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Abstract

Over the past decades, analytics have provided the promise of revolutionizing healthcare,
providing more effective, patient-centered, and personalized care. As an increasing amount
of data is being collected, computational performance is improved, and new algorithms are
developed, machine learning has been viewed as the key analytical tool that will advance
healthcare delivery. Nevertheless, until recently, despite the enthusiasm about the potential
of big data, only a few examples have impacted the current clinical practice. This thesis
presents a combination of predictive and prescriptive methodologies that will empower the
transition to personalized medicine.

We propose new machine learning algorithms to address major data imperfections like
missing values, censored observations, and unobserved counterfactuals. Leveraging a wide
variety of data sources, including health and claims records, longitudinal studies, and un-
structured medical reports, we demonstrate the potential benefit of analytics in the context
of cardiovascular and cerebrovascular diseases. To propel the adoption of these methodolo-
gies, we lay the foundations in the area of algorithmic insurance, proposing a quantitative
framework to estimate the litigation risk of machine learning models. This work emphasizes
interpretability and the design of models that facilitate clinician engagement and integration
into the healthcare system.

Part I introduces data-driven algorithms for missing data imputation, clustering, and
survival analysis that lie at the intersection of machine learning and optimization. Part II
highlights the potential of prescriptive and predictive analytics in the medical field. We
develop a new framework for personalized prescriptions and apply it for the treatment of
coronary artery disease. Part II also presents predictive models that could support the
early diagnosis and improve the management of stroke patients. Finally, Part III proposes a
novel risk evaluation methodology that will enable healthcare institutions to manage the risk
exposure resulting from the implementation of analytical decision tools.
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Chapter 1

Introduction

1.1 Motivation

ML models have started to play a major role in modern organizations. They are quickly

becoming key sources of transformation, disruption, and competitive advantage in today’s

fast-changing economy and society. At the forefront of scientific fields awaiting this impact are

healthcare and insurance. These areas are characterized by uncertainty and variability that

pose major challenges in the decision making process of clinicians, policy makers, and business

leaders. There are too many parameters to consider, a multitude of potential complications,

and a paucity of specialized information for minority groups.

Medical practice is still mostly driven by traditional statistical techniques that draw

conclusions from limited sample sizes and risk factors. Data-driven processes have not

been integrated in hospital decision making while widely established medical guidelines

predominantly address the general population, lacking personalization in the vast majority of

cases. Analytics and ML create an unprecedented opportunity for the field, providing new

techniques that can harness the power of big data, uncovering new insights at the individual

level. The goal of this thesis is to show how we can leverage these valuable resources to

personalize decision making, and ultimately lead to better outcomes for patients, healthcare

institutions, and insurance organizations.
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1.1.1 Machine Learning Methods for Healthcare Applications

From electronic health and claims records to longitudinal studies and unstructured medical

reports, the healthcare industry uses a wide variety of data sources that require specialized

algorithms. The complexity of the problems encountered in this field, along with data

imperfections, pose major challenges to realizing its full potential. Part I presents new ML

algorithms that leverage optimization techniques to address some of the most common data

problems encountered in healthcare applications: missing values, clustering, and censoring.

In Chapter 2, we design a new method, MedImpute, for imputing missing clinical covariates

in multivariate panel data. In Chapter 3, we propose Interpretable Clustering via Optimal

Trees (ICOT), a novel unsupervised learning method that recovers interpretable data clusters.

In Chapter 4, we address the challenge of censoring with the Optimal Survival Trees (OST)

algorithm, generating globally optimized survival tree models. We demonstrate the superior

computational performance of these algorithms compared to existing well-established methods

on a wide variety of datasets and settings. This first part provides evidence that interpretability

need not come at the expense of accuracy, providing a new set of tools that can play a crucial

role in the adoption of data-driven models in healthcare.

1.1.2 Prescriptive and Predictive Analytics for Clinical Data

Part II illustrates the transformative power of analytics on the healthcare industry, highlighting

our joint research efforts with medical investigators in creating prescriptive models and

predictive scores that facilitate clinical decision making. First, we showcase how we can

employ available ML algorithms to provide treatment recommendations at the patient level,

enabling the transition to personalized medicine. Our work uncovers individualized, highly

effective treatments by synthesizing observed heterogeneous responses to different regimens

among a large pool of patients. Our prescriptive algorithm leverages a combination of generic

supervised learning models based on a voting scheme. Its performance is measured via a series

of novel evaluation metrics that consider the counterfactual outcomes for multiple treatments

under various ground truths. Thus, we assess the accuracy, effectiveness, and robustness
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of the prescriptive methodology. We apply this technique to the disease management of

Coronary Artery Disease (CAD), one of the clinical conditions with the highest toll on human

health (Chapter 5).

Next, we focus on predictive models centered on stroke patients. We highlight both the

model derivation and external validation process and propose potential techniques to identify

actionable insights from non-linear models. Using structured data from the widely known

Framingham Heart Study we present, in Chapter 6, a new model for healthy individuals

to estimate the 10-year risk of stroke. This model has been prospectively validated at the

Boston Medical Center (BMC) and is undergoing retrospective evaluation at the primary care

facilities of Hartford HealthCare. Chapter 7 turns to unstructured information, introducing a

comprehensive framework to extract patient information from unstructured radiographic text.

Employing a combination of natural language processing and supervised learning methods,

we automatically detect the potential presence, location, and acuity of ischemic stroke. This

model is now successfully used at Brigham and Women’s Hospital and the BMC for patient

characterization.

Throughout these investigations, we have aimed at the adoption and clinical integration

of these models. In an effort to provide useful and interpretable tools that affect the medical

practice, we have developed online web applications that communicate the results of the

proposed recommendation systems. These interfaces have been proven crucial in ensuring

that the models are used by physicians and deliver real impact in the healthcare organizations

where they are deployed.

1.1.3 Algorithmic Insurance

The implementation of data-driven tools in modern healthcare organizations simultaneously

disrupts the insurance sector. Analytics have already started to overtake traditional actuarial

approaches in health insurance by providing powerful predictive models to estimate the

probability of adverse events (i.e., heart attack, cancer, etc.) that may result in a claim. In

the future, ML algorithms are expected to play a more central role as they will be called to
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replace human decision making in cases where their predictive and prescriptive performance

yields better outcomes. This shift gives rise to challenging questions: “Who bears the

responsibility if the algorithm’s recommendation is wrong?” and “How do we protect the

decision maker from erroneous algorithmic predictions?” As artificial intelligence starts to be

integrated into the decision making process of organizations, new types of insurance products

will have to be developed to protect their owners from risk. Potential examples include

image recognition systems applied to radiology that may bear medical liability and extend

beyond healthcare to self-driving cars or predictive maintenance algorithms for manufacturing,

among many other applications. Part III lays the foundations of a new research area called

algorithmic insurance. We present a comprehensive quantitative process to estimate the

risk exposure of insurance contracts for algorithmic liability taking into consideration the

predictive performance, the interpretability, and generalizability of a binary classification

model. We showcase an implementation of our approach in the context of medical malpractice.

1.2 Outline and Main Contributions

The contributions in this thesis can be summarized as follows, listed by chapter.

Chapter 2: Medical Imputations for Time Series

Missing data is a major problem in healthcare research as incomplete information is very

often present in patient records. In this chapter, we present a new framework, MedImpute,

for imputing missing clinical covariates in multivariate panel data. This approach proposes a

flexible optimization formulation that can be modified to account for different imputation

algorithms. It can use as input a wide range of clinical datasets, including information from

clinical trials and Electronic Health Records (EHR), which are of particular research interest

in personalized medicine. We summarize our contributions below:

∙ We formulate the problem of missing data imputation with time series information

under the MedImpute framework, extending the OptImpute framework proposed by
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Bertsimas et al. (2018) [32]. We focus on a 𝑘-Nearest Neighbors (𝑘-NN) formulation to

solve the optimization problem and derive a corresponding fast first-order algorithm

med.knn.

∙ We conduct a series of computational experiments that test the performance of the

method across three real-world datasets, varying the percentage of missing data, the

number of observations per individual, and the mechanism of missing data.

∙ We demonstrate that med.knn consistently leads to the best predictive performance

and lowest imputation error across all the experiments relative to other state-of-the-art

missing data imputation metthods.

∙ We propose a new custom tuning procedure to efficiently learn the hyperparameters in

the optimization problem that leads to both superior scaling performance and better

imputation accuracy compared to standard cross-validation.

The work in this chapter appeared at Machine Learning [41].

Chapter 3: Interpretable Clustering: An Optimization Approach

Widely established clustering techniques do not provide intuitive reasoning behind data

separations, limiting their interpretability. In real-world applications, and specifically in

healthcare settings, the latter poses a major barrier to the adoption and integration of ML

tools by decision makers. In this chapter, we present a tree-based unsupervised learning

method that obtains interpretable clusters with comparable or superior performance to other

existing algorithms. Our contributions are as follows:

∙ We provide a MIO formulation of the unsupervised learning problem that leads to the

creation of globally optimal clustering trees, motivating our new algorithm ICOT.

∙ We propose an implementation of our method with an iterative Coordinate Descent

(CD) approach that scales to larger problems, well-approximating the globally optimal

solution.
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∙ We introduce additional techniques that leverage sampling and the geometric principles

of cluster creation to improve the algorithm’s efficiency.

∙ We demonstrate that ICOT is competitive against various clustering approaches using

synthetic datasets across multiple internal validation criteria.

∙ We provide examples of how the algorithm can be used in real-world settings and test

the scaling capability of ICOT to large problem instances.

The work in this chapter appeared in Machine Learning [31].

Chapter 4: Optimal Survival Trees

Survival analysis addresses the challenges that arise in datasets with censored observations

in which the outcome of interest is generally the time until an event, but the exact time of

the event is unknown for some individuals. Censored outcomes are ubiquitous in healthcare

research and, as a result, ML methods for survival analysis are increasingly popular. We

present the OST algorithm that leverages MIO and local search techniques to generate globally

optimized survival tree models. We demonstrate that OST improves upon the accuracy of

existing survival tree methods, particularly in large datasets. The key contributions of this

chapter are:

∙ We present a survival trees algorithm that utilizes the Optimal Trees framework to

generate interpretable trees for censored data.

∙ We propose a new accuracy metric that evaluates the fit of Kaplan-Meier curve estimates

relative to known survival distributions in simulated datasets.

∙ We evaluate the performance of our method in both simulated and real-world datasets

and demonstrate improved accuracy relative to two existing algorithms.

∙ We provide examples of how the algorithm can be used to predict the risk of adverse

events and yield clinical insights in real-world datasets.

The work in this chapter has been submitted for publication [28].

22



Chapter 5: Personalized Treatment for Coronary Artery Disease

Patients: A Machine Learning Approach

In this chapter, our objective is to find the best primary treatment for a CAD patient to

maximize the TAE (myocardial infarction or stroke). We propose a data-driven methodology

to assign to each patient the regimen with the best predicted outcome simultaneously

leveraging multiple regression algorithms. We develop predictive and prescriptive models that

provide personalized treatment recommendations and a quantitative framework to evaluate

them. The main contributions of this chapter are:

∙ We present a new methodology to treat right censored patients that utilizes a 𝑘-NN

approach to estimate the true survival time for real-world data.

∙ We develop interpretable as well as accurate binary classification and regression models

that predict the risk and the timing of a potential adverse event for CAD patients.

∙ We propose the first prescriptive methodology that utilizes EHR to provide treatment

recommendations for CAD, combining multiple state-of-the-art regression models with

clinical expertise.

∙ We introduce a novel evaluation framework to measure the out-of-sample performance

of prescriptive algorithms.

∙ We create an online application where physicians can test the performance of the

algorithm in real time bridging the gap with the clinical practice.

The work in this chapter appeared at Healthcare Management Science [42].

Chapter 6: The Non-linear Framingham Stroke Risk Score

The vast majority of strokes occur in people without prior history of infarction, highlighting

the need for accurate stroke risk assessment tools for healthy individuals. Standard stroke

risk scores are based on the assumption that there is a linear relationship between the risk
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factors and the prevalence of the disease. However, the mathematical and medical realities

suggest that the interactions of these factors are far from linear, and that some variables gain

or lose significance due to the absence or presence of other variables. This chapter presents

the N-SRS; a new model that predicts the 10-year risk of stroke. Leveraging ML algorithms,

our risk calculator increases the accuracy of event prediction and uncovers new relationships

between the patient characteristics in an interpretable fashion. The main contributions of

this chapter are the following:

∙ We present a new way of leveraging data from longitudinal studies for supervised

learning models, allowing multiple instances of the same patient in the training and

testing cohort.

∙ We develop and validate the first non-linear, interpretable, predictive score for the

10-year risk of stroke, using data from the well-known Framingham Heart Study.

∙ We show how the N-SRS tree structure led to the identification of 23 stroke risk profiles,

highlighting the role of new variables in the disease progression, such as hematocrit

levels or abnormalities shown in the ECG results.

∙ We build a dynamic online application as the user-friendly interface of the algorithms

for use by clinical providers.

The work in this chapter appeared in PLOS one [257].

Chapter 7: Natural Language Processing Methods to identify is-

chemic stroke, acuity and location from radiology reports

Expeditious, accurate data extraction could provide considerable improvement in identifying

stroke in large datasets, triaging critical clinical reports, and quality improvement efforts.

However, the widely available ICD-9/10 codes often misclassify ischemic stroke events and

do not distinguish acuity or location. In this chapter, our goal is to develop a tool that will

enable the extraction of clinical stroke information from unstructured text in an accurate
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and automated fashion. We develop and report a comprehensive framework studying the

performance of simple and complex stroke-specific Natural Language Processing (NLP) and

supervised learning techniques to determine presence, location, and acuity of ischemic stroke

from radiographic text. We summarize our contributions below:

∙ We collect 60,564 radiology reports from 17,864 patients from two large academic

medical centers. Neurology experts labeled 1,359 reports to identify stroke presence,

location, and acuity.

∙ We apply standard text featurization techniques and develop neurovascular specific

word GloVe embeddings.

∙ We train and validate various binary classification algorithms to identify the outcomes

of interest from radiology reports.

∙ We demonstrate that the proposed GloVe word embeddings paired with deep learning

had the best discrimination performance of all methods for our three tasks in both the

derivation and validation cohort.

The work in this chapter appeared in PLOS one [256].

Chapter 8: Pricing Algorithmic Risk

The insurance industry has not developed tailored contracts that protect ML modelers and

decision makers from the litigation risk of algorithmic mistakes. In this chapter, we propose

a new class of insurance products for litigation claims against binary classification models as

well as quantitative tools to evaluate them. This work provides a comprehensive analytical

process to assess the financial risk of such models, laying the foundations in the novel area of

algorithmic insurance. The key contributions of this chapter are:

∙ We propose a quantitative framework that estimates the risk exposure of a model based

on its discrimination performance, interpretability, and generalizability.
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∙ We employ an optimization formulation to simultaneously estimate the premium and

the litigation risk for a given classification model. We extend the formulation using

robust optimization and different types of uncertainty sets around potential scenarios

of loss.

∙ We provide a case-study of breast cancer detection for medical liability and study the

effect of the model parameters in computational experiments.

The work in this chapter has been submitted for publication [30].
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Machine Learning Methods for

Healthcare Applications
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Chapter 2

Imputation of Clinical Covariates in

Time Series

Missing data is a common problem in longitudinal datasets which include multiple instances

of the same individual observed at different points in time. We introduce a new approach,

MedImpute, for imputing missing clinical covariates in multivariate panel data. This approach

integrates patient specific information into an optimization formulation that can be adjusted

for different imputation algorithms. We present the formulation for a 𝐾-nearest neighbors

model and derive a corresponding scalable first-order method med.knn. Our algorithm provides

imputations for datasets with both continuous and categorical features and observations

occurring at arbitrary points in time. In computational experiments on three real-world

clinical datasets, we test its performance on imputation and downstream predictive tasks,

varying the percentage of missing data, the number of Observations Per Patient (OPP), and

the mechanism of missing data. The proposed method improves upon both the imputation

accuracy and downstream predictive performance relative to the best of the benchmark

imputation methods considered. We show that this edge is consistently present both in

longitudinal and EHR datasets as well as in binary classification and regression settings.
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2.1 Introduction

Machine learning applied to healthcare data can generate actionable insights ranging from

predicting the onset of disease to streamlining hospital operations. Statistical models that

leverage the variety and richness of clinical data are still relatively rare and offer an exciting

avenue for further research [60]. As an increasing amount of information becomes available

the medical field expects machine learning to become an indispensable tool for clinicians

[251].

This information will come from various clinical and epidemiological sources. Claims

records, clinical trials, and data from longitudinal studies have been an invaluable resource

for medical research over the past decades. In many of these datasets, data from individual

subjects is gathered over time via continuous or repeated monitoring of both risk factors and

health outcomes. For example, longitudinal cohort studies are used to discover relationships

between exposures of interest and long term health effects including adverse events and

chronic disease. By design, these studies mitigate recall bias in participants by collecting

data prospectively and prior to knowledge of a possible subsequent event [64].

Another valuable source of clinical data are EHR. Over the past years, widespread

uptake of EHR has generated massive datasets that contain quantitative, qualitative, and

transactional data [331]. Their hospital adoption has skyrocketed in part due to the Health

Information Technology for Economic and Clinical Health (HITECH) Act of 2009, which

provided $30 billion in incentives for hospitals and physician practices to adopt EHR systems

[49]. While primarily designed for archiving patient information and performing administrative

healthcare tasks, many researchers have found secondary use of these records for various

clinical informatics applications [314]. Because heterogeneous labs, measurements, and notes

are recorded for patients during each visit, EHR data has a rich and complex structure with

time series information.

However, it is algorithms and not merely datasets that will prove transformative for the

medical field [251]. To make progress, we need to develop new statistical tools tailored to

clinical applications which address the challenges and leverage common structure encountered
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in healthcare data. One of the most important issues is the ubiquitous presence of missing

time series data [265], particularly for variables requiring complex, time-sensitive, or resource-

intensive procedures to collect. There are many reasons for “missingness”, including missed

study visits, patients lost to follow-up, missing information in source documents, lack of

availability (e.g., laboratory tests that were not performed), and clinical scenarios preventing

collection of certain variables (e.g., missing coma scale data in sedated patients) [67]. Thus,

creating a consistent dataset for individuals over multiple visits even at the same healthcare

organization for a fixed set of covariates remains a challenge. Even in longitudinal studies,

where a set of covariates is collected over time, missing data are pervasive and complete

ascertainment of all variables is rare [197].

The presence of missing data poses considerable challenges in the analyses and interpreta-

tion of clinical investigations’ results [357], potentially weakening their validity and leading

to biased inferences. Their presence may complicate interpretation or even invalidate an

otherwise important study [350]. Many methods commonly used for handling missing values

during data analysis can yield biased results, decrease study power, or lead to underestimates

of uncertainty, all reducing the chance of drawing valid conclusions [67]. As many statistical

models and machine learning algorithms rely on complete datasets, it is key to handle the

missing data appropriately.

2.1.1 Review of Methods for Handling Missing Values

In this section, we present some of the most common approaches for missing data imputation.

First, we introduce fairly simple and intuitive techniques that do not require the use of

sophisticated machine learning methods. We then provide brief descriptions of advanced

missing data imputation algorithms, both general purpose methods as well as approaches

tailored to medical records and time series.

Excluding observations that contain missing values has been a standard practice for clinical

research, primarily due to the lack of interpretable, accurate machine learning methods that

can be easily applied by medical researchers [325, 177]. Unsurprisingly, complete case analysis
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may suffer from severe bias and the reduced sample size results in lower study power [67].

Recent advances in machine learning have allowed missing values to be accurately imputed

prior to running statistical analyses on the complete dataset. The benefit of the latter approach

is that once a set (or multiple sets) of complete data has been generated, practitioners can

easily apply their own learning algorithms to the imputed dataset. In healthcare settings,

often times those datasets contain numerous visits of the same person corresponding to

various patterns of missing data. This special structure challenges state-of-the-art missing

data methods which do not consider the connection of multiple observations to the same

individual [72].

A variety of machine learning approaches have been introduced in the literature to

impute missing values ignoring the potential dependency between observations of the same

individual. The simplest approach is the mean imputation that uses the mean of the observed

values to replace those missing for the same covariate [218]. However, mean imputation

underestimates the variance, ignores the correlation between the features leading to poor

imputation outcomes.

Another common method called bpca uses the singular value decomposition (SVD) of the

data matrix and information from a Bayesian prior distribution on the model parameters to

impute missing values. This method outperforms basic SVD methods [250]. In cases where

the level of missing data is above 30%, we have found that this method reduces to mean

imputation, leading to similar biases [119].

Joint modeling assumes the existence of a joint distribution on the entire dataset and a

parametric density function on the data given model parameters. Current implementations

of the method estimate the model parameters using an Expectation-Maximization (EM)

approach in order to maximize the likelihood function. One widely used software package

which implements this approach, Amelia I, assumes that data are drawn from a multivariate

normal distribution [166]. In practice, healthcare data typically violate this condition [325].

Recent review articles indicate that single imputation methods can lead to seriously

misleading results and advise us to consider multiple imputation [177, 218]. This approach,
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implemented in the software package mice, allows for uncertainty about the missing data

by creating several different plausible imputed datasets and appropriately combining results

obtained from each of them [304]. The Amelia I package was extended to multiple

imputation in the Amelia II algorithm [167]. Multiple imputation entails two stages: (1)

generating replacement values for missing data and repeating this procedure many times,

resulting in many datasets with replaced missing information, and (2) analyzing the many

imputed datasets and combining the results [261]. As a result, multiple imputation methods

are slower and require pooling results, which may not be appropriate for certain applications.

For example, in clinical applications, where the interpretability of the underlying model

matters, a single imputed dataset and simple predictive model may be preferred.

Most recently, Bertsimas et al. [32] proposed a general optimization framework with

a predictive model-based cost function that can explicitly handle both continuous and

categorical variables and can be used to generate single, as well as multiple, imputations.

This optimization perspective has led to new scalable algorithms for more accurate data

imputation. We describe this method OptImpute in more detail in Section 2.2.2, which we

use as a foundation for the imputation method proposed in this chapter.

The algorithms above are not tailored to multivariate time series datasets despite the fact

that covariates may be strongly correlated over time [217]. Preliminary work has been done

demonstrating their performance in that setting [371]. Recurrent Neural Network approaches

have also been employed to handle missing values in time series among the covariates for

a particular prediction task [217, 72]. However, these approaches differ from traditional

imputation methods because they also use features derived from the missing pattern itself,

and they require that the downstream learning method is a neural network. In contrast,

our method produces a single imputed dataset that can be used as training data for any

supervised learning method which is preferred for the downstream task.

In practice, simpler techniques are more commonly applied in the panel data setting.

Researchers often opt for a moving average approach with a fixed time window using previous

observations from the same individual [126]. For example, the last-observation-carried-forward
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method is used to impute a present missing value by carrying only the last non-missing value

forward for a defined time period [318]. However, these techniques ignore the correlation

between covariates which is leveraged by other more advanced imputation methods. There

have been a few methods that give weights to instances of the same patient in temporal

data. For example, this approach has been applied to adverse drug events monitoring [372].

In addition, similar methods have been applied in the political science and economics fields

where time-series cross-sectional data are quite common [315].

2.1.2 Contributions

Given multivariate time series data, we develop a novel imputation method that utilizes

optimization and machine learning techniques and outperforms state-of-the-art algorithms.

Our contributions are as follows:

1. We formulate the problem of missing data imputation with time series information

under the MedImpute framework, extending the OptImpute framework proposed by

[32]. Our approach can be adjusted to account for different imputation models based on

predictive methods such as 𝐾-NN, SVM, and trees. We focus on a 𝐾-NN formulation

to solve the problem and derive a corresponding fast first-order algorithm med.knn.

This method provides imputations for datasets with both continuous and categorical

features and observations occurring at arbitrary points in time.

2. We design a series of computational experiments on three real-world sets of data with

direct clinical implications. We consider the Framingham Heart Study (FHS) and the

Parkinson’s Progression Markers Initiative (PPMI), two longitudinal datasets with rich

time series data recorded at regular time intervals, and EHR data from the Dana Farber

Cancer Institute (DFCI), which is less structured and more sparse time series data. We

provide a comprehensive framework for our experiments that tests the performance

of our method across a diverse range of scenarios, varying parameters including: (1)

the percentage of missing data, (2) the number of observations per individual, and (3)
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the mechanism of missing data. For the latter, we consider different mechanisms for

the longitudinal and EHR datasets corresponding to the different patterns of missing

data which are typically observed in real-world datasets. We demonstrate that med.knn

obtains the best predictive performance and lowest imputation error as we vary the

missing percentage from 10% to 50%. In addition, we show that for all datasets, the

relative performance of med.knn improves as we increase the number of observations

per individual. Finally, we demonstrate that med.knn performs well on missing patterns

commonly encountered in practice for both longitudinal studies and EHR data. These

improvements are relative to the best of the comparator methods among amelia, moving

average, mean, bpca, mice, and opt.knn, which are described in Section 2.3.

3. We propose a new custom tuning procedure to efficiently learn the hyperparameters

in the optimization problem avoiding the use of traditional approaches such as Grid

Search. Our methodology allows for decoupling the problem into multiple parts,

enabling parallel computation that can decrease the run time. We create synthetic

EHR data to test the scaling performance of the algorithm as we increase the number

of observations and features. Our results show that the custom tuning approach leads

to both superior scaling performance and better imputation accuracy compared to

standard cross-validation. The tuning procedure is described in Section 2.2.4 and the

scaling experiments with synthetic data are provided in Section 2.4.

The structure of the chapter is as follows. In Section 2.2, we describe our framework

for imputation of clinical covariates in time series and proposed method med.knn. In

Section 2.3, we describe computational experiments on three real-world datasets evaluating

both imputation and prediction accuracy. In Section 2.4, we present scaling experiments on

simulated clinical datasets. In Section 2.5, we discuss properties of our algorithm and key

insights from our experiments. We conclude our work in Section 2.6.
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2.2 Methods

In this section, we describe our proposed method for imputation. In Section 2.2.1, we define

variables and notation that we use in this chapter. In Section 2.2.2, we review the OptImpute

framework for missing data imputation. In Section 2.2.3, we introduce our new framework

for imputation MedImpute which directly models clinical covariates in time series, and we

present the 𝑘-NN based formulation. In Section 2.2.4, we describe a custom tuning procedure

to efficiently learn the hyperparameters in the optimization problem. Finally, in Section 2.2.5

we provide the detailed steps of the first-order method med.knn that can be used to find

high-quality solutions.

2.2.1 Variables and Notation

In this chapter, we consider the single imputation problem for which our task is to fill in

the missing values of dataset X ∈ R𝑛×𝑝 with 𝑛 observations (rows) and 𝑝 features (columns).

Without loss of generality, we assume that the first 𝑝0 features are continuous and that the

next 𝑝1 = 𝑝− 𝑝0 features are categorical, and the missing and known indices are specified by

the following sets:

ℳ0 = {(𝑖, 𝑑) : entry 𝑥𝑖𝑑 is missing, 1 ≤ 𝑑 ≤ 𝑝0, 1 ≤ 𝑖 ≤ 𝑛},

𝒩0 = {(𝑖, 𝑑) : entry 𝑥𝑖𝑑 is known, 1 ≤ 𝑑 ≤ 𝑝0, 1 ≤ 𝑖 ≤ 𝑛},

ℳ1 = {(𝑖, 𝑑) : entry 𝑥𝑖𝑑 is missing, 𝑝0 + 1 ≤ 𝑑 ≤ 𝑝0 + 𝑝1, 1 ≤ 𝑖 ≤ 𝑛},

𝒩1 = {(𝑖, 𝑑) : entry 𝑥𝑖𝑑 is known, 𝑝0 + 1 ≤ 𝑑 ≤ 𝑝0 + 𝑝1, 1 ≤ 𝑖 ≤ 𝑛},

ℐ = {𝑖 : x𝑖 has one or more missing values}.

(2.1)

Here,ℳ0,ℳ1 are the sets of indices of the missing values in the continuous and categorical

variables, respectively. Similarly, 𝒩0, 𝒩1 are the sets of indices of the known values in the

continuous and categorical variables, respectively. ℐ is the set of rows which contains at least

one missing value.

We suppose that all of the continuous variables are normalized with unit standard
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deviation and that the 𝑑th categorical variable takes value among 𝑘𝑑 classes. Given this data,

we introduce the decision variables W ∈ R𝑛×𝑝0 , V ∈ {1, . . . , 𝑘𝑝0+1} × . . . × {1, . . . , 𝑘𝑝0+𝑝1}
to be the matrices of imputed continuous and categorical variables, respectively. For each

entry 𝑥𝑖𝑑, 𝑤𝑖𝑑 is the imputed value if 𝑑 ∈ {1, . . . , 𝑝0}, and 𝑣𝑖𝑑 is the imputed value if

𝑑 ∈ {𝑝0 + 1, . . . , 𝑝0 + 𝑝1}. We refer to the full imputation for observation x𝑖 as (w𝑖,v𝑖). For

the MedImpute method, we also assume that each observation x𝑖 corresponds to a particular

patient with the unique ID 𝑦𝑖 observed at time-stamp 𝑡𝑖.

2.2.2 Review of OptImpute

Next, we review the OptImpute framework for general imputation which we use as a foundation

for our method. In this approach, we formulate the missing data problem as an optimization

problem in which all entries are simultaneously filled in and used as covariates to predict

the other entries. Our key decision variables are the imputed values {𝑤𝑖𝑑 : (𝑖, 𝑑) ∈ℳ0} and

{𝑣𝑖𝑑 : (𝑖, 𝑑) ∈ℳ1}. We will also introduce auxiliary decision variables Z. For any given set

of imputed values and a corresponding data X, we associate a cost function 𝑐(·) to it. Thus,

our objective is to solve the following optimization problem:

min 𝑐(Z,W,V;X)

s.t. 𝑤𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩0,

𝑣𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩1,

(Z,W,V) ∈ 𝒵,

(2.2)

where 𝒵 is the set of all feasible combinations (Z,W,V) of auxiliary vectors and imputations.

In this chapter, we only consider an OptImpute formulation based upon 𝐾-Nearest Neighbors

(𝐾-NN), however it is also possible to consider formulations based upon SVM and trees [32].

In the 𝐾-NN formulation, the objective is to impute the missing values so that each point

is as close to its 𝐾-nearest neighbors as possible. First, we define a distance metric on the
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dataset. Given two observations 𝑖 and 𝑗, we say that the distance between them is:

𝑑𝑖𝑗 :=

𝑝0∑︁
𝑑=1

(𝑤𝑖𝑑 − 𝑤𝑗𝑑)
2 +

𝑝0+𝑝1∑︁
𝑑=𝑝0+1

1{𝑣𝑖𝑑 ̸=𝑣𝑗𝑑}. (2.3)

In this distance metric, we weight the contributions from the continuous and categorical

variables equally, but it is also possible to introduce a scaling factor to weight these terms

differently. Given this distance metric, we introduce the binary variables Z ∈ {0, 1}|ℐ|×𝑛,

where

𝑧𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝑗 is among the 𝐾-nearest neighbors of 𝑖

with respect to distance metric (2.3),

0, otherwise.

(2.4)

The OptImpute formulation with the 𝐾-NN objective function is

min
∑︁
𝑖∈ℐ

𝑛∑︁
𝑗=1

𝑧𝑖𝑗

(︃
𝑝0∑︁
𝑑=1

(𝑤𝑖𝑑 − 𝑤𝑗𝑑)
2 +

𝑝0+𝑝1∑︁
𝑑=𝑝0+1

1{𝑣𝑖𝑑 ̸=𝑣𝑗𝑑}

)︃

s.t. 𝑤𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩0,

𝑣𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩1,

𝑧𝑖𝑖 = 0 𝑖 ∈ ℐ,
𝑛∑︁

𝑗=1

𝑧𝑖𝑗 = 𝐾 𝑖 ∈ ℐ,

Z ∈ {0, 1}|ℐ|×𝑛,

(2.5)

where ℐ = {𝑖 : x𝑖 has one or more missing values}. Problem (2.5) is non-convex with integer

constraints for the categorical variables. In order to solve this problem, the authors find near

optimal feasible solutions using first-order methods with random and targeted warm starts,

resulting in a new imputation algorithm called opt.knn [32].

At a high level, the opt.knn algorithm works as follows. The user provides as input an

incomplete data matrix X, a convergence threshold 𝛿0 > 0, and a warm start imputation
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(W0,V0). The output of the algorithm is the full matrix X𝑖𝑚𝑝 with the imputed variables.

In each iteration, we alternate updating the auxiliary variables Z and the imputation (W,V)

using either CD or Block Coordinate Descent (BCD). The problem of updating Z given an

imputation reduces to a simple sorting procedure on the distances. To update (W,V) in

CD, we locally optimize each imputed value (𝑤𝑖𝑑 or 𝑣𝑖𝑑) one at a time. To update (W,V) in

BCD, for each continuous or categorical feature we solve a Quadratic Optimization problem

or a MIO problem, respectively. We continue updating these values until the objective value

stops improving by a sufficiently large amount 𝛿0. Notice that the objective function value

is strictly decreasing by at least 𝛿0 at every iteration until the algorithm terminates. As a

result, the number of steps required for the algorithm termination is:

𝑇 =
1

𝛿0
𝑐(Z0,W0,V0;X), (2.6)

where W0,V0 are the warmstart values, X is data, and Z0 is the initialized auxiliary variables.

There are no analytical guarantees that the algorithm will find the globaly optimal solution

[358]. We repeat this process for multiple warm starts and take the solution with the

best objective value to be the final imputation. The algorithm for a single warm start is

summarized in Algorithm 1.

Algorithm 1 opt.knn
Input: Incomplete data matrix X,

warm start [W0,V0],
max number of iterations 𝑇 ≥ 0.

Output: X𝑖𝑚𝑝 a full matrix with imputed values.
Procedure:

Initialize 𝑡← 0, W* ←W0, V* ← V0.
while 𝑡 < 𝑇 do

1 Find the 𝐾 nearest neighbors for each observation 𝑖, and update Z* accordingly.
2 Update the imputation (W*,V*), following either BCD
or CD (details in [32]).
3 Increment 𝑡← 𝑡 + 1.

end while
return X𝑖𝑚𝑝 ← [W*;V*].
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2.2.3 MedImpute

In this section, we present the MedImpute framework for imputation of clinical covariates in

time series. We extend the general OptImpute framework by weighting instances of the same

person in the imputation model. We focus on the 𝐾-NN classifier and provide the specific

formulation to solve this problem. Our new framework takes into account the time series

structure frequently encountered in healthcare data. In addition, unlike univariate time series

methods, this approach leverages statistical correlations between multiple clinical covariates.

Suppose that we are given the same problem setup for single imputation as described in

Section 2.2.2. In addition, assume that each observation 𝑖 corresponds to an individual patient

with unique identifier 𝑦𝑖 ∈ {1, . . . ,𝑀} recorded at a particular time point. For datasets with

multiple observations of individuals over time, we have 𝑀 < 𝑛. Define 𝑡𝑖 ∈ R+ as the number

of (days/months/years) after a reference date that observation 𝑖 was recorded. It follows that

|𝑡𝑖 − 𝑡𝑗| is the time difference in (days/months/years) between observations 𝑖 and 𝑗. Note

that this framework captures the common structure of many clinical datasets collected over

time, including longitudinal studies, insurance claims, and EHR data.

For each clinical covariate 𝑑 = 1, . . . , 𝑝, we introduce the parameters 𝛼𝑑, ℎ𝑑. We learn

𝛼𝑑 and ℎ𝑑 via a custom tuning procedure which we describe in Section 2.2.4. The first

learned parameter 𝛼𝑑 ∈ [0, 1] is the relative weight given to the time series component of

the objective function for variable 𝑑. At the extremes, 𝛼𝑑 = 0 corresponds to imputing

covariate 𝑑 under the OptImpute objective, and 𝛼𝑑 = 1 corresponds to imputing covariate 𝑑

using each individual’s time series information independently. The second learned parameter

ℎ𝑑 ∈ (0,∞) is the halflife parameter for the covariate 𝑑. This parameter is called the “halflife"

parameter because it is the halflife of an exponential decay function 𝑓(𝑥) = 2−𝑥/ℎ𝑑 that we

use to determine the relative weights for multiple observations of the same patient.

We introduce this parameter ℎ𝑑 so that observations from the same individual at nearby

points in time will be weighted most heavily in the imputation. We make this design decision

under the assumption that each clinical covariate can be approximated as a continuous

function which is relatively smooth over time. For example, Body Mass Index (BMI) is
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a clinical covariate with values that are relatively smooth over time. Under this model,

we assume that a BMI measurement from one week ago is more predictive of a patient’s

current BMI than a BMI measurement from one year ago. However, we do not make any

assumptions about how much more/less predictive these different measurements are, only

that their relative weights follow an exponential distribution. The halflife of this exponential

distribution for covariate 𝑑 is the modelling parameter that we refer to as ℎ𝑑.

For each pair of observations 𝑖, 𝑗, covariate 𝑑, and corresponding halflife parameter ℎ𝑑,

define the two derived parameters:

𝐶𝑖𝑗𝑑 =

⎧⎨⎩ 2−|𝑡𝑖−𝑡𝑗 |/ℎ𝑑 , if 𝑦𝑖 = 𝑦𝑗,

0, otherwise,

𝐶𝑖𝑗𝑑 =
𝐶𝑖𝑗𝑑∑︁

{𝑗′:𝑦𝑖=𝑦𝑗′ ,𝑗
′ ̸=𝑖}

𝐶𝑖𝑗𝑑

.

(2.7)

The first derived parameter 𝐶𝑖𝑗𝑑 is the relative weight that observation 𝑗 is given for time-

series based imputation of observation 𝑖 in covariate 𝑑. Note that this parameters is only

non-zero when 𝑦𝑖 = 𝑦𝑗, i.e. 𝑖 and 𝑗 are observations from the same patient. For example, if

ℎ𝑑 = 7 days, then past observations of covariate 𝑑 from one week and two weeks ago from the

same patient would be given relative weights 0.5 and 0.25, respectively. The second derived

parameter, 𝐶𝑖𝑗𝑑, is the normalized variation of 𝐶𝑖𝑗𝑑. In particular, 𝐶𝑖𝑗𝑑 is the relative weight

that observation 𝑗 is given to impute observation 𝑖 in covariate 𝑑, divided by the sum of all

relative weights of observations from the same patient in covariate 𝑑.
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The MedImpute formulation with the 𝐾-NN objective function is

min
1

𝐾

∑︁
𝑖∈ℐ

𝑛∑︁
𝑗=1

𝑧𝑖𝑗

(︃
𝑝0∑︁
𝑑=1

(1− 𝛼𝑑)(𝑤𝑖𝑑 − 𝑤𝑗𝑑)
2 +

𝑝0+𝑝1∑︁
𝑑=𝑝0+1

(1− 𝛼𝑑)1{𝑣𝑖𝑑 ̸=𝑣𝑗𝑑}

)︃

+
∑︁
𝑖∈ℐ

𝑛∑︁
𝑗=1

(︃
𝑝0∑︁
𝑑=1

𝛼𝑑𝐶𝑖𝑗𝑑(𝑤𝑖𝑑 − 𝑤𝑗𝑑)
2 +

𝑝0+𝑝1∑︁
𝑑=𝑝0+1

𝛼𝑑𝐶𝑖𝑗𝑑1{𝑣𝑖𝑑 ̸=𝑣𝑗𝑑}

)︃

s.t. 𝑤𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩0,

𝑣𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩1,

𝑧𝑖𝑖 = 0 𝑖 ∈ ℐ,
𝑛∑︁

𝑗=1

𝑧𝑖𝑗 = 𝐾 𝑖 ∈ ℐ,

Z ∈ {0, 1}|ℐ|×𝑛,

(2.8)

where ℐ = {𝑖 : x𝑖 has one or more missing values} and 𝛼𝑑, 𝐶𝑖𝑗𝑑 are constants. This problem

is equivalent to (2.5) plus a penalty term in the objective for each feature 𝑑 with different

weights 𝛼𝑑 in order to account for instances of the same person in the dataset. At the optimal

solution, the objective function is the sum of the distances from each point to its 𝐾-nearest

neighbors with respect to distance metric (2.3), plus the sum of the distances from each point

to other observations from the same individual.

We derive a fast algorithm to provide high quality solutions to this problem using first

order methods with random restarts, alternatively updating the binary variables and the

imputed values as in opt.knn [26]. In Algorithm 2, we summarize the med.knn method for a

single warm start. In the next section, we describe the steps of this algorithm in detail.

MedImpute provides a flexible framework that can be easily extended as well. For example,

we may consider other predictive models besides 𝐾-NN such as support vector machines

and decision tree based methods by adjusting the objective functions of the corresponding

OptImpute formulations appropriately. We refer the reader to [32] for more discussion on

these alternate formulations, which is a possible area of future work. In these cases, we add

the same penalty term to the objective functions that we added in formulation (2.8), and
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we solve using first-order methods with random starts. In this manuscript, we focus on the

𝐾-NN formulation due to the method’s simplicity that is close to the medical practice. The

idea of imputing a patient’s missing values using the mean or the mode of the covariates

from the most similar individuals to that observation is intuitive. Various implementations

of the heuristic 𝐾-NN approach are already widely accepted and used in practice [88]. For

these reasons, we decided to extend upon those combining the time series component and an

optimization framework.

The method can also be adapted to a multiple imputation setting. However, while multiple

imputation has been considered for several years to be the most accurate method for dealing

with missing data [299], there is a tradeoff because single imputation is more interpretable.

In particular, with single imputation we obtain one downstream predictive model that can

be easily presented and explained to an entire clinical team, which is a critical step in the

process of data-driven medical research [316].

2.2.4 Learning 𝛼𝑑 and ℎ𝑑

In this section, we describe a custom tuning procedure to efficiently learn 𝛼𝑑 and ℎ𝑑, which are

hyperparameters in the optimization problem (2.8). We run this custom tuning procedure as

a pre-processing step before the med.knn algorithm, which allows us to learn these parameters

without using cross-validation. This is a heuristic procedure which decouples the problem into

multiple parts, first learning ℎ𝑑 for each covariate, and then learning 𝛼𝑑 for each covariate. As

a result, this custom tuning procedure is more computationally efficient and scales to larger

problem sizes than cross-validation. In Section 2.4, we present the results from computational

experiments comparing the speed and imputation accuracy of this custom tuning procedure

against a traditional cross-validation method for selecting 𝛼𝑑 and ℎ𝑑.

In the first step of the custom tuning procedure, we learn the halflife parameter ℎ𝑑

for each covariate. As in cross-validation, we tune the halflife parameters over a discrete

range of values, denoted as ℋ. For example, in the computational experiments, we set

ℋ = {1, 7, 30, 90, 365, 1000}, representing halflife values of 1 day, 1 week, 1 month, etc. For
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each covariate 𝑑, we compute the leave-one-out error for each halflife value ℎ𝑑 ∈ ℋ. In

particular, to compute the leave-one-out error for the halflife value ℎ𝑑, first we derive the

weights 𝐶𝑖𝑗𝑑, then we impute the known values in covariate 𝑑 using these weights, and finally

we compute the sum-of-squared errors. Afterwards, we select the halflife parameter ℎ𝑑 which

yields the lowest leave-one-out error.

For each continuous covariate 𝑑 ∈ {1, . . . , 𝑝0}, the leave-one-out error is defined as:

∑︁
{𝑖:(𝑖,𝑑)∈𝒩0}

(𝑥𝑖𝑑 − �̂�𝑖𝑑)
2, (2.9)

where:

�̂�𝑖𝑑 :=
𝑛∑︁

𝑗=1

𝐶𝑖𝑗𝑑𝑥𝑗𝑑. (2.10)

Here, �̂�𝑖𝑑 is equivalent to the MedImpute imputation of a continuous covariate 𝑥𝑖𝑑 when

𝛼𝑑 = 1. For each categorical covariate 𝑑 ∈ {𝑝0 + 1, . . . , 𝑝0 + 𝑝1}, the leave-one-out error is

defined as: ∑︁
{𝑖:(𝑖,𝑑)∈𝒩1}

1{𝑥𝑖𝑑 ̸=𝑣𝑖𝑑}, (2.11)

where:

𝑣𝑖𝑑 := arg max
𝑣𝑖𝑑

𝑛∑︁
𝑗=1

𝐶𝑖𝑗𝑑1{𝑥𝑗𝑑=𝑣𝑖𝑑}. (2.12)

Intuitively, 𝑣𝑖𝑑 is the weighted mode of covariate 𝑑, where the weights are 𝐶𝑖𝑗𝑑. This is

equivalent to the MedImpute imputation of the categorical covariate 𝑥𝑖𝑑 when 𝛼𝑑 = 1.

Note that we are able to learn ℎ𝑑 independently from 𝛼𝑑 because the selection of 𝐶𝑖𝑗𝑑

which minimizes the objective function (2.8) for any fixed value of 𝛼𝑑 also minimizes

the objective function for any choice of 𝛼𝑑 ∈ [0, 1]. Similarly, we can learn the halflife

parameters {ℎ1, ℎ2, . . . , ℎ𝑝} independently from one another, because the optimal choice

of ℎ𝑑 which minimizes the objective function (2.8) does not depend upon the values of

{ℎ1, . . . , ℎ𝑑−1, ℎ𝑑+1, . . . , ℎ𝑝}. Therefore, in this custom tuning procedure, we take advantage

of this fact, and tune each of the halflife parameters as an initial step.

44



In the second step of the custom tuning procedure, we learn the MedImpute weight

parameter 𝛼𝑑 for each covariate. As in cross-validation, we tune the MedImpute weight

parameters over a discrete range of values, denoted as 𝒜. For example, in the computational

experiments, we set 𝒜 = {0, 0.05, . . . , 0.95, 1.0}, denoting relative MedImpute weights of

0%, 5%, . . . , 100%, respectively. For each covariate 𝑑, we compute the 𝑘-fold error for

each MedImpute weight value 𝛼𝑑 ∈ 𝒜. In particular, to compute the 𝑘-fold error for the

MedImpute weight value 𝛼𝑑, first we split the dataset into 𝑘 subsets (aka “folds"), next we

impute each data subset using the rest of the subsets as training data, and finally we compute

the total sum-of-squared errors across all of the folds. We select the MedImpute weight

parameter 𝛼𝑑 which yields the lowest 𝑘-fold error. For continuous covariates, the 𝑘-fold error

is defined as:

𝑘∑︁
ℓ=1

∑︁
{𝑖:(𝑖,𝑑)∈𝒩 ℓ

0}

(𝑥𝑖𝑑 − �̂�ℓ
𝑖𝑑)

2, (2.13)

where 𝒩 ℓ
0 are the known continuous values in the ℓth fold. The imputed values �̂�ℓ

𝑖𝑑 are

given by:

�̂�ℓ
𝑖𝑑 := (1− 𝛼𝑑)𝑤

OPTℓ
𝑖𝑑 + 𝛼𝑑

∑︁
{𝑖:(𝑖,𝑑)∈𝒩0∖𝒩 ℓ

0}

𝐶𝑖𝑗𝑑𝑥𝑗𝑑, (2.14)

where 𝑤OPTℓ
𝑖𝑑 is the OptImpute imputation of 𝑥𝑖𝑑 using the data from the other 𝑘− 1 folds,

and 𝒩0 ∖ 𝒩 ℓ
0 are the known continuous values not in the ℓth fold. For categorical covariates,

the 𝑘-fold error is defined as:

𝑘∑︁
ℓ=1

∑︁
{𝑖:(𝑖,𝑑)∈𝒩 ℓ

1}

1{𝑥𝑖𝑑 ̸=𝑣ℓ𝑖𝑑}
, (2.15)

where 𝒩 ℓ
1 are the known categorical values in the ℓth fold. The imputed values 𝑣ℓ𝑖𝑑 are

given by:
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𝑣ℓ𝑖𝑑 := arg max
𝑣𝑖𝑑

⎡⎣(1− 𝛼𝑑)1{𝑣OPTℓ
𝑖𝑑 =𝑣𝑖𝑑}

+ 𝛼𝑑

∑︁
{𝑖:(𝑖,𝑑)∈𝒩0∖𝒩 ℓ

0}

𝐶𝑖𝑗𝑑1{𝑥𝑗𝑑=𝑣𝑖𝑑}

⎤⎦ . (2.16)

where 𝑣OPTℓ
𝑖𝑑 is the OptImpute imputation of 𝑥𝑖𝑑 using the data from the other 𝑘 − 1

folds, and 𝒩1 ∖ 𝒩 ℓ
1 are the known categorical values not in the ℓth fold. Intuitively, 𝑣ℓ𝑖𝑑 is the

weighted mode of the OptImpute value and the other known values of the same covariate,

where the weights are (1− 𝛼𝑑) and 𝛼𝑑𝐶𝑖𝑗𝑑, respectively.

Finally, we note that there is another hyperparameter that we may tune for the med.knn

algorithm, 𝐾, which is the number of nearest-neighbors. In the computational experiments,

we fix 𝐾 = 10, which works well for the datasets that we consider here. Previously, it has

been shown that the OptImpute methods are relatively robust even if their hyperparameters

are misspecified [32]. Thus, while the accuracy of the med.knn algorithm can be improved

slightly by tuning over 𝐾, the relative improvement in imputation accuracy is outweighed by

the increased computational costs.

Algorithm 2 med.knn
Input: Incomplete data matrix X,

warm start [W0,V0],
max number of iterations 𝑇 ≥ 0,
weight parameters {𝛼𝑑}𝑝𝑑=1,
halflife parameters {ℎ𝑑}𝑝𝑑=1.

Output: X𝑖𝑚𝑝 a full matrix with imputed values.
Procedure:

Initialize 𝑡← 1, W* ←W0, V* ← V0.
while 𝑡 < 𝑇 do

1 Find the 𝐾 nearest neighbors for each observation 𝑖, and update Z* accordingly.
2 Update the imputation (W*,V*), following either BCD
or CD (details in Section 2.2.5).
3 Increment 𝑡← 𝑡 + 1.

end while
return X𝑖𝑚𝑝 ← [W*;V*].
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2.2.5 The med.knn algorithm

In this section, we provide details for the updates in the med.knn imputation algorithm.

This is a first-order method to find locally optimal solutions to Problem (2.5). As in the

opt.knn algorithm, in this algorithm we alternatively update Z and (W,V) until the solution

converges. The update for Z is identical to the one for opt.knn, and is computed with a

simple sorting procedure on the distances. However, the update for (W,V) is modified and

depends upon the MedImpute parameters 𝛼𝑑, 𝐶𝑖𝑗𝑑. As in opt.knn, we can update the values

of (W,V) either with BCD or CD which are described in the following subsections. The

opt.knn updates for both BCD and CD are equivalent to the corresponding med.knn updates

when 𝛼𝑑 = 0 for all 𝑑 = 1, . . . , 𝑝.

Block Coordinate Descent

In this approach, we update all of the imputed values at once. We call this approach BCD

because we update the variables (W,V) as an entire block, keeping Z fixed. Our formulation

Problem (2.8) decomposes by dimension into 𝑝0 Quadratic Optimization problems for the

continuous features and 𝑝1 MIO problems for the categorical features. To update the imputed

values w𝑑 for continuous feature 𝑑 = 1, . . . , 𝑝0, we solve:

min
w𝑑

∑︁
𝑖∈ℐ

𝑛∑︁
𝑗=1

𝑧𝑖𝑗(1− 𝛼𝑑)(𝑤𝑖𝑑 − 𝑤𝑗𝑑)
2 +

∑︁
𝑖∈ℐ

𝑛∑︁
𝑗=1

𝛼𝑑𝐶𝑖𝑗𝑑(𝑤𝑖𝑑 − 𝑤𝑗𝑑)
2

s.t. 𝑤𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩0.

(2.17)

Taking the partial derivative of the objective function with respect to 𝑤𝑖𝑑 for some missing

entry (𝑖, 𝑑) ∈ℳ0 and setting it to zero, we obtain after some simplifications:
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0 =

(︂
(1− 𝛼𝑑)𝐾 + 𝛼𝑑 +

∑︁
𝑗∈ℐ

[(1− 𝛼𝑑)𝑧𝑗𝑖 + 𝛼𝑑𝐶𝑗𝑖𝑑]

)︂
𝑤𝑖𝑑

−
∑︁

(𝑗,𝑑)∈ℳ0

[(1− 𝛼𝑑)(𝑧𝑖𝑗 + 𝑧𝑗𝑖) + 𝛼𝑑(𝐶𝑖𝑗𝑑 + 𝐶𝑗𝑖𝑑)]𝑤𝑗𝑑

−
∑︁

(𝑗,𝑑)∈𝒩0

[(1− 𝛼𝑑)(𝑧𝑖𝑗 + 1{𝑗∈ℐ}𝑧𝑗𝑖) + 𝛼𝑑(𝐶𝑖𝑗𝑑 + 1{𝑗∈ℐ}𝐶𝑗𝑖𝑑)]𝑥𝑗𝑑.

(2.18)

This follows directly from equation (9) in [32]. For each feature 𝑑 = 1, . . . , 𝑝0, we have a

system of equations of the above form which we can solve to determine the optimal imputed

values 𝑤𝑖𝑑, (𝑖, 𝑑) ∈ ℳ0. Simplifying the notation, suppose that the missing values for the

dimension 𝑑 are ̃︀w𝑑 := (𝑤1𝑑, . . . , 𝑤𝑎𝑑) and the known values are x𝑑 := (𝑥(𝑎+1)𝑑, . . . , 𝑥𝑛𝑑). Then

the set of optimal imputed values 𝑤𝑑
𝑖𝑑, (𝑖, 𝑑) ∈ℳ0 is the solution to the linear system

((1− 𝛼𝑑)Q + 𝛼𝑑P)̃︀w𝑑 = ((1− 𝛼𝑑)R + 𝛼𝑑Y)x𝑑, (2.19)

where the matrices Q, P, R, and Y are defined as

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐾 +

∑︀
𝑗∈ℐ 𝑧𝑗1 − 2𝑧11 −𝑧12 − 𝑧21 . . . −𝑧1𝑎 − 𝑧𝑎1

−𝑧21 − 𝑧12 𝐾 +
∑︀

𝑗∈ℐ 𝑧𝑗2 − 2𝑧22 . . . −𝑧2𝑎 − 𝑧𝑎2
...

... . . . ...

−𝑧𝑎1 − 𝑧1𝑎 −𝑧𝑎2 − 𝑧2𝑎 . . . 𝐾 +
∑︀

𝑗∈ℐ 𝑧𝑗𝑎 − 2𝑧𝑎𝑎

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.20)

P =

⎡⎢⎢⎢⎢⎢⎢⎣

∑︀
𝑗∈ℐ 𝐶𝑗1𝑑 − 2𝐶11𝑑 −𝐶12𝑑 − 𝐶21𝑑 . . . −𝐶1𝑎𝑑 − 𝐶𝑎1𝑑

−𝐶21𝑑 − 𝐶12𝑑

∑︀
𝑗∈ℐ 𝐶𝑗2𝑑 − 2𝐶22𝑑 . . . −𝐶2𝑎𝑑 − 𝐶𝑎2𝑑

...
... . . . ...

−𝐶𝑎1𝑑 − 𝐶1𝑎𝑑 −𝐶𝑎2𝑑 − 𝐶2𝑎𝑑 . . .
∑︀

𝑗∈ℐ 𝐶𝑗𝑎𝑑 − 2𝐶𝑎𝑎𝑑

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.21)
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R =

⎡⎢⎢⎢⎣
𝑧1(𝑎+1) + 1{(𝑎+1)∈ℐ}𝑧(𝑎+1)1 . . . 𝑧1𝑛 + 1{𝑛∈ℐ}𝑧𝑛1

...
...

𝑧𝑎(𝑎+1) + 1{(𝑎+1)∈ℐ}𝑧(𝑎+1)𝑎 . . . 𝑧𝑎𝑛 + 1{𝑛∈ℐ}𝑧𝑛𝑎

⎤⎥⎥⎥⎦ , (2.22)

Y =

⎡⎢⎢⎢⎣
𝐶1(𝑎+1)𝑑 + 1{(𝑎+1)∈ℐ}𝐶(𝑎+1)1𝑑 . . . 𝐶1𝑛𝑑 + 1{𝑛∈ℐ}𝐶𝑛1𝑑

...
...

𝐶𝑎(𝑎+1)𝑑 + 1{(𝑎+1)∈ℐ}𝐶(𝑎+1)𝑎𝑑 . . . 𝐶𝑎𝑛𝑑 + 1{𝑛∈ℐ}𝐶𝑛𝑎𝑑

⎤⎥⎥⎥⎦ . (2.23)

Without loss of generality, there exists a closed-form solution

̃︀w𝑑 = ((1− 𝛼𝑑)Q + 𝛼𝑑P)−1((1− 𝛼𝑑)R + 𝛼𝑑Y)x𝑑 (2.24)

to this system of equations for each feature 𝑑 = 1, . . . , 𝑝0. To update the imputed values

v𝑑 for each categorical feature 𝑑 = (𝑝0 + 1), . . . , 𝑝, we solve the following MIO problem:

min
v𝑑

∑︁
𝑖∈ℐ

𝑛∑︁
𝑗=1

((1− 𝛼𝑑)𝑧𝑖𝑗 + 𝛼𝑑𝐶𝑖𝑗𝑑)𝑦𝑖𝑗

s.t. 𝑣𝑖𝑑 = 𝑥𝑖𝑑 (𝑖, 𝑑) ∈ 𝒩1,

𝑣𝑖𝑑 − 𝑣𝑗𝑑 ≤ 𝑦𝑖𝑗𝑘𝑑 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛,

𝑣𝑗𝑑 − 𝑣𝑖𝑑 ≤ 𝑦𝑖𝑗𝑘𝑑 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛,

𝑦𝑖𝑗 ∈ {0, 1}|ℐ|×𝑛.

(2.25)

This is a MIO problem, which is practically solvable as the BCD update for opt.knn. Since the

BCD update step requires inverting a matrix with 𝑂(𝑛2) entries and solving an optimization

problem with 𝑂(𝑛2) binary variables, this method works best for smaller problem sizes

𝑛 ≤ 10, 000.
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Coordinate Descent

In CD, we update the imputed values one at a time. In order to update the imputed value for

𝑥𝑖𝑑, we fix all of the variables in Problem (2.8) except for 𝑤𝑖𝑑 or 𝑣𝑖𝑑 and solve the corresponding

one-dimensional optimization problem. This results in fast, closed-form updates for both the

continuous and categorical variables. Each 𝑤𝑖𝑑, (𝑖, 𝑑) ∈ℳ0 is imputed as the minimizer of

the following:

min
𝑤𝑖𝑑

∑︁
𝑟∈ℐ

𝑛∑︁
𝑗=1

𝑧𝑟𝑗

𝑝0∑︁
𝑑=1

(1− 𝛼𝑑)(𝑤𝑟𝑑 − 𝑤𝑗𝑑)
2 +

∑︁
𝑟∈ℐ

𝑛∑︁
𝑗=1

𝑝0∑︁
𝑑=1

𝛼𝑑𝐶𝑟𝑗𝑑(𝑤𝑟𝑑 − 𝑤𝑗𝑑)
2. (2.26)

Solving the above gives the closed-form solution for every (𝑖, 𝑑) ∈ℳ0:

𝑤𝑖𝑑 =

∑︀𝑛
𝑗=1((1− 𝛼𝑑)𝑧𝑖𝑗 + 𝛼𝑑𝐶𝑖𝑗𝑑)𝑤𝑗𝑑 +

∑︀
𝑗∈ℐ((1− 𝛼𝑑)𝑧𝑗𝑖 + 𝛼𝑑𝐶𝑗𝑖𝑑)

𝐾 +
∑︀𝑛

𝑗=1 𝛼𝑑𝐶𝑖𝑗𝑑 +
∑︀

𝑗∈ℐ((1− 𝛼𝑑)𝑧𝑗𝑖 + 𝛼𝑑𝐶𝑗𝑖𝑑)
. (2.27)

Similarly, each categorical variable 𝑣𝑖𝑑, (𝑖, 𝑑) ∈ ℳ1 is imputed as the minimizer of the

following:

min
𝑣𝑖𝑑

∑︁
𝑟∈ℐ

𝑛∑︁
𝑗=1

𝑧𝑟𝑗

𝑝0+𝑝1∑︁
𝑑=𝑝0+1

(1− 𝛼𝑑)1{𝑣𝑟𝑑 ̸=𝑣𝑗𝑑} +
∑︁
𝑟∈ℐ

𝑛∑︁
𝑗=1

𝑝0+𝑝1∑︁
𝑑=𝑝0+1

𝛼𝑑𝐶𝑟𝑗𝑑1{𝑣𝑟𝑑 ̸=𝑣𝑗𝑑}. (2.28)

Suppose that the value of categorical variable 𝑣𝑖𝑑 is one of 𝑘𝑑 distinct categories {1, 2, . . . , 𝑘𝑑}.
Then, the solution to problem (2.28) is

arg max
𝑘∈{1,...,𝑘𝑑}

[︃
𝑛∑︁

𝑗=1

(︂
(1− 𝛼𝑑)𝑧𝑖𝑗 + 𝛼𝑑𝐶𝑖𝑗𝑑

)︂
1{𝑣𝑗𝑑=𝑘} +

∑︁
𝑗∈ℐ

(︂
(1− 𝛼𝑑)𝑧𝑗𝑖 + 𝛼𝑑𝐶𝑖𝑗𝑑

)︂
1{𝑣𝑗𝑑=𝑘}

]︃
.

(2.29)

Here, we set the imputed variable to be the value with the highest frequency in the neigh-

borhood, with instances of the same person 𝑖 receiving additional weight calibrated by the

parameters {𝐶𝑖𝑗𝑑}𝑛𝑗=1 and 𝛼𝑑.

This approach scales to large problem sizes (𝑛 in the 100,000’s), and it is the method that

we implement for the computational experiments.
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2.3 Computational Experiments on Real-World Clini-

cal Datasets

In this section, we run a series of computational experiments testing the performance of

med.knn imputing missing values in real-world clinical datasets. In Section 2.3.1, we provide

an overview of the three datasets and their baseline characteristics. In Section 2.3.2, we

describe the mechanisms for generating Missing Not At Random (MNAR) data that are used

in some of the experiments. In Section 2.3.3, we describe the setup of the computational

experiments, and we describe the imputation methods that we run for comparison across all

of the computational experiments. In Section 2.3.4, we report the results of the experiments

on the imputation tasks. In Section 2.3.5, we report the results of the experiments on the

downstream predictive tasks. In Section 2.3.6 we discuss the results and major takeaways

from the computational experiments.

2.3.1 Description of Real-World Clinical Datasets

In this section we describe the three real-world clinical datasets used in the computational

experiments.

Framingham Heart Study (FHS) dataset

The FHS was started in 1948 with the goal of observing a large population of healthy adults

over time to better understand the factors that lead to cardiovascular disease. Over 80 variables

were collected from 5,209 people at a time for more than 40 years. The FHS is arguably the

most influential longitudinal study in the field of cardiovascular and cerebrovascular research.

This data has now been used in more than 2,400 studies and is considered one of the top 10

cardiology advances of the twentieth century alongside the electrocardiogram and open-heart

surgery [209].

In our computational experiments, we consider all individuals from the FHS Original

Cohort [122] with 10 or more observations, which includes 𝑀 = 1, 107 unique patients.
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For each patient, we take the 10 most recent observations, so the dataset has 𝑛 = 11, 070

observations total. We include 𝑝 = 13 continuous (Age, BMI, Systolic Blood Pressure,

High-Density Lipoproteins, Hematocrit, Blood Glucose levels) and categorical covariates

(Gender, Smoking, presence of Cardiovascular Disease, presence of Atrial Fibrillation, presence

of diabetes, currently under prescription of antihypertensive medication, presence of Left

Ventricular Hypertrophy from ECG results).

Overall, there are 12.56% missing values in the FHS dataset. Due to the design of the

longitudinal study, the 10 observations for each patient occur at regular intervals spaced 2

years apart, for a total span of 18 years. For the imputation tasks, we add in additional

missing values to the FHS dataset, and evaluate the accuracy of med.knn and comparison

methods against the ground-truth values. For the downstream tasks, we evaluate classification

models which predict 10-year risk of stroke given the imputed training data.

Dana Farber Cancer Institute (DFCI) dataset

The DFCI dataset was obtained from a recently published work on predicting mortality in

late-stage cancer patients [36]. In this study, the authors retrospectively obtained patient

data from EHR and linked Social Security Administration mortality data for cancer patients

at the Dana Farber Cancer Institute / Brigham and Women’s Cancer Center from 2004

through 2014. Predictive models were fit for the entire population and individual cancers,

including breast, lung, colorectal, kidney, and prostate cancer. Study eligibility required

adult patients that have received at least one anticancer treatment over the course of their

care, including chemotherapy, immunotherapy, and targeted therapy.

In our computational experiments, we consider all patients with late-stage breast cancer

from the DFCI dataset. Each observation corresponds to a patient initiating an anticancer

regimen which was systematically recorded in the hospital’s database. As a result, for every

patient who followed more than one regimen, multiple observations were collected. For

each patient, we include all of their observations in either the training set or testing set,

respectively. In total, we have 12,206 observations that correspond to 5,987 unique patients.
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This includes 3,228 individuals who have just one line of therapy and therefore only appear

once in this dataset. For each observation, there are 106 covariates which describe the patient

at that point in time, including demographics, lab tests, vital signs, current medications,

medical history, biomarkers, and variables derived from the patient’s temporal EHR history.

Overall, there are 10.79% missing values in the DFCI dataset. Due to the nature of this

observational study, the observations for each patient occur at irregular intervals, which

correspond to hospital visits. In addition, in the dataset each patient has anywhere from

1 to 12 observations. For the imputation tasks, we add in additional missing values to the

DFCI dataset, and evaluate the accuracy of med.knn and comparison methods against the

ground-truth values. For the downstream tasks, we evaluate classification models which

predict 60-day risk of mortality given the imputed training data.

Parkinson’s Progression Markers Initiative (PPMI) dataset

The PPMI was a landmark observational clinical study with the aim to comprehensively

evaluate patient cohorts using imaging, biologic sampling as well as clinical and behavioral

data to identify biomarkers of Parkinson’s disease progression [227].

In our computational experiments, we consider data from the PPMI baseline examination

as well as the following three years of follow-up. In this longitudinal study, 20 patients

appeared only in one follow-up examination, 33 in two while the rest of the population

participated in all 352 clinical evaluations. As a result, in total we have 1,547 observations

corresponding to 405 distinct patients. For each observation, there are 116 covariates which

describe the demographic characteristics, the results of behavioral tests, clinical test results,

as well as the presence or absence of genetic mutations related to the disease.

Overall, there are 2.61% missing values in the PPMI dataset. Due to the design of the

longitudinal study, the 4 observations for each patient occur at regular intervals spaced 1

year apart, for a total span of 4 years. For the imputation tasks, we add in additional missing

values to the PPMI dataset, and evaluate the accuracy of med.knn and comparison methods

against the ground-truth values. For the downstream tasks, we evaluate regression models
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which predict the Montreal Cognitive Assessment (MoCA) score one year in advance. The

MoCA score is a rapid screening instrument for mild cognitive dysfunction, a clinical state

that often progresses to dementia [245].

2.3.2 Mechanisms for Generating Missing Not at Random (MNAR)

data

Missing data can either be Missing Completely At Random (MCAR), Missing At Random

(MAR), or Missing Not at Random (MNAR) [218]. The type of missingness can be determined

through an understanding of the specific feature and what systematic biases may exist in its

collection process. Different types of missingness must be treated differently for meaningful

analysis. In reality, missing data are most commonly associated with the MNAR category

where the presence of unknown values is systematically related to unobserved factors.

In this section, we describe mechanisms for generating MNAR data for our computational

experiments. We consider different mechanisms for the longitudinal and EHR datasets

corresponding to the different patterns of missing data which are typically observed in real-

world datasets. First, we describe the missing data mechanism that we use for the MNAR

experiments on the two longitudinal datasets: FHS and PPMI. Then, we describe the missing

data mechanism that we use for the MNAR experiments on the EHR dataset: DFCI.

For all MNAR experiments, the total percentage of missing data is fixed to 30%. For each

individual experiment, we assume that the dataset is (𝛾30% MNAR, (1− 𝛾)30% MCAR),

where 𝛾 is a constant that we select between 0 and 1. To generate the missing data patterns,

first we generate the 𝛾30% MNAR patterns, and then we randomly select an additional

(1− 𝛾)30% subset of the data to be MCAR. In the following two sections, we describe the

specific ways that we generate MNAR data for longitudinal studies and EHR data, which are

influenced by real-world missing data mechanisms.
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MNAR Mechanism for Data from Longitudinal Studies

In longitudinal studies, missing data patterns often result from changes in the experiment

design. Researchers may decide to include an additional set of variables as the study progresses

over time due to new information from other investigations. Thus, it is common for feature 𝑑

to be missing for the first 𝑡𝑑 rounds of long-term longitudinal studies. For example, ECG

results were only first recorded in the FHS study 14 years after the study began [91, 223].

To generate 𝛾30% MNAR patterns under this mechanism, we use the following pro-

cess. First, we randomly select a covariate 𝑑 and a discrete uniform random variable

𝑡𝑑 ∈ {1, 2, . . . , 𝑁}, where 𝑁 = 10 for the FHS dataset and 𝑁 = 4 for the PPMI dataset. The

value 𝑡𝑑 corresponds to the last round of the longitudinal study that covariate 𝑑 is missing.

For example, if 𝑡𝑑 = 2 for the covariate Left Ventricular Hypertrophy (LVH), then the value

for LVH will be missing for all observations in the two first clinical examinations. We continue

this process until we have introduced 𝛾30% MNAR missing values. Afterwards, we introduce

additional MCAR missing values to the remaining dataset in order to obtain the final dataset

with 30% missing values.

MNAR Mechanism for Data from EHR

In EHR data, missing data patterns may be correlated with the severity of patient’s condition.

Consider the case of a patient whose physician suspects the existence of chronic kidney disease.

The associated record is more likely to have a recorded value for Glomerular Filtration Rate

since it is a direct indication of the kidney’s functional status [208]. Therefore, observed

values are more likely to be below the threshold of 60mL/min/1.73 m2 since they correspond

to sicker patients.

To generate 𝛾30% MNAR patterns under this mechanism, we suppose that missing

indicators are independent Bernoulli random variables where the probability that entry 𝑥𝑖𝑑

is missing equals the probability that a normal random variable 𝑁(𝑥𝑖𝑑, 𝜖) is greater than a

particular threshold for covariate 𝑑. The threshold for each covariate 𝑑 is the quantile of

X𝑑 which corresponds to the desired missing percentage level 𝛾30%. Then, we introduce
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additional MCAR missing values to the remaining dataset in order to obtain the final dataset

with 30% missing values total for this experiment.

2.3.3 Experimental Setup

In this section, we describe the setup of computational experiments that compare med.knn

to other state-of-the-art imputation methods. We use data from three distinct sources

to test the performance of our algorithm on both longitudinal cohort study and EHR

datasets. The codebase for the computational experiments is publicly available at https:

//github.com/colin78/medimpute_computational_experiments.

In our experiments, we take the full dataset to be the ground truth. First, we normalize

the data so that each continuous covariate has mean zero and standard deviation equal to one.

Then, we run some of the most commonly-used and state-of-the-art methods for imputation

to predict the missing values and compare against med.knn. The methods that we compare

are as follows:

1. Mean (mean): This is the simplest method. For each continuous feature, we impute

the mean of the observed values and, for each categorical feature, we impute the mode

of the observed values [218].

2. Moving Average (moving.avg): This method takes into account only observations

of the same entity (i.e., patient) and imputes their averages under a given time window.

In cases where only one observation per entity is available, the method reduces to the

mean. For each dataset, we consider a different time horizon depending on the relative

scale of the data (i.e, years, months, or days). Implemented in the Julia programming

language.

3. Bayesian Principal Component Analysis (bpca): This method takes a singular

value decomposition (SVD) of the data matrix and information from a Bayesian prior

distribution on the model parameters to impute missing values [250]. Implemented

using the pcaMethods package in the R programming language.
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4. Multivariate Imputation via Chained Equations (mice): In this multiple impu-

tation method, we begin from 𝑚 random starts and iteratively update each one to

produce 𝑚 independent imputations. In each iteration, we update the imputed values in

feature 𝑑 by drawing from a distribution conditional on all other features [341]. We use

Classification Trees for the categorical features and Regression Trees for the continuous

features. Implemented using the mice package in in the R programming language.

5. Multiple Imputation with Boostrap Expectation Maximization (Amelia II):

This is another multiple imputation method that builds upon the Amelia I framework,

which assumes that the data is jointly distributed as multivariate normal and uses an

expectation-maximization (EM) algorithm with bootstrapping [167, 191]. In addition,

a newer version of the method allows for the imputation of cross-sectional time series

data. It can build a general model of patterns within variables across time by creating

a sequence of polynomials of the time index. Thus, it is able to capture variables that

are recorded over time within a cross-sectional unit and are observed to vary smoothly

over time. Implemented using the amelia package in the R programming language.

6. OptImpute under 𝐾-NN Objective (opt.knn): This method finds a high quality

solution to Problem (2.5) minimizing the sum of distances from each point to its

𝐾-Nearest Neighbors [32]. We find solutions to this problem using Algorithm 1 with the

CD update. Fixing 𝐾 = 10, we use several warm and random restarts and select the

imputation with the best objective value. Implemented using the OptImpute package

in the Julia programming language.

7. MedImpute under 𝐾-NN Objective (med.knn): This method finds a high quality

solution to Problem (2.8) minimizing the sum of distances from each point to its 𝐾-

Nearest Neighbors and other instances of the same individual. We find solutions to this

problem using Algorithm 2 with the CD update. For each feature 𝑑, we perform cross-

validation to tune the parameters 𝛼𝑑, ℎ𝑑 with the rest of the MedImpute parameters

set equal to zero. Fixing 𝐾 = 10, we use several warm and random restarts and select
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the imputation with the best objective value. The med.knn algorithm is implemented

in Julia and is available to academic researchers under a free academic license.*

For each experiment, we evaluate the imputation accuracy of each method using the

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics, which are

extended to accommodate both continuous and categorical covariates. Letℳ𝑡𝑒𝑠𝑡
0 ,ℳ𝑡𝑒𝑠𝑡

1 be

the hold-out sets for the missing continuous and categorical covariates, respectively. We

define the MAE and RMSE metrics to be:

MAE :=
1

|ℳ𝑡𝑒𝑠𝑡
0 |

∑︁
(𝑖,𝑑)∈ℳ𝑡𝑒𝑠𝑡

0

|𝑤𝑖𝑑 − 𝑥𝑖𝑑|+
1

|ℳ𝑡𝑒𝑠𝑡
1 |

∑︁
(𝑖,𝑑)∈ℳ𝑡𝑒𝑠𝑡

1

1{𝑣𝑖𝑑 ̸=𝑥𝑖𝑑}, (2.30)

RMSE :=

⎯⎸⎸⎷ 1

|ℳ𝑡𝑒𝑠𝑡
0 |

∑︁
(𝑖,𝑑)∈ℳ𝑡𝑒𝑠𝑡

0

(𝑤𝑖𝑑 − 𝑥𝑖𝑑)2 +
1

|ℳ𝑡𝑒𝑠𝑡
1 |

∑︁
(𝑖,𝑑)∈ℳ𝑡𝑒𝑠𝑡

1

1{𝑣𝑖𝑑 ̸=𝑥𝑖𝑑}. (2.31)

In addition to comparing the accuracy of each method on the imputation task, we also

compare their performance on downstream predictive tasks which are tailored for each dataset.

In these experiments, we use the imputation methods to fill in the missing values of the

datasets, and then we train machine learning models with the data from completed datasets.

By comparing the accuracy of the predictive models on the downstream tasks, we can see the

relative impact of using one imputation method versus another in a machine learning pipeline.

For the FHS dataset, the downstream task is to predict 10-year risk of stroke, a classification

task. For the DFCI dataset, the downstream task is to predict 60-day risk of mortality, which

is also a classification task. For the PPMI dataset, the downstream task is to predict the

Montreal Cognitive Assessment (MoCA) score for next year, which is a regression task.

To evaluate the accuracy on the downstream predictive task, first we split the patients

from the completed dataset into a training and testing set using a 75%/25% ratio. For the

longitudinal datasets (FHS and PPMI) we include only one visit per patient, the most recent
*The codebase for the computational experiments is publicly available at https://github.com/colin78/

medimpute_computational_experiments.
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one. Thus, the time series component of the dataset is only present in the missing data

imputation process but not in the supervised learning part of the experiment. This setup

allows us to quantify the relative benefit of med.knn per individual. For the EHR dataset

(DFCI), we include all of the observations from each patient in either the training or testing

set for the supervised learning task.

Next, we train predictive models on the training set and report the out-of-sample accuracy

on the testing set. For the classification tasks, we train ℓ1-regularized logistic regression

models and report the out-of-sample Area Under the ROC Curve (AUC). For the regression

task, we train ℓ1-regularized linear regression models and report the out-of-sample MAE.

These two metrics are commonly used evaluation criteria in machine learning [161]. We repeat

all experiments for 25 random seeds and average the results. Each iteration corresponds to a

different random split of the patients into the training and testing sets, a random warmstart,

and a randomly generated missing data pattern. In particular, we note that the patient IDs

and the time stamps corresponding to each row of the dataset are maintained across the

different random seeds, so that the temporal sequence of the records remains the same as the

original dataset.

We artificially created missing data under different mechanisms and random patterns

to compare the imputation accuracy of the proposed method. The missing data generation

process was independently applied to each column. For a fixed missing percentage 𝑓%, we

remove the necessary number of known values for each feature to reach the 𝑓% target. The

patient ID 𝑦𝑖 was not factored in the missing data generation process and all rows were

considered independent observations. If the existing percent of missing data for a column was

higher than the target 𝑓%, we do not generate any artificial missing values for the covariate,

and thus the feature does not contribute to the estimation of the imputation accuracy metrics.

Given this framework for evaluating imputation methods on both imputation and down-

stream tasks, we conduct a variety of experiments which vary the pattern of the missing data.

In particular, we conduct three different types of experiments that correspond to variations

in the form of missing data that we frequently encounter in medical datasets:
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1. Percentage of Missing Data: We generate patterns of missing data for various

percentages ranging from 10% to 50% under the MCAR mechanism. Given a target

proportion of missing data 𝑓 (i.e., 𝑓 = 20%), we generate among all observed data 𝑓

missing values at each column independently from the rest completely at random.

2. Number of Observations Per Patient: With the missing percentage fixed at 50%

MCAR, we vary the time frame during which patient observations are included in the

imputation task. Our goal is to quantify the effect of the time series component as we

vary its intensity.

3. Mechanism of Missing Data: With the missing percentage fixed at 30%, we vary

the missing data mechanism from MCAR to MNAR on a gradient scale. In particular,

we suppose that the missing pattern is (𝛾30% MNAR, (1− 𝛾)30% MCAR), where 𝛾

varies from 0 to 1. We consider two different MNAR mechanisms that correspond to

distinct missing data patterns observed in longitudinal studies and EHR.

The objective of the first set of experiments is to determine which imputation methods

perform best at high and low levels of missing data. For these experiments, we also report

the results from statistical hypothesis tests (Friedman Rank and pairwise 𝑡-tests) to evaluate

whether the rankings and differences between the imputation algorithms are statistically

significant. The objective of the second set of experiments is to determine how the performance

of med.knn and other imputation methods varies as the amount of time series information

available on each patient fluctuates. Finally, the objective of the third set of experiments

is to determine how robust each imputation method is with respect to the missing data

mechanism. In the previous section, we describe the two mechanisms for generating MNAR

data for the third set of experiments. Below, we summarize all of the steps required to run

one of the computational experiments for a single random seed:

1. Fix a random seed 𝑠, a dataset, a desired missingness percentage level 𝑓%, a missing

data imputation method, and a value for the 𝛾 parameter.
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2. Generate a random missing data pattern in the given dataset using the targeted

percentage of missing values 𝑓%, the random seed 𝑠, and the value of the 𝛾 parameter.

3. Impute the missing values in the provided dataset using the specified algorithm (i.e.

med.knn, mean, bpca).

4. Calculate the imputation error using the MAE and RMSE metrics (see Equations

2.30-2.31) on the artificially generated missing data.

5. Split the patients in the dataset into a training and testing set using a 75%/25% ratio.

For the longitudinal datasets, only include the most recent observation from each

individual in the training and testing sets. For the EHR (DFCI) dataset, include all of

the observations from each individual in the training or testing set.

6. Train a downstream predictive model on the training set using the cv.glmnet function

from the R glmnet package [132]. For the FHS and DFCI datasets which have binary

outcomes variables, train a logistic regression model with 𝑙1 regularization. For the

PPMI dataset which has a continuous outcome variable, train a linear regression model

with 𝑙1 regularization.

7. Report the out-of-sample performance of the trained model on the testing set. For the

classification tasks, report the out-of-sample AUC, and for the regression task, report

the out-of-sample MAE.

2.3.4 Imputation Results

In this section, we provide the results from all experiments on the imputation tasks. In

particular, we present the imputation results from the 1) Percentage of Missing Data, 2)

Number of OPP, and 3) Mechanism of Missing Data experiments.

Percentage of Missing Data In Figure 2.1, we show the MAE imputation accuracy

results from the first set of experiments in which we vary the percentage of missing data
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from 10% to 50%, and the missing data mechanism is fixed to MCAR. Across all of the

datasets, med.knn achieves the lowest average MAE for all of the missing percentages tested.

On the FHS longitudinal dataset with 50% MCAR data, med.knn has an average MAE of

0.289compared to the next best method opt.knn with an average MAE of 0.503, a 42.54%

reduction. Similarly, on the PPMI longitudinal dataset with 50% MCAR data, med.knn has

an average MAE of 1.286 compared to the next best method opt.knn with an average MAE

of 1.99, a 35.37% reduction. On the DFCI dataset with 50% MCAR data, med.knn has an

average MAE of 3.568 compared to the next best method mean with an average MAE of

4.367, a 22.39% reduction.
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Figure 2.1: Imputation errors for each method using the MAE metric on the FHS, DFCI,
and PPMI datasets, varying the percentage of missing data from 10% to 50%. The missing
data mechanism is fixed to MCAR.

In Figure 2.2, we present the RMSE imputation accuracy results. In general, the results

are similar to the MAE imputation accuracy results, and med.knn produces the imputation

with the lowest RMSE across all experiments. One notable difference is on the DFCI dataset,

the relative improvement of med.knn compared to bpca, moving.avg, and mean is much

smaller. Because the mean imputation method performs relatively well, this suggests that

there are some difficult-to-impute covariates in the DFCI dataset which are resulting in large

RMSE values for all of the more complex methods.
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𝜒2 statistic (adjusted 𝑝-value)

% FHS DFCI PPMI

10 130 (<0.001***) 210 (<0.001***) 75 (<0.001***)
20 130 (<0.001***) 220 (<0.001***) 53 (<0.001***)
30 130 (<0.001***) 260 (<0.001***) 74 (<0.001***)
40 110 (<0.001***) 230 (<0.001***) 58 (<0.001***)
50 140 (<0.001***) 270 (<0.001***) 71 (<0.001***)

(a) MAE

𝜒2 statistic (adjusted 𝑝-value)

% FHS DFCI PPMI

10 130 (<0.001***) 210 (<0.001***) 75 (<0.001***)
20 130 (<0.001***) 220 (<0.001***) 53 (<0.001***)
30 130 (<0.001***) 260 (<0.001***) 74 (<0.001***)
40 110 (<0.001***) 230 (<0.001***) 58 (<0.001***)
50 140 (<0.001***) 270 (<0.001***) 71 (<0.001***)

(b) RMSE

Table 2.1: The Friedman Rank test results for the imputation tasks varying the percentage
of missing data from 10-50% MCAR, using either the MAE or RMSE metric for comparison.
Each table shows the value of Friedman’s Chi-squared statistic and 𝑝-value for the hypothesis
test comparing med.knn against the benchmark methods for each experiment.
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Figure 2.2: Imputation errors for each method using the RMSE metric on the FHS, DFCI,
and PPMI datasets, varying the percentage of missing data from 10% to 50%. The missing
data mechanism is fixed to MCAR.

In Table 2.1, we present the results from the Friedman Rank test for each of the Missing

Data imputation experiments. In this statistical test, we compare the relative rank of med.knn

against the relative ranks of the comparator methods for each of the 25 random seeds. These

results demonstrate that the med.knn method is consistently ranked higher than the others

across each of the experiments.

In Table 2.2, we present the results from the pairwise 𝑡-test for each of the experiments.

In this statistical test, we evaluate the differences in MAE between med.knn and each of

the comparison methods. In all of the experiments, we observe that the differences in MAE

are statistically significant with 𝑝-values less than 0.001. In most cases, we observe that the
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FHS
∆ MAE (adjusted 𝑝-value)

Missing % mice moving.avg amelia bpca mean opt.knn

10 -0.33 (<0.001***) -0.33 (<0.001***) -0.41 (<0.001***) -0.30 (<0.001***) -0.29 (<0.001***) -0.25 (<0.001***)
20 -0.33 (<0.001***) -0.32 (<0.001***) -0.40 (<0.001***) -0.30 (<0.001***) -0.28 (<0.001***) -0.26 (<0.001***)
30 -0.33 (<0.001***) -0.31 (<0.001***) -0.39 (<0.001***) -0.29 (<0.001***) -0.27 (<0.001***) -0.25 (<0.001***)
40 -0.33 (<0.001***) -0.31 (<0.001***) -0.39 (<0.001***) -0.27 (<0.001***) -0.26 (<0.001***) -0.23 (<0.001***)
50 -0.33 (<0.001***) -0.29 (<0.001***) -0.38 (<0.001***) -0.25 (<0.001***) -0.25 (<0.001***) -0.21 (<0.001***)

DFCI
∆ MAE (adjusted 𝑝-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 -1.64 (<0.001***) -6.55 (<0.001***) -1.92 (<0.001***) -6.92 (<0.001***) -1.17 (<0.001***) -1.81 (<0.001***)
20 -1.58 (<0.001***) -6.89 (<0.001***) -1.86 (<0.001***) -3.12 (<0.001***) -1.08 (<0.001***) -1.69 (<0.001***)
30 -1.67 (<0.001***) -7.09 (<0.001***) -1.84 (<0.001***) -1.02 (<0.001***) -1.02 (<0.001***) -1.54 (<0.001***)
40 -1.46 (<0.001***) -6.71 (<0.001***) -1.81 (<0.001***) -1.26 (<0.001***) -0.93 (<0.001***) -1.62 (<0.001***)
50 -1.57 (<0.001***) -6.56 (<0.001***) -1.77 (<0.001***) -1.11 (<0.001***) -0.80 (<0.001***) -1.48 (<0.001***)

PPMI
∆ MAE (adjusted 𝑝-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 -0.32 (<0.001***) -1.55 (<0.001***) -1.10 (<0.001***) -1.86 (<0.001***) -1.21 (<0.001***) -1.00 (<0.001***)
20 -0.48 (<0.001***) -1.44 (<0.001***) -1.10 (<0.001***) -1.61 (<0.001***) -1.14 (<0.001***) -0.78 (<0.001***)
30 -0.67 (<0.001***) -1.36 (<0.001***) -1.09 (<0.001***) -1.49 (<0.001***) -1.10 (<0.001***) -0.72 (<0.001***)
40 -0.75 (<0.001***) -1.37 (<0.001***) -1.08 (<0.001***) -1.24 (<0.001***) -1.02 (<0.001***) -0.67 (<0.001***)
50 -0.90 (<0.001***) -1.40 (<0.001***) -1.07 (<0.001***) -1.14 (<0.001***) -0.94 (<0.001***) -0.70 (<0.001***)

Table 2.2: Pairwise 𝑡-tests between med.knn and benchmark methods for imputation tasks
varying the percentage of missing data from 10-50% MCAR, using the MAE metric for
comparison. The 𝑝-values are adjusted for multiple comparisons.

relative improvement of med.knn decreases as the percentage of missing data increases. This

is because the comparator methods perform similarly across all levels of missing data from

10-50%, while the med.knn performs best at the lowest missing percentages. One exception

is mice on the PPMI dataset, which declines in performance rapidly as the percentage of

missing data increases. Another exception is the bpca method, which surprisingly improves

in performance as the percentage of missing data increases for the DFCI and PPMI datasets.

One explanation for these results could be that bpca is overfitting on the datasets which have

few missing values.

Number of Observations Per Patient In Figure 2.3, we present the MAE imputation

accuracy results from the experiments in which we vary the number of OPP. Across all of

the experiments, we observe that as the time horizon increases, the performance of med.knn

generally improves. This is expected, because as the time horizon increases, we include more
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OPP in the dataset, so there is more time series information that can be leveraged during

the imputation process.

Similarly, the imputation accuracy of the moving.avg method generally improves as

the time horizon increases. One notable exception is in the FHS dataset, the MAE of the

moving.avg method increases as the time horizon increases from 10 to 20 years, while the

MAE of med.knn remains relatively constant. From this, we can deduce that past observations

of patients in the FHS dataset from 10 to 20 years prior have little predictive power for

the other imputed values, which causes simple time series methods such as moving.avg to

perform worse with more data. In contrast, the med.knn method has an exponential halflife

parameter that we can tune so that observations from 10+ years ago are weighted less heavily

in the imputation, so the performance remains about the same with the additional data.

One surprising trend that we observe in these graphs is the performance of amelia, which

is another imputation method that takes into account time series information. On the DFCI

dataset, as the time horizon increases, the imputation error increases. In addition, on the

FHS dataset, as time horizon increases, the imputation error remains about the same. Only

in the PPMI dataset does the performance of amelia noticeably improve as the time horizon

increases.
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Figure 2.3: Imputation errors for each method using the MAE metric on the FHS, DFCI,
and PPMI datasets, varying the time horizon which determines the number of OPP. The
missing data mechanism is fixed to MCAR, and the total percentage of missing data is fixed
to 50%.

In Figure 2.4, we present the RMSE imputation accuracy results for the OPP experiments.
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The results are similar to the MAE imputation accuracy results, and med.knn produces the

imputation with the lowest RMSE across all experiments. One characteristic of the RMSE

results is that they are much noisier, and in particular on the DFCI dataset the RMSE values

do not decrease monotonically in a smooth fashion. Since the RMSE metric is more sensitive

to outliers than the MAE metric, this suggests that there may be some outliers in the DFCI

data which are added into the dataset at different time horizons.
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Figure 2.4: Imputation errors for each method using the RMSE metric on the FHS, DFCI,
and PPMI datasets, varying the time horizon which determines the number of OPP. The
missing data mechanism is fixed to MCAR, and the total percentage of missing data is fixed
to 50%.

In addition to evaluating the imputation accuracy of med.knn on datasets with varying

numbers of OPP, we can also evaluate the imputation accuracy on subsets of patients within

the DFCI dataset which have varying numbers of observations. In Figure 2.5, we present

the imputation errors for med.knn on the DFCI dataset with 30% MCAR missing data,

for subgroups of patients which have 1, 2, . . . , 12 OPP in the dataset. Overall, the MAE

for the entire dataset is 3.331. For patients with one visit, and therefore one observation

in the dataset, the average MAE is almost 3.5. In contrast, for patients with 10 or more

visits, the average MAE is below 2.5. This suggests that in datasets with heterogeneous

numbers of OPP, the med.knn imputation may be most accurate for the patients with the

most observations in the dataset.
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Figure 2.5: Imputation errors for med.knn on the DFCI dataset with 30% MCAR missing
data for subgroups of patients which have varying numbers of visits in the dataset.

Overall, from the OPP experiments, we can conclude that med.knn method performs best

with the additional time series information. As the time horizon increases, the imputation

accuracy of med.knn generally improves or remains the same, while in a few cases the other

time series methods moving.avg and amelia perform significantly worse with additional

time series data. In addition, the imputation accuracy of the methods which do not take into

account time series information (bpca, mean, mice, opt.knn) remains relatively constant as

the time horizon varies. Furthermore, within a dataset that has heterogeneous numbers of

OPP, such as EHR datasets, we may expect med.knn to most accurately impute values for

the patients with the most observations in the dataset.

Mechanism of Missing Data In Figure 2.6, we present the MAE imputation accuracy

results from the experiments in which we vary the mechanism of missing data. Across all of

these experiments, we observe that med.knn has the best average MAE values by a significant

margin.

In general, the imputation accuracy of all of the imputation methods increases or remains

the same as the proportion of MNAR data increases. Two exceptions are the moving.avg

method on the FHS dataset and the amelia method on the DFCI experiments, which both

improve in performance at first as a small proportion of MNAR data is added. One possible

explanation for this is that the MNAR data acts as a regularizer which helps these methods

avoids overfitting to the dataset. However, in most cases the imputation error increases or

remains constant as the percentage of MNAR data increases.
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In the FHS MNAR experiments, the performance of all of the methods remains relatively

constant, however the imputation error of moving.avg improves at 𝛾 = 0.1. Because

moving.avg is the second-best performing method in these experiments, this means that the

edge of the med.knn method slightly decreases in these experiments. In the PPMI MNAR

experiments, the imputation error of all methods increases approximately linearly as the

proportion of MNAR data increases. In the DFCI MNAR experiments, the imputation error

for all methods except for amelia increases sharply at 𝛾 = 0.1, and then increases linearly

afterwards as 𝛾 increases. As a result, for the experiments on the DFCI and PPMI datasets,

the absolute improvement of med.knn over the comparator methods remains about the same

as the proportion of MNAR data increases.
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Figure 2.6: Imputation errors for each method using the MAE metric on the FHS, DFCI, and
PPMI datasets, varying the ratio of the missing data mechanism from 𝛾 = 0 (30% MCAR,
0% MNAR) to 𝛾 = 1 (0% MCAR, 30% MNAR). The total percentage of missing data is
fixed to 30%.

In Figure 2.7, we present the RMSE imputation accuracy results for the missing data

mechanism experiments. The results are largely consistent with the MAE imputation accuracy

results. In particular, med.knn produces the imputation with the lowest RMSE by a significant

margin across all experiments.
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Figure 2.7: Imputation errors for each method using the RMSE metric on the FHS, DFCI,
and PPMI datasets, varying the ratio of the missing data mechanism from 𝛾 = 0 (30%
MCAR, 0% MNAR) to 𝛾 = 1 (0% MCAR, 30% MNAR). The total percentage of missing
data is fixed to 30%.

Overall, these experiments demonstrate that the med.knn method performs well relative to

the other imputation methods even as the mechanism of missing data changes. In the MNAR

experiments for the longitudinal datasets, FHS and PPMI, the relative imputation accuracy

of the comparator methods remains approximately the same with the med.knn method

performing best, with the exception of the moving.avg method which performs significantly

worse. Thus, we can conclude that the med.knn method is well suited for imputing missing

values according to the particular MNAR mechanism designed for longitudinal datasets which

is described in Section 2.3.2. In the MNAR experiments for the EHR dataset DFCI, the

relative imputation accuracy of the comparator methods remains approximately the same

with the med.knn method performing best, with the exception of the amelia method which

performs significantly better. Therefore, we can also conclude that the med.knn is suitable for

imputing missing values according to the MNAR mechanism for EHR datasets as described

in Section 2.3.2.

2.3.5 Prediction Results

In this section, we provide the results from all experiments on the downstream prediction

tasks. In particular, we present the downstream prediction results from the 1) Percentage of
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Missing Data, 2) Number of OPP, and 3) Mechanism of Missing Data experiments. For the

FHS and DFCI datasets, in which we train and evaluate classification models, we report the

average out-of-sample AUC results. For the PPMI dataset, in which we train and evaluate

regression models, we report the average out-of-sample MAE results.

Percentage of Missing Data In Figure 2.8, we present the performance on the down-

stream tasks from the experiments in which we vary the percentage of missing data. Across

all of the datasets, the med.knn method performs best, and the downstream performance of

all methods generally declines as the missing level increases. In particular, the AUC values

generally decrease for the classification tasks and the MAE values generally increase for the

regression tasks as the percentage of missing data increases.

For the FHS dataset, while the downstream performance of all methods declines as the

percentage of missing data increases, the downstream performance of med.knn declines least

rapidly. In particular, with 20% missing data, the downstream AUC of med.knn is 0.897,

compared to downstream AUC of 0.861 from the second-best method bpca and the baseline

AUC of 0.901 with no additional missing data. With 50% missing data, the downstream

AUC of med.knn is 0.864, compared to 0.826 for the second-best method moving.avg.

Similarly, for the DFCI dataset, the med.knn method performs best across all levels of

missing data, and the downstream AUC values generally decrease as the missing level increases.

The only exception is for the amelia method, where we do not observe a smooth trend

because this method does not converge in some cases. In addition, the relative improvement of

med.knn compared to the other imputation methods is lower for this dataset. At 50% missing

data, the downstream AUC of med.knn is 0.889, compared to 0.884 for the second-best

method bpca and the baseline AUC of 0.92 with no additional missing data.

Lastly, in the PPMI dataset, we observe the same trends that the med.knn method

performs best, and the performance of all methods declines as the missing level increases. In

this case, the downstream MAE for each method increases as the percentage of missing data

increases. Across all levels of missing data, med.knn achieves the lowest downstream MAE.

At 50% missing data, the downstream MAE of med.knn is 1.917, compared to 2.092 for the
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𝜒2 statistic (adjusted 𝑝-value)

% FHS DFCI PPMI

10 130 (<0.001***) 210 (<0.001***) 75 (<0.001***)
20 130 (<0.001***) 220 (<0.001***) 53 (<0.001***)
30 130 (<0.001***) 260 (<0.001***) 74 (<0.001***)
40 110 (<0.001***) 230 (<0.001***) 58 (<0.001***)
50 140 (<0.001***) 270 (<0.001***) 71 (<0.001***)

Table 2.3: The Friedman Rank test results for the downstream predictive tasks varying the
percentage of missing data from 10-50% MCAR. The table shows the value of Friedman’s
Chi-squared statistic and 𝑝-value for the hypothesis test comparing med.knn against the
benchmark methods for each experiment. The 𝑝-values are adjusted for multiple comparisons.

second-best method opt.knn and the baseline MAE of 1.170 with no additional missing data.
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Figure 2.8: Downstream accuracy results for each method on the FHS, DFCI, and PPMI
datasets, varying the percentage of missing data from 10% to 50% according to the MCAR
mechanism. On each plot, we overlay the downstream accuracy of a baseline model trained
with no additional missing data as a dotted blue line (shaded with standard error bars).

In Table 2.3, we present the results from the Friedman Rank tests for each of the

downstream predictive tasks varying the percentage of missing data. Similar to Friedman

Rank tests for the imputation tasks, each test is significant with a 𝑝-value less than 0.001.

These results demonstrate that the med.knn method is consistently ranked higher than the

others for each of the downstream predictive tasks.

In Table 2.4, we present the results from the pairwise 𝑡-tests for each of the experiments.

In this statistical test, we evaluate the differences in downstream predictive performance
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between med.knn and each of the comparison methods. We consider the differences in

downstream AUC for the classification tasks, and we consider the differences in downstream

MAE for the regression tasks. In most of the experiments, we observe that the differences

in downstream AUC/MAE are statistically significant with 𝑝-values less than 0.001. These

results demonstrate that the relative improvement in imputation accuracy for the med.knn

method carries over to a relative improvement in performance on the downstream predictive

tasks with different levels of MCAR data. Between the two classification tasks, we observe

that the med.knn gives larger improvements in AUC on the FHS dataset than the DFCI

dataset. In addition, we observe that as the percentage of missing data increases, the relative

improvement of med.knn increases in general. These results are expected because as the

percentage of missing data increases, the impact of the imputation method on the training

data and the final prediction task increases as well. Since med.knn provides substantial

improvements in imputation accuracy for all levels of missing data, having larger amounts of

missing data generally leads to larger gains in downstream predictive accuracy. There are a

few exceptions to this, for example amelia, bpca, mean, and opt.knn on the PPMI dataset,

and moving.avg on the DFCI dataset. In these cases, the largest improvement for med.knn

occurs at the 10% missing level. For these several examples, it follows that med.knn does

a much better job at simulating the training dataset with 10% missing data, but the other

methods begin to catch up as the percentage of missing data increases.

Number of Observations Per Patient In Figure 2.9, we present the performance on

the downstream tasks from the experiments in which we vary the time horizon which

determines the number of OPP. Across all of the experiments, we observe that the downstream

performance of med.knn tends to improve as the time horizon increases, so that the dataset

includes more OPP. However, for each dataset, after a certain point there are diminishing

returns, so that adding more OPP to the dataset does not improve the performance on the

downstream task.

For the FHS dataset, in which the task is to predict 10-year risk of stroke, the downstream

AUC of med.knn plateau starts to plateau at a time horizon of 6 years. For the DFCI dataset,
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FHS: Predicting 10-year Risk of Stroke
∆ AUC (adjusted 𝑝-value)

Missing % mice moving.avg amelia bpca mean opt.knn

10 0.0296 (<0.001***) 0.0309 (<0.001***) 0.0378 (<0.001***) 0.0193 (<0.001***) 0.0280 (<0.001***) 0.0233 (<0.001***)
20 0.0421 (<0.001***) 0.0382 (<0.001***) 0.0645 (<0.001***) 0.0341 (<0.001***) 0.0464 (<0.001***) 0.0384 (<0.001***)
30 0.0602 (<0.001***) 0.0408 (<0.001***) 0.0908 (<0.001***) 0.0566 (<0.001***) 0.0663 (<0.001***) 0.0649 (<0.001***)
40 0.0728 (<0.001***) 0.0420 (<0.001***) 0.0997 (<0.001***) 0.0720 (<0.001***) 0.0762 (<0.001***) 0.0913 (<0.001***)
50 0.0915 (<0.001***) 0.0373 (<0.001***) 0.1266 (<0.001***) 0.0931 (<0.001***) 0.0931 (<0.001***) 0.1132 (<0.001***)

DFCI: Predicting 60-day Risk of Mortality
∆ AUC (adjusted 𝑝-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 0.0010 (0.234) 0.0050 (<0.001***) 0.0196 (<0.001***) 0.0015 (0.261) 0.0013 (0.407) 0.0016 (<0.001***)
20 0.0019 (0.004**) 0.0060 (0.092) 0.0181 (<0.001***) 0.0016 (0.318) 0.0018 (0.234) 0.0037 (<0.001***)
30 0.0031 (0.003**) 0.0114 (0.052) 0.0176 (<0.001***) 0.0030 (0.037*) 0.0030 (0.037*) 0.0053 (<0.001***)
40 0.0056 (<0.001***) 0.0046 (0.075) 0.0169 (<0.001***) 0.0033 (0.032*) 0.0030 (0.044*) 0.0081 (<0.001***)
50 0.0094 (<0.001***) 0.0077 (0.065) 0.0167 (<0.001***) 0.0044 (0.003**) 0.0044 (0.003**) 0.0102 (<0.001***)

PPMI: Predicting the MoCA score
∆ MAE (adjusted 𝑝-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 -0.117 (0.027*) -0.435 (<0.001***) -0.288 (<0.001***) -0.399 (<0.001***) -0.631 (0.027*) -0.347 (<0.001***)
20 -0.167 (0.004**) -0.249 (0.002**) -0.329 (<0.001***) -0.180 (<0.001***) -0.255 (<0.001***) -0.181 (0.004**)
30 -0.137 (<0.001***) -0.167 (<0.001***) -0.296 (<0.001***) -0.152 (<0.001***) -0.171 (<0.001***) -0.124 (<0.001***)
40 -0.204 (<0.001***) -0.153 (<0.001***) -0.362 (<0.001***) -0.161 (<0.001***) -0.188 (<0.001***) -0.144 (0.002**)
50 -0.214 (<0.001***) -0.207 (<0.001***) -0.312 (<0.001***) -0.181 (<0.001***) -0.207 (<0.001***) -0.175 (<0.001***)

Table 2.4: Pairwise 𝑡-tests between med.knn and benchmark methods for imputation tasks
varying the percentage of missing data from 10-50% MCAR. The 𝑝-values are adjusted for
multiple comparisons.
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in which the task is to predict 60-day risk of mortality, the downstream AUC of med.knn

starts to plateau around 3 years. Similarly, for the PPMI dataset, in which the task is to

predict the next year MoCA score, the downstream MAE reaches a minimum value at 3

years.

In comparison to the other methods, we observe that med.knn tends to perform relatively

better with more OPP in the dataset. This indicates that the med.knn method is able to

leverage the additional time series information more efficiently than the other methods. The

only exception to this is amelia on the DFCI dataset, which outperforms med.knn with time

horizons of 3 and 5 years, respectively. However, we observe that the amelia method is more

unstable, and med.knn outperforms this method for the longest time horizon of 10 years.

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

● ●

●0.75

0.80

0.85

0.90

2.5 5.0 7.5 10.0
Observations Per Patient

A
re

a 
U

nd
er

 th
e 

C
ur

ve
 (

A
U

C
)

Framingham Heart Study

●

● ●
●

●

●
●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

0.825

0.850

0.875

0.900

0.925

30 100 300 1000 3000
Time in Days

A
re

a 
U

nd
er

 th
e 

C
ur

ve
 (

A
U

C
)

Breast Cancer EHR

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

1.2

1.5

1.8

2.1

1 2 3 4
Observations Per Patient

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (

M
A

E
)

Parkinson's Disease Study

Impute Method

●

●

●

●

amelia

bpca

mean

med.knn

mice

moving.avg

opt.knn

Figure 2.9: Downstream accuracy results for each method on the FHS, DFCI, and PPMI
datasets, varying the time horizon which determines the number of OPP. In these experiments,
the missing data mechanism is fixed to MCAR, and the total percentage of missing data is
fixed to 50%. On each plot, we overlay the downstream accuracy of a baseline model trained
with no additional missing data as a dotted blue line (shaded with standard error bars).

Mechanism of Missing Data In Figure 2.10, we present the performance on the down-

stream tasks from the experiments in which we vary the mechanism of missing data. In all

of the experiments, we observe that the med.knn acheives the best downstream accuracy,

typically by a substantial margin.

In the FHS dataset, the average AUC for med.knn remains around 0.89 and above across

all proportions of MNAR data, while the second-best performing method moving.avg has

an average AUC below 0.87. In the PPMI dataset, the downstream MAE values for all of
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the methods increases approximately linearly as the ratio of MNAR data increases. As a

result, the relative improvement of med.knn on downstream tasks remains large for all of the

MNAR experiments on longitudinal datasets.

On the other hand, the relative improvement of med.knn on downstream tasks is more

varied for the MNAR experiments on EHR data. In the DFCI dataset, the downstream

AUC values for each of the methods increases significantly when gamma = 0.1, and then

decreases gradually as gamma increases further. These results are somewhat counterintuitive

because the imputation errors for most of these methods increase significantly at gamma

= 0.1, and then increase gradually afterwards. One possible explanation is that the DFCI

dataset has some outlier values that tend to be missing under the MNAR mechanism for EHR

data (described in Section 2.3.2), which typically skew the downstream prediction results.

At the peak when gamma = 0.1, the relative improvement of med.knn is very small, with a

downstream AUC of 0.916 compared to the next best method mice which has a downstream

AUC of 0.915. At the extreme when gamma = 1, the downstream AUC of med.knn is 0.912

compared to 0.904 for the next best methods (mice and bpca).
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Figure 2.10: Downstream accuracy results for each method on the FHS, DFCI, and PPMI
datasets, varying the ratio of the missing data mechanism from 𝛾 = 0 (30% MCAR, 0%
MNAR) to 𝛾 = 1 (0% MCAR, 30% MNAR). On each plot, we overlay the downstream
accuracy of a baseline model trained with no additional missing data as a dotted blue line
(shaded with standard error bars).
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2.3.6 Discussion of the Computational Experiments on Real-World

Clinical Datasets

In this section, we discuss the major takeaways from the computational experiments on

real-world clinical datasets. For each dataset, we consider downstream models to predict

patient outcomes that are clinically relevant, in order to simulate the performance of med.knn

in practical applications. For the FHS and PPMI datasets, which are longitudinal studies, the

clinical outcomes of interest are 10-year risk of stroke and next year MoCA score, which can

be predicted using the most recent observation for each patient. For the DFCI dataset, which

is an EHR dataset, the clinical outcome of interest is 60-day risk of mortality for late-stage

cancer patients, which requires us to train models using all of the observations from each

patient (using the latest observation for each patient would bias the results). As a result,

the evaluation of the downstream models is different between the datasets. Furthermore, we

conduct non-identical experiments on each dataset due to inherent dissimilarities in the time

series structure.

Due to the significant differences between each dataset, we can draw separate conclusions

from each one as a separate case study. The FHS dataset is a long term longitudinal study

with many patients, few covariates, and a downstream classification task. In contrast, the

PPMI dataset is a shorter longitudinal study with fewer patients, more covariates, and a

downstream regression task. Finally, the DFCI dataset is an EHR dataset with irregularly

recorded observations, the most patients, the most covariates, and a downstream classification

task. The results from the computational experiments demonstrate that med.knn performs

well across this range of diverse case studies. In particular, we show that this method performs

well on datasets with: 1) large or small numbers of patients, 2) large or small numbers of

covariates, and 3) regularly or irregularly recorded observations. Moreover, the application of

med.knn for imputation led to improved downstream predictive performance on two binary

classification tasks and one regression task.

Prior to training the downstream models, we do not perform any further preprocessing

on the imputed data, so we preserve the correlation structure of the original dataset. As a
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result, since these are real-world datasets, there may be unexpected correlations between the

predictors which impact the accuracy of the downstream models. One could apply PCA or

another dimensionality-reduction method to transform the feature space prior to training

downstream models on the imputed datasets. However, this analysis is outside of the scope

of this set of computational experiments.

In the Percentage of Missing Data experiments, we observe that increased imputation

accuracy does not always translate into increased downstream model accuracy. For example,

on the DFCI dataset, bpca performs poorly on the imputation task (see Figure 2.1), but is

one of the top-performing methods on the downstream predictive task (see Figure 2.8). This

is possible because in the downstream predictive task, some features are more significant than

others, so having a large imputation error on the insignificant features may only result in a

small decline in downstream model accuracy. However, we also observed that in all datasets,

med.knn consistently performed best on both the imputation and downstream tasks, by a

significant margin in most cases. These results suggest that for all three of the real-world

datasets considered here, med.knn leads to improvements in imputation accuracy on the

clinically significant covariates in each downstream model.

In the OPP experiments, the major trend that we observe is that the med.knn method

performs significantly better with more time series data. For example, in the FHS dataset,

the imputation accuracy and downstream performance of med.knn improves dramatically

as OPP increases from one to four. This makes sense because as we include more OPP in

the dataset, there is more relevant information available to impute the missing covariates

for each patient. We expect that this explains why the relative improvement of med.knn is

less significant on the DFCI dataset for several of the experiments. In this dataset, over half

of the patients have a single observation, so there is limited time series available to fill in

the missing values for these patients. In contrast, in the FHS dataset, every patient has 10

observations in the full dataset, so there is more data available to aid the imputation.

In the MNAR experiments, we demonstrate that med.knn works under missing data

mechanisms that are frequently encountered in practice. Longitudinal studies often contain
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systematic missing information on some clinical examinations based on decisions made by the

designers of the study. For example, the FHS dataset has expanded over time as clinicians

have incorporated more and more variables that are suspected to be correlated with heart

disease [223]. However, since some of these variables were not recorded initially, they are

systematically missing from this dataset. In EHR datasets, clinical covariates recorded for

each visit typically vary based the health condition of the patient. Patients at higher risk

are likely to undergo more detailed medical examinations, resulting in fewer missing values.

Through the MNAR experiments for each case study, we show that med.knn is an effective

method for imputing missing values under these specific mechanisms of missing data for

longitudinal studies and EHR datasets.

2.4 Scaling Experiments on Simulated Clinical Datasets

In this section, we present scaling experiments on simulated clinical datasets. In Section 2.4.1,

we describe the data generation process which allows us to construct simulated longitudinal

clinical datasets with 10, 000’s of observations and 100’s of features. In Section 2.4.2, we

describe the experimental setup of the scaling experiments, which considers two variations

of the med.knn method. In Section 2.4.3, we report the results of the scaling experiments,

including the imputation accuracy and timing results.

2.4.1 Simulated Data: Synthea

We create synthetic EHR to test the performance of the algorithm in higher instances of both

the number of observations and the number of features using the Synthea synthetic patient

population simulator. It constitutes an open-source, synthetic patient generator that aims to

model the medical history of patients using specific demographic information [347]. Patient

records are generated using simulation processes that follow disease progression patterns

published in the medical literature. For each synthetic patient, Synthea data contains a

complete medical history, including medications, allergies, medical encounters, and social
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determinants of health. We pre-processed the records combining them into a single dataset

that contains a summary of all the information available at each visit.

Since we leverage this data source for experiments testing the scalability of the algorithm,

we do not limit the amount of observations to a specific number. Each patient in the data is

associated on average with 20 distinct visits (observations). We aggregate the EHR into 344

distinct features. Each experiment randomly samples a subset of these features to compare

the computational time needed by the algorithm. The covariates that comprise the data

include demographic characteristics, diagnosis and procedure codes, medical prescriptions,

and lab test results. We do not include any downstream prediction task.

2.4.2 Experimental Setup for the Scaling Experiments

In this section, we go over the experimental setup for the scaling experiments. We use

synthetically generated data for EHR varying both the number of observations 𝑛 and the

number of features 𝑝. Our goal is to evaluate the scaling performance and accuracy of the

algorithm comparing the two proposed methods for tuning the hyperparameters 𝛼𝑑 and ℎ𝑑.

One of the most well-established approach for hyperparameter tuning in machine learning

is K-fold cross-validation [192]. In the time series setting, [22] showed that this technique is

applicable for time series models, in particular for the case of autoregression models. However,

due to the large number of combinations of different values for 𝛼𝑑 and ℎ𝑑, in the case of

med.knn, the computation time for the K-fold cross-validation scales at an quadratic rate as

the number of covariates increases. For this reason, we propose a custom tuning procedure

to select the hyperparameters. We conduct a series of experiments comparing the following

hyperparameter selection processes:

1. Grid Search: This approach uses the well-established 10-fold cross-validation process

to determine the hyperparameters ℎ𝑑 and 𝛼𝑑 for every variable. Prior to solving the

algorithm, 10% of the values of each feature are artificially removed. A set of values

is defined and all their combinations are evaluated for each feature individually when

solving the reduced version of the dataset. The grid for 𝛼𝑑 was set to [0.0, 0.1, . . . , 1.0]
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and for ℎ𝑑 to [90, 180, 365, 1000].

2. Custom Tuning: The custom tuning procedure proposed in Section 2.2.4. This is a

heuristic method to decompose the problem into multiple parts, first learning ℎ𝑑 for

each covariate, and then learning 𝛼𝑑 for each covariate. This approach does not involve

cross-validation and allows for parallel computations as the problem is fully decoupled.

For each experiment, we evaluate the imputation accuracy of each approach using the

MAE and RMSE metrics, as defined in Equations 2.30 and 2.31. In addition, we also compare

their scaling performance by measuring the average time needed for completion. In these

experiments, we did not consider the prediction task as in Section 2.3. Here, we limit the

types of experiments only to Percentage of Missing Data following the experimental set up of

Section 2.3.3.

We vary the number of features between [50, 100, 200, 300] and the number of observations

between [1000, 12500, 25000, 50000, 75000]. These bounds were chosen as they represent the

most common spectra of problem sizes that we encounter in healthcare applications. We

repeat all experiments for five random seeds and average the results.

2.4.3 Results of the Scaling Experiments

In this section, we present the results from the scaling experiments. In Figure 2.11, we

demonstrate the timing results. While both the methods scale to the largest problem

size with 𝑛 = 75000 observations and 𝑝 = 300 features, the Custom Tuning procedure

is -60.42% faster than Grid Search; the traditional cross-validation procedure. Across all

experiments, Custom Tuning is on average -87.05% faster than Grid Search. We notice

that for the lower problem sizes, the Custom Tuning approach leads almost instantaneous

algorithm completion while Gridsearch requires up to 12 hours to solve.

Figure 2.12 presents the results referring to imputation accuracy. The two procedures

lead to minimal differences in imputation performance. Across all experiments, the Custom

Tuning procedure is slightly more accurate than the GridSearch procedure, with an average
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Figure 2.11: Average time for MedImpute methods to complete imputation tasks on the
Synthea dataset using different procedures for hyperparameter tuning, with varying numbers
of observations 𝑛 and features 𝑝 in the dataset.

improvement of -4.36% in MAE. The gap between the two processes is larger when 𝑛 ∈
[25000, 50000] leading to an average reduction of -8.81% of the imputation error. We also

note that only when 𝑛 = 1000, GridSearch as the MAE is increased on average by 2.82% by

the new method. In all other combinations, Custom Tuning leads to more accurate results

with the maximum improvement reaching a reduction of 10.48% (𝑛 = 50000, 𝑝 = 100).

2.4.4 Discussion of the Scaling Experiments on Simulated Clinical

Datasets

The results from the scaling experiments demonstrate that the custom tuning procedure for

the MedImpute hyperparameters 𝛼𝑑 and ℎ𝑑 is highly effective and efficient. In particular, the

proposed method significantly reduces the computational time required, while also giving a

slight improvement in imputation accuracy as well compared to traditional cross-validation.

Using the methodology, we are able to scale the algorithm to higher problem instances without

sacrificing its imputation performance.

An analysis of the runtime complexity of the two hyperparameter selection methods
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Figure 2.12: Average MAE imputation errors for MedImpute methods on the Synthea dataset
using different procedures for hyperparameter tuning, with varying numbers of observations
𝑛 and features 𝑝 in the dataset.

provides further insights into these results. The key bottleneck of the med.knn algorithm is

computing the 𝐾-NN assignment on X to update Z in each CD step, which requires 𝒪(𝑛 log 𝑛)

operations. The Grid Search procedure requires 𝒪(𝑝2) iterations to identify the best values

for 𝛼𝑑 and ℎ𝑑, so the complete runtime for this method is 𝒪(𝑛𝑝2 log 𝑛). On the other hand,

the Custom tuning procedure only requires 𝒪(𝑝) iterations because each hyperparameter

for each covariate can be computed independently of the remaining covariates. As a result,

this method scales in a linear fashion with respect to the number of covariates, and the full

runtime is 𝒪(𝑛𝑝 log 𝑛).

Despite these theoretical asymptotic runtime guarantees, we recognize that the med.knn

method with the Custom Tuning procedure for hyperparameter tuning still takes up to 16

hours in datasets with 𝑛 ∼ 50,000 observations. However, given that the imputation task

usually takes place once in the pre-processing part of the data analysis, we believe that the

time cost is not significantly high. Moreover, the Custom tuning process allows for decoupling

the problem in smaller instances. Thus, the application of parallel computing techniques can

further improve the scaling performance of the algorithm.
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2.5 Discussion

MedImpute is an extension of the OptImpute framework introduced by [32]. MedImpute

uses the same optimization approach to solving the missing data problem. However, the

optimization formulation is significantly different and more general than the OptImpute

formulations in order to incorporate additional time series information present in cross-

sectional data. The new formulation provides a structured way of accounting for observations

from the same entity and re-weighting the objective function to incorporate time series

information. As a result, the resulting imputation algorithm med.knn from the MedImpute

framework outperforms opt.knn from the OptImpute framework and other benchmark

imputation methods on real-world clinical datasets with patients observed over time.

In the MedImpute formulation, two new parameters are introduced, 𝛼𝑑, ℎ𝑑, that are

specific to each covariate 𝑑. The proposed Custom Tuning procedure allows for learning the

values of these parameters more efficiently compared to a traditional Grid Search approach. In

addition, these parameters are interpretable in a clinical context, yielding insights regarding

the significance of time in their determination. For example, in the FHS dataset, we

learn different values of 𝛼𝑑 for chronic disease indicators such as Type 2 Diabetes Mellitus

(T2DM) and lab values such as Systolic Blood Pressure (SBP). It is likely that an individual

diagnosed with T2DM will continue to have this diagnosis regardless of the other covariates

[8], so MedImpute finds 𝛼d relatively close to 1 for this feature. On the other hand, the lab

measurement of SBP may vary significantly during a single day [236], so previous observations

of this covariate from the same individual provide relatively less information. For this feature,

MedImpute finds 𝛼𝑑 closer to 0 so that the 𝐾-nearest neighbors are weighted more heavily

in the imputation. In addition, we learn ℎ𝑑 to determine the relative weights that we give

to observations of feature 𝑑 from the same individual based on time elapsed. MedImpute

selects higher values of ℎ𝑑 for features that change slowly over time such as the BMI and

lower values for features that change rapidly over time such as SBP.

Beyond the healthcare setting, cross-sectional datasets are also quite common in other

areas such as finance and economics. Our algorithm can be generalized and applied to any
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data where there is a time series component and multiple observations are tied to the same

entity. The entity may represent a patient, as we portray in this work, or something else

that is observed over time such as a financial organization, region, or country. Therefore, the

MedImpute imputation framework and the associated med.knn algorithm may be applied to

impute missing values in other domains as well.

2.6 Conclusions

In this chapter, we propose the optimization framework MedImpute that addresses the

missing data problem for multivariate data in time series encountered in medical applications.

We introduce a new imputation algorithm med.knn that yields high quality solutions using

optimization techniques combined with fast first-order methods. Through computational

experiments on three real-world clinical datasets, including two longitudinal studies and

one EHR dataset, we show that med.knn offers statistically significant gains in imputation

quality over state-of-the-art imputation methods, which leads to improved out-of-sample

performance on downstream tasks. Through scaling experiments on a synthetic EHR

dataset, we demonstrate that med.knn can be applied to complete datasets with 10,000’s of

observations and 100’s of features. As a flexible, accurate, and intuitive approach, MedImpute

has the potential to become an indispensable tool for applications with longitudinal missing

data. Promising areas for future work include: (1) applications of this method to longitu-

dinal datasets that are not related to healthcare, (2) additional experiments to assess the

performance on downstream predictive tasks with transformed feature spaces, (3) extensions

of the optimization framework to incorporate more specialized structure that is present in

longitudinal healthcare datasets.
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Chapter 3

Interpretable Clustering: An

Optimization Approach

State-of-the-art clustering algorithms provide little insight into the rationale for cluster

membership, limiting their interpretability. In complex real-world applications, the latter

poses a barrier to machine learning adoption when experts are asked to provide detailed

explanations of their algorithms’ recommendations. We present a new unsupervised learning

method that leverages MIO techniques to generate interpretable tree-based clustering models.

Utilizing a flexible optimization-driven framework, our algorithm approximates the globally

optimal solution leading to high quality partitions of the feature space. We propose a novel

method which can optimize for various clustering internal validation metrics and naturally

determines the optimal number of clusters. It successfully addresses the challenge of mixed

numerical and categorical data and achieves comparable or superior performance to other

clustering methods on both synthetic and real-world datasets while offering significantly

higher interpretability.
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3.1 Introduction

Clustering is the unsupervised classification of patterns, observations, data items, or feature

vectors, into groups. The clustering problem has been addressed in many machine learning

contexts where there is no clear outcome of interest, such as data mining, document retrieval,

image segmentation, and pattern classification; this reflects its broad appeal and usefulness

in exploratory data analysis [162]. In many such problems, there is little prior information

available about the data, and the decision-maker must make as few assumptions about the

data as possible. It is under these restrictions that clustering methodology is particularly

appropriate for the exploration of relationships between observations to make an assessment,

perhaps preliminary, of their structure.

Unlike supervised classification, there are no class labels and thus no natural measure of

accuracy. Instead, the goal is to group objects into clusters based only on their observable

features, such that each cluster contains objects with similar properties and different clusters

have distinct features. There have been numerous approaches to generating these clusters.

Partitional methods such as 𝐾-means provide a single partition of the data into a fixed

number of clusters [222]; these methods have been improved by new initialization methods in

recent decades [13]. Hierarchical methods produce a nested series of partitions based on a

distance metric [321]. Other more sophisticated methods include model-based clustering and

density-based clustering which are better able to capture clusters of irregular shape or varied

density [162, 115].

The end product of a clustering algorithm is a partition of the dataset. In some cases,

this final cluster assignment is sufficient for the machine learning purpose, such as when

one wants to simply assess the separability of the data points into distinct clusters or use

it as a preprocessing step in certain prediction tasks. However, in many other decision-

making applications, there is a need to interpret the resulting clusters and characterize their

distinctive features in a compact form [127]. For example, consider a medical setting in which

we seek to group similar patients together to understand subgroups within a patient base.

In this application, it is critical to understand how the resulting clusters differ, whether by
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demographics, diagnoses, or other factors.

While the importance of cluster interpretability is well-understood, there has been limited

success in addressing the issue [101]. None of the clustering algorithms described above were

constructed with a goal of interpretability in the original feature space. They therefore require

a post-processing step to synthesize the cluster meanings. The notion of cluster representation

was introduced by [109] and was subsequently studied by [96] and [324]. The representation

of a cluster of points by its centroid has been popular across various applications [276]. This

works well when the clusters are compact or isotropic, but fails when the clusters are elongated

or non-isotropic [176]. These clusters can be better characterized computing additional metrics,

such as the variance in each dimension. However, this increases the number of summary

statistics used for each cluster and creates a high burden in interpretation, especially when the

number of features grows large. Another common approach is the visualization of clusters on

a two-dimensional graph using Principle Component Analysis (PCA) projections [178, 280].

However, in reducing the dimensionality of the feature space, PCA obscures the relationship

between the clusters and the original variables.

Tree-based supervised learning methods, such as Classification and Regression Trees

(CART), [56] are a natural fit for problems that prioritize interpretability, since their feature

splits and decision paths offer insight into the differentiating features between members

in each leaf. Most recursive partitioning algorithms generate trees in a top-down, greedy

manner, which means that each split is selected in isolation without considering its effect on

subsequent splits in the tree. [27, 34] have proposed a new algorithm which leverages modern

MIO techniques to form the entire decision tree in a single step, allowing each split to be

determined with full knowledge of all other splits. The Optimal Classification Trees (OCT)

algorithm enables the construction of decision trees for classification and regression that have

performance comparable with state-of-the-art methods such as random forests and gradient

boosted trees without sacrificing the interpretability offered by a single tree.

A general hybrid approach can leverage such methods by first running a partitional or

hierarchical clustering method and using the resulting assignments as class labels. The data
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can then be fit using a classification tree, in which each leaf is given a cluster label based on

the most common assignment of observations in that leaf, and the decision paths leading

to each cluster’s leaves give insight into the differentiating features [176]. [156] use decision

trees to interpret and refine hierarchical clustering results for global sea surface temperatures.

While these trees give an explicit delineation of cluster attributes, the methods involve a

two-step process of first building the clusters and subsequently identifying their differentiating

features. Thus, the main clustering mechanism utilizes a different architecture compared to

the decision tree which might be hard to capture with univariate feature splits.

Several algorithms have been proposed to build interpretable clusters, where interpretabil-

ity is a consideration during cluster creation rather than considered as a later analysis step.

[70] presented a method that constructs binary clustering trees characterized by a novel

transformation of the feature space. Further efforts focused on alternative measures for

feature selection in the transformation function as well as new algorithmic implementation

schemes [18]. In both of these cases, the feature space transformation involved in these

methods takes a toll on interpretability. Other researchers have proposed methods to con-

struct decision trees in the original feature space, which more closely matches our objective.

[219] introduced the idea of translating a clustering problem to a supervised problem that is

amenable to decision tree construction. A modified purity criterion is used to evaluate splits

in a way that identifies dense regions as well as sparse regions. However, this method requires

additional pre-processing through the introduction of synthetic data in order to create a

binary classification setting. [50] also proposed a general top-down tree induction framework

with applicability to clustering (“Predictive Clustering Trees”) as well as other supervised

learning tasks. [131] developed another clustering algorithm, Clustering sing Unsupervised

Binary Trees (CUBT), which forms greedy splits to optimize a cluster heterogeneity measure.

Though these algorithms make progress towards the goal of constructing clusters directly

using trees, they both employ a greedy splitting approach and do not offer flexibility in the

choice of cluster validation criterion.

The need for accurate and interpretable machine learning methods is undoubtedly present,
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being voiced even from regulatory organizations such as the European Union [148]. Even

though tree-based methods have been introduced, no existing interpretable unsupervised

learning algorithm can accurately partition the feature space both for numerical and categorical

data.

3.1.1 Contributions

Motivated by the limitations of existing solutions to interpretable clustering, we develop a

novel tree-based unsupervised learning method that leverages traditional optimization and

machine learning techniques to obtain interpretable clusters with comparable or superior

performance when compared to existing algorithms. Our contributions are as follows:

1. We provide an MIO formulation of the unsupervised learning problem that leads to the

creation of globally optimal clustering trees, motivating our new algorithm Interpretable

Clustering via Optimal Trees (ICOT). Our method builds upon the OCT algorithm

and extends it to the unsupervised setting. In ICOT, interpretability is taken into

consideration during cluster creation rather than considered as a later analysis step.

2. We provide an implementation of our method with an iterative CD approach that

scales to larger problems, well-approximating the globally optimal solution. We use

widely two established validation criteria, the Silhouette Metric [297] and the Dunn

Index [107], as the algorithm’s objective function. We propose additional techniques

that leverage the geometric principles of cluster creation to improve the algorithm’s

efficiency. Furthermore, we introduce sampling heuristics that recover fast, high-quality

solutions in our empirical experiments and provide a complexity analysis of the local

search procedure for one iteration of the algorithm.

3. We develop our algorithm in a way such that tuning of the tree’s complexity is redundant.

This is enabled by the fact that our loss functions take into account both intra-cluster

density as well as inter-cluster separation. The user can optionally tune the algorithm
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by selecting the maximum depth of the tree and the minimum number of observations

in each cluster.

4. We propose a solution to the incorporation of both mixed numerical and categorical

data. Our re-weighted distance measure prevents a single variable type from dominating

the distance calculation and allows users to optionally tune the balance the two types

of covariates.

5. We evaluate the performance of our method against various clustering approaches across

synthetic datasets from the Fundamental Clustering Problems Suite (FCPS) [337] which

offer different levels of variance and compactness. We demonstrate ICOT’s superior

performance against a two-step supervised learning method across both the Silhouette

Metric and Dunn Index, offering a 27.8% and 352.7% score improvement respectively.

We also compare ICOT against several state-of-the-art methods that represent various

clustering approaches, namely partitional, hierarchical, model-based, and density-based

clustering. We find that ICOT is competitive against these methods across multiple

internal validation criteria.

6. We provide examples of how the algorithm can be used in real-world settings. We

perform clustering on patients at risk of cardiovascular disease from the FHS dataset

[209, 122] to identify similar patient profiles and group economic profiles of European

countries during the Cold War [193]. Through these experiments, we illustrate the effect

of varying key parameters in the ICOT algorithm. We also compare ICOT to other

state-of-the-art algorithms in the FHS experiment and to CUBT in the economic profile

experiment. We discuss the interpretability of the methods as well as their performance

on the internal validation criteria.

7. Finally, we test the capability of the algorithm to scale to large problem instances using

both the FCPS as well as real-world data from a Boston-based bike sharing program.

We demonstrate that our suggested heuristic techniques do not significantly impact the

quality of the recovered solutions. In addition, our experiments illustrate that ICOT
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can efficiently handle datasets of sizes up to hundreds of thousands of observations.

The structure of the chapter is as follows. In Section 3.2, we formulate the problem

of optimal tree creation within an MIO framework. Section 3.3 provides a comprehensive

description of the algorithm implementation. In Sections 3.4 and 3.5, we conduct a range

of experiments using synthetic and real-world datasets to evaluate the performance and

interpretability of our method compared to other state-of-the-art algorithms. In Section 3.6,

we investigate the effect of our scaling methods on runtime and solution quality. In Section 3.7,

we discuss the key findings from our work and in Section 3.8 we include our concluding

remarks.

3.2 MIO Formulation

In this section, we present an MIO approach which allows us to construct globally optimal

tree-based models in an unsupervised learning setting. In Section 3.2.1, we provide an

overview of the MIO framework introduced by [27, 34]. Section 3.2.2 introduces the validation

criteria that are used as objective functions in the optimization problem. In Section 3.2.3, we

outline the complete ICOT formulation for one of the loss functions considered.

3.2.1 The Optimal Trees Optimization Framework

The OCT algorithm formulates tree construction using MIO which allows us to define a single

problem, as opposed to the traditional recursive, top-down methods that must consider each

of the tree decisions in isolation. It allows us to consider the full impact of the decisions being

made at the top of the tree, rather than simply making a series of locally optimal decisions,

avoiding the need for pruning and impurity measures.

We are given the training data (X,Y), containing 𝑛 observations (xi, 𝑦𝑖), 𝑖 = 1, . . . , 𝑛,

each with 𝑝 features and a class label 𝑦𝑖 ∈ {1, . . . , 𝐾} as an indicator of which of the 𝐾

potential labels is assigned to point 𝑖. We assume without loss of generality that the values

of each training vector are normalized such that xi ∈ [0, 1]𝑝. A decision tree recursively
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partitions the feature space to identify a set of distinct, hierarchical regions that form a

classification tree. The final tree 𝒯 is comprised of nodes that can be categorized in:

∙ Branch Nodes: Nodes 𝑡 ∈ 𝒯ℬ apply a split with parameters a and 𝑏. For observation 𝑖,

if the corresponding vector xi satisfies the relation a𝑇xi < 𝑏, the point will follow the

left branch from the node. Otherwise it takes the right branch.

∙ Leaf Nodes: Nodes 𝑡 ∈ 𝒯ℒ assign a class to all the points that fall into them. Each leaf

node is characterized by one class which is generally determined by the most frequently

occurring class among the observations that belong to it.

First, we formally define the constraints that construct the decision tree. We use the notation

𝑝(𝑡) to refer to the parent node of node 𝑡, and 𝐴(𝑡) to denote the set of ancestors of node 𝑡.

We define the split applied at node 𝑡 ∈ 𝒯ℬ with variables a𝑡 ∈ R𝑝 and 𝑏𝑡 ∈ R. The vector a𝑡

indicates which variable is chosen for the split, meaning that 𝑎𝑗𝑡 = 1 for the variable 𝑗 used

at node 𝑡. 𝑏𝑡 gives the threshold for the split, which is between [0, 1] after normalization of

the feature vector. If a branch node does not apply a split, then we model this by setting

a𝑡 = 0 and 𝑏𝑡 = 0. Together, these form the constraint a𝑇
𝑡 𝑥 < 𝑏𝑡. The indicator variables 𝑑𝑡

are set to 1 for branch nodes and 0 for leaf nodes. Using the above variables, we introduce

the following constraints that allows us to model the tree structure (for a detailed analysis of

the constraints, see [27]):

𝑝∑︁
𝑗=1

𝑎𝑗𝑡 = 𝑑𝑡, ∀𝑡 ∈ 𝒯ℬ, (3.1)

0 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯ℬ, (3.2)

𝑎𝑗𝑡 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑝, ∀𝑡 ∈ 𝒯ℬ (3.3)

We next enforce the hierarchical structure of the tree. Branch nodes are allowed to apply a

split only if their parent nodes apply a split:

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯ℬ∖{1} (3.4)
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Next we present the corresponding constraints that track the allocation of points to leaves.

For this purpose, we introduce the indicator variables 𝑧𝑖𝑡 = 1{𝑥𝑖 is in node 𝑡} and 𝑙𝑡 = 1{leaf

𝑡 contains any points}. We let 𝑁𝑚𝑖𝑛 be a constant that defines the minimum number of

observations required in each leaf. We apply the following constraints:

𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯ℒ, (3.5)
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁𝑚𝑖𝑛𝑙𝑡, ∀𝑡 ∈ 𝒯ℒ (3.6)

We also enforce each point to belong to exactly one leaf:

∑︁
𝑡∈𝒯ℒ

𝑧𝑖𝑡 = 1, 𝑖 = 1, . . . , 𝑛 (3.7)

Finally, we introduce constraints that force the assignments of observations to leaves to obey

the structure of the tree given by the branch nodes. We want to apply a strict inequality for

points going to the lower leaf. To accomplish this, we define the vector 𝜖 ∈ R𝑝 as the smallest

separation between two observations in each dimension 𝑝, and 𝜖𝑚𝑎𝑥 as the maximum over

this vector.

𝑎ᵀ𝑚𝑥𝑖 ≥ 𝑏𝑡 − (1− 𝑧𝑖𝑡), 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℬ, ∀𝑚 ∈ 𝐴𝑅(𝑡) (3.8)

𝑎ᵀ𝑚(𝑥𝑖 + 𝜖) ≤ 𝑏𝑡 + (1 + 𝜖𝑚𝑎𝑥)(1− 𝑧𝑖𝑡), 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℬ, ∀𝑚 ∈ 𝐴𝐿(𝑡) (3.9)

In the classification setting the objective function of MIO formulation is comprised of two

components, prediction accuracy and tree complexity. The tradeoff between those two

parameters is controlled by the complexity parameter 𝛼. Given the training data (xi, 𝑦𝑖),

𝑖 = 1 . . . 𝑛, a general formulation of the objective function is the following:

minimize
𝑇

𝑅𝑥𝑦(𝑇 ) + 𝛼|𝑇 |
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where 𝑅𝑥𝑦(𝑡) is a loss function assessed on training data and |𝑇 | is the number of branch

nodes in the tree 𝑇 .

The above model can be used as an input for an MIO solver. Empirical results suggest

that such a model leads to optimal solutions in minutes when the maximum depth of the

tree is small (approximately 4). Effectively, the rate of finding solutions is directly dependent

to the number of binary variables 𝑧𝑖𝑡 and therefore a faster implementation was needed for

more complex problems. For this reason, the authors introduced the idea of warm starts as

the initial starting point of the method. Using a high-quality integer feasible solution as a

warm start increases the speed of the algorithm and provides a strong initial upper bound on

the final solution. In addition, heuristics, like local search, allow a further speed up as shown

in [27, 34] that leads to a good approximation of the optimal solution.

3.2.2 Loss Functions for Cluster Quality

Clustering validation, the evaluation of the quality of a clustering partition [229], has long

been recognized as one of the vital issues essential to the success of a clustering application

[220]. External clustering validation and internal clustering validation are the two main

categories of clustering quality metrics. The main difference lies in whether or not external

labels are used to assess the clusters; internal measures evaluate the goodness of a clustering

structure without respect to ground-truth labels [198]. An example of external validation

measure is entropy, which evaluates the “purity” of clusters based on the given class labels

[359]. True class labels are not present in real-world datasets, and thus these cases necessitate

the use of internal validation measures for cluster validation.

We will consider two internal validation measures as loss functions for our MIO formulation

of our problem. The chosen loss functions consider the global assignment of observations

to clusters. The score of a clustering assignment depends on both the compactness of the

observations within a single cluster, as well as its separation from observations in other

clusters. Compactness measures how closely related the objects in a cluster are. Separation

measures how distinct a cluster is from other clusters. Several internal validation metrics have
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been proposed to balance these two objectives [220]. Two common criteria, the Silhouette

Metric and Dunn Index, are outlined below.

Silhouette Metric The Silhouette Metric introduced by [297] compares the distance from

an observation to other observations in its cluster relative to the distance from the observation

to other observations in the second closest cluster. The Silhouette Metric for observation 𝑖 is

computed as follows:

𝑠(𝑖) =
𝑏(𝑖)− 𝑎(𝑖)

max(𝑏(𝑖), 𝑎(𝑖))
, (3.10)

where 𝑎(𝑖) is the average distance from observation 𝑖 to the other points in its cluster, and

𝑏(𝑖) is the average distance from observation 𝑖 to the points in the second closest cluster. In

other words, 𝑏(𝑖) = min𝑘 𝑏(𝑖, 𝑘) where 𝑏(𝑖, 𝑘) is the average distance of 𝑖 to points in cluster

𝑘, minimized over all clusters 𝑘 other than the cluster that point 𝑖 is assigned to. From this

formula it follows that −1 ≤ 𝑠(𝑖) ≤ 1.

When 𝑠(𝑖) is close to 1, one may infer that the 𝑖𝑡ℎ sample has been “well-clustered”, i.e.

it was assigned to an appropriate cluster. If observation 𝑖 has score close to 0, it suggests

that it could also be assigned to the nearest neighboring cluster with similar quality. If 𝑠(𝑖)

is close to -1, one may argue that such a sample has been assigned to the wrong partition.

These individual scores can be averaged to reflect the quality of the global assignment.

𝑆𝑀 =
1

𝑛

𝑛∑︁
𝑖=1

𝑠(𝑖), (3.11)

Dunn Index The Dunn Index [107] characterizes compactness as the maximum distance

between observations in the same cluster, and separation as the minimum distance between

two observations in different clusters. The metric is computed as the ratio of the minimum

inter-cluster separation to the maximum intra-cluster distance.

𝐷𝐼 =
min

1≤𝑖<𝑗≤𝑚
𝛿(𝐶𝑖, 𝐶𝑗)

max
1≤𝑘≤𝑚

∆𝑘

, (3.12)
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where we let the maximum distance of cluster 𝐶 be denoted by ∆𝐶 and the distance between

clusters 𝑖 and 𝑗 be denoted by 𝛿(𝐶𝑖, 𝐶𝑗). If the dataset contains compact and well-separated

clusters, the distance between the clusters is expected to be large and the diameter of the

clusters is expected to be small. Thus, large values of the metric correspond to better

partitions and signify that the distance between clusters is large relative to the distance

between points within a cluster.

We provide an example to illustrate how an internal validation criterion can be used

to geometrically partition the space through a decision tree. In Figure 3.1, we cluster

observations from the Ruspini dataset [301] using the Silhouette Metric. In Figure 3.1a,

the algorithm identifies the best candidate splits on both features, 𝑥1 and 𝑥2, at the root

node, and then compares their resultant cluster scores, as measured by the Silhouette Metric.

The 𝑥2 split provides a better cluster assignment, so this split is chosen as denoted by the

solid line. After the first data partition, splits are considered for each of the child nodes,

which corresponds to further separating the lower and upper halves of the graph. Upon

identification of candidate 𝑥1 and 𝑥2 splits on the left child node, the 𝑥1 split is chosen

based on the Silhouette Metric of the global cluster assignment, as shown in Figure 3.1b.

The process is then completed for the right child node, and an 𝑥1 split is also chosen here

in Figure 3.1c. Now, each of the four leaves is evaluated, which corresponds to exploring

splits in the four quadrants defined by the solid blue lines. There are no splits within any

of these four leaves that improve the overall score of the clustering assignment, so the tree

construction is complete. The final tree is shown in Figure 3.1d. The resultant tree provides

a final partition which clearly elucidates the distinguishing features of each group. We note

that this example demonstrates a greedy tree construction. In the ICOT algorithm, all splits

would be subsequently reoptimized with respect to the overall tree. However, in this case the

greedy tree is able to provide the optimal partition.

Note that both of our considered criteria require the definition of at least two clusters since

they both involve a pairwise distance computation between clusters to measure separation.

As a result, calculations for the null-case are not considered. The determination of the best
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(a) Root Node (b) Left Child Node (c) Right Child Node

(d) Final Tree

Figure 3.1: An example of a clustering tree built on the Ruspini dataset.
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internal validation criterion for a given dataset remains an open question in the field of

unsupervised learning theory [220]. As stated in [154], the Dunn Index is more computationally

expensive and more sensitive to noisy data compared to the Silhouette Metric. It is also

less robust to outliers compared to the Silhouette Metric which averages an observation-

based score for the global assignment. However, empirical results suggest that the Dunn

Index has superior performance in returning intuitive partitions of the data when they are

well-separated.

3.2.3 The ICOT Formulation

The OCT framework needs to be modified to address an unsupervised learning task. We

present changes in the original MIO formulation of OCT to be able to partition the data

space into distinct clusters following the same structure and notation as in Section 3.2.1.

We outline in detail the model for the Silhouette Metric loss function. The Dunn Index

formulation follows closely and is thus omitted. There are two primary modifications in the

ICOT formulation compared to the OCT:

1. The objective function is comprised solely by the chosen cluster quality criterion, such

as the Silhouette Metric, and does not include any penalty for the tree complexity.

The separation component of the validation criterion naturally controls the complexity

of the tree and thus for the ICOT formulation the complexity parameter is rendered

redundant.

2. Each leaf of the tree is equivalent to a cluster. Observations in different leaves are not

allowed to belong to the same cluster.

The objective of the new formulation is to maximize the Silhouette Metric (𝑆𝑀) of the

overall partition. The Silhouette Metric quantifies the difference in separation between a

point and points in its cluster, versus the separation between that point and points in the

second closest cluster.
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Let 𝑑𝑖𝑗 be the distance (i.e. Euclidean) of observation 𝑖 from observation 𝑗. We define 𝐾𝑡

to be number of points assigned assigned to cluster 𝑡.

𝐾𝑡 =
𝑛∑︁

𝑖=1

𝑧𝑖𝑡, ∀𝑡 ∈ 𝒯ℒ (3.13)

We define 𝑐𝑖𝑡 to be the average distance of observation 𝑖 from cluster 𝑡:

𝑐𝑖𝑡 =
1

𝐾𝑡

𝑛∑︁
𝑗=1

𝑑𝑖𝑗𝑧𝑗𝑡, ∀𝑖 = 1, . . . , 𝑛, 𝑡 ∈ 𝒯ℒ. (3.14)

We define 𝑟𝑖 to be the average distance of observation 𝑖 from all the points assigned in the

same cluster:

𝑟𝑖 =
∑︁
𝑡∈𝒯ℒ

𝑐𝑖𝑡𝑧𝑖𝑡, ∀𝑖 = 1, . . . , 𝑛. (3.15)

We then let 𝑞𝑖 denote the minimum average distance of observation 𝑖 to the observations

from the next closest cluster. We define auxiliary variables 𝛾𝑖𝑡 to enforce this constraint, such

that 𝛾𝑖𝑡 an indicator of whether 𝑡 is the second closest cluster for observation 𝑖.

𝑞𝑖 ≥
∑︁
𝑡∈𝒯ℒ

𝛾𝑖𝑡𝑐𝑖𝑡, 𝑖 = 1, . . . , 𝑛. (3.16)

∑︁
𝑡∈𝒯ℒ

𝛾𝑖𝑡 = 1, 𝑖 = 1, . . . , 𝑛. (3.17)

𝛾𝑖𝑡 ≤𝑀(1− 𝑧𝑖𝑡), 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℒ. (3.18)

Finally, to define the Silhouette Metric of observation 𝑖, we will need the maximum value

between 𝑟𝑖 and 𝑞𝑖 which normalizes the metric.

𝑚𝑖 ≥ 𝑟𝑖, 𝑖 = 1, . . . , 𝑛. (3.19)

𝑚𝑖 ≥ 𝑞𝑖, 𝑖 = 1, . . . , 𝑛. (3.20)

The score for the Silhouette Metric for each observation is computed as 𝑠(𝑖) and the overall
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score for the clustering assignment is then the average overall all the Silhouette Metric scores

from the training population:

𝑠𝑖 =
𝑞𝑖 − 𝑟𝑖
𝑚𝑖

, 𝑖 = 1, . . . , 𝑛. (3.21)

𝑆𝑀 =
1

𝑛

𝑛∑︁
𝑖=1

𝑠𝑖. (3.22)

Putting all of this together gives the following MIO formulation for the ICOT model:

minimize
𝑥

− 1

𝑛

𝑛∑︁
𝑖=1

𝑠𝑖

subject to 𝑠𝑖 =
𝑞𝑖 − 𝑟𝑖
𝑚𝑖

, 𝑖 = 1, . . . , 𝑛,

𝑚𝑖 ≥ 𝑞𝑖, 𝑖 = 1, . . . , 𝑛,

𝑚𝑖 ≥ 𝑟𝑖, 𝑖 = 1, . . . , 𝑛,

𝑞𝑖 ≥
∑︁
𝑡∈𝒯ℒ

𝛾𝑖𝑡𝑐𝑖𝑡, 𝑖 = 1, . . . , 𝑛,

∑︁
𝑡∈𝒯ℒ

𝛾𝑖𝑡 = 1, 𝑖 = 1, . . . , 𝑛,

𝛾𝑖𝑡 ≤𝑀(1− 𝑧𝑖𝑡), 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℒ,

𝑟𝑖 =
∑︁
∀𝑡∈𝒯ℒ

𝑐𝑖𝑡𝑧𝑖𝑡, 𝑖 = 1, . . . , 𝑛,

𝑐𝑖𝑡 =
1

𝐾𝑡

𝑛∑︁
𝑗=1

𝑑𝑖𝑗𝑧𝑗𝑡, 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℒ,

𝐾𝑡 =
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ∀𝑡 ∈ 𝒯ℒ,

𝑝∑︁
𝑗=1

𝑎𝑗𝑡 = 𝑑𝑡, ∀𝑡 ∈ 𝒯ℬ,

0 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯ℬ,

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯ℬ∖{1},
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𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯ℒ,
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁𝑚𝑖𝑛𝑙𝑡, ∀𝑡 ∈ 𝒯ℒ,∑︁
𝑡∈𝒯ℒ

𝑧𝑖𝑡 = 1, 𝑖 = 1, . . . , 𝑛,

𝑎ᵀ𝑚𝑥𝑖 ≥ 𝑏𝑡 − (1− 𝑧𝑖𝑡), 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℬ, 𝑚 ∈ 𝐴𝑅(𝑡),

𝑎ᵀ𝑚(𝑥𝑖 + 𝜖) ≤ 𝑏𝑡 + (1 + 𝜖𝑚𝑎𝑥)(1− 𝑧𝑖𝑡), 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℬ, ;𝑚 ∈ 𝐴𝐿(𝑡),

𝑎𝑗𝑡, 𝑑𝑡 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑝, ∀𝑡 ∈ 𝒯ℬ,

𝑧𝑖𝑡, 𝑙𝑡 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑝, ∀𝑡 ∈ 𝒯ℒ,

𝛾𝑖𝑡 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛, ∀𝑡 ∈ 𝒯ℒ.

Figure 3.2 illustrates the benefit of an optimization framework over greedy tree construction.

The synthetic dataset seen in the figure has two dense lower regions and one less dense upper

region. In a greedy approach, the first split separates the lower clusters and cuts through

the upper cluster. While it is clearly better to split horizontally first (since it does not split

a region), a greedy algorithm chooses the split without consideration of the possibility of

future splits. Therefore, if the tree can only make one split, it is better to separate the lower

clusters since they have such high density. ICOT’s optimization approach considers the global

tree structure, avoiding such pitfalls and identifying the true optimal partition. It starts by

making a horizontal split and subsequently separates the high-density lower regions without

cutting through the upper cluster. A globally optimal partition has Silhouette Metric score

equal to 0.758 whereas the greedy tree yields only 0.688.

3.3 Algorithm Overview

In this section, we outline the practical details of the algorithm implementation. Section 3.3.1

describes ICOT’s CD algorithm that approximates the globally optimal solution in an efficient

and intuitive manner. Section 3.3.2 addresses the challenge of computing distance scores
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(a) Greedy Tree Approach (b) ICOT Approach

Figure 3.2: An illustration in a synthetic example of a local optimum that might be identified
by a greedy unsupervised learning algorithm.

in the presence of mixed numerical and categorical variables and introduces a solution for

appropriately handling distance in this setting. Finally, in Section 3.3.3 we propose heuristics

in our algorithm implementation which leverage the underlying structure of the data to more

quickly traverse the search space and identify high-quality solutions.

3.3.1 Coordinate-Descent Implementation

The MIO formulation provides the optimization framework for our problem solving approach.

In practice, the algorithm is implemented using a CD procedure which allows it to scale to

much higher dimensions than directly solving the optimization problem. The implementation

provides a good approximation of the optimal solution while still abiding by the same core

principles of the original formulation.

ICOT initializes a greedy tree and subsequently runs a local search procedure until the

objective value, a cluster quality measure, converges. This process is repeated from many

different starting greedy trees, generating many candidate clustering trees. The final tree is

chosen as the one with the highest cluster quality score across all candidate trees. This single

tree is returned as the output of the algorithm.

The initial greedy tree is constructed from a single root node. A split is made on a
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randomly chosen feature by scanning over all potential thresholds for splitting observations

into the lower and upper leaves. At each candidate split, we compute the global score for

the potential assignment. We choose the split threshold that gives the highest score and

update the node to add the split if this score improves upon the global score of the current

assignment. We perform the same search for each leaf that gets added to the tree, continuing

until either the maximum tree depth is reached or no further improvement in our objective

value is achieved through further splitting on a leaf.

Following the creation of the greedy tree, a local search procedure is performed to optimize

the clustering assignment. Tree nodes are visited in a randomly chosen order, and various

modifications are considered. A branch node has two options; it can be deleted, in which

case it is replaced with either its lower or upper subtree, or a new split can be made at the

node using a different feature and threshold. A leaf node can be further split into two leaves.

At each considered node, the algorithm finds the best possible change and updates the tree

structure only if it improves the objective from its current value. All nodes get added back to

the list of nodes to search once an improvement has been found. The algorithm terminates

when the objective value converges. The algorithm is explained further in Algorithm 3.

The user can specify to optimize either the Silhouette Metric or Dunn Index described in

Section 3.2.2. These metrics penalize low separation, which naturally limits the depth of the

tree. In traditional tree-based algorithms such as CART or OCT, the loss function improves

with successive tree splits. Thus, these methods require a pruning step or additional parameter,

such as a complexity penalty of maximum depth, to control the tree size. ICOT does not

require the explicit control of tree size due to this natural balance between separation and

compactness in the cluster quality metrics. This eliminates the need for setting an explicit 𝐾

parameter, which is typically required in both partitional and hierarchical clustering methods.

The tree continues to split until further splits no longer improve the quality of the overall

assignment, and so the final number of leaves represents the optimal number of clusters.

The user can enforce further structure on the tree through setting the optional minimum

bucket parameter, 𝑁𝐶 . This controls the minimum number of observations that are required
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Algorithm 3 ICOT Algorithm.
Input: Feature vectors x1, . . . ,x𝑛

Output: Cluster assignments 𝑦1, . . . , 𝑦𝑛

1: Initialize a greedy tree, with clusters 𝑐1, . . . , 𝑐𝐾 and loss 𝑙0.
2: Indices to search: 𝑆 = {1, . . . , 𝐾}; Loss: 𝑙 = 𝑙0.
3: while 𝑆 not empty do
4: for all 𝑘 ∈ 𝑆 do
5: if 𝐶𝑘 is leaf node then
6: Find best possible new split with loss �̂�.
7: else
8: Find best possible node modification, either through a different split or split

deletion, with loss �̂�.
9: end if

10: if �̂� < 𝑙 then
11: Update tree and add all leaves to 𝑆. 𝑙← �̂�.
12: else
13: Remove 𝑘 from 𝑆.
14: end if
15: end for
16: end while

in each leaf and effectively in each cluster. Note that there is not a monotonic relationship

between the magnitude of 𝑁𝐶 and the number of leaves (clusters) generated by the algorithm.

Smaller minimum buckets may lead to smaller cluster counts due to the positive effect of

isolated outlier clusters on the metrics; overfitting is difficult to quantify in an unsupervised

learning setting because there is no ground truth to compare against, and thus the metrics do

not naturally penalize single outliers. Thoughtful choice of the minimum bucket parameter

allows ICOT to avoid creating clusters of single or small sets of outliers, which often lack

meaning and generalizability in grouping tasks. Traditional methods, such as 𝐾-means, deal

with outliers by increasing the 𝐾 parameter and forcing the algorithm to provide with a

higher number of clusters. 𝑁𝐶 can significantly affect the clustering solution and should be

cross-validated or experimented on in order to get accurate and intuitive results from ICOT.

The maximum depth can be used to impose an upper bound on the number of clusters if

desired, although this parameter does not address potential outlier issues.

The ICOT algorithm is implemented in Julia [46] and is available to academic researchers
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under a free academic license.*

3.3.2 Mixed-Variable Handling

Both the Silhouette Metric and Dunn Index assess the quality of a given cluster assignment

using the pairwise distance matrix of the observations. Distance is quantified differently for

numerical and categorical variables and thus must be adjusted appropriately in the presence

of mixed variable types. In the case of continuous features, the data are first normalized

to be in the [0, 1] range. The pairwise numerical distance matrix 𝑑𝑁 is computed using the

Euclidean distance between each pair of normalized variables. In the case of categorical

features, distance is defined based on whether the observations take on different values. For

example, if one observation takes on category 𝐴 and another observation takes on category

𝐵 on a given feature, the distance on this feature will be 1. The distance is zero if the

observations take on the same value. For each pair of observations, these indicators are

summed over all categories to define the categorical feature distance matrix 𝑑𝐶 .

When the feature space includes both numerical and categorical variables, special con-

sideration must be given to avoid over-weighting the categorical variables. In particular,

categorical variables are often one-hot encoded (i.e. converted to binary 0/1 columns) to

allow them to be treated as numerical in machine learning methods. This adjustment is

insufficient in our case as it will result in placing too high of an importance on the categorical

distance.

We handle this issue by taking a linear combination of the two separate distance matrices

for numerical and categorical variables. We first compute separate distance matrices for the

numerical and categorical features. We let 𝑆𝑁 denote the set of indices for the numerical

features, and 𝑆𝐶 denote the categorical indices. The computations for 𝑑𝑁 and 𝑑𝐶 are explicitly

defined in Equations 3.23 and 3.24.

𝑑𝑁𝑖𝑗 =

√︃∑︁
𝑘∈𝑆𝑁

(𝑥𝑖
𝑘 − 𝑥𝑗

𝑘)2 (3.23)

*Please email icot@mit.edu to request an academic license for the ICOT package.
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𝑑𝐶𝑖𝑗 =
∑︁
𝑘∈𝑆𝐶

1{𝑥𝑖
𝑘 ̸= 𝑥𝑗

𝑘} (3.24)

We then compute the final distance matrix by taking a linear combination of these two

matrices, given in Equation 3.25.

𝑑𝑖𝑗 = 𝛼𝑑𝑁𝑖𝑗 + (1− 𝛼)𝑑𝐶𝑖𝑗 (3.25)

By default, the two distances are weighted according to their proportion of all covariates,

so 𝛼 =
|𝑆𝑁 |

|𝑆𝑁 |+|𝑆𝐶| . The user can also specify an alternative 𝛼 parameter. At 𝛼 = 1, the distance

matrix only accounts for numerical covariates, whereas 𝛼 = 0 only considers disagreements in

categorical variables.

3.3.3 Scaling Methods

Our CD procedure is more computationally intensive than the original OCT algorithm due

to unique characteristics of clustering. In particular, we must compute a global clustering

quality score at each split threshold evaluation, unlike classification tasks in which the loss

change for a potential split can be assessed locally at the node. This global score assessment

involves higher computational effort per split evaluation and thus motivates the development

of more efficient search procedures. We introduce two scaling methods to take advantage of

the geometric intuition behind cluster creation as well as existing clustering methods. We

furthermore propose a subsampling approach to allow the algorithm to scale to much larger

problems.

Restricted Geometric Search Space

ICOT leverages the geometric structure of the feature space by restricting the set of candidate

splits to those with sufficient separation. An exhaustive search of candidate splits on a

given numerical feature requires 𝑛𝑘 − 1 threshold evaluations, where 𝑛𝑘 is the number of

observations in a given node. This is due to the fact that there are exactly 𝑛𝑘 − 1 different

possible partitions of the data on the given feature at node 𝑘 (less if multiple observations
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have the same value on this feature).

To improve the efficiency of our algorithm, we only consider a subset of these thresholds.

For any feature, we refer to a threshold’s gap as the separation between the observations

directly below and above it. Since the quality of a clustering assignment is directly tied to

the distance separating distinct clusters, the cluster quality will be superior when considering

thresholds with large gaps. We take advantage of this intuition by skipping over thresholds

with small gaps.

We control the extent of search space restriction through the parameter 𝑇 . When

considering a numerical feature split at node 𝑘, all threshold gaps for observations in the

node are sorted (𝑛𝑘 − 1 values). Only thresholds above the 𝑇 𝑡ℎ percentile of gap size are

considered. For example, if 𝑇 = .9 and 𝑛𝑘 = 100, only the thresholds with the 10 largest

gaps are considered, reducing the number of computations per node by 90%.

Figure 3.3 provides an illustration of how the Restricted Geometric Search would be

applied in a simple example. When 𝑇 = 0.7, ICOT will investigate only the top 30% of the

gaps between observations. Thus only the larger, bold, gaps would be potential splits for a

branch node that considers the covariate corresponding to the horizontal axis.

Figure 3.3: An example of the Restricted Geometric Search Function
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𝐾-means Warm Start

We also employ warm starts to more efficiently identify high-quality clustering trees. We

leverage the 𝐾-means algorithm to partition the data into clusters and use OCT to generate

a tree that reasonably separates these clusters. This becomes the starting point of ICOT’s

coordinate descent algorithm. The algorithm first runs 𝐾-means on the original data across

various 𝐾 parameters and selects the assignment that optimizes our chosen cluster quality

criterion. The resulting assignments are used as class labels for the construction of a supervised

classification tree using OCT. ICOT’s CD procedure then begins from the resultant OCT

tree rather than a greedy tree. Each leaf from the OCT tree becomes a separate cluster when

initializing the ICOT algorithm, even though the predicted class labels may match between

multiple leaves. Overall, the 𝐾-means warm start expedites tree initialization and improves

the efficiency of the search procedure.

Bootstrapping

We introduce bootstrapping on the number of input observations, 𝑁 . Our goal is to make

the algorithm amenable to solve problems of larger sample size. This procedure involves

subsampling a reduced population of size 𝑁𝑟 and solving smaller problems 𝑁rep times. This

allows the algorithm to scale linearly with respect to the number of repetitions. It can be

easily parallelized as it contains multiple independent sub-problems. Each iteration samples

𝑁𝑟 observations without replacement and runs ICOT, returning a tree model which is then

evaluated on a validation population. Upon completion of all 𝑁rep iterations, the algorithm

selects the best performing tree model on the validation criterion. Beyond improving the

speed of the algorithm, bootstrapping provides a lot of flexibility to the user. The choice

of 𝑁𝑟 and 𝑁rep may vary depending on the time constraints and the required quality of the

final solution. We explore the latter in greater detail in Sections 3.6.2-3.6.2.
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Complexity Analysis

We provide a brief analysis of the worst-case complexity for each iteration of the CD

implementation of the algorithm. The argument is an extension of the complexity analysis

for Optimal Classification Trees [108]. First, we consider the complexity of calculating our

cluster quality criteria.

An initial step for the computation of any score is the construction of a distance matrix

that contains all the distances between each point 𝑖, 𝑗 ∈ [𝑁 ], the training population. The

matrix creation involves 𝑛(𝑛−1)
2

calculations, which has complexity 𝒪(𝑛2).

Silhouette Metric (SM): For each observation 𝑖, we must compute the average distance

between 𝑖 and the members of each cluster. If we have 𝑇 nodes, and each cluster contains at

most 𝑛 points, this has complexity 𝒪(𝑛𝑇 ). We need to find the distance to the next-closest

cluster for which 𝑖 is not a member. As we iterate through each of the clusters, we track the

closest distance found so far and update if it improves. We note that the number of clusters

is 𝒪(𝑇 ) and is upper bounded by the total number of nodes. This computation is repeated

for all 𝑛 observations. Thus, the complexity of computing the Silhouette Metric is

𝑐𝑝𝑆𝑀 = 𝒪(𝑛(𝑛𝑇 )) = 𝒪(𝑛2𝑇 )

.

Dunn Index (DI): For each cluster, we must find the largest distance between any two

points within the cluster and the smallest distance between a point in the cluster and outside

of the cluster. This involves sorting at worst all pre-computed pairwise distances of which

there are 𝑛(𝑛−1)
2

, giving complexity 𝒪(𝑇𝑛2 log(𝑛)). As we iterate through the sorted values,

we track the highest intra-cluster and lowest inter-cluster distances and update if we find a

value that improves either metric. In total, this yields complexity

𝑐𝑝𝐷𝐼 = 𝒪(𝑇𝑛2 log(𝑛)) = 𝒪(𝑇𝑛2 log(𝑛))

109



.

We now move on to the calculation of the algorithm’s complexity in each iteration. Once an

initial tree is constructed, each inner iteration of ICOT’s local search consists of identifying

the best potential split change at a given node. For each of the 𝑝 features, there are at

most 𝑛− 1 potential split thresholds (if all observations are in this node). At each of these

thresholds, we must (1) find the assignment of all points to clusters (i.e. tree leaves), which

has complexity 𝒪(𝑛𝑇 ), where 𝑇 is the total number of nodes in the tree and (2) calculate

the cluster quality criterion 𝑐𝑝, either 𝑐𝑝𝑆𝑀 or 𝑐𝑝𝐷𝐼 . Thus, the inner iteration has complexity

𝒪(𝑛𝑝(𝑛𝑇 + 𝑐𝑝)). We must repeat this for each leaf, which adds a factor of 𝑇 .

Ultimately, one iteration of ICOT when trained on the Silhouette Metric has worst-case

complexity:

𝒪(𝑛𝑝𝑇 (𝑛𝑇 + 𝑛2𝑇 )) = 𝒪(𝑛2𝑝𝑇 2 + 𝑛3𝑝𝑇 2) = 𝒪(𝑛2𝑝𝑇 2 + 𝑛3𝑝𝑇 2)

When optimizing the Dunn Index, ICOT’s complexity is:

𝒪(𝑛𝑝𝑇 (𝑛𝑇 + 𝑛2𝑇 log(𝑛))) = 𝒪(𝑛2𝑝𝑇 2 + 𝑛3𝑝𝑇 2 log(𝑛))

Both of these results demonstrate that each iteration of ICOT is highly sensitive to scaling

with respect to 𝑛, with a higher cost when training on the Dunn Index (by a factor of log(𝑛).

Through the geometric search in Section 3.3.3, we are able to reduce the number of splits

considered by a constant factor; with a threshold of 0.99, rather than considering 𝑛𝑝 splits,

we only consider 0.01 * 𝑛𝑝 splits. Additionally, the warm-starts explained in Section 3.3.3

provide higher quality starting solutions which reduces the number of iterations required to

reach convergence and thus reduces runtime. This is demonstrated empirically in Section 3.6.

Finally, the sub-sampling method introduced in Section 3.3.3 allows us to leverage ICOT for

arbitrarily large problems; Section 3.6 also shows empirical evidence that the resultant trees

still generalize well to the larger datasets despite only being trained on a subset.
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3.4 Experiments based on Synthetic Datasets

In this section, we present results of ICOT across various synthetic datasets. We use these

experiments to assess the quality of the algorithm’s solution on both validation criteria. We

compare ICOT to other popular clustering alternatives in terms of their ability to recover

high-quality clustering assignments when training on both the Silhouette Metric and Dunn

Index. We also examine the tradeoff between the two metric scores when training on one and

evaluating on the other.

3.4.1 Experimental Setup

We evaluated ICOT on the FCPS datasets [337], a standard set of synthetic datasets for

unsupervised learning evaluation. These datasets have ground truth cluster labels, which

allow for an objective comparison of cluster quality. Our experiments only consider nine of

the 10 FCPS datasets, as the tenth contains no true clusters and thus does not offer insight

into clustering algorithms.

The ICOT experiments use the “fully scaled" version of the algorithm, with a 𝐾-means

warm start and a geometric threshold of 0.99. We left the minimum bucket size at its default

value (1 observation) and restricted the maximum depth of the tree to depth 3. We left

the 𝛼 parameter at its default value. We ran 100 random restarts of the algorithm in each

experiment.

We consider six alternative clustering algorithms which span a range of methodological

approaches and interpretations. The following methods are compared:

1. Optimal Classification Trees Hybrid Method (OCT): A two-step 𝐾-means and OCT

hybrid approach, in which 𝐾-means clusters serve as class labels for a supervised

multi-class classification problem. Each observation is assigned a label based on the

predicted class of its leaf. OCT is implemented using the InterpretableAI package in

Julia [27, 34].

2. 𝐾-means++: We run 𝐾-means with a 𝐾-means++ initialization, which was introduced
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by [13] and has been shown to improve upon a standard 𝐾-means implementation.

𝐾-means++ has been incorporated in the ClusterR R package [243]. We run the

method with 100 random restarts and a maximum of 100 clustering iterations.

3. Hierarchical Clustering (Hclust): Hierarchical clustering is the most popular agglom-

erative clustering method. It combines individual points into clusters using a linkage

measure until all points end up in a single cluster, returning a single dendogram that

exhaustively links all individual points [162]. While this is a tree-based method, it does

not have binary splits and cannot be explicitly represented as a function of the features.

Hclust is implemented in R using average linkage.

4. Gaussian Mixture Models (GMM): GMM assigns observations to clusters characterized by

Gaussian distributions. The algorithm uses expectation-maximization (EM) to find

the parameters for each of 𝐾 Gaussian distributions, each representing a cluster [162].

This approach has a key advantage of accounting for cluster variance in assignment,

which is a deficiency of traditional methods such as 𝐾-means. For each observation,

this method returns a soft-assignment, which gives a probability of belonging to each

cluster. To make this assignment amenable to our quantitative comparison which

requires an explicit assignment, we assign observations to their most likely cluster. GMM

is implemented in the ClusterR R package [243]. We run the method with 20 EM and

𝐾-means iterations and confirmed that the results stabilize by this point. We compute

observation distances using Euclidean distance.

5. Density-based Spatial Clustering of Applications with Noise (DBSCAN): DBSCAN is a

popular method that constructs clusters based on the highest density regions of a

dataset [115]. DBSCAN does not return a complete assignment; outliers in low-density

areas are left out of any clusters. While this exclusion approach makes the method

robust to outliers, it complicates quantitative evaluation. To allow for a fair comparison

on the internal validation metrics, we assign each outlier point to the most common

cluster of its five nearest neighbors. If all neighbors are also unassigned, we assign the

112



point to its own cluster. This method is implemented in the DBSCAN package in R [153],

with additional post-processing to complete the outlier assignment.

6. Predictive Clustering Trees (PCT): Predictive clustering trees build recursive binary

decision trees for clustering tasks [50]. The methodology is implemented in Java through

the Clus package. We adopt the default “VarianceReduction" splitting heuristic.

We are unable to present synthetic comparisons to other recent work in interpretable

clustering, such as CUBT, as there are no available implementations of the algorithms. We

present results of ICOT against the CUBT experiments presented by [131] in Section 3.5.3.

We run all of the comparison methods on normalized data. ICOT normalizes the distance

matrix within the algorithm, and we input a normalized dataset into the other comparison

method functions. For each of the comparison methods, we tune key parameters to optimize

the Silhouette Metric (or Dunn Index). In 𝐾-means++, Hclust, and GMM, we tune the number

of clusters 𝐾 ∈ [2, 10]. DBSCAN does not have an explicit 𝐾 parameter, but the 𝜖 parameter

informs the neighborhood size when constructing clusters; larger 𝜖 values generally translate

to larger clusters (and lower 𝐾). We tune 𝜖 ∈ [0.1, 0.11, 0.12 . . . , 1.0]. Finally, PCT matches

our methodology most closely and does not require an explicit cluster number (𝐾) or density

threshold (𝜖); for this algorithm, we simply tune the maximum depth from 1 to 3. In all cases,

we select the parameter value that yields the best internal validation score on the metric of

interest.

In the following experiments, all results are averaged over five experiments per algorithm

and parameter combination. All experiments were conducted on two CPUs of type 2 socket

Intel E5-2690 v4 2.6 GHz/35M Cache; 16GB of NUMA enabled memory were used per CPU.

3.4.2 Solution Quality

In these experiments, we look to assess various clustering methods in terms of their recovery

of high-quality solutions, as measured by both the Silhouette Metric and the Dunn Index. We

additionally investigate the performance of the “true" cluster labels on both of these criteria.
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Tables 3.1 and 3.2 show the results of these methods along with the true FCPS labels,

evaluated with both the Silhouette Metric and Dunn Index.

Data (N,P) ICOT OCT 𝐾-means++ Hclust GMM DBSCAN PCT Truth

Atom (800,2) 0.503 0.433 0.611* 0.593 0.565 0.540 0.516 0.311
Chainlink (1000,2) 0.396 0.28 0.479 0.496* 0.409 0.357 0.312 0.158
EngyTime (4096,2) 0.573* 0.4 0.439 0.379 0.433 0.450 0.377 0.398
Hepta (212,3) 0.453 0.332 0.702* 0.702* 0.608 0.702* 0.368 0.702*
Lsun (400,2) 0.549 0.534 0.569* 0.554 0.537 0.439 0.564 0.439
Target (770,2) 0.629* 0.409 0.593 0.619 0.578 0.533 0.516 0.295
Tetra (400,3) 0.504* 0.266 0.504* 0.504* 0.504* 0.504* 0.307 0.504*
TwoDiamonds (800,2) 0.486* 0.486* 0.486* 0.485 0.412 0.266 0.486* 0.486*
WingNut (1070,2) 0.422 0.393 0.426* 0.418 0.407 0.384 0.422 0.384

Count Best/Tie 4 1 6 3 1 2 1 3
Average Score 0.502 0.393 0.534 0.528 0.495 0.464 0.430 0.409
Std. Dev Score 0.074 0.089 0.091 0.101 0.081 0.126 0.095 0.153

Table 3.1: Comparison of methods across the FCPS datasets, when trained and evaluated on
the Silhouette Metric.

The asterisks indicate the best score across all algorithms for each criterion.

Data (N,P) ICOT OCT 𝐾-means++ Hclust GMM DBSCAN PCT Truth

Atom (800,2) 0.137 0.035 0.052 0.097 0.048 0.371* 0.064 0.371*
Chainlink (1000,2) 0.028 0.013 0.038 0.037 0.016 0.265* 0.018 0.265*
EngyTime (4096,2) 0.064* 0.002 0.005 0.014 0.004 0.029 0.002 0.000
Hepta (212,3) 0.357 0.162 1.080* 1.080* 0.482 1.080* 0.293 1.080*
Lsun (400,2) 0.077 0.027 0.056 0.071 0.117* 0.117* 0.026 0.117*
Target (770,2) 0.550* 0.011 0.029 0.550* 0.113 0.117 0.013 0.253
Tetra (400,3) 0.200* 0.044 0.200* 0.200* 0.200* 0.200* 0.046 0.200*
TwoDiamonds (800,2) 0.044 0.022 0.031 0.049* 0.021 0.030 0.022 0.022
WingNut (1070,2) 0.063* 0.020 0.026 0.036 0.016 0.063* 0.063* 0.063*

Count Best/Tie 4 0 2 4 2 6 1 6
Average Score 0.169 0.037 0.169 0.237 0.113 0.253 0.061 0.264
Std. Dev Score 0.176 0.048 0.347 0.358 0.153 0.330 0.090 0.330

Table 3.2: Comparison of methods across the FCPS datasets, when trained and evaluated on
the Dunn Index

The asterisks indicate the best score across all algorithms for each criterion.

ICOT dominates the two-step supervised learning method in all cases for both metrics,

offering an average Silhouette Metric improvement of 27.8% and Dunn Index improvement of

352.7% over OCT. This demonstrates the advantage of building clusters directly through a

tree-based approach rather than using a hybrid supervised learning method that applies a

tree to cluster labels a posteriori.
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ICOT matches or outperforms the best alternative clustering method in 4/9 cases with

both the Silhouette Metric and with the Dunn Index. ICOT ties or beats 𝐾-means++ in 7/9

cases on the Dunn Index and 4/9 on the Silhouette Metric, attesting to its competitiveness

against the most widely-used clustering technique. We also note that when measured against

our most interpretable alternative, PCT, ICOT ties or wins in all cases on the Dunn Index

and 7/9 on the Silhouette Metric.

When considering performance by the ranked wins/ties of each method, 𝐾-means++ is

the best method for the Silhouette Metric and DBSCAN is the best method for the Dunn

Index. No method dominates ICOT in the win/tie ranking; namely, there is no method that

performs better on both the Silhouette Metric and Dunn Index. When looking at the average

score across all nine datasets, Hclust is the only method to dominate ICOT on both training

metrics. However, we note that Hclust also has a significantly higher standard deviation on

both metrics, indicating a lack of consistency in solution recovery quality.

Our method is weakest when the underlying clusters are non-separable with parallel splits,

since ICOT places hard constraints on an observation’s cluster membership based on splits in

feature values. In these cases, such as with the Hepta dataset, ICOT is unable to recover the

true structure. The flexibility offered by alternative methods is advantageous in these cases.

Overall, our results demonstrate that despite the highly constrained setting that we impose

on the solution structure, we are still able to perform competitively with far less constrained

(and less interpretable) methods.

Cluster quality evaluation is highly dependent on the chosen metric; the ground truth

assignment is only the “best" method in 3/9 cases with the Silhouette Metric and 6/9 cases

with the Dunn Index. ICOT identifies strictly “better" clusters than the ground truth in 6/9

cases for the Silhouette Metric and 3/9 cases for the Dunn Index, as measured by their scores

on the respective metrics. This phenomenon raises the broader question of how to assess

cluster quality, as recovering known labels in synthetic data does not necessarily translate to

meaningful cluster assignments.
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Sensitivity to Training Criterion Choice

Table 3.3 shows the ICOT scores on the FCPS datasets as measured by each validation

criterion, broken down by training loss function. The values refer to the average score across

all nine datasets. As expected, both metrics have their best performance when they are used

as the training criterion to optimize for ICOT. The choice to train on the Silhouette Metric

results in a 12.4% loss in Dunn Index score as compared to when training on the Dunn Index.

Similarly, training originally on the Dunn Index results in a loss of 15.8% in the Silhouette

Metric. This quantifies the sensitivity to the choice of training criterion. Both metrics incur

a cost in terms of performance loss on other internal validation criteria, with a slightly lower

loss on the Dunn Index.

Training Criterion Silhouette Metric Dunn Index

Silhouette Metric 0.475 0.149

Dunn Index 0.416 0.177

Table 3.3: Comparison of internal validation scores by choice of training criterion in the
ICOT algorithm.

3.5 Experiments based on Real-World Datasets

In this section, we present results for two real-world examples. We address two important

questions often encountered in practice and demonstrate the value of clustering in their

analysis; interpretability and performance on internal validation criteria. We illustrate models

produced by ICOT, OCT, 𝐾-means++, Hclust, GMM, DBSCAN, PCT, and the CUBT algorithm.

We also consider the impact of tuning key user-defined parameters on the ICOT model.

Section 3.5.2 outlines a patient similarity case study utilizing data from the well-known FHS.

In these models we consider results across several minimum bucket sizes which offer different

levels of granularity in the final output. We also experiment with various 𝛼 parameters,

allowing us to control the weight of numerical vs. categorical features in the distance matrix.
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Section 3.5.3 focuses on grouping economic profiles of European countries during the Cold

War using only tree-based unsupervised learning techniques.

3.5.1 Experimental Setup

We adopted a similar experimental setup to the one described in Section 3.4.1 for the

synthetic experiments. In particular, the ICOT experiments use the “fully scaled" version of

the algorithm, with a 𝐾-means warm start and a geometric threshold of 0.99. We ran 100

random restarts of the algorithm in each experiment. The 𝛼 and minimum bucket parameters

are varied as part of the experiments. We ran all of the experiments on normalized data,

which is particularly relevant in this setting where features vary greatly in magnitude.

We consider the same six alternative clustering algorithms: OCT, 𝐾-means++, Hclust, GMM,

DBSCAN, and PCT. The latter four methods cannot integrate both categorical and numerical

features, so we updated the feature space to one-hot encode the categorical variables as binary

features. We used the same fixed algorithm parameters for all methods as outlined in Section

3.4.1. We tuned the 𝐾 parameter over the range of 2 to 10 clusters for all methods other

than DBSCAN. We tuned 𝜖 ∈ [1, 5] for DBSCAN. All experiments were conducted on two CPUs

of type 2 socket Intel E5-2690 v4 2.6 GHz/35M Cache; 16GB of NUMA enabled memory

were used per CPU.

3.5.2 Patient Similarity for The Framingham Heart Study

Patient similarity is the concept of identifying groups of individuals with comparable health

profiles from their EHR, often with the goal of assessing treatment receptivity and outcomes.

The goal is to cluster patients in compact groups without any particular outcome of interest

and to study the health progression for those individuals over time. Clustering methods have

been particularly popular in this application as they do not require an independent covariate

in model creation.

We provide an illustration of our method using data from the Offspring Cohort from the

FHS, a large-scale longitudinal clinical study. It started in 1948 with the goal of observing
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a large population of health adults over time to better understand cardiovascular disease

risk factors. Over 80 variables were collected for 5,209 people over the course of more than

40 years. The FHS is arguably one of the most influential longitudinal studies in the field

of cardiovascular and cerebrovascular research. This data has now been used in more than

2,400 studies and is considered one of the top 10 cardiology advances of the twentieth century

alongside the electrocardiogram and open-heart surgery [209].

Our dataset consists of 1,200 observations from distinct participants of the Offspring

Cohort and 11 covariates (age, gender, presence of diabetes, levels of High-Density Lipoprotein

(HDL), BMI status, Blood Pressure (BP) status, blood glucose levels, hematocrit levels,

history of myocardial infarction, history of stroke, and current smoking habits) [209, 122].

We explore how the ICOT model is impacted as we vary the 𝛼 parameter and the minimum

bucket parameter, 𝑁𝐶 . Subsequently, we compare the results of ICOT with other clustering

methods in terms of interpretability and quantitative performance on the validation criteria.

The Effect of the 𝛼 Parameter

In this set of experiments, we focus on the impact of the 𝛼 parameter on the creation of the

ICOT model. The FHS dataset contains mixed numerical and categorical attributes and thus

the determination of this parameter clearly affects the feature selection process during tree

construction as well as the final number of clusters. We fix the minimum bucket parameter,

𝑁𝐶 = 50, requiring at least 50 patients in each cluster to ensure that groups are not skewed

by outliers in the data.

Figure 3.4 shows the model output when 𝛼 = 0.3. The number of observations in each

group is indicated by the numbers in the leaves. When the distance matrix places 70% weight

on categorical features, the algorithm partitions the feature space based only on those. As a

result, only BP status and gender appear as splits in the tree. ICOT identifies eight groups

of patients: (1) 100 women with Elevated BP; (2) 175 men with Elevated BP; (3) 96 women

with Hypertensive Status I; (4) 163 women with Hypertensive Status II; (5) 163 men with

Hypertensive Status I; (6) 172 men with Hypertensive Status II; (7) 135 women with normal
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BP; (8) 196 men with normal BP.

When 𝛼 = 0.6 the output model contains variables from both types of data, balancing

better the numerical and categorical feature space. Due to the distance metric re-weighting,

the new model is now able to incorporate both numerical and categorical features, yielding

intuitive groups of participants by cardiovascular risk. Figure 3.5 illustrates the final tree

with five split nodes and six clusters. Given these parameters, ICOT distinguishes between

female and male participants in the presence or absence of diabetes. Moreover, it highlights

the importance of smoking solely for the diabetic subgroup.

Finally, when 𝛼 = 0.9, ICOT only distinguishes the FHS population based on numeric

features such as smoking and diabetes. These results highlight the importance of the algorithm

tuning process when leveraging data with mixed features. In the absence of a ground truth,

the decision maker is called to select the most appropriate model depending on the application

or a potential downstream predictive task. The ability to directly parametrize the distance

matrix provides the user with higher flexibility and clarity during the model development

process.

The effect of the Minimum Bucket Parameter

In these experiments, we set 𝛼 = 0.6 to balance the distance between numerical and categorical

features and we vary the minimum number of observations required to form a distinct cluster.

Figures 3.5, 3.7, and 3.8 show the models produced by the algorithm for different values

of the minimum bucket, 𝑁𝐶 , when training on the Silhouette Metric. Note that varying

this constraint directly affects the end model, changing the structure of the final tree. Even

though our empirical results may suggest that there is a monotonic relation between the

size of the minimum bucket and the number of clusters identified, this assumption is not

necessarily a general rule.

Comparing between Figures 3.5 and 3.7, we see that the output is stable given the

minimum bucket restrictions. Both models share the same features in the splits. In the latter

model, splits that already had at least 100 members in both leaves (the leftmost two clusters)
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remained intact and new ones were created in order to closely match the tree with 𝑁𝐶 = 50.

When we increase the minimum sample size to 200 participants, the resulting model only

separates the population by gender.

Notice that across all the experiments presented, three variables appear to bear the highest

importance in the clustering task: smoking habits, diabetic status, and gender. The results

appeared to be stable in the feature selection process, confirming the intuition behind the

effect of both the minimum bucket and 𝛼. ICOT’s interpretable structure allowed us to

specify the key differentiating characteristics between the participants and contextualize them

in the medical setting.

16396 172163

BP =
“Hypertensive I”

BP =
“Hypertensive I”

196135

BP in [Elevated, Hypertensive, Hypertensive I, Hypertensive II]

Gender = “Female”BP = “Elevated”

Gender = “Female”Gender = “Female”

175100

True False

Figure 3.4: ICOT tree for minimum bucket = 50 and 𝛼 = 0.3.
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15697

11266

Diabetes < 0.5

Gender = “Female”Smoking < 0.5

Gender = “Female”Gender = “Female”

438331

True False

Figure 3.5: ICOT tree for minimum bucket = 50 and 𝛼 = 0.6.

178

Diabetes < 0.5

Smoking < 0.5

253769

True False

Figure 3.6: ICOT tree for minimum bucket = 50 and 𝛼 = 0.9.
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179106

Smoking < 0.5

Gender = “Female”Diabetes < 0.5

146Gender = “Female”

438331

True False

Figure 3.7: ICOT tree for minimum bucket = 100 and 𝛼 = 0.6.

706

Gender = “Female”

494

True False

Figure 3.8: ICOT tree for minimum bucket = 200 and 𝛼 = 0.6.

Results on Interpretability

In this section, we compare the interpretability of partitions from different clustering algo-

rithms. For tree based approaches, such as the two step OCT method and PCT, we present

the final model. For the rest of the algorithms, we outline the centroids of each cluster. Since

these methods also do not allow us to directly control the minimum number of observations

per cluster, we present the results of each algorithm for the number of clusters that maximizes

the Silhouette Metric. Here, we present detailed results for the 𝐾-means++.

Figures 3.4-3.8 demonstrate different ICOT models when we vary the algorithm’s hyper-

parameters. Note that the trees provide meaningful categorizations that clinicians frequently

use and think about in stratifying patient risk. Elevated BP measurements, gender, smoking

are all commonly used categories that determine future health trajectories, such as the
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risk of cardiovascular events or potential interventions for managing chronic diseases (i.e.,

blood pressure). The role of these variables has been widely recognized in medical literature

[184, 356, 252, 116].

Variable Names
Cluster 1 Cluster 2 Cluster 3

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

Gender: female 0.367 0.485 0.376 0.485 0.487 0.5

Gender: male 0.633 0.485 0.624 0.485 0.513 0.5

Diabetes 0.922 0.269 0.054 0.227 0.142 0.35

Smoking 0.2 0.402 0.249 0.433 0.226 0.419

Age 64 7.114 61.102 9.976 65.335 9.156

HDL 39.497 12.679 46.681 14.592 46.547 14.663

Blood Glucose Levels 198.901 39.916 98.792 10.908 103.898 15.428

Myocardial Infarction 0.333 0.519 0.337 0.632 0.239 0.518

Hematocrit Levels 44.929 3.163 43.942 3.866 43.409 3.634

Blood Pressure Status: Elevated 0.211 0.41 0.358 0.48 0 0

Blood Pressure Status: Hypertensive Crisis 0.044 0.207 0 0 0.066 0.249

Blood Pressure Status: Hypertensive Status 1 0.256 0.439 0.239 0.427 0.165 0.372

Blood Pressure Status: Hypertensive Status 2 0.356 0.481 0 0 0.769 0.422

Blood Pressure Status: Normal 0.133 0.342 0.404 0.491 0 0

BMI Category: Normal 0.1 0.302 0.263 0.44 0.246 0.431

BMI Category: Obese 0.489 0.503 0.296 0.457 0.305 0.461

BMI Category: Overweight 0.411 0.495 0.44 0.497 0.447 0.498

BMI Category: Underweight 0 0 0.001 0.037 0.003 0.05

Number of Observations 90 716 395

Table 3.4: The centroid mean, standard deviation values, and number of observations for all
identified clusters from the 𝐾-means++ algorithm on the one-hot encoded dataset.

Table 3.4 shows the covariate values of the cluster centroids created by the 𝐾-means++

algorithm. Notice that there is no clear distinction of features that characterize each cluster.

For the categorical ones, the centroid value depends on the relative frequency of the classes

in the particular covariate and not only on its predominance in the cluster. For example, the

fact that the Smoking value for Centroid 1 is equal to 0.2 does not provide deep insights

in the smoking habits of the participants in that group. There is a similar proportion of

smokers in this cluster compared to Clusters 2 and 3. It is difficult to provide intuitive labels

for the groups with clinical implications by only studying Table 3.4. Furthermore, analyzing
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the centroid means and standard deviations to gain intuition into the distinctive attributes

and spread of each cluster becomes increasingly harder as the number of features increases.

Relative ranking of the centroid values could be used in the FHS case, where 𝑝 = 18 (after

one-hot encoding) and the number of clusters is small. In a high dimensional dataset, delving

into such a table would be practically impossible.

853

BP in [Hypertensive Status II, Hypertensive Crisis]

365

True False

Figure 3.9: Two-step OCT tree, optimized with respect to the Silhouette Metric.

Figure 3.9 shows the result of the hybrid OCT tree. The model contains just one split,

resulting in two clusters providing limited insights regarding the data. In this setting, changing

the minimum bucket did not affect the final solution. Figure 3.10 shows the final PCT tree.

This method proposes a deeper tree involving four features: Gender, Diabetes status, BMI

status, and SBP. It suggests that diabetes status is a differentiator only in obese patients

(BMI above 30). It also suggests that the relevant SBP threshold is higher for “less healthy"

patients, namely those who are diabetic or have higher BMI.

Gender = “Female"

BMI > 30.0

Diabetes = Yes

40 SBP > 138

44 81

BMI > 19.1

BMI > 25.0

181 170

2

True

BMI > 30.0

Diabetes = Yes

SBP > 173

3 43

SBP > 129

94 87

BMI > 25.0

SBP > 129

190 198

SBP > 118

100 44

False

Figure 3.10: PCT Tree for FHS patients.
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Results on Quantitative Performance

Although interpretability is our primary objective in cluster development, we also want

to ensure that our resultant groupings are reasonable from the perspective of the internal

validation criteria which provide a quantitative evaluation. Table 3.5 shows the metric scores

obtained for both the Silhouette Metric and the Dunn Index. For each metric, we use the

respective criterion to cross-validate and find the optimal number of clusters. We then report

the score for the entire population.

ICOT dominates all competing algorithms in the Dunn Index (0.509) and has the second

to best performance in the Silhouette Metric (0.296) after DBSCAN (0.511). In particular, we

note that it has an advantage over PCT in both metrics, consistent with our findings in the

synthetic experiments. Overall these results suggest that ICOT’s advantage in interpretability

does not come at the expense of identifying well-separated and compact clusters. The gains

over OCT also attest to the value of ICOT’s ability to train directly on the cluster quality

criterion over simply applying a two-step method where 𝐾-means clusters are used as class

labels for a supervised problem.

Metric ICOT OCT 𝐾-means++ Hclust GMM DBSCAN PCT

Silhouette Metric 0.296 0.131 0.264 0.270 0.224 0.511 0.249

Dunn Index 0.561 0.256 0.150 0.469 0.503 0.448 0.503

Table 3.5: The validation criteria results for ICOT, 𝐾-means++, Hclust, GMM, DBSCAN, PCT
and the two-step hybrid OCT method when trained on each metric.

3.5.3 Economic Profiles of European Countries

In this section we consider European countries by their employment statistics during the

Cold War to develop groupings of similar economic profiles. We present this example to

offer a comparison to the CUBT algorithm [131] as this is the primary real-world experiment

offered in their work.

Our dataset [193] provides the breakdown of where citizens were employed in 1979 across
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major industry sectors: agriculture (Agr), mining (Min), manufacturing (Man), power supplies

services (PS), construction (Con), service industries (SI), finance (Fin), social and personal

services (SPS), and transportation and communication (TC). Thus our feature space includes

nine covariates (𝑝 = 9) observed for 26 distinct European countries (𝑛 = 26).

Results on Interpretability: ICOT

We trained a clustering tree using the Silhouette Metric, the default 𝛼 parameter, and a

minimum bucket size of 3 to prevent individual outlier countries from dominating the tree in

a single split. The final tree is shown in Figure 3.11, and the resulting groupings are shown

in Table 3.6.

ICOT’s chosen partition is highly intuitive given the economic and political climate of

the Cold War. With the exception of Yugoslavia, all Eastern Bloc countries are placed in

Cluster 1 due to their particularly low percentage of workers in the financial sector. This split

reflects the broader political setting for those countries that were under a Communist regime.

Greece, Turkey and Yugoslavia are grouped together due to their notably high agricultural

sector employment. They are also located in the same geographical region and thus their

economy similarity is justified. The rest of the countries form Cluster 2, which is composed

of all the Western European countries.

3

Agriculture < 38.5%

Finance < 1.45%

7 16

True False

Figure 3.11: Visualization of the ICOT tree for the European Jobs dataset
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Cluster 1 Cluster 2 Cluster 3
Bulgaria Austria Belgium Greece
Czechoslovakia Denmark Finland Turkey
E. Germany France Ireland Yugoslavia
Hungary Italy Luxembourg
Poland Netherlands Norway
Romania Portugal Spain
USSR Sweden Switzerland

United Kingdom W. Germany

Table 3.6: European country clusters from the ICOT algorithm

Agriculture > 29.45

Agriculture > 57.75

1 4

True

Agriculture > 18.20

6 15

False

Figure 3.12: CUBT tree with four clusters

Results on Interpretability: CUBT

[131] provide two alternative clustering partitions using their proposed CUBT algorithm, one

with four clusters and the other with five clusters. The resultant tree for 𝐾 = 4 is shown

in Figure 3.12 with the groupings listed in Table 3.7. The corresponding results for 𝐾 = 5

are presented in Figure 3.13 and Table 3.8, respectively. Due to inconsistencies between the

trees and country groups listed in the paper [131], we report results based on the tree models

presented. It is possible to select a minimum bucket size in the CUBT algorithm, but the

authors chose to omit it in these experiments, resulting in isolated clusters with single outlier

countries. While this provides insight on its own, we chose to enforce a sufficiently large

leaf size to make our results more generalizable and insightful for the full set of European

countries.

The tree with four clusters splits only on agriculture sector employment through a

series of recursive splits, providing less insight into the differentiating characteristics of the

countries. The tree with five clusters splits on high agriculture employment first to separate
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Agriculture > 29.45

Agriculture > 57.75

1 4

True

Agriculture > 16.2

7 Manufacturing > 23.45

11 SI > 16.2

2 1

False

Figure 3.13: CUBT tree with five clusters

out the first two clusters, but then further differentiates the low agriculture countries on both

manufacturing and service industry employment. The bulk of the countries fall into the third

cluster, which is characterized by a manufacturing-heavy workforce. Note that CUBT allows

for cluster re-joining in the algorithm, which results in multiple leaves being assigned to the

same cluster (indicated by a single color). Overall, while the CUBT algorithm provides high

interpretability as with ICOT, a qualitative analysis of the resulting clusters suggests that

there is a slight loss in meaningful cluster separation.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Turkey Greece Bulgaria Austria Belgium

Poland Hungary Czechoslovakia Denmark
Romania Ireland E. Germany Finland
Yugoslavia Portugal France Italy

Spain Luxembourg Netherlands
USSR Norway Sweden

Switzerland United Kingdom
W. Germany

Table 3.7: European country clusters from the CUBT algorithm, with 𝐾 = 4
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Greece Bulgaria Austria Belgium Netherlands Denmark
Poland Czechoslovakia E. Germany Finland Norway
Romania Hungary France Italy
Turkey Ireland Luxembourg Sweden
Yugoslavia Portugal Switzerland United Kingdom

Spain W. Germany
USSR

Table 3.8: European country clusters from the CUBT algorithm, with 𝐾 = 5

Results on the Validation Criteria

The quantitative performance of these models on our two key internal validation criteria

are shown in Table 3.9. ICOT obtains significantly better clusters as quantified by both the

Dunn Index and Silhouette Metric. We note that ICOT has an advantage in the Silhouette

Metric due to the fact that it was trained to optimize this criterion, whereas the CUBT

results were trained via a different method. However, the Dunn Index provides a neutral

evaluation criterion and shows a preference towards ICOT’s results as well.

Metric ICOT CUBT (𝐾 = 4) CUBT (𝐾 = 5)

Silhouette Metric 0.344 0.140 0.044
Dunn Index 0.346 0.262 0.259

Table 3.9: Comparison of ICOT (trained on the Silhouette Metric) and the CUBT algorithm
on the internal validation criterion

3.6 Scaling Experiments

In this section, we present results regarding the effect of scaling techniques on ICOT with

respect to both the quality of the final solutions as well as the degree to which the algorithm

is able to scale. In Section 3.6.1, we discuss the impact of algorithm heuristics, such as the

𝐾-means warm start and the geometric threshold, using the FCPS suite. We use real-world

data from Hubway for testing the scalability and quantitative performance of bootstrapping

in Section 3.6.2.
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3.6.1 Scaling via Algorithm Heuristics

In this section, we evaluate the impact of implementing the scaling methods described in

Section 3.3.3. We first consider how the heuristics affect solution recovery and then examine

the runtime reductions that we obtain as we vary the scaling parameters.

Experimental Setup

We evaluated the impact of our scaling methods on algorithm speed through a comparison of

the average runtime across eight datasets in the FCPS suite with various parameters. The

ninth dataset (EngyTime) was omitted as the experiment size was intractable on the unscaled

method. We ran experiments over restricted geometric search thresholds of 𝑇 = 0 (scan all

thresholds), 𝑇 = 0.9 and 𝑇 = 0.99. We also repeated the experiments with and without the

𝐾-means warm start. The parameter pair (𝑇 = 0, no warm start) represents the original

“baseline" method, and the pair (𝑇 = 0.99, 𝐾-means warm start) represents the fully scaled

method. We ran each dataset and parameter combination across five seeds and present the

averaged results.

All experiments were conducted on two CPUs of type 2 socket Intel E5-2690 v4 2.6

GHz/35M Cache; 16GB of NUMA enabled memory were used per CPU.

Scaling Runtimes

The runtimes for the Silhouette Metric and Dunn Index are shown in Figure 3.14. The

geometric search alone reduces the runtime by 77.6% (60.6%) at the 𝑇 = 0.99 threshold

for the Silhouette Metric (Dunn Index). When combining the geometric search (𝑇 = .99)

with the 𝐾-means warm start, our fully scaled method offers a 96.0% (95.7%) reduction in

algorithm runtime for Silhouette (Dunn). We observe that the baseline method actually has

a slight runtime advantage over the 𝐾-means warm start when there is no restriction on the

search space (𝑇 = 0). The apparent shorter runtime with the baseline method at 𝑇 = 0 can

be explained by the possibility of getting caught in a locally optimal solution with a naive

start, which can lead the algorithm to terminate faster.
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(a) Silhouette Metric Runtimes (b) Dunn Index Runtimes

Figure 3.14: Average runtimes across FCPS datasets with varied scaling parameters for the
geometric search threshold (T) and choice to use a warm start.

Due to the speedups from these two scaling techniques, ICOT is able to scale to handle

datasets with a number of observations (𝑁) in the thousands and the number of covariates

(𝑝) in the hundreds. The scaled algorithm solves within several hours for problems of this

magnitude.

High Quality Solution Recovery

The scores of the baseline model and our fully scaled version are shown in Table 3.10. The

scaled method yields an average loss of -0.28% over the baseline when trained on the Silhouette

Metric, and gives an average improvement of 0.64% with the Dunn Index. Of the eight

datasets considered using the Silhouette Metric (Dunn Index), three (five) have identical

cluster recovery in both the original and fully scaled experiments; three (two) have a slight

loss when using scaling heuristics, and two (one) actually improve with the scaling methods.

These results suggest that the scaled ICOT algorithm still yields high quality results.

The differences in the score between the baseline and scaled versions are largely attributable

to the warm start rather than the choice of geometric threshold. The score improves in the

scaled version when the baseline algorithm was caught in a local optimum, but the 𝐾-means

warm start enabled it to avoid this. This score improvement offered by the 𝐾-means warm

starts further supports the use of this heuristic beyond runtime improvements.
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Silhouette Metric Dunn Index
Dataset Baseline Fully Scaled % Change Baseline Fully Scaled % Change
Atom 0.521 0.503 -3.45% 0.137 0.137 0.00%
Chainlink 0.391 0.396 1.28% 0.032 0.028 -12.62%
Hepta 0.455 0.453 -0.44% 0.357 0.357 0.00%
Lsun 0.567 0.549 -3.17% 0.117 0.077 -34.10%
Target 0.629 0.629 0.00% 0.362 0.550 51.93%
Tetra 0.504 0.504 0.00% 0.200 0.200 0.00%
TwoDiamonds 0.486 0.486 0.00% 0.044 0.044 0.00%
WingNut 0.406 0.422 3.94% 0.063 0.063 0.00%
Average Score 0.495 0.493 -0.23% 0.164 0.182 0.65%

Table 3.10: Comparison of cluster quality scores with the original vs. fully scaled ICOT
versions.

3.6.2 Scaling via Bootstrapping

In Section 3.6.2, we introduce the Hubway dataset, a real-world collection of user ride

data from a Boston-based bike sharing program. First, we outline the experimental setup,

providing details on the parameters of the method. Subsequently, we explore the effect of the

bootstrapping methodology on the quality of the final solution and the algorithm runtime

respectively.

The Hubway dataset

In this setting, our goal is to identify similar groups of registered users of the Hubway

bike-sharing program [40]. This Boston-based company allows citizens to rent bicycles from

any of their 140 stations and ride to any other station in the city. The platform has emerged

as a popular form of transportation for daily commuters and leisure riders alike. Our dataset

includes 194,301 observations from Hubway trips taken from June 2012 through September

2012. The dataset contains nine mixed numerical and categorical attributes, including the

duration of the trip, the age and the gender of the rider, the time period of the ride and

whether it took place during the week or the weekend.

This experiment illustrates an application of clustering for market segmentation. This is

a strategy that divides a broad target market into smaller groups of similar customers. It

can then be used to tailor marketing strategies to individual groups through means such as
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promotions or differentiated pricing. Unsupervised learning is often employed for this task

since it naturally identifies similar groups within a given dataset.

Experimental Setup

In these experiments, we aim to quantify the benefit of using bootstrapping as a wrapper

function over the ICOT algorithm. We explore the effect of three key parameters that might

affect both the quality and runtime of the solutions.

1. Sample Size (𝑁): The number of observations included in the training set. Since

the Hubway dataset contains 194,301 data points, we sub-sample randomly without

replacement to create a sample of size 𝑁 . We follow the same process to create a

different testing set that is used for the evaluation of the validation criterion. We

restrict 𝑁 to numbers that can be efficiently solved by ICOT, 𝑁 ∈ [2500, 5000, 10000],

to allow us to compare to the algorithm’s solutions on the full input data.

2. Size of reduced data (𝑁𝑟): The number of observations included in each iteration of

the bootstrap algorithm. Each sub-sample is randomly created from the training set

without replacement, but the iteration samples are constructed independently. Thus,

different iterations can contain the same observation. We let 𝑁rep ∈ [250, 500].

3. Number of repetitions (𝑁rep): The number of iterations of the bootstrapping method. We

test the quality and runtime of the final model by letting 𝑁rep ∈ [25, 50, 75, 100, 200, 500, 1000].

All results presented for ICOT use a version of the algorithm that includes the 𝐾-means

warm start and a geometric threshold of 0.99. The minimum bucket size is set to one and the

maximum depth of the tree to depth four. We assigned to the 𝛼 parameter its default value.

Similarly to the FCPS experiments, we ran 100 random restarts of the algorithm in each

round. Results summarize the outcomes of five randomized repetitions of each experiment.

In the following experiments, all results are averaged over 50 experiments per algorithm

and parameter combination. All experiments were conducted on two CPUs of type 2 socket

Intel E5-2690 v4 2.6 GHz/35M Cache; 30GB of NUMA enabled memory were used per CPU.
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Scaling Performance

The purpose of introducing bootstrapping into the ICOT framework is to extend its application

to problems of larger size that the fully scaled version was not able to efficiently manage.

Bootstrapping provides a lot of flexibility to the user and thus can be easily adapted to the

speed requirements of a specific case study. In this section, our aim is to demonstrate how

choices regarding the parameters affect the overall running time and compare the outcomes

with and without bootstrapping. Figure 3.15 provides an overview of the results when the

algorithm was trained on the Silhouette Metric. We report the 𝑙𝑜𝑔(time) to render the

𝑦-scale more comprehensible to the reader, especially for higher instances of 𝑁 . The average

runtime scales linearly with respect to 𝑁rep and exponentially to 𝑁𝑟. As we include additional

repetitions, the method sequentially runs more iterations of the same “reduced” experiment.

However, as we increase the 𝑁𝑟, the runtime scales at the same rate as the original ICOT

method. When 𝑁rep > 500, bootstrapping starts improving on the original algorithm only

for instances of 𝑁 > 2500. Nevertheless, in cases of larger sample size (𝑁 = 10, 000),

bootstrapping can achieve the same solution quality (𝑁𝑟 = 250, 𝑁rep = 500) in 27.65 minutes

instead of 554.693. When 𝑁 = 5, 000, the discrepancy is not as high but still considerable,

13.095 and 96.529 minutes respectively.

These results indicate the value of adding bootstrapping into the ICOT framework, as it

solves in reasonable time problems of much larger size that otherwise would have been out of

the algorithm’s scope.

High Quality Solution Recovery

The bootstrapping approach constructs trees on a sub-group of the overall population and

thus does not access the full input data. We sought to ensure that the speed-up in runtime

would not come at a high toll with respect to solution quality. Thus, we performed a

direct comparison of the two methods over the validation criteria for different ranges of the

parameters described above. Figure 3.16 provides a results summary for the Silhouette Metric.

The shaded region around ICOT indicates the standard deviation of the metric. Similarly,

134



the error bars illustrate the same measure for each combination of the tuning parameters. As

expected, larger sample sizes are positively correlated with the validation score. The graphs

show that increasing the number of repetitions can significantly improve the quality of the

solution. We notice that for 𝑁rep > 500, bootstrapping can achieve equivalent performance

to ICOT, with minor losses in some cases. The effect of the 𝑁𝑟 parameter is less evident,

though, as the results indicate minor discrepancies between 𝑁𝑟 = 250 and 𝑁𝑟 = 500. In

conclusion, these experiments provide evidence that bootstrapping does not result in a high

toll on the quality of suggested feature partitions.
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Figure 3.15: Results regarding the impact of bootstrapping on the runtime (Log of Minutes)
as the number of repetitions (𝑁rep), sub-sample size (𝑁𝑟), and sample size (𝑁) change. Both
methods were trained on the Silhouette Metric. The error bars express the standard deviation
of the metric.
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Figure 3.16: Results regarding the impact of bootstrapping on the Silhouette Metric as the
number of repetitions (𝑁rep), sub-sample size (𝑁𝑟), and sample size (𝑁) change. The error
bars express the standard deviation of the metric.
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3.7 Discussion

ICOT builds trees that provide explicit separations of the data on the original feature set,

creating interpretable models with real-world applicability to a wide range of settings. From

healthcare to revenue management to macroeconomics, our algorithm can significantly benefit

practitioners that may find value in unsupervised learning techniques in their work.

Our empirical results on the FCPS dataset offer insight into ICOT’s performance against

existing methods, including traditional approaches such as 𝐾-means, density-based, and

hierarchical algorithms. We also report results with respect to other interpretable methods,

including the Predictive Clustering Trees framework and the hybrid two-step supervised

approach. Overall, our proposed method is superior to the majority of the algorithms for both

validation criteria. Specifically, in Section 3.4, we show that when assessing clusters with the

Silhouette Metric, ICOT is the second best method after 𝐾-means++ while on the Dunn Index

ICOT is only outperformed by DBSCAN. Essentially, our experiments demonstrate that our

newly proposed framework is able to achieve comparable performance to the state-of-the-art

clustering algorithms while enabling the explicit characterization of cluster membership. We

thus accept a slight decrease in the validation criteria for the gain in interpretability, which

is critical in many settings.

We also observe significant improvements in ICOT over other interpretable approaches.

The relatively poor performance of the two-step OCT approach validates the utility of a

method that simultaneously builds clusters and identifies a tree-based structure rather than

simply employing existing tree-based methods on clustered data a posteriori. Additionally,

ICOT offers a considerable advantage over PCT and CUBT, suggesting that our algorith-

mic approach improves upon on existing interpretable clustering work and offers a novel

contribution to the space.

Most clustering methods, including ICOT, identified data partitions with higher cluster

quality scores than the true FCPS data labels, highlighting the subjectivity of what constitutes

good clusters. We leave the choice of cluster quality metric to the user, since both criterion

have their respective merits and perform well in different data contexts. In general, the
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Dunn Index excels on well-separated datasets but is not robust to outliers. In contrast, the

Silhouette Metric is often better at accounting for mixed densities and identifying meaningful

separation in less structured data settings.

The additional scaling experiments on the FCPS dataset demonstrate substantial runtime

reductions offered by both the restricted geometric search space and 𝐾-means warm start.

Overall these empirical results suggest that the scaling methods are successful at significantly

decreasing runtime while maintaining high-quality cluster identification. The geometric search

heuristic is particularly useful for problems with a high number of observations as it lowers the

computational load per node evaluation by a factor of 𝑇 . We note that despite the efficiency

gains offered by our scaling methods, our current implementation of ICOT does not scale

beyond 1000s of observations and 100s of covariates. However, using the Hubway dataset we

were able to demonstrate that the ICOT algorithm coupled with bootstrapping is able to scale

to even hundreds of thousands of observations at a reasonable time without a considerable

toll on the solution quality. This functionality broadens the method’s applicability to even

high-dimensional settings; for example, bootstrapping might be particularly useful when

clustering a large company’s customer transaction records (𝑛 in the millions). This is a case

where we would recommend the subsampling approach. A similar technique could be applied

for cases where the number of features is very high (𝑝 in the 10000s), such as when using

genomic profiles for patients. Additionally, variables could be preprocessed to restrict to the

most significant subset, either using traditional statistical tests or the variable importance

ranking provided in the 𝐾-means algorithm output.

Therefore, we believe that ICOT is the best performing alternative for interpretable

clustering although computationally more intensive. PCTs are more efficient but in many

cases lead to lower quality solutions. Our method has an edge over K-means++ and DBSCAN

due to the transparency it offers, although these alternatives sometimes show a slight edge on

the Silhouette Metric and the Dunn Index. ICOT is most appropriate in applications where

the user values both interpretation of the cluster labels and high performance on clustering

metrics, and the efficiency of the algorithm is not a bottleneck. These conditions are generally
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true in the exploratory analysis contexts where clustering is most often applied.

Our work’s handling of numerical and categorical features offers a contribution beyond

the realm of clustering. The issue of mixed-type attributes is considered among specialists

as one of the most important challenges in machine learning [268, 362]. The overwhelming

majority of state-of-the-art clustering algorithms are restricted to numerical objects, like

vectors or metric objects, which does not correspond to datasets usually found in practice.

This problem extends more broadly to algorithms that rely on distance computations, such as

𝑘-Nearest Neighbors. In contrast, our solution gives a comprehensive answer to this problem

by introducing a novel distance metric for the algorithm.

We note that the algorithm’s single-variable splits are unable to represent all possible

cluster shapes and could potentially cut through clusters. This structure allows us to maintain

the direct interpretation of a tree leaf representing a single cluster. In many applications,

a simple interpretation of the tree partition is highly valued, which was a key motivation

behind this method’s development. In order to capture more complex structures, one could

consider the possibility of “rejoining" leaves, namely allowing multiple leaves to be considered

as a single cluster. Rejoining can occur between two adjacent leaves coming from a single

parent node through the local search’s consideration of split deletions. However, we do not

consider the possibility of joining other leaves. While ICOT does not natively support this, it

could easily be incorporated as a post-processing step. After obtaining the final ICOT tree,

one can consider the effect of merging different node combinations on the chosen metric.

We finally observe that despite the tree structure of our algorithm output, our model

does not obey a hierarchical structure. Namely, truncating the tree to a lower depth does not

necessarily represent the optimal clustering solution at this depth. Our CD algorithm allows

for nodes to be re-optimized with knowledge of deeper nodes. In contrast, a hierarchical

interpretation only holds in cases where the tree grows greedily since the shallow truncated

tree cannot be affected by deeper levels.

The application of ICOT to real-world datasets reveals the significant benefit on both

interpretability and performance in the unsupervised learning field. The combination of the
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OCT mechanism, the employment of established internal validation criteria as well as the

systematic handling of mixed numerical and categorical attributes allow ICOT to provide

complete partitions of the feature space with actionable insights to practitioners. Moreover,

the flexibility of the method to user specific constraints with respect to the minimum bucket

size, the maximum depth of the tree and the 𝛼 parameter render the algorithm particularly

amenable to a wide range of applications from various fields.

3.8 Conclusions

In this chapter, we have introduced a new methodology of cluster construction that addresses

the issue of cluster interpretability. We propose a novel unsupervised learning tree-based

algorithm that yields high-quality solutions via an optimization approach. Through compu-

tational experiments with benchmark and real-world datasets, we show that ICOT offers

significant gains in interpretability over state-of-the-art clustering methods while achieving

comparable or even better performance as measured by well-established internal validation

criteria. This makes ICOT an ideal tool for exploratory data analysis as it reveals natural

separations of the data with intuitive reasoning.
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Chapter 4

Optimal Survival Trees

Tree-based models are increasingly popular due to their ability to identify complex relation-

ships that are beyond the scope of parametric models. Survival tree methods adapt these

models to allow for the analysis of censored outcomes, which often appear in medical data.

We present the Optimal Survival Trees (OST) algorithm that leverages MIO and local search

techniques to generate globally optimized survival tree models. We demonstrate that the

OST algorithm improves on the accuracy of existing survival tree methods, particularly in

large datasets.

4.1 Introduction

Survival analysis is a cornerstone of healthcare research and is widely used in the analysis

of clinical trials as well as large-scale medical datasets such as EHR and insurance claims.

Survival analysis methods are required for censored data in which the outcome of interest is

generally the time until an event (onset of disease, death, etc.), but the exact time of the

event is unknown (censored) for some individuals. When a lower bound for these missing

values is known (for example, a patient is known to be alive until at least time 𝑡) the data is

said to be right-censored.

A common survival analysis technique is Cox proportional hazards regression which

143



models the hazard rate for an event as a linear combination of covariate effects [87]. Although

this model is widely used and easily interpreted, its parametric nature makes it unable to

identify non-linear effects or interactions between covariates [53].

Recursive partitioning techniques (also referred to as trees) are a popular alternative

to parametric models. When applied to survival data, survival tree algorithms partition

the covariate space into smaller and smaller regions (nodes) containing observations with

homogeneous survival outcomes. The survival distribution in the final partitions (leaves) can

be analyzed using a variety of statistical techniques such as Kaplan-Meier curve estimates

[185]. Several authors have proposed algorithms for building survival trees using censored

datasets [333, 203, 170], many of which have been implemented within recursive partitioning

software packages [332, 169].

Most recursive partitioning algorithms generate trees in a top-down, greedy manner, which

means that each split is selected in isolation without considering its effect on subsequent

splits in the tree [56, 273, 272]. This approach can have a negative impact on the quality of

the model, such as unnecessarily increasing complexity or decreasing accuracy, resulting in

poor out-of-sample performance.

To address these issues, researchers have proposed the construction of optimal decision

trees, leveraging optimization techniques [75, 249, 307, 345, 344]. Such approaches lead to

higher quality solutions while providing the flexibility to impose additional constraints on

the trees. As the problem of tree construction is NP-complete [200], recovering the optimal

partition in high-dimensional dataset poses scalability issues. [27, 34] have proposed an

efficient algorithm which uses modern MIO techniques and addresses this weakness. Similar to

other optimization-based approaches, this Optimal Trees algorithm forms the entire decision

tree in a single step, allowing each split to be determined with full knowledge of all other

splits. It allows the construction of single decision trees for classification and regression

that have performance comparable with state-of-the-art methods such as Random Forest

(RF) and Gradient Boosted Trees (GBT), without sacrificing the interpretability offered by a

single-tree model.
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The key contributions of this chapter are:

1. We present Optimal Survival Trees (OST), a new survival trees algorithm that utilizes

the Optimal Trees framework to generate interpretable trees for censored data.

2. We propose a new accuracy metric that evaluates the fit of Kaplan-Meier curve estimates

relative to known survival distributions in simulated datasets. We also demonstrate

that this metric is reasonably consistent with the Integrated Brier Score [150], which

can be used to evaluate the fit of Kaplan-Meier curves when the true distributions are

unknown.

3. We evaluate the performance of our method in both simulated and real-world datasets

and demonstrate improved accuracy relative to two existing algorithms.

4. Finally, we provide an example of how the algorithm can be used to predict the risk of

adverse events associated with cardiovascular health in the FHS dataset.

The structure of this chapter is as follows. We review existing survival tree algorithms in

Section 4.2 and discuss some of the technical challenges associated with building trees for

censored data. In Section 4.4, we give an overview of the Optimal Trees algorithm proposed

by [27] and we adapt this algorithm for Optimal Survival Trees in Section 4.4. Section 4.5

begins with a discussion of existing survival tree accuracy metrics, followed by the new

accuracy metrics that we have introduced to evaluate survival tree models in simulated

datasets. Simulation results are presented in Section 4.6 and results for real-world datasets

are presented in Sections 4.7–4.8. We conclude in Section 4.9 with a brief summary of our

contributions.

4.2 Review of Survival Trees

Recursive partitioning methods have received a great deal of attention in the literature, the

most prominent method being the CART algorithm [56]. Tree-based models are appealing due

to their logical, interpretable structure as well as their ability to detect complex interactions
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between covariates. However, traditional tree algorithms require complete observations of the

dependent variable in training data, making them unsuitable for censored data.

Tree algorithms incorporate a splitting rule which selects partitions to add to the tree,

and a pruning rule determines when to stop adding further partitions. Since the 1980s,

many authors have proposed splitting and pruning rules for censored data. Splitting rules in

survival trees are generally based on either (a) node distance measures that seek to maximize

the difference between observations in separate nodes or (b) node purity measures that seek

to group similar observation in a single node [374, 240].

Algorithms based on node distance measures compare the two adjacent child nodes that

are generated when a parent node is split, retaining the split that produces the greatest

difference in the child nodes. Proposed measures of node distance include the two-sample

logrank test [77], the likelihood ratio statistic [76] and conditional inference permutation tests

[170]. We note that the score function used in Cox regression models also falls into the class

of node distance measures, as the partial likelihood statistic is based on a comparison of the

relative risk coefficient predicted for each observation.

Dissimilarity-based splitting rules are unsuitable for certain applications (such as the

Optimal Trees algorithm) because they do not allow for the assessment of a single node

in isolation. We will therefore focus on node purity splitting rules for developing the OST

algorithm.

[149] published the first survival tree algorithm with a node purity splitting rule based on

Kaplan-Meier estimates. [94] used a splitting rule based on the negative log-likelihood of an

exponential model, while [333] proposed using martingale residuals as an estimate of node

error. [202] suggested comparing the log-likelihood of a saturated model to the first step of a

full likelihood estimation procedure for the proportional hazards model and showed that both

the full likelihood and martingale residuals can be calculated efficiently from the Nelson-Aalen

cumulative hazard estimator [246, 1]. More recently, [240] proposed a new approach to adjust

loss functions for uncensored data based on inverse probability of censoring weights (IPCW).

Most survival tree algorithms make use of cost-complexity pruning to determine the
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correct tree size, particularly when node purity splitting is used. Cost-complexity pruning

selects a tree that minimizes a weighted combination of the total tree error (i.e., the sum of

each leaf node error) and tree complexity (the number of leaf nodes), with relative weights

determined by cross-validation. A similar split-complexity pruning method was suggested by

[203] for node distance measures, using the sum of the split test statistics and the number

of splits in the tree. Other proposals include using the Akaike Information Criterion (AIC)

[77] or using a 𝑝-value stopping criterion to stop growing the tree when no further significant

splits are found [170].

Survival tree methods have been extended to include other non-linear learners, including

support vector machines, tree ensembles, and neural networks [129, 168, 214]. [54] adapted the

CART-based random forest algorithm to survival data, while both [171] and [175] proposed

more general methods that generate survival forests from any survival tree algorithm. “Survival

forest” algorithms aggregate the results of multiple trees and aim to produce more accurate

predictions by avoiding the instability of single-tree models. In addition, the formulation of

the SVM problem has been extended in the survival setting with the objective of maximizing

the concordance index for comparable pairs of observations [340, 117]. Neural network survival

analysis includes various structures, such as feed forward, deep, and recurrent neural networks

[47, 289, 128, 142].

Unlike decision trees, these approaches lead to “black-box” models which are not inter-

pretable and provide little information about how they arrive at their predictions [303, 66].

The issue of interpretability has become central to the adoption and implementation of artifi-

cial intelligence models over the past several years [139], particularly in application areas like

medicine where algorithmic decisions can directly impact patient lives [279, 59]. Single tree

models provide a clear answer to this problem as they are able to capture intrinsic non-linear

effects in the data while offering transparency to the user with the full characterization of

potential risk profiles [34].

Relatively few survival tree algorithms have been implemented in publicly available, well-

documented software. Two user-friendly options are available in R [274] packages: Therneau’s
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algorithm based on martingale residuals is implemented in the rpart package [332] and

Hothorn’s conditional inference (ctree) algorithm in the party package [169].

4.3 Review of Optimal Predictive Trees

In this section, we briefly review approaches to constructing decision trees, and in particular,

we outline the Optimal Trees algorithm. The purpose of this section is to provide a high-level

overview of the Optimal Trees framework; interested readers are encouraged to refer to [34]

and [106] for more detailed technical information. Section 3.2.1 also summarizes the MIO

formulation.

Traditionally, decision trees are trained using a greedy heuristic that recursively partitions

the feature space using a sequence of locally-optimal splits to construct a tree. This approach

is used by methods like CART [56] to find classification and regression trees. The greediness

of this approach is also its main drawback—each split in the tree is determined independently

without considering the possible impact of future splits in the tree on the quality of the

here-and-now decision. This can create difficulties in learning the true underlying patterns

in the data and lead to trees that generalize poorly. The most natural way to address this

limitation is to consider forming the decision tree in a single step, where each split in the

tree is decided with full knowledge of all other splits

The first efforts in the direction of optimal decision tree construction involved the use of

pattern mining techniques to construct a global model [248, 249]. [244] proposes the use of a

Boolean satisfiability model for computing small-size decision trees with optimality guarantees.

[345] introduce an alternative binary formulation that employs Integer Linear Programming

to render the model size largely independent from the training data size, achieving better

performance and shorter running times. [344] recently suggested an even more efficient

way to decompose the learning problem with a constraint programming approach. Other

attempts in the literature to construct globally optimal predictive trees involve the ones of

[21, 323, 151]. However, these methods could not scale to datasets of the sizes required by

practical applications, and therefore did not displace greedy heuristics as the approach used
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in practice.

Optimal Trees is a novel approach for decision tree construction that outperforms many

existing decision tree methods [34]. It formulates the decision tree construction problem

from the perspective of global optimality using MIO and solves this problem with CD to

find optimal or near-optimal solutions in practical run times. These Optimal Trees are

often as powerful as state-of-the-art methods like RF or GBT, yet they are just a single

decision tree and hence are readily interpretable. This obviates the need to trade off between

interpretability and state-of-the-art accuracy when choosing a predictive method.

The Optimal Trees framework is a generic approach that tractably and efficiently trains

decision trees according to a loss function of the form

min
𝑇

error(𝑇,𝐷) + 𝛼 · complexity(𝑇 ), (4.1)

where 𝑇 is the decision tree being optimized, 𝐷 is the training data, error(𝑇,𝐷) is a

function measuring how well the tree 𝑇 fits the training data 𝐷, complexity(𝑇 ) is a function

penalizing the complexity of the tree (for a tree with splits parallel to the axis, this is simply

the number of splits in the tree), and 𝛼 is the complexity parameter that controls the tradeoff

between the quality of the fit and the size of the tree.

Unlike the others, Optimal Trees is able scale to large datasets (𝑛 in the millions, 𝑝 in

the thousands) by using CD to train the decision trees towards global optimality. When

training a tree, the splits in the tree are repeatedly optimized one-at-a-time, finding changes

that improve the global objective value in Problem (4.1). To give a high-level overview, the

nodes of the tree are visited in a random order and at each node we consider the following

modifications:

∙ If the node is not a leaf, delete the split at that node;

∙ If the node is not a leaf, find the optimal split to use at that node and update the

current split;

∙ If the node is a leaf, create a new split at that node.
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For each of the changes, we calculate the objective value of the modified tree with respect

to Problem (4.1). If any of these changes result in an improved objective value, then the

modification is accepted. When a modification is accepted or all potential modifications

have been dismissed, the algorithm proceeds to visit the nodes of the tree in a random

order until no further improvements are found, meaning that this tree is a locally optimal

for Problem (4.1). The problem is non-convex, so we repeat the CD process from various

randomly-generated starting decision trees, before selecting the final locally-optimal tree with

the lowest overall objective value as the best solution. For a more comprehensive guide to

the CD process, we refer the reader to [34].

Although only one tree model is ultimately selected, information from multiple trees gener-

ated during the training process is also used to improve the performance of the algorithm. For

example, the Optimal Trees algorithm combines the result of multiple trees to automatically

calibrate the complexity parameter (𝛼) and to calculate variable importance scores in the

same way as RF or boosted trees. More detailed explanations of these procedures can be

found in [106].

The CD approach used by Optimal Trees is generic and can be applied to optimize a

decision tree under any objective function. For example, the Optimal Trees framework can

train OCT by setting error(𝑇,𝐷) to be the misclassification error associated with the tree

predictions made on the training data. We provide a comparison of performance between

various classification methods from [34] in Figure 4.1. This comparison shows the performance

of two versions of OCT: OCT with parallel splits (using one variable in each split); and OCT

with hyperplane splits (using a linear combination of variables in each split). These results

demonstrate that not only do the Optimal Tree methods significantly outperform CART in

producing a single predictive tree, but also that these trees have performance comparable

with some of the best classification methods.
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Figure 4.1: Performance of classification methods averaged across 60 real-world datasets.
OCT and OCT-H refer to Optimal Classification Trees without and with hyperplane splits,
respectively.

4.4 Survival Tree Algorithm

In this section, we adapt the OCT algorithm for the analysis of censored data. For simplicity,

we will use terminology from survival analysis and assume that the outcome of interest is the

time until death. We begin with a set of observations (𝑡𝑖, 𝛿𝑖)
𝑛
𝑖=1 where 𝑡𝑖 indicates the time of

last observation and 𝛿𝑖 indicates whether the observation was a death (𝛿𝑖 = 1) or a censoring

(𝛿𝑖 = 0).

Like other tree algorithms, the OST model requires a target function that determines

which splits should be added to the tree. Computational efficiency is an important factor in

the choice of target function, since it must be re-evaluated for every potential change to the

tree during the optimization procedures. A key requirement for the target function is that

the “fit” or error of each node should be evaluated independently of the rest of the tree. In

this case, changing a particular split in the tree will only require re-evaluation of the subtree

directly below that split, rather than the entire tree.
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Due to these computational constraints, splits in the OST model cannot be evaluated

by any methods that require the comparison of two or more nodes within the tree. This

requirement restricts the choice of target function to the node purity approaches described in

Section 4.2.

The splitting rule implemented in the OST algorithm is based on the likelihood method

proposed by [202]. This splitting rule is derived from a proportional hazards model which

assumes that the underlying survival distribution for each observation is given by

P(𝑆𝑖 ≤ 𝑡) = 1− 𝑒−𝜃𝑖Λ(𝑡), (4.2)

where Λ(𝑡) is the baseline cumulative hazard function and the coefficients 𝜃𝑖 are the adjust-

ments to the baseline cumulative hazard for each observation.

In a survival tree model we replace Λ(𝑡) with an empirical estimate for the cumulative

probability of death at each of the observation times. This is known as the Nelson-Aalen

estimator [246, 1],

Λ̂(𝑡) =
∑︁
𝑖:𝑡𝑖≤𝑡

𝛿𝑖∑︀
𝑗:𝑡𝑗≥𝑡𝑖

1
. (4.3)

Assuming this baseline hazard, the objective of the survival tree model is to optimize the

hazard coefficients 𝜃𝑖. We impose that the tree model uses the same coefficient for all

observations contained in a given leaf node in the tree, i.e. 𝜃𝑖 = 𝜃𝑇 (𝑖). These coefficients are

determined by maximizing the within-leaf sample likelihood

𝐿 =
𝑛∏︁

𝑖=1

(︂
𝜃𝑖

𝑑

𝑑𝑡
Λ(𝑡𝑖)

)︂𝛿𝑖

𝑒−𝜃𝑖Λ(𝑡𝑖), (4.4)

to obtain the node coefficients

𝜃𝑘 =

∑︀
𝑖 𝛿𝑖𝐼{𝑇𝑖=𝑘}∑︀

𝑖 Λ̂(𝑡𝑖)𝐼{𝑇𝑖=𝑘}
. (4.5)

To evaluate how well different splits fit the available data we compare the current tree model

to a tree with a single coefficient for each observation. We will refer to this as a fully saturated

tree, since it has a unique parameter for every observation. The maximum likelihood estimates
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for these saturated model coefficients are

𝜃𝑠𝑎𝑡𝑖 =
𝛿𝑖

Λ̂(𝑡𝑖)
, 𝑖 = 1, . . . , 𝑛. (4.6)

We calculate the prediction error at each node as the difference between the log-likelihood for

the fitted node coefficient and the saturated model coefficients at that node:

error𝑘 =
∑︁

𝑖:𝑇 (𝑖)=𝑘

(︃
𝛿𝑖 log

(︃
𝛿𝑖

Λ̂(𝑡𝑖)

)︃
− 𝛿𝑖 log(𝜃𝑘)− 𝛿𝑖 + Λ̂(𝑡𝑖)𝜃𝑘

)︃
. (4.7)

The overall error function used to optimize the tree is simply the sum of the errors across

the leaf nodes of the tree 𝑇 given the training data 𝐷:

error(𝑇,𝐷) =
∑︁

𝑘∈leaves(𝑇 )

error𝑘(𝐷). (4.8)

We can then apply the Optimal Trees approach to train a tree according to this error

function by substituting this expression into the overall loss function (4.1). At each step of

the CD process, we determine new estimates for 𝜃𝑘 for each leaf node 𝑘 in the tree using (4.5).

We then calculate and sum the errors at each node using (4.7) to obtain the total error of

the current solution, which is used to guide the CD and generate trees that minimize the

error (4.8).

The algorithm is implemented in Julia [45] and is available to academic researchers under

a free academic license.*

4.5 Survival tree accuracy metrics

In order to assess the performance of the OST algorithm, we now introduce a number of

accuracy metrics for survival tree models. We will use the notation 𝑇 𝑡𝑟𝑢𝑒 to represent a tree

model, where 𝑇 𝑡𝑟𝑢𝑒
𝑖 = 𝑇 𝑡𝑟𝑢𝑒(𝑋𝑖) is the leaf node classification of observation 𝑖 with covariates

*Please email survival-trees@mit.edu to request an academic license for the Optimal Survival Trees
package.
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𝑋𝑖 in the tree 𝑇 𝑡𝑟𝑢𝑒. We will use the notation 𝑇 0 to represent a null model (a tree with no

splits and a single node).

4.5.1 Review of survival model metrics

We begin by reviewing existing accuracy metrics for survival models that are commonly used

in both the literature as well as practical applications.

1. Cox Partial Likelihood Score

The Cox proportional hazards model [87] is a semi-parametric model that is widely

used in survival analysis. The Cox hazard function estimate is

𝜆(𝑡|𝑋𝑖) = 𝜆0(𝑡) exp (𝛽1𝑋𝑖1 + · · ·+ 𝛽𝑝𝑋𝑖𝑝) = 𝜆0(𝑡) exp (𝛽𝑇𝑋𝑖), (4.9)

where 𝜆0(𝑡) is the baseline hazard function and 𝛽 is a vector of fitted coefficients. This

proportional hazards model does not make any assumptions about the form of 𝜆0(𝑡),

and its parameters can be estimated even when the baseline is completely unknown

[86]. The coefficients 𝛽 are estimated by maximizing the partial likelihood function†,

𝐿(𝛽) =
∏︁

tiuncensored

exp (𝑋𝑖𝛽)∑︀
𝑡𝑗≥𝑡𝑖

exp (𝑋𝑗𝛽)
=

∏︁
tiuncensored

𝜃𝑖∑︀
𝑡𝑗≥𝑡𝑖

𝜃𝑗
. (4.10)

For computational convenience, the Cox model is generally implemented using the log

partial likelihood,

𝑙(𝛽) = log𝐿(𝛽) =
∑︁

tiuncensored

𝑋𝑖𝛽 − log(
∑︁
𝑡𝑗≥𝑡𝑖

exp (𝑋𝑗𝛽)). (4.11)

In the context of survival trees, we can find the Cox hazard function associated with a

†This definition of the partial likelihood assumes that there are no ties in the data set (i.e., no two
subjects have the same event time).
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particular tree model by assigning one coefficient to each leaf node in the tree, i.e.,

𝜆𝑇 (𝑡) = 𝜆0(𝑡) exp (
∑︁
𝑘∈𝑇

𝛽𝑘1(𝑇𝑖 = 𝑘)) = 𝜆0(𝑡) exp (𝛽𝑇𝑖
). (4.12)

We define the Cox Score for a tree model as the maximized log partial likelihood for

the associated Cox model, max𝛽 𝑙(𝛽|𝑇 ). To assist with interpretation, we also define

the Cox Score Ratio (CSR) as the percentage reduction in the Cox Score for tree 𝑇

relative to a null model,

𝐶𝑆𝑅(𝑇 ) = 1− max𝛽 𝑙(𝛽|𝑇 )

max𝛽 𝑙(𝛽|𝑇 0)
. (4.13)

Due to its widespread use in the context of Cox Regression, the Cox Score is a useful

metric for assessing the fit of survival tree models and contrasting the structure of these

models with more commonly used linear hazard functions. However, it is important to

consider the implications of applying a metric designed for continuous hazard predictions

in the context of decision trees, which produce a discrete hazard coefficient for every

node. Each additional leaf node in the tree allows an additional degree of freedom in

equation (4.12), and increasing the number of nodes in the tree may inflate Cox score

even if the overall quality of the model does not improve.

Another significant drawback of the Cox score is its reliance on the proportional hazards

assumption (4.2). Although this assumption is commonly used in survival analysis, it

may not be appropriate in many applications. This metric should be interpreted with

caution when comparing the results of survival tree algorithms that use the proportional

hazards model in node splitting rules (such as the OST algorithm) to other algorithms

that rely on non-parametric splitting rules.

2. The Concordance Statistic

Applying a ranking approach to survival analysis is an effective way to deal with the

skewed distributions of survival times as well as censored of the data. The Concordance
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Statistic, which is most familiar from logistic regression, is another popular metric that

has been adapted to measure goodness-of-fit in survival models [159]. The concordance

index is defined as the proportion of all comparable pairs of observations in which the

model’s predictions are concordant with the observed outcomes.

Two observations are comparable if it is know with certainty that one individual died

before the other. This occurs when the actual time of death is observed for both

individuals (neither is censored) or when the one individual’s death is observed before

the other is censored. A comparable pair is concordant if the predicted risk (𝜌) is higher

for the individual that died first, and the pair is discordant if the predicted risk is lower

for the individual that died first. Thus, the number of concordant pairs in a sample is

given by

𝐶𝐶 =
∑︁
𝑖,𝑗

1(𝑡𝑖 > 𝑡𝑗)1(𝜌𝑖 < 𝜌𝑗)𝛿𝑗, (4.14)

and the number of discordant pairs is

𝐷𝐶 =
∑︁
𝑖,𝑗

1(𝑡𝑖 > 𝑡𝑗)1(𝜌𝑖 > 𝜌𝑗)𝛿𝑗, (4.15)

where the indices 𝑖 and 𝑗 refer to pairs of observations in the sample. Multiplication by

the factor 𝛿𝑗 discards pairs of observations that are not comparable because the smaller

survival time is censored, i.e., 𝛿𝑗 = 0. These definitions do not include comparable pairs

with tied risk predictions, so we denote these pairs as

𝑇𝑅 =
∑︁
𝑖,𝑗

1(𝑡𝑖 > 𝑡𝑗)1(𝜌𝑖 = 𝜌𝑗)𝛿𝑗. (4.16)

The number of concordant and discordant pairs is commonly summarized using Harrell’s

C-index [159],

𝐻𝐶 =
𝐶𝐶 + 0.5× 𝑇𝑅

𝐶𝐶 + 𝐷𝐶 + 𝑇𝑅
. (4.17)

Harrell’s C takes values between 0 and 1, with higher values indicating a better fit.
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Note that randomly assigned predictions have an expected score of 𝐻𝐶 = 0.5.

More recently, [338] introduced a modified C-Statistic that weights comparable pairs of

observations based on the distribution of censoring times,

𝑈𝐶𝑡 =

∑︀
𝑖,𝑗(�̂�(𝑡𝑗))

−2
1(𝑡𝑖 > 𝑡𝑗, 𝑡𝑗 < 𝑡)1(𝜌𝑖 < 𝜌𝑗)𝛿𝑗∑︀

𝑖,𝑗(�̂�(𝑡𝑗))−2(1(𝑡𝑖 > 𝑡𝑗, 𝑡𝑗 < 𝑡)1(𝜌𝑖 > 𝜌𝑗)𝛿𝑗 + 1(𝑡𝑖 > 𝑡𝑗, 𝑡𝑗 < 𝑡)1(𝜌𝑖 < 𝜌𝑗)𝛿𝑗)
,

(4.18)

where �̂�(·) is the Kaplan-Meier estimate for the censoring distribution. Due to these

coefficients, 𝑈𝐶 converges to a quantity that is independent of the censoring distribution.

𝑈𝐶 takes values between 0 and 1, with higher values indicating a better fit.

The above definition of Uno’s C-statistic was intended for continuous models, and (4.18)

may be very unstable in small trees due to the large number of observations with tied

risks which are not counted in either the numerator or denominator. To avoid this,

we include these pairs of observations in a similar manner to Harrell’s C-statistic, i.e.,

weighted by 0.5 in the numerator and 1 in the denominator. The resulting concordance

statistic is

𝑈*
𝐶𝑡

=

∑︀
𝑖,𝑗(�̂�(𝑡𝑗))

−2
1(𝑡𝑖 > 𝑡𝑗, 𝑡𝑗 < 𝑡) (1(𝜌𝑖 < 𝜌𝑗) + 0.5× 1(𝜌𝑖 = 𝜌𝑗)) 𝛿𝑗∑︀

𝑖,𝑗(�̂�(𝑡𝑗))−2(1(𝑡𝑖 > 𝑡𝑗, 𝑡𝑗 < 𝑡)1(𝜌𝑖 > 𝜌𝑗)𝛿𝑗 + 1(𝑡𝑖 > 𝑡𝑗, 𝑡𝑗 < 𝑡)1(𝜌𝑖 ≤ 𝜌𝑗)𝛿𝑗)
.

(4.19)

This modification improves the stability of the concordance statistics but also makes

these metrics somewhat less informative in the context of discrete models, since a large

number of tied pairs tend to dominate both the numerator and denominator. More

generally, concordance statistics do not account for incomparable pairs of observations,

which may be problematic when there is significant censoring. The binary definition of

concordance fails to account for the magnitude of the difference in predicted risks for

comparable observations. As a result, these metrics may be less informative in datasets

with significant variations in risk.

Unlike the Cox Score, concordance statistics do not explicitly rely on any parametric

assumptions. For proportional hazards models it is natural to define the predicted risk
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in terms of the hazard coefficients in (4.2), i.e., 𝜌𝑖 = 𝜃𝑖. However, it is also possible

to contrast the predicted risk of a comparable pair of observations via the predicted

survival probabilities, the expected survival times, or any other comparable prediction

extracted from the model. In our analysis we evaluate concordance based on the

predicted survival probabilities extracted from the Kaplan-Meier curves at each node,

i.e., 𝜌𝑖(𝜏) = 1 − 𝑆𝑖(𝜏). When comparing the risks of a pair of observations, survival

probabilities are evaluated at the time of the first event, 𝜏 = min{𝑡𝑖, 𝑡𝑗}.

3. Integrated Brier score

The Brier score metric is commonly used to evaluate classification trees [57]. It was

originally developed to verify the accuracy of a probability forecast, primarily for

weather forecasting. The most common formula calculates the mean squared prediction

error:

𝐵 =
1

𝑛

𝑛∑︁
𝑖

(𝑝(𝑦𝑖)− 𝑦𝑖)
2, (4.20)

where 𝑛 is the sample size, 𝑦𝑖 ∈ {0, 1} is the outcome of observation 𝑖, and 𝑝(𝑦𝑖) is the

forecast probability of this observed outcome. In the context of survival analysis, the

Brier score may be used to evaluate the accuracy of survival predictions at a particular

point in time relative to the observed deaths at that time. We will refer to this as the

Brier Point Score:

𝐵𝑃𝜏 =
1

|ℐ𝜏 |
∑︁
𝑖∈ℐ𝜏

(𝑆𝑖(𝜏)− 1(𝑡𝑖 > 𝜏))2, (4.21)

where ℐ𝜏 = {𝑖 ∈ {1, . . . , 𝑛}, |𝑡𝑖 ≥ 𝜏 or 𝛿𝑖 = 1}.

In this case, 𝑆𝑖(𝜏) is the predicted survival probability for observation 𝑖 at time 𝜏 and

ℐ𝜏 is the set of observations that are known to be alive/dead at time 𝜏 . Observations
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censored before time 𝜏 are excluded from this score, as their survival status is unknown.

Applying this version of the Brier score may be useful in applications where the main

outcome of interest is survival at a particular time, such as the 1-year survival rates after

the onset of a disease. In the experiments that follow, the point-wise Brier Score will

be evaluated at the median observation time in each dataset. For easy interpretation,

the reported scores are normalized relative to the score for a null model, i.e.

𝐵𝑃𝑅𝜏 = 1− 𝐵𝑃𝜏 (𝑇 )

𝐵𝑃𝜏 (𝑇 0)
. (4.22)

The Brier Point score has two significant disadvantages in survival analysis. First, it

assesses the predictive accuracy of survival models a single point in time rather than over

the entire observation period, which is not well-suited to applications where survival

distributions are the outcome of interest. Second, it becomes less informative as the

number of censored observations increases, because a greater number of observations

are discarded when calculating the score.

[150] have addressed these challenges by proposing an adjusted version of the Brier Score

for survival datasets with censored outcomes. Rather than measuring the accuracy of

survival predictions at a single point, this measure aggregates the Brier score over the

entire time interval observed in the data. This modified measure is commonly used

in the survival literature and has been interchangeably called the Brier Score or the

Integrated Brier Score by various authors [282]. In this chapter, we will refer to the

metric specific to survival analysis as the Integrated Brier score (IB), defined as

𝐼𝐵 =
1

𝑡𝑚𝑎𝑥

1

𝑛

𝑛∑︁
𝑖=1

∫︁ 𝑡𝑖

0

(1− 𝑆𝑖(𝑡))
2

�̂�(𝑡)
𝑑𝑡 + 𝛿𝑖

∫︁ 𝑡𝑚𝑎𝑥

𝑡𝑖

(𝑆𝑖(𝑡))
2

�̂�(𝑡𝑖)
𝑑𝑡. (4.23)

The IB score uses Kaplan-Meier estimates for both the survival distribution, 𝑆(𝑡), and

the censoring distribution, �̂�(𝑡). In a survival tree model, these estimates are obtained

by pooling observations in each node in the tree, i.e., 𝑆𝑖(𝑡) = 𝑆𝑇 (𝑖)(𝑡). The IB score
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is a weighted version of the original Brier Score, with the weights being 1/�̂�(𝑡𝑖) if an

event occurs before time 𝑡𝑖, and 1/�̂�(𝑡) if the event occurs after time t. This metric

addresses many of the deficiencies identified in the Cox and concordance scores above:

it is non-parametric, counts both censored and uncensored observations, and evaluates

accuracy of the predicted survival functions over the entire time horizon.

In subsequent sections, we report a normalized version of this metric, the Integrated

Brier score ratio (IBR), which compares the sum of the Integrated Brier scores in a

given tree to the corresponding Integrated Brier scores in a null tree‡:

𝐼𝐵𝑅 = 1− 𝐼𝐵(𝑇 )

𝐼𝐵(𝑇 0)
. (4.24)

Aside from the limitations already discussed, we note that all of the above metrics are

subject to noise and often provide contradictory assessments when comparing different tree

models. For example, our empirical experiments comparing three candidate models were

only able to identify a non-dominated model for about 30% of the instances. In the other

70% of our test cases, none of the three candidate models scored at least as high as the

other models on all metrics. These limitations make it difficult to obtain an unambiguous

comparison between the performance of different survival tree algorithms. To address this

challenge, we will now introduce a simulation procedure and associated accuracy metrics that

are specifically designed to assess survival tree models.

4.5.2 Simulation accuracy metrics

A key difficulty in selecting performance metrics for survival tree models is that the definition

of “accuracy” can depend on the context in which the model will be used. For example,

consider a survival tree that models the relationship between lifestyle factors and age of death.

A medical researcher may use such a model to identify risk factors associated with early death,

while an insurance firm may use this model to predict mortality risks for individual clients

‡[275] calls this explained residual variation.
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in order to estimate the volume of life insurance policy pay-outs in the coming years. The

medical researcher is primarily interested whether the model has identified important splits,

while the insurer is more focused on whether the model can accurately estimate survival

distributions.

In subsequent sections we refer to these two properties as tree recovery and prediction

accuracy. We develop metrics to measure these outcomes in simulated datasets with the

following structure:

Let 𝑖 = 1, . . . , 𝑛 be a set of observations with independent, identically distributed covariates

X𝑖 = (𝑋𝑖𝑗)
𝑚
𝑗=1. Let 𝑇 𝑡𝑟𝑢𝑒 be a tree model that partitions observations based on these covariates

such that 𝑇 𝑡𝑟𝑢𝑒
𝑖 = 𝑇 𝑡𝑟𝑢𝑒(X𝑖) is the index of the leaf node in 𝑇 𝑡𝑟𝑢𝑒 that contains individual 𝑖.

Let 𝑆𝑖 be a random variable representing the survival time of observation 𝑖, with distribution

𝑆𝑖 ∼ 𝐹𝑇 𝑡𝑟𝑢𝑒
𝑖

(𝑡). The survival distribution of each individual is entirely determined by its

location in the tree 𝑇 𝑡𝑟𝑢𝑒, and so we refer to 𝑇 𝑡𝑟𝑢𝑒 as the “true” tree model.

This underlying tree structure provides an unambiguous target against which we can

measure the performance of empirical survival tree models. In this context, an empirical

survival tree model 𝑇 has high accuracy if it achieves the following objectives:

1. Tree recovery: the model recovers structure of the true tree (i.e., 𝑇 (X𝑖) = 𝑇 𝑡𝑟𝑢𝑒(X𝑖)).

2. Prediction accuracy: the model recovers the corresponding survival distributions of the

true tree (i.e., 𝐹𝑇𝑖
(𝑡) = 𝐹𝑇 𝑡𝑟𝑢𝑒

𝑖
(𝑡)).

It is important to recognize that these two objectives are not necessarily consistent, particularly

in small samples. For example, models with perfect tree recovery may have a small number

of observations in each leaf node, leading to noisy survival estimates with low prediction

accuracy.

Tree recovery metrics

We measure the tree recovery of an empirical tree model (𝑇 ) relative to the true tree (𝑇 𝑡𝑟𝑢𝑒)

using the following metrics:
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1. Node homogeneity The node homogeneity statistic measures the proportion of

the observations in each node 𝑘 ∈ 𝑇 that have the same true class in 𝑇 𝑡𝑟𝑢𝑒. This

metric is equivalent to the misclassification error and cluster purity metrics which are

commonly used in the clustering and tree-based binary classification evaluation contexts

respectively [133, 286]. Let 𝑝𝑘,𝑙 be the proportion of observations in node 𝑘 ∈ 𝑇 that

came from class ℓ ∈ 𝑇 𝑡𝑟𝑢𝑒 and let 𝑛𝑘,𝑙 be the total number of observations at node

𝑘 ∈ 𝑇 𝑡𝑟𝑢𝑒 from class ℓ ∈ 𝐶. Then,

𝑁𝐻 =
1

𝑛

∑︁
𝑘∈𝑇

∑︁
𝑙∈𝑇 𝑡𝑟𝑢𝑒

𝑛𝑘,𝑙𝑝𝑘,𝑙. (4.25)

A score of 𝑁𝐻 = 1 indicates that each node in the new tree model contains observations

from a single class in 𝑇 𝑡𝑟𝑢𝑒. This does not necessarily mean that the structure of 𝑇 is

identical to 𝑇 𝑡𝑟𝑢𝑒 — For example, a saturated tree with a single observation in each node

would have a perfect node homogeneity score (see Figure 4.2). The node homogeneity

metric is therefore biased towards larger tree models with few observations in each

node.

2. Class recovery

Class recovery is a measure of how well a new tree model is able to keep similar

observations together in the same node, thereby avoiding unnecessary splits. Class

recovery is calculated by counting the proportion of observations from a true class

ℓ ∈ 𝑇 𝑡𝑟𝑢𝑒 that are placed in the same node in 𝑇 . Let 𝑞𝑘,𝑙 be the proportion of observations

from class ℓ ∈ 𝑇 𝑡𝑟𝑢𝑒 that are classified in node 𝑘 ∈ 𝑇 and let 𝑛𝑘,𝑙 be the total number

of observations at node 𝑘 ∈ 𝑇 from class ℓ ∈ 𝑇 𝑡𝑟𝑢𝑒. Then,

𝐶𝑅 =
1

𝑛

∑︁
ℓ∈𝑇 𝑡𝑟𝑢𝑒

∑︁
𝑘∈𝑇

𝑛𝑘,𝑙𝑞𝑘,𝑙. (4.26)

This metric is biased towards smaller trees, since a null tree with a single node would

have a perfect class recovery score. It is therefore useful to consider both the class
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Figure 4.2: Tree recovery metrics for a survival tree with two classes of observations. The
top left tree represents the true tree model.

recovery and node homogeneity scores simultaneously in order to assess the performance

of a tree model (see Figure 4.2 for examples). When used together, these metrics

indicate how well the model 𝑇 reflects the structure of the true model 𝑇 𝑡𝑟𝑢𝑒.

The node homogeneity and class recovery scores can also be used to compare any two

tree models, 𝑇 𝑎 and 𝑇 𝑏. In this case, these metrics should be interpreted as a measure of

structural similarity between the two tree models. Note that when 𝑇 𝑎 and 𝑇 𝑏 are applied to

the same dataset, the node homogeneity for model 𝑇 𝑎 relative to 𝑇 𝑏 is equivalent to the class

recovery for 𝑇 𝑏 relative to 𝑇 𝑎, and vice versa. The average node homogeneity score for 𝑇 𝑎

and 𝑇 𝑏 is therefore equal to the average class recovery score for 𝑇 𝑎 and 𝑇 𝑏. We will refer to

this as the similarity score for models 𝑇 𝑎 and 𝑇 𝑏.
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Prediction accuracy metric

Our prediction accuracy metric measures how well the non-parametric Kaplan-Meier curves

at each leaf in 𝑇 estimate true the survival distribution of each observation.

1. Area between curves (ABC)

For an observation 𝑖 with true survival distribution 𝐹𝑇 𝑡𝑟𝑢𝑒
𝑖

(𝑡), suppose that 𝑆𝑇𝑖
(𝑡) is the

Kaplan-Meier estimate at the corresponding node in tree 𝑇 (see Figure 4.3). The area

between the true survival curve and the tree estimate is given by

𝐴𝐵𝐶𝑇
𝑖 =

1

𝑡𝑚𝑎𝑥

∫︁ 𝑡𝑚𝑎𝑥

0

|1− 𝐹𝑇 𝑡𝑟𝑢𝑒
𝑖

(𝑡)− 𝑆𝑇𝑖
(𝑡)|𝑑𝑡. (4.27)

To make this metric easier to interpret, we compare the area between curves in a given

tree to the score of a null tree with a single node (𝑇 0). The area ratio (AR) is given by

𝐴𝑅 = 1−
∑︀

𝑖 𝐴𝐵𝐶𝑇
𝑖∑︀

𝑖𝐴𝐵𝐶𝑇 0

𝑖

. (4.28)

Similar to the popular 𝑅2 metric for regression models, the AR indicates how much

accuracy is gained by using the Kaplan-Meier estimates generated by the tree relative

to the baseline accuracy obtained by using a single estimate for the whole population.

4.6 Simulation results

In this section we evaluate the performance of the Optimal Survival Trees (OST) algorithm

and compare it to two existing survival tree models available in the R packages rpart and ctree.

Our tests are performed on simulated datasets with the structure described in Section 4.5.2.

4.6.1 Simulation procedure

The procedure for generating simulated datasets in these experiments is as follows:
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Figure 4.3: An illustration of the area between the true survival distribution and the Kaplan-
Meier curve.

1. Randomly generate a sample of 20,000 observations with six covariates. The first three

covariates are uniformly distributed on the interval [0, 1] and remaining three covariates

are discrete uniform random variables with 2, 3 and 5 levels.

2. Generate a random “ground truth” tree model, 𝑇 𝑡𝑟𝑢𝑒, that partitions the dataset based

on these six covariates.

3. Assign a survival distribution to each leaf node in the tree 𝑇 𝑡𝑟𝑢𝑒.

4. Classify observations into node classes 𝑇 𝑡𝑟𝑢𝑒
𝑖 = 𝐶(X𝑖) according to the ground truth

model. Generate a survival time, 𝑠𝑖, for each observation based the survival distribution

of its node: 𝑆𝑖 ∼ 𝐹𝑇 𝑡𝑟𝑢𝑒
𝑖

(𝑡).

5. Generate a censoring time for each observation, 𝑐𝑖 = 𝜅(1 − 𝑢2
𝑖 ), where 𝑢𝑖 follows a

uniform distribution and 𝜅 is a non-negative parameter used to control the proportion

of censored individuals.
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6. Assign observation times 𝑡𝑖 = min(𝑠𝑖, 𝑐𝑖). Individuals are marked as censored (𝛿𝑖 = 0) if

𝑡𝑖 = 𝑐𝑖.

We used this procedure to generate 1000 datasets based on ground truth trees with a min-

imum depth of 3 and a maximum depth of 4 (i.e., 24 = 16 leaf nodes). In each dataset, 10000

observations were set aside for testing the tree models. Training datasets of 𝑛 observations

were sampled from the remaining data for 𝑛 ∈ {100, 200, 500, 1000, 2000, 5000, 10000}.

In addition to varying the size of the training dataset, we also varied the proportion of

censored observations in the data by adjusting the parameter 𝜅. Censoring was applied at

nine different levels to generate examples with low censoring (0%, 10%, 20%), moderate

censoring (30%, 40%, 50%) and high censoring (60%, 70%, 80%). In total, 63 OST models

were trained for each dataset to test each of the seven training sample sizes at each of the

nine censoring levels.

We evaluated the performance of the OST algorithm relative to two existing survival

tree algorithms available in the R packages rpart [332] and ctree [169]. Each of the three

algorithms was trained and tested on exactly the same data in each dataset.

Each of the three algorithms tested require two input parameters that control the model

size: a maximum tree depth and a complexity/significance parameter that determines which

splits are worth keeping in the tree (the interpretation of the ctree significance parameter

is different to the complexity parameters in the OST and rpart algorithms, but it serves a

similar function).

Since neither rpart nor ctree have built-in methods for selecting tree parameters, we used

a similar 5-fold cross-validation procedure on the training data to select the parameters for

each algorithm. We considered tree depths up to three levels greater than the true tree

depth and complexity parameter/significance values between 0.001 and 0.1 for the rpart and

ctree algorithms (the OST complexity parameter is automatically selected during training).

Equation (4.7) was used as the scoring metric to evaluate out-of-sample performance during

cross-validation, and the minimum node size for all algorithms was fixed at 5 observations.
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4.6.2 Results

To demonstrate the effect of this cross-validation procedure, we summarize the average size

of the models produced by each algorithm in Figure 4.4. We see a clear link between tree size

and the number of training observations, indicating the cross-validation procedure is selecting

more conservative depth/complexity parameters when relatively little data is available. In

larger datasets, the OST models grow to approximately the same size as the true tree models

(6 nodes, on average), while the rpart and ctree models models are slightly larger.

Survival analysis metrics

Figure 4.5 summarizes the performance of each algorithm in our simulations using the five

survival model metrics from Section 4.5.1. The values displayed in each chart are the average

performance statistics across all test datasets.

As expected, the average performance of all three algorithms consistently improves as

the size of the training dataset increases. The performance statistics also increase as the

proportion of censored observations increases, which seems counter-intuitive (we would expect

more censoring to lead to less accurate models). In the case of the Cox partial likelihood

and C-statistics, this trend is directly linked to the number of observed deaths, since only

observations with observed deaths contribute to the partial likelihood and concordance scores.

Similarly, censored observations do not contribute to the Integrated Brier Score after their
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Figure 4.4: The average tree size for models trained on various sample sizes.
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Low censoring Moderate censoring High censoring

𝑛 rpart ctree OST rpart ctree OST rpart ctree OST

100 38/87 40/77 37/93 38/90 40/78 37/92 37/89 40/78 37/90
200 42/89 45/76 43/91 42/90 46/77 45/90 42/91 45/78 45/90
500 53/84 56/71 57/88 55/84 57/70 59/88 53/85 56/72 59/88
1000 63/82 66/63 68/89 65/82 67/63 70/89 64/82 66/64 70/89
2000 70/81 73/57 76/89 72/81 75/57 78/90 72/81 74/58 78/90
5000 76/80 82/53 84/91 77/80 83/53 85/92 77/80 82/53 85/91
10000 82/79 85/50 87/91 84/79 86/51 89/92 84/78 86/51 88/91

Table 4.1: A summary of the average node homogeneity/class recovery scores for synthetic
experiments.

censoring time.

Each chart also indicates the performance of the true tree model, 𝐶, as a point of

comparison for the other algorithms. The true tree model performs significantly better than

the empirical models trained on smaller datasets, but all three algorithms approach the

performance of the true tree for very large sample sizes.

Based on these results, we conclude that the average performance of the OST algorithm

in these simulations is consistently better than either of the other two algorithms. In order to

understand why this algorithm is able to generate better models, we now analyse the results

of the tree metrics introduced in Section 4.5.2.

Tree recovery

The test set tree recovery metrics for all three algorithms are summarized in Table 4.1 and

Figure 4.6. The average node homogeneity/class recovery scores are given side-by-side to allow

for a comprehensive assessment of each algorithm’s performance. These results confirm that

the OST models perform significantly better than the other two models across all censoring

levels.

The node homogeneity scores for all three algorithms increase with larger sample sizes,

indicating that the availability of additional data leads to better detection of relevant splits.

In large populations, the OST algorithm selects more efficient splits than the other models

and is able to achieve better node homogeneity with fewer splits (recall Figure 4.4 — the OST
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Figure 4.5: A summary of the survival model metrics from simulation experiments. The
average test set outcomes for each algorithm are shown in color, while the performance of the
true tree model, 𝑇 𝑡𝑟𝑢𝑒, in indicated in black. Shaded areas indicate 95% confidence intervals.
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Figure 4.6: A summary of the tree recovery metrics for survival tree algorithms.

models trained on large data sets have fewer leaf nodes than the other models, on average).

The relationship between tree size and class recovery rates is somewhat more complicated.

In datasets smaller than 500 observations the class recovery rates seem to be closely linked to

the tree size: the ctree models have the highest average class recovery for models trained on

100 and 200 observations, and also the smallest number of nodes (see Figure 4.4). However,

this trend does not hold in datasets with 500 observations, where OST models are larger

than the ctree models on average, but also have slightly better class recovery. This suggests

that tree size is no longer a dominant factor in larger datasets (𝑛 ≥ 500).

In these larger datasets we observe distinct trends in class recovery scores. The OST class

recovery rate increases consistently despite the increases in model size, which means that

the OST models are able to produce more complex trees without overfitting in the training

data. By contrast, both of the other algorithms have consistently worse class recovery rates

as sample size increases and their models become larger. Based on this trend, neither of these

algorithms will reliably converge to the true tree.
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Low censoring Moderate censoring High censoring

𝑛 rpart ctree OST rpart ctree OST rpart ctree OST

100 6.87 4.79 9.30 10.61 7.74 11.01 10.79 7.76 9.99
200 18.69 16.82 20.99 21.93 21.09 25.25 24.20 21.24 26.13
500 35.03 32.56 41.17 40.14 37.12 47.16 40.84 38.34 48.21
1000 51.27 44.29 56.44 57.28 49.68 61.99 58.86 51.30 63.95
2000 62.76 55.04 67.97 68.71 60.30 73.53 70.35 61.67 75.31
5000 72.62 66.94 79.45 77.26 71.63 83.50 79.22 72.38 84.68
10000 80.06 73.57 84.41 84.84 77.44 87.77 85.80 77.94 88.72

Table 4.2: A summary of the average Kaplan-Meier area ratio (AR) scores for simulation
experiments.

Prediction accuracy

The test set prediction accuracy metric for each of the three algorithms is summarized in

Table 4.2 and Figure 4.7. Overall, the results indicate that sample size plays the most

significant role in test set accuracy across all three algorithms. There is also a small increase

in accuracy when censoring is increased, which is due to the reduction in the maximum

observed time, 𝑡𝑚𝑎𝑥. The OST results are generally better than the other algorithms across

all sample sizes, although the performance gap is relatively small in smaller datasets.

To illustrate the effect of sample size on the accuracy of the Kaplan-Meier estimates,

Figure 4.7 also shows the curve accuracy metrics for the true tree, 𝑇 𝑡𝑟𝑢𝑒. It is immediately

apparent that even the true tree models produce poor survival curve estimates in small

datasets. Based on these results, it may be necessary to increase the minimum node size to

at least 50 observations in applications where Kaplan-Meier curves will be used to summarize

survival tree nodes.

Comparison of accuracy metrics

Table 4.3 shows the correlation between each pair of accuracy metrics used in the simulation

experiments. All outcome metrics are positively correlated with the exception of class recovery,

which has both weak positive and weak negative correlations with other metrics. These mixed

results are due to the different trends in class recovery among the three algorithms – OST
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Figure 4.7: A summary of the average Kaplan-Meier Area Ratio results for simulation
experiments. The performance of the true tree model is indicated in black.

class recovery was highest for trees trained on larger datasets, while the other algorithms had

lower class recovery in these instances (see Figure 4.6). Node homogeneity was positively

correlated with other metrics, but the correlations were somewhat weaker than average. This

reflects the incomplete information captured by this metric – node homogeneity alone does

not guarantee a good model, as discussed in Section 4.5.2.

Among the other metrics, the highest correlation was observed between the two concor-

dance statistics (0.98), which also had the strongest correlation with most other metrics.

There was also high correlation between the two Brier metrics (0.86). The Cox score was most

strongly correlated with the concordance statistics (0.87), followed by the Brier statistics

(0.77). The Kaplan-Meier area ratio had slightly lower average correlations and was most

strongly correlated with the node homogeneity statistic. This is likely due to the fact that

both of these metrics are based on the true tree structure, while other metrics reflect how

well a model fits the available data.

Stability

A frequent criticism of single-tree models is their sensitivity to small changes in the training

data. This may be apparent when a tree algorithm produces very different models for different

training datasets sampled from the same population. This type of instability is often an

indication that the model will not perform well on unseen data.

Given the challenges associated with measuring the test set accuracy for survival tree
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Harrell’s C 0.87 1.00 0.98 0.90 0.80 0.71 -0.12 0.80
Uno’s C 0.87 0.98 1.00 0.87 0.79 0.71 -0.12 0.81
Brier point 0.78 0.90 0.87 1.00 0.86 0.60 0.00 0.71
Integrated Brier 0.77 0.80 0.79 0.86 1.00 0.55 0.02 0.66
Node Homogeneity 0.49 0.71 0.71 0.60 0.55 1.00 -0.03 0.87
Class Recovery -0.03 -0.12 -0.12 0.00 0.02 -0.03 1.00 0.02
KM area 0.59 0.80 0.81 0.71 0.66 0.87 0.02 1.00

Table 4.3: Correlation between different accuracy metrics in simulation experiments.
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Figure 4.8: A summary of the average similarity scores between pairs of trees trained on
mutually exclusive sets of observations.
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Figure 4.9: A summary of survival tree accuracy metrics for datasets with added noise.
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Figure 4.10: A summary of simulation accuracy metrics for datasets with added noise.
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algorithms, it may be tempting to use stability as a performance metric for these models.

Stability is a necessary condition for accuracy in tree models (provided that a tree structure

is suitable for the data) but stable models are not necessarily accurate. For example, greedy

tree models with depth 1 may select the same split for all permutations of the training data,

but these models will not be accurate if the data requires a tree of depth 3.

Although stability is not necessarily a good indicator of the quality of a model, it is

nevertheless interesting to consider how the stability of globally optimized trees may differ to

the stability of greedy trees. Globally optimized trees are theoretically capable of greater

stability because they may include splits that are not necessarily locally optimal for a

particular training dataset. However, globally optimized trees also consider a significantly

larger number of possible tree configurations and therefore have many more opportunities for

overfitting on features of a particular training dataset.

We ran two sets of experiments to investigate the stability of the survival tree models in

our simulations. In the first set of experiments we used each algorithm to train two models,

𝑇 𝑎 and 𝑇 𝑏, on non-overlapping training datasets of equal size drawn from the same population.

We then applied each model to the entire dataset (20000 observations) and used the tree

similarity score described in Section 4.5.2 to assess the structural similarity between the two

models. The average similarity scores for each algorithm are illustrated in Figure 4.8.

These results demonstrate that stability across different training datasets is not a sufficient

condition for accuracy: models trained on 100 and 200 observations are both more stable

and less accurate than models trained on 500 observations. The ctree algorithm produced

the most stable results in smaller datasets due to the smaller model sizes selected during

cross-validation. For example, 33.1% of ctree models trained on 100 observations had fewer

than 2 splits, compared to 29.5% of the rpart models and 26.5% of the OST models.

The stability results for larger training datasets (𝑛 > 1000) are reasonably consistent with

the accuracy metrics discussed above, and both stability and accuracy increase with sample

size across all three algorithms. The OST models have the highest average similarity scores

in large datasets and the rpart models are slightly more stable than the ctree models.
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In the second set of stability experiments we investigated how small perturbations to the

covariate values in the training dataset affect the test set accuracy of each model. We added

noise to the training data by replacing the original continuous covariate values, 𝑥𝑖𝑗, with

“noisy” values �̃�𝑖𝑗 = 𝑥𝑖𝑗 + 𝜖𝑖𝑗 . The initial covariates were uniformly distributed between 0 and

1 and the added noise terms were generated from the following two distributions:

𝜖𝑖𝑗 ∼ 𝑈(−0.05, 0.05) (5% noise), and

𝜖𝑖𝑗 ∼ 𝑈(−0.1, 0.1) (10% noise).

A similar approach was applied to the categorical variables, which were generated by rounding

off continuous values (𝑥𝑖𝑗 or �̃�𝑖𝑗) to the appropriate thresholds. Note that noise was only

added to the observations used for training data; the testing data was unchanged.

The results of these experiments are contrasted with the initial outcomes (without added

noise) in Figures 4.9-4.10. The effects of additional noise in the training data are visible in

the results of all three algorithms and the drop in accuracy appears to be fairly consistent.

Overall, the OST models maintain the highest scores regardless of noise.

These results indicate that perturbations in the training data affect the OST and greedy

tree algorithms in similar ways. The OST algorithm’s performance is diminished by adding

noise to the training data, but its ability to consider a wider range of split configurations does

not make it more sensitive to these perturbations. In fact, the OST algorithm is generally

slightly more stable than the greedy algorithms across permutations of the training data

because it tends to produce models that are consistently closer to the true tree.

Scaling Performance

We now provide an overview of the computational performance of the OST algorithm on

the synthetic censored datasets. We use the procedure described in Section 4.6.1 to create

simulated data varying the number of observations 𝑛, the number of features 𝑝, and the

percentage of censoring. We consider datasets of size 𝑛 ∈ [5000, 10000, 25000, 50000, 100000]

and 𝑝 ∈ [10, 50, 100]. We consider three percentages of censoring [10%, 50%, 80%] that
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correspond to low, moderate, and high censoring respectively. We repeat the experiment for

each combination of these parameters on 100 randomized datasets and report the average

scaling performance § and the associated 95% confidence intervals. We perform cross validation

using grid search to select the best parameters for each model and we report the computational

time of the training procedure. Figure 4.11 illustrates our findings.

Across all experiments, the algorithm was able to complete in less than an hour. There

was no significant change in the average running time across the different levels of censoring.

However, the number of features, 𝑝, did have a substantial impact on the computational

performance. For 𝑝 < 100, we note that all instances were able to solve within 40 minutes.

By contrast, for datasets where the number of covariates is restricted to 10, the average time

to solve is less than 25 minutes even when the sample size is 100,000. Increasing the number

of observations appears to affect the computational performance in a linear way while the

number of features empirically shows an exponential effect.
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Figure 4.11: Average computational time for OST tree construction on synthetically generated
datasets, with varying numbers of observations 𝑛 and covariates 𝑝. The shaded region
corresponds to the 95% confidence intervals.

§ All experiments were conducted on four CPUs of type 2 socket Intel E5-2690 v4 2.6 GHz/35M Cache;
16GB of NUMA enabled memory were used per CPU.
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4.7 Computational experiments with artificial censor-

ing in real-world datasets

We compare the performance of the OST, rpart and ctree algorithms on 44 real-world datasets.

The datasets used for this analysis were sourced from the UCI repository [102] and contained

continuous outcome measures. In this section, we present the outcome of our analysis on

non-survival specific data from a well-established resource for the ML community where we

induce artificial censoring to test the algorithms’ performance.

The selected datasets¶ had sample sizes ranging from 63 observations to 100,000, and

the maximum number of features considered was 383. We used the censoring procedure

described in Section 4.6.1 to generate 9 versions of each dataset with different levels of

censoring (0%,10%,. . . ,80%). We then split each dataset into training and testing sets (50%)

and compared the performance of the three tree algorithms on each dataset.

We applied the 5-fold cross-validation procedure described in Section 4.6.1 to select the

depth and complexity of each tree, allowing tree depths of up to 7 (128 leaf nodes). Both

the OST and ctree algorithms produced trees with over 100 leaf nodes in some of the largest

datasets, while the largest rpart trees had only 77 nodes. The smaller size of the rpart trees

indicates that larger models performed poorly in the cross-validation step.

On average, the OST models outperformed the other two algorithms across all 5 accuracy

metrics. A summary of each algorithm’s performance is given in Tables 4.4–4.5 and Fig-

ure 4.12, and aggregated results for each dataset are displayed in Table 4.6. The difference in

performance was not statistically significant for the Cox ratios and Harrell’s C scores, where

all three algorithms had very similar average outcomes, but OST models did score significantly

better than the other algorithms on the remaining metrics. OST models achieved the best

score in 48-60% of the datasets tested, while the other algorithms each had undominated

¶We excluded the following types of datasets from our analysis: (1) datasets used for time series predictions
(multiple observations of each individual); (2) datasets with unclear variable definitions; (3) datasets which
required significant cleaning, pre-processing, or recording; (4) datasets with too many variables (𝑝) to
cross-validate all three algorithms in reasonable times. Dataset selection was independent of the analysis of
model accuracy.
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scores in 27-39% of datasets.

Mean score Paired T-Test 𝐻1:
OST rpart ctree 𝑆𝑂𝑆𝑇 > 𝑆𝑟𝑝𝑎𝑟𝑡 𝑆𝑂𝑆𝑇 > 𝑆𝑐𝑡𝑟𝑒𝑒

Cox Ratio 0.1118 0.1091 0.1090 p=0.2288 p=0.2222
Harrell’s C 0.7873 0.7866 0.7818 p=0.4355 p=0.1045
Uno’s C 0.6650 0.6523 0.6441 p=0.0288 p=0.0013
Brier Point Ratio 0.3841 0.3627 0.3516 p=0.0001 p< 10−5

Intg. Brier Ratio 0.4451 0.4262 0.4231 p=0.0135 p=0.0055

Table 4.4: Average scores for OST, rpart and ctree models on real-world datasets. The final
columns show the one-sided p-values for paired t-tests comparing the outcome metrics on
each dataset.

OST rpart ctree

Cox Ratio 48.7 32.8 36.4
Harrell’s C 57.3 30.8 33.6
Uno’s C 59.3 27.3 34.1
Brier Point Ratio 56.6 33.3 38.4
Intg. Brier Ratio 57.6 30.6 33.6

Table 4.5: The percentage of datasets for which each algorithm was undominated by the
other algorithms. Note that rows do not sum to 100, as several datasets were tied.
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Figure 4.12: Average performance of survival tree models on real datasets with different
levels of censoring. Confidence intervals are large due to the significant variability between
datasets. However matched pairs analysis yields statistically significant results.
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4.8 Computational experiments with censored data

from longitudinal studies and surveys

In this section, we focus on different aspects of algorithmic performance using three widely

known surveys and longitudinal studies. In Section 4.8.1, we present results from the

Wisconsin Longitudinal Study and highlight discrepancies in performance as we vary the mix

of categorical and numerical features. In Section 4.8.2, we leverage the Health and Lifestyle

survey to compare the algorithms on a large set of features. Finally, in Section 4.8.3, we

showcase an application of the algorithm on heart disease using data from the monumental

FHS.

4.8.1 The Wisconsin Longitudinal Study

In 1957, the Wisconsin Longitudinal Study (WLS) randomly sampled 10 317 Wisconsin high

school graduates (one-third of all graduates) for a decades-long study, observing them until

2011 [165]. The aim of the study was to understand how factors such as social background,

schooling, military service, labor market experiences, family characteristics and events, and

social participation, may affect mortality and morbidity, family functioning, and health. We

have included in our analysis data from all recorded participants for 518 variables that were

collected either from the original respondents or their parents.

We removed from our dataset all features for which more than 50% of the values are missing.

We imputed the missing values with the mean of each covariate for numerical features and

the mode for categorical and binary variables. In total, we collect 317 categorical, 103

numerical, and 77 binary covariates. In each randomized experiment, we sampled between

[10, 15, 20, 25, 30] features from each category. Our goal was to observe the algorithms’

performance as we vary the combination of different types of covariates.

Our results show minimal variability in performance as we change the number of numerical

and binary features. However, all three methods show trends in the average performance

scores for different numbers of categorical features, as shown in Figure 4.13. Specifically,
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both OST and rpart algorithms show slight decreases in performance with larger feature sets,

likely due to overfitting, while the ctree algorithm performs slightly better on larger feature

sets.

Overall, OST clearly outperforms the other methods in terms of the Integrated Brier

Score and the Cox PL ratio, and is on par with rpart in both concordance statistics. The

ctree algorithm performs poorly relative to the other algorithms across all metrics.
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Figure 4.13: Average performance of survival tree models on subsets of features from the
WLS dataset with varying numbers of categorical variables. The shaded regions represent
95% confidence intervals across 100 randomized experiments.
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4.8.2 The Health and Lifestyle Survey

The first Health and Lifestyle Survey [83] was carried out in 1984-1985 on a random sample

of the population of England, Scotland and Wales. Its objective was to help researchers

understand the impact of self-reported health, attitudes to health, and beliefs about causes

of disease in relation to measurements of health and lifestyle in adults from different parts of

Great Britain. In our numerical experiments, the outcome of interest is the age of death of

study participants as observed by follow-up studies until 2009. Our dataset includes 9003

individuals and 112 binary features. We conducted 100 randomized experiments to train

each tree algorithm.

Method IBR 95% CI Cox PL 95% CI Harrell’s C 95% CI Uno’s C 95% CI

OST 0.6114 (0.6075, 0.6153) 0.0125 (0.0119, 0.0131) 0.6211 (0.618, 0.6241) 0.3987 (0.3912, 0.4062)
ctree 0.6056 (0.6016, 0.6095) 0.0107 (0.0102, 0.0112) 0.6113 (0.6076, 0.6151) 0.4098 (0.4026, 0.4171)
rpart 0.6105 (0.6068, 0.6143) 0.0124 (0.0117, 0.0131) 0.6185 (0.6152, 0.6218) 0.395 (0.3854, 0.4046)

Table 4.7: Average scores for OST, rpart, ctree models on the HALS dataset. For each
metric, we report the 95% confidence intervals in 100 randomized experiments.

Table 4.7 outlines the results of our analysis on the HALS dataset. The OST algorithm

outperforms the other methods in all metrics other than the Uno’s C metric. Specifically,

OST is associated with an average Integrated Brier Score of 0.6114 compared to 0.6056 and

0.6105 for ctree and rpart respectively. In terms of the Cox PL ratio, OST offers an 8%

improvement over the next best method (rpart) with an average score of 0.0125. With respect

to the Harrell’s C metric, OST average Harrell’s C metric is 0.6211. ctree and rpart scored

0.6113 and 0.6185 respectively. Contrary to the other measures of performance, ctree achieves

the best score in this series of experiments with an average metric of 0.4098 with a 0.0111

margin fromOST. Our findings from this study are in line with the results in Sections 4.6

and 4.7.

4.8.3 The Framingham Heart Study

In this section, we focus on the interpretation of the tree models using data from the

FHS. Analysis of the FHS successfully identified the common factors or characteristics
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that contribute to Coronary Heart Disease (CHD) using the Cox regression model [87]. In

our survival tree model, we include all participants in the study from the original cohort

(1948-2014) and the offspring cohort (1971-2014) who were diagnosed with CHD. The event

of interest in this model is the occurrence of a myocardial infarction or stroke. All 2296

patients were followed for a period of at least 10 years after their first diagnosis of CHD and

observations are marked as censored if no event was observed while the patient was under

observation.

We applied our algorithm to the primary variables that have been used in the established

10-year Hard CHD Risk Calculator and the Cardiovascular Risk Calculator [255, 92]. For

each participant who was diagnosed with CHD, we include the following covariates in our

training dataset: gender, smoking status (smoke), SBP, Diastolic Blood Pressure (DBP), use

of Anti-Hypertensive (AHT) medication, BMI, and T2DM (diabetes). We did not include

cholesterol levels in our analysis because these variables are highly correlated with the use

of lipid lowering treatment and a high proportion of the sample population did not have

sufficient data to account for this interaction.

In Figure 4.14 we illustrate the output of our algorithm on the FHS dataset. Every node

of the tree provides the following information:

∙ The node number.

∙ Number of observations classified into the node.

∙ Proportion of the node population which has been censored.

∙ A plot of survival probability vs. time. In this example, the x-axis represents age

and the y-axis gives the Kaplan-Meier estimate for the probability of experiencing no

adverse events.

∙ Color-coded survival curves to describe the different sub-populations. In each node, the

blue curves describe the individuals classified into that node.

∙ In internal (parent) nodes, the orange/green curves describe the sub-populations that
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are split into the left/right child node. After each split, the sub-population with higher

likelihood of survival goes into the left node.

∙ In leaf nodes, the red curve shows the average survival curve for the entire tree. This

facilitates easy comparisons between the survival of a specific node and the rest of the

population.

The splits illustrated in Figure 4.14 include known risk factors for heart disease and are

consistent with well-established medical guidelines. The algorithm identified a BMI threshold

of 25 as the first split (node 1), which is in accordance with the NIH BMI ranges that classify

an individual as overweight if his/her BMI is greater than or equal to 25. Multiple splits

indicated a higher risk of heart attack or stroke in patients who smoke (nodes 2, 6). The

group with the highest risk of an adverse event was overweight patients with diabetes (node

9).

Figures 4.15 and 4.16 illustrate the output of the ctree and rpart algorithms applied to

the same FHS population. The rpart model has a single split (BMI), while the ctree model

contains the same variables as the OST output. The Brier scores for each model are 0.0486

(OST), 0.0249 (rpart) and 0.0467 (ctree).

The discrepancy in the Brier scores for the OST and ctree models is due to slight differences

in the threshold and position of certain splits. For example, both methods identify that BMI

is the most appropriate variable for the first split, but the BMI threshold differs. The ctree

model sets the splitting threshold to 24.117, which is the locally optimal value for the split

when building the tree greedily (the same threshold is used in the rpart model). By contrast,

the OST algorithm selects a threshold of 25.031. This example demonstrates how the OST

algorithm’s efforts to find a globally optimal solution differ from the results of locally optimal

splits.

A second difference between the tree models is the order of the smoking and diabetes splits

within the overweight population. The ctree model splits on smoking first, since this split

has the most significant p-value of the variables at node 5 in the ctree tree. The algorithm

also recognizes that diabetes is a risk factor and incorporates this in the subsequent split.
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Since greedy approaches like ctree do not reevaluate the spits once they have been decided,

the algorithm does not recognize that the overall quality of the tree can be improved by

reversing the order of these splits. This discrepancy in two otherwise similar trees highlights

the advantages of the more sophisticated optimization conducted byOST.

Leaf
Nodes Algorithm IBR Cox PL Harrell’s C Uno’s C

2
ctree 0.393 0.0016 0.5368 0.5936
OST 0.3932 0.0021 0.5429 0.5894
rpart 0.3914 0.0021 0.5429 0.5894

4
ctree 0.3996 0.0029 0.5588 0.585
OST 0.4028 0.0031 0.5615 0.5861
rpart 0.3881 0.0027 0.546 0.5714

8
ctree 0.4006 0.0064 0.5645 0.5897
OST 0.4041 0.0066 0.567 0.5897
rpart 0.4031 0.0072 0.5686 0.5871

16
ctree 0.3851 0.0069 0.5608 0.5738
OST 0.3878 0.0098 0.5713 0.5858
rpart 0.3566 0.0052 0.5488 0.5577

Table 4.8: Average scores in 100 randomized experiments for OST, rpart, ctree models on
the FHS dataset for different values of the maximum depth parameter.

We performed another series of experiments to systematically study the relation between

the size of the tree and the model’s quantitative performance. In this setting, we measure

interpretability as a function of the number of leaf nodes at the model. We train fully

saturated trees, by setting the complexity parameter to zero, for different values of the

maximum depth parameter. Thus, each algorithm results in the best performing tree given

two, four, eight, and 16 leaf nodes. Table 4.8 presents the results of our analysis for the three

algorithms considered with respect to the IBR, Cox PL, Harrell’s C, and Uno’s C metrics. We

do not report confidence intervals as the same tree was recovered for each set of parameters

across all algorithms. A lower number of leaf nodes is arguably associated with higher model

interpretability as patient profiles can be characterized with less features. OST results to

the best performing model across all tree sizes for the IBR and Uno’s C metrics and in the

majority of cases for the Cox PL and Harrell’s C metrics. Our findings indicate that OST is
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able to recover more accurate data partitions when we restrict the model to a smaller number

of splits.

Figure 4.14: An illustration of Optimal Survival Trees for chd patients in the FHS.
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Figure 4.15: Illustration of the rpart output for chd patients in the FHS.

Figure 4.16: Illustration of the ctree output for chd patients in the FHS.
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4.9 Conclusions

In this chapter, we have extended the Optimal Trees framework to generate interpretable

models for censored data. We have also introduced a new accuracy metric, the Kaplan-Meier

Area Ratio, which provides an effective way to measure the predictive power of survival tree

models in simulations.

The OST algorithm improves on the performance of existing algorithms in terms of both

classification and predictive accuracy. Our results in simulations indicate that the OST

models improve consistently with increasing sample size, whereas existing algorithms are

prone to overfitting in larger datasets. This is particularly important, given that the volume

of medical data available for research is likely to increase significantly over the coming years.
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Chapter 5

Personalized Treatment for Coronary

Artery Disease Patients: A Machine

Learning Approach

Current clinical practice guidelines for managing CAD account for general cardiovascular

risk factors. However, they do not present a framework that considers personalized patient-

specific characteristics. Using the electronic health records of 21,460 patients, we created

data-driven models for personalized CAD management that significantly improve health

outcomes relative to the standard of care. We develop binary classifiers to detect whether a

patient will experience an adverse event due to CAD within a 10-year time frame. Combining

the patients’ medical history and clinical examination results, we achieve 81.5% AUC. For

each treatment, we also create a series of regression models that are based on different

supervised machine learning algorithms. We are able to estimate with average 𝑅2 = 0.801 the

outcome of interest; the time from diagnosis to an adverse event. Leveraging combinations of

these models, we present ML4CAD, a novel personalized prescriptive algorithm. Considering

the recommendations of multiple predictive models at once, the goal of ML4CAD is to identify

for every patient the therapy with the best expected TAE using a voting mechanism. We

evaluate its performance by measuring the prescription effectiveness and robustness under
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alternative ground truths. We show that our methodology improves the expected TAE upon

the current baseline by 24.11%, increasing it from 4.56 to 5.66 years. The algorithm performs

particularly well for the male (24.3% improvement) and Hispanic (58.41% improvement)

subpopulations. Finally, we create an interactive interface, providing physicians with an

intuitive, accurate, readily implementable, and effective tool.

5.1 Introduction

The clinical condition of CAD also referred to as ischemic heart disease, is present when a

patient presents one or more symptoms or complications from an inadequate blood supply to

the myocardium [135]. This is most commonly attributed to the obstruction of the epicardial

coronary arteries due to atherosclerosis [296]. CAD remains the number one cause of death in

the United States, accounting for over 360,000 annual casualties [4]. CAD is mostly prevalent

in older patients (above the age of 50 years) in the form of a chronic condition which requires a

principal intervention and subsequent systematic medical therapy and monitoring [135]. The

primary care of patients with CAD includes ascertainment of the diagnosis and its severity

(with non-invasive and/or invasive imaging), control of symptoms, and therapies to improve

survival [158]. The mainstay of treatment is medical therapy. The latter may or may not be

combined with coronary revascularization (either Coronary Artery Bypass Graft (CABG)

surgery or Percutaneous Coronary Intervention (PCI)) in an effort to slow the progress of

the disease and relieve its symptoms. Considering the magnitude and the repercussions of

CAD, the importance of medical therapy to reduce its symptoms and prolong life expectancy

is being increasingly recognized [308].

There has been growing interest in using clinical evidence to understand the effects of

treatments in patients with CAD. Nowadays, there are numerous evidence-based clinical

guidelines for CAD management [125, 124] and angiographic tools for grading its complexity,

such as the SYNTAX Score [311, 317]. However, it is not clear how to choose among different

types of available therapies (pharmacological, percutaneous intervention, and surgery) to

maximize effectiveness at an individual level. This is likely due to the multitude of parameters
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that define the form of the disease for each patient and the uncertainty that lies behind an

individual patient’s response to a particular treatment [351]. One of the greatest challenges in

developing evidence-based guidelines applicable to large populations is paucity of information

about special subpopulations with unique characteristics. This is attributed to the absence

of specialized clinical trials [124].

Considering the challenges and the significance of CAD, a personalization approach may

greatly impact the effective management of the disease. Personalization is the problem of

identifying the best treatment option for a given instance, i.e., a display add [375] or medical

therapy [206]. There are two main challenges for designing personalized prescriptions for a

patient as a function of the features recorded in the data:

1. While the outcome of the administered treatment for each patient is observed, the

counterfactual outcomes are unknown. That is, the outcomes that would have occurred

had another treatment been administered. Note that if this information were known,

the prescription problem would reduce to a multi-class classification problem. Thus,

the counterfactual outcomes need to be inferred.

2. In the data, there is an inherent bias that needs to be taken into account. The nature

of data from EHR is observational as opposed to data from randomized trials. In a

randomized trial setting, patients are randomly assigned different treatments, while in

an observational setting, the assignment of treatments potentially depends on features

of the population.

5.1.1 Literature Review

Our objective is to solve the problem of prescribing the best option among a set of predefined

treatments to a given patient as a function of the samples’ features. We are provided

with observational data of the form {(x𝑖, 𝑦𝑖, 𝑧𝑖)}𝑛𝑖=1, comprising 𝑛 observations. Each data

point {(x𝑖, 𝑦𝑖, 𝑧𝑖)} is characterized by features x𝑖 ∈ R𝑝, the prescribed treatment 𝑧𝑖 ∈ [𝑇 ] =

{1, . . . , 𝑇}, and the corresponding outcome 𝑦𝑖 ∈ R. We denote 𝑦(1), . . . , 𝑦(𝑇 ) the 𝑇 “possible

outcomes” resulting from assigning each of the 𝑇 treatments respectively.
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A similar question has been studied in the causal inference literature. In this setting, the

main focus lies on observational studies to identify causal relationships between an intervention

and outcomes in a particular population [264]. Introduced by Neyman and popularized by

Rubin, the Potential Outcomes Framework uses a probabilistic assignment mechanism to

mathematically describe how treatments are given to patients. It also accounts for a potential

dependence on background variables and the potential outcomes themselves [298, 10]. More

specifically, it focuses on the case where 𝑆 = {𝐶, 𝑇} (treatment and control). For each patient

𝑖, the potential outcome 𝑦𝑖(𝑇 ) is the experienced outcome if exposed to treatment 𝑇 . The

causal effect of 𝑇 compared to 𝐶 is then computed as 𝛿𝑖 := 𝑦𝑖(𝑇 ) − 𝑦𝑖(𝐶). Thus, causal

effects are solely defined for one treatment relative to another and only if the individual

could have been reasonably exposed to both. The fundamental problem of causal inference is

that (𝑦𝑖(𝑇 ), 𝑦𝑖(𝐶)) are not jointly observable. That is, only one observed response is present

depending on the treatment assignment. As a result, [294] focus on the average treatment

effect for a completely randomized experiment. This scenario considers the difference of the

sample means for the units receiving the treatment and control.

ATE =
1

𝑛𝑇

∑︁
𝑗:𝑧𝑗=𝑇

𝑦𝑗(𝑇 )− 1

𝑛𝐶

∑︁
𝑗:𝑧𝑗=𝐶

𝑦𝑗(𝐶). (5.1)

However, in observational studies, treatment assignment is not independent of the potential

outcomes. Thus, further analysis is required to account for latent differences between the

treated and control groups on the basis of observed covariates 𝑋 (inverse probability weighting,

propensity score matching, nonparemetric regression, etc.) [293].

Causal effect approaches do not provide personalized estimations of the treatment effect

for each unit since they focus on the aggregate population level. A personalized prescription

methodology would require a quantification of the impact of each regimen for every individual

in isolation. This is the essence of the personalized medicine field [155]: identifying the optimal

therapy for a particular set of phenotypic and genetic patient characteristics. ML algorithms

are expected to enable the utilization of rich datasets. They could provide improved solutions

for patients by learning the outcome function for each treatment. They will particularly
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impact those that belong to very specific subgroups and respond in unusual ways to the

available treatments [134].

A common approach in the literature to leverage these algorithms is called “Regress and

Compare”. It identifies the expected effect 𝑦𝑖(𝑧𝑖) of treatment 𝑧𝑖 ∈ [𝑇 ] for each patient 𝑖 based

on the covariates x𝑖 and consequently prescribes the regimen with the best potential impact;

max
𝑧𝑖∈[𝑇 ]

𝑦𝑖(𝑧𝑖|x𝑖) ∀𝑖 ∈ [𝑛],

where [n] is the set of patients in the sample. The “Regress and Compare” methodology

follows this paradigm, choosing a treatment by maximizing among 𝑇 regression functions. A

different regression model is fitted to the subset of the data that received each treatment.

It subsequently uses them to predict outcomes and pick the one with the more optimistic

prediction [326]. This approach has been historically followed by several authors in clinical

research [123], and more recently by researchers in statistics [271] and operations research

[38]. The online version of this problem, called the contextual bandit problem, has been

studied by several authors [210, 145] in the multi-armed bandit literature [141]. Even though

it is intuitive, this methodology is subject to prediction errors and potential biases of a single

method.

In the field of precision medicine, [38], first, introduced a personalized prescriptive

algorithm for diabetes management that harnesses the power of EHR. It was based on a

“Regress and Compare” 𝑘-NN approach. This methodology yielded substantial improvements

in patient outcomes relative to the standard of care. Moreover, it provided physicians with

a prototyped dashboard visualizing the algorithm’s recommendations. Their work showed

that tailored approaches to particular diseases coupled with medical expertise provide the

medical community with highly accurate and effective tools that will ameliorate patient

treatment. Even though this effort provided promising results, the 𝑘-NN approach is not

applicable to diseases where the effects of a treatment are not promptly observable. The

same individual was tracked via multiple visits in the hospital system. Thus, the algorithm

suggested alterations in the medication only when there was significant reduction on the
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expected Hemoglobin A1c measurement. The physician could measure the effectiveness of a

treatment by ordering a blood test in the near future. On the contrary, at the CAD setting

the adverse effects of the disease are observed in the span of ten years from the time of

diagnosis.

Focusing mostly on the personalization and not the prediction objective, [182] proposes a

recursive partitioning methodology for personalization using observational data. This new

algorithm is tailored to optimize a personalization impurity measure. As a result, it hardly

places any emphasis on the predictive task. Therefore, it raises questions regarding the

accuracy of the suggested treatment effect. [35] modify the latter’s objective to account

for the prediction error, and use the methodology of [34, 27] to design near optimal trees,

improving performance substantially. Continuing on tree based approaches, [15], and [346]

also use a recursive splitting procedure of the feature space to construct causal trees and

causal forests respectively. They estimate the causal effect of a treatment for a given sample,

or construct confidence intervals for the treatment effects. However, they do not infer explicit

prescriptions or recommendations. Also, causal trees (or forests) are designed exclusively for

studies comparing binary treatments.

In the cardiovascular field, the benefit of ML based personalization methods has been

recognized and is expected to play a significant role in facilitating precision cardiovascular

medicine [194]. Nevertheless, in the case of CAD, personalization approaches have been

primarily focused on utilizing genomic information [19], and not on employing EHR and

ML. Since 2014, the US mandated all public and private healthcare providers to adopt and

demonstrate “meaningful use” of EHR to maintain their existing Medicaid and Medicare

reimbursement levels. This decision contributed to the creation of clinical databases that

contain in-depth information for many patients. These data can be leveraged using ML to

construct models and algorithms that can learn from and make predictions on data [292].

One of the greatest challenges of EHR is the presence of right censored patients [195, 174],

which arises when a patient disappears from the database after diagnosis and treatment of the

disease. Traditional approaches to address right censoring, including the Cox proportional
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hazards model [84] or the Weibull Regression [172], do not allow for time-varying effects of

covariates. Their weaknesses are especially relevant to datasets that span over long periods

of time, providing results that are not validated by the medical literature (e.g. positive

correlation between a patient’s BMI and his/her expected time to adverse event).

Our work addresses most of the challenges encountered in the personalized prescription

setting that uses EHR, including counterfactual estimation and censoring.

5.1.2 Contributions

In this chapter, our objective is to find the best primary treatment for a CAD patient to

maximize the TAE (myocardial infarction or stroke). We consider the latter as the primary

endpoint of our models. Our dataset includes CAD patients who were administered treatment

through the BMC, a private, not-for-profit, 487-bed, academic medical center located in

Boston, MA, USA. We retrieved each patient’s medical history, the primary treatment

followed after diagnosis, and the most recent clinical examination results to the time of

diagnosis. We considered five primary prescription approaches available for each patient.

We developed predictive and prescriptive algorithms that provide personalized treatment

recommendations. We propose a new prescription algorithm to assign the regimen with the

best predicted outcome leveraging simultaneously multiple regression models. The effect of the

prescriptive algorithm was evaluated by comparing the expected TAE under our recommended

therapy with the observed outcome prescribed by physicians at the medical center. Successful

treatment recommendations increase the TAE. On the contrary, ineffective prescriptions

negatively impact the patient, decreasing the time from diagnosis to a myocardial infarction

or stroke. We tested the robustness and effectiveness of our methodology. We considered

different ground truths regarding the treatment effect of a given therapy to a patient. The

ground truths comprise the standard of care as well as combinations or individual predictions

from ML models. The main contributions of this chapter are:

1. A new methodology to treat right censored patients that utilizes a 𝑘-NN approach to

estimate the true survival time from real-world data.
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2. Interpretable and accurate binary classification and regression models that predict the

risk and timing of a potential adverse event for CAD patients. We selected a diverse

set of well-established supervised machine learning algorithms for these tasks.

3. The first prescriptive methodology that utilizes EHR to provide treatment recommenda-

tions for CAD. Our algorithm, ML4CAD, combines multiple state-of-the-art ML regression

models with clinical expertise at once. In particular, it uses a voting scheme to suggest

personalized treatments based on individual data.

4. A novel evaluation framework to measure the out-of-sample performance of prescriptive

algorithms. It compares counterfactual outcomes for multiple treatments under various

ground truths. Thus, we assess both the accuracy, effectiveness, and robustness of

our prescriptive methodology. Using this evaluation mechanism, we demonstrate that

ML4CAD improves upon the standard of care. Its expected benefit was validated by all

considered ground truths and TAE estimation models.

5. An online application where physicians can test the performance of the algorithm in

real time bridging the gap with the clinical practice.

The structure of the chapter is as follows. In Section 5.2, we describe the data used

to train and validate our methods. In Section 5.3, we outline the method used to handle

the challenge of censoring. Section 5.4 describes the methods and results of the binary

classification models, and similarly Section 5.5 refers to regression. In Section 5.6, we present

the personalized prescription algorithm and its evaluation framework. Results under different

ground truths and recommendation policies are compared in Section 5.7. We conclude our

work in Section 5.8.

5.2 Data

In this section, we provide detailed information about the dataset under consideration. We

outline the patient inclusion criteria as well as a description of the covariates included in
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the ML models. Subsequently, we refer to the treatments identified from the EHR and their

aggregation as features for our algorithms. We also present the missing data imputation

procedure that was followed.

5.2.1 Sample Population Description

Through a partnership with the BMC we obtained EHR for 1.1 million patients from 1982 to

2016. In this dataset, 21,460 patients met, at least, one of the following inclusion criteria:

∙ Population 1: Patients associated with CAD risk of at least 10% based on the Fram-

ingham Heart Study formula [354] who were prescribed antihypertensive medication

as primary treatment. The 10% threshold was selected since it is considered one of the

primary indications for physicians to prescribe CAD treatment to their patients [353];

∙ Population 2: Patients who were administered at least one CABG surgery or, at least,

one PCI and were prescribed antihypertensive medication;

We used the conditions outlined above due to the absence of a systematic CAD diagnosis

code in the system [329]. Note that the two inclusion criteria are mutually exclusive as a

primary CAD prescription could either involve exclusively pharmacological treatment or

a drug combination with a CABG surgery or a PCI. All patient EHR were processed to

identify the time 𝑡0 that corresponds to the point of initial diagnosis prior to any coronary

revascularization. We reverted to the record that corresponds to this time to create the

patient features 𝑋. Thus, we avoided the inclusion of two populations whose conditions are

fundamentally dissimilar. Our sample comprised recently diagnosed CAD patients, similar to

the ones physicians encounter in practice. We identified, using the totality of the EHR after

the time 𝑡0, the main therapy prescribed to each patient while being in the system. Notice

that every member of the sample population was medicated with antihypertensive drugs. If

in addition to the pharmacological therapy they were administered surgical or percutaneous

interventions, we set the latter as the main treatment administered by the hospital.

BMC patients come predominantly from underprivileged socioeconomic backgrounds. As
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a result, in most cases they do not have the financial capability to support alternative health

providers. They need to appeal to the BMC for healthcare services for the majority of their

medical needs. Thus, most of their EHR are concentrated in the same database, allowing us

to follow the trajectory of each patient’s health from a single source. The ethnicity and age

distributions of the population are depicted in Figures 5.1a and 5.1b, respectively.

(a) Ethnicity distribution.

(b) Age distribution.

Figure 5.1: Demographic Characteristics of the population

We excluded all patients whose diagnosis date was identical to their last observation in

the healthcare system. Moreover, we removed from the data those whose cause of death

was observed but not related to heart disease (e.g., cancer non-survivors). We retrieved for

each patient a set of values that describe their demographics, medical therapy, and clinical

characteristics at the time of diagnosis 𝑡0 (Table 5.1). We used ICD-9, CPT, and hospital
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specific codes to identify the corresponding records as well as lab test results for particular

measurements (i.e., Low-Density Lipoprotein (LDL) or HDL levels). Along with demographic

information, we included features that are considered risk factors for heart disease, according

to the medical literature. We excluded all covariates whose values were not known for at least

50% of the patients in the dataset. We identified an adverse event (myocardial infarction

or stroke) attributable to CAD and recorded the date of occurrence. This way, we define

the time between a diagnosis and an adverse event. In case the patient disappeared from

the EHR before the lapse of 10 years after diagnosis, we recorded that the patient was right

censored. We did not take into account the severity of the adverse event in our evaluation.

5.2.2 Treatment Options

We considered five primary options for each patient, shown in Table 5.2. These options are

mutually exclusive and thus each patient received only one of them as primary treatment.

CAD is a chronic disease whose management may differ across time. However, we noticed

that a certain pattern was followed for the vast majority of the patients throughout their

presence in the academic medical center. Coronary revascularization is a major operation and

thus we distinguish CABG and PCI as separate treatment categories. In agreement with the

general guidelines of the American Heart Association (AHA) for the management of Stable

Ischemic Heart Disease [124], most of the patients are prescribed blocking medication to treat

hypertension and statins as a lipid lowering treatment. Therefore, we chose combinations of

those two lines of therapy as primary prescription options. Nevertheless, the pharmaceutical

treatment for a CAD patient may include not only blockers, but also a more complicated

combination of drugs, depicted in Table 5.3 under “Treatment”. As the set of all those

combinations is too wide, we considered only the most common prescription options. We did

not account for aspirin (ASA) since all patients were prescribed this line of therapy.

Note that we did not consider ACE inhibitors as a prescription option because they usually

accompany another type of antihypertensive medication for CAD patients [285]. They are

prescribed in combination to blockers or as a substitute of the latter in cases where a patient
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Category Variable Name % NA

Demographics Age 0.0%
Gender 0.0%
Ethnicity 0.0%
Language 0.0%
Marital Status 15.3%
Ethnicity 0.0%

Treatment ACE inhibitors 0.0%
Adrenergic Receptors 0.0%
Angiotensin Agonists 0.0%
Antiarrhythmics 0.0%
Blockers
(beta, alpha, etc.) 0.0%

CABG 0.0%
Cardiac Glycosides 0.0%
Diuretics 0.0%
Lipid Lowering
medication 0.0%

Muscle relaxants 0.0%
Nitrates 0.0%
Other antihypertensive 0.0%
PCI 0.0%
Phosphodiesterase
inhibitors 0.0%

Statins 0.0%
Family History Diabetes 26.8%

Hypertension 23.9%
Medical Records BMI 16.6%

LDL Cholesterol 21.4%
HDL Cholesterol 21.3%
DBP 7.1%
SBP 7.1%
Diabetes 0.5%

Observed Behavior Smoking 23.6%
Time observed
in the EHR database 0.0%

Table 5.1: Patient characteristics considered. The column “% NA” indicates the percent of
missing data that was present in the original dataset
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has some prohibitive medical condition to the former. Thus, the majority of the population

that belongs in the “Drugs 2 and 3” categories are effectively under ACE inhibitors. The

latter drug class was administered in less than 50% of the sample population. As a result,

a separate pharmacological treatment option would thin the training sets presented in the

following sections significantly.

Option Description Num. of
patients %

CABG

Coronary Artery
Bypass Graft Surgery
with pharmaceutical
treatment

1854 8.64%

PCI
Percutaneous Coronary
Intervention with
pharmaceutical treatment

4042 18.85%

Drugs 1
Pharmaceutical treatment
including blockers
and statins

6833 31.86%

Drugs 2
Pharmaceutical treatment
including blockers and
excluding statins

3767 17.56%

Drugs 3

Pharmaceutical treatment
excluding blockers
(potentially including
statins)

4964 23.09%

Table 5.2: The Prescription Options.

5.2.3 Handling of missing values

We collected each patient’s medical records (lab test results and clinical measurements)

associated with the most recent clinical examination before or at the time of diagnosis. We

omitted from our analysis any risk factors whose missing values proportion was higher than

50% (i.e., ejection fraction, ECG measurements). Table 5.1 shows the percent of missing

data that was present in the original dataset. Note that all demographic variables other than

Marital Status were consistently recorded for all patients. A treatment was considered to be
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Treatment Name Proportion

ACE inhibitors 46.12%
Adrenergic Receptors 6.38%
Angiotensin Agonists 13.62%
Antiarrhythmics 13.65%
Blockers (beta, alpha, etc.) 68.03%
CABG 7.01%
Cardiac Glycosides 2.45%
Diuretics 47.90%
Lipid Lowering medication 5.29%
Muscle relaxants 4.81%
Nitrates 77.02%
Other antihypertensive 11.37%
PCI 19.60%
Phosphodiesterase inhibitors 3.59%
Statins 58.78%

Table 5.3: The percentage of the overall population that received each treatment based
on the sample population. Note that the same patient may have been prescribed multiple
treatments.

present if there was an active prescription for the patient in the EHR. If there was no record

of a treatment, we assumed that the patient was not administered the specific medication.

Thus, the missing percentage for all treatments is 0.0%. Family history and smoking habits

were available in the database for only a portion of the patients. Continuous features, such

as cholesterol and blood pressure levels, were extracted from the vitals and lab tests records.

We imputed missing values using opt.cv, the state-of-the-art ML algorithm proposed

by [43]. Given that the underlying pattern of missing data was not known, we opted for a

method whose performance remained consistent across different types of “missingness”. In

[43], the authors demonstrated on 84 data sets that the accuracy of their algorithm relative to

benchmark ones does not appear to differ drastically between the MCAR and MNAR patterns.

The latter constitutes the most common type of missing data in health care applications, as

values are not usually randomly incomplete for reasons such as missed study visits, patients

lost to follow-up, missing information in source documents, and lack of availability among

others. We created artificial missing data under the MNAR mechanism and compared opt.cv
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with other well-established missing data imputation techniques in our dataset. We evaluated

the resulting imputation error and the effect on downstream predictive performance for the

binary classification task. Our results showed that opt.cv provided an edge across all metrics

considered. Thus, it was selected as the imputation algorithm for the independent covariates

of both the binary classification and regression models.

5.3 Estimating time to adverse event for right censored

patients

In censored datasets the outcome of interest is generally the time until an event (onset

of disease, death, etc.), but the exact time of the event is unknown (censored) for some

individuals. When a lower bound for these missing values is known (for example, a patient

is known to be alive until at least time 𝑡) the data is said to be right censored. In our

dataset, we considered the time of censoring to be the last event-free visit of the patient to

the academic medical center. Thus, for each patient 𝑖 where 𝑡𝑖 < 10 (years) and no adverse

event (stroke/heart attack) has been recorded, we set the censoring time 𝑐𝑖 = 𝑡𝑖, the last time

observed in the EHR. Our sample was comprised of 13,498 censored observations (62.9% of

the overall population).

Methods from the survival analysis literature are usually employed in the presence of

censored populations. A common survival analysis technique is the Cox proportional hazards

regression [84] which models the hazard rate for an event as a linear combination of covariate

effects. Although this model is widely used and easily interpreted, its parametric nature

makes it unable to identify non-linear effects or interactions between covariates [53].

We propose a data-driven methodology that utilizes a 𝑘-NN approach to identify patients

with similar outcomes and known trajectories based on their covariates. We consider the

set 𝐴 (𝐵) of patients that had (did not have) an adverse event within 10 years. Note that

within set 𝐵 the EHR indicate that no adverse event occurred within the defined time frame.

Let 𝐶 be the set of censored patients that did not have an adverse event within a time 𝑡𝑐
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(less than 10 years) and they disappear from the EHR after 𝑡𝑐. It is not known whether they

experienced an adverse event within 10 years or not. In order to estimate the TAE for patient

𝑋 in the set 𝐶, we consider patients within 𝐴 ∪𝐵 such that:

1. They have the same gender as 𝑋. It has been recognized that women form a distinct

subpopulation within patients with CAD [291].

2. They belong to the same age group as 𝑋. Age at time of diagnosis plays a major role

in the development and the effects of CAD [354].

3. Their ground truth outcome metric is greater or equal to the censoring time of 𝑋. The

patient will potentially experience an adverse event after the censoring time 𝑡𝑐.

Based on the Euclidean distance across the patient specific factors depicted in Table 5.1

(factors with continuous values were normalized to have zero mean and standard deviation

of one), we find the 𝑘-nearest neighbors of 𝑋 within the cohort outlined. We assign to

the censored patient 𝑋 the average time to adverse event of their 𝑘-nearest neighbors. We

used cross-validation to set the parameter 𝑘 = 50. The outcome of interest was the AUC

performance of the binary classification model presented in Section 5.4 (Figure 5.2). We

selected the value of the unsupervised learning model parameter according to the performance

of the binary classification model on the 10-year risk task. Our method allows us to build for

every censored patient a unique cluster of 𝑘-NN, introducing a personalization aspect in the

estimation of TAE.

The 𝑘-NN algorithm’s performance is 𝑅2 = 0.81 according to the following process:

1. Select a sample of the population which was not censored (the TAE 𝑡𝑖 is known).

2. Artificially generate a censoring time 𝑡𝑐𝑖 , sampled uniformly across the interval [1,𝑡𝑖]

corresponding to a day in the 10 year time frame.

3. Apply the 𝑘-NN algorithm to estimate the TAE and compare the results with the

ground truth that is known.
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Figure 5.2: Graph of a Cross-validation results for the selection of the 𝑘 parameter for the
𝑘-NN model.

We impute the outcomes of 13,679 censored observations, following this approach. We

create a complete dataset that is further used for the creation and validation of the predictive

and prescriptive models. The inclusion of the censored patients permitted a higher sample size

for the binary classification and regression models that led to more accurate and stable results.

The exclusion of such cases would restrict the overall population to only 7,962 observations,

limiting the downstream predictive performance of the models.

5.4 The Binary Classifications Models

The first problem we addressed is the creation of personalized risk prediction models for CAD

patients. Our binary outcome of interest is the occurrence of an adverse event (stroke or heart

attack) within a 10-year time period. This time frame is in accordance with the vast majority

of established CAD risk calculators [143, 110, 288]. The medical community recognizes

the chronic nature of the disease and as a result it focuses on evaluating its impact on the

health of the patient over a long-term horizon. Both the AHA and the American College

of Cardiology annually update their guidelines on the primary prevention of cardiovascular

disease releasing new versions of 10-year CAD risk scores [12]. Although this time frame is

challenging and the health condition can significantly change over years, we decided to follow

the paradigm of the existing literature.
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We apply widely established ML algorithms to the data and compare their out-of-sample

performance on the testing set. Table 5.4 provides a summary of the results for Logistic

Regression, RF [55], GBT [73], CART [56], and OCT [27, 34].

We split the 𝑛 = 21, 460 patients in 75% for Training and Validation and 25% for Testing,

using 𝑝 = 31 patient characteristics (Table 5.1). Our sample includes all censored observations

whose values were imputed using the methodology described in Section 5.3. These observations

were not excluded as a higher sample size improved the model’s out-of-sample performance.

A higher sample size had a significant positive effect on the downstream performance of

the binary classification models. We evaluated the predictive power of the algorithm under

additional random splittings of the data. Thus, we ensured that the evaluation of the global

algorithm was not sensitive to a particular split of the dataset.

𝐿2 regularization was used for the logistic regression model and 10-fold-cross-validation

was employed to set the hyper-parameters of each method. In the case of OCT and CART,

we tuned the complexity parameter, the maximum depth, and minimum bucket. Based on

cross-validation results, the number of greedy trees used for the RF model was set to 500.

Our objective is to create an accurate model that would have high chances of affecting

the medical practice. Even though there has been a steep increase in publications that utilize

artificial intelligence and ML in the field of medicine, only a small proportion of those models

have been integrated into the healthcare system [112]. Clinicians need actionable insights and

guidelines they can explain and understand [247]. Algorithms have to satisfy this condition.

Otherwise, the final outputs of these methods do not actually impact the patients. The [121]

validated such concerns by mandating the use of interpretable ML models when it comes to

medical decision making.

For this reason, we decided to focus on the model of the OCT algorithm, which was

proposed by [27], see also [34]. Its tree structure accounts for non-linear interactions among

variables providing an edge compared to Logistic Regression and comparable performance to

ensemble approaches such as RF or GBT (see Table 5.4). RF (84.29%) yields better AUC

results compared to OCT (81.54%), although quite similar in terms of accuracy for a fixed
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Out-of-sample
AUC

In-sample
AUC

Out-of-sample
Accuracy

In-sample
Accuracy

OCT 81.54% 81.35% 81.45% 81.36%
CART 73.33% 72.66% 80.23% 80.12%
RF 84.29% 83.29% 81.88% 82.35%
Logistic Regression 80.83% 82.21% 80.55% 80.98%
GBT 81.43% 82.76% 81.03% 81.27%
Baseline 73.51% 73.51%

Table 5.4: Results of the different ML algorithms used to predict the occurrence of an adverse
event within 10 years after diagnosis. We consider as Baseline the simple model that predicts
that all patients will experience an adverse event. Accuracy is measured using a probability
above 50% as the threshold. The term “Out-of-sample" signifies the performance of the model
on the Test set and “In-sample" on the Training set.

threshold (81.88%, 81.45% respectively). However, RF grows multiple decision trees and

assigns for each observation the class that is indicated by the majority of the decision trees.

OCT provides us with a single tree whose branches can be easily explained to physicians.

Each path leads to comprehensible clinical decision rules that could positively affect the

cardiovascular practice. Its model achieves superior performance in both accuracy and AUC

when compared to all other ML methods, including the advanced ensemble algorithm of GBT.

Moreover, Logistic Regression (80.83% AUC) is more accurate compared to CART (73.33%

AUC), but slightly under-performing with respect to more sophisticated algorithms (81.43%

AUC).

The final OCT model is depicted in Figures 5.3, 5.4, 5.5. Table 5.5 presents its ten most

significant variables. An analysis of the most predictive features follows below:

∙ Time in the System (TimeinSystem): the time that the patient has been observed

in the BMC database (from the first record until time of diagnosis 𝑡0). It serves as

an indicator of their medical condition and history information depth. TimeinSystem

does not incorporate any patient details after the time 𝑡0, avoiding the inclusion of

survivorship bias in the data. As shown in Figures 5.3, 5.4, 5.5, higher values of the

TimeinSystem variable are associated with leaves that predict positive outcomes for

the patient. This result indicates that physicians are more effective when they have
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extensive amount of information available and follow their patients’ trajectories over

longer periods of time.

∙ Prescription of Medication (Nitrates/ Beta Blockers/ Statins/ ACE Inhibitors):

whether a patient has been systematically treated with one particular type of medication.

Depending on the decision path of the tree, the risk of an adverse event might increase

or decrease if the medication has been prescribed. There need not be a causality relation

for the changes in risk. Only association can be deduced from such a model. However,

these results reinforce the argument that personalization in the treatment can indeed

affect the survival of the CAD population.

∙ CABG/PCI: whether the patient has performed a revascularization procedure. We

notice that positive values in these two variables are associated with leaves that suggest

pessimistic patient prognoses. Diagnosed CAD patients with more severe symptoms

of atherosclerosis are usually suggested to perform at least one of these interventions

(CABG, PCI) [124].

∙ Patient Age at Diagnosis: the age of the patient at the time of diagnosis in the

EHR system. Across the model we notice that older populations are associated with

higher risk, confirming a wide range of CAD risk calculators published in the medical

literature [79, 269, 110].

∙ HDL (mg/dL) levels: the HDL (mg/dL) levels from a blood test conducted at the

time of diagnosis. Depending on the position of the split in the tree, higher levels of

HDL may positively or negatively impact the ten year risk of CAD.

∙ Median Systolic Blood Pressure: the median of the systolic blood pressure mea-

surements recorded in the EHR across all visits in a window of three months before

𝑡0. We consider the median due to the noise frequently encountered in systolic blood

pressure measurements [336, 114, 104].
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Feature Importance

Time in the System 27.40%
Prescription of Nitrates 19.80%

Prescription of Beta Blockers 15.01%
PCI operation 12.96%

Prescription of Statins 10.53%
CABG operation 3.23%

Patient Age at Diagnosis 2.87%
Prescription of ACE inhibitors 1.86%

HDL (mg/dL) levels 1.31%
Median Systolic Blood Pressure 1.06%

Table 5.5: Demonstration of the independent variable ranking in the OCT binary classification
model. The importance of each variable is measured as the total decrease in the loss function
as a direct result of each split in a tree that uses this variable. The results are normalized so
that they sum to one.

5.4.1 Analysis of characteristic decision paths

We analyze distinctive risk profiles from the OCT model that provide interesting insights for

the management of CAD patients.

∙ Paths 1 & 2: Contain samples whose presence in the EHR was recorded only for two

months before the diagnosis. Leaf 1 refers to patients that are administered a PCI

operation and leaf 2 to those who perform a CABG surgery. Both paths associate

extremely high risk to the corresponding population.

∙ Paths 3 & 4: Refer to individuals who are present in the BMC system at least seven

years. They are not treated with PCI, neither with beta blockers nor statins. Their

baseline risk of an adverse event is 7.78%. However, this risk differs depending on the

age group they belong. Specifically, those individuals under 68 years old have 1.45%

probability of having a stroke or heart attack over the next ten years. On the contrary,

older patients have 18.11% chance of experiencing an adverse event.

∙ Paths 5 & 6: Include patients who are present in the BMC system for at least two

months and are prescribed PCI but no CABG surgery. They are not treated with beta
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blockers nor statins and their blood glucose levels are lower than 149 mg/dL. Their

baseline risk of an adverse event is 12.53%. This risk differs again depending on the

age group they belong. Specifically, those under 57 years old have 95.19% probability

of avoiding a stroke or heart attack over the next ten years. On the contrary, patients

older than 57 years of age have 14.03% chance of experiencing such an event.

Figure 5.3: Visualization of the first part of the OCT model. Paths 1 and 2 are indicated
with blue dashed rectangular frames. Shaded nodes include a collapsed subset of the tree
model.
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Figure 5.4: Visualization of the second part of the OCT model. Paths 3 and 4 are indicated
with blue dashed rectangular frames. Shaded nodes include a collapsed subset of the tree
model.

215



Figure 5.5: Visualization of the third part of the OCT model. Paths 3 and 4 are indicated
with blue dashed rectangular frames. Shaded nodes include a collapsed subset of the tree
model.
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ORT CART RF Linear
Regression GBT

CABG 73.14% 71.91% 83.00% 80.32% 80.06%
PCI 68.30% 67.73% 74.58% 73.21% 73.21%
Drugs 1 78.64% 75.35% 83.92% 82.94% 82.48%
Drugs 2 73.46% 72.56% 80.02% 79.98% 79.50%
Drugs 3 67.10% 69.03% 77.71% 75.34% 75.29%

Table 5.6: Results of supervised ML algorithms to predict the TAE since diagnosis. We
report the “Out-of-sample" 𝑅2 performance of each model on the Testing set.

5.5 The Regression Models

Predicting the risk of an adverse event within a 10-year time frame is an important question

that we address in Section 5.4. However, a personalized prescriptive algorithm requires the

creation of accurate regression models that, given the condition of a patient, estimate the

exact TAE for each potential treatment. We leveraged various state-of-the-art ML methods,

both interpretable and non-interpretable, to generate a set of estimations at an individual

level [56, 55, 27, 34, 73]. We trained a separate model for each combination of method and

treatment using as sample population patients that exclusively received this regimen. For

example, we applied the RF algorithm to generate five predictive models that correspond to

CABG, PCI, Drugs 1, 2, and 3. We followed the same process for CART, Linear Regression,

GBT, and Optimal Regression Trees (ORT). As in the classification task, we applied 10-fold-

cross-validation to determine the hyper-parameters of each model, including the complexity

parameter, the maximum depth, and minimum bucket for ORT and CART. Based on the

cross-validation results for the regression task, the number of greedy trees for the RF model

was set to 250 in contrast to 500 that were chosen for the binary classification outcome. We

used 𝐿2 regularization for the linear regression model. Table 5.6 provides a summary of each

method’s out-of-sample performance for every treatment option in terms of the 𝑅2 metric.

The results from Table 5.6 indicate that RF outperforms the other methods in all tasks

in terms of the 𝑅2 metric. CART, on the other hand, appears as the least performing

method across all tasks. ORT have an edge over the greedy tree-based approach, other
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than in the case of category “Drugs 3”. We observe that Linear Regression and GBT have

comparable performance for all types of treatment. We will leverage all these models as the

main component of our prescriptive algorithm, presented in Section 5.6.

We created separate models for each treatment population to avoid biases in the prediction

due to the existing treatment prescription patterns in the EHR [138]. Our goal was to identify,

for each patient, what is the therapy that would maximize their TAE. Therefore, a distinction

was needed between the different populations that received each treatment option. The

existing regimen allocation process could have significantly biased the prescriptive algorithm if

included as an independent feature in the set of covariates 𝑋 [306]. For instance, if physicians

in BMC prescribed CABG only to the younger population, the ML model would not have

been able to distinguish between the effect of CABG and the age of the patient.

5.6 ML4CAD: The Prescription Algorithm

The regression models serve as the basis for the prescription algorithm, utilizing the point

predictions as counterfactual estimations. The objective of the prescription algorithm is to

understand the potential effect of every therapy that each patient would have experienced,

had it been prescribed to them. For example, knowing the outcome of patient X who received

CABG surgery, we aim to estimate the outcome metric of a PCI intervention and for each of

the Drugs options. We present ML4CAD, a personalized prescriptive algorithm that utilizes

multiple ML models at once to identify the most effective therapy for CAD patients. Our

method is structured as follows:

1. We impute the missing values of the patient characteristics (Table 5.1) using a state-of-

the-art optimization framework [43].

2. We compute the TAE for right censored patients.

3. We split the population into training and test sets. The training set is used to train the

regression models and the test set is utilized to assess the predictive and prescriptive

performance of the algorithm.
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4. We train a separate regression model for each treatment option for all predictive

algorithms to estimate the TAE. The set of covariates 𝑋 ′ used to create the predictive

models does not include any features that refer to the treatment options (see Table 5.1

for a summary of the independent features and Table 5.2 for the list of prescription

options).

5. We use all models to get estimations of the TAE for each treatment option and every

patient in the test set. Thus, we have at our disposal a table of estimations for any new

individual considered. Table 5.7 provides an illustration of the output for patient X.

6. We select the most effective treatment for the patient according to a voting scheme

among the ML methods:

(a) If the majority of the regression models votes a single treatment (regimen with

the best expected effect), the algorithm recommends this therapy to the physician.

In the example of patient X (see Table 5.7), ML4CAD suggests the prescription of

CABG.

(b) If there are ties between the different therapies (i.e., two methods suggest Drugs 1

and two others indicate Drugs 2), then the votes get weighted by the out-of-sample

accuracy of the predictive models. For the analysis of this chapter, the 𝑅2 metric

was used.

7. The final TAE is computed as the average of the ML methods whose suggestion agreed

with the algorithm recommendation.

ML4CAD provides a new framework for personalized prescriptions which is structured on the

plurality of different ML models. In contrast to the simple Regress and Compare approach, it

combines multiple ML models to identify the most beneficial treatment option. The validity

of the algorithm’s recommendations gets reinforced by an increasing number of underlying

ML models that provide accurate estimations of the counterfactuals. In other words, the user

gains more confidence in the capability of the algorithm to identify the optimal therapy the
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ML Method CABG PCI Med. 1 Med. 2 Med. 3

ORT 4.65 4.59 3.89 3.76 3.54
CART 7.13 3.38 6.10 4.16 3.96

RF 5.77 4.93 5.44 4.26 4.49
Linear Regression 5.75 3.53 5.75 4.17 4.44

GBT 4.08 6.28 5.39 5.31 3.37

Table 5.7: Estimations of TAE (years) for patient X from the five ML methods considered
for each treatment option. We highlight the best treatment option for each ML model. Note
that four out of the five models agree on the CABG recommendation.

more models are available for comparison. This methodology also allows for transparency

towards the decision maker. Potential recommendations can be compared at an individual

level to be decided what would be the best option for each particular case.

5.6.1 Bridging the gap with practitioners

We created an online ML4CAD application for physicians who would be interested to inform

their decision making process using our personalized algorithm. Practitioners can now have

access to our website (https://personalized.shinyapps.io/ML4CAD/), where they are

able to quickly test the recommendations of the algorithm on new patient data. Figure 5.6

shows an image of the main application dashboard. The platform computes online a table

similar to Table 5.7, demonstrating to the user all the available options and their projected

outcomes. The final ML4CAD suggestion is highlighted on the right of the screen. A detailed

comparison of the out-of-sample performance of all ML models across the five treatment

tasks is also available. Moreover, clinicians can view aggregate results about the treatment

allocation mechanism according to different demographic features such as gender, ethnicity, or

age group. With this application we aspire to turn the proposed ML-based recommendation

system into an actionable framework for the cardiovascular community. The latter can

now leverage this tool as an assistance to its decision making process and prolong the life

expectancy of its patients.
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Figure 5.6: Visualization of the ML4CAD online application.

5.6.2 Prescriptive algorithm evaluation

Assessing the quality of the prescriptive algorithm poses a challenge. We do not have at our

disposal data that indicate the TAE for all counterfactual outcomes of each patient. We

created appropriate metrics that provide an objective evaluation framework of the algorithm’s

performance. We define the problem as follows, let:
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∙ 𝑝 be a variable that takes values in the set [𝑇 ] of all the prescriptive options;

∙ 𝑗 be a variable that takes values in the set [𝑀 ] of all the predictive models;

∙ 𝑧𝑖 be the treatment that patient 𝑖 followed at the standard of care;

∙ 𝑡𝑖 be the TAE for patient 𝑖 and treatment 𝑧𝑖;

∙ 𝜏𝑖 be the treatment recommendation of ML4CAD for patient 𝑖;

∙ 𝜃𝑗𝑖 be the treatment recommendation of machine learning model 𝑗 ∈ [𝑀 ] for patient 𝑖

using a simple “Regress and Compare approach”;

∙ 𝑔𝑗𝑖 (𝑝) be the estimated TAE for patient 𝑖 for treatment 𝑝 from the regression model 𝑗,

where 𝑗 ∈ [𝑀 ];

∙ 𝑦𝑖(𝑝) to be the estimated TAE for patient 𝑖 when ML4CAD recommends treatment 𝑝;

∙ 𝑡𝑝 average TAE observed in the data for all patients who were prescribed treatment 𝑝.

Using the notation above, the expected TAE for patient 𝑖 is according to ML4CAD:

𝑦𝑖(𝜏𝑖) =
1

𝐾

∑︁
𝑗:argmax𝑝 𝑔𝑗𝑖 (𝑝)=𝜏𝑖

𝑔𝑗𝑖 (𝜏𝑖),

𝐾 = |𝑗 : arg max
𝑝

𝑔𝑗𝑖 (𝑝) = 𝜏𝑖|, 𝑖 ∈ [𝑛].

(5.2)

We evaluate the quality of the algorithm’s personalized recommendations based on the

following metrics:

1. Prescription Effectiveness and Robustness:

The goal of the first metrics is to compare the performance of the ML4CAD recommenda-

tions with the regimens prescribed at the standard of care. Due to the uncertainty in

counterfactual estimation, we consider different predictions of the TAE and a multitude

of ground truths. Our baseline ground truth refers to realizations of TAE that we

observe in the BMC database. This ground truth provides us with the exact TAE
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associated to the treatment regimen that was prescribed by the physicians at the

hospital. Alternative ground truths refer to estimations of the TAE by treatment-based

regression models.

∙ Prescription Effectiveness (PE)

We fix, for each patient 𝑖 ∈ [𝑛], the treatment suggestion 𝜏𝑖 from the ML4CAD

algorithm. We know the outcome 𝑡𝑖 for treatment choice 𝑧𝑖 (observed in the data

- baseline ground truth). Thus, comparing the prescription effectiveness of the

ML4CAD versus the standard of care would be equal to:

PE(ML4CAD) =
1

𝑛

𝑛∑︁
𝑖=1

𝑦𝑖(𝜏𝑖)− 𝑡𝑖. (5.3)

ML4CAD averages the TAE projected by the regression models that agree on the

most beneficial treatment for patient 𝑖, namely 𝜏𝑖. We can evaluate the prescription

effectiveness of this recommendation by considering each ML model in isolation.

Each regression model 𝑗 provides for patient 𝑖 and regimen 𝑝 an estimation 𝑔𝑗𝑖 (𝑝).

Therefore, if we fix 𝑝 = 𝜏𝑖, we can get an evaluation of the projected TAE and

compare it to the standard of care.

PE(ML𝑗) =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑗𝑖 (𝜏𝑖)− 𝑡𝑖,

∀𝑗 ∈ {1, . . . ,𝑀}.
(5.4)

Comparing multiple ML estimations for the TAE of the recommendation 𝜏𝑖 renders

the results more credible to biases of a specific predictive algorithm.

∙ Prescription Robustness (PR)

The PE metric measures the effect of the ML4CAD recommended therapies against

a fixed given ground truth from the EHR of the BMC. Nevertheless, knowing that

each patient 𝑖 was given a treatment 𝑡𝑖, we can generate alternative ground truths.
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We can, then, evaluate the benefit of the personalization approach against those.

Each ground truth corresponds to an estimation of what would happen to patient

𝑖 if ML model 𝑗 was an oracle that knew the reality and the effects of treatment 𝑧𝑖.

PR(ML𝑗,𝑘) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑔𝑗𝑖 (𝜏𝑖)− 𝑔𝑘𝑖 (𝑧𝑖)),

∀𝑗, 𝑘 ∈ [𝑀 ].

(5.5)

In this setting, decisions 𝜏𝑖, 𝑧𝑖 are fixed and we evaluate all the combinations

between RF, CART, ORT, GBT, and Linear Regression. We include also the case

where ML4CAD is used to estimate the effect of 𝜏𝑖 but not the one of 𝑡𝑖.

PR(ML4CAD𝑘) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖(𝜏𝑖)− 𝑔𝑘𝑖 (𝑧𝑖)),

∀𝑘 ∈ [𝑀 ].

(5.6)

The goal of this metric is to evaluate the robustness of the treatment effect under

different ground truths. In Section 5.7, we perform an extensive comparison over

all methods and ground truths considered (see Table 5.8). We introduce this

approach to avoid biased estimates of performance. The latter could not have

been avoided if we were comparing our results only to the baseline ground truth.

2. Prediction accuracy of TAE:

�̃�2(ML4CAD) = 1−
∑︀

𝑖∈𝑆(𝑦𝑖(𝑧𝑖)− 𝑡𝑖)
2∑︀

𝑖∈𝑆(𝑒𝑟𝑙𝑖𝑛𝑒𝑡𝑧𝑖 − 𝑡𝑖)2
,

𝑆 = {𝑖 : 𝜏𝑖 = 𝑧𝑖}, 𝑖 ∈ [𝑛].

(5.7)

This metric follows the same structure as the well-known coefficient of determination
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𝑅2. We apply it for each patient 𝑖 ∈ 𝑆, the set of all samples where there is agreement

between the ML4CAD and baseline prescription; 𝑆 = {𝑖 : 𝜏𝑖 = 𝑧𝑖}. Similar to the

original measure, the known outcome 𝑡𝑖 is compared to the estimated treatment effect

𝑦𝑖(𝑧𝑖) and to a baseline estimation. The latter in our case is 𝑒𝑟𝑙𝑖𝑛𝑒𝑡𝑧𝑖 , the mean TAE

observed in the data for all patients who were prescribed treatment 𝑧𝑖. The adjusted

coefficient of determination �̃�2 helps us evaluate whether the outcome that ML4CAD

predicts for the known counterfactuals is accurate or not. It is impossible to evaluate the

prescriptive algorithm across all treatment options. Only one out of the five is actually

realized in practice. We focused on comparing for each patient the TAE according to

the algorithm versus the one present in the data only for the cases where there was

agreement between the two. This estimation, even though limited, provides us with

a good baseline regarding the accuracy of our recommendations. We can extend the

use of this metric to the “Regress and Compare” approach. Thus, we can estimate the

�̃�2(ML𝑗) of each predictive model 𝑗 ∈ [𝑀 ].

�̃�2(ML𝑗) = 1−
∑︀

𝑖∈𝑆(𝑔𝑗𝑖 (𝑧𝑖)− 𝑡𝑖)
2∑︀

𝑖∈𝑆(𝑒𝑟𝑙𝑖𝑛𝑒𝑡𝑧𝑖 − 𝑡𝑖)2
,

𝑆 = {𝑖 : 𝜃𝑗𝑖 = 𝑧𝑖}, 𝑖 ∈ [𝑛].

(5.8)

3. Degree of ML Agreement (DMLA):

This measure refers to the degree of agreement among the ML models (DMLA) with

the recommended treatment 𝜏𝑖. For each patient, we count the number of methods

that agree on the ML4CAD suggested treatment 𝜏𝑖. We report the distribution of this

metric across the whole population. Cases where there is high degree of agreement

are associated with higher confidence on the suggested prescription. On the contrary,

we are less confident in cases where there is misalignment between the ML models

regarding the best treatment option.
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5.7 Prescriptive algorithm results

In this Section, we present numerical results with respect to the evaluation metrics introduced

in Section 5.6. We provide insights regarding different sample population subgroups. We also

discuss new treatment allocation patterns based on ML4CAD recommendations.

5.7.1 Prescription Effectiveness (PE) and Robustness (PR)

We summarize our results with respect to the PE and PR metrics in Table 5.8. The first

table column corresponds to PE (baseline ground truth), whereas the rest of the columns

refer to PR (ML-based ground truths). Table 5.8 presents the expected relative gain in

TAE of ML4CAD over the baseline. Its values demonstrate the average benefit in years of

TAE when comparing the current and ML4CAD treatment allocation plan across different

estimation models. Each ground truth (column) refers to alternative estimations of the

TAE under the current treatment allocation plan. Thus, if the ground truth is the baseline

(BMC Database), the suggested times correspond the TAE observed in the data. When

the ground truth is set to be the ORT algorithm, the predicted times 𝑔𝑂𝑅𝑇
𝑖 (𝑧𝑖) mirror ORT

estimations when the treatment allocation is fixed to the physicians’ decisions from the

hospital (𝑧𝑖). Each prediction model (row) provides us with a continuous prediction of a

patient’s TAE when the treatment allocation plan is set by the ML4CAD algorithm (𝜏𝑖). Thus,

the values in Table 5.8 correspond to the metrics defined in Equations 5.4 (first column)

and 5.5 (subsequent columns).

When compared to the current allocation scheme, our prescription algorithm improves

the average TAE by 24.11%, with respect to the PE metric, with an increase from 4.56 to

5.66 years ( 13 months). Column “Baseline (PE)” of Table 5.8 summarizes the results with

respect to all regression models considered. ML4CAD provides the most optimistic estimations.

It suggests a higher TAE versus its counterparts by at least 0.18 years (2 months). Linear

*The PE of the algorithm when the estimation model 𝑔𝑗 is ML4CAD and the ground truth relates to the
patient outcomes observed in the BMC database (See Equation 5.4).

†The PR of the algorithm when CART is the chosen estimation model 𝑔𝑗 for the prescriptions 𝑧𝑖, 𝑖 ∈ [𝑛]
and the ground truth outcomes are computed according to the Linear Regression model 𝑔𝑘 (See Equation 5.5).
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Ground Truth

Estimation Model Baseline ORT CART RF Linear
Regression GBT

ML4CAD 1.101* 1.162 1.158 1.140 1.178 1.283
ORT 0.779 0.840 0.835 0.818 0.855 0.961
CART 0.923 0.983 0.979 0.965 0.999 1.105
RF 0.757 0.818 0.813 0.796 0.833† 0.939
Linear Regression 0.485 0.546 0.541 0.524 0.561 0.667
GBT 0.591 0.652 0.647 0.630 0.667 0.773

Table 5.8: Comparison of the “Prescription effectiveness” (PE) and “Prescription robustness”
(PR) metrics for all estimation models and ground truths considered. The first column
(Baseline) presents results with respect to the PE metric and refers to the TAE observed
in the BMC database. All subsequent columns refer to the PR measure. Each of them
represents a distinct ground truth. All units are shown in years. See Equations 5.4,5.3,5.5.

Regression appears to be the most pessimistic method with an average benefit over the

baseline of 6 months (0.59 years). ORT and RF provide similar estimations of 0.77 and 0.75

years of improvement, respectively.

The comparable performance of the various estimation models presented in Table 5.8

reinforces the credibility of the prescription algorithm. We show that there is agreement

between the potential improvement in the average TAE by an alternative treatment allocation

scheme. Even in cases where we include ML models that did not participate in the ML4CAD

recommendation, there is substantial benefit in the patients’ life expectancy.

We observe better results across all age and ethnicity patient subgroups and for both

genders. The benefit of using the algorithm was 17.09% (0.9 years) for Black patients, 29.03%

(1.16 years) for Caucasian patients and 58.41% (1.86 months) for Hispanic patients. We also

note 22.5% (0.99 years) improvement for patients 65− 80 years of age and 46.9% (1.58 years)

for patients aged 80 or older. Male patients are expected to increase their time from 4.62

years to 5.73 (24.19% improvement) similar to female patients (from 4.42 years to 5.48). The

performance of the prescriptive algorithm for selected patient subgroups compared to the

BMC baseline is summarized in Figure 5.7.
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Figure 5.7: Comparison of the expected years to adverse event after diagnosis for the age and
ethnicity subgroups considered. The difference between the two bars for each sub-population
refers to the prescription effectiveness (PE) of the algorithm for each respective patient group.
“Current.TAE” refers to the outcomes observed in the EHR of the BMC. “ML4CAD.TAE”
represents the expected TAE according to the prescription algorithm.
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In terms of the PR metric, our results demonstrate a consistent improvement of the patient

population TAE across all ground truths and estimation models. Table 5.8 summarizes the

results of our analysis. We note that ML4CAD achieves the highest benefit when compared to

all alternative scenarios of outcome realization. This is due to the incorporation of the voting

system for the selection of the most effective treatment that accounts for all ML models. We

show that even in the case of more pessimistic estimators, such as GBT or Linear Regression,

there is a substantial benefit compared to the standard of care. Our approach does not

guarantee optimality for the treatment selection problem. Nevertheless, it is experimentally

shown that it can bring about substantial benefit to the CAD population.

We can also identify for each estimation model combinations with ground truths that

outperform the rest of the alternatives. All methods demonstrate the highest improvement

when associated with the GBT ground truth. For example, the ORT and CART model

increase the average TAE by 0.96 and 1.10 years respectively. The next most optimistic

contestant is Linear Regression. This is due to the fact that some methods on average

overestimate or underestimate the expected TAE, translating these discrepancies in the PR

metric.

5.7.2 Prediction accuracy of TAE

The “prediction accuracy of TAE" for the proposed prescriptive algorithm is �̃�2(ML4CAD) =

78.7%. Table 5.9 provides a summary of the results for both the suggested method as well as

“Regress and Compare” approaches from the baseline ML models. ML4CAD achieves better

performance compared to the single prediction model counterparts. Aggregated predictions

from different regression models lead to more accurate outcomes. The suggested voting

scheme, not only reduces the uncertainty and bias of the estimations (See Section 5.7.1), but

also results in highly accurate predictions.
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Method R̃2

ML4CAD 78.70%
ORT 72.68%
CART 70.54%
RF 77.25%
Linear Regression 76.66%
GBT 76.59%

Table 5.9: Results summary for the Prediction Accaracy of TAE (�̃�2) metric.

5.7.3 Degree of ML agreement (DMLA)

The majority of the ML4CAD recommendations 𝑧𝑖 are based on a common suggestion between

at least three distinct ML models. Specifically, in 14.53% of the patients all methods suggest

the same treatment for each individual. In 26.74% of the cases there is agreement between

four models and in 34.48% of the observations three methods participate in the decision.

Only in 0.26% of the samples, each regression model suggests a different prescription. In such

cases, the ML4CAD recommendation is solely based on the suggestion of the most accurate one.

Table 5.10 provides detailed results for each treatment option. The last table column

summarizes the results as a function of the total population. Each treatment specific column

presents the proportional degree of agreement for all patients for which this treatment was

suggested. Thus, we notice that CABG as well as Drugs 1 & 2 recommendations are, on

average, more confident compared to Drugs 3 or PCI due to the higher degree of agreement.

This is particularly true in the case of Drugs 1, where for 85.49% of the patients, three out of

the five methods voted for the same regimen.

5.7.4 Treatment Allocation Patterns

In this section, we present insights regarding the ML4CAD treatment allocation patterns and

we perform comparisons with the standard of care at the BMC. Our method agrees with

the physicians’ decisions in 28.24% of the cases. The results indicate a shift towards drug

therapy and CABG, reducing the overall proportion of PCI (from 18.84% to 6.04%). The
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Number of ML methods
that agree with the
recommendation

CABG Drugs
1

Drugs
2

Drugs
3 PCI Population

Proportion

1 1.13% 0.22% 0.00% 0.00% 0.00% 0.26%
2 20.82% 14.29% 41.54% 59.65% 49.10% 23.99%
3 35.41% 32.30% 43.98% 36.23% 39.07% 34.48%
4 27.34% 33.58% 13.26% 3.64% 10.28% 26.74%
5 15.30% 19.61% 1.22% 0.47% 1.54% 14.53%

Table 5.10: Degree of ML Agreement between the models analyzed for each treatment option
as well as a function of the overall test population.

prediction model indicates that patients with severe symptoms do not benefit significantly

from a PCI versus a CABG surgery due to the eminent need for revascularization. Figure 5.8

illustrates a significant shift towards “Drugs 1” for both women and men. The algorithm

also recognizes that treatment “Drugs 2” is less effective on female patients versus male. The

ML4CAD allocation is in agreement with the most recent guidelines published by the AHA

[327]. In the vast majority of cases, a combination of antihypertensive drugs (Blockers) with

lipid lowering treatment (statins) is suggested. The overall proportion of the population that

is recommended an invasive intervention is reduced due to the significant decline of PCI

operations.

Figure 5.9 illustrates a comparison of the treatment allocation patterns between the

ML4CAD algorithm, individual “Regress and Compare” models, and the standard of care we

observe in the data. The graph demonstrates an agreement across all methods other than

CART to increase the proportion of the population under “Drugs 1”. The ML4CAD algorithm

is more aligned with the RF policy due to the high predictive performance associated with

the latter. We also note the reduction of “Drugs 2 & 3” across all methods. In the case of

CABG there is disagreement between the ML models. GBT and Linear Regression suggest a

significant raise in the proportion of CABG surgery at the expense of “Drugs 1”. On the other

hand, ORT, RF, and CART identify CABG as the optimal therapy for a lower proportion of

the patient population.

231



ML4CAD Allocation

Treatment CABG Drugs 1 Drugs 2 Drugs 3 PCI

Current
Allocation

CABG 1.3% 4.1% 0.9% 1.6% 0.8%
Drugs 1 2.3% 22.1% 3.7% 2.1% 1.7%
Drugs 2 2.0% 12.3% 2.0% 0.2% 1.0%
Drugs 3 3.2% 16.3% 1.0% 1.4% 1.1%
PCI 2.2% 9.5% 1.3% 4.5% 1.4%

Table 5.11: Allocation of patients in the treatment options based on the standard of care and
ML4CAD.
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Figure 5.8: Population allocation to treatments split by gender.

5.8 Discussion

Combining historical data from a large EHR database and state-of-the-art ML algorithms

resulted in an average TAE benefit of 24.11%% (1.1 years) for patients diagnosed with CAD.

Our results show that differing medication regimens and revascularization strategies may

produce varying clinical outcomes for patients. The use of ML may facilitate the identification

of the optimal treatment strategy. Such efforts could directly address the primary objectives

of the clinical cardiovascular practice, leading to symptoms reduction and an increase in

the population life expectancy. Our findings uncover the greatest clinical benefit in medical
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Figure 5.9: Treatment Allocation patterns between different ML methods.

therapy changes, consistent with themes that have emerged in clinical trials [51]. The

optimal revascularization strategy in patients with multi-vessel CAD is an area of active

investigation, with efforts focused on identifying which patient subgroups may benefit from

different revascularization procedures [120]. Our technique may add clarity to this clinical

challenge.

Our prescriptive approach is accurate, highly interpretable, and flexible for other healthcare

applications. The use of multiple ground truths derived from independent ML models renders

credibility to the results. In prescriptive problems where counterfactual outcomes cannot

be evaluated against a known reference, leveraging multiple ML models can reduce the

uncertainty behind suggested recommendations. For this reason, we believe that metrics such

as the prescription effectiveness and robustness are key to the validation process.

Moreover, our online application bridges the gap between clinicians and the algorithm.

Users can directly and simultaneously interact with multiple ML models from a user-

friendly interface. Our method should easily accommodate alternative cardiovascular disease-
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management approaches within specific disease subpopulations, such as arrhythmia and

valvular disease management. A novelty of our approach is in the personalization of the

decision-making process. It incorporates patient-specific factors, and provides guidelines for

the physician at the time of diagnosis / clinical encounter. We believe this personalization is

the primary driver of benefit relative to the standard of care. Similarly, there is emerging

data on use of ML techniques to improve cardiac imaging phenotyping of cardiac disease

states, such as heart failure [254].

The widespread use of EHR in clinical medicine was initially viewed with much optimism,

however more recently it has been met with frustration by clinical providers. Concerns

are being raised over the administrative burden to document the EHR and the resultant

development of clinician “burn out". The methodology presented in this chapter identifies a

mechanism to harness the power of the EHR in an effort to improve patient care and make

it more personalized. It is true that the clinical acumen developed over time spent caring

for patients cannot be replaced by algorithms. Nevertheless, the prospect of ML to guide

clinicians and complement clinical decision making may help improve clinical outcomes for

patients with cardiovascular and other diseases [111].

Our work has several limitations due to the nature of the EHR. A large percentage of

the sample was right-censored. Patients were not randomized into treatment groups. Our

data does not include socioeconomic factors or patient preferences that may be important in

treatment decisions, such as income or fear of invasive treatment strategies. Although our

matching methodology controls for several confounding factors that could explain differences

in treatment effects, we can only estimate counterfactual outcomes. In addition, the study

population of BMC is not representative of the general U.S. population as we observe a higher

representation of non-Caucasian patients. As a result, the ability of ML4CAD to generalize in

other institutions needs to be tested. Similarly to other studies, we recommend prospective

validation of the models to the new population prior to the application of the algorithm to

a different healthcare system [259]. Moreover, we should consider that the accuracy of the

prediction model is limited, though significantly better than the baseline model. It leaves
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room for improvement in that field by including new variables and further risk factors that

are associated with CAD. Due to lack of sufficient data, we did not take into account different

types of CABG surgery (i.e. arterial versus venous conduits) and PCI (i.e. newer versus older

generation drug eluting stents, or bare metal stents versus drug eluting stents). Should more

data were available, we could further differentiate the prescription categories beyond the five

we include in this analysis, including drug specific recommendations. Moreover, the algorithm

does not agree with the standard of care in most cases. This result indicates that new

personalization techniques would need further input from clinicians that was not originally

recorded in the EHR. Future research could address the issue of right censored patients with

different approaches, which incorporate the time varying effects of the explanatory variables

using optimization rather than heuristic methodologies. The ultimate validation of our

algorithm would be the realization of a clinical trial. There, we would test the personalized

recommendation to patients directly utilizing their EHR from the hospital system.

5.9 Conclusions

Despite these limitations, our approach establishes strong evidence for the benefit of in-

dividualizing CAD care. To our knowledge, this work represents the first ML study in

treating cardiovascular disease and serves as a proof of concept. Moreover, the success of this

data-driven approach invites further testing using datasets from other hospitals and patient

populations. That includes care settings that contain more detailed information regarding

the patients’ condition, such as electrocardiogram findings and exercise and other lifestyle

factors. The algorithm could be integrated in practice into existing EHR systems to generate

dynamically personalized treatment recommendations. Testing the prescriptive algorithm in

a clinical trial setting could provide conclusive evidence of clinical effectiveness. As large-scale

genomic data become more widely available, the algorithm could readily incorporate such data

to reach the full potential of personalized medicine in cardiovascular disease care. Our work

is a key step toward a fully patient-centered approach to coronary artery disease management

and the application of modern analytics in the medical field.
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Chapter 6

The Non-linear Framingham Stroke

Risk Score

Current stroke risk assessment tools presume the impact of risk factors is linear and cumulative.

However, both novel risk factors and their interplay influencing stroke incidence are difficult

to reveal using traditional additive models. The goal of this study was to improve upon the

established Revised Framingham Stroke Risk Score (R-FSRS) and design an interactive N-SRS.

Leveraging ML algorithms, our work aimed at increasing the accuracy of event prediction

and uncovering new relationships in an interpretable fashion. A two-phase approach was used

to create our stroke risk prediction score. First, clinical examinations of the Framingham

offspring cohort were utilized as the training dataset for the predictive model. OCT were used

to develop a tree-based model to predict 10-year risk of stroke. Unlike classical methods, this

algorithm adaptively changes the splits on the independent variables, introducing non-linear

interactions among them. Second, the model was validated with a multi-ethnicity cohort from

the BMC. Our stroke risk score suggests a key dichotomy between patients with history of

cardiovascular disease and the rest of the population. While it agrees with known findings, it

also identified 23 unique stroke risk profiles and highlighted new non-linear relationships; such

as the role of T-wave abnormality on electrocardiography and hematocrit levels in a patient’s

risk profile. Our results suggested that the non-linear approach significantly improves upon
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the baseline in the AUC (training 87.4% (CI 0.85-0.90) vs. 73.74% (CI 0.70-0.76); validation

75.29% (CI 0.74-0.76) vs 65.93% (CI 0.64-0.67), even in multi-ethnicity populations. The

clinical implications of the new risk score include prioritization of risk factor modification

and personalized care at the patient level with improved targeting of interventions for stroke

prevention.

6.1 Introduction

Over 70% of strokes occur in people without prior history of adverse events, emphasizing the

importance of primary prevention [262]. Over the past four decades, several risk scores have

been introduced to identify individuals at high risk for cerebrovascular disease [355, 226, 68].

These scores highlighted the benefit of introducing blood pressure treatment and other

medication, leading to the significant decline of stroke rates over the past 15 years [62, 260].

The Framingham Heart Study Stroke Risk Score (FSRS) is one of the most established

and respected standards for estimating 10-year stroke risk [355]. The FHS started with the

goal of observing a large population of adults over time to better understand the factors

that lead to cardiovascular and cerebrovascular disease. The original FSRS was based on

stroke data from the 1960s and 1970s, but its application on contemporary cohorts showed

overestimation of stroke risk [48, 230]. Recently, a Revised FSRS (R-FSRS) was introduced

to account for temporal trends using data from the offspring cohort and reflecting updated

stroke rate incidence [105].

These approaches apply traditional statistical tools such as the Cox Proportional Hazards

model [85], which assume a linear, log-linear, or logit-linear relationship between the risk

factors and the prevalence of the disease. While useful, they presume that the variables in

their models interact in a mere additive fashion. The mathematical and medical realities,

however, suggest that the interaction of risk factors and markers of disease acuity are far

from linear, and that some variables gain or lose significance due to the absence or presence

of other variables [199, 37]. In a logistic regression setting, interactions between risk factors

can only be incorporated via cross-multiplication to estimate the combined relative risk.
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However, this approach requires a significant augmentation of the feature space while it does

not generalize to higher numbers of risk factors.

On that ground, we recognized the substantial benefit that algorithmic approaches and

ML could bring in this field. We propose the N-SRS using the clinical examination data from

the offspring cohort of the FHS to estimate the 10-year stroke risk. To achieve our objective,

we utilize novel ML methods to predict the progression of cerebrovascular disease [27, 41].

Our model considers a wider spectrum of potential risk factors that include the prescribed

medical regimen at the time of the examination. We suggest a new way of utilizing data

from longitudinal studies that allows the creation of a larger dataset that can boost the

performance of ML methods without introducing bias in the data. Our predictive algorithm

is a tree-based method called OCT that allows the physician to explore the exact model and

assess the interpretability of its results. Compared with other binary classification methods,

such as Neural Networks that are not explainable [164], OCT is comprehensible and can be

easily visualized in a tree form [215]. The final model optimally estimates the probability of

stroke with superior performance compared to other stroke risk scores. These findings were

validated with a separate multi-ethnic population of 17,527 individuals from an academic

medical center.

6.2 Methods

The creation, evaluation, and validation of a new prediction model involves a series of

analyses that are necessary to prove its statistical significance. Our methodology comprised

the following steps:

∙ Identification of the derivation and validation cohort and definition of inclusion criteria.

Observations were split into the training (75%) and the testing (25%) sets.

∙ Definition of stroke risk factors and outcomes and association with every participant

visit included in the data.

∙ Imputation of missing values in independent variables using the MedImpute algorithm
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[41]. Multiple computational experiments were conducted in order to select the most

appropriate missing data imputation method.

∙ Creation of the Non-linear Framingham Stroke Risk Score (N-SRS) using the OCT

algorithm. A risk profile analysis was conducted to validate its insights from the medical

literature. The latter was part of an iteration process in tandem with hyperparameter

tuning.

∙ Training of other ML models using a varied set of supervised learning binary classification

algorithms, including Logistic Regression.

∙ Discrimination and calibration performance evaluation of all ML models and the R-

FSRS for the testing sets of the derivation and validation cohorts. Separate results

summary tables and figures were created for each population.

∙ Creation of an interactive web-based interface for the communication of the N-SRS

model to the clinical community.

6.2.1 The Derivation Cohort

Our study sample comprises the Framingham offspring and the spouses of the offspring cohort

enrolled in 1971 and reexamined approximately once every four years since then [122]. To

be included, participants were required to be stroke-free and above 40 years of age at each

baseline examination. We exclude younger patients following the paradigm of the R-FSRS

model [105]. ML methods perform significantly better as the number of the training sample

size increases. Thus, we considered for every participant each clinical examination as a

distinct observation. We applied the following inclusion criteria:

∙ The participant had not experienced a stroke event prior to the date of the baseline

clinical examination. Patients with prior history of such adverse events receive specific

treatment and their future trajectory highly depends on the severity of their primary
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stroke. Thus, for these cases we refer the reader to secondary stroke specific risk

prediction tools [349].

∙ The participant was not censored within 10 years from the time of the clinical examina-

tion. For every observation we required that (a) either the participant experienced a

stroke within the defined time-frame or (b) the participant was censored after the lapse

of 10 years.

This methodology of population sampling resulted in the inclusion of 4,385 unique

participants, which translated in 18,793 distinct visits (Table 6.1 – Framingham Dataset

1 (FD1)). The dataset was split into the training (75%) and testing (25%) population to

allow for unbiased evaluation of the algorithms’ performance. Note that visits from the same

individual were only included in one of the two sets. Thus, we avoided the introduction of

bias in the algorithm evaluation process.

Dataset Name Parameter Value

Framingham
Dataset 1 (FD1)

Sample size 18,793
Number of participants 4,385
Number of stroke cases 1,013
Number of distinct participants with stroke 460
Proportion of female population 53.97%

Framingham
Dataset 2 (FD2)

Sample size 2,989
Number of stroke cases 221
Proportion of female population 54.26%

BMC - Caucasian
Sample size 9,029
Number of stroke cases 909
Proportion of female population 58.63%

BMC - Black
Sample size 2,862
Number of stroke cases 230
Proportion of female population 58.97%

BMC - Hispanic
Sample size 5,636
Number of stroke cases 406
Proportion of female population 50.19%

Table 6.1: Baseline characteristics of the derivation and validation populations.
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Category Variable

Demographic Factors
Age

Gender

Categorical Risk Factors

Current cigarette smoking

Presence of Cardiovascular disease

Presence of Atrial Fibrillation

History of Transient Ischemic Attacks

History of Myocardial Infarctions

Diabetes mellitus

Blood Pressure Category

Medication and Treatment related Factors

AHT medication

Statins

Nitrates

Diuretics

CABG

PCI

Electrocardiogram (ECG) results

X-ray Enlargement

Left Ventricular Hypertrophy

Presence of T-Wave abnormality

Intraventricular Block

Atrioventricular Block

ST-Segment abnormality

U-Wave abnormality

Premature beats

Continuous Risk Factors

SBP

HDL

BMI

Hematocrit

Fasting plasma glucose level

Table 6.2: Stroke Risk Factors considered in the N-SRS model.
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6.2.2 The Validation Cohort

The stroke risk model was subsequently validated in a prospective multiethnic cohort of 17,527

patients from the BMC, a private, not-for-profit, 487-bed, academic medical center located in

Boston, MA, USA. We identified, using the EHR, a stroke-free population at baseline who

satisfied the inclusion criteria without censoring (Table 6.1 – BMC datasets). We retrieved

each patient’s medical and family history and formulated a dataset that measured the same

characteristics as the Derivation Cohort. Every observation in this population corresponds to

a unique patient visit. However, no patient was included more than once in the data set. At

least 50% of the independent features were known for all selected samples. Missing values

were subsequently imputed using a ML algorithm. Prior visits from the same database were

used to identify demographic information or data related to the medical and family history

of the patient.

6.2.3 Definition of Stroke Risk Factors

We used data collated from each clinical examination including all the risk factors considered

in the R-FSRS [105], as well as medication, previous treatment information, ECG results,

and additional variables considered in other stroke risk scores [122, 342]. Considering the

impact of managing blood pressure levels to the progression of cerebrovascular disease, we

hypothesized that the inclusion of treatment specific variables could lead to more personalized

stroke risk estimation. A full list of all considered independent variables is presented in

Table 6.2. Age, SBP, HDL levels, BMI, hematocrit and fasting blood glucose were treated as

continuous features while the rest of the covariates where considered factor variables. SBP

was recorded as the mean of two physician recorded measurements made on the left arm of

the seated subject, using a mercury column sphygmomanometer and a cuff of appropriate

width. Baseline CVD was recorded as present if coronary artery disease, congestive heart

failure or peripheral vascular disease had been documented in the participant at, or prior

to, the clinical examination. Current cigarette smoking was defined as smoking in the year

prior to the baseline examination. We used SBP and DBP measurements to define a new
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variable called “Blood Pressure Category” based on current AHA guidelines [63]. We utilized

the ECG results provided in each clinical examination of the FHS as additional covariates in

our model as well as medical treatment details (i.e. participant underwent CABG or PCI or

was under antihypertensive medication at the time et al.). Diabetic status was defined based

on the FHS data dictionary similarly to the ECG results. The status of antihypertensive

medication was split in two levels (0 = no current prescription of antihypertensive treatment,

1 = currently or in the past under antihypertensive treatment).

6.2.4 Definition of Stroke

Stroke was modeled as a binary outcome and defined as an acute onset focal neurological

deficit of vascular etiology, persisting for more than 24 hours, concordant with the World

Health Organization (WHO) definition; both ischemic and hemorrhagic strokes were included

as in the original FSRS and updated R-FSRS. We used the FHS definition of stroke to specify

the outcomes in our dataset; detailed description is defined in previous work [355, 105, 90, 312].

6.2.5 Missing Data Imputation

Missing values were encountered in the majority of the included risk factors. Some participants

did not answer the totality of the questionnaires in some of their visits. Moreover, earlier

examinations did not record some of the variables, such as echocardiogram results, and thus

they were unknown for a subset of the observations [173]. Employing imputation techniques

instead of complete case analysis, allows the inclusion of a wider set of features which

otherwise would have been omitted by the model [67]. We imputed missing values using a

recently developed ML method called MedImpute [41]. The decision to use this algorithm

was based on a series of computational experiments that compared both the missing data

imputation accuracy as well its effect on downstream predictive performance on these data.

It leverages the fact that the same participant could have been included multiple times in the

dataset, corresponding to various clinical examinations that satisfied the inclusion criteria.

Compared to multiple imputation approaches, such as MICE [341], MedImpute does not
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require pooling results that affect the interpretability of the final data set. This methodology

has been tested to be robust to the particular missing data patterns which are frequently

encountered in longitudinal studies [41]. The algorithm outperformed in both imputation

accuracy and downstream prediction performance other standard imputation methods, such

as mean [218], 𝑘-NN [88], OptImpute [43], MICE [341]. MedImpute reduced the mean

absolute imputation error in the Framingham dataset by 5% and increased the AUC in the

testing set from 85.21% (MICE) to 87.43%. The authors of the algorithm have also done

further experiments using data from the Framingham Heart Study under different missing

data regimens, including varying levels of missingness from 10% to 50%, increasing number

of observations per participant, and different missing data patterns (MCAR, MNAR) [41].

The method was independently applied to the training and testing sets of the Framingham

population as well as the BMC cohort.

6.2.6 Creating the N-SRS

The N-SRS utilizes the OCT algorithm that focuses on both accuracy and interpretability

[27, 34] (see also Chapters 3-4). Through this algorithm, we produce a predictive model for

10-year risk of stroke which adaptively changes the splits on the variables, accounting for

non-linear interactions among them. The stroke risk is calculated via a series of questions

whose order changes dynamically depending on the response. The non-linearity effect is

attributed to the absence of a fixed risk coefficient to each independent covariate. The

contribution of each feature to the overall score is conditional to other patient characteristics

and thus may vary significantly. As we saw in Chapter 5, decision tree methods’ final output

is very easy to understand, and thus appropriate for applications where interpretability is

important. Its structure allows predictions through a few decision splits on a small number

of high-importance variables, contrary to other ensemble approaches and neural networks

[164, 152].

The selection of the final model involved an iterative process during which a risk profile

analysis was conducted for each path of the tree. Every path is associated with a unique set
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of risk factors whose interaction and significance was validated from the medical literature.

We trained other well-established ML algorithms (i.e. CART, RF, GBT) on the derivation

population data to have a fair comparison of the OCT performance in addition to the R-FSRS

results [56, 55, 73]. Logistic regression with L1 regularization (Log.Reg) is also employed to

specify the performance of a linear model using the same features, data format and missing

data imputation as the N-SRS [163]. We used 10-fold cross-validation to set the parameters

for each model. The OCT maximum depth was set to eight and the minimum bucket to 20

observations.

6.2.7 Measurement of Model Performance

The OCT algorithm performance and its ability to predict 10-year risk of stroke was measured

using the AUC [157]. We report the average performance across five random partitions of

the data with replacement in the derivation population. For each random split, a distinct

training sample was used to create the predictive models. Their performance was subse-

quently evaluated on both the testing sets of the Framingham cohorts as well as the BMC

validation cohort. Confidence intervals (95%) were calculated for the bootstrapped results.

We also report the average sensitivity, specificity, precision, negative predictive value, positive

predictive value for all cohorts and methods when the probability threshold is set to 0.5. In

addition, we compare the Hosmer-Lemeshow calibration 𝜒2 statistic to measure how closely

the outcomes predicted by a given model approximate the observed outcomes [93]. We used

three different datasets to measure the performance of the prediction models, including the

R-FSRS. In the first set of experiments, we evaluated each model’s outcomes using the testing

set of the Framingham Dataset 1 (FD1). The FD1 includes all the clinical examinations of

the offspring cohort that satisfied the inclusion criteria but did not participate in the model

training process. The Framingham Dataset 2 (FD2) comprises of the observations that the

R-FSRS used for its development (Table 6.1 - FD2). We carefully split the dataset such that

observations used in the FD2 are only part of the testing set of FD1. As a result, all reported

metrics refer to out-of-sample results. The FD2 does not include any samples from the FD1
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training set. We subsequently compared the performance of the N-SRS with the R-FSRS on

the validation cohort (Table 6.1 - BMC) against the same metric.

6.2.8 The User-Friendly Interface

Leveraging the tree nature of the final N-SRS, we built a dynamic online application as

the user-friendly interface of the algorithms for use by clinical providers (http://www.mit.

edu/~agniorf/files/questionnaire_Cohort2.html). The application is in the form of

an interactive questionnaire. The questions are adaptive corresponding to risk factors; the

subject of each new question depends on the answer to the prior question. When all questions

are answered, the user receives the final risk estimate of stroke for the particular patient.

The software follows the same interface as the POTTER score, which has been already

implemented at the Massachusetts General Hospital, for the estimation of emergency surgery

mortality and morbidity risk, with great success [37]. Due to its format, the application could

be integrated into an EHR environment, pulling the most available variables directly from

the database in an automated fashion. Once integrated into the EHR, the user would only

be required to answer questions that cannot be pulled in automatically. If there is full EHR

automation, the risk would be calculated at once.

6.3 Results

A comprehensive decision-making algorithm was designed, and a user-friendly model, the

N-SRS was created using the training set of FD1; a total of 14,195 clinical examinations (75%)

from the Framingham offspring cohort. Figure 6.1 provides a visualization of our model in a

tree structure. While each node of the tree model reveals important information regarding

the associated risk of patients, it should not be considered in isolation. On the contrary, the

final risk profile of individuals should be based on the full path until the final “leaf” node of

the tree model. Thus, we identify 23 different stroke risk profiles, all of which highlight the

effect that these factors might impose in the risk of stroke while introducing new non-linear
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relationships when combined. Each profile follows a different path of the tree and is affected

only by the risk factors that appear in that path (Figure 6.1).

6.3.1 N-SRS Performance on the Framingham Datasets

Table 6.3 demonstrates the superior performance of the N-SRS compared to the R-FSRS

calculator and other established ML methods in both the FD1 and FD2. Notice, that the

OCT approach is significantly more accurate compared to the R-FSRS approach leading up

to a 15% AUC improvement in FD1 and 9% in FD2 populations, both for male and female.

Moreover, the results indicate equivalent performance with respect to other less interpretable

ML methods (GBT, RF) in the testing set since the absolute difference in the AUC is less than

1%. The Log.Reg models achieve better performance compared to the R-FSRS improving

the out-of-sample discrimination metric by 9.37% and 3.55% in FD1 and FD2 respectively.

Non-linear ML methods, though, demonstrate superior predictive power that is up to 7.81%

(5.06%) higher in the FD1 (FD2) cohorts. The ranking of the methods in terms of downstream

performance remains intact between the two datasets. Similar conclusions are also reflected

on the sensitivity, specificity, precision, negative and positive predictive value metrics.

Most importantly, the N-SRS is able to better estimate the true risk of stroke, at different

levels of risk. Its Hosmer-Lemeshow calibration 𝜒2 statistic is 1.96/2.75 (FD1/FD2) for

8.05/7.3 the N-SRS and R-FSRS respectively. We constructed calibration curves for our

models, where best performance is represented by a slope of 45 degrees. The R-FSRS models

suffered a decline in calibration, especially at medium risk predicted probabilities. The N-SRS

classifier appeared to have the best calibration across all levels. The calibration curves are

depicted in Figure 6.2 for the N-SRS and R-FSRS.

6.3.2 N-SRS Performance on the Validation Cohort

Table 6.4 shows an overview of the results for the N-SRS, R-FSRS, and other ML methods

on the Validation Cohort. The non-linear approach (N-SRS) improves the aggregated stroke

risk AUC by 16.17% for men and 10.59% for women upon the R-FSRS. Similar results are
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A) Framingham Dataset 1 (FD1)

N-SRS R-FSRS
(both genders)

R-FSRS
(men)

R-FSRS
(women) Log.Reg CART Random

Forest GBT

Sensitivity 0.9142 0.8510 0.8461 0.8554 0.8933 0.8802 0.9175 0.9167
Specificity 0.7238 0.6902 0.6890 0.7043 0.7102 0.7099 0.7161 0.7354
Precision 0.9408 0.9620 0.9353 0.9758 0.9701 0.9736 0.9605 0.9412
NPV 0.0592 0.0380 0.0647 0.0242 0.0423 0.0380 0.0863 0.0588
PPV 0.9408 0.9620 0.9353 0.9758 0.9621 0.9736 0.9137 0.9412
AUC 0.8743 0.7374 0.7188 0.7552 0.8065 0.7981 0.8829 0.8846
AUC 95% CI 0.8569-0.9014 0.6976-0.7619 0.6765-0.7636 0.7081-0.8102 0.772-0.8351 0.7676-0.8287 0.8578-0.9081 0.8643-0.9048
calibration 𝜒2 1.96 8.05 11.98 5.44 2.88 3.04 1.43 1.58

B) Framingham Dataset 2 (FD2)

N-SRS R-FSRS
(both genders)

R-FSRS
(men)

R-FSRS
(women) Log. Reg CART Random

Forest GBT

Sensitivity 0.8948 0.8533 0.8605 0.8487 0.8763 0.8504 0.8938 0.8934
Specificity 0.5097 0.4217 0.4066 0.4800 0.4867 0.2505 0.4994 0.5110
Precision 0.9693 0.9617 0.9531 0.9712 0.9688 0.9393 0.9816 0.9700
NPV 0.3973 0.2233 0.2321 0.1933 0.2576 0.1704 0.3804 0.4053
PPV 0.9693 0.9617 0.9531 0.9712 0.9401 0.9486 0.9535 0.9700
AUC 0.8238 0.7488 0.7281 0.7677 0.7754 0.6884 0.8216 0.8260
AUC (95% CI) 0.791-0.8558 0.7145-0.7831 0.6775-0.7788 0.7149-0.8204 0.738-0.8119 0.6435-0.7333 0.7881-0.8536 0.7938-0.8567
calibration 𝜒2 2.75 7.3 12.1 4.1 6.5 20.34 2.81 2.7

Table 6.3: Comparison of the N-SRS, the R-FSRS, and other ML methods performance on
the testing set of the Framingham datasets. Reported metrics include sensitivity, specificity,
precision, negative predictive value (NPV), and positive predictive value (PPV) at the
probability threshold of 0.5. The Table also presents the overall AUC and calibration 𝜒2

results.

also recorded in the ethnicity-specific populations. We notice that both stroke risk scores

are less accurate in the BMC dataset compared to FD1 and FD2 (-7.09% N-SRS, -8.00%

R-FSRS). However, the N-SRS is more robust to other sources of data. Its performance is

less affected compared to the R-FSRS. The performance of other ensemble ML algorithms is

equivalent to the N-SRS providing an edge of 0.8-0.91%. The Log.Reg models improve upon

the R-FSRS by 5.55% but is still weaker than the N-SRS by 3.38%. Table 6.4 shows that the

predictive accuracy of our model remains the same between the Caucasian and the Black

population (74.5%) and gets slightly negatively impacted in the Hispanic population (72.8%).

All other ML models achieve higher performance in the Caucasian sample compared to other

ethnicity sub-populations.

The calibration statistic demonstrates an edge of N-SRS (7.12) over the R-FSRS for

both women (35.98) and men (37.42), following a similar trend to what was shown for the

Framingham datasets. Figure 6.2 shows that the R-FSRS is associated with poor identification

of true risk for groups higher than 30%. In terms of sensitivity and sensitivity, we found that
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the N-SRS model achieved up to 89% and 40%, respectively while R-FSRS achieved 84% and

36.6%.

N-SRS R-FSRS
(both genders)

R-FSRS
(men)

R-FSRS
(women) Log.Reg CART Random

Forest GBT

Sensitivity 0.8986 0.8403 0.8411 0.8396 0.8576 0.8402 0.9055 0.9076
Specificity 0.4019 0.3663 0.3786 0.3565 0.3733 0.3599 0.4078 0.4092
Precision 0.9395 0.9320 0.9329 0.9313 0.9349 0.9348 0.9407 0.9455
NPV 0.2771 0.1815 0.1882 0.1762 0.2026 0.1805 0.2811 0.2818
PPV 0.9395 0.9320 0.9329 0.9313 0.9345 0.9317 0.9421 0.9446
AUC 0.7403 0.6491 0.6246 0.6735 0.7065 0.6829 0.7482 0.7501
AUC (95% CI) 0.7149-0.771 0.6266-0.6716 0.5931-0.6555 0.6411- 0.7058 0.6772-0.7558 0.6484-0.7175 0.7198-0.7801 0.7202-0.7856
calibration 𝜒2 7.12 36.66 37.42 35.98 25.03 35.76 6.67 6.52

Table 6.4: Comparison of the N-SRS, the R-FSRS, and other ML methods performance on
the Validation Cohort. Reported metrics include sensitivity, specificity, precision, negative
predictive value (NPV), and positive predictive value (PPV) at the probability threshold of
0.5. The overall AUC and calibration 𝜒2 results are also presented. The results refer to the
aggregated population.

BMC-White BMC- Black BMC - Hispanic

Model AUC 95% CI AUC 95% CI AUC 95% CI
N-SRS 74.30% 0.7149-0.771 75.80% 0.7345-0.767 72.79% 0.6889-0.7671
R-FSRS (both genders) 64.91% 0.6266-0.6716 64.85% 0.6304-0.6666 61.04% 0.5601-0.6587
R-FSRS (women) 67.35% 0.6411-0.7058 65.22% 0.628-0.6764 61.06% 0.5548-0.6663
R-FSRS (men) 62.46% 0.5931-0.6555 64.49% 0.6181-0.6717 61.01% 0.5621-0.6587
Log.Reg 71.55% 0.6823-0.7402 69.77% 0.6823-0.7402 70.46% 0.6765-0.7359
CART 69.01% 0.6627-0.7134 66.41% 0.6272-0.6609 66.10% 0.6286-0.6934
RF 75.08% 0.7162-0.7855 73.14% 0.7139-0.749 70.80% 0.6807-0.7354
GBT 77.32% 0.7582-0.7881 74.88% 0.7133-0.7842 74.27% 0.7187-0.7667

Table 6.5: Comparison of the N-SRS, and the R-FSRS performance on the Validation
Population using the AUC metric. Detailed results are shown for the main ethnicity groups.

6.4 Discussion

To the best of our knowledge, this is the first validated non-linear, interpretable stroke

risk predictor that outperforms the established R-FSRS, providing additional insightful

information. Overall, our results demonstrate the superior capability that sophisticated

ML methods and data utilization can bring in adverse event prediction when coupled with

data from large population cohorts. In our ever-changing medical landscape, linear models
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that entail an additive effect for each known risk factor do not answer many practical

questions faced by patients. Patients with multiple medical comorbidities may not be

reflected with traditional risk stratification scores such as the FSRS. The N-SRS methodology

has introduced novel risk factors that are associated with stroke incidence. Moreover, a

“one size fits all” approach may not work for a particular patient. Although correlative, the

superior interpretability of the model can allow for better patient education when addressing

risk factor modification strategies.

Khosla et al and colleagues have previously demonstrated the superiority of ML over

cox-hazard methods for stroke prediction with an AUC as high as 0.777 utilization patient

data from 5201 patients from the cardiovascular heart study between 1989-1999. Several

novel risk factors were identified using this methodology including total medications, maximal

inflation level, general health and any ECG abnormality [188]. In contrast to this paper, our

methodology utilized interpretable OCT and utilized a robust data set (the Framingham

heart study) therefore risk factors where more specific (T-wave abnormality on EKG as

compared to “any ECG abnormality) making its utility more relevant.

Other novel ML methods have evaluating stroke risk in specific high-risk populations.

Letham et al., developed and interpretable and accurate model for stroke risk prediction in

patients with atrial fibrillation utilizing the Bayesian Rule List (BRL) model in contrast to

the established linear prediction scores; the CHADS2 and CHA2DS2-VASc risk scores [207].

In this study, claims data from the MarketScan Medicaid Multi-State Database was utilized

to study a patient with diagnosis of atrial fibrillation (one year of observation time prior to

the diagnosis and one year of observation time following the diagnosis) yielding 12,586 patient

with 1786 (14%) suffering a stroke within a year of the atrial fibrillation diagnosis. The BRL

performance had a higher performance by AUC as compared to the CHADS2, CHA2DS2-

VASc and CART methods (0.756 vs. 0.721, 0.677 and 0.704) respectively. However, as known

with claims data and coding, the true interpretability of this methodology is questionable. For

example, the BRL states: “if cerebrovascular disorder then stroke risk 47.8% (44.8%–50.7%)

else if transient ischemic attack then stroke risk 23.8% (19.5%–28.4%) else if occlusion and
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stenosis of carotid artery without infarction then stroke risk is 15.8% (12.2%–19.6%)”. These

terms are non-specific and descriptive at best and do not mean anything from a physician

perspective. The terms transient ischemic attack and occlusion and stenosis of carotid artery

without infarction are both similar clinically, and interchangeable from a coding perspective

and cannot be used to risk stratify adequately.

Primary prevention targeting stroke risk factors have been effective in reducing stroke

morbidity and mortality in generalized populations (46). However, they do not consider

the potential to predict which of the risk factors would affect each individual and lead to

stroke occurrence; a key element in practical disease prevention, targeted therapy and the

most compelling finding of our study. Our approach introduces tree-based decision rules

where the number of variables required to determine the stroke risk profile is not fixed by our

preconceived understanding of comorbidities and attributable risk [58].

The N-SRS model was developed using the Framingham data, a well-established longitu-

dinal data set in contrast to static datasets typically utilized for risk prediction [263]. The

model established several key branching points in the tree that confirm the medical validity

of this model as well as novel points uncovering new medical insights that had not been

evaluated for stroke risk in the past. It also demonstrates the correlation of interplay between

risk factors and weighted relevance they may possess in contrast to the binary effect they

carry.

The model was validated using an external independent cohort comprised of diverse

ethnicities. Our results revealed a superior performance of the N-SRS over the R-FSRS in the

training and validation population for both women and men. Additional experiments show

that other less transparent non-linear algorithms achieve equivalent performance. Logistic

regression models using the same data pre-processing and training sample improve upon the

N-SRS but do not outperform more sophisticated ML methods. We hypothesize that the

performance of the latter is improved compared to the R-FSRS due to the higher sample

size, larger number of features, and the application of an advanced missing data imputation

algorithm. Since the accuracy of the N-SRS was higher and more robust to populations from
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other ethnicities, our model can be generalized with higher degree of confidence compared to

the existing stroke risk score. We believe that the increased accuracy of N-SRS is due to the

introduction of a larger sample size, new risk factors, and new missing data imputation and

binary classification methodologies.

Our proposed way of leveraging the longitudinal study data avoids the induction of bias

in the model due to its clear delineation between the training and the testing population.

We strictly require that observations from the same individual belong in at most one of these

two sets, avoiding potential natural boosts in the downstream performance. Moreover, our

results from the multi-ethnicity validation cohort of the BMC demonstrate that the N-SRS

generalizes better than its predecessor (R-FSRS).

The main benefit of using decision trees over other methods is their interpretability which,

in applications such as healthcare. This attribute is not only essential but often preferred over

the maybe higher accuracy that other, non-interpretable, methods may offer [121]. In our

models, we show that less transparent, “black-box” algorithms have comparable performance

to our suggested model. The latter offers the physician the opportunity to evaluate the

risk profile itself and assess the correlation of risk factors relevant for each patient. It also

addresses concerns related to the transparency and fairness of the model [238].

Known findings that appeared as branching nodes in the N-SRS include patients with

the lowest stroke risk profile being non-diabetic with HDL levels > 39.1 mg/dl and non-

hypertensive with an approximately 1% 10-year stroke risk. In contrast, patients with history

of cardiovascular disease, diabetes and hypertension carry a 90% stroke risk over 10 years

(Figure 6.1). Of note, these modifiable risk factors weigh heaviest and are independent of

other concomitant factors or non-modifiable ones such as age or gender. In fact, the relevance

of gender was only pertinent in a subset of patients with no cardiovascular disease or diabetes

but with hypertension and low HDL levels.

Note that in some cases to characterize the risk of stroke for certain profiles of the

population only three to two variables might be relevant. For people with no history

of cardiovascular disease and diabetes, smoking affects dramatically their risk projection
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increasing the overall stroke score from 29.73% to 82.66% (Figure 6.3). We notice also that

for patients with prior history of cardiovascular disease diabetes is the defining factor of their

stroke risk increasing it to 71.05% from 31.95% (Figure 6.3). The presence or absence of any

other risk factor does not influence the overall prediction of the ML algorithm.

An illustration of novel findings includes the relevance of T-wave abnormality on ECG

and hematocrit levels in a patient’s 10-year stroke risk profile. For example, the association

of major and minor ST-T wave abnormalities on ECG and associated stroke risk has been

previously evaluated in a small cohort of Japanese patients but found to be only relevant

in men with minor ST changes and both genders for major ST changes based on the small

sample size. Furthermore, stroke risk was reduced after adjusting for hypertension [253].

Therefore, the applicability is minimal in evaluating preventative strategies and guiding

patient education or intervention. In the N-SRS model, T wave abnormalities were pertinent

in some scenarios. A characteristic case refers to patients with history of cardiovascular

disease, non-diabetic, with 0-1 MI events, and HCT levels of <38.2% where the 10-year stroke

risk changes from 32% to 65% in the absence or presence of T-wave abnormalities respectively

(Figure 6.3).

Such assessments of risk factors and their respective weighted relevance could not be

established by linear methodologies and can explain innumerable circumstances where patients

may have or lack traditional risk factors and either develop strokes or not. This is the key to

personalizing a customized approach to primary prevention.

For instance, the N-SRS shows that the 10-year stroke risk is actually dramatically

impacted by smoking changing from 5% to 77.5%. If this patient was not hypertensive in the

first place, her 10-year stroke risk would be 2.5% and smoking would not drive this number

(Figure 6.3). This validated risk prediction can highly impact the patient and provider

understanding of stroke risk factor associated with incidence for effective guided counseling

given the precious resources and time available to practitioners and patients.

Although this is the first validated interpretable ML model applied to stroke for 10-year

risk prediction, similar applications in other disease entities provided insights obscured by
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traditional linear methodology and therefore influence personalized care. Bertsimas and

colleagues recently evaluated outcomes of 13 different medication regimen therapies in over

10,000 patients with type 2 diabetes and predicted change in target glycated hemoglobin A1c

levels [29]. In this model, patients where a suggested change in therapy based on the machine

algorithm was made, a predicted reduction by close to 0.5% points in Ac1c was observed.

Similar mortality and morbidity risk calculators have also been introduced in the areas of

elective surgery, oncology, and transplantation with great success [36, 37, 39]. Such ML-based

algorithms can drive personalized medicine and influence outcomes.

We have created an interactive web-based interface through a series of short specific yes

and no questions to improve efficiency and usability of the N-SRS decision-tree (Figure 6.4).

A user’s answer to the first question will dictate what the next grouping the results into 23

categories of risk profiles. Each interaction with the application corresponds to a unique

decision-tree node and is based on the specific patient characteristics.

As a second phase of this study, we intend to prospectively follow a patient population

in the primary care setting utilizing the N-SRS to guide preventative strategy. In this

prospective study, we will not only be able to study real-time prospective stroke risk, but also

a completely novel experience of personalized stroke risk assessment care and intervention.

This has not been effectively studied in patients at risk for cerebrovascular disease and opens

many potential possibilities for other cerebrovascular diseases other than stroke.

Limitations

The key limitation of our model is the use of input data solely from the FHS which is a

predominantly Caucausian population. Moreover, there is potentially lack of generalizability

to populations from other geographic regions in the United States as well as internationally,

and socioeconomically different populations from those of the FHS or BMC. Even though we

validate our results in a multi-ethnicity population, we believe that we will need to retrain

our algorithm with data from other longitudinal studies and not only EHR.

The validation population is based solely on hospital records and as a result it tends to
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be sicker than the Framingham cohort. Each observation corresponds to a unique patient

visit. Thus, the presence of a patient in the data set is mostly correlated with how detailed

was the clinical examination during the visit and if there was any family or personal history

recorded in the past at the same clinic.

In addition, we would like to stress that our data is not independent and identically

distributed. However, we believe that no bias has been introduced in the training process

since both the accuracy and the calibration of the N-SRS is significantly higher than the

R-FSRS in both the Framingham 2 dataset and the validation cohort from BMC. Another

limitation refers to causality between the variables and the outcomes, which is still not proven

despite the high degree of association connectivity between the two. The performance of

N-SRS has not been directly compared to other stroke risk functions, such as the CHADS2 or

the CHA2DS2-VASc score for atrial fibrillation stroke risk [136]. Future work could leverage

other validation populations to relate the N-SRS predictive performance with these studies.

We also acknowledge prospective validation of this model would outperform validation

of blinded data sets, and provide insights beyond performance such as adoption among

healthcare providers, interpretability for patients and effects on primary prevention strategies

and counseling. A prospective trial design is currently under evaluation.

6.5 Conclusions

We have developed N-SRS, an accurate stroke risk calculator that outperforms, in accuracy

and user-friendliness, the existing stroke risk prediction tool. N-SRS might prove useful as an

evidence-based, adaptive, and interactive risk calculator tool for primary prevention of stroke.

Further studies are needed to explore the ability of N-SRS to predict the occurrence of stroke

in other populations. Future work will focus on defining the N-SRS risk levels that warrant

therapeutic treatment for primary stroke prevention similar to that available for the primary

atherosclerotic cardiovascular disease prevention.

256



Figure 6.1: A visualization of the N-SRS tree-based model.
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(a) Framingham Dataset 1 (FD1) (b) Framingham Dataset 2 (FD2)

(c) Validation Cohort (BMC-Aggregated)

Figure 6.2: Calibration plots for all models on the Derivation and Validation Cohorts. The
plots show the relation between the true class of the samples and the predicted probabilities.
Samples were binned to their class probabilities generated by the model. The following
intervals were defined: [0,10%], (10,20%], (20,30%], . . . (90,100%]. The event rate for each
bin was subsequently identified. For example, if 4 out of 5 samples falling into the last bin are
actual events, then the event rate for that bin would be 80%. The calibration plot displays
the bin mid-points on the x-axis and the event rate on the y-axis. Ideally, the event rate
should be reflected as a 45 degrees line.

258



Figure 6.3: Deep-dives in insightful risk profiles of the N-SRS model.
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Figure 6.4: An example illustrating the user-friendly interface of N-SRS. Due to its interactive
nature the answer to a question dictates the next question. In this specific example, depending
on whether the provider answer yes to no to the question regarding CVD, the algorithm and
the questions take a different direction.
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Chapter 7

Natural Language Processing

Techniques for Stroke Identification

from Radiology Reports

Accurate, automated extraction of clinical stroke information from unstructured text has

several important applications. ICD-9/10 codes can misclassify ischemic stroke events and do

not distinguish acuity or location. Expeditious, accurate data extraction could provide con-

siderable improvement in identifying stroke in large datasets, triaging critical clinical reports,

and quality improvement efforts. In this study, we developed and report a comprehensive

framework studying the performance of simple and complex stroke-specific NLP and ML

methods to determine presence, location, and acuity of ischemic stroke from radiographic

text. We collected 60,564 Computed Tomography (CT) and Magnetic Resonance Imaging

(MRI) Radiology reports from 17,864 patients from two large academic medical centers.

We used standard techniques to featurize unstructured text and developed neurovascular

specific word GloVe embeddings. We trained various binary classification algorithms to

identify stroke presence, location, and acuity using 75% of 1,359 expert-labeled reports. We

validated our methods internally on the remaining 25% of reports and externally on 500

radiology reports from an entirely separate academic institution. In our internal population,
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GloVe word embeddings paired with deep learning (Recurrent Neural Networks (RNN))

had the best discrimination of all methods for our three tasks (AUCs of 0.96, 0.98, 0.93

respectively). Simpler NLP approaches (Bag of Words) performed best with interpretable

algorithms (Logistic Regression) for identifying ischemic stroke (AUC of 0.95), MCA location

(AUC 0.96), and acuity (AUC of 0.90). Similarly, GloVe and RNN (AUC 0.92, 0.89, 0.93)

generalized better in our external test set than Bag of Words (BOW) and Logistic Regression

for stroke presence, location and acuity, respectively (AUC 0.89, 0.86, 0.80). Our study

demonstrates a comprehensive assessment of NLP techniques for unstructured radiographic

text. Our findings are suggestive that NLP/ML methods can be used to discriminate stroke

features from large data cohorts for both clinical and research-related investigations.

7.1 Introduction

Radiographic findings on head CT or MRI are frequently used to support or confirm the

diagnosis of ischemic stroke in clinical practice. Radiologists interpret images in narrative

reports that detail stroke occurrence and other pertinent information including acuity, location,

size and other incidental findings. Because of their unstructured nature, radiology reports

do not make it easy to employ these information-rich data sources for either large-scale,

retrospective review, or for real-time identification of stroke in the clinical workflow. The

ability to automate the extraction of meaningful data from radiology reports would enable

quick and accurate identification of strokes and relevant features such as location and acuity.

Such a system could help clinicians triage critical reports, target patients eligible for time-

sensitive interventions or outpatient follow up, and identify populations of interest for research

[369].

NLP is a field that spans multiple scientific disciplines including linguistics, computer

science, and artificial intelligence. The main objective of NLP is to develop and apply

algorithms that can process and analyze unstructured language. A distinctive subfield of NLP

focuses on the extraction of meaningful data from narrative text using ML methods [225]. ML-

based NLP involves two steps: text featurization and classification. Text featurization converts

262



narrative text into structured data. Examples of text featurization methods include BOW,

Term Frequency-Inverse Document Frequency (TF-IDF) and word embeddings [225, 270].

Word embedding methods, including Word2Vec and GloVe [270, 267, 235], learn a distributed

representation for words. The result of these methods is a numerical representation of text

that can be subsequently used for myriad applications. One particular medical application

of these methods is the classification of salient findings from unstructured radiographic

reports. After converting language into relevant binary or continuous features through text

featurization, supervised classification models can separate reports into desired categories

(i.e. presence or absence of acute middle cerebral artery stroke). These models are trained

on a portion of the cohort, and then tested on unseen data to determine how accurately

they classify observations. Previous efforts to automate diagnoses from radiologic text have

resulted in algorithms that can identify pneumonia, breast cancer, and critical head CT

findings [369, 270]. Specifically, Zech and colleagues found that simpler featurization and

classification techniques perform comparably to more sophisticated deep learning approaches

in identifying binary critical head CT classifiers (i.e. critical v. non critical; ischemia v.

no ischemia) [369]. However, clinicians and radiologists use diverse language patterns to

characterize stroke features. For instance, “subacute” is a relative term and can describe

strokes that occurred anywhere from hours to months prior to the diagnostic study. Specific

descriptions of ischemia on head CTs (i.e. hypodensities or sulcal effacement) or MRIs

(decreased Apparent Diffusion Coefficient (ADC)) provide clinicians with more context that

allows them to infer timing, severity and likely diagnosis.

We hypothesized that simpler NLP featurization approaches that rely on counting how

many times a relevant word occurred in text, like BOW or TF-IDF, may not sufficiently

capture the language describing stroke features. Word-embedding approaches that account

for word relationships might better identify characteristics of interest. In this study, we

aimed to: 1) expand the application of NLP to identify both the presence of ischemia and

relevant characteristics including location subtype, and acuity; and 2) compare whether a

neurovascular-tailored NLP featurization algorithm (GloVe) outperforms simpler methods
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(BOW, TF-IDF) in identifying key qualifying characteristics.

7.2 Methods

7.2.1 Study Population

We collected 60,564 radiology reports consisting of head CT, or CT Angiography (CTA)

studies, brain MRI, or MR Angiography (MRA) studies from a cohort of 17,864 patients

over 18 with ICD-9 diagnosis codes of ischemic stroke (433.01, 433.11, 433.21, 433.31, 433.81,

433.91, 434.01, 434.11, 434.91 and 436) from 2003-2018 from the Research Patient Data

Registry (RPDR), at Massachusetts General and Brigham and Women’s Hospitals [179].

We chose these four imaging modalities because a generalizable algorithm that identifies

stroke characteristics from multiple imaging report subtypes would have greater practical

application. We externally validated our best performing classification methods on 500

radiographic reports from 424 patients who were admitted to Boston Medical Center between

2016-2018. Boston Medical Center is the largest safety-net hospital in New England, and

thus has a markedly different racial-ethnic and socioeconomic population than our training

cohort. The Partners Human Research Committee and Boston Medical Center local IRBs

approved this study.

7.2.2 Manual Radiographic Report Labeling

1,359 original radiology reports from 297 patients (883 Head CTs or CTAs, 476 MRIs or

MRAs) were hand-labeled by study team members trained by attending physicians and/or

senior staff members. Each report included the text, type of scan (CT, MRI, CTA, or MRA),

date, and report time. Reports were distributed randomly among the labelers. Each reporter

independently labeled 1) the presence or absence of ischemic stroke, 2) middle cerebral artery

(MCA) territory involvement, and 3) stroke acuity. Stroke occurrence, acuity, and MCA

location were classified as either present or absent. Labelers identified “stroke” if the report

definitively reported a diagnosis of ischemic stroke or if ischemic stroke was determined as
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probable by the labeler based on the radiology report text. A stroke was labeled as acute if:

the reporting radiologist reported it as acute in their report, diffusion restriction or apparent

diffusion coefficient hypointensity without T2 prolongation was mentioned on MRI report, or

it was interpreted as having occurred within the last 7-10 days. MCA stroke location was

defined as a reported MCA territory or thrombus in MCA with corresponding symptoms

in the history section of report. We focused on the identification of MCA stroke as this

stroke subtype is particularly clinically actionable via thrombectomy and at high risk for

stroke sequelae including edema and hemorrhagic transformation. Study data were collected

and managed using a Research Electronic Data Capture (REDCap) electronic database

[160]. Each report was separately labeled twice. Any discrepancies between the two labels

were reviewed by attending neurologists CJO or SS. If labelers felt that identification of

stroke occurrence or characteristics were indeterminate, they were labeled as absent. A

board-eligible Attending Neurocritical Care physician (CJO) conducted a blinded analysis,

and then adjudicated 300 radiology reports by review of images. In an assessment of 10% of

the final reports labels from both the derivation and external cohorts by a trained physician

and labeler (HS), percent agreement for stroke presence, MCA location, and acuity were 91%,

87%, and 93%, respectively, suggesting good to excellent inter-rater reliability. Additionally,

a board-certified Neurologist and Neurointensivist (CJO) assessed the percent agreement of

300 reports and raw images. She found percent agreement for presence of ischemic stroke,

MCA location, and acuity were 97%, 95%, and 98%, respectively. The most common cause

for discrepancies resolved upon adjudication included small chronic strokes, strokes referred

to in the report that were only identified on a prior scan, or subtle early changes that were

consistent with symptoms listed in the report and available to the radiologist.

7.2.3 Text Preprocessing and Featurization

To remove basic non-uniformities in unstructured text data, we used the following steps to

preprocess radiology reports for further analysis.

1. We removed any incomplete reports, header text (i.e. patient or visit information,
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procedure details), non-diagnostic standardized language (i.e. names or electronic

provider signatures), non-narrative text including “======”.

2. We converted commonly used word groups, “word tokens”, to “n-grams”, or a single

word group unit without spaces. For example, middle cerebral artery was converted to:

“middlecerebralartery”.

3. We standardized all whitespace, removed punctuation and converted all text to lower-

case.

After preprocessing, narrative text was “featurized” to convert unstructured data into

classifiable, numeric information for a ML algorithm [224, 144]. We compared simple

traditional text featurization methods (BOW, TF-IDF) with a recent word embedding

technique trained on neurology-specific text. The specific featurization techniques used in

our analysis are detailed below:

1. Bag of Words (BOW): Bag of words is the simplest model for text featurization,

disregarding context, semantic proximity and grammar. Each word, or grouping of

words (n-gram) in the main corpus/body of the text is considered a distinct feature.

The value of each feature corresponds to the number of times a word was found in a

given report.

2. Term Frequency-Inverse Document Frequency (TF-IDF): The term frequency-inverse

document frequency method (TF-IDF) re-weights document features based on the

relative importance of the word in the text [225]. Weighting of words is positively

correlated to the number of times a word appears in a given document, but is offset by

frequency in the training corpus.

3. Global Vectors for Word Representation (GloVe): GloVe is a word-embedding method

that quantifies how often pairs of words co-occur in some window in a given text, since

these frequencies are likely to have semantic meaning [267]. For example, the pairs of

terms “ice”-“solid” and “steam”-“gas” co-occur much more frequently than pairs “ice”-“gas”

and “steam”-“solid.” Exact frequencies depend on the specific training set GloVe uses.

266



7.2.4 Radiologic Stroke Featurization Training Corpus for GloVe

Since standard widely available text corpora do not provide frequent exposure to our concepts

of interest (i.e. ischemic stroke), and more specifically the likely co-occurrence of word

pairs relevant to stroke, we developed a neurovascular specific corpus to train our GloVe

featurization algorithm, including:

1. The complete set of neurology articles on UpToDateTM, to capture general neurologically

focused medical language [130].

2. Stroke, Pathophysiology Diagnosis and Management, to capture stroke-specific language

[233].

3. Yousem’s Neuroradiology: The Requisites, to capture neuroradiology specific language

[368].

4. A random sample of 10,000 radiology reports from 2010-2017, separate to our testing

and training set, to capture language specific to radiology reports of all types.

This training resulted in the first neuroradiology specific set of vector representations, which

we made available for other clinical NLP applications and can be found at this link: http:

//www.mit.edu/~agniorf/files/Glove_Neurology_Embeddings.csv. Our GloVe model

parameters included word vector dimension of 100, number of iterations of 50, a window size

of 10, and a learning rate of 0.05.

7.2.5 Report Classification

To classify the radiology reports for our three outcomes of interest 1) presence of stroke, 2)

stroke location (MCA territory), and 3) stroke acuity, we created predictive models using

logistic regression, 𝑘-NN, CART, OCT with and without hyperplanes (OCT-H), RF, and

RNN [161, 82, 56, 27, 34, 55, 196]. Our analysis leverages a wide range of traditional state-of-

the-art algorithms including linear regression, tree-based, ensemble, and Neural Networks

(NN) models. The choice of RNN among the various types of NN structures was based on prior
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research in the NLP field that indicated superior performance when applied to sequential text

[196, 367]. RNN coupled with LSTM gates allow for back propagation of information, and thus

are able to leverage the order of words in the text [164]. In the derivation cohort, we reported

results across a comprehensive combination of all text featurization and predictive techniques

outlined above. We performed further external validation using 500 “unseen” reports from an

additional medical center, leveraging our two combinations of text featurization techniques

and binary classification algorithms. Specifically, we report the performance of interpretable,

simple models that use Logistic Regression with BOW and the more complex RNN models

coupled with neurology-specific GloVe embeddings.

For validation of our models, we used a grid search and 10-fold cross-validation to select

the appropriate values of tuning parameters for all binary classification algorithms. Our

parameters for model development included the selection of the regularization term 𝜆, using

a maximum of 1000 iterations and a tolerance threshold of 0.01 for logistic regression and the

k parameter for the k-NN algorithm from the range of [5, 10, 15, 20]. We selected minimum

bucket and maximum depth parameters for tree-based methods across a range of 1-10, and

used AUC, entropy, gini, and misclassification accuracy to refine and select the final model.

The maximum number of greedy trees for RF was set to 200. Our RNN model used an LSTM

network with two hidden layers, including a layer of sentence vectors, and a second layer in

which the relations of sentences are encoded in document representation [281].

We trained our models on 75% of the original cohort of 1,359 reports and tested on

a withheld test set of 25% for internal validation. For our derivation cohort, we used

bootstrapping to randomly split the data five times into training and testing sets. The

entire external validation cohort was tested across all five splits of the data. To evaluate

model performance on both cohorts, we compared discrimination by reporting the AUC with

confidence intervals. We also reported sensitivities, specificities, accuracy, precision, and

recall. In the derivation cohort for each prediction task, we report the latter metrics only for

the best performing method (GloVe/RNN). For both the internal and external validations,

we prioritized sensitivity, and chose a threshold in which sensitivity of >90% produced the
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highest specificity. For each outcome on our derivation cohort, we evaluated the models’

calibration using calibration curves. Moreover, we selected the two best performing classifiers

and compared them using the McNemar test [97]. A 2-sided P-value of 0.05 was considered

significant. Similar to other NLP studies, we used this test to validate the hypothesis that

the two predictive models are equivalent [330]. We report the average performance across all

five partitions of the data for each evaluation criterion. Confidence intervals were calculated

for the bootstrapped results.

7.3 Results

Of 1,359 hand-labeled reports from 297 patients in the derivation cohort, 925 had ischemic

strokes, 350 were labeled as “MCA territory” and 522 were labeled as acute. 129 patients

were female (43%), and median age at report time was 68 years [IQR 55,79]. In the validation

cohort, 500 reports were used from 424 patients with a median age of 69 [IQR 59,79] at

report time. The sample included 192 female patients (45%). After labeling, 266 reports

were classified as strokes, 90 as “MCA territory” and 106 were characterized as acute.

We compared performance of multiple text featurization and classification methods to

classify our outcomes of interest. For stroke, MCA location, and acuity, we observed best

discrimination using our developed GloVe word embedding and RNN classifier algorithm

with AUC values of 0.961, 0.976, and 0.925 respectively (Table 7.1).
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Stroke

Average AUC
(95% CI)

Logistic
Regression k-NN CART OCT OCT-H RF RNN

BOW
0.951

(0.943:0.959)

0.808

(0.767:0.848)

0.889

(0.868:0.91)

0.805

(0.774:0.836)

0.915

(0.899:0.92)

0.922

(0.902:0.942)

0.838

(0.811:0.866)

TF-IDF
0.939

(0.933:0.945)

0.857

(0.825:0.889)

0.883

(0.859:0.907)

0.813

(0.801:0.825)

0.894

(0.853:0.906)

0.929

(0.909:0.948)

0.843

(0.816:0.869)

GloVe
0.904

(0.889:0.918)

0.867

(0.836:0.898)

0.734

(0.703:0.765)

0.722

(0.69:0.753)

0.767

(0.775:0.834)

0.892

(0.868:0.916)

0.961

(0.955:0.967)

Location

Average AUC
(95% CI)

Logistic
Regression k-NN CART OCT OCT-H RF RNN

BOW
0.959

(0.944:0.974)

0.841

(0.816:0.867)

0.949

(0.93:0.969)

0.867

(0.838:0.896)

0.937

(0.919:0.955)

0.96

(0.943:0.978)

0.896

(0.873:0.926)

TF-IDF
0.962

(0.943:0.981)

0.903

(0.873:0.933)

0.944

(0.918:0.97)

0.862

(0.828:0.896)

0.934

(0.917:0.951)

0.965

(0.947:0.983)

0.956

(0.936:0.977)

GloVe
0.906

(0.884:0.927)

0.843

(0.819:0.868)

0.734

(0.677:0.791)

0.699

(0.662:0.722)

0.809

(0.787:0.83)

0.873

(0.854:0.892)

0.976

(0.968:0.983)

Acuity

Average AUC
(95% CI)

Logistic
Regression k-NN CART OCT OCT-H RF RNN

BOW
0.898

(0.874:0.922)

0.815

(0.775:0.854)

0.797

(0.748:0.846)

0.735

(0.705:0.764)

0.797

(0.742:0.852)

0.901

(0.883:0.919)

0.754

(0.733:0.779)

TF-IDF
0.893

(0.865:0.921)

0.857

(0.826:0.888)

0.801

(0.762:0.839)

0.733

(0.703:0.764)

0.807

(0.764:0.843)

0.902

(0.876:0.923)

0.899

(0.875:0.922)

GloVe
0.881

(0.842:0.92)

0.842

(0.805:0.879)

0.73

(0.684:0.776)

0.719

(0.66:0.778)

0.82

(0.766:0.873)

0.866

(0.824:0.908)

0.925

(0.894:0.955)

Table 7.1: Average AUC Performance across five splits of the data for Natural Language
Processing and Classification Methods Considered on the Derivation Cohort.

For simpler tasks, like the identification of stroke, Logistic Regression combined with

BOW performed comparably to more complex word embedding methods (AUC of 0.951 with

Logistic Regression/BOW vs. AUC of 0.961 with GloVe/RNN). However, the difference in

discrimination was larger for more nuanced features like acuity (AUC of 0.898 for Logistic

Regression/BOW vs. 0.925 for GloVe/RNN). The word embedding approach did not perform

as well when paired with logistic regression or single-decision tree methods (Table 7.1).
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Receiver Operator Curves (ROCs) are included in Figure 7.1. We constructed calibration

curves for our models, where best performance is represented by a slope of 45 degrees, and the

three best classifiers are included in Figure 7.2. RF classifiers suffered a decline in calibration,

especially in the MCA location task at high predicted probabilities. GloVe/RNN methods

appeared to have the best calibration across tasks.

Outcome Sensitivity Specificity Accuracy Precision Threshold

Stroke 0.902 0.872 0.892 0.935 0.69
MCA Location 0.902 0.911 0.908 0.766 0.42
Acuity 0.911 0.689 0.772 0.935 0.33

Table 7.2: Sensitivity, Specificity, Accuracy and Precision for GloVe Models combined with
RNN.

In terms of accuracy, (the fraction of reports from both positive and negative classes that

are correctly classified), we found that GloVe/RNN models achieved up to 89 and 91% for

stroke presence and MCA location, respectively. Corresponding sensitivities and specificities

were both high (0.90 and 0.87 for stroke presence) and (0.90 and 0.91 for MCA location).

For the acuity task, while we prioritized sensitivity (0.91), accuracy was less (0.77), reflecting

the greater difficulty of this classification (Table 7.2).

Finally, we used McNemar’s test to compare our best performing GloVe model with the

best performing simpler NLP model for each task. Specifically, we compared GloVe/RNN

with the second-best performing combination of supervised learning and text featurization

technique. For the presence of stroke task, Logistic Regression coupled with BOW had a 𝜒2

value of 4.79 (p=0.056). For both the location and acuity outcome, we used the models of

TF-IDF/RF and showed that both had equivalent performances, 14.78 (p=0.023) and 26.74

(p=0.031) respectively.

In our external validation cohort, we tested our most sophisticated (GloVe/RNN) and

the simplest (BOW/Logistic Regression) methods. We found that BOW/Logistic Regression

(AUCs 0.89, 0.86 and 0.80 respectively for stroke, location, acuity) did not generalize as well

as GloVe/RNN (AUC 0.92, 0.89, 0.93) in the external population (Table 3). We continued to
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prioritize sensitivities in the external validation population for GloVe/RNN (0.90-0.92), and

specificities were decreased for stroke and MCA location (0.75, 0.70) compared to the internal

validation population (0.87, 0.91). Specificities remained the same (0.69) for the acuity task.

Method Stroke Location Acuity

BOW+Log.Reg 0.892 (0.875:0.91) 0.857 (0.845:0.869) 0.797 (0.768:0.828)
GloVe+RNN 0.920 (0.908:0.932) 0.893 (0.88:0.905) 0.925 (0.906:0.946)

Table 7.3: Average AUC metric across all five splits of the data on the Validation Cohort
across all outcomes for BOW with Logistic Regression and RNN with GloVe.

7.4 Discussion

Accurate automated information extraction will be increasingly important as more medical

researchers, hospital systems, and academic institutions leverage “big data” from electronic

medical records. Unlike structured, discrete data like laboratory values or diagnoses codes,

unstructured text is challenging to analyze. However, clinicians frequently record essential

observations, interpretations, and assessments that are otherwise absent from the remainder

of the medical record. In order to fully leverage our ability to access such data through the

medical record, we must have validated methods to extract meaningful information. Specific

to radiology reports, there are several important applications of accurate automated extraction

of information through NLP. Automatic, real-time identification of specific subpopulations

(such as patients with acute MCA stroke) can improve clinical workflow and management by

triaging eligible patients to timely treatments or higher levels of care [270]. NLP approaches

Outcome Sensitivity Specificity Accuracy Precision Threshold

Stroke 0.915 0.752 0.828 0.764 0.3
MCA Location 0.898 0.7 0.862 0.932 0.85

Acuity 0.914 0.689 0.866 0.916 0.9

Table 7.4: Sensitivity, Specificity, Accuracy and Precision for GloVe Models combined with
RNN on the BMC Validation Cohort.
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can facilitate research by identifying both populations (i.e. patients with stroke, tumor or

aneurysms) and outcomes (i.e. presence of hemorrhagic conversion or edema) more feasibly

than manual review, and potentially more accurately than billing codes. Indeed, of our 1,359

radiographic reports derived from patients with billing codes of stroke, only 925 (68%) had a

radiographically reported ischemic stroke, which raises the question as to whether NLP can

assist in improving diagnostic classification. In this study, we developed a comprehensive

framework to create a vector-based NLP method specifically targeted to identify stroke

features from unstructured text. We then tested the ability of multiple ML methods to

classify specific stroke features and compared performance. We designed our study to identify

these three tasks separately as opposed to a single task (“acute middle cerebral artery stroke”)

because our objective was to create an NLP identification system that can be expanded to

multiple stroke types in the future.

We found that NLP methods perform well at extracting featurized information from

radiology reports (AUCs >0.9 for all three tasks). True to our hypothesis, word-embedding

methods like GloVe improved overall accuracy of feature identification, especially when paired

with deep learning methods like RNN, which are less interpretable (harder to distinguish

features contributing to performance) than simpler classification algorithms like logistic

regression or single-decision trees. However, RNN’s have been particularly successful in NLP

applications, where the sequence of words in the text can crucially alter the overall meaning

of the corpus [144]. Because the field of NLP is rapidly expanding, variations of featurization

methods are used and trialed for different purposes. We chose to use BOW, TF-IDF and

GloVe because they were representative of the simplest, the most frequently used, or an

innovative word-embedding approach that better captures semantic meaning, respectively.

We acknowledge that there are various widely accepted word embedding techniques, such

as Word2Vec, the Distributed memory (DM)-document vector (DV) model, the continuous bag

of words (cBOW) model, the continuous skip-gram (CSG) model, and FastText [369, 235, 181].

Recently, investigators also proposed a hybrid method, called Intelligent Word Embedding

(IWE), that combines semantic-dictionary mapping and a neural embedding technique
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for creating context-aware dense vector representation of free-text clinical narratives [17].

However, our aim was to demonstrate whether a neurology-specific embedding model could

improve upon simpler techniques that do not consider context and semantic meaning in their

word representations. Given the significant computational resources required for the creation

of the embeddings and prior research demonstrating equivalence between the algorithms’

objectives, we limited our analysis to one word embedding technique [313]. We chose to use

GloVe because this approach outperformed other word-embedding methods, and has been

shown to do so with smaller training sets, which is important when considering how our

contributions may be applied to other investigators for research and/or clinical use [267].

This investigation is part of a wider literature that employs deep learning in clinical

NLP [360]. In this study, we employ a specific RNN structure that had been previously and

successfully used in combination with GloVe embeddings [196]. An increasing number of deep

learning structures are being employed in similar applications such as autoencoders [211, 205],

deep belief networks [213], memory residual NN [300], and attention mechanisms like BERT

[95]. Future research directions could focus on leveraging these other NLP structures with

neurology-specific embeddings and comparing their performance.

Our work is consistent with other studies reporting simple methods like BOW are suitable

for extracting unstructured text information. One group found that BOW paired with lasso

logistic regression had high performance (AUCs of >0.95) for critical head CT findings

[369]. Kim and colleagues’ found that a single decision tree outperformed more complicated

support vector machines in identifying acute ischemic stroke on MRIs [189]. Garg and

colleagues used various ML methods to classify stroke subtype from radiology reports and

other unstructured data [137]. They achieved a kappa of 0.25 using radiology reports alone,

which improved to 0.57 when they used combined data. In our study, our GloVe embedded

vector approach was specifically tailored for the detection of vascular neurologic disorders,

and outperformed other methods in correctly classifying stroke acuity, particularly when

paired with a neural network structure. Additional analysis also demonstrated that general

purpose embeddings such as the ones trained only on Wikipedia provide significantly lower
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performance. Namely, an RNN classifier achieved 0.74 (0.70:0.75) AUC for presence, 0.75

(0.72:0.79) AUC for location, and 0.693 (0.61:0.73) AUC for acuity of stroke - a decrease of

at least 0.2 in discriminatory performance compared to our proposed embeddings. These

results emphasize the need for radiographic-specific word representations that capture the

semantic relations of medical vocabulary. Because RNNs account for word order, we expect

these methods will be increasingly used for accurate natural language processing of medical

text data.

Limitations: There are several important limitations to our work. Similar to other studies,

our radiology corpus consisted of reports from only two hospitals, which may reduce our

generalizability in other systems. Also, the use of both CT and MRI reports increases

heterogeneity for model development; however, given the finite number of ways in which

reports describes stroke characteristics regardless of imaging modality, we sought to test a

method that could be widely applied to radiographic text.

Strengths and Future Directions: Strengths of our study include the development

of a tailored word-embedding approach to vascular neurologic disorders, the development

of multiple models testing the optimal combination of NLP and classification algorithms,

generalizability to both CT scans and MRIs, its external validation in a racial-ethnic and socio-

economically diverse cohort, and the ability to expand this framework to additional stroke

characteristics (increased locations, hemorrhagic conversion). While our word-embedding

approach was specifically tailored to neurovascular disorders, similar approaches could be

used to generate word vectors for other disease states, including oncology and cardiology.

Moreover, while our data extraction of unstructured text focused on radiology reports, further

work in this area could assist in the retrieval of essential information in progress notes, and

interrogation of discrepancies in the medical record that result from “copy/paste”. As we

gather more electronic data on patients, easy information retrieval will become increasingly

important as a strategy to scale research and improve quality.
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Figure 7.1: Receiver Operating Curves for NLP classification. A, stroke presence; B, MCA
location; C, acuity. We present the average the mean sensitivity and specificity over five
random splits of the data.
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7.5 Conclusions

Automated ML methods can extract diagnosis, location and acuity of stroke with high

accuracy. Word-embedding approaches and RNNs achieved the best performance in correct

classification of stroke and stroke characteristics. Our results provide a framework for

expeditiously identifying salient stroke features from radiology text that can triage high-risk

imaging findings and identify patient populations of interest for research. Future directions

include improving performance through the study of hybrid rule-based and ML methods.

Work in this area is particularly important as accurate, accessible methods to automate data

extraction will become increasingly relevant for academic, tertiary, and non-tertiary centers

who aim to improve clinical, administrative, and quality care.
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Figure 7.2: Calibration Curves for NLP classification. We binned the samples according to
their class probabilities generated by the model. We defined the following intervals: [0,10%],
(10,20%], (20,30%], . . . (90,100%]. We subsequently identified the event rate of each bin. The
calibration plot displays the bin mid-points on the x-axis and the event rate on the y-axis.
Ideally, the event rate should be reflected as a 45 degree line. We present the average the
mean sensitivity and specificity over five random splits of the data. We show results of the
three best performing methods in each task.
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Part III

Algorithmic Insurance
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Chapter 8

The Cost of Algorithmic Risk

As ML algorithms start to get integrated into the decision-making process of companies

and organizations, insurance products will be developed to protect their owners from risk.

We introduce a quantitative framework for insurance companies and ML modelers to price

the risk of these products. Using properties of the model, such as accuracy, interpretability,

generalizability and robustness, we provide a mathematical formulation for the model’s

financial evaluation. We present a case study of medical malpractice in the context of breast

cancer detection where we estimate the risk exposure of a binary classifier.

8.1 Introduction

Data-driven analytical models and ML algorithms have started transforming large facets of

the economy, becoming the driver of innovation in digital marketing, self-driving cars and

medical imaging, among others. While the use of Artificial Intelligence (AI) expands across

all segments of society, algorithms are expected to replace human judgement in many cases

[78]. However, there is still a lot of resistance in employing these tools in practice as different

types of concerns are emerging about algorithmic decision-making [69]. Dietvorst et al. (2015)

defined this phenomenon as algorithm aversion, identifying a wide range factors, including

ethical issues, related to the use of algorithms that are not resolved yet [98, 99]. One of the
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persistent challenges related to the implementation of ML models in practice is centered

around the question of responsibility in case of erroneous algorithmic decisions making [320].

This is not the first time that modern societies are called to face such dilemmas. Equivalent

situations haven gained spotlight in the past, such as when cars became accessible to the

broader consumer audience in urban areas after World War I. By that time, motor vehicles

had become fast and less expensive and manufacturers were expecting an increasing portion of

society to enter the market. Nevertheless, the vast majority of households were still reluctant

to adopt the technology as it could entail disproportionately high financial risks. In the

absence of insurance policies, injured victims would seldom get any compensation in an

accident, and drivers often faced considerable costs for damage to their car and property.

To ensure that all vehicle owners and drivers can be protected against the risk of causing

injury or death to third parties, the Road Traffic Act was established in 1930 in the United

Kingdom, introducing the first compulsory car insurance scheme [310]. Over the years, legal

questions related to responsibility became inextricably linked to third party liability. In

general terms, third party liability insurance provides protection against claims resulting from

physical injuries to people and/or damage to property [284]. Nowadays, liability coverage

has become so important that it is often required for automotive insurance policies, product

manufacturers, and anyone who practices medicine or law.

As ML algorithms are expected to replace human decision-making in cases where their

predictive and prescriptive performance yields better outcomes, a new type of liability

insurance could be developed to protect their owners from risk. Potential examples are self-

driving cars (third party liability) or image recognition systems for MRI machines (medical

liability). If there were legal contracts that individuals and organizations could sign to protect

themselves from algorithmic mistakes, the adoption and implementation of ML tools would

be significantly faster and less contentious [25].

In this chapter, our goal is to show how liability insurance can be extended in the case of

erroneous algorithmic decision-making. The prerequisites of this type of contracts are, as in

all cases of insurance, (i) an agreement between the parties, (ii) the existence of a risk to the
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insured party or potential third parties, (iii) the payment of a premium [24]. The premium is

determined as a function of the assumed risk. Hence it varies according to both the likelihood

of its occurrence (frequency), and the magnitude of the consequences that may arise once it

materializes (severity). Thus, the main focus of the insurance industry is the determination of

an appropriate premium pricing strategy for every policy. The pricing of traditional non-life

insurance products is usually conducted using the fundamental principles of actuarial science

and asset pricing theory [89, 113]. Leveraging historic observations from prior realizations

of risk, underwriters are able to create probabilistic models that estimate the potential risk

exposure, the relative frequency of adverse events, and associate an appropriate price. The

key challenge with machine-based decisions lies in the absence of such data.

At the time of initial implementation of ML-driven decision-making tools, very limited

information regarding historical algorithmic mistakes would be available. For example, since

fully autonomous cars have not been deployed yet, it is impossible to collect information

with respect to past accidents they have caused. Although, the corresponding claims cost

associated with these accidents will likely be known from previous litigation cases of human-

based decision-making, the challenge will arise when trying to estimate the risk of incident

realization. Nevertheless, there is a paradox in this statement. Self-driving cars, like any other

AI system, are based on the use of data; past observations that participated in the model

training and validation process. Though there are no claims data from prior liability cases, we

have at our disposal large datasets that are used to train the underlying ML model associated

with the outcome of interest. By leveraging this valuable resource and other properties of

the models, we propose a novel quantitative framework that enables pricing the risk of these

products. We propose a series of tools for insurance companies and data scientists that

will allow them to evaluate the litigation risk associated with the implementation of a ML

algorithm under different scenarios.

283



8.1.1 Contributions

We introduce for the first time a data-driven model that quantifies the risk and the associated

premium for insurance contracts protecting against adverse events that may result from

erroneous algorithmic decision-making. Our contributions can be summarized as follows:

1. We propose an optimization formulation that leverages measures of risk from the

financial literature to simultaneously estimate the risk exposure and price for a given

binary classification model. We extend the formulation using robust optimization to

different types of uncertainty sets around historical scenarios of loss.

2. We estimate the expected financial loss due to algorithmic liability based on the

predictive performance, the interpretability and the generalizability of a binary classifier.

3. We introduce a data-driven approach to apply the proposed pricing framework. We

provide a case-study for medical liability and demonstrate the potential effect of the

model parameters in simulated experiments.

The structure of this chapter is as follows. In Section 8.2, we introduce a case study of

medical liability in the context of breast cancer detection. In Section 8.3, we present the

baseline optimization formulation that leads to the simultaneous estimation of price and risk

exposure. In Section 8.4, we incorporate the predictive accuracy of a binary classification

model into the estimation process of future expected loss. In Section 8.5, we demonstrate how

to include a ML algorithm’s interpretability into the pricing strategy. Section 8.6 focuses on

data generalizability and its effect on the premium determination. In each of the Sections 8.4-

8.6, we use the medical liability case study to showcase a practical implementation of the

framework and highlight the effect of the model’s parameters. In Section 8.7, we discuss

the key findings from the computational experiments, the limitations of the framework, and

future applications of the proposed approach. We conclude in Section 8.8.
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8.2 A Case Study of Medical Liability for Malignant

Tumor Detection

In this section, we introduce our case study of interest, focusing on algorithmic insurance for

medical liability. We will delve into breast cancer, a carcinoma that is estimated to affect one

out of eight women at some point in their lifetime [309]. According to the American Cancer

Society, more than 250,000 women are diagnosed with invasive breast cancer every year in the

US [319]. Due to widely established screening policies and improved therapies, breast cancer

has now one of the lowest mortality rates among carcinomas [23]. Nevertheless, medical

malpractice relating to breast cancer and breast imaging remains common and costly for

both radiologists and healthcare organizations involved [204]. In the future, the widespread

implementation of AI algorithms is expected to improve the diagnostic accuracy and reduce

diagnostic errors in carcinomas [190, 361].

Given the transformative role that ML can play in this application area, we focus on a

case study for breast cancer detection to illustrate a practical implementation of the proposed

pricing framework. First, we describe the dataset that we use to train the underlying

predictive model. Subsequently, we present an overview of historical medical malpractice

lawsuits for breast cancer detection.

8.2.1 Data Description

For our analysis, we will use the Breast Cancer Wisconsin Diagnostic dataset from the UCI

ML Repository [103]. The features of the dataset represent characteristics of the cell nuclei

of a breast mass [328]. This information was acquired from digitized images of Fine Needle

Aspirate (FNA) analyses. FNA biopsies are recommended to women who are suspected to

suffer from breast cancer. During this procedure, a small amount of breast tissue or fluid

is taken from the suspicious area and is checked for cancer cells. The dataset contains ten

features related to the cell nucleus of each sample, including radius, texture, perimeter, area,

smoothness, degree of compactness, concavity, presence concave points, symmetry, and fractal
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dimension. The outcome of interest is whether the sample belongs to a benign or malignant

tumor.

8.2.2 Medical Malpractice Lawsuits for Breast Cancer

Lawsuits involving breast cancer are the most common cause of medical malpractice litigation

in the United States [352]. An analysis from credentialing data of 8401 radiologists, revealed

that breast cancer was the most frequently missed diagnosis, followed by nonvertebral fractures

and spinal fractures [352]. Breast cancer imaging lawsuits involve physicians from multiple

specialties, radiology being the most common. Lee et al. (2020) identified 253 cases in the

US from 2005 to 2015 that resulted in plaintiff payment where the average award amount was

$978,858. The median award amount in cases with a verdict was $862,500 with interquartile

range (IQR) ($500,000 to $2,009,460) while, in cases that concluded with a settlement, it was

as high as $1,162,500 with IQR ($17,000 to $2,000,000).

In a separate study conducted from 1995 to 1997, 218 surgical pathology and FNA

claims were reviewed. Breast FNA corresponded to 6% of those records while breast biopsy

accounted for another 14% [9]. 54% of breast biopsy claims referred to false-negative

diagnoses of breast carcinoma, whereas 35% were for the false positive diagnosis of cancer,

demonstrating the importance of high sensitivity and specificity for the binary classification

model [201]. Malpractice claims from false positive FNA s are usually attributed to wrong

interpretations by the medical team. The most common case is when a fibroadenoma is

misclassified as carcinoma resulting in unnecessary mastectomy or axillary node sampling if

breast conservation is elected [9]. Such cases can result in malpractice claims of more than

$800,000 [295, 140].

In the following sections, we analyze the impact of predictive performance, interpretability,

and generalizability on the insurance contract. Our goal is to understand the effect of the

model parameters and highlight the algorithmic aspects that may significantly affect the risk

exposure of an insurance contract.
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8.3 Quantifying Risk Exposure

We assume that the determination of the insurance premium is a function of how much risk

the organization or the modeler is willing to assume. Our goal in this section is to quantify

the expected risk exposure of the contract based on data regarding the severity and frequency

of the losses.

In our framework, we estimate risk exposure using tools from the finance literature. We

resort to two well established statistical techniques used to measure the level of financial

risk within a firm or an investment portfolio over a specific time frame; the Value-at-Risk

(VaR) and the Conditional-Value-at-Risk (CVaR). VaR answers the question of what is the

maximum loss with a specified confidence level [180]. Though VaR is a widely accepted

and used measure, it cannot be considered a coherent metric [14]. It does not have the

sub-additivity property, it is non-convex, non-smooth, and it may result to multiple local

extrema [290]. As a result, optimizing this measure under different constraints is quite

complex.

For this reason, we will focus on CVaR, an alternative measure of financial risk that does

not bear the weaknesses of VaR [339]. CVaR is both a coherent and consistent measure of

losses that does not violate the sub-additivity and complexity property [14]. While VaR

represents a worst-case loss associated with a probability and a time horizon, CVaR is the

expected loss if that worst-case threshold is ever crossed.

Suppose that we break our problem in 𝑛 cases, corresponding to the different classes of

claims that we insure. For example, referring to the medical malpractice problem, we could

classify our patients into three age groups ([0, 30), [30, 50], [50, 120)), in which case 𝑛 = 3. Let

𝑓(x,y) be a loss function that takes as inputs a decision vector of premiums x = (𝑥1, . . . , 𝑥𝑛)

and a random vector of losses y = (𝑦1, . . . , 𝑦𝑛). The decision vector x belongs to a feasible

set of prices X. The loss function 𝑓(x,y) is then equal to the difference between the price

and the future loss in case there is a claim:

𝑓(x,y) =
𝑛∑︁

𝑗=1

max{0, 𝑦𝑗 − 𝑥𝑗}. (8.1)

287



Uryasev (2000) proposed a framework for the simultaneous calculation of VaR and CVaR

as well as the determination of the associated premium based on the distribution of the losses

[339]. The author noticed that in the real-world we do not have the analytical representation

of the density function of 𝑦 to estimate the probability that the loss function does not

exceed a threshold value 𝛼. However, using past observations, we have access to scenarios

y𝑗, with 𝑗 ∈ [𝐽 ], sampled from the density 𝑝(y). Thus, they proposed the following CVaR

approximation: ̃︀𝐹𝛽(x, 𝛼) = 𝛼 + 𝜈

𝐽∑︁
𝑗=1

(𝑓(x,y𝑗)− 𝛼)+, (8.2)

where 𝛽 is the a given confidence level, 𝜈 = 1
(1−𝛽)𝐽

and 𝛼 is the variable that represents

VaR. If 𝑓(x,y) is convex w.r.t. to x, then ̃︀𝐹𝛽(x, 𝛼) is a convex non-smooth function w.r.t. to

(x, 𝛼). Moreover, if 𝑓(x,y) is linear w.r.t. to x, then we can use linear optimization to solve

our problem of interest:

minimize 𝛼 + 𝜈
𝐽∑︁

𝑗=1

𝑧𝑗

subject to 𝑧𝑗 ≥ 𝑓(x,y𝑗)− 𝛼, 𝑗 ∈ [𝐽 ],

𝑧𝑗 ≥ 0, 𝑗 ∈ [𝐽 ],

x ∈ X.

(8.3)

Several studies have shown that this formulation provides a very powerful, fast, and

numerically stable technique which can solve problems with a large number of variables and

past scenarios [232, 228].

8.3.1 A Nominal Formulation for Algorithmic Insurance

We adjust the formulation introduced by Uryasev (2000) to the algorithmic insurance setting

[339]. Equation (8.3) provides a linear optimization formulation that is based on data-driven

scenarios y𝑗. We will present in the following sections a quantitative process to simulate 𝐽

scenarios y𝑗 for a given number of observations 𝑁 . The loss function 𝑓(·) is not linear since

it is defined as 𝑓(𝑥, 𝑦) = max{0, (𝑦− 𝑥)}. We can also restrict the price vector x within fixed
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lower (𝑙𝑝) and upper bounds (𝐻𝑝) that reflect the pricing constraints of the insured party.

We let [𝑃 ] represent the set of premium categories that are included in the contract. We

propose the following baseline formulation:

minimize 𝛼 + 𝜈
𝐽∑︁

𝑗=1

𝑧𝑗

subject to 𝑧𝑗 ≥
𝑃∑︁

𝑝=1

max{0, (𝑦𝑝𝑗 − 𝑥𝑝)} − 𝛼, 𝑗 ∈ [𝐽 ],

𝑧𝑗 ≥ 0, 𝑗 ∈ [𝐽 ],

𝑙𝑝 ≤ 𝑥𝑝 ≤ 𝐻𝑝 𝑝 ∈ [𝑃 ].

(8.4)

Finally, we can solve Equation (8.4) using a cutting planes algorithm or by linearizing the

constraints, which results in:

minimize 𝛼 + 𝜈
𝐽∑︁

𝑗=1

𝑧𝑗

subject to 𝑧𝑗 ≥
𝑃∑︁

𝑝=1

𝑤𝑝𝑗 − 𝛼, 𝑗 ∈ [𝐽 ],

𝑧𝑗 ≥ 0, 𝑗 ∈ [𝐽 ],

𝑤𝑝𝑗 ≥ 0, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑤𝑝𝑗 ≥ 𝑦𝑝𝑗 − 𝑥𝑝, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑙𝑝 ≤ 𝑥𝑝 ≤ 𝐻𝑝 𝑝 ∈ [𝑃 ].

(8.5)

8.3.2 A Robust Formulation for Algorithmic Insurance

Solutions to optimization problems can exhibit high sensitivity to perturbations in the problem

parameters [20]. In the setting of algorithmic insurance, uncertainty lies at the center of

the problem, gaining even higher significance. In the absence of real-world past scenarios

y𝑗, we propose a data-driven way to generate them in Sections 8.4-8.6, combining the model

properties with historical claims of past cases based on human decisions. Undoubtedly, our

modeling approach contains noise in the proposed scenarios y𝑗 which can be attributed

either to the probabilistic assumptions or to the model performance. Robust optimization
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offers a solution to this problem proposing uncertainty models that are not stochastic, but

rather deterministic and set-based. Leveraging these techniques, we introduce two robust

formulations.

Box Uncertainty with Γ-Robustness. We will apply the notion of Γ-Robustness pro-

posed by [44]. We first assume that the scenarios y𝑗 lie in the uncertainty set:

𝒰1 = {𝑦|𝜇𝑝𝑗 − 𝛿𝑝𝑗𝛾𝑝𝑗 ≤ 𝑦𝑝𝑗 ≤ 𝜇𝑝𝑗 + 𝛿𝑝𝑗𝛾𝑝𝑗, ‖𝛾‖∞≤ Γ}. (8.6)

Therefore, in this setting, the formulation of the robust counterpart is the following:

minimize 𝛼 + 𝜈
𝐽∑︁

𝑗=1

𝑧𝑗

subject to 𝑧𝑗 ≥
𝑃∑︁

𝑝=1

𝑤𝑝𝑗 − 𝛼, 𝑗 ∈ [𝐽 ],

𝑧𝑗 ≥ 0, 𝑗 ∈ [𝐽 ],

𝑤𝑝𝑗 ≥ 0, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑤𝑝𝑗 + 𝑥𝑝 ≥ 𝜇𝑝𝑗 + 𝛿𝑝𝑗𝛾𝑝𝑗, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑙𝑝 ≤ 𝑥𝑝 ≤ 𝐻𝑝 𝑝 ∈ [𝑃 ].

(8.7)

Polyhedral Uncertainty with Γ-Robustness. Here, we assume that the scenarios y𝑗

lie in the uncertainty set:

𝒰2 = {𝑦|𝜇𝑝𝑗 − 𝛿𝑝𝑗𝛾𝑝𝑗 ≤ 𝑦𝑝𝑗 ≤ 𝜇𝑝𝑗 + 𝛿𝑝𝑗𝛾𝑝𝑗, ‖𝛾‖1≤ Γ}. (8.8)

Based on this definition, the corresponding robust formulation follows:
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minimize 𝛼 + 𝜈
𝐽∑︁

𝑗=1

𝑧𝑗

subject to 𝑧𝑗 ≥
𝑃∑︁

𝑝=1

𝑤𝑝𝑗 − 𝛼, 𝑗 ∈ [𝐽 ],

𝑧𝑗 ≥ 0, 𝑗 ∈ [𝐽 ],

𝑤𝑝𝑗 ≥ 0, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑤𝑝𝑗 + 𝑥𝑝 ≥ 𝜇𝑝𝑗𝑞𝑝𝑗 − 𝜇𝑝𝑗𝑠𝑝𝑗 + Γ𝑟, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑞𝑝𝑗 − 𝑠𝑝𝑗 = 1, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

−𝛿𝑝𝑗𝑞𝑝𝑗 − 𝛿𝑝𝑗𝑠𝑝𝑗 + 𝑟 ≥ 0, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑞𝑝,𝑗 ≥ 0, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑠𝑝,𝑗 ≥ 0, 𝑗 ∈ [𝐽 ], 𝑝 ∈ [𝑃 ],

𝑟 ≥ 0

𝑙𝑝 ≤ 𝑥𝑝 ≤ 𝐻𝑝 𝑝 ∈ [𝑃 ].

(8.9)

8.4 The Cost of Predictive Performance

The optimization formulations in Section 8.3 are based on historical scenarios of loss y. In this

section, we derive a baseline approximation of a contract’s expected loss using a data-driven

approach that leverages available information regarding both the frequency and severity of

future claims. We argue that the claim frequency of an erroneous algorithmic decision is a

function of the model’s predictive performance (e.g., AUC). Higher sensitivity reduces the

probability of a false negative algorithmic mistake while models with higher specificity are

less likely to perform a false negative error. The expected claims cost (severity), though, will

depend on the nature of the decision and the type of error.

Going back to our case study, suppose that a pathologist receives FNA samples from

which, using their knowledge and experience, determines whether a patient has a malignant

breast tumor or not. Depending on the doctor’s response the patient will or will not follow

cancer treatment. In the case the physician proposes an erroneous diagnosis, there is an

associated cost with this decision:
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∙ If the patient is diagnosed with cancer but does not actually have it, there is the

additional cost of unnecessary treatment that may even result to a needless mastectomy.

We will assume that this cost is captured by a random variable 𝐾 with mean 𝜇 and

variance 𝜎𝜇.

∙ If the patient is not diagnosed with cancer but actually has the disease, the severity of

the outcome for the patient is likely increased, since it is known that early detection is

critical in cancer patients. This increase of severity is associated with a higher litigation

cost, which is captured by a random variable 𝐿 with mean 𝑀 and variance 𝜎𝑀 .

Suppose now that instead of a doctor, a ML model is taking up the task of deciding, based

on the FNA samples, whether the patient has cancer or not. This is not only a hypothetical

example as at the Massachusetts General Hospital radiology department a ML model is

partially responsible for the screening process of patients with mammograms [361]. Typically,

the output of such binary classification algorithms is a prediction score. The model assigns

to each input observation an individual risk score that indicates how likely it is for each

sample to be associated with the outcome of interest (e.g., cancer diagnosis). To map each

observation to a crisp class label, a classification threshold 𝜏 must be defined. For example,

if the pathology department has specified a classification threshold 𝜏 = 0.3, then all patients

whose FNA outcome has probability of being positive > 0.3 are diagnosed with breast cancer.

In the same example, all samples for which the model predicts a score of ≤ 0.3 are classified

as cancer-free.

Let x𝑖 be the feature vector of patient 𝑖 and 𝑔(·) is the probability that patient 𝑖 has

breast cancer. Then the class of 𝑖 is defined as follows:

class(𝑖) =

⎧⎪⎨⎪⎩1, if 𝑔(xi) > 𝜏,

0, otherwise

Depending on the value of this threshold 𝜏 , the ability of the algorithm to identify false

positives and false negative cases varies. Higher values of 𝜏 improve the specificity of the
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model, avoiding unnecessary alerts to healthy patients. On the other hand, lower values of 𝜏

improve the sensitivity of the model, resulting in the timely warning of a higher number of

cancer cases. Both measures are threshold dependent. Thus, we can formally define them as

follows:

∙ Let 𝜅𝜏 ∈ [0, 1] be the specificity of the ML model for a classification threshold 𝜏 . The

probability that a sick patient will be erroneously classified is then 1− 𝜅𝜏 .

∙ Let 𝜆𝜏 ∈ [0, 1] be the sensitivity of the ML model for a classification threshold 𝜏 . Thus,

the probability that a healthy patient will be wrongly classified is 1− 𝜆𝜏 .

Taking all the above into consideration, the claim cost of a new patient that is diagnosed

by the ML model is captured by the random variable 𝑆:

𝑆 = (1− 𝜅𝜏 )𝐾 + (1− 𝜆𝜏 )𝐿. (8.10)

Therefore, the expected value of the individual claim cost is equal to:

E(𝑆) = (1− 𝜅𝜏 )𝜇 + (1− 𝜆𝜏 )𝑀. (8.11)

The corresponding variance is 𝜎 = (1−𝜅𝜏 )2𝜎2
𝜇+(1−𝜆𝜏 )2𝜎2

𝑀 +2(1−𝜅𝜏 )(1−𝜆𝜏 )Cov(𝐾,𝐿), and

the respective correlation coefficient is 𝜌(𝐾,𝐿). If we assume that 𝑁 patients are expected to

arrive at the hospital during the contract period, then the total expected loss of the insurance

is:

E(𝐶) = 𝑁 E(𝑆) = 𝑁((1− 𝜅𝜏 )𝜇 + (1− 𝜆𝜏 )𝑀). (8.12)

8.4.1 Case Study: Experimental Setup

We perform a series of computational experiments in the case study of interest to evaluate

the effect of the model parameters on the risk appreciation framework. We fix our number

of scenarios to use 𝐽 = 1000 and assume that 𝑁 = 100 patients are served within the

contract period. We hypothesized that our litigation cost variables 𝐾,𝐿 follow independent
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normal distributions. In this setting, we do not distinguish between different price segments,

assuming that 𝑃 = 1. We vary the values of 𝜇, 𝜎𝜇,𝑀, 𝜎𝑀 between the lower and upper ranges

obtained from historic medical malpractice cases of breast cancer such as the ones presented

in Section 8.2. We study the impact of the classification threshold 𝜏 as well as the confidence

level 𝛽. We constrain the contract premium to $10,000 and $50,000. We quantify the effect

of the Γ parameter in the robust optimization formulation. We use bootstrapping across 10

random seeds. We report the average performance across all iterations in our results. The

parameter ranges are detailed in Table 8.1.

The data was randomly split into training (75%) and testing sets (25%). Missing values in

each partition were imputed using the MedImpute algorithm [41]. We use the RF algorithm

to train the binary classification models [55]. We apply 10-fold cross-validation to set the

number of estimators and the maximum depth of the individual tree-based models. The

average AUC of the final model on the testing set is 99.36%. The statistical analysis was

conducted using Python 3.7 and Julia 1.3 [266, 45]. The codebase for all of the experiments

is available as a Github repository [258].

Parameter Range

Γ 3
𝛽 0.9, 0.95, 0.99
𝑙𝑝 $10,000
𝐻𝑝 $10,000, $50,000
𝜇 $100,000 $500,000
𝜎𝑚𝑢 $25,000, $150,000
𝑀 $500,000, $1,000,000
𝜎𝑀 $150,000, $400,000
𝜏 0.01 - 0.75
𝐽 1,000
𝑁 100

Table 8.1: Parameter ranges for the computational experiments.
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8.4.2 Case Study: The Implementation Framework

The proposed formulation allows us to estimate for a given confidence level (𝛽) and a vector of

historic claims (y): (i) the prices (x) for each product class (i.e., age groups, vehicle types); (ii)

the VaR (𝛼); (iii) the CVaR which corresponds to the objective function (min𝛼 + 𝜈
∑︀𝐽

𝑗=1 𝑧𝑗).

The input necessary to apply it involves:

∙ A binary classification model (e.g., image recognition classifier for mammograms) with

a representative testing set 𝑔(·);

∙ Random variables 𝐾,𝐿 that represent the litigation cost for false negative and false

positive cases with means 𝜇,𝑀 , variances 𝜎2
𝜇, 𝜎

2
𝑀 , and covariance Cov(𝐾,𝐿) respectively;

∙ The number of patients that the algorithm will serve during the contract, 𝑁 ;

∙ The number of past scenarios for the optimization formulation, 𝐽 ;

∙ Upper and lower bounds for the price, 𝑙𝑝, 𝐻𝑝.

If past data from the implemented algorithm with prior cases of litigation claims were

available, we would use the historical observations. In the absence of such information, we

use random variable realizations to get the cost approximation of false positive and negative

cases. Thus, the total cost for scenario 𝑗 of a fixed contract period for price segment 𝑝 can

be computed as follows:

𝑦𝑝𝑗 =
𝑁∑︁
𝑖=1

(1− 𝜅𝜏𝑝)𝐾𝑝𝑗𝑖 + (1− 𝜆𝜏𝑝)𝐿𝑝𝑗𝑖 (8.13)

Algorithm 4 summarizes the proposed process that combines all the components of our

approach.

8.4.3 Case Study: The Effect of the Classification Threshold

The first question that we aim to answer is what is the effect of the classification threshold

𝜏 on the estimated CVaR of the contract. In Figure 8.1 we depict two scenarios of a low
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Algorithm 4 Framework Implementation Procedure
Output: prices (x), VaR (𝛼), CVaR
Input: 𝛽, 𝑔(·), 𝑙𝑝, 𝐻𝑝, 𝐾, 𝐿, 𝐽,𝑁,𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡

1: Train model 𝑔(·) using 𝑋𝑡𝑟𝑎𝑖𝑛

2: Get predicted probabilities for 𝑋𝑡𝑒𝑠𝑡

3: while 𝑗 ≤ 𝐽 do
4: while 𝑖 ≤ 𝑁 do
5: Calculate scenario y𝑗 sampling from 𝐾,𝐿 for patient 𝑖.
6: i=i+1
7: end while
8: j=j+1
9: end while

10: Solve the optimization formulation

and a high litigation claims distribution. The blue curve corresponds to 𝜇 = $100, 000, 𝜎𝜇 =

$25, 000,𝑀 = $500, 000, 𝜎𝑀 = $150, 000. The yellow curve corresponds to 𝜇 = $500, 000, 𝜎𝜇 =

$150, 000,𝑀 = $1, 000, 000, 𝜎𝑀 = $450, 000. On the horizontal axis we project the threshold

values and on the vertical axis the CVaR. Our findings reveal that the most significant

determinant of CVaR is the selected classification threshold 𝜏 . The expected costs for the

false positive and false negative case re-scale the CVaR function. Moreover, the effect of 𝜇 is

more prominent for lower values of 𝜏 that negatively impact the specificity of the model. On

the contrary, 𝑀 gains more significance for higher values of 𝜏 . The average AUC of the binary

classification models is 99.36% and thus for any given threshold, the probability of a false

negative and a false positive is very low. Notice that the CVaR of both curves in Figure 8.1 is

minimized for 𝜏 = 0.3. This is due to the fact that when 𝜏 ≤ 0.3, the model sensitivity on the

testing set is equal to one. Therefore, for 𝜏 = 0.3 the model specificity is maximized for the

best possible value of sensitivity. This analysis demonstrates that the selected classification

threshold 𝜏 can dramatically affect the CVaR value even for fixed distributions of litigation

costs.
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Figure 8.1: CVaR as a function of the 𝜏 parameter for two different combinations of the 𝐾,𝐿
distributions.

8.4.4 Case Study: The Effect of the Claims Cost Expected Value

The next question that we address relates to what is the impact of the means of the random

variables 𝐾,𝐿 on the contract’s risk exposure. Figure 8.2 provides three-dimensional and two-

dimensional illustrations of CVaR as we vary the expected values 𝑀 and 𝜇 for 𝜏 ∈ {0.3, 0.4}.
In these experiments, 𝜎𝜇 and 𝜎𝑀 correspond to 20% of 𝜇 and 𝑀 respectively. Figure 8.2a

shows CVaR as a function of both 𝑀 and 𝜇. When 𝜏 = 0.3, the model does not include

any litigation cost for false negative claims and CVaR is a linear function of the model

specificity. This is evident in Figures 8.2b-8.2c too. For a fixed value of 𝜇, any increase or

decrease of 𝑀 does not affect the contract’s financial risk. On the other hand, as illustrated

in Figures 8.2b-8.2c, when 𝜏 = 0.4 both model sensitivity and specificity affect the exposed

risk of the contract in a linear fashion. In this case, CVaR depends on the distribution of

both 𝐾 and 𝐿 and thus it is a linear function of 𝜇 and 𝑀 . As we decrease the value of 𝜏

below 0.3, the probability of a false positive claim is increasing and as a result CVaR is also

increasing. For example, when 𝜏 = 0.25 the model specificity is 97.24% while when 𝜏 = 0.15

the specificity drops to 94.49%. Our results highlight that CVaR is a linear function of both
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𝑀 and 𝜇.

(a) 3-Dimensional Illustration.

(b) 2-Dimensional Illustration
when 𝑀 = $600𝐾.

(c) 2-Dimensional Illustration
when 𝜇 = $500𝐾.

Figure 8.2: CVaR as a function of 𝜇 for 𝜏 = 0.3 and 𝜏 = 0.4.
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Case Study: The Effect of Robust Optimization, the Premium and the Confi-

dence Level 𝛽

Subsequently, we investigate the role of the the premium, the type of the formulation, and

the confidence level 𝛽 in the determination of CVaR. We summarize our findings in Table 8.2.

The premium value 𝑥𝑝 is set in the vast majority of the experiments by the upper bound

𝐻𝑝. Only in cases where both 𝑀 and 𝜇 are below $50, 000, this constraint is not binding.

Naturally, higher premium values result to lower VaR and CVaR for the contract. The 𝛽

parameter also has a linear effect on the final risk estimation as it is incorporated as a scalar

in the objective function of the formulation. In addition, the results in Table 8.2 reveal the

benefit of the robust optimization approach. As we expected, the box uncertainty sets are

more conservative than the polyhedral uncertainty approach. The latter yields very similar

results to the nominal problem while also accounting for uncertainty in the scenarios y.

Premium Formulation 𝛽 = 0.9 𝛽 = 0.95 𝛽 = 0.99

$ 10,000 box $ 300,536 $ 302,959 $ 306,714
$ 10,000 nominal $ 276,117 $ 278,071 $ 281,631
$ 10,000 polyhedral $ 279,611 $ 282,084 $ 285,251
$ 50,000 box $ 260,536 $ 262,959 $ 266,714
$ 50,000 nominal $ 236,117 $ 238,071 $ 241,631
$ 50,000 polyhedral $ 239,611 $ 242,084 $ 245,251

Table 8.2: Average CVaR as we vary the premium price, the type of formulation, and the
confidence level 𝛽. These results correspond to 𝜏 = 0.3, 𝜇 = $100, 000, 𝜎𝜇 = $25, 000,Γ = 3.

8.5 The Cost of Interpretability

In our effort to price the risk of algorithmic decision-making, interpretability may play a

crucial role. Consequential decision-making up until recently has been strictly controlled

by humans. In this setting, the outcome of any decision can be associated with reasoning

that would justify the action. Thus, a human decision can be evaluated based on the logic

followed and, subsequently, the decision agent can be held accountable for their judgement.

Supervised learning algorithms do not necessarily provide a reason why a given observation
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should receive a specific label. They can only state that certain inputs are correlated with

that label. As a result, interpretability has remained an ill-defined term of ML [216].

In the context of algorithmic liability, one could argue that the interpretability of a model

is a measure of how much human input could be involved in the risk estimation process. We

will focus on the setting of complete automation where human input is possible only prior to

the model implementation in practice. In this context, experts may be called to review and

approve the algorithm prior to its integration to avoid erroneous decision rules in the learner.

Consider the case of a fully interpretable, tree-based model for malignant tumor detection.

The physician in charge can easily review the algorithm’s recommendations based on their own

knowledge and experience prior to its implementation. The level of algorithmic transparency

directly affects the degree to which human judgement can be involved. Interpretable models

allow for synergies between the ML algorithm and the experts’ input. Therefore, we argue

that the combination of artificial and human intelligence is likely to lead to more accurate

estimations and may improve the risk exposure of the contract.

The goal of this section is to quantify this effect and provide measures of how inter-

pretability can impact algorithmic risk evaluation. Suppose that 𝑐ℎ is the risk exposure for an

insurance contract when a human expert is making all the decisions. Notice that 𝑐ℎ is known

from historical claims. 𝑐𝑚𝑙 is the risk exposure for the same contract when a ML model is the

sole decision maker. We assume that 𝑐ℎ > 𝑐𝑚𝑙 to ensure that there are financial incentives

from the use of the ML model. We let 𝜃 ∈ [0, 1] be the interpretability parameter that

measures the degree of algorithmic transparency and assume that a model’s risk exposure

𝑐(𝜃) is a function of the interpretability parameter.

When 𝜃 = 0, the ML model is treated as a “black-box” and thus a human agent is unable

to provide additional input that may improve the model’s performance (𝑐(0) = 𝑐𝑚𝑙). To the

contrary, when 𝜃 = 1, the model is intuitive and explainable for the decision maker and as a

result there are synergies between the ML model and the human agent, resulting in a lower

cost 𝑐(1) = 𝜉𝑐𝑚𝑙, 𝜉 ∈ (0, 1).

The determination of the 𝜉 parameter depends on the ML model, the application and
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the problem under consideration. We assume that the relative benefit of interpretability

directly depends on the relative ratio of 𝑐𝑚𝑙

𝑐ℎ
∈ (0, 1). The latter ratio captures the relative

improvement of a ML model over human judgement in economic terms. In cases where

the edge of algorithmic decision making is small (𝑐𝑚𝑙 ∼ 𝑐ℎ), the value of interpretability is

high, since an expert’s opinion can yield equivalent results to an algorithm. In this setting,

the synergies between the decision maker and the machine are stronger, correspondingly

decreasing the expected risk exposure. On the other hand, when 𝑐ℎ is significantly higher

than 𝑐𝑚𝑙, interpretability gains less importance as human input might not be as informative.

Based on these assumptions, a potential value for 𝜉 is (1 − 𝑐𝑚𝑙

𝑐ℎ
), capturing the synergies

between the two types of decision makers. It follows that when 𝜃 = 1, the cost is equal to

𝑐 = 𝑐𝑚𝑙(1− 𝑐𝑚𝑙

𝑐ℎ
). If we model the contractual risk exposure 𝑐 for all values of 𝜃 ∈ (0, 1) as

the linear interpolation of these two scenarios (see Figure 8.3), then 𝑐 = − 𝑐2𝑚𝑙

𝑐ℎ
𝜃 + 𝑐𝑚𝑙.

Figure 8.3: The linear interpolation of the 𝑐 function for 𝜃 ∈ [0, 1] when 𝜉 = (1− 𝑐𝑚𝑙

𝑐ℎ
).

However, interpretability does not necessarily have a linear effect on risk exposure and

model performance. One can hypothesize that the effect of interpretability on the cost is

non-linear. If 𝑐 is concave function, the positive effect of interpretability on the risk exposure

is more prominent for higher values of 𝜃. To the contrary, if we assume that 𝑐 is convex, even

with small degrees of interpretability, we can observe significant reductions in the expected

risk. Though it remains challenging to fully characterize the interpretability effect, our

approach provides flexible options to decision makers to measure its impact as a function of
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the 𝜃 parameter.

Identifying a single value for this parameter and determining a specific definition or

degree of interpretability has been a major challenge in the ML field [65]. Most definitions

involve human input in the evaluation process which impedes systematic quantitative analysis

[215]. Bertsimas et al. (2019) have recently introduced a quantitative approach to specify

the price of interpretability as the tradeoff with predictive accuracy for a given model [33].

Alternative approaches that could be directly incorporated in our pricing framework include

the work of Schmidt et al. (2019) and Ribeiro et al. (2016) [305, 287]. We expect that an

increasing number of interpretability definitions will be available in the future considering the

importance of understanding a model’s proposed associations between the input variables

and the output labels.

8.5.1 Case Study: The Effect of Interpretability

In Figure 8.4, we provide concrete examples of functions that model the effect of interpretability

in the risk estimation process for the case study of medical liability. On the horizontal axis

we project the 𝜃 parameter and on the vertical axis the CVaR. Each graph corresponds to

a different function 𝑐, including concave, convex, and linear examples. In this setting, we

assume that 𝜉 = (1− 𝑐𝑚𝑙

𝑐ℎ
), 𝑐𝑚𝑙 = $500𝐾, and consider four distinct scenarios of 𝑐ℎ. Notice

when 𝑐 is convex, such as in Figures 8.4b and 8.4d, even with low degrees interpretability, we

can derive effective synergies between the model and the human agent that can significantly

reduce the risk exposure. Respectively, when modeling the effect of interpretability with

a concave function, like the ones presented in Figures 8.4a,8.4c, the majority of the risk

reductions will only be observed for higher values of 𝜃. This intuition can guide the decision

for the determination of the interpretability function in future applications of the framework.
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(a) 𝑐 = − 𝑐2𝑚𝑙
𝑐ℎ

(tan(𝜋4 𝜃)) + 𝑐𝑚𝑙. (b) 𝑐 = − 𝑐2𝑚𝑙
𝑐ℎ

(sin(𝜋2 𝜃)) + 𝑐𝑚𝑙.

(c) 𝑐 = − 𝑐2𝑚𝑙
𝑐ℎ

𝜃2 + 𝑐𝑚𝑙. (d) 𝑐 = − 𝑐2𝑚𝑙
𝑐ℎ

√
𝜃 + 𝑐𝑚𝑙.

(e) 𝑐 = − 𝑐2𝑚𝑙
𝑐ℎ

𝜃 + 𝑐𝑚𝑙.

Figure 8.4: Risk Exposure 𝑐 as a function of the interpretability parameter 𝜃 and risk exposure
𝑐ℎ for a fixed value of 𝑐𝑚𝑙 = $500K.

8.6 The Cost of Model Generalizability

Another prominent aspect of algorithmic performance is generalizability, which refers to a

model’s ability to properly adapt to new, previously unseen data, drawn from the same or

a different distribution as the one used to create the model. In the context of algorithmic

insurance, generalizability becomes pertinent when the model is applied to a new population

whose data have not been tested by the algorithm in the past. Going back to the case
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study of interest, let the binary classification model for malignant tumor detection be

exclusively trained on samples drawn from a Caucasian population at an academic hospital

in Massachusetts. Suppose that a community hospital in Louisiana is now interested to

integrate the system in its EHR database which started collecting medical data only one

year ago. What is the appropriate pricing strategy for this center? If the hospital had at

its disposal data from the patient population it serves throughout a span of multiple years,

we would directly be able to externally validate its performance. However, in the absence of

this valuable resource, an alternative approach is needed to adjust the pricing strategy of the

contract.

We propose testing the predictive performance of the algorithm on synthetic observations

that resemble the original training set, controlling the degree of similarity to get estimations of

risk variability. Multiple approaches have been proposed in the literature to generate synthetic

data. A quite common approach is to induce noise with Gaussian random variables in the

existing dataset. Nevertheless, this simple technique directly affects the existing correlations

and associates between the covariates distorting the true geometry of the feature space.

Another well established technique for data augmentation is referred to as the Synthetic

Minority Oversampling Technique (SMOTE) which is very frequently applied in classification

datasets that have a severe class imbalance [71]. However, this approach does not let the

user directly control the degree of similarity between the newly created instances and the

original data distribution.

The proposed framework requires the use of parameters that effectively control the

degree of similarity between the real and the synthetic data. Our goal is to introduce a

mechanism that would allow decision makers to quantitatively compare the additional cost

of the insurance contract with respect to the ability of the model to generalize to datasets

with different levels of variability from the original training and testing sets. Though it is

not possible to provide theoretical guarantees about the predictive performance of a given

classifier in a new unknown distribution, we can conduct extensive simulations that test the

discrimination capability of the learner in adverse scenarios.
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8.6.1 Generative Adversarial Networks to Generate Synthetic Data

To perform this analysis we resort to Generative Adversarial Networks (GANs). This neural

network architecture was first introduced in 2014 with the goal of synthesizing artificial

images that are indistinguishable from authentic figures [147]. Since then, GANs have become

the predominant method of data augmentation for images and text [348]. They are used to

increase the amount of data by adding slightly modified copies of already existing samples or

newly created synthetic data from existing observations [277, 146, 370].

GANs involve a unique architecture in which a pair of networks are trained simultaneously

and in competition with each other. Training a robust GAN architecture is a non-trivial

task due to problems like vanishing gradients and mode-collapse which may result in poor

discrimination performance and synthetic samples with limited diversity [277, 302]. The

Wasserstein GANs (WGAN) architecture was introduced to remedy these issues using the

Wasserstein distance as the loss function [11]. The Conditional GAN (CGAN) is a specific

class of GANs that involves the conditional generation of images by a generator model,

resulting in new data observations with associated class labels [237]. This modification to the

GAN architecture permits learning the distributions specific to each class label, producing

samples for both labels with higher quality.

Recently, researchers showed that WCGANs can lead to very promising results in syn-

thesizing tabular data, comprising only densely connected layers [231, 322]. These efforts

highlighted the potential impact that GANs may have in structured data sources, providing

researchers with higher flexibility and control in the data generation process. This technique

also offers a promising alternative to solve our problem of interest; creating synthetic data

while explicitly controlling the degree of similarity. By varying the number of epochs, we

will control the differences in the distributions between the synthetic and the real-world data.

This parameter constitutes the number of complete passes through the training process. A

higher number of epochs gives the opportunity to the algorithm to converge, minimizing the

loss function. Thus, we can directly compare the discriminator loss function to the number

of epochs, adjusting the degree of dissimilarity between the synthetic samples and the real
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training set.

Due to their complicated structure and despite large strides in terms of theoretical progress,

evaluating and comparing GANs remains a challenging task. While several metrics have been

proposed, there is no consensus in the scientific community as to which measure provides a

more holistic and objective model evaluation [7, 52]. We propose the use of the GAN quality

index (GQI) for our analysis [363]. To compute this metric, we will compare the performance

of the generator 𝐺 and the model we are seeking to price 𝐶real. First, we generate the

synthetic samples with the associated class labels using the CGAN architecture. A second

classifier, called the GAN-induced classifier 𝐶GAN is trained on the generated data. The GQI

is defined as the ratio of the accuracies (or AUCs) of the two classifiers when applied to the

real test data:

𝐺𝑄𝐼 =
𝐴𝐶𝐶(𝐶GAN)

𝐴𝐶𝐶(𝐶REAL)

Higher GQI means that the GAN distribution better matches the real data distribution.

8.6.2 Case Study: The Effect of Generalizability

We apply the proposed approach to the case study of medical liability using a GAN architecture.

Our goal is to investigate the effect of generalizability on the contract’s risk exposure using

synthetic samples while controlling the degree of similarity to the original dataset. The GAN

network was built leveraging the GAN-Sandbox package and was implemented in Python

using the Keras library with a Tensorflow backend [100, 74, 2].

In Figure 8.5, we present the changes in the features’ distribution as a function of the

number of epochs parameter in a WCGAN architecture. Following the architecture presented

by Vega et al. (2019), the GAN model comprises a generator network with one input layer

and three dense layers and an adversarial network with one input layer and four dense

layers [343]. We measure the similarity of the derived distributions between the synthetic

(GAN-Generated) and the real data for a different number of epochs in the training process.

An epoch is defined as one cycle through the training process of the network, corresponding

to the number of training iterations between the generator and the adversarial network. Our
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(a) Number of Epochs = 0. (b) Number of Epochs = 20. (c) Number of Epochs = 40.

(d) Number of Epochs = 60. (e) Number of Epochs = 150. (f) Real Data.

Figure 8.5: The derived distributions from the GAN model of two of the most predictive
features. Cell Shape Uniformity is depicted on the vertical axis and Clump Thickness is
illustrated on the horizontal axis. All values have been normalized to [0,1]. Each graph
corresponds to the output of the GAN model for a given number of epochs. Figure 8.5f
corresponds to the real distribution of the features.

hypothesis in Section 8.6 is validated, as we observe that a higher number of epochs results in

features distributions that better resemble the real data distribution (Figure 8.5). This effect

is directly present in quantitative metrics, such as the GQI index, which is also positively

correlated with the number of epochs in the model.

In Figure 8.6, we project CVaR as a function of the number of epochs parameter. The

underlying binary classification model is the same as the one used in Figure 8.1 where

𝜇 = $100, 000, 𝜎𝜇 = $25, 000,𝑀 = $500, 000, 𝜎𝑀 = $150, 000, derived on the training sample

of the original Breast Cancer Wisconsin Diagnostic dataset. The CVaR is then measured with

respect to the discrimination performance of the classifier on the GAN-Generated synthetic

data. The output of CGAN architectures includes both independent features and associated

labels that are subsequently used to compute the sensitivity and specificity of the model for

different values of 𝜏 . In Figure 8.6, we only project the best CVaR value across all potential

thresholds 𝜏 . This graph reveals a linear relationship between the number of epochs and the
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CVaR. This finding highlights to decision makers the cost effect of applying a pre-trained

learner in datasets with varied degrees of distribution similarity to the original training

population.

Figure 8.6: CVaR as a function of the number of epochs parameter. The color indicates the
GQI metric for the underlying binary classification model.

8.7 Discussion

In this chapter, we construct a framework for pricing algorithmic risk and provide a compre-

hensive case study for its implementation. Our work constitutes the first attempt to quantify

the litigation risk resulting from erroneous algorithmic decision-making in the context of

binary classification models. The framework is agnostic to the type of learner and application

area. It can be easily extended in other fields, such as predictive maintenance and autonomous

vehicles among others. The proposed models are data-driven and parametric, since such

contracts have not been implemented by the industry yet and extensive experimentation is

needed prior to launching them.

Our work reveals that, given fixed distributions for litigation costs, the choice of the
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classification threshold 𝜏 plays the most significant role in the determination of the contract’s

financial risk. This finding provides us with a new way of assessing the balance between

sensitivity and specificity. The direct association of risk exposure to the threshold 𝜏 allows

us to make better decisions for the financial implementations of the classifier in practice.

Our findings validate the assumption that when a false positive and a false negative have

disproportionate implications for the organization the choice of the 𝜏 threshold becomes even

more critical.

The proposed framework incorporates the critical aspect of model interpretability. We

argue that in cases where the risk of human decision making is comparable to algorithm-driven

decision rules, interpretability gains greater value. We also show that the convexity of the

interpretability function indicates whether a smaller or a higher degree of model transparency

is needed to achieve significant synergies between human agents and the ML algorithm.

We consider the use of GANs to evaluate the effect of model generalizability in the risk

evaluation process. We illustrate a linear relationship between CVaR and the number of

training epochs of the GAN network. The latter is also positively correlated with similarity

metrics between the generated and the true data distribution. Thus, we allow decision makers

to adjust the contract pricing to settings where the classifier is applied to a new population

that was not part of the original training and validation set.

Future work would need to consider the regulatory framework of specific applications and

account for other types of supervised learning methods such as regression algorithms. As

interpretability and generalizability remain two areas of growing scientific interest for the

ML community, we expect that new methods and tools will be developed that will allow the

quantification of their impact.

8.7.1 Limitations

Central to the limitations of this study is the absence of historic claims records from real-world

litigation cases of malpractice. We assume that insurance companies have in their possession

this kind of information from which the scenarios y could be directly constructed. Our
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analysis takes a conservative view over the litigation process assuming that every erroneously

classified sample will resort to a litigation claim. In reality, only a portion of misdiagnosed

patients file a malpractice lawsuit and only a subset of those are successful. In this chapter,

our computational experiments have been based on normally distributed random variables

but other distributions could also be explored in future investigations. We would also like to

note that medical malpractice is a particularly challenging field and the implementation of

ML models such as the one in Section 8.2 faces a lot of regulation constraints. As a result, it

is very likely that such models will continue to be validated by medical experts in the coming

years. Finally, our work does not account for dynamic decision-making processes, such as the

triple FNA strategy, that usually results in improved clinical outcomes for the patients and

significantly reduces the amount of claims [9].

8.8 Conclusions

Our work aims to set the foundations in the novel area of algorithmic insurance. We propose

quantitative tools that allow decision makers, modelers, and insurance companies to estimate

the litigation risk of binary classification models. This approach takes into consideration

the predictive performance of the classifier accounting also for uncertainty in the data. We

incorporate measures of interpretability and generalizability to provide a holistic appreciation

of the model. We believe that this framework can serve as the basis of a new research area

that will expedite the adoption and implementation of ML models in practice.
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Chapter 9

Conclusions

This thesis provides a roadmap to personalized medicine and insurance using ML and

optimization techniques.

Part I proposes new generalizable methodologies to tackle three of the most challenging

problems encountered in healthcare and insurance datasets. Our approach involves formulating

well-established ML tasks, such as clustering or missing data imputation, as MIO problems.

We introduce new algorithms that scale to large data instances with superior performance

compared to existing greedy methodologies. This effort emphasizes user transparency,

which remains a critical factor for the adoption and success in industries with high-stakes

decision-making. We focus on learners such as the 𝑘-NN or the Optimal Trees framework and

demonstrate on synthetic and real-world data that interpretability does not need to be pursued

at the expense of accuracy. To measure these effects, we design extensive computational

experiments that address multiple aspects of algorithmic performance, providing a holistic

evaluation of the proposed techniques.

These methodologies, although necessary, are insufficient to fully propel the transition to

personalized medicine. The goal of Part II is to showcase how to leverage such ML algorithms

to derive individualized prescriptions and predictions at the point-of-care. First, we propose a

data-driven approach that combines multiple supervised learning models to provide treatment

recommendations. Our prescriptive framework extends the classical Regress and Compare
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approach by aggregating an ensemble of ML models. The algorithm recommends the therapy

with the best expected outcome through a voting mechanism that considers the predictions

from each of the regression models. Leveraging the different geometries of individual learners,

the voting scheme avoids biases and pitfalls that are specific to a single method, providing

a more holistic perspective to the decision maker. We showcase the potential benefit of

this framework in the context of CAD, using a new evaluation framework that takes into

consideration the effectiveness and robustness of the prescriptions. Part II also focuses on

the predictive setting, highlighting how the use of analytics can lead to the creation of

clinical decision support tools that take as input not only tabular but also unstructured

sources of data. We integrate into the model evaluation the external validation process to

provide evidence that the proposed binary classification models are generalizable and could

be deployed in healthcare organizations that did not participate in the original study. We

hope that these chapters will encourage further research in the fields of operations research

and ML to continue developing and deploying personalized models in other medical domains.

In Chapters 5 and 6, we accompany the analytical models with prototypes, making available

to physicians online interactive tools that communicate the algorithm recommendations. In

the prescriptive setting, our tools illustrate a dashboard where the expected outcomes under

alternative treatments are plotted per patient, providing justification on why a particular

therapy is recommended. The N-SRS application presents the results in the form of a dynamic

questionnaire minimizing the necessary input from the health practitioner. Thus, the decision

maker is provided with explicit criteria and rationale behind the algorithmic output. In the

future, we envision that these models will be fully integrated into the clinical workflow of

medical professionals as part of the EHR system.

The last chapter of the thesis refers to algorithmic insurance. Our extensive collaborations

with medical institutions at the forefront of clinical research showed that there is still a lot of

reservation and resistance in employing ML-based tools in practice. Our work provides an

evaluation framework for a new class of insurance products that will protect decision makers

from algorithmic mistakes, boosting their implementation and integration into the medical
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practice. Such contracts will be able to provide financial incentives to healthcare organizations

to augment human decision making with analytical approaches that can ultimately improve

patient outcomes and the quality of the provided care. This framework is certainly applicable

beyond the context of healthcare as we showcase in Chapter 8. We believe that this work

sets the foundations of a new broad field where a lot of research can be conducted to set its

basis and support its implementation in the future.

To conclude, the ultimate goal of this thesis is to show how ML can positively influence

clinical practice. By proposing new generalizable methods, prescriptive and predictive models,

and insurance products, we hope we will be able to advance medicine to the next level, further

ameliorating and personalizing the quality of care delivered.
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IB Integrated Brier.
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MCAR Missing Completely At Random.

MIO Mixed Integer Optimization.
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MNAR Missing Not At Random.

MRI Magnetic Resonance Imaging.

NLP Natural Language Processing.

NN Neural Networks.

N-SRS Non-Linear Stroke Risk Score.

OCT Optimal Classification Trees.

OPP Observations Per Patient.

ORC Operations Research Center.

ORT Optimal Regression Trees.

OS overall survival.

OST Optimal Survival Trees.

PCA Principle Component Analysis.

PCI Percutaneous Coronary Intervention.
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R-FSRS Revised Framingham Stroke Risk Score.

RF Random Forest.

RMSE Root Mean Squared Error.

RNN Recurrent Neural Networks.

SBP Systolic Blood Pressure.

SVM Support Vector Machines.

T2DM Type 2 Diabetes Mellitus.
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TF-IDF Term Frequency-Inverse Document Frequency.

VaR Value-at-Risk.
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