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Abstract

Over the past decades, climate change has driven an increase in the frequency and
intensity of natural disasters. In an effort to increase the situational awareness and
timely support for search and rescue missions in the aftermath of a disaster, the United
States Civil Air Patrol (CAP) gathers aerial imagery of the impacted areas. However,
these high resolution and timely images are seldom used for quantitative assessment
of damage. This thesis focuses on the following question: How can we use mod-
ern computer vision techniques to utilize CAP imagery for post-disaster
needs assessment, specifically for the purpose of damage estimation and
localization? This question is important because the data gathered by CAP has
significant potential to expedite response operations and help reduce significant so-
cietal costs. The key technical challenge to address is problem arises from the fact
that CAP-gathered aerial images are spatially sparse and oblique, and well-calibrated
object detection datasets are not available for damage-prone situations.

To address the aforementioned challenge, we develop an approach to simultane-
ously detect and localize damage within images using ideas from weakly-supervised
object localization and structure from motion. Firstly, we refine a well-known pro-
posed technique called class activation mapping to detect the extent of damage within
an image solely relying on image-level labels. Secondly, we utilize structure from mo-
tion to georeference batches of CAP images from an area of interest. The main
advantage of our approach is that the outputs of these two techniques can be easily
combined to assign real-world coordinates to damage hotspots in the aftermath of a
natural disaster. Finally, we evaluate its potential using data from the 2016 Louisiana
floods and provide estimates of flood-related damage.

Our approach achieves a precision of 88% when compared against official flooding
estimates. Practical deployment of this approach depends on how the current prac-
tices and technologies used by CAP are tailored to improve damage detection and
localization. To this end, we propose the following technical and policy recommenda-
tions: 1) Implement best practices that allow for a high-quality image sequences that
can be labeled and georeferenced using modern computer vision techniques; 2) Incor-
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porate other sensing modalities such as satellite imagery into CAP imagery analysis
for quantitative damage assessment over large spatial regions; and 3) Invest in low
altitude imaging technologies and benchmark dataset development.

Thesis Supervisor: Saurabh Amin
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Over the past two decades, the quantity and impact of extreme weather events has

increased at an alarming rate. According to a report by the United Nations Office for

Disaster Risk Reduction, between 2000 and 2019 there were 7,348 disaster events that

claimed 1.23 million lives and $3 trillion in economic losses. This is a sharp increase

from the period between 1980 and 1999, where there were 4,212 events with 1.19

casualties and $1.6 trillion in losses [42]. The cost associated with hurricane damages

in 2017 alone, which included Hurricanes Harvey, Irma and María, was estimated at

$300 billion [16]. These figures underscore the extent to which responding effectively

to natural disasters is a national security priority.

The different stages of disaster response are exemplified in Figure 1-1, which the

Federal Emergency Management Agency (FEMA) calls the Recovery Continuum [29].

In the preparedness stage, local and state governments work to educate themselves on

the state of the art in responding to disasters, establish protocols to respond to them,

and designate roles and responsibilities. In the short-term and intermediate stages,

first responders (which now typically includes federal government agencies) work to

save people in immediate danger, deliver aid to those who need it, and mitigate

damage to the built infrastructure. Finally, in the late-term stage, governments at

all stages work to rebuild the physical, social and economic infrastructure in a way

that makes it less susceptible to a similar event in the future. The crucial insight

from this Recovery Continuum framework is that no one stage is independent of the
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Figure 1-1: FEMA Illustration of the Recovery Continuum [29]

other, but rather work together to mitigate the damage caused by the disasters. Put

another way, it is impossible to have effective disaster response without consideration

for all three stages.

1.1 The short-term recovery stage

This thesis will primarily focus on the short-term stage. While it is certainly just

one piece of the puzzle, it presents two main challenges that are not present to the

same extent in the other stages. First, the rate at which harm (broadly defined) is

done is greater than further out the time horizon. As an example, deaths per day

in Puerto Rico between September 20 and 30th, 2017 (immediately after Hurricane

María) were an average of 118. Two weeks later, it had fallen to the pre-hurricane

average of approximately 80 [36]. Almost by definition, in this stage there is very little

time to get it right, and every second saved can dramatically improve the outcome.

Second, there is much more uncertainty about the location and extent of damage.

After a disaster, communications networks are typically either overburdened or down-

right nonoperational. Even after damage is located, the extent of the damage may

not be immediately obvious from visual or verbal descriptions. Assessing all sites in

person is typically infeasible, as there is a limited amount of equipment and person-
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nel to deploy. Situational awareness is a precursor to effective disaster response: if

you do not know where the damage is, you cannot deploy your resources efficiently.

Given the immense data that can be extracted by sensors, automated solutions to

processing and analyzing this data are imperative.

Any automated solution towards responding to natural disasters must aid in an-

swering two key questions: what needs are present, and where are these needs spatially

located. The former can include, for example, what types of damage are present in

a disaster area, what is the extent or the magnitude of the damage, etc. Meanwhile,

the latter can include any estimates of where the resources to attend the needs should

be sent. While it is advantageous to have very precise locations for the damage, more

often than not the estimates are rather coarse, requiring a team of responders to

arrive on the scene and perform further assessment.

1.2 Satellite imagery for disaster response

Among the immense data that can be gathered from a variety of sensors, imagery is

particularly attractive because it can be easily interpreted by humans. Of the sources

of visual data, satellite imagery is the current gold standard for disaster response.

Satellite imagery has a number of attractive features. A single satellite image can

cover a large area of tens of square miles. The temporal frequency of these images

can also be quite high; Planet Labs’ Doves, for example, can image most parts of

the planet daily [24]. In addition, many satellites have multispectral capabilities,

which means they can penetrate certain kinds of occlusion. Finally, satellite images

are georeferenced, meaning that there is a precise transformation that takes pixel

coodinates in the satellite image and converts them to real world coordinates. In

terms of the two key questions outlined in the previous section, this means that if

you can detect damage on a satellite image, you can exactly determine where that

damage is located.

Indeed, there is a fair amount of satellite imagery that is made available specif-

ically for the purpose of responding to natural disasters. Many international space
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agencies have agreed to share satellite imagery in response to a disaster situation

through the International Charter "Space and Major Disasters" [5]. Private enti-

ties have also increasingly allowed access to their imagery for this purpose. Maxar

Technologies, which operates the WorldView satellites, makes their imagery freely

available through their Open Data Program. Planet Labs, another American remote

sensing company, also unofficially supported the International Charter and provides

their imagery freely [45].

More than just the images themselves, there has recently been an effort to label

images for disaster response. A recent effort is the xView2 challenge, which produced

the xBD dataset. This dataset not only labels building footprints, but also provides

a label for how much damage the building sustained. As a result of the challenge,

machine learning models were created that took the Maxar Open Data Program

images and outputted the building footprints and damage labels. These models have

already been used in responding to the 2020 Australia wildfires [12].

However, satellite imagery is not without its limitations. To start, satellite im-

agery cannot have a ground sample distance less than 30cm due to legal restric-

tions [2]. While this might be appropriate for large scale damage recognition (e.g.

buildings), it might not be enough to detect damage to smaller components such as

utility poles. Furthermore, while Planet Labs’ Doves can image most areas once a

day, the frequency is much lower for more powerful satellites. Therefore, images that

are of high resolution might not be timely enough to comply with the short-term

disaster response necessities. In addition, while many private companies make some

of their imagery available, they have no mandate to do so and therefore can choose

not to release images that might have some commercial value. Finally and most im-

portantly, while satellite imagery can penetrate some forms of occlusion, it cannot so

far penetrate the most common form of occlusion: clouds. In responding to hurri-

canes in particular, this severely limits the ability of satellite imagery to be helpful

in the short-term. Because of these limitations, it is crucial to incorporate data from

additional sensing modalities into post-disaster needs assessment.
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(d)

Figure 1-2: Sample of CAP images [20].

1.3 Problem statement

One such potential data stream is imagery from the United States Civil Air Patrol.

The Civil Air Patrol (CAP) is the civilian auxiliary branch of the United States Air

Force. It was created during the Second World War in order to preserve civilian use of

aircraft and aid in the war effort [35]. Currently, its functions can be roughly divided

in two. First, it provides a variety of cadet and community education programs

centered around aviation. Second, it assists with a variety of emergency services [1].

While a significant portion of these are search and rescue missions, the services adapt

to whatever the country needs at the time. For example, CAP has delivered medical

supplies to areas in need during the COVID-19 crisis [27].

During their post-disaster missions, CAP volunteers take thousands of images of

the affected areas. Figure 1-2 shows examples of what these images look like. These
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are usually taken from very high resolution DSLR cameras, and are in fact the highest

resolution imagery we have available post-disaster for objects "close enough" to the

camera. They are also taken just a fairly short time after a disaster event, meaning

they could be much more useful for short-term disaster response than satellite imagery

can. Furthermore, these images are freely available to all who would want to use

them after the fact, making machine learning and other advanced analytics fairly

accessible [20].

Given that we have access to high quality, timely and location-tagged imagery,

it may be surprising to know that these images are rarely used in practice. This

is primarily because interpreting these images is an extremely onerous process. In

order to extract information from these images, a human would have to scan through

thousands of images for damage and determine where the scene is located. Given the

time sensitive nature of a natural disaster, such a process is infeasible. Nevertheless,

CAP imagery ought to be helpful in increasing situational awareness after a natural

disaster. If a human is capable of discerning useful information from an aerial image,

it may be possible to automate some or all of this process.

This thesis focuses on the following question: How can we use modern com-

puter vision techniques to utilize CAP imagery for post-disaster needs

assessment, specifically for the purpose of damage estimation and local-

ization? I broadly define damage as an identifiable destruction of utility in infras-

tructure resulting from a specific event (in our case, a natural disaster). I then define

estimation as the detection of an instance of damage in an image. Finally, localiza-

tion is the act of assigning world coordinates to the estimated instance of damage.

Jointly, I refer to the combination of these two questions as Damage Estimation and

Localization (DEL). This is a problem of interest to both Congress and the general

public. As a congressionally chartered program, CAP is funded by taxpayers, and

therefore there is a government interest that these funds are spent efficiently. Since in

the short-term lives are lost at a higher rate, there is also a public interest in ensuring

that these services contribute to disaster response capabilities.

18



Figure 1-3: Flowchart depicting how CAP imagery would be used in a short-term
humanitarian response context. Our approach is highlighted in yellow.

1.4 Contributions

There are three major contributions that stem from this thesis. First, I propose

a technical approach towards using CAP imagery to perform DEL. The process of

imaging an affected area and acting upon the gathered information is outlined in

Figure 1-3. The largest gap in this process is present in the DEL block. Here, I propose

an approach that combines two distinct techniques in computer vision to address this

DEL gap. The first technique is called structure from motion, and it is used to relate

coordinates on an image to coordinates in real space. The second technique is called

class activation mapping, and it is a machine learning approach towards detecting

damage within an image. This approach is novel because it helps bridge the gap

between the traditional computer vision approaches of the late twentieth century and

the modern machine learning based methods.

Second, I examine to what extent CAP imagery is useful as it exists right now

in order to inform humanitarian responders on instances of damage. I do this in a
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number of ways. To start, I provide a thorough examination of CAP as an entity,

its imaging practices, the images that are currently available, and the associated

image classification dataset. I then apply the aforementioned DEL approach to a

case study consisting of images from the 2016 Louisiana floods in order to compare

our flooding estimates with official city data. I perform a rigorous evaluation of the

specific metrics under which our approach fares better and worse. Finally, I reason

through the performance results using knowledge gained from CAP’s organizational

characteristics.

Finally, I use the insights from this evaluation to propose interventions that could

improve the utility of CAP imagery moving forward. These recommendations span

both the technical and policy realms. On the technical side, I highlight specific areas

of research that involve incorporating sensors other than CAP into our approach,

such as satellite or drone imagery. On the policy side, I urge CAP to document best

practices that would maximize the number of images that could be incorporated into

our approach; and I urge Congress to invest in CAP imaging infrastructure in a broad

sense, ranging from more powerful cameras to improved datasets. The combination

of both types of recommendations ensures that CAP is improved in a holistic manner.

The body of this thesis is organized as follows. In Chapter 2, I provide further

detail on CAP as an organization, on its imaging program, and on the image classi-

fication dataset we use in our analyses. In Chapter 3, I propose technical approach

to simultaneously solve both components of the DEL problem. In Chapter 4, I ap-

ply the proposed approach to the 2016 Louisiana floods case study, and highlight its

current strengths and weaknesses. Finally, in Chapter 5 I outline potential technical

and policy interventions that could make the CAP imagery program more effective.
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Chapter 2

Organizational Overview and Data

Sources

This chapter provides greater detail on Civil Air Patrol (CAP) as an organization,

its imaging program, and the Low Altitude Disaster Imagery Dataset. As a technical

matter, understanding the context in which aerial disaster imagery is taken helps

inform us which tools are most appropriate in order to incorporate these images into

disaster response. Furthermore, this helps us reason through which policy interven-

tions could be more or less effective in order to improve the imaging program. As we

see in Chapter 4, the effectiveness of using CAP imagery is constrained by the pro-

cesses that shape CAP itself as well as our image classification dataset. This chapter

will identify what the key features of these processes are.

2.1 Overview of the Civil Air Patrol

As mentioned previously, CAP is the civilian auxiliary branch of the United States

Air Force. It is comprised almost entirely of volunteers, who pay membership fees

and other expenses. Only more senior administrative members of CAP receive any

sort of pay for their work [32]. While CAP is an auxiliary of the United States Air

Force, military officers do not have authority over CAP members. The United States

Air Force can request assistance from CAP for non-combat missions, but CAP is
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typically reimbursed for any expenses associated with these missions. Furthermore,

CAP is only deemed an instrumentality of the Untied States when carrying out a

mission assigned by the Secretary of the Air Force [1].

CAP is divided into eight regions corresponding to various geographies in the

United States (e.g. Northeast Region and Pacific Region), which are then further

divided into wings for each state and territory. Each wing is comprised of various

units corresponding to the different localities within the state or territory [32]. While

there are processes and procedures that are intended to be followed throughout all

of CAP, the level of enforcement varies. In terms of disaster response, the most

local units are slated to respond first, followed by the state wing and if needed the

region [32]. Different regions can collaborate on the same emergency response. This

can be the case either because an emergency spans multiple CAP regions (such as

the COVID-19 crisis), or because the FEMA response regions are misaligned with the

CAP regions.

CAP does not respond to a disaster situation by its own accord. Rather, it is

tasked by some other emergency response entity (such as FEMA, the Department

of Homeland Security or a local fire department) with specific goals, such as search

and rescue, aerial transportation or damage assessment. Since CAP is operated by

volunteers, hiring CAP for these missions is much less expensive than hiring a private

entity. CAP solely charges for the expected cost of carrying out the mission, such as

fuel and maintenance, which is typically $160-200 per hour [32].

Given that this thesis revolves around CAP imagery, it is important to highlight

some key features of the imaging process. Every CAP aircraft is equipped with a

NIKON Pro Quality camera. Some models used are the NIKON D90, D5100 and

D7100 [32]. These are handheld cameras that are intended to be used by a photogra-

pher on the passenger seat to image targets requested by the client. As a result, these

images are almost always oblique (i.e., at an angle relative to the ground), as shown

in Figure 1-2. The vast majority of these images are geotagged (meaning that they

have a rough estimate of the camera’s GPS position at the time the image was taken)

and timestamped. From looking at the timestamps, we see that the vast majority
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of images were taken in the past five years. This likely corresponds to a number of

factors, such as the increased affordability of high quality cameras and the launch of

the online CAP imagery portal. It is fairly likely that CAP volunteers around the

country took images in the 2000’s that were never uploaded.

CAP offers a very comprehensive Airborne Photographer Task Guide that outlines

best practices for imaging targets. It includes general guidelines on how to operate

the camera, how to take effective photos, how to plan an imaging sortie, and how to

upload the images to the portal [31]. While these guidelines are available, it is not

clear how much photographers adhere to these best practices.

An important limitation of this mode of imaging is that, while the images are geo-

tagged they are not georeferenced. As mentioned previously, georeferencing refers to

finding a linear transformation that relates image coordinates and scene coordinates.

In short, it shows where the contents of the image are located in real coordinates, as

opposed to the geotag which shows where the camera is located. Since these images

are taken at an angle, the geotag is usually not a good approximation to the contents

of the image. Clearly the location of the scene is much more important for effective

disaster response than the location of the camera. While it is possible to georeference

images taken from handheld cameras (as discussed in Chapter 3), this is only possible

under very specific imaging conditions. These conditions are not included in the given

Task Guide.

CAP has started taking steps to address this limitation through the introduction

of two technologies. One of these is the Garmin VIRB camera, which provides top-

down images when attached to the wing of the aircraft. The other is the WaldoAir

XCAM sensor, a relatively low cost multispectral imaging system. Both of these allow

CAP to perform automatic georeferencing of the surveyed area. They are currently

being tested by CAP as a suitable addition to their aircrafts [15]. However, rolling out

these powerful sensors more broadly is not likely to happen in the near-term. This

is because these sensors are much more expensive than the NIKON cameras, and

because of existing best practices associated with the current process. Thus, locating

a scene within an image remains a challenge.
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2.2 Low Altitude Disaster Imagery Dataset

Another challenge with working with CAP imagery is interpreting them. Indeed,

locating the contents of an image is not helpful if we cannot understand what is in

the image. Modern approaches in a variety of contexts rely on machine learning,

whereby a model is trained to detect objects in images by detecting patterns in

training datasets with ground truth annotations. Until recently, such datasets did

not exist for this context.

In 2019, Liu et al published the Low Altitude Disaster Imagery (LADI) dataset [20].

LADI is a publicly available dataset consisting of images taken by CAP in the after-

math of natural disasters, and annotated by crowdsourced workers with hierarchical

image-level labels representing five broad categories: Damage, Environment, Infras-

tructure, Vehicles, and Water. Within each category, there are a number of more

specific annotation labels. Table 2.1 shows the available categories and labels for the

LADI dataset. The current LADI dataset does not provide any bounding box or

segmentation information.

Damage Environment Infrastructure Vehicles Water
damage (misc) dirt bridge aircraft flooding
flooding /
water damage grass building boat lake / pond

landslide lava dam / levee car ocean
road washout rocks pipes truck puddle

rubble / debris sand
utility or power
lines / electric
towers

river / stream

smoke / fire shrubs railway
snow / ice road
trees water tower

wireless / radio
communication
towers

Table 2.1: Available categories (in bold) and labels for the LADI dataset.

The LADI dataset was generated using Amazon Mechanical Turk, an online plat-

form where anonymous workers can fulfill preset tasks. In this case, a variable number
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of workers were paid to classify an image as one or more of the annotations presented

in Table 2.1. While these workers were not experts in disaster response necessarily,

some filtering or workers was done to ensure a level of quality. Workers were ini-

tially evaluated on their ability to recognize annotations from a small subset of CAP

images.

To my knowledge, this is the only freely available dataset that consists of post-

disaster images taken from oblique angles. As alluded to in Chapter 1, the vast

majority of work in this space has revolved around orthorectified imagery from satel-

lites or aerial platforms [12, 6, 34].The only similar dataset I encountered was the

Volan2018 dataset, which provides bounding box information for disaster imagery for

various related classes [33]; however, at the time of writing, it is not publicly avail-

able. Because of this, I rely on the LADI dataset for the analyses in this thesis. For

the reader’s benefit, in Appendix A I included a list of similar datasets with short

descriptions.

2.3 Practical bottlenecks

Given our goal of using CAP images to perform DEL, it is important to outline key

challenges in operationalizing these images. One set of challenges revolves around

the way that the images were taken. Specifically, the fact that these images are

oblique means that we cannot georeference them relative to an orthorectified satellite

or aerial image. In the case of satellite or top-down drone imagery, others have

been successful in applying visual feature-based methods such as SIFT to register the

image in question to another whose geotransform was known [22, 30, 48, 11]. However,

methods such as SIFT have been shown to perform poorly under extreme changes in

perspective and sensor specifications [48, 37], as was the case when I attempted to

use SIFT to georeference post-disaster aerial images and satellite images. Previous

research also attempted to geolocate images using Siamese neural networks in one

of two ways: either training the network to match certain features (e.g. buildings)

of a query image and a ground truth image [40] or by matching the entirety of a
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Figure 2-1: Bar plot showing the amount of images for which at least one worker
classified it as a particular label.

query image and a ground truth image [17, 37, 21]. While these approaches would be

suitable for estimating the GPS tag of aerial images, estimating the full geotransform

would require additional orientation information.

The other major challenge revolves around the labels that are available for this

type of imagery. Given that the LADI dataset is the only freely available dataset in

this context, we do not have access to popular image segmentation or object detection

techniques. Furthermore these labels are not equally represented in the dataset.

Figure 2-1 shows the amount of times each label was identified within an image by

at least one worker. I reason that the disparity in the labelling is due to two factors.

First, some labels are more easily identifiable than others by non-experts, especially

in certain contexts. For example, while landslide in an urban center might be easily

spotted, rubble in a more mountainous region might not be seen by non-experts as

damage. Second, some labels are simply imaged less. For example, in the United

States lava is only present in Hawaii, where CAP availability is more limited. Other
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labels, such as smoke and fire, represent flying hazards and are thus unlikely to be

captured by manned aircraft.

These two factors point to sources of bias within the available dataset. Indeed,

what types of damage are imaged and what damage is recognized in an image are

points in the data collection process where the biases of the client, of the CAP volun-

teers and of the labellers come into effect. Understanding the dynamics that produced

this dataset can hint at which scenarios we can expect to do a reasonable job at de-

tecting damage. Having taken these factors into consideration, I decided to limit our

analyses to detecting and locating flooding from LADI images. Of the damage labels,

Figure 2-1 suggests that flooding is likely to be the one we should expect the best

performance on.

Now that we have a full understanding of CAP’s disaster imaging program and

of the LADI dataset, our goal is to use CAP imagery to perform DEL. In order to

do so, we need to work around the two major sets of challenges outlined above. In

the following chapter, I will incorporate these insights in order to propose a technical

approach towards solving this problem.
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Chapter 3

Damage Estimation and Localization

3.1 Description of the technical approach

This chapter is devoted to outlining our technical approach towards using CAP im-

agery to perform damage estimation and localization, or DEL. As mentioned in Chap-

ter 2, given the state of the current LADI dataset I have decided to focus solely on

detecting and localizing flooding. However, it is important to emphasize that the

methods discussed here are much more broad, and can be generalized to any DEL of

any other type of damage.

Figure 3-1 provides a visual depiction of our approach. It consists of two stages:

a pre-disaster and a post-disaster stage. In the pre-disaster stage, a neural network

is trained to recognize image-level damage labels within an aerial disaster imagery

dataset. The post-disaster stage is comprised of two parallel pipelines, whose out-

puts are combined at the end. The first pipeline takes a collection of images from

an area of interest and reconstructs the scene using structure from motion. The

reconstructed point cloud then relates image coordinates to world coordinates via

a projective transformation. The second pipeline takes individual images from the

area of interest and produces polygons that cover the extent of the damage that is

detected using class activation mapping. Finally, the projective transformation is ap-

plied to the damage polygons to produce the DEL output. While our approach uses

image-level binary damage indicators and class activation maps due to the limited
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Figure 3-1: Flowchart depicting our approach. The different colors represent different
components that can be done independently.
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availability of training data, the same estimated projective transformation could be

applied to bounding boxes or segmentation masks generated from object detection or

semantic segmentation algorithms, respectively.

This chapter is organized as follows. Section 3.2 describes how I use image classi-

fication and class activation mapping to estimate the extent of flooding in an image.

Section 3.3 describes how I use structure from motion to reconstruct portions of the

area of interest and estimate a projective transformation relating image and world

coordinates, which is then applied to the class activation maps in order to finalize the

DEL.

3.2 Damage estimation using class activation map-

ping

This section describes our damage estimation pipeline. Given an image, our goal is to

find the extent of flooding within an image. The main technique used here is called

class activation mapping. Put simply, it takes a neural network that has been trained

on classifying images and produces a map of what areas of an image are most related

to a specific class. Because of this, I initially pose this as a classification problem of

detecting damage within an image. Then, I use class activation mapping to find the

boundaries of damage within the image.

3.2.1 Review of image classification

Image classification is a specific task in computer vision where a set of images is

given one or more classes. The goal is then to determine the image’s true class.

Modern approaches use a supervised learning paradigm. This paradigm is illustrated

in Figure 3-2. Assuming you have "enough" images with known labels, these images

are passed through some machine learning model that learns underlying patterns

related to a specific class. Once that model has been sufficiently trained, it is then

able to detect those same patterns on new images in order to classify them.
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Figure 3-2: Steps in a supervised learning pipeline [43].

The specific machine learning model that is deployed depends on the context.

An important class of machine learning models are deep neural networks. These are

models comprised of various layers, which are themselves made up of units. The con-

nections between successive units and layers encodes over the period of training the

relative importance of particular features towards a specific class. Specifically for im-

age classification, convolutional neural networks (CNN) have been especially popular.

First introduced by LeCun et al in 1989 [19], CNNs include convolutional layers that

are appropriate for detecting visual features such as corners or edges. CNNs have

proven to work exceedingly well in a variety of image classification tasks [18, 14, 38].

Therefore, they are an appropriate first step in our DEL problem.

3.2.2 CNN implementation details

Our first step is to detect whether an image contains flooding anywhere in the image.

I pose this problem as a classification problem, where for an image 𝑋𝑖 there is a label

𝑌 𝑡𝑟𝑢𝑒
𝑖 ∈ {0, 1} that corresponds to whether an image contains flooding or not. Our

goal is to predict 𝑌 𝑡𝑟𝑢𝑒
𝑖 . In the construction of the LADI dataset, images were shown

to a variable number of workers (generally between 3-5); each worker was asked to

identify which, if any, labels for a given category (e.g. "Damage") applied to that
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image [20]. Responses from all workers were recorded. As a result, images could have

potentially differing annotations between workers due to factors such as subjectivity

(worker did not think the label applied) or error (incorrect input). To account for

these conflicts, I designate three different labelling schemes for classifier training and

evaluation:

A) 𝐵𝑖,𝑗 > 1,

B) 𝐵𝑖,𝑗 > 2,

C) 𝐵𝑖,𝑗 > 1 and 𝐵𝑖,𝑗/𝑤𝑖 > median
∀𝑖

{𝐵𝑖,𝑗/𝑤𝑖},

where 𝐵𝑖,𝑗 is the number of workers that labelled image 𝑖 as class 𝑗 and 𝑤𝑖 is the

number of workers that labelled image 𝑖 at all. Training and testing using different

combinations of these labelling schemes ensures that we achieve a balance between

filtering out noise and preserving a sufficiently representative to train on.

To perform the image labeling task, I use ResNet-50 as a backbone architec-

ture due to its impressive performance in a variety of image classification tasks [14].

ResNet-50 is a CNN that is 50 layers deep. The main innovation of the ResNet

architecture compared to other feed-forward CNN architectures such as VGG and

AlexNet [18, 38] is the inclusion of shortcut connections that skip subsequent layers

and perform identity mapping. The ResNet architecture has been shown to solve the

degradation problem [13], whereby increasing the depth of a neural network results

in saturation and eventually degradation of its accuracy.

I split the dataset 80%/10%/10% for the training, validation and testing sets,

respectively. Images were scaled such that the shorter dimension was 224 pixels

long, and then cropped into a 224× 224 tile. Random rotations and horizontal flips

were applied during training. I initialized the ResNet with weights pretrained on the

ImageNet training set [7], and changed the output layer dimension from 1000 to 1. I

then trained the CNN with a batch size of 8, a learning rate of 0.001, a momentum of

0.9, using stochastic gradient descent as the optimization algorithm with the Binary

Cross-Entropy (BCE) loss:
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𝐿 =
𝑚∑︁
𝑖=1

𝑌 𝑡𝑟𝑢𝑒
𝑖 log 𝜎(𝑌 𝑝𝑟𝑒𝑑

𝑖 ) + (1− 𝑌 𝑡𝑟𝑢𝑒
𝑖 ) log 𝜎(1− 𝑌 𝑝𝑟𝑒𝑑

𝑖 ), (3.1)

where 𝑌 𝑝𝑟𝑒𝑑
𝑖 ∈ R1 is the output of the neural network, 𝑚 is the number of images

in the batch and 𝜎() represents the Sigmoid function.

3.2.3 Class activation mapping and polygon tracing

After training, I follow the class activation mapping (CAM) approach from Zhou

et al [47] to localize the extent of the detected class within the image. CAM is a

technique for weakly-supervised object detection (i.e., where bounding boxes are not

explicitly trained on) which takes advantage of the average pooling layer at the end

of the ResNet architecture to detect areas within an image that are important for

classifying a particular class. Using the terminology in [47], the output on the final

fully connected layer is given by:

𝑆𝑐 =
∑︁
𝑘

𝑤𝑐
𝑘

∑︁
𝑥,𝑦

𝑓𝑘(𝑥, 𝑦) =
∑︁
𝑥,𝑦

∑︁
𝑘

𝑤𝑐
𝑘𝑓𝑘(𝑥, 𝑦), (3.2)

where 𝑤𝑐
𝑘 is the weight corresponding to class 𝑐 for the 𝑘𝑡ℎ unit within conv5 (the

final block within ResNet-50) and 𝑓𝑘(𝑥, 𝑦) is the activation of the same 𝑘𝑡ℎ unit at

location (𝑥, 𝑦) (such that
∑︀

𝑥,𝑦 𝑓𝑘(𝑥, 𝑦) is the output of the global pooling layer). Let

𝑀𝑐(𝑥, 𝑦) =
∑︀

𝑘 𝑤
𝑐
𝑘𝑓𝑘(𝑥, 𝑦), so that:

𝑆𝑐 =
∑︁
𝑥,𝑦

𝑀𝑐(𝑥, 𝑦) (3.3)

Here, 𝑀𝑐(𝑥, 𝑦) corresponds to a measure of importance of a spatial coordinate (𝑥,

𝑦) for the class 𝑐 = flooding/water damage, which corresponds to the class activation

map. In order to determine the boundaries of the flooding instances, I perform a

simple thresholding on 𝑀𝑐:
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(a) Original image (b) CAM mask (c) Polygon tracing

Figure 3-3: Stages of our polygon tracing approach.

𝑀mask
𝑐 (𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 𝑀𝑐(𝑥, 𝑦) ≥ 0

0 otherwise
(3.4)

The last step in the estimation pipeline is to convert the masked image into a

set of polygons, so that I can easily transform the boundaries of flooding across

coordinate systems. I do so by first extracting countours using [39], which are then

categorized into parent (the outer border of a component) and child (the border of

any holes within a component) components. Polygons are then saved from these

parent/child components, so that the projective transformation relating image and

world coordinates can be applied to them. Figure 3-3 shows the different stages of

this procedure.

3.3 Damage localization using structure from mo-

tion

Our goal now is to transform these polygons, which are in image coordinates, into

world coordinates, which is our localization pipeline. The main technique used here is

called structure from motion, which essentially finds common point within images and

uses known intrinsic camera parameters to estimate depth in an image. The process of

using structure from motion to estimate the projective transformation relating image
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and world coordinates and applying the transformation to the flooding polygons is

described in this section.

3.3.1 Review of structure from motion

Structure from motion is a technique that, using images from a camera moving

through an environment, can produce a point cloud of the environment [3]. By

taking advantage of the GPS tags from the image metadata or from outside sensors,

structure from motion has been used to create inexpensive, georeferenced elevation

models from drone and aircraft imagery [9]. I take this same approach as an interme-

diate step to obtaining the projective transformation that relates image coordinates

to world coordinates.

Suppose you have two images from two different pinhole cameras with two centers

of projection, 𝐶1 and 𝐶2, and in these images you have a series of corresponding

points (which are points on the image that are of the same object). I denote those

points 𝑚𝑖,𝑗, where:

𝑚𝑖,𝑗 =

⎡⎢⎢⎢⎣
𝑥𝑖,𝑗

𝑦𝑖,𝑗

1

⎤⎥⎥⎥⎦ (3.5)

Here, 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗 are the pixel coordinates of point 𝑖 in image 𝑗. These coordinates

are measured from the top left corner of the image. The relationship between these

points is shown in Figure 3-4. Note that a single image is not sufficient to uniquely

determine the position of 𝑀 , as it could be anywhere on the ray connecting the center

of projection (in the diagram, 𝐶1 and 𝐶2) to the point on the image. Conversely, if we

have two images with a corresponding pair of points and the camera pose (rotation

and translation) then we can uniquely determine the location of 𝑀 .

Now suppose that the two cameras are calibrated. This means that we know the

principal point (the intersection of the perpendicular ray that connects the center of

projection and the image plane) and the focal length (the distance in pixel length

between the center of projection and the image plane). We can express this in matrix
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Figure 3-4: Diagram showing two corresponding points, 𝑚1 and 𝑚2, of a real world
point 𝑀 [25].

form as:

𝐾 =

⎡⎢⎢⎢⎣
𝛼, 0, 𝑝𝑥

0, 𝛼, 𝑝𝑦

0, 0, 1

⎤⎥⎥⎥⎦ (3.6)

Here, 𝛼 is the focal length, and (𝑝𝑥, 𝑝𝑦) are the coordinates of the principal point.

We can now relate the two sets of corresponding points by the essential matrix 𝐸:

(𝐾−1𝑚𝑖,2)
𝑇𝐸𝐾−1𝑚𝑖,1 = 0 (3.7)

This essential matrix has very desirable properties. First, it can be estimated

using just four corresponding pairs of points. This estimate can be made more robust

by adding more pairs. Second, it can be decomposed into a rotation matrix 𝑅 and

a translation vector 𝑡 up to a scale factor. Given that we are provided GPS tags for

all the images, we can recover the scale factor and arrive at a unique solution [25].

From an initial reconstruction, additional images can be added either by repeating

the same process or by a method called Perspective-n-Point, where the camera pose

is automatically estimated by linking corresponding points in the new image with

points that have already been reconstructed in 3D.

37



3.3.2 Reconstruction using OpenSfM

I base my implementation off the OpenSfM library, an open source library for struc-

ture from motion [23]. I first choose a specific area of interest and filter out all

images within the LADI dataset whose GPS tags were not within 5 km for the area

of interest boundary. Following the filtering step, HAHOG features (which are a com-

bination of the Hessian affine feature point detector and the histogram of oriented

gradients descriptor) are extracted from all images and matched across images using

the FLANN algorithm [26]. Then, a reconstruction is initialized from two views by

estimating the essential matrix and decomposing the matrix into translation and ro-

tation components [3]. Afterwards, additional images are added to the reconstruction

using Perspective-n-Point [8]. After each image is added, the camera poses and recon-

structed 3D points are jointly optimized (a process called bundle adjustment [41]).

OpenSfM then uses the GPS tags to properly align the reconstruction in world coor-

dinates. If images still remain that have not been added to an existing reconstruction,

a new reconstruction is initialized and the process repeats until no more images can

be reconstructed. Finally, OpenSfM outputs a collection of camera poses and recon-

structed feature points, in east, north, up (ENU) coordinates with the average of the

GPS coordinates as the reference point. ENU coordinates are measured in meters

from a reference point (in our case, the average of the GPS tags), and are aligned

so that the x-, y- and z-axis are aligned with the east, north and up directions,

respectively.

3.3.3 Estimating the up-vector

Because fixed wing aircraft have a relatively large turning radius compared to rotary-

wing aircraft, sequential images collected from fixed-wing platforms tend to be ap-

proximately collinear. This means that some reconstructions potentially have an

additional degree of freedom from rotating about the line that goes through the GPS

coordinates. Therefore, it is necessary to estimate the direction of the up-vector (i.e.,

the vector opposite to the direction of gravity) and enforce it in the reconstruction.
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Previous implementations of structure from motion in urban environments have sug-

gested estimating vanishing points to estimate the up-vector [44]. This can be difficult

if there are few straight features, such as roads, or high amounts of vegetation, which

is common in rural areas.

To address the issue of estimating the up-vector, I propose an approach which

assumes the ground is approximately flat. I first fit a plane through the reconstructed

features using RANSAC [8]. There is a pair of possible antiparallel unit normal vectors

to this plane, one of which is the up-vector. Because of the aerial nature of the data,

the location of the images must be above the ground plane. Therefore, I choose the

vector that has a positive projection onto the image location in ENU coordinates and

denote it 𝑣𝑢𝑝. Finally, I rotate the reconstruction so that 𝑣𝑢𝑝 indeed points upwards.

Specifically, I rotate it by 𝑅𝑧 such that 𝑅𝑧𝑣𝑢𝑝 = 𝑧 when it is initialized, and the

up-vector is enforced during bundle adjustment.

3.3.4 Image-to-world projective transformation

The final step in our georeferencing pipeline is estimating the transformation from im-

age coordinates to world coordinates and applying this transformation to the detected

damage polygons. As discussed previously, the images are of mostly flat surfaces,

meaning both sets of coordinates can be related by a projective transformation that

can be estimated with at least four correspondences [3], and outliers can be filtered

through RANSAC [8]. Of all of the images that were reconstructed using OpenSfM,

I retained those where at least 20% of matches between image coordinates and world

coordinates were inliers.

Of the retained images, I found that some images produced extremely large image

footprints (i.e., the projection of the image edges onto the ground). Upon inspection, I

saw that these were images that were so oblique that the horizon was visible. Because

these images require more complex transformations, I decided to disregard these

images for our implementation. I considered two criteria for eliminating such images.

First, I only eliminated images whose total area were greater than some value 𝛾1.

Second, I did not consider images where the ratio of the longest side to the shortest
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side of the minimum area rectangle that covered the entire footprint were greater

than 𝛾2. The projective transformation is applied to all polygons generated by the

procedure in Section 3.2 to obtain our flooding estimate. I chose the values of 𝛾1 and

𝛾2 empirically to maximize the prediction precision.

This projective transformation is the link between the structure from motion and

the damage detection branches in Figure 3-1. Thus, applying this projective transfor-

mation allows us to automatically interpret CAP images and perform DEL. Of course,

the actual performance of this method remains to be evaluated. This evaluation is

the focus of the following chapter.
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Chapter 4

Evaluation on a Case Study: the 2016

Louisiana Floods

In this section, I provide an evaluation of my approach at predicting real-world in-

stances of flooding. An ideal evaluation would involve comparing the output of my

structure from motion and class activation mapping pipelines against ground truth

values of the geotransform and the extent of flooding of an image, respectively. In

order to quantify such an evaluation, I would present the intersection over union

metric for both the transform of the CAP image and the flooding polygons within

the image. However, neither of the required data are available. Given this, both of

the ideal evaluation methods are infeasible. The most I can present are qualitative

evaluations of whether my approach seems reasonable.

Instead of the ideal quantitative evaluation, in this thesis I present an evalua-

tion against data from the East Baton Rouge parish of the 2016 Louisiana Floods.

Figure 4-1 shows the administrative boundary of the East Baton Rouge parish in

Louisiana, the parish’s estimated flood inundation area [28], and the coordinates of

all CAP image with GPS locations within 5 km of the administrative boundary. In

total, the flooding event covered 536 km2 (44% of the total area of the parish). My

analysis includes 1615 CAP images that were taken in August 2016 immediately after

the flooding event. Comparing the output of my approach against this data can serve

as proxy for having the geotransforms and the segmented images.
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Figure 4-1: Map of East Baton Rouge parish from the 2016 Louisiana floods, along
with the GPS tags of all images taken within 5 km of the parish boundary. Map uses
UTM 15N coordinates.

This chapter is organized as follows. In Section 4.1, I evaluate the performance of

my image classifier for the flooding/water damage label on the entire LADI dataset,

using the different labelling schemes described in Section 3.2.2. Next, in Section 4.2,

I present the results of the class activation mapping procedure for localizing flood-

ing/water damage within an image. In Section 4.3, I apply my approach to the 2016

Louisiana Floods data to classify and localize flooding damage captured from CAP

photographers, and compare it against the parish’s post-event estimates of the flood-

ing extent to evaluate the precision of my approach. Finally, in Section 4.4 I discuss

some key considerations regarding extending my approach to other labels.
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Train
label

Test
label

Accuracy
(%)

Precision
(%)

Recall
(%)

A
A 77 65 79
B 71 38 91
C 70 42 83

B
A 77 75 53
B 83 54 68
C 80 55 64

C
A 79 73 65
B 80 48 80
C 83 53 69

Table 4.1: Accuracy, precision and recall values for the three ResNet models. Train
label refers to the set of labels used in training, while Test label refers to the set of
labels against which each model was evaluated.

4.1 Classification results

Table 4.1 shows the testing accuracy, precision and recall values for the three ResNet50

classifiers that were trained (one for each ground truth training labelling scheme

defined in 3.2.2). In order to properly compare the three models, each of the three

classifiers was also evaluated against the remaining two labelling schemes. Regardless

of the labelling, the actual images that comprised the testing set (as well as the

training and validation sets) were the same for all three schemes. For the purposes

of this thesis, I will refer to each of the models according to their training labelling

scheme.

Unsurprisingly, each of three models had the highest accuracy when compared

against the labelling scheme they were trained on. With the other two metrics,

though, there are noticeable trends. In terms of precision, model B had the highest

precision when evaluated against any labelling scheme, followed by C and finally A.

With recall, the opposite holds: A has the highest recall across the board, followed

by C and then B. These trends are not difficult to justify, since B necessarily has a

higher standard for classification as flooding than A. For flooding, C is a compromise

between the most lenient labelling scheme and the strictest one. In the particular

context of disaster response, we consider false positives to be of lower regret than

false negatives. As such, I proceed using model A for the remainder of the section.
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4.2 Class activation mapping results

I now present an evaluation of the class activation mapping procedure on the flooding

images. While my observations in this section will be qualitative, in Section 4.3 I

will quantitatively evaluate the performance of my approach derived from the class

activation map as a proxy for evaluating the efficacy of the class activation mapping

procedure.

Figure 4-2 shows a sample of LADI images that were classified as having flood-

ing/water damage, along with the estimated extent of flooding. We can see that for

the most part, this method does an adequate job of tracing the extent of water in

the image. Flooding is slightly more complicated. While Figures 4-2a, 4-2b and 4-2c

very clearly show flooding events, the top portion of Figure 4-2d seems to simply be

picking up the shoreline. As an important note, I noticed that many images that show

large bodies of water also tend to include the horizon in the flooding polygon (e.g.

Figure 4-2c). This might be because flooding typically covers a large portion of area,

and therefore images that include the horizon might be more likely to also include

flooding. This underscores the importance of filtering images with large footprints

after georeferencing. Figure 4-3 shows images that were identified as flooding from

the Louisiana 2016 floods. Even in this case where many images have large portions

of flooding, my approach is still able to trace the extent of the water.

4.3 DEL results

Of the 1615 CAP images that were considered, 809 were successfully reconstructed

by OpenSfM. At the same time, of the 1615 images 996 were identified as having

flooding. Finally, 559 images completed the georeferencing pipeline and were identi-

fied as flooding. Additional images were the filtered based on the criteria described

in Section 3.3.4.

I used these images to estimate flooding using three approaches. First, I use the

GPS tag of these images as a baseline, where I calculate the precision as the proportion

44



(a) (b)

(c) (d)

Figure 4-2: Sample of CAP images identified as flooding by ResNet model A and
their associated damage polygons.
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(a) (b)

(c) (d)

Figure 4-3: Sample of CAP images from the 2016 Louisiana floods and their associated
damage polygons.
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Figure 4-4: Flooding estimates and precision values using GPS tags (Precision: 52%)

of the flood images that lie in the FEMA estimates. Second, I estimate the flooding

using the entire footprints of images classified as containing “flooding/water." Finally,

I use my approach as the flood estimate. We only consider the flooding within the

East Baton Rouge administrative boundary, since I do not have data on the flooding

extent outside of the boundary.

Figure 4-4, Figure 4-5 and Figure 4-6 show the different flooding estimates overlaid

against the official estimates, as well as the precision values of each method. These

estimates were made with 𝛾1 = 4 and 𝛾2 = 5 km2, so that ultimately 243 images were

used. These results show a clear improvement going from using the GPS locations

of the images to using the georeferenced footprint. This suggests that using the

GPS tags of the images on their own is insufficient, since a large number of images

containing flooding were taken over areas that were not flooded, and vice versa.

Furthermore, we see that my approach provides an improvement in precision com-

pared to using the full image footprint. Figure 4-7 provides a close-up of the flooding

47



Figure 4-5: Flooding estimates and precision values using image footprints (Precision:
85%)

estimates for both methods, color-coded as true or false positive. Especially in areas

at the edges of the flooding extent, my method provides a more precise outline of the

official estimates than using the full image footprints.

To characterize the improvement that my approach provides over using the image

footprints, I compute in Table 4.2 the difference in precisions 𝑃my approach − 𝑃footprint

for various values of 𝛾1 and 𝛾2, where 𝑃𝑚 is precision of method 𝑚. We see that

for all chosen combinations of thresholds, my approach has higher precision than the

𝛾2 (km2)
1 2.5 5 10

2 4 4 4 2
3 5 4 2 2
4 5 4 3 16

𝛾1
(unitless)

5 5 4 9 19

Table 4.2: 𝑃my approach −𝑃footprint in percentage points for various values of 𝛾1 and 𝛾2.
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Figure 4-6: Flooding estimates and precision values using my approach (Precision:
88%)

approach using only the image footprints. Furthermore, while the lowest prediction

value I obtained with my approach was 86% (for 𝛾1 = 5 and 𝛾2 = 5), the lowest

precision value of the image footprint was 68% (𝛾1 = 5 and 𝛾2 = 10), suggesting that

using the full image footprint is less robust to the choice of these parameters.

However, these maps also show that there are large portions of flooding that go

undetected by either method. Indeed, my method only captures 3% of the total

flooding in the scene. I posit that this may be a result of three key factors. First,

there are some areas that are not detected by the image classifier as flooding. At

worst the recall of my classifier is 79%, meaning that 21% of flooding images are not

registered as flooding. Second, there could be large areas that are simply not imaged.

Recall that CAP missions typically have a specific target set by a client. If the client

does not include the entire parish, some areas will get left out. Figure 4-8 hints that

this may be the case. Notice that while there are large rural areas that are flooded in
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(a) Image footprint (b) My approach

Figure 4-7: Close-up of flooding estimates for both approaches, showing true and
false positive regions.

(a) GPS tags (b) Google Maps screenshot of the parish

Figure 4-8: Comparison of GPS tags to a Google Maps screenshot of the parish.
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the top right, these areas are barely imaged. Such blind spots might present equity

concerns, as people that live in rural areas (or simply areas that are not seen as

important by the client) may have to wait longer for CAP to detect that there is

damage in their area. Finally, recall that it is not sufficient that an area is imaged.

For georeferencing to work, two or more images have to be pointing at roughly the

same scene. Therefore, if a CAP operator captures a single image of a scene or

images that do not have enough overlap (which absent any guidelines is a reasonable

action), those images would not be able to go through the entire DEL pipeline. Of the

1615 images, only 809 were reconstructed using structure from motion, meaning that

roughly half of the images were thrown out to start with. Since images are further

filtered when certain imaging criteria are met, this can lead to drastic reductions in

the amount of usable imagery.

4.4 Moving past flooding

I chose to focus specifically on detecting flooding for two reasons. First, empirically I

observed that it was the highest quality "Damage" label simply by observing whether

an image labelled as flooding unambiguously contained flooding. Second, FEMA and

others already rely on methods for detecting the extent of flooding after the fact,

which made the quantitative evaluation of my approach much simpler. However,

given that these methods exist, my approach is arguably more useful for "Damage"

labels for which we do not have existing methods other than manual surveys, such as

rubble.

While generalizing this to other labels is certainly possible, and I have designed my

approach to be flexible to DEL of any kind of damage, I believe that currently this is

operationally very challenging. Figure 4-9 shows the maximum, median and minimum

precision performance of various classifiers when trained on the LADI dataset in

TRECVID 2020, a popular video and image analysis and retrieval evaluation [4].

This plot shows that, while some labels such as water and building are easier to

detect, others show very poor detection performance. Crucially, all "Damage" labels
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Figure 4-9: Maximum, median and minimum precision performance for various clas-
sifiers when trained on the LADI dataset in TRECVID 2020 [4].

except flooding/water damage have a median precision value less than 50%. Given

that class activation mapping relies on classification performance, it is reasonable to

believe that damage estimation would not work well with these labels. While it is

difficult to know precisely why some labels are more easily recognizable than others,

it is likely correlated with how often each label actually appears in the dataset (see

Figure 2-1).

To conclude, I have shown that given a set of images from a disaster area, we

can apply my approach to detect flooding with fairly high precision. However, there

are still large portions of inundated areas that undetected by my approach. This is

primarily due to poor imaging throughout the disaster region. Furthermore, a class

activation mapping approach likely would not work for other types of damage such

as rubble because of poor representation in the LADI dataset. All of this points to

important work that needs to be carried out in order to fully operationalize CAP

imagery. In the next and final chapter of this thesis, I will propose technical and

policy interventions to address these shortcomings.
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Chapter 5

Improving post-disaster imaging

In this thesis, I have jointly provided an examination of CAP’s organizational char-

acteristics as well as those of its post-disaster imaging program; and proposed an

approach towards using their images to estimate and localize damage, a problem re-

ferred to as DEL. I showed that we can do this with high precision, but that there are

still large portions of damage that could remain undetected. Furthermore, I have out-

lined some challenges regarding generalizing our approach towards additional damage

labels, even though in principle it is possible to do.

This final chapter of my thesis will explore different technical and policy interven-

tions that could improve the utility of the CAP imaging program. They are guided

by the principle that we do currently have the capacity to quickly and effectively

carry out DEL. Doing so is in line with both of the major motivations outlined in

Chapter 1: saving human lives and increasing the value for money of taxpayer dollars.

5.1 Documenting best practices

In Chapter 2.1, we saw that CAP provides a comprehensive Aerial Photographer Task

Guide that guides photographers on how to effectively image areas after disaster.

Likewise, CAP offers full task guides for all other personnel involved in imaging

missions. Of course, these guidelines are not suited for the imaging requirements laid

out in Chapter 3.
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The most immediate and straightforward intervention that can be put in place

is to document best practices suitable for our DEL approach. This of course should

happen in conversation with CAP volunteers to ensure that they are operationally

feasible. Based on the imaging requirements listed in this thesis, these best practices

would include:

1. Burst-imaging of important scenes to ensure they can be georeferenced

2. Use of the circular flight patterns shown in the Task Guide [31] to remove

ambiguity in the 3D reconstruction (see Chapter 3.3.3)

3. Avoid taking images that are so oblique that they include the horizon

4. If possible, use cameras with orientation estimates (e.g. magnetic compasses)

to aid in reconstruction

5. Seek opportunities to image areas that might be underserved (e.g. rural com-

munities)

These best practices should be incorporated into CAP photographer training to

ensure that all volunteers are aware of them. Furthermore, they should be periodi-

cally reviewed to ensure that new technological developments, such as the VIRB and

WaldoAir imaging systems discussed in Chapter 2 are taken into account once they

are more ubiquitous.

5.2 A multi-sensor approach

So far, we have only considered an approach that works solely off of CAP imagery to

solve the DEL problem. It is worth pointing out that there is no reason to think that

low-altitude aerial imagery alone is enough (or indeed will ever be enough) to detect

all or even most instances of damage. Aerial imagery might get around occlusion

from clouds, but there are still other forms of occlusion that still hamper the utility

of aerial imagery, such as trees. Furthermore, it may be impossible to fully image
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smoke and fire due to the flight hazard that smoke presents. Finally, even in the most

equitable of flight plans it is essentially inevitable that some areas will lack priority

and thus not be imaged.

That being said, modern post-disaster needs assessment does not rely on just one

sensor. Rather, it takes into account input from different sensing systems to arrive at

a more complete picture of the situation. For example, the East Baton Rouge flooding

estimates came from a variety of sources, including 911 call-outs, Baton Rouge Fire

Department search and rescue data, 311 requests for service, street-level damage

assessments from City-Parish staff and other public officials, debris collection routes,

road closure information, NOAA imagery, and FEMA DFIRM flood hazard areas [28].

There are other potential sources of data that could aid in needs assessment, including

drone and satellite imagery.

CAP imagery has for the most part evaded use because, unlike many of the data

streams described above, there was no automated way of interpreting the images being

gathered. With the approach described in this thesis, CAP imagery could easily find

its role within the larger needs assessment framework. Additional work needs to be

conducted to fully understand what types of damage and under what circumstances

CAP imagery contributes to post-disaster needs assessment relative to other types

of imagery and data streams. Once this niche has been identified, I believe CAP

imagery would provide an excellent value for money given how much information can

be extracted and how inexpensive this process is.

5.3 CAP-to-satellite georeferencing

More than using multiple sensing systems in DEL, it may be even possible to incorpo-

rate other modalities into our own approach. For example, in Chapter 3.3, I outlined

several conditions needed in order to georeference a CAP image. In summary, there

need to be at least two images with enough overlap that common points between

them can be automatically extracted. This actually puts a significant ceiling on how

many images can be georeferenced. Absent any specific instructions to the contrary,
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it is entirely reasonable that a volunteer would think that images that point at the

same scene are a waste of effort. This is clearly visible from our case study, as almost

half of the images (806 of out 1615) were unable to be georeferenced at all. Add the

additional filters listed in Chapter 3.3.4 and you are throwing away a lot of potentially

useful data. Because of this, it would be preferable not to have to rely on this method

alone for georeferencing.

One approach that I have experimented with is georeferencing a CAP image

against a satellite image. If possible, this would have very desirable properties. Satel-

lite images already have a known, high-accuracy geotransform, which would allow

us to directly georeference CAP image that we have found within the satellite tile.

Furthermore, at this point the entire globe has been imaged via satellites, so finding

a tile that corresponds to a CAP image is at least possible. However, one crucial

limitation is that popular visual features such as ORB or SIFT have been shown to

perform poorly under extreme changes in perspective [48, 37], as was the case when

we attempted this. One could in theory establish ground truth correspondences be-

tween points on a CAP and satellite image and train some machine learning model

on this dataset, but this would be extremely onerous and there are no obvious ways

to automate this process.

I am currently working on a weakly supervised approach towards this that com-

bines the general idea of class activation mapping [47] with the work on cross-view

geolocalization of Workman et al and Liu et al [46, 21]. Cross-view geolocalization

refers to the problem of finding the most likely place a ground-level image was taken

given a series of satellite images. Note that this problem is distinct from that of

georeferencing, which seeks to estimate a geotransform for a given image, and also

note that this problem is irrelevant to our specific application given that we already

have coarse GPS estimates for our images. This problem has typically been solved by

the authors and by others by using Siamese neural networks to establish similarity

between ground-level and satellite images.

If a neural network model can give a measure of similarity, it is also possible that

it can distinguish what specific aspects of a pair of images are similar. For example,
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it could point to a tree or a house in both images. This is the same idea that has been

used in class activation mapping for detecting which areas of an image correspond to

a specific class [47]. I believe it is possible to exploit this property that has so far been

used mostly for image classification to detect similar patches between images. In the

specific case of a CAP and satellite pair, knowing what areas of an image correspond

to another can yield an estimate of a geotransform. While this idea has not been

fully tested, I believe that this approach could help lift the current ceiling preventing

us from using a greater number of CAP images in our damage estimates.

5.4 Investing in CAP imaging infrastructure

My final recommendation is more aspirational and revolves around investment. CAP

imagery is rarely used in disaster response and there are little signs of government

interest in investing effort and funding towards improving the program. Given that

it is by far the cheapest form of aerial surveillance after a disaster and that we have

shown that it is indeed possible to perform DEL using solely CAP imagery, I believe

the program is worth further government investment.

There are two main areas I believe would benefit from additional government

interest. The first is imaging equipment. As discussed in Chapter 2, all aircraft

are equipped with handheld DSLR cameras which is what is currently being used

for disaster imaging. A much, much smaller subset of cameras are outfitted with

VIRB or WaldoAir systems, which are currently being tested to see if wider adoption

is warranted [15]. There is little reason to believe that these would not be a large

improvement over the status quo. However, the Department of Homeland Security

has indicated that it has no intention in the short term of phasing out the current

DSLR cameras in favor of the more useful VIRB and WaldoAir systems.

I believe that this is a mistake. Completely eliminating the georeferencing ceiling

would immensely improve the utility of CAP imagery and therefore lead to a greater

amount of damage detected in a short amount of time. While we do not make any

economic analyses on the tradeoff between the cost of these sensors and the potential
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safeguarding of life and property, I believe it is appropriate for CAP to at least have

one aircraft equipped with either one of these sensors per state, with a potential for

more in states that are more often affected by natural disasters. This would ensure

that CAP retains the capability to conduct proper surveillance after these events.

The second area worth investing on is low altitude imaging datasets. With the

exception of LADI [20], there are no publicly available datasets for low-altitude dis-

aster imaging. On the contrary, there are no shortage of satellite and orthorectified

aerial imagery datasets for a variety of purposes, including disaster response. Given

our results, I believe it would be appropriate to invest in more complete, accurate,

and robust datasets. In particular, I believe that there should exist datasets that are

completely labelled by experts in the disaster response community and that include

bounding boxes or segmented images. In my conversations with the Humanitarian

Assistance and Disaster Relief Group and MIT Lincoln Laboratory I have been made

aware of efforts to augment LADI with bounding boxes. However, funding for the

project has not materialized. I believe investing in these improvements to low-altitude

disaster datasets would improve the accuracy and performance of our damage esti-

mation pipeline.

5.5 Concluding remarks

I began this thesis talking about the steps in FEMA’s Recovery Continuum. Specif-

ically, I mentioned that the steps within the Continuum are interrelated, and that

it would be unwise to consider one without consideration for the others. Many of

the steps outlined in this final chapter are preparedness steps, and it is of crucial

importance that we take these steps as soon as possible since more effective short-

term recovery would indeed ensure a more effective medium- and long-term recovery

as well. This involves a holistic approach involving multiple stakeholders, areas of

expertise and technologies, and a crucial component of that is CAP.

I believe that CAP imagery has fallen into something of a vicious cycle. Because

it has not up until this point been a reliable stream of information for post-disaster
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needs assessment, it has received little interest from the disaster response community

and the federal government. As a result, the program cannot improve which in turn

decreases its utility, thus perpetuating the cycle.

In working towards this thesis, my goal has been to break this cycle; my goal has

been to show that CAP imagery can indeed serve as a vital tool for aerial surveillance

following a natural disaster. I have shown that even in its current state, we can

estimate and localize damage with very high precision. My expectation now is that

this work can be used as a tool for advocacy on various fronts. For CAP, this thesis

can advocate for new processes that would lend themselves better towards DEL. For

the federal government, this thesis can advocate for renewed interest and funding to

improve this important program. And for academia, this thesis shows that there is

exciting and important work to be done in disaster response. All of these fronts are

of crucial importance, especially in the face of increasing frequency and intensity of

natural disasters. In the end, renewed interest in this line of work can help save lives.
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Appendix A

Additional Disaster Imagery Datasets

1. xBD : A satellite imagery disaster dataset. It shows areas before and after a

natural disaster. Contains building footprints, level of damage for each build-

ing, bounding boxes for different indicators of damage, and image metadata

(including geotransform) [12].

2. FloodNet : A UAV image flooding dataset, taken after Hurricane Harvey. Shows

segmented images for a variety of pixel-level classes, including building, flooding,

and trees [34].

3. Benchmark Dataset from Chen et al: A dataset containing aerial images from

the U.S. National Oceanic and Atmospheric Administration and satellite images

from DigitalGlobe taken after Hurricane Harvey. Contains the raster data as

well as vector data with building damage estimates [6].

4. GEO-CAN Christchurch dataset: A dataset containing post-earthquake data

from the Christchurch earthquake in 2011. It includes aerial imagery as well

as building damage bounding boxes that were gathered by an on-the-ground

survey team [10].

5. Volan2018 : An aerial disaster imagery dataset that contains bounding box

annotations for various on-the-ground objects, including debris and flooding.

Other than LADI, this is the only dataset that I am aware of that contains
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oblique imagery. As of the writing of this thesis, this dataset is not freely

available [33]
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