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Abstract

In this thesis, we present a generalized modeling tool for predicting the output force profile
of vacuum-powered soft actuators using a simplified geometrical approach and the prin-
ciple of virtual work. Previous work has derived analytical formulas to model the force-
contraction profile of specific actuators. To enhance the versatility and the efficiency of the
modelling process we propose a generalized numerical algorithm based purely on geomet-
rical inputs, which can be tailored to the desired actuator, to estimate its force-contraction
profile quickly and for any combination of varying geometrical parameters. We identify a
class of linearly contracting vacuum actuators that consists of a polymeric skin guided by
a rigid skeleton and apply our model to two such actuators - vacuum bellows and Fluid-
driven Origami-inspired Artificial Muscles (FOAMs) - to demonstrate the versatility of our
model. We perform experiments to validate that our model can predict the force profile of
the actuators using its geometric principles, modularly combined with design-specific ex-
ternal adjustment factors. Our framework can be used as a versatile design tool that allows
users to perform parametric studies and rapidly and efficiently tune actuator dimensions
to produce a force-contraction profile to meet their needs, and as a pre-screening tool to
obviate the need for multiple rounds of time-intensive actuator fabrication and testing.
The work presented here was published in Frontiers in Robotics and Al on 03 March
2021, “A Modular Geometrical Framework for Modelling the Force-Contraction Profile of
Vacuum-Powered Soft Actuators,” by S. Gollob et al. [1] Figures reproduced from this
work are referenced following the journal’s open-access Creative Commons practices.

Thesis Supervisor: Ellen Roche
Title: Associate Professor, Department of Mechanical Engineering and Institute for Medi-
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Chapter 1

Introduction

Soft robotics is a growing field, owing somewhat to an increasing demand for machines
that can interact more safely with humans and their environment, generate complex multi-
degree-of-freedom motions, and resist impact damage [2]. The sub-field of soft artificial
muscles is relevant to the field of soft robotics as whole and will be the focus of this the-
sis, as they are commonly used to actuate soft robots as opposed to traditional motors.
Although a variety of artificial muscle actuation schemes have been developed, including
shape-memory alloys [3], tension cables [4], and phase transitions [5], fluidic actuation
is widely used, as it is compatible with soft matrices, with programmed fluidic channels,
and provides a means to change actuator volume and effective stiffness analogous with the
contraction and stiffening of biological muscle [2]. Pneumatic artificial muscles have been
used in, and theorized for, a range of applications, from medical implantable devices[6. 7],
to exoskeletons[8} /9], and both soft and rigid robotic applications[10].

Most soft pneumatic actuators described in the literature operate with positive pressure,
often involving a section of the actuator which expands with pressure and a strain-limiting
component which guides the elastic expansion in a desired direction. This duality has been
achieved by creating geometrical asymmetry in elastomeric actuators [[11}12], introducing
an off-axis strain-limiting material for bending motions [13,/14], and reinforcing the outer
skin of the actuator with fibers[15, 16} [17,/18]. Although positive pressure actuators can
produce complex motions and large forces [2], they have limited contraction ratios, high

actuation pressure requirements, and are subject to delamination or bursting[[18,/19}/20}21].
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Owing to their dependence on volume increase for contraction, they pose a design challenge
for applications where space is constrained.

Vacuum-operated soft pneumatic actuators are an alternative to positive pressure actu-
ators that can avoid some of these pitfalls, while still achieving similar bending (22} 23],
linear[24) [25} 121} 126} 127} 28], and complex programmed motions[29, 21]. This class of
actuators rely on a decreasing volume for actuation, in contrast to positive pressure actu-
ators where the volume typically increases upon actuation. Similar to the strain-limiting
operating principle for positive pressure actuators, vacuum actuators often involve a thin
strain-limited “skin” that is responsible for a decrease in volume upon actuation, and a
“skeleton” that limits compression to guide the volume decrease in a desired direction
[22) 12111281 127]. In this work, this type of vacuum actuator will be referred to as a “skin-
skeleton vacuum actuator.” Particularly, this work focuses on skin-skeleton actuators that
undergo linear contraction upon actuation. This class of actuators has achieved contraction
ratios near or above 90%, is often lightweight, fast-moving, and resistant over many cycles,
requires low actuation pressures, and produces a high power to weight ratio compared to
positive pressure actuators [22,121, 28} 27]. As a result of these design features, these ac-
tuators have potential benefit for a variety of applications, especially those requiring large
linear displacement which is challenging to achieve with commonly reported artificial mus-
cles.

Previous work has developed a variety of actuator models, often based on the Finite
Element Method (FEM), for describing their actuator designs [30}/31}/32}|33]]. These mod-
els allow in-depth characterization of corresponding actuators, predicting buckling modes,
stress distributions and actuator motion as a function of pressure, expected force output,
and cycle lifetime. FEM approaches have been shown to characterize actuators for their
use in a particular application and maintain the versatility of their design for other appli-
cations — for example Nguyen Zhang (2020)[32] characterize a family of modular cells
using FEM that can be combined for curling, linear, and twisting motions as desired by the
end user. Though FEM models are successful in describing actuator performance in detail,
their complexity means they are not ideal for higher-level design iterations and selection of

broad design spaces for performance constraints. To our knowledge, a generalized, versa-
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tile model that can rapidly generate information on an actuator’s output is missing in the
existing body of work. Such a model could be used before the time-consuming prototyping,
material testing, and FEM model creation that comes with a more developed design.

Inspired by previous literature, in this thesis I will describe a developed model that
makes use of the virtual work principle to extract an actuator’s force-contraction output
force based on its volume loss rate. This is implemented via a simple and versatile nu-
merical algorithm using solely geometrical features of the actuator, such that it can be set
up and solved orders of magnitude more rapidly than an FEM approach. The model can
then overlay other components of the actuator — such as an intrinsic restoring force — to
better approximate its force output. The force-contraction profile (FCP) is a common char-
acterization metric to describe the actuator output force over the course of its contraction
assuming a constant pressure, and it is nonlinear for most vacuum actuators. This non-
linearity creates demand for tools that can allow one to understand and predict the FCP
for a given actuator design. There have been a variety of simplified models that attempt
to predict such profiles. While some models make use of force balancing analytical and
numerical finite element models [33}121]], others have modelled actuator outputs using an-
alytical solutions to the principle of virtual work [18} 21} 27, 28], which allows a force
profile to be estimated solely from the actuator’s geometry:

dv

F=Px — 1.1
* (L.1)

Where V is the actuator’s internal volume, P is the actuation pressure (usually assumed
constant), and s is the contraction or current length of the actuator. Assuming no energy
loss and an inextensible skin, the output of the virtual work equation (Equation (1)) can
be used to estimate the force output of the actuator directly [21}[18]. The models based
on the principle of virtual work mentioned above apply an analytical solution derived from
the design and geometry of the actuator in question, following a typical workflow: a skin
geometry is defined, used to derive a formula for volume as a function of contraction,
and the volume formula is differentiated. In one instance, this analytical approach was

combined with a minimizing function [27] to allow for the skin to change in cross-sectional
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geometry to mimic the physical tendency to minimize volume in a vacuum.

In this work, we expand the use of the virtual work concept and present a generalized
platform that enables rapid prediction of the FCP of a linearly contracting skin-skeleton
vacuum actuator for any skin or skeleton geometry. By implementing a numerical ap-
proach in MATLAB (MathWorks), we create a versatile model that can be applied to
different actuator designs, without the need for the development of a separate analytical
model for each design. To demonstrate the application and capabilities of the framework,
we use it to model the FCPs of two representative types of linear skin-skeleton actuators:
the bellows actuators [27](Figure[I-T]A), and the Fluid-driven Origami-inspired Artificial
Muscles (FOAMs) |21] (Figure ). The bellows actuator was chosen for its simple de-
sign and pre-existing modelling work, and the FOAM was chosen because its semi-rigid
zigzag shaped skeleton adds geometrical complexity and behaves like a spring, adding an
additional restoring force component to test the framework’s modularity. To validate the
framework, we experimentally characterize Bellows and FOAMs actuators with varying
geometric parameters and compare the experimental FCPs with those derived from the
model. Finally, from the validated model, we perform a simple case study of how the ac-
tuator FCP can be used in an engineering design scenario and compare the outputs of this
“virtual work model” and an FEM model in predicting application-specific parameters of
control pressure. From this work, we seek to show that this Virtual Work model — de-
spite limitations sprouting from its simplicity — has potential utility as a design tool for soft
roboticists, or device designers, by allowing rapid exploration of a design space through
its easy application to various actuator designs and geometries. Beyond its applicability,
I hope this work can demonstrate the value of understanding the concept of virtual work,
and keeping it in mind when considering new and existing designs of vacuum-powered soft

actuators.
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Figure 1-1: Overview of existing skin-skeleton vacuum actuator designs, highlighting the
skin and skeleton components. These include (A) FOAMs (Li et al. 2017), (B) Bellows
actuators (Felt et al. 2018), (C) bending soft actuators (Tawk et al. 2018), and (D) Origami
bellows actuator (Lee et al. 2019). All figure reproductions approved by publishers.[1]
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Chapter 2

Formulation of Models

2.1 Theoretical Framework for Geometrical Model

Guided by the virtual work approach described in previous studies [18}/27], we derived a
simple generalized formula for the FCP of a vacuum actuator which requires only infor-
mation on its geometry. As Figure illustrates, most soft vacuum actuators with linear
contraction motion exhibit volume loss in both the axial (AV,) and radial (AV,) directions.
It is beneficial to categorize the volume loss in this way because, while the spatial deriva-
tive of the axial volume loss (dV,/ds) leads to a constant force profile, the derivative of the
radial volume loss is responsible for the nonlinearity in the actuator FCP, as will be shown.
This also allows for an easy non-dimensional transformation of the output, as can be seen

in the brief derivation below, based on the labeled V, and V,, values from Figure

VT,act =Acs—Vp; VT,pistan =Acs

Fact:A‘_%' Fpiston —A
P ds’ P ‘
Far 1 v,
=Fi, =1-— 2.1)
Fpist(m act D< ds )

where Vr is the total internal volume of the actuator’s contractile cell, F is its output

force in Newtons, P is the constant actuation pressure and D is a characteristic length
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that replaces the cross-sectional area A, in the case of a 2D simplification of the actuator.
The subscripts act and piston refer respectively to the actuator in question and a piston of
equivalent cross-sectional area, where a piston is defined as having no radial volume loss
(Figure . F}., is the piston-scaled force of the actuator, a non-dimensional force or a
ratio of the actuator’s force output compared to that of its equivalent piston. In this case,
the actuator is simplified as a two-dimensional equivalent, so A, becomes a characteristic
radial length, D, while V, becomes a two-dimensional slice of the lost radial volume. As
Equation shows, the scaled output force of the actuator is a function of the derivative of
the radial volume loss over its contraction s. This assumes a constant pressure and constant
bounding cross-sectional area (D). By setting the characteristic length D to 1, Equation

describes a generalized scale-independent force profile curve.

2.2 Implementation of Geometrical Model

To generalize the concept of radial volume loss, we identify two components that can be
used to represent a vacuum actuator in our model: a skin profile and a boundary profile.
As Figure demonstrates, the model requires that a vacuum actuator be discretized
into contractile cells, similar to that used in the derivation. This cell is simplified as a
two-dimensional shape with a zero-thickness skin, described by a function f;, and a set of
boundaries, described by the boundary function fj.

In this work, we focus on modelling the bellows [27] and FOAM [21] actuators, because
both fall into the skin-skeleton category, have linear motion, and have been well-described
experimentally and analytically in the literature. The bellows actuator has a simple working
principle due to the low number of components in its assembly and its minimal skeleton
design, while the FOAM actuator is interesting for the resistance of the folded skeleton
resistance to contraction, which imparts an opposing spring force to the actuator. In both
cases, the characteristic skin function is a parabola of constant length fixed at both ends of
the cell, chosen to emulate the profile of the actuator skin as it conforms to the underlying

skeleton during contraction.
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Figure 2-1: A schematic of the general skin-skeleton vacuum actuator working principle,
conceptualizing the components for the model derivation, with relevant volume losses la-
beled. Bottom row shows how Equation (2) can be applied to different actuator designs.
AV, = volume loss in radial direction. AV, = volume loss in axial direction. Ac= character-
istic radial length. F,ct™ = scaled actuator output force. P = actuation pressure. s = current
actuator length. D = cross-sectional area.[1]
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Figure 2-2: (A) Simplifying actuator geometry for virtual work model. (B) A schematic
of model implementation. s = length of a contractile cell. & = skin sagging depth. D =
actuator cross-sectional area. b = initial spacing between two contractile cells or constant
length of skin section. V, = radial volume loss. F§ = skin function. f; = boundary function.
F,ct* = piston-scaled actuator output force.[1]
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Where s is the length of the contractile cell, h is the skin’s “sag depth” into the actuator,
and x is the axial coordinate of a point along the skin (Figure shows these variables
in a schematic). The algorithm can accept alternative skin functions, provided they include
the input h for sag depth, as discussed in the model implementation section.

The boundary conditions were defined separately for the bellows and FOAM actuators,
as shown in Figure[2-2]A. Although there are no defining structural bounds for the bellows
actuator skin, a boundary at the midline was defined since the axisymmetry of the actuator
causes the skin to contact itself on actuation for cases where the gap distance between rings
is greater than one diameter [27]. For the FOAM, the boundary was defined by the zigzag
shaped skeleton, which was assumed to have zero thickness. The boundary equations are

as follows:

D
fb,bellows (X) = _5 (23)
_2d Y P
fororu (Lis) (1) = ==l —d: d =\ (2) : (2.4)

where L is the constant length of one of the sections of the zigzag of the FOAM’s skeleton,
defined as D =+ cos <%>, and d is the height of the skeleton for a given value of s. Figure
includes a schematic of the skin and boundary functions.

With the specified skin and boundary functions, the FCP can be solved, as illustrated
in Figure 2-2B. The major computational section of the model is the process for calcu-
lating the geometrical configuration of the skin for each point in the contraction (between
contractile cells, equal to the skin length, b, to 0). This is achieved via a binary search
algorithm, which attempts to find the lowest value of h that leads to a skin configuration of
length b (equal to the initial gap length of b), as the model assumes an inextensible skin.
The algorithm requires a function [ (h), which outputs the length of the skin configuration
for a given sag depth A. For a given increment i in the contraction, the binary search starts

at hj 1 = hi_1 finar (01 O for the first increment), and adds a constant step value to h, updating

21



the lower bound #£; . until it reaches a value of & that returns a length greater than the
desired target, at which point it sets the upper bound %; ,pe-. The next increment, A; j0x 18
linearly interpolated between h; ;o and h; pper based on how far from the target section
length the from the upper and lower bound configurations are:

(hi,lowerdiStupper + hi,upperdiStlawer)

. _ 2.5
1,next diStupper —|—distl()wer ( )

where dist; = |l (h,-7 j ) — b|. If hj pexs is below the target, it becomes 7; jyer, and sim-
ilarly for h; ypper in the case that the increment is above the target value. Eventually, this
converts to the target value within a tolerance, but to return the smallest valid h value, the
function returns only once the upper and lower bounds are close to each other by a cer-
tain tolerance. This assumes the section length is monotonically increasing as a function of
h, but can be adjusted to account for local maxima/minima using traditional optimization
function methods.

The final crucial piece of the algorithm is the skin profile function, which solves the
geometrical configuration of the skin for a given 4. Given a value for £, it first calculates the
skin profile (in this case, always a parabola) and identifies any intercepts with the boundary
function. If there is no intercept, it returns the skin profile as a 2D-array of x-y coordinates.
If there is an intercept with the boundary, the function draws the section of the parabola
up to the intercept, then draws the section of the boundary for the remainder of the way or
until the second intercept. The process is repeated recursively to complete a profile.

The result of the binary search function and the skin profile function working in unison
is a skin configuration for each contraction increment i, from —s at full to zero length,
referred to as the “time series” in Figure. This represents the shape of the actuator’s
skin throughout the contraction. If, at some increment, the skin profile can no longer be
solved, as is the case for the bellows actuators once the skin is in full contact with the
boundary, that increment defines the end of the contraction. The V, value for each increment
is calculated and then numerically differentiated following the function for F;, to finally

generate the FCP.
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Figure 2-3: Schematic of cable under uniform load for Roark’s formula. Used as a parallel
to the actuator’s skin under vacuum loading.|[1]]

2.3 Finite Element Modelling (FEM) to Supplement The-

ory — Scaling Factor

2.3.1 Scaling Factor Theoretical Basis

From the theoretical derivation of the model above, one can see that it assumes an inexten-
sible skin, and is reliant only on the geometry of the skin and boundary function, as well
as an aspect ratio of radial to axial dimensions. In the physical case, the inextensible skin
extension does not fully apply, as the skin experiences some strain, which would trans-
late into work that is not used for force production. It follows logically that the physical
properties of the skin have an effect on the magnitude of the force output. To address this,
we developed a scaling factor (between 0 and 1) to be applied to the output of the model,
based on Roark’s formula [34]], which describes the strain of a cable in tension with a dis-
tributed load — as that resembles closely the state of the skin at the initial zero-contraction
configuration of the actuator.

The schematic in Figure shows the layout for Roark’s formula applied to a flexible

cable, as described in [34]), here used to describe the skin, where y,,, is the skin’s sagging
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depth, T is the tension on the skin equivalent to the output force, w is a distributed load in
N/m equivalent to the internal pressure, E is the skin material’s Young’s Modulus, and A
is the cross-sectional area of the skin (not of the actuator), and, L is the gap between rings.
The equation is applied to the maximum force output of the actuators as it is valid for small
deflections, y;,;4x, of a cable with no initial sag, which in our FEM models corresponds to
the initial zero-contraction point.

By plugging in the equation for y,,,, into the equation for 7', one finds the following:

(64EA)'/3(wL)?/3

r= 8 x31/3

(2.6)

Assuming the cross-sectional area of the skin to be A = ¢ x P,, where ¢ is the skin

thickness and P, is the perimeter of the actuator’s cross section, we find that

T ~ (Ex1)'/3 (2.7)

Note there are other terms in the expression for 7', but they are all incorporated in our
model either as geometrical parameters or in the non-dimensional piston-scaled force, so
we neglect them from the relationship for the scaling factor. The purpose of the scaling fac-
tor is to accommodate for aspects of the construction of an actuator that were not addressed
by the virtual work model, namely the thickness and stiffness of the skin, which are known
to be relevant and application-specific. As Roark’s formula for a cable shows, E and t are

the only missing application-specific components that are not incorporated in the model.

2.3.2 FEM of Bellows Actuators

To confirm the derivation of Equation 2.7 and the relationship between output force and
Young’s Modulus and skin thickness, and to derive of an informed function for the scaling
factor to be applied to the virtual work model, we developed an explicit FEM model of a
bellows actuator Abaqus/Explicit (Dassault Systemes). This model was used to easily vary
combinations of skin properties to extract trends from the comparison between the virtual
work model-predicted output and that of the FEM. Figuredepicts the FEM setup. S4R

shell elements were used to model the skin, and a linear elastic material property was
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applied with varying Young’s Moduli in the range of 10-500MPa with a Poisson’s ratio of
0.3. The skin section thickness was varied from 0.02 to 0.35mm. To simulate the rings,
radial displacement constraints were applied to node pairs around the skin at desired gaps,
restricting the motion of these selected nodes to be strictly along the actuator’s long axis.
Finally, a general frictionless self-contacting constraint was applied to the skin shell. The
system was given a total of three rings (two contractile cells). A rectangular prism shape
(square cross-section of 20x20mm) was used for the actuator, as it allowed more consistent
meshing and faster solution times than a circular cross section actuator — both circular and
square shapes were compared, and output force profiles were showed the same outputs
given the same cross-sectional area.

A fixed condition was applied to the nodes at one end face of the skin, and a variable
displacement condition was applied to the nodes at the other end. The model was run with
the following actuation steps, called the load test procedure. First, a vacuum pressure of
-5 kPa (decreasing linearly from zero over 0.5 simulation time units) was applied inside
the skin while the two ends of the actuator were held fixed. Once the pressure reached
the desired preload, the pressure was held constant and a constant-velocity displacement
boundary condition was applied to one end of the skin, while the other was kept fixed,
allowing the actuator to contract. The magnitude of the displacement was chosen to match
7/ gths (87.5%) of the contractile length of the actuator — in the case of the 20x20mm, R=1
actuator, the contractile length for two cells is 40mm, so a displacement of 35mm was
applied. The axial reaction force at the fixed end of the skin was then extracted to quantify

the FCP of the actuator.

2.3.3 Fitting of Scaling Factor Equation from FEM Experiments

After performing the multiple FEM experiments, varying the Young’s Modulus and thick-
ness of the actuator skin, we were able to confirm that the two parameters had effects on the
output force magnitude predicted by Roark’s formula. Figure shows the results of the
FEM for varying stiffnesses (A) and thickness (B), as well as the trends in the maximum

output forces for varying stiffness (C) and thickness (D). Finally Figure shows the
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Figure 2-4: Results FEM setup for extracting FCP of a bellows actuator. In this case,
actuator cross-section is 20x20mm and R = 1. Showing zero and 50% contraction. E = 237
MPa and t = 0.1 mm. Displacement, U, in mm.[1]

direct relationship between maximum output force and the cubed root of E x¢.

To derive the function for a scaling factor based on the material properties, we first
extracted the FCP from the FEM models and scaled the output force by the force of an
equivalent piston, such that it could be compared with the output from the virtual work
model (Fpiswn = PxAc =2N, where P is the actuation pressure and Ac is the cross-sectional
area of the actuator’s shape, or width times height in the rectangular case). We then divided
the maximum scaled force for each FEM experiment with the maximum force predicted by
our virtual work model, to find the scaling factor necessary to match the force magnitudes
between the two models for each E-t pairing. After finding that the trend between (E *t) 1/3
and the scaling factor was linear as in FigureE), we applied a linear fit to the FEM data

to solve for our scaling factor equation:
s =0.1992 % (Et)'/* +0.0067 (2.8)

where s is the scaling factor to be multiplied with the virtual work model to estimate the

force output for given skin properties.
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Figure 2-5: Analysis of actuator skin material-dependent scaling factor. (A) and (D) show
the FCPs for varying skin stiffnesses and thicknesses respectively (for a two-cell 20x20mm
cross sectional area bellows actuator of R = 1). (B) and (E) show the piston-scaled maxi-
mum force output from the FCPs for varying stiffnesses and thicknesses respectively. (C)
is the joint trend for maximum scaled force and (Et)l/ 3, where the cubed root relation is
extracted from Roark’s Formula and is used to quantify the skin’s tensile stiffness, where
E is Young’s modulus (MPa) and t is the thickness (mm) of the skin material used in the
actuator.[1]]
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2.4 FEM to Supplement Theory — Restoring Force Loss

2.4.1 FEM of FOAM Actuators

In the case that an actuator has a non-negligible internal restoring spring force that resists
its contraction — such as the case of the FOAM with its zig-zag skeleton — we hypothesized
that one can super-impose the calculated spring resistance force with the virtual work model
FCP to reach an accurate estimate of the actuator’s true FCP.

To estimate the spring resistance force from skeleton, a quasi-static FEM model of
a FOAM skeleton was created in Abaqus/Explicit. The skeleton was modeled with a 30-
degree fold angle, 50 x 20 x 10mm bounding dimensions, and 1mm thickness and modelled
as a linearly elastic polyvinyl chloride plastic (Density = 1.4 g/cc, Young’s Modulus =
2.4GPa, Poisson’s Ratio = 0.3 as defined by the manufacturer specifications) and 8-node
linear brick, reduced integration, hourglass control (C3D8R) elements. This skeleton was
fixed at one end, restricting both rotation and displacement, and a displacement boundary
condition of 35 mm was applied to the other end, compressing the skeleton gradually over
time. The reaction force of the skeleton in the axial direction was extracted to quantify its
spring resistance.

In parallel, a full FOAM model was generated, where the same skeleton was surrounded
by a bounding skin. The skin was modelled using a thermoplastic elastomer with high
stiffness (Density = 0.8 g/cc, Young’s Modulus = 600 MPa, Poisson’s ratio = 0.3, average
properties from MatWeb) with 4-node, quadrilateral, stress/displacement shell elements
(S4R) of thickness 0.02 mm, with a membrane idealization (such that the skin is dominated
by tensile forces). The same load test procedure used for extracting the FCP of the bellows
actuator was used for the FOAM model, except the pressure applied was -70kPa and the
contraction displacement was equal to 25mm. A general, frictionless contact interaction
was defined for all elements in the simulation. For the analysis, we compared the FCP
generated by the FOAM actuator in the FEM and the net force predicted by the virtual
work model, which was calculated as the pure FCP from the geometrical virtual work
model subtracted by the skeleton spring force obtained in the FEM. The results of this

comparison are included in the next chapter.
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Figure 2-6: (A) Deformation of a 30-deg skeleton during compression test in a Finite El-
ement (FE) model. (B) Free contraction of FOAM actuator containing the same skele-
ton under constant negative pressure in a FE setup. (C) A comparison of FE Model
and virtual work model for FOAM actuators for 8 = 30°, P = -70kPa. F, = Skeleton
spring force predicted by FE. F,,,. = Force predicted by virtual work model without spring
force.Fjer moa = Fvac — Fy = Net force predicted by the MATLAB model. Fp.; rg = FOAM
force predicted by FE.[1]]

2.4.2 Results from Finite Element Modelling of FOAM A ctuators

Figure[2-6]A shows deformation of skeleton during spring compression test performed in
FEM, and Figure shows contraction of a FOAM actuator using the same skeleton un-
der constant pressure. Figure Ep compares the FCPs generated with the FEM (F,¢; rE)
and virtual work models (£ moq), demonstrating that the virtual work model can accu-
rately describe a force profile when the skeleton spring reaction force is accounted for by
subtracting it from the model predicted force. The peak force from the virtual work model

was within a 7% error and the full contraction length was within a 1% error.
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Chapter 3

Model Characterization and Validation

3.1 Model Parametric Characterization

3.1.1 Force Contraction Profile Explanation

Figure illustrates the shape of a force-contraction profile for a bellows actuator, over-
laid with a simplified time series of the skin profiles generated by the model. As shown, the
large force output at the start of the contraction is directly tied to the large relative change
in radial volume at the beginning, as the skin experiences the greatest drop. In later stages,
the output force curve flattens as the skin gets closer to its final configuration and the loss

in radial volume decreases.

3.1.2 Parameter Sweep

We performed a parametric sweep of different ring gap-diameter ratios using our virtual
work model to evaluate the effect of the ring spacing on the force profile of bellows actua-
tors. Figure shows the calculated force profiles for varying ring gap-diameter ratios,
R=0b/D. The peak force decreases with decreasing gap distance, the force profile becomes
more linear with decreasing gap distance, and gap distances greater than one diameter in
length lead to a maximum scaled contraction equal to R~!. Figure overlays the full
parameter sweep of values of R from O to 4, demonstrating how much stroke and force can

be generated by an ideal vacuum bellows actuator for the given ring and gap dimensions.
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Figure 3-1: Illustration of the force-contraction profile of bellows actuators, depicting the
geometrical reasoning around the shape of the profile based on the concept of the virtual
work function. Initially, the actuator skin is completely straight, and as it contracts, the
parabolic profile leads to a rapid loss in radial volume, which justifies the large initial force
value (large derivative). As the contraction nears its middle and end, the parabolic skin
profile sags less and becomes narrower, leading to a smaller rate of volume loss and thus a
smaller piston-scaled force.[1]]
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Figure 3-2: Virtual work model for vacuum bellows actuator with varying ring distances.
(A) Force-contraction profile for varying gap-diameter ratios (R) =0.1, 0.5, 1, 1.5, 2, show-
ing the trends caused by varying ring gap. (B) A heat map from a high-resolution parameter
sweep of the gap-diameter ratio. The color bar indicates piston-scaled force predicted by
the model, and the contraction ratio is cut off at 0.04 for the purposes of visualizing the
contrast throughout the heat map (large magnitudes past 0.04 lead to colors focused on
high values).[1]

First, we predict the FCP of the FOAMs geometry without an additional spring factor,
only considering the effect of its triangular bounding function shape. The skeleton angle
0 in FOAM actuators is analogous to the ring gap distance R in bellows actuators, as the
fold-to-fold distance in the zigzag skeleton is a function of 6: R = 2tan (g) Figure
demonstrates the FCPs predicted from the FOAM boundary setup for varying 6 in the

absence of spring force.

3.1.3 Varying Skin Profile Shape for Bellows Actuators

To explore the relevance of different skin profile functions, we performed a simple mod-
elling run, where three different conic sections were used as the skin profile for a bellows
actuator of R = 1: a parabola (as implemented in the main body of this thesis), a hyperbola,
and a half-ellipse with its vertices at the interface with the rings. The force-contraction pro-
file for each was calculated and they are compared in Figure Generally, there were
no major differences between different profiles, though the parabola and hyperbola FCP
follow each other virtually identically, while the ellipse FCP experiences a slightly flatter

profile. This is likely because the ellipse experiences a more gradual drop in sag depth
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Figure 3-3: The virtual work model prediction of force-contraction profile for FOAM ac-
tuators with skeleton angles (8) = 30, 60, and 90 degrees. The profiles are based only on
the geometrical features, without the inclusion of spring force.[1]
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during contraction, whereas the hyperbola and parabola both lower more quickly. Overall,
this shows the different conical sections similarly approximate a simple skin profile. Other
more complex functions, such as the volume minimizing skin profile function in Felt et
al. 2017[27], may lead to a more noticeable difference, despite following the same trend.
More complex skin geometries, such as for an origami-based actuator, would require more

complex skin profile functions with more variable rule-based shapes.

3.2 Methods

3.2.1 Fabrication of Bellows Actuators

A vacuum bellows actuator consists of a thin tubular membrane surrounding rigid rings that
are evenly spaced along the axis of the tube. Two 0.04 mm polyethylene sheets (McMaster-
Carr, 7889T28) were sealed along two edges at a nominal width of 40mm for 4 s using
an impulse sealer (Hacona, H-6705) to make a 25mm-diameter tubular membrane. For
the rigid rings, a three-part assembly consisting of one concentric ring surrounded by two
thinner annular rings placed at the edges of the inner ring was fabricated. The inner ring
was made of 4.76 mm acrylic (McMaster-Carr) and laser cut to form an outer diameter of
40 mm with minor cut features that enable airflow between segments for middle segments
and a 3.175 mm center hole for placing the tubing at one end. The outer annular rings were
made from 1.59 mm acrylic with an inner diameter of 20 mm and outer diameter of 25
mm, and were bonded to the inner ring using cyanoacrylate (Loctite). The assembled rigid
rings were positioned inside the membrane and orthogonally to the wall, and then secured
around the groove created in the ring assembly using fishing line (9442T2, McMaster-Carr).
The remainder of the ring assemblies were positioned along the membrane at the desired
spacing and fastened in similar way. A 3.175 mm outer-diameter polyurethane tube was
inserted through the first ring assembly for vacuum supply and the ends of the membrane
were sealed to the acrylic using cyanoacrylate adhesive and SilPoxy (Smooth-On). An

image of the bellows actuator is shown in Figure[3-4B.
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3.2.2 Fabrication of FOAM Actuators

FOAM actuators consist of a thin skin layer surrounding a rigid zigzag structure that serves
as the skeleton. For the skin layer, we sealed two sheets of 0.05 mm-thick thermoplastic
elastomer (Fibreglast) using an impulse sealer for 20 s along two edges at a nominal spacing
of 53 mm. For the skeleton, 0.254 mm-thick polyester sheet (McMaster-Carr) was laser cut
in a series of 10 segments (L =20 mm, W =40 mm) with minor features on each segment to
allow air flow and perforated lines between the segments to help folding. The skeleton was
manually folded along the perforated lines at desired angles of 30, 60, and 90 degrees. For
assembly, the skeleton was inserted into the skin membrane and sealed using an impulse
sealer at skeleton lengths of 60, 110, and 150 mm, respectively. A piece of PTFE was used
to create a gap in the seal for subsequent tube insertion. To ensure that the skeleton material
did not slide inside the skin during actuation, we used thermoformable anchors at the ends
of the skeleton that were sealed with the skin, and therefore fixed at each end. An image of

the FOAM actuator is shown in Figure[3-4/A.

3.2.3 Experimental Methods
Force Contraction Profile Experiments

To obtain FCPs for each actuator, we measured the force-displacement curve using a me-
chanical tensile tester (Instron 5944) for all actuators. The actuators were held at the ends
with a 2-kN load cell (Figure and allowed to contract at a rate of 100 mm/min until
the force reached zero. Each actuator’s length was measured to account for variability in
manufacturing and to allow for a more accurate scaling of the percent contraction when
analyzing data. Constant vacuum pressures of -15 kPa for the vacuum bellows and -25 kPa
for the FOAM actuators were applied throughout the test using a manual vacuum gauge
(IRV10-NO7, SMC). Actuators were held at full extended length when vacuum was first
applied before beginning the experiment to allow the actuator to begin at full vacuum,
where full length is defined by clamping the actuator on the tensile tester and displacing
the clamps until the point the actuator begins to be in tension . Actuation pressure was mea-

sured throughout the experiment using a TruWave pressure sensor (Edwards Lifesciences)

36



(A)
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Figure 3-4: Experimental setup for measuring the FCP of bellows (left) and FOAMs (right)
actuators. Vacuum was applied through tubes at bottom of images, past a manual pressure
regulator.[1]
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Figure 3-5: Experimental setup for measuring the FCP of bellows (left) and FOAMs (right)
actuators. Vacuum was applied through tubes at bottom of images, past a manual pressure

regulator.

and was found to hover around an average value — the average pressure for each actuator
was used for normalizing the measured output forces. For both Bellows and FOAM actua-
tors, three replicates (n=3) were used for each experiment (i.e. n=3 for each value of R for

bellows, and each value of 6 for FOAMs).

Skin Material Tensile Testing

To compare the mechanical properties of different skin materials, a uniaxial tensile test was
performed on an Instron 5944 at a rate of 1 mm/min. All rectangular test specimens had
widths of 20 mm and lengths of 40 mm. The thickness of the skin materials was 0.04 mm
for the polyethylene film and 0.05 mm for th