavior. At the end of every stage of experiments,
stats is called to display the results of the latest simulations and help decide what needs
to be done next. This iterative interaction among the system’s components is shown in
Figure 3-3.

In this section we aim to demonstrate the power of the Proteus system by studying

38

proc solve_queens() :
stage(empty_chessboard , 0);

proc stage(chessboard, 1) :
if (i == 8)
found_solution(chessboard);
else
for(j=1;j<=8;j++)
if (safeto_add_queen(chessboard, i +1, j))
stage(add_new_queen(chessboard, i +1, j), i+1);

Figure 3-4: A recursive algorithm that generates all solutions of the 8-queens problem.

a simple but intel;esﬁing program that implements a parallel algorithm for solving the 8-
queens problem. Our program suffers from a common problem in parallel programming:
Although the algorithm on which it is based contains a large amount of parallelism, its
implementation on a real machine produced a disappointing speedup curve. By using
Proteus in a systematic way, all different causes of the program’s poor scaling behavior
were easily identified and, whenever possible, corrected. Apart from proving the ca-
pabilities of the Proteus system, this example also demonstrates the complexity of the
interaction between the hardware, the runtime system and even the simplest parallel pro-
gram, and emphasizes the need for advanced parallel program measurement tools such

as Proteus.

3.4.1 The eight queens problem

The eight queens problem is stated as follows: Eight queens are to be placed on a
chessboard in such a way that no queen checks against any other queen. The problem
has exactly 92 solutions and one way to solve it is by a recursive algorithm described by
the pseudocode shown in Figure 3-4.

Stage receives a chessboard in which a queen has already been placed in each of
the first ¢ rows and attempts to place an additional queen in all columns j of row 7 + 1
where the new queen does not check against any of the previously placed ¢ queens. Each
successful new configuration is recursively passed back to stage, which now attempts to
place a queen in all safe columns of row 7 + 2, and so on, until either no additional queen

39

Speedup and Average Concurrency

7] o
.’
.....
oo
a8 vttt
o
.".
....
DO SRS SO A N MO OO NSO N PO U M N
.....
“© o ’,«“"
i
-
S gl
g = = siasariT
,,,,,
e [-
....... B
3 24 <. e byt
g T
& | b E
» 16 .
-’ o~
i P
e
...... o
] sads
o / H
o 4 8 12 16 20 24 28 a2 36 40 44 48 82 56 80 64

Number of avallable processors

Program 3peedup
............ Average Concurrency

---------- Optimal Speedup

Figure 3-5: Speedup and average concurrency graphs for the 8-queens program with a
single memory list.

can be safely placed in any of the columns of a given row, or a complete solution has
been found. The algorithm essentially performs a depth-first traversal of the solution
space and abandons further traversal of any subtree whose root is an illegal problem
configuration.

It is easy to parallelize the above algorithm by transforming all calls to stage into
invocations of new tasks that will execute stage on different processors from the calling
tasks. This transformation causes all traversals of subtrees with a common parent to
execute in parallel. Since the 8-queens solution tree has a maximum branching factor of
8, and very quickly expands to a very large number of subtrees, it is expected that the
parallel version of the algorithm will exhibit a significant amount of concurrency.

3.4.2 Evaluation of the eight queens program

We implemented a version of the parallel 8-queens solution program using the program-
ming model of our simulator. The code is listed in Appendix A and gives an idea of what
a typical Proteus program looks like. Different chessboard configurations are represented
using data structures stored in shared memory. Add_-new_queen dynamically allocates an

40

Active Threads versus Time

2004 W
2‘0 (OF. . TYTTTI FEPPTICTTITRPPRT IS TN TP LR 17 R R ARRARE R Y R TR R R R

Active Threads
3 8

o 3 -1] 12 18 18 21 24 27
Cycles (x 10000)

Figure 3-6: Number of active threads versus time during execution of the 8-queens pro-
gram.

amount of shared memory to store a new configuration with one extra queen, and re-
turns the shared memory address of the new configuration. Each new task then receives
this new configuration and attempts to create new configurations with yet another queen
placed. We can see therefore that the program makes relatively intensive use of shared
memory.

We executed a number of simulations of the program on bus-based machines of dif-
ferent sizes. In all machines, a number of processors and a number of shared memory
modules were connected together through a common bus. All shared memory accesses
had to pass through the common bus. Each processor was equipped with a 64K 2-way
associative cache to improve average memory latency and reduce traffic on the bus. From
the results of our simulations, we produced a program speedup and average concurrency
graph (Figure 3-5). Program speedup is defined as the ratio of the program execution
time on one processor to the program execution time on n processors. Average co