
Languages and Compilers for Rendering and Image
Processing

by

Luke Anderson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021

Certified by. .
Frédo Durand

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Languages and Compilers for Rendering and Image Processing

by

Luke Anderson

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Even though computer graphics applications are widely used, they remain challenging
to implement and graphics programming systems must navigate conflicting trade-offs
between correctness, performance, and hardware portability. This thesis describes
the design and implementation of domain specific languages with particular trade-off
decisions in mind and the application of machine learning to these languages and
their compilers.

Rendering systems suffer from a tension between separation of concerns and per-
formance. Existing rendering systems typically focus on performance, but complex
probability computations make advanced rendering algorithms difficult to implement
correctly. We first identify some common operations that are foundational to many
rendering algorithms, describe some goals of an ideal rendering system, explore the
space of trade-offs in achieving these goals, and discuss some possible implementa-
tion strategies. We then present Aether, a domain specific language for rendering,
designed with a focus on correctness. Users write sampling code using reusable build-
ing block components and all probability code is then automatically generated. We
demonstrate the effectiveness of this approach by implementing a range of modern
rendering algorithms, including the novel tridirectional path tracing, which otherwise
would have been prohibitively difficult to implement.

Halide provides a modular approach to writing image processing code but achiev-
ing high performance still requires considerable manual effort and expertise. We
present a new automatic algorithm that quickly generates high performance GPU
implementations of imaging and vision pipelines, directly from high-level Halide algo-
rithm code. We address the scalability challenge of extending search-based automatic
scheduling to the nested parallelism on GPU architectures in reasonable compile time.
We find schedules that are on average 1.7x faster than existing automatic solutions
(up to 5x), and competitive with what the best human experts were able to achieve
in an active effort to beat our automatic results.

Thesis Supervisor: Frédo Durand
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First and foremost, I am indebted to my advisor, Frédo Durand. It has been a great

learning experience being his student and being part of the graphics group. I am

grateful for the freedom he has given me to explore different areas and to work on

things I’m interested in. I thank him for his guidance throughout my time here.

I thank my committee members, Wojciech Matusik and Jonathan Ragan-Kelley,

for their suggestions on improving this thesis.

I’ve been fortunate to meet and collaborate with a group of very talented re-

searchers, from whom I have learned a great deal: Andrew Adams, Frédo Durand,

Tian Jin, Jaakko Lehtinen, Tzu-Mao Li, Karima Ma, and Jonathan Ragan-Kelley.

This work would not have been possible without them. Tzu-Mao Li, in particular,

was directly or indirectly involved in all the projects I worked on. To Aether he made

a substantial contribution and in general he has always been very giving of his time

and expertise to answer questions, give guidance, or just chat about ideas, for which

I am very appreciative.

I thank all the friends I have made in my time at MIT. A lot my fondest memories

are of times spent hanging out with officemates or people who visited the office, having

lunch together, going to karaoke, playing chess or table tennis or foosball or pictionary

and other online games. I thank them all for making my time here memorable and

for enriching my life.

Last but not least, I thank my family for their unwavering support.

5

6

Contents

1 Introduction 19

2 Languages for Monte Carlo Rendering 25

2.1 Overview of Monte Carlo Rendering 27

2.1.1 Monte Carlo Rendering . 28

2.1.2 Path Tracing . 32

2.1.3 Bidirectional Path Tracing . 33

2.1.4 A Unified Approach: Common Operations 36

2.1.5 Other Monte Carlo Rendering Algorithms 38

2.2 Design Goals . 39

2.2.1 Correctness . 39

2.2.2 Code Reusability . 40

2.2.3 Separation of Concerns . 40

2.2.4 Conciseness and Expressiveness 40

2.2.5 Performance . 40

2.2.6 Hardware Portability . 41

2.3 Design Space Tradeoffs . 41

2.3.1 Correctness vs. Performance 41

2.3.2 Separation of Concerns vs. Performance 42

2.3.3 Correctness vs. Expressiveness 43

2.4 Technical Considerations . 44

2.4.1 Path Data Structure . 44

2.4.2 New Language vs. Embedded Language 44

7

2.4.3 Automatic PDFs . 48

2.5 Prior Work . 51

2.5.1 Rendering Systems . 51

2.5.2 Probabilistic Programming Languages 54

2.6 Discussion . 56

3 Aether: An Embedded Domain Specific Sampling Language for Monte

Carlo Rendering 59

3.1 Prior Work . 61

3.2 Mathematical Background . 62

3.2.1 Path Samplers and Their Densities 63

3.2.2 Case Study: Path Tracing . 64

3.3 Goals and Design . 67

3.3.1 Goals . 67

3.3.2 Design Decisions . 68

3.3.3 Approach . 69

3.3.4 Scope and Limitations . 73

3.4 The Domain Specific Language . 75

3.4.1 Example: Estimating Irradiance at a Point 75

3.4.2 Discrete Random Variables . 77

3.4.3 Sampling Strategies . 78

3.4.4 Multiple Importance Sampling 79

3.4.5 Interfacing with Deterministic Code 80

3.4.6 Random Sequences . 81

3.4.7 Conditional Probability for Metropolis Sampling 84

3.5 Implementation . 84

3.5.1 Basic Data Types . 84

3.5.2 Symbolic PDF Derivation . 87

3.6 Results . 91

3.6.1 Path Tracer . 93

8

3.6.2 Bidirectional Path Tracer . 94

3.6.3 Metropolis Light Transport 95

3.6.4 Tridirectional Path Tracer . 97

3.6.5 Gradient-Domain Path Tracing 98

3.6.6 Instant Radiosity . 100

3.6.7 Progressive Photon Mapping 100

3.7 Discussion and Limitations . 102

3.7.1 Algorithmic Limitations . 103

3.7.2 Performance . 104

3.7.3 Discussion . 106

3.8 Conclusion . 106

4 Efficient Automatic Scheduling of Imaging & Vision Pipelines for

the GPU 109

4.1 Why is There a Scalability Problem? 112

4.1.1 Limitations of Graph Partitioning 116

4.2 Overview of the Autoscheduler . 117

4.2.1 Hierarchically Sampling the Search Space 118

4.2.2 Freezing Low Cost Stages . 120

4.2.3 Memoization of Partial Schedules 121

4.3 Our Search Algorithm . 121

4.3.1 Choosing Serial Loops . 124

4.3.2 Choosing Thread Loops . 124

4.3.3 Block Loops . 125

4.3.4 Hierarchical Sampling . 125

4.3.5 Avoiding Known Bad States 125

4.3.6 Pruning . 126

4.3.7 Lowering Optimizations . 127

4.4 Evaluating Schedules . 127

4.4.1 Features . 127

9

4.4.2 Cost model . 129

4.4.3 Training Procedure . 130

4.5 Results . 130

4.5.1 Post-Compile Filtering . 132

4.5.2 Analysis . 136

4.5.3 Impact of Hierarchical Sampling, Freezing, and Memoization . 137

4.5.4 Manual Schedules Outside the Search Space 138

4.6 Related work . 139

4.7 Limitations & Future Work . 141

4.8 Conclusion . 142

5 Conclusion and Future Directions 143

A 147

A.1 Autoscheduler Featurization . 147

A.2 Autoscheduler Cost Model Components 151

10

List of Figures

2-1 Pseudocode for path tracing, which will compute a single estimate for

a given pixel. Each iteration of the loop samples two new vertices – one

from the BSDF and one on a light source – and combines them with

MIS. Since path tracing only requires local information, the radiance

and PDF are accumulated incrementally. 34

2-2 Pseudocode for bidirectional path tracing, which will compute a sin-

gle estimate for a given pixel. Compared to path tracing, for MIS it

computes PDFs of full paths instead of single vertices, it combines an

arbitrary number of samples instead of just 2, and it cannot discard

earlier sampled vertices. 37

3-1 Pseudocode for a path tracer with MIS. Integrand and estimator code

highlighted in green; sampling code highlighted in blue; and PDF and

MIS code highlighted in red. We omit some details like geometry terms

and conversions between solid angle and area measure. 66

3-2 Pseudocode for a path tracer with MIS in our language. Integrand and

estimator code highlighted in green; sampling code highlighted in blue;

and PDF and MIS code highlighted in red. 70

11

3-3 Three scenes modelled after the test scenes in the original papers of

multiple importance sampling, bidirectional path tracing, and Metropo-

lis light transport papers. The scenes contain a variety of different

materials, geometry types, and lighting conditions. The images are

rendered by the respective light transport algorithm in Mitsuba and

our implementation. 92

3-4 Our path tracer code . 93

3-5 Our bidirectional path tracer code . 95

3-6 Our bidirectional mutation code . 96

3-7 A scene that is challenging to render for traditional Monte Carlo meth-

ods: the Sponza Palace atrium projected into a box through a pinhole.

The area of the pinhole is only 0:01 percent of the face of the pinhole

camera. Using our language we designed a specialized tridirectional

path tracing algorithm that generates a light path segment passing

through the pinhole. The image shows an equal sample comparison

between bidirectional path tracing and our tridirectional path tracing. 98

3-8 Tridirectional path sampling. In addition to the standard sensor and

emitter subpaths sampled by a bidirectional path tracer (green and red,

respectively), we sample two-vertex “portal edge” segments (purple)

starting at random locations on user-specified portals. In addition to

the standard sensor-emitter connections (gray, dashed), we connect

one end of the portal edge to all vertices of the sensor subpath and the

other end to all vertices of the emitter subpath. 99

3-9 A comparison of bidirectional and tridirectional path tracing on the

Door scene at equal sample counts. The mean square error are 1.032

and 0.434 respectively. 100

3-10 Our tridirectional path tracer code 101

12

3-11 Our implementation of gradient-domain path tracing at 16 samples per

pixel, implemented through the conditional probability density of the

shift map. The intensity of the gradients are adjusted to have a clearer

view. 102

3-12 (a) Sponza scene we used for testing our instant radiosity implemen-

tation. The number of virtual point lights is 827. (b) A glossy Cornell

box used for testing photon mapping. Rendered by Mitsuba’s stochas-

tic progressive photon mapping and our probabilistic photon mapping,

respectively, with the same number of photon paths and iterations. . 103

4-1 A small Stencil Chain with two 3�3 Stencils. Each point of the output

accesses a 3�3 window of intermed, each point of which in turns

accesses a 3�3 window of the input. Neighboring points of each stage

access overlapping points of the preceding stage, which can lead to

redundant recomputation or reloading of shared values, depending on

the schedule. Implementing this pipeline efficiently requires balancing

recompute against parallelism and memory locality when mapping to

GPU resources in space and time. 112

4-2 Our Hierarchical Sampling Strategy. A large, rich space of candidate

options are enumerated. They are then grouped into buckets based

on their structural similarity. We sample log2(B) representatives from

each bucket. The representatives from each bucket become the final

candidate states. 118

4-3 Structural Hashing: we hash options up to a given depth to stratify our

search. Here, two different schedules have the same structure at depth

1 (which only considers block-level choices), but different structure at

depth 2 (which considers both block- and thread-level choices). Equal

hashes at low depth indicate at least coarse grained structural simi-

larity. Equal hashes at high depth values indicate more fine grained

structural similarity. 119

13

4-4 We test our autoscheduler in three different modes, which trade in-

creased compile time and the need to take ground-truth benchmarks

for increased performance. One Shot uses the cost model alone to rank

choices. Top 5 compiles and benchmarks the top 5 choices as ranked by

the cost model. Autotuned iteratively compiles and benchmarks sam-

pled programs, fine-tuning the cost model to the specific application

as it goes. 131

4-5 Throughput relative to best schedule of the prior state-of-the-art GPU

autoscheduler [67], our technique at three levels of compile time bud-

get (from one shot with no benchmarking, to autotuning 1600 sam-

ples), and highly tuned human expert schedules. The benchmarks

are a super-set of those in prior work [2, 67], and span a diverse set

of imaging and learning programs from a few to around one hundred

stages. For the One Shot and Top 5 modes, the results presented are

the median time over 100 independent trials. In all modes, our tech-

nique outperforms the prior state-of-the-art on average, and with full

autotuning it matches the best human experts. Some of the human

expert schedules (IIR blur, conv layer, depthwise separable conv) use

scheduling options that are outside the autoscheduler’s search space. 133

4-6 The number of states evaluated by the autoscheduler during a beam

search, for all configurations of hierarchical sampling and freezing on

and off. In parentheses is the percentage of the states evaluated relative

to the configuration with both hierarchical sampling and freezing off.

We highlight the lowest numbers in each row in bold. With both on,

the autoscheduler evaluates on average 5.19% of the states that would

have been evaluated with both off. In the best case (bilateral grid),

0.69% of the states are evaluated. (Key: Sampling = Hierarchical

Sampling; nl means = non-local means; hist. equalize = histogram

equalize; mat. mul. = matrix multiply; dep. sep. conv = depthwise

separable conv; demosaic = learned demosaic) 134

14

4-7 Beam search compile times for all configurations of memoization, hi-

erarchical sampling, and freezing on and off. We highlight the lowest

number in each row in bold. Our optimizations, when used in conjunc-

tion, significantly improve compile times. In general, they have more

impact on pipelines that favor schedules with many compute_root

stages, and less impact on pipelines that favor fusion, for example,

camera pipe. (Key: M = Memoization; S = Hierarchical Sampling; F

= Freezing; BG = bilateral grid; LL = local laplacian; NM = non-local

means; LB = lens blur; CP = camera pipe; SC = stencil chain; H =

harris; HE = histogram equalize; MF = max filter; U = unsharp mask;

I = interpolate; CL = conv layer; MM = matrix mutiply; IIR = IIR

blur; BGU = BGU; DSC = depthwise separable conv; LD = learned

demosaic; G = geomean) . 135

4-8 Beam search compile time speedup for all configurations of memoiza-

tion, hierarchical sampling, and freezing on and off, over the configura-

tion with all off. We highlight the highest number in each row in bold.

With all on, there is a compile time speed up on average of 49� and in

the best case of 530�. (Key: Sampling = Hierarchical Sampling; dep.

sep. conv = depthwise separable conv) 136

4-9 Our optimization strategies improve the performance of the found pro-

grams, since they stratify the search. Here we show the throughput

relative to best schedule using our One Shot and Top 5 modes for all

configurations of hierarchical sampling and freezing on and off. For

both modes, sampling and freezing enabled on average outperforms

sampling and freezing disabled. For One Shot mode, the speedup is

1.22� and for Top 5 1.27�. All results are the median time obtained

from 100 independent trials. 137

15

16

List of Tables

17

18

Chapter 1

Introduction

Computer graphics applications are everywhere, from physically based rendering and

simulation for special effects and animation in movies, to real-time rendering in games,

to image processing for photo editing, to emergent applications like virtual reality and

augmented reality.

Despite their ubiquity, implementing these applications is still difficult and pro-

gramming systems that allow users to effectively do so must navigate several conflict-

ing trade-offs.

Graphics applications frequently involve complex mathematics, for example, high

dimensional integrals, Dirac delta functions, and large numbers of complex prob-

ability computations, which makes correctness a major challenge. With the rise of

deep learning, graphics applications are increasingly being used as components within

larger machine learning systems. Further, these systems are often implemented in

higher level languages like Python by programmers less experienced with low level

languages like C++ and CUDA. This combination makes ease of use and compos-

ability desirable. Graphics applications often feature varied types of computations

and unpredictable memory access patterns, making it difficult to optimize them ef-

fectively and achieve the performance demanded by practitioners. At the same time,

with the widespread availability of GPUs and other increasingly specialized hardware

backends, it is no longer sufficient for an application to run on a single CPU or GPU.

Tasks like high resolution rendering, large scale simulation, and training of complex

19

machine learning models, require parallelism across multiple devices, typically in a

cluster of machines, and sometimes using heterogeneous hardware configurations.

These goals of correctness, ease of use and composability, performance, and hard-

ware portability, are frequently in tension with one another. The goal of developing

programming systems for graphics that effectively address all these challenges is typ-

ically not feasible. Instead, the key is to design systems that find the right balance

between these trade-offs.

This thesis describes the design of domain specific languages with particular trade-

off decisions in mind, in the context of rendering, and the application of machine

learning to these languages and their compilers to unify some of these trade-offs, in

the context of image processing.

Languages for Rendering

Designing and implementing rendering systems involves making trade-off decisions

between separation of concerns and performance.

Complex rendering algorithms like bidirectional path tracing and Metropolis light

transport are notoriously difficult to implement correctly. Even though these algo-

rithms appear very similar to simpler algorithms like path tracing, suggesting that

they could be implemented as extensions to path tracing, they are typically written

as distinct implementations. Their pseudocode is generally quite simple, but in order

to achieve good performance, there is an incentive to store as little state as possible

and to mix sampling code, PDF code, and integrand code together. By breaking

separation of concerns, code becomes highly coupled to individual implementations,

making it difficult to reuse and error prone. The major open source research render-

ers, pbrt [62] and Mitsuba [30] [55], implement algorithms this way. They trade-off

separation of concerns and correctness for performance.

The problem with this approach is that there are 3 major correctness challenges in

implementing these algorithms that it doesn’t address. First, full path sampling code

and PDF code must be consistent — any changes to one must be accompanied by

corresponding changes to the other — including changes of measure. Second, complex

20

algorithms typically combine multiple samples. In order support this, it is necessary

to compute the PDF of samples with respect to arbitrary distributions, which requires

the computation of function inverses. And third, complex algorithms combine samples

in combinatorially many ways, a process that requires careful bookkeeping.

While pbrt and Mitsuba are designed to be extended with new algorithms, actually

doing so is not easy because these correctness challenges are left as the programmer’s

responsibility. In this section of the thesis, we explore alternative approaches, by

first describing the trade-off space that exists between separation of concerns, cor-

rectness, and performance. We identify that most Monte Carlo rendering algorithms

are actually very similar and are predominantly constructed from a set of common

operations. We argue that using these common operations, a range of algorithms

can be implemented in a unified way. Using these common operations as a basis for

designing rendering systems, we then examine different implementation strategies for

various points in the trade-off space. We then describe the design and implementation

of Aether [4], a domain specific language that makes the decision to trade-off perfor-

mance for separation of concerns, which leads to correct, modular, reusable code.

With Aether, the programmer writes sampling code using a path data structure and

reusable sampling components. All PDF code is then automatically generated at

compile time using template metaprogramming to compute symbolic derivatives and

inverses. Aether additionally provides constructs for assembling and combining mul-

tiple paths. Using Aether, rendering code is simpler to write, and is more reusable.

Complex algorithms like bidirectional path tracing and Metropolis light transport

can be implemented in many fewer lines of code than with existing approaches. It

also makes it possible to develop new algorithms — like our novel tridirectional path

tracing — which otherwise would have been prohibitively difficult to implement.

Learning to Autoschedule Halide

Halide [63] [64] is domain specific language for high performance image processing.

Its key idea is to separate every program into 2 distinct components: the algorithm

— what you want to compute — and the schedule — how you want to compute it.

21

This modularity makes it easy for programmers to explore different possible concrete

implementations for a program across a range of hardware types. With the right

skills — expertise in Halide, image processing, and program optimization — the pro-

grammer can write high performance implementations more easily than with existing

low level languages like C++, which require the user to handle low level tasks like

memory management, vectorization, and parallelization, all manually. The problem

is that few people have the necessary skills to do this effectively. So while Halide

makes it easier to explore schedules, actually finding high performance ones remains

a challenge. This thesis presents a solution to this problem: an algorithm that finds

high performance schedules for the GPU automatically.

The autoscheduler uses a tree search algorithm over the space of possible schedules

for a given program. This tree search is guided by a learned cost model that predicts

program performance from a set of manually derived features. A major challenge

is to extend this approach to map large real-world programs to the deep hierarchies

of memory and parallelism on GPU architectures in reasonable compile time. Our

previous CPU autoscheduler [2] only supports limited GPU scheduling, uses CPU

program features, and does not scale well to the nested parallel tiling options on the

GPU. The state of the art GPU autoscheduler [67] uses a restricted search space that

does not consider nested tiling options, circumventing this challenge and excluding

important, high performance schedules from consideration.

We address this scalability challenge using (1) a two-phase search algorithm that

first ‘freezes’ decisions for the lowest cost sections of a program, allowing relatively

more time to be spent on the important stages, (2) a hierarchical sampling strategy

that groups schedules based on their structural similarity, then samples representa-

tives to be evaluated, allowing us to explore a large space with few samples, and (3)

memoization of repeated partial schedules, amortizing their cost over all their occur-

rences. The cost model that guides this process combines machine learning, program

analysis, and GPU architecture knowledge.

We evaluate our method’s performance on a diverse suite of real-world imaging and

vision pipelines. Our scalability optimizations lead to average compile time speedups

22

of 49� (up to 530�). We find schedules that are on average 1.7� faster than existing

automatic solutions (up to 5�), and competitive with what the best human experts

were able to achieve in an active effort to beat our automatic results.

23

24

Chapter 2

Languages for Monte Carlo Rendering

Monte Carlo rendering is widely used for creating synthetic, photorealistic images for

animation and special effects in film production, for lighting design in architecture,

and increasingly for graphics in video games. Despite its widespread use, the de-

sign and implementation of rendering systems remains challenging and suffers from a

tension between separation of concerns and performance.

The foundational algorithms for Monte Carlo rendering were published in the

1980s and 1990s. Path tracing was the first general purpose, unbiased Monte Carlo

rendering algorithm and was published in 1986 [36]. This lead to major developments

in the 1990s with bidirectional path tracing in 1993/4 [41] [78], multiple importance

sampling (MIS) in 1995 [79], and Metropolis light transport in 1997 [80]. In more

recent years, however, follow up articles, particularly to Metropolis light transport,

have been rare.

We attribute this in part to the difficulty of implementing these algorithms. When

designing a research rendering system, some decisions are clearer than others. It’s

clear that the system will need low level data structures for geometric primitives like

points, vectors, and rays, and functions for ray-triangle intersections and sampling

directions over the hemisphere. But it’s less clear how to design higher level aspects

of the system. How should algorithm implementations be structured? Is it possible

to make it easy for users to implement algorithms correctly? Is it possible to make

code reusable across implementations? Is it possible to achieve these things while

25

also achieving high performance?

There are at present only 2 major open source research renderers, and for years, no-

toriously difficult to implement algorithms like bidirectional path tracing and Metropo-

lis light transport were not supported. pbrt was initially released in 2004 (pbrt v1

[62]). The other major open source research renderer, Mitsuba [30], was released 6

years later, in 2010. But it wasn’t until 2012 that an update to Mitsuba added bidirec-

tional path tracing and Metropolis light transport, 18 years and 15 years respectively

after they were originally published. It was later still before they were finally included

in pbrt v2 (Metropolis light transport) and pbrt v3 (bidirectional path tracing).

Even though these algorithms appear very similar to one another, for example,

bidirectional path tracing is an extension of path tracing, and this suggests that

bidirectional path tracing could be naturally implemented as an extension to path

tracing, in actuality it’s not so straightforward. The pseudocode for these algorithms

is generally quite simple, but in order to achieve good performance, there is an in-

centive to store as little state as possible and to mix sampling code, PDF code, and

integrand code together, breaking separation of concerns. This leads to code that is

highly coupled for each algorithm implementation. It’s difficult then to reuse code

from existing implementations in new algorithms and code is generally difficult to

reason about and is error prone.

With this approach, correctness becomes a considerable challenge and a major

reason that these complex algorithms have taken so long to be included in open

source renderers is that they are difficult to implement correctly. There are three main

reasons for this. First, they must implement full path sampling and PDF code that

is consistent — for correctness, any changes to the sampling code must be reflected

in the PDF code – including changes of measure. Second, in order to support MIS, it

is necessary to compute the PDF of paths according to arbitrary distributions, which

requires the computation of function inverses. And finally, complex algorithms like

bidirectional path tracing combine multiple samples in combinatorially many ways, a

process that requires careful bookkeeping.

Even in pbrt and Mitsuba, which are designed to be extended with new algo-

26

rithms, actually implementing a new algorithm is not easy. They require all sampling

and PDF code, including function inverses, to be manually written and it is the pro-

grammer’s responsibility to maintain consistency between them. Measure changes are

handled in an ad-hoc way and bookkeeping for combining many samples is handled

manually. This leads to algorithm implementations that are largely distinct from one

another.

But the algorithms themselves are still very similar to one another and are predom-

inantly constructed from a set of common operations. We argue that these common

operations allow a range of algorithms to be expressed in a unified, systematic way

and should form the basis for any well designed and general research rendering system.

There are a range of possible ways to implement these operations, with numerous po-

tential additional benefits, for example, automatically generated PDF code, sampling

and PDF code that is consistent by construction, and automatic bookkeeping when

combining samples for MIS. But in general, this approach leads to code that is more

reusable, easier to reason about, and ultimately easier to implement correctly.

This chapter begins with a brief introduction to Monte Carlo rendering, some of its

major theoretical foundations, and case studies of common algorithms: path tracing

(2.1.2) and bidirectional path tracing (2.1.3). In Section 2.1.4, we describe the set of

common operations necessary for implementing algorithms in a unified way. Section

2.2 then explores some design goals for an ideal rendering system and Section 2.3

explores the trade-offs between these goals. In Section 2.4, we describe some technical

considerations and alternatives for how such a system might be implemented. Section

2.5 evaluates prior work in terms of our design goals. Chapter 3 then presents Aether,

a domain specific language designed and implemented with the ideas of this chapter

in mind.

2.1 Overview of Monte Carlo Rendering

We begin with some background on Monte Carlo rendering (for more detail, the

interested reader is referred to [62] or [77]) and the theoretical principles that are

27

typically used in common algorithms. We then describe path tracing and bidirectional

path tracing, from which we identify the common operations that we argue should

form the basis of any well designed research rendering system.

2.1.1 Monte Carlo Rendering

In physically based rendering, the intensity of a pixel j is given by:

Ij =

Z

fj(x)d�(x) (2.1)

where
 is the space of all light paths in the scene, x is an individual path, fj is

the contribution function, and � is a measure defined on the space of paths.

This integral in general cannot be solved analytically so instead we use Monte

Carlo integration to estimate it:

Ij �
1

N

NX
i

fj(xi)

p(xi)

Each individual estimate fj(xi)

p(xi)
is computed by sampling a path xi through the

scene according to some probability distribution p. A path is defined as 2 or more

vertices: 1 vertex on the camera, 1 vertex at a point on a light source and 0 or more

vertices in between, representing scattering events that occur as the light travels from

the light source toward the camera. fj(xi) is the integrand evaluated for the given

path, in this case measuring the radiance traveling along the path. To obtain an

accurate result, it is necessary to compute and take the average of many individual

estimates.

The primary goal of rendering algorithms is to obtain an accurate solution to

the rendering equation integral in the least amount of time. There are 2 ways to

improve on an algorithm: introduce better sampling techniques that require generat-

ing fewer samples (but take roughly the same or less time per sample) or introduce

a more efficient implementation that uses the same sampling technique but is more

computationally efficient.

28

Developments in Monte Carlo rendering algorithms focus on the former, with

new algorithms introducing new sampling techniques. This raises the key question

in designing Monte Carlo rendering algorithms: how should we sample these paths?

Should we sample the entire path at once? Or each vertex individually? If we sample

each vertex individually, should they be sampled independently of one another or

in some kind of sequence? From what distribution should we generate samples? A

uniform distribution? Or would using a more complex distribution be beneficial?

Existing algorithms use a wide variety of different sampling techniques, but they are

typically based on some shared principles.

Incremental Sampling

Most Monte Carlo rendering algorithms sample paths incrementally, one vertex at a

time, rather than sampling entire paths. This means the PDF of the entire path is

the product of individual sampling densities: p(x) = p(x1)p(x2jx1)p(x3jx2x1):::

Local Information

When sampling path vertices, algorithms typically rely only on local information,

for example, the properties of the previous vertex, such as its material, including

possibly multiple BSDFs, and some general surface properties such as the normal, as

well as the incoming direction. They otherwise ignore other vertices in the path. This

simplifies the distributions from which they need to sample.

Importance Sampling

Instead of generating samples from uniform distributions, a common variance reduc-

tion technique is to use importance sampling: sampling from a distribution p that

closely matches the integrand function f , focusing more samples in the regions where

the integrand function has large values or is intuitively important.

Path vertices are typically generated using inverse transform sampling. 2D uni-

formly distributed random variables (u1; u2) are transformed by a chosen function

S, with the desired density, into a direction ! over the hemisphere at the previous

29

vertex: ! = S(u1; u2). S may depend on the incoming direction from the previous

vertex, the surface normal, and/or the surface’s reflectance function. The next vertex

xj is obtained by casting a ray starting from the previous vertex in this direction to

find a scene intersection point.

Finding the PDF value of a given sample involves the Jacobian of the transfor-

mation function S:

p(!) =
p(u1; u2)

j
p
JTJ j

(2.2)

where J = @!
@u1@u2

is the 3� 2 Jacobian of the transformation S.

In order to compute Equation 2.1 correctly, all samples must make consistent use

of the chosen measure. In the previous example, ! was sampled according to the solid

angle measure, that is, according to a distribution of directions over the hemisphere.

To instead compute the PDF of the next vertex xj with respect to the area measure

(a distribution over the surface area of the intersected surface), there are 2 options.

The PDF value can be converted from the solid angle measure by introducing an

additional Jacobian factor through the chain rule:

p(xj) =
p(!)

j
p
JTJ j

(2.3)

where J =
xj

@!
. Equivalently, we can define a transformation function T that incor-

porates both the hemisphere sampling S and the ray scene intersection operation to

directly compute p(xj) as in Equation 2.2 using J =
@xj

@u1@u2
.

Care must always be taken in rendering algorithm implementations to ensure that

all PDF values are computed with respect to the correct measure; this is a common

source of bugs.

Multiple Importance Sampling (MIS)

It’s often not possible to find a distribution that closely matches the integrand in its

entirety. Instead, algorithms will typically use a distribution that matches one term of

the integrand, but this is often not a good choice. For example, the measurement con-

30

tribution function fj in Equation 2.1 includes a BSDF term and a radiance term and

we might obtain the next vertex of a path by sampling a direction from a distribution

that closely matches the BSDF term. Unfortunately, this distribution may not closely

match the entire integrand and end up being a bad choice. Alternatively, instead of

generating a single sample, we can generate multiple samples, each from a different

distribution e.g. sample one BSDF vertex from a distribution that matches the BSDF

term and one light vertex from a distribution that matches the radiance term, and

produce a weighted combination of them using Multiple Importance Sampling (MIS).

In general, modern algorithms will often samples N light paths from M distinct

distributions and combine them. Each path xi is sampled from one of the M distri-

butions pj(xi). The Monte Carlo estimator becomes:

I � 1

N

NX
i

Wi(xi)
f(xi)

pj(xi)
(2.4)

where Wi(xi) is a function of all the probability densities used to generate samples.

More background and mathematical details are available in [62] and [77] but the

intuitive idea is that if one of the samples is from a distribution that matches the

integrand, it will be assigned greater weight, ensuring that the resulting combined

sample will be good.

MIS makes path sampling more complicated: instead of just requiring the PDF

of a sample with respect to the distribution from which it was sampled, we need the

PDF of each sample with respect to all of the distributions that were used to generate

samples for MIS. For example, to combine a BSDF vertex with a light vertex we need

to know the PDF of sampling the BSDF vertex according to its distribution but also

according to the distribution from which the light vertex was sampled, and vice versa.

In general, combining N samples requires computing N2 PDF values. MIS introduces

some additional complexity because it requires inverting each sample (since we don’t

know the u1; u2 that produced a given !). In order to compute the PDF values, we

need to evaluate the Jacobian, which is a function of the uniform random variables

used to generate the given sample; in order to evaluate this function during MIS

31

(for samples that generated from a different distribution), we first need to apply the

inverse to obtain the uniform random variables that would have been used as input to

generate the sample. Manually derived density functions implicitly include both the

Jacobian and the inverse. The complexity of computing this process is outweighed

by the variance reduction benefits of MIS.

2.1.2 Path Tracing

Path tracing was the first general purpose, unbiased Monte Carlo rendering algorithm

[36]. It is a fundamental algorithm in research renderers and is also used widely in

production.

Path tracing uses incremental sampling to generate paths through the scene one

vertex at a time, starting from the camera and ending on a point on a light source.

Each new vertex is sampled using local information at the surface of the previous

vertex, i.e. importance sampling its BSDF. Computing a path tracing estimate for a

single pixel involves sampling paths of all possible lengths: a path with 2 vertices, a

path with 3 vertices, a path with 4 vertices, and so on.

A common extension to the standard path tracing algorithm is to combine 2

paths of a given length into a single sample using MIS. The final vertex of the path is

sampled twice: once by importance sampling the BSDF at the previous vertex, and

once by directly sampling a vertex on a light source.

Implementation

Since path tracing tracing is an incremental algorithm, this naturally suggests a stan-

dard implementation using a loop [62] [30] [56]. The pseudocode in Figure 2-1 illus-

trates this approach. Each iteration of the loop samples the next vertex of the path.

Since path tracing only requires local information when sampling new vertices, the

implementation only needs to store the previous vertex and its properties as well as

the direction from which the path arrived at that vertex. It does not need to store

the entire path and instead incrementally accumulates the radiance and PDF of the

32

path as it is sampled.

While the pseudocode consists primarily of a single loop, we can think of it as

several basic operations: generating a path sample through the scene, computing

its radiance, and computing the PDFs of 2 different vertex sampling strategies and

combining them together using MIS.

In theory, path tracing should sample individual paths of all possible lengths, for

example, it should sample a 2 vertex path, then start from scratch and sample a 3

vertex path. Instead, implementations will typically reuse existing paths. This intro-

duces some correlation between samples but this is outweighed by the computational

benefit of sampling fewer vertices.

2.1.3 Bidirectional Path Tracing

Bidirectional path tracing [41] [78] extends path tracing and is better suited for ren-

dering scenes with light paths that are difficult to sample starting from the camera.

Instead of only sampling a single path starting from the camera, it also samples a

second path starting from a randomly chosen point on a light source i.e. it samples

paths bidirectionally, one in the forward direction from the camera (the camera sub-

path) and one in the backward direction from a light source (the light subpath). By

concatenating vertices from both of these subpaths, it constructs a collection of sam-

pling strategies for paths of a given length. For example, for paths with 3 vertices,

there are 4 possible sampling strategies:

• 3 vertices from the camera subpath, 0 from the light subpath

• 2 vertices from the camera subpath, 1 from the light subpath

• 1 vertex from the camera subpath, 2 from the light subpath

• 0 vertex from the camera subpath, 3 from the light subpath

These 4 possible paths are combined with MIS to obtain a single estimate for a 3

vertex path. In general, a path of length N will have N + 1 possible strategies that

need to be combined.

33

// Initialize radiance and path throughput
L = 0, throughput = 1
ray = camera.generate_initial_ray()

while depth < max_depth:
// Intersect ray with scene
hit_point = scene.intersect(ray)

if ray missed scene:
break

// Sample point on light
light_sample, light_pdf = scene.sample_point_on_light()

// Sample next direction
bsdf = hit_point.bsdf
bsdf_sample, bsdf_pdf = bsdf.sample()

// Combine light and BSDF samples with MIS
L += throughput * MIS(light_sample, bsdf_sample)

// What fraction of light is reflected in this direction?
throughput *= bsdf.f()

ray = // create new ray from hit_point and bsdf_sample

return L

Figure 2-1: Pseudocode for path tracing, which will compute a single estimate for a
given pixel. Each iteration of the loop samples two new vertices – one from the BSDF
and one on a light source – and combines them with MIS. Since path tracing only
requires local information, the radiance and PDF are accumulated incrementally.

Comparison to Path Tracing

Both the camera and light subpaths are sampled incrementally using local infor-

mation, just like for path tracing. The major difference is in how the samples are

combined together. For each path length we need to construct from the camera and

light subpaths all the possible paths of that length. This suggests three key differences

from path tracing.

First, in path tracing, we combined 2 path samples that had a different final vertex,

so for MIS we needed to compute the PDF of each final vertex with respect to the

34

other’s distribution. But for MIS in bidirectional path tracing, instead of computing

the PDF of single vertices, we need to compute the PDF of entire paths.

Second, instead of combining only a fixed number (2) of sampling strategies, we

need to combine an arbitrary number (N + 1 for a path of length N), so we need

some way to effectively keep track of all these different strategies and how they were

sampled for MIS.

Third, in order to concatenate the different possible subsequences of vertices from

the two subpaths, we need to store the entire subpaths, so we can no longer discard

the earlier parts of the path as we did in path tracing.

Implementation

These differences are apparent in the pseudocode for bidirectional path tracing (Figure

2-2). Instead of accumulating radiance and PDF values while sampling vertices,

bidirectional path tracing first samples entire subpaths and stores them for reuse

in computing the full path PDFs for MIS. This suggests the need for a path data

structure. And the fact that we need to combine an arbitrary number of samples

suggests the need for some systematic way of keeping track of all the possible ways

each sample could have been sampled and facilitating the computation of all the

possible PDF values.

While the pseudocode for bidirectional path tracing is more complex than path

tracing, which makes it seem like a markedly different algorithm, it is really an ex-

tension of path tracing: the operations it is performing are by and large the same,

just in a more general form. One could imagine writing a path tracer in this same

style: sampling and storing an entire camera subpath, then for each prefix of that

path, sampling a light vertex, and combining it with the final vertex of the prefix

path using MIS to obtain an estimate.

Rather than thinking of bidirectional path tracing as a distinct algorithm, we can

think of it as a generalization of path tracing. It performs the same basic operations

but in a more general way. It samples paths starting from the light as well as starting

from the camera. For MIS, instead of computing single vertex PDFs, it computes full

35

path PDFs. Instead of combining only 2 samples for MIS, it combines N + 1.

This suggests a unified, systematic approach to implementing both of these algo-

rithms using a set of common operations, which is in contrast to existing renderers

that implement path tracing and bidirectional path tracing using separate, distinct

code.

2.1.4 A Unified Approach: Common Operations

A rendering system that supports the following basic operations in a systematic way

can be used to implement a wide variety of Monte Carlo rendering algorithms.

Sampling Incremental Light Paths Using Local Information

Monte Carlo rendering algorithms need to sample light paths through the scene.

Typically paths are sampled in the forward direction from the camera (as in path

tracing and bidirectional path tracing) or in the backward direction (as in bidirectional

path tracing). But in general they could be sampled arbitrarily, for example, starting

in the middle. In most algorithms these paths are sampled locally, using information

from only the previous direction and vertex, and incrementally, generating only a

single additional vertex with each step.

Computing Radiance Along Paths

Monte Carlo rendering algorithms need to compute the radiance contribution along

a sampled path.

Computing PDFs of Paths

A fundamental requirement of Monte Carlo rendering algorithms is the ability to

compute PDFs of generated samples. At a minimum, a rendering system must be

able to compute the PDF of a generated sample according to the distribution from

which it was sampled. This will likely involve computing multiple PDF values for

individual local vertex samples and using them to obtain a full path PDF.

36

// Sample path starting from camera
ray = camera.generate_initial_ray()
camera_path = [camera_position]

while depth < max_depth:
// Intersect ray with scene
hit_point = scene.intersect(ray)
if ray missed scene:

break
// Keep track of all scene hit points
camera_path.append(hit_point)
// Sample next direction
bsdf_sample, bsdf_pdf = bsdf.sample()
ray = // create new ray from hit_point and bsdf_sample

// Sample path starting from light source
point_on_light, init_dir = sample point on random light source and outgoing

direction
ray = point_on_light, init_dir
light_path = [point_on_light]
light_path = // Sample additional path vertices as above

L = 0 // Initialize radiance
// Combine camera_path and light_path with MIS for each possible path length
for path_length = 2, 3, 4, ...:

for prefix_length = 0, 1, ..., path_length:
camera_path_prefix = prefix of camera_path; length = prefix_length
light_path_suffix = suffix of light_path; length = path_length -

prefix_length
// This is 1 way of sampling a path of length = path_length
path = concat(camera_path_prefix, light_path_suffix)
// Compute PDF of path according to all ways of sampling it
for all prefix/suffix pairs with combined length = path_length:

// Compute PDF of path according to prefix/suffix path
// Compute radiance of path

L += // With MIS, combine all paths of length = path_length using their
// radiance/PDF values

return L

Figure 2-2: Pseudocode for bidirectional path tracing, which will compute a single
estimate for a given pixel. Compared to path tracing, for MIS it computes PDFs
of full paths instead of single vertices, it combines an arbitrary number of samples
instead of just 2, and it cannot discard earlier sampled vertices.

37

Computing PDFs of Paths With Respect to Arbitrary Distributions

Any serious rendering system will support MIS, which means it must be able to

compute the PDF of a given path with respect to arbitrary distributions.

Combining Paths in Arbitrary Ways

Complex algorithms like bidirectional path tracing combine paths in many different

ways. A rendering system that supports MIS must provide the ability to keep track of

many different path samples, the ways they were generated, and support combining

them in arbitrarily many ways.

Computing Monte Carlo Estimates

Monte Carlo rendering algorithms need to compute from a given integrand and PDF

value a single estimate, possibly weighted by MIS, and to combine a collection of

individual estimates into a final estimate.

2.1.5 Other Monte Carlo Rendering Algorithms

These common operations are expressive enough to handle a range of other algorithms

as well, including notoriously challenging ones. While they may have some unique

characteristics, many of them reuse the same path sampling logic from path tracing

or bidirectional path tracing and fit well within our unified approach. We describe

here a few of them.

Metropolis light transport [80] involves first sampling paths as in bidirectional

path tracing then applying a randomly chosen mutation to the path. The commonly

used mutations (lens, caustic, multi-chain, and bidirectional) are all sampled using

the same principles we have already described: they are sampled incrementally using

local information. Metropolis requires computing conditional PDFs of the mutated

path given the original path, which requires the PDF of the chosen mutation. Since

the mutations are sampled incrementally using location information, these PDFs can

be obtained in the same way as for the regular samples.

38

Gradient domain path tracing [38] involves sampling a regular path, like in path

tracing, then shifting it to obtain a correlated pair of paths. The shift mapping is sim-

ilar to a mutation in Metropolis (sampled incrementally using location information).

It introduces a Jacobian determinant factor to the integrand, which can be computed

using the ratio of the PDFs of the shift mapping from original path to shifted path

over the shifted path to original path. Both these PDF values can be computed in

the same way as in Metropolis.

Photon mapping [33] and its variants, like progressive photo mapping (e.g. [27],

[39]), involve sampling a set of emitter subpaths, then storing them for reuse across

all pixels in the image. Camera subpaths are then connected up to emitter subpaths

within a given distance. Since the emitter and camera subpaths are sampled just

like in bidirectional path tracing, photo mapping is expressible using our common

operations. The remaining challenge is to efficiently find the paths to connect up,

but this can be handled using auxiliary data structures like the kd-tree provided by

Mitsuba.

2.2 Design Goals

Here we enumerate some goals for an ideal, well designed, and general rendering

system.

2.2.1 Correctness

When implementing Monte Carlo rendering algorithms, there are several major im-

plementation challenges that are common sources of error. We need to compute

full path PDFs, which requires a correct mathematical derivation and implementa-

tion that is consistent with the sampling procedure. Further, for MIS, we need to

compute the PDF of samples with respect to arbitrary distributions. In both cases,

changes in measure need to be accounted for. Algorithms like bidirectional path trac-

ing combine many different samples for MIS, so we need to correctly account for all

the combinatoric ways the samples could have been generated.

39

A rendering system should aid the user in writing correct code to overcome these

challenges. The code should be easy to reason about and the system should assist the

user by, for example, automatically generating PDF code, providing useful supporting

data structures for recording samples and how they were generated, or providing

testing mechanisms to verify user implementations.

2.2.2 Code Reusability

It should be possible to reuse code both within an algorithm and across algorithms.

For example, in bidirectional path tracing it should be possible to reuse the next

vertex sampling code for both the camera subpath and light subpath, and it should

be possible to reuse this code in other algorithms like path tracing. This applies

not just to sampling but also for computing PDFs, integrands, and estimates, and

combining samples for MIS.

2.2.3 Separation of Concerns

It should be possible to separate from one another the major components of an

implementation: sampling code, PDF/MIS code, integrand code, and estimate code.

2.2.4 Conciseness and Expressiveness

It should be possible to implement a wide range of algorithms in a concise way.

2.2.5 Performance

The focus of the preceding discussion is on research style renderers, where performance

is important but not paramount. That said, it should be possible to achieve high

performance in 2 respects. First, when implementing rendering algorithms, it’s often

possible to avoid computation, for example, by cancelling terms in the numerator (the

integrand) and denominator (the PDF) of an estimate. The algorithm implementation

should make use of this knowledge and not perform redundant computation. Second,

40

from a systems perspective, it should be possible to effectively use vectorization and

parallelization, and any code that is automatically generated should be of high quality.

There are additional aspects of performance that are more relevant for production

style renderers, for example, can it handle large out of core scenes, can it handle

extremely high resolution textures, and can it support more advanced architectural

structures like batching and work queues [12] [43] [18]? But these issues are less

relevant in the context of general research rendering systems.

2.2.6 Hardware Portability

It should be possible to target different backends, for example, CPUs with different

vector instruction sets and numbers of cores, and GPUs.

2.3 Design Space Tradeoffs

Ideally a rendering system would achieve all the previously mentioned design goals

but there are challenges in doing so. Some of the goals are more easily attainable

than others, especially when considered individually. Some are closely linked to one

another, for example, by separating concerns, correctness is more easily achievable,

and code reuse naturally follows. But some are in direct contention with others and

introduce possible tradeoffs between them. In this section we explore which goals are

in contention with one another and to what extent those contentions can be resolved.

2.3.1 Correctness vs. Performance

We described earlier three major correctness challenges in Section 2.2.1: computing

full path PDFs, computing PDFs of samples with respect to arbitrary distributions,

and keeping track of the combinatoric ways samples could have been generated when

combining them for MIS. We also suggested some possible ways to overcome these

challenges: automatically generating PDF code, providing support data structures,

and provide verification mechanisms.

41

These suggestions offer varying degrees of correctness guarantees. Automatically

computing PDFs from user provided sampling code is the ideal solution from a cor-

rectness standpoint. But for any approach that tries to automatically generate code,

its performance rests heavily on its ability to generate high performance code. If

it generates suboptimal code, the performance of the system will suffer. Instead of

automatically generating PDF code, the system could provide testing mechanisms to

verify user provided code. For example, the user would provide the PDF for a given

sampling strategy and the system could then derive its own symbolic form of the PDF

as before and use that to run tests: on a range of inputs, compare the output of the

user provided PDF function with the system generated PDF function. The system

would employ a similar code generation task as before, but the efficiency of the code

that it generates would be less important. The drawbacks are that the verification

may not exhaustively test the user provided code and that it relies on the user being

diligent about verifying their code.

There is the additional question of automatically computing the PDF for discrete

distributions, which cannot be inverted. The automatic solution is to exhaustively try

all discrete options, weighting each by its discrete PDF value. But for distributions

with a large number of options, this procedure becomes very costly. Alternatively,

the user could provide the discrete choices that were made for each sample. This will

be more efficient but potentially error prone.

The challenge of keeping track of the combinatoric ways that samples could have

been generated and assembling the necessary PDFs of the samples can be solved with

a data structure, for example, some mechanism that keeps track of, for each sample,

how that sample was generated and its corresponding PDF function. This reduces

the chance of errors and the overhead involved is likely minimal since the user would

have to otherwise do this manually.

2.3.2 Separation of Concerns vs. Performance

pbrt and Mitsuba implement path tracing with a single loop that mixes sampling,

PDF/MIS, and integrand code together. By not separating concerns, the code is

42

less readable and less reusable because the individual concerns are entangled with

one another. But the advantage of this approach is performance. If instead it was

implemented by separating concerns in a bidirectional style, first sampling an entire

path and storing it, then computing the necessary PDFs and radiance values, the

code becomes more readable and reusable, but will almost certainly be slower since

it will introduce several inefficiencies.

First, it will need to allocate memory for the entire path. If the path length does

not have a statically known maximum, then this will necessarily require a heap al-

location, which will be slower than just storing the single previous vertex. Second,

separating the sampling code from the PDF code from the integrand code will in-

troduce multiple for loops, one for each operation. This will potentially be slower:

the PDF and integrand loops will need to access all vertices in the path, some of

which may have fallen out of cache. And third, computing each of the operations

separately precludes certain optimizations, for example, the integrand contribution

for a single vertex may have a corresponding term in the PDF that it cancels out, but

by separating concerns, each of these terms must be computed needlessly, leading to

redundant computation.

2.3.3 Correctness vs. Expressiveness

If the system automatically generates PDFs from symbolic expressions, then expres-

siveness is reduced because it cannot be guaranteed that an analytic inverse can be

obtained from the user provided sampling code. This could be either because the sam-

pling code does not have an analytic inverse, for example, it uses rejection sampling

like in Woodcock tracking [89], or because the system simply fails to find the inverse.

On the other hand, automatically generating PDF code does reduce the burden on

the user significantly and implementations become more concise.

Our assumptions that algorithms use local sampling and that paths are sampled

incrementally simplifies the computation of PDF values but does preclude some more

advanced algorithms such as manifold exploration [31].

43

2.4 Technical Considerations

2.4.1 Path Data Structure

The common operations described in Section 2.1.4 suggest the use of a path data

structure as a central construct in rendering algorithm implementations. The major

challenge is to minimize the overhead introduced by the data structure, particularly

in terms of memory. In theory, paths have no fixed length, which suggests the need for

a data structure that can allocate memory dynamically as needed. These allocations

are less efficient than static allocations and should be minimized, for example, by

preallocating memory generously so that for most paths only static allocations are

required, and dynamic allocations are then only needed in rare cases where the path

is unusually long.

In practice, it is common to apply a fixed length to paths, which simplifies this

greatly — one can statically allocate memory for the entire path assuming the given

maximum length and not dynamically allocate memory at all. The memory allocated

for a given path can also potentially be reused for later paths.

2.4.2 New Language vs. Embedded Language

New Language

The major advantage of creating a new language is that you have complete control

over its syntax and semantics. Things that might be cumbersome to work with in

C++ — for example, template metaprogramming — can be replaced with more natu-

ral syntax. Further, C++ doesn’t provide easy ways to introspect the abstract syntax

tree (AST) of a program, making it difficult to perform source code transformations

for code generation in a seamless way. Creating a new language would give direct

access to the AST, making this process easier.

But implementing a new language has numerous drawbacks. First, it requires

considerable effort to implement a new language and its compiler from scratch. There

is additionally the maintenance effort required to support the language. Second,

44

convincing users to adopt a new language is a major hurdle. It requires learning a

new language, which is likely less stable than existing languages, converting existing

code, and there is always the risk that the language will cease development. And

third, it would require implementing more than necessary. A renderer is a large

system with many components but our discussion focuses on the sampling aspects

of algorithms, which is largely independent of other components e.g. ray casting

primitives, acceleration data structures, scene loaders, and low level random number

generators. Reimplementing all these existing components in a new language presents

an almost prohibitive challenge.

For a new language to be feasible, it would at minimum likely need to be compos-

able with existing rendering components written in C++, but it is not obvious how

to achieve this in a seamless way. Even if you were to implement it in an existing lan-

guage like Python that supports AST transformations more directly, is widely used,

and has some interoperability with C++, it is still not entirely clear how the system

would work in practice. Would the sampling code in Python call into C++? Or vice

versa? It would actually likely be necessary for both sides to be able to communicate

with each other (e.g. a rendering algorithm on the C++ side calls some sampling

code on the Python side, which then needs to call some ray casting code on the C++

side) which would be difficult to achieve in a clean way.

Embedded in C++ Using Template Metaprogramming

The alternative to a new language is an embedded language, which is implemented

within a host language. Since most existing renderers are implemented in C++, it

is a natural choice of host language. One of the major operations of the language

is generate PDF code from sampling code. Since C++ does not allow access to a

program’s AST, any embedded language will require an alternative for introspecting

the user written sampling code. Two options are to use template metaprogramming

[82] or to use runtime expressions.

Using a template metaprogramming technique called expression templates [81], it

is possible to create symbolic algebraic expressions using nested, hierarchical types

45

to represent an expression tree. The user can write mathematical operations using

standard C++ syntax. But instead of dealing with concrete values that result from

the mathematical operations, template metaprogramming relies on operator over-

loading to instead create a symbolic tree representing the mathematical expression.

Transformations, such as simplification and differentiation, can be applied to these

trees.

Template metaprogramming has 2 major benefits. First, it uses standard C++.

The user does not require anything besides a C++ compiler, which handles all code

generation. This relieves the language implementer of the burden of implementing

a new language and compiler and the associated maintenance costs. Second, tem-

plate metaprogramming creates trees and performs transformations on them using

types. This makes it inherently a compile time process. Since all the transforma-

tions are applied at compile time, in theory it should be possible to perform these

transformations, then generate code with little run time overhead.

There are 4 drawbacks however. First, template code is less readable than regular

C++. It can be difficult to understand, maintain, and debug. This adds considerable

burden to the language implementer. Second, when template metaprogramming fails

to compile, for example because a transformation cannot be applied to an expression

tree, the error messages produced by the compiler are often long and opaque. If the

user encounters such a situation, the messages will be of little help in diagnosing

the problem. Third, it is necessary to create an expression tree for entire functions,

that is, every operation in a function must be an expression that can be incorporated

into a larger expression tree. But in C++, constructs like branches and loops are

statements, not expressions. In order to support these, it is necessary to create

equivalent functional versions (e.g. branch(cond, true_result, false_result))

that use less natural C++ syntax. And fourth, excessive use of templates can increase

compile times significantly, slowing development for the language implementer and

making it less appealing for users. As expressions become larger, this effect becomes

even more pronounced.

46

Embedded in C++ Using Run Time Expression Trees

As an alternative to template metaprogramming, instead of using expression tem-

plates to create compile time symbolic trees, we can use more typical class hierarchies

to create run time symbolic trees, for example, by defining an Expr class with sub-

classes like AddExpr to represent addition and MulExpr to represent multiplication.

Conceptually this is very similar to the expression templates approach, with the dis-

tinction being that here each Expr is a run time value instead of a type, for example,

AddExpr likely stores a pointer to each of its operands (each of which is also an Expr)

instead of representing them as types. This involves operator overloading as before

to assemble primitive mathematical operations into symbolic trees, but the assembly

occurs at run time instead of compile time.

The major benefit of this approach is that it avoids the drawbacks of templates:

there is no compile time overhead; run time class hierarchies are more standard C++

and are easier to implement, maintain, and debug; and when things fail, the user

doesn’t have to deal with opaque error messages.

Run time expressions have 3 drawbacks. First, they trade off compile time over-

head for run time overhead. Each tree will likely require a dynamic allocation for each

of its Expr nodes, introducing memory overhead. To reduce the impact of this over-

head, ideally an expression should be created once and then cached for later reuse, for

example, by creating the expression tree the first time a function is called, then using

the cached version on subsequent calls. Second, once an expression tree is created,

there will be overhead in evaluating it. Traversing a run time expression tree during

evaluation will involve following pointers and generally be slower than executing com-

piled code for the expression. To overcome this, each expression tree can potentially

be just-in-time (JIT) compiled on first use to generate a more optimized version for

execution. This is typically achieved by using a JIT system from an existing compiler

infrastructure (e.g. LLVM [42]). Unfortunately, this introduces a dependency, so the

embedded language is no longer pure C++, and incorporating it requires additional

work from the language implementer. And third, like template metaprogramming, it

47

requires alternative functional versions for branch and loop constructs.

2.4.3 Automatic PDFs

If the system aims to provide automatic PDFs, there are broadly 2 options: autodif-

ferentiation and symbolic differentiation.

Automatic differentiation

Automatic differentiation is a technique for automatically generating derivatives of

functions by repeated application of the chain rule on elementary program operations

(see [23] for an overview). It is a general purpose technique for obtaining the derivative

of function outputs with respect to function inputs and is typically implemented using

operator overloading or as a source to source transformation.

Symbolic Differentiation

Symbolic algebra systems represent mathematical operations not as elementary pro-

gram operations but as symbolic expression trees. These systems typically provide

support for transforming these trees, for example, to simplify an expression or to

compute its derivative. Differentiation is performed by applying the chain rule on a

given tree to produce another tree representing the derivative. Code can be generated

from a tree to produce an executable program.

Why is Automatic differentiation Insufficient?

In the context of rendering, automatic differentiation has a crucial limitation: it re-

quires the input values to the given function be known. For example, if we have some

code for sampling a direction on the hemisphere, automatic differentiation would en-

able us to generate both a sampled direction and its derivative, from user supplied

inputs (in this case, uniform random numbers). But for MIS, we need to compute

the derivatives of generated samples with respect to other distributions — we have

the output value, but don’t have the user supplied inputs that would have generated

48

it under the other distribution. If we want to support MIS, then automatic differenti-

ation is not sufficient. We need some way to obtain the input values from the output

values i.e. we need to first invert the function.

Automatic Inverses

Finding the symbolic inverse is more difficult than symbolic differentiation. Even in

rendering where most functions to be inverted are low dimension (2 or 3), it still may

not be possible to guarantee that an inverse can be found since the functions are user

provided and often non-linear. It is also difficult to precisely identify why a particular

function cannot be inverted, which means that error messages provided to users are

typically unhelpful. These are major limitations of providing automatic inverses. If no

inverse can be found for some user provided function, the system can either terminate

with an error, blocking the user’s progress, or provide some workaround.

User Provided Inverses

One natural solution is to allow users to provide inverses as needed. This introduces

the potential for errors but this can be mitigated by verifying the provided inverses

with automated tests: for randomly generated inputs, run the sampling code, then run

the user provided inverse code and verify that the resulting values match the random

inputs. Requiring all inverses to be provided by the user is an appealing alternative to

automatically generating inverses. It’s significantly easier to write inverses manually

and verify them with tests than it is to implement a general symbolic system that

can invert functions efficiently.

Drawbacks of Symbolic Expressions

While symbolic expressions offer an appealing way to automatically generate all the

code required for PDF computations, they have several drawbacks. In contrast to

automatic differentiation, which operates on a sequence of primitive mathematical

operations, symbolic systems instead represent the entire sequence of operations as

a single expression tree. For example, an entire function of mathematical operations

49

will be represented as a single expression tree. As these functions become longer and

more complicated, so too does the expression tree. Large expression trees can quickly

become unwieldy. Transformations of the tree, like simplification, often rely on rule

based pattern matching, which become increasingly expensive as the size of the tree

grows.

A further complication is that simplification, which is perhaps the most important

transformation, is not guaranteed in general to produce an optimal expression —

either in terms of size or in computational efficiency when executed. Using rule

based pattern matching involves deciding which rules are applied and when. Basic

simplifications (e.g. x + 0 ! x) are straightforward since they should always be

applied, but for more complex rules the decision is not so clear. For example, consider

a rule to expand expressions of the form (x + c)2. In some cases, expanding this

expression makes sense — perhaps it is part of a larger expression �x2�2xc+(x+c)2

so the expansion simplifies this to c2 — but in other cases it may have little benefit

or even increase the size of the expression tree for no real gain. This is even more

pertinent when considering the same expansion for higher exponents: (x + c)4. In

addition, most simplifications are applied with a particular goal in mind, for example,

to produce a smaller expression tree. There is no guarantee that this goal will be

achieved, and when actually generating code from a given expression tree, there is no

guarantee that this goal will lead to optimally efficient code.

Discrete Distributions

The preceding sections describe automatically computing derivatives for PDFs of con-

tinuous distributions. But in rendering, we also often encounter discrete distributions

and mixtures of discrete and continuous distributions e.g. when sampling a point on

a light source, we first discretely select a light source, then sample a continuous point

on its surface. The discrete distributions typically involve a probability mass func-

tion over their discrete options, so we can compute the corresponding probability

for a given option by evaluating the probability mass function directly. But if we

have a combination of discrete and continuous distributions, we need some way to

50

combine the discrete probabilities with the continuous densities. Since the discrete

probabilities often involve non-di�erentiable operations like indexing into arrays or

accessing lookup tables we can't compute the total density using the standard autodif-

ferentiation or symbolic di�erentiation that we would use for a standalone continuous

distribution.

One approach is to instead use enumeration (a similar idea is used to compute

marginal distributions in probabilistic programming languages [22]): re-run the code

for every possible discrete option (e.g. each light source in the scene), evaluate its

probability mass function (the probability of selecting that light) and multiply that

value by the resulting continuous density function (the density of sampling the given

point on that light source's surface). The continuous density can potentially be ob-

tained with autodi�erentiation or symbolic di�erentiation. The total resulting density

is the sum over all these values. This will result in correct probabilities, but with a

drawback: if there are a large number of discrete possibilities to enumerate, this

process will become very slow, or even infeasible. A more e�cient alternative that

sacri�ces some correctness guarantees is to have the user provide the discrete choices

that were made for a given sample.

2.5 Prior Work

2.5.1 Rendering Systems

pbrt [62] and Mitsuba [30] [56] are the 2 major open source, research renderers that

are currently in use. Rodent [60] is a system written in Impala that supports partial

evaluation (e.g. constant folding of scene parameters) and hardware portability. Its

ideas could potentially be incorporated into pbrt/Mitsuba, with the potential road-

block that partial evaluation may be di�cult to achieve seamlessly in C++. There

are earlier systems that are now defunct (e.g. BMRT [24]), other open source systems

that are more general purpose or production oriented (e.g. appleseed [72], POV-Ray

[61], and LuxCoreRender [73]), and production systems that are used in industry (e.g.

51

Disney's Hyperion [12], DreamWorks' MoonRay [43], Pixar's Renderman [16], Sony

Pictures Imageworks' Arnold [40], and Weta Digital's Manuka [18]), but we focus on

the major systems (pbrt and Mitsuba) that are designed speci�cally for, and widely

used in, research. Both have evolved over major version releases (currently v3 for

pbrt and v2 for Mitsuba) but the basic structure they use for their algorithm imple-

mentations has remained largely unchanged. Here we discuss their designs in relation

to the design goals outlined in Section 2.2.

Correctness

Both require users to implement all PDF code manually so sampling and PDF con-

sistency is the user's responsibility. They do provide some low level samplers (e.g.

for sampling a direction over the hemisphere or sampling a point in a triangle) with

corresponding PDF code but this still relies on manual e�ort. Full path PDFs must

be implemented by the user. There is no support for keeping track of how samples

are generated or for the combinatorially many ways that samples can be combined

for MIS. This functionality must be implemented by the user. Further, code is often

scattered, for example, cosine terms in the integrand are incorporated into BSDF

evaluation functions, which is potentially error prone. Neither provides support for

full path sampling, as described in more detail below, which negatively impacts cor-

rectness.

Code Reusability

They both support a limited amount of code reuse but this only extends to primitive

operations within the code. For example, they both provide primitive sampling con-

structs for sampling a direction on the hemisphere, or a point in a triangle. These

constructs are well designed in that they provide a sampling function (e.g. sam-

plehemisphere()) and a corresponding PDF function (e.g. pdfhemisphere()). These

primitives can be reused within algorithms and across algorithms.

What they both lack is reusable components forpath level sampling, which in-

volves multiple steps and even aggregates calls to multiple primitive samplers. For

52

example, sampling the next vertex of a path in path tracing requires more than these

primitive samplers provide and likely involves: converting the previous direction from

world coordinates to the local coordinate system of the surface at the current vertex,

sampling the current surface's BSDF to get a new outgoing direction in the local

coordinate system, converting the new outgoing direction from local coordinates to

world coordinates, and intersecting the new outgoing direction in world coordinates

with the scene to get the next vertex. Similarly, computing the PDF involves multiple

steps: computing the direction from the previous vertex to the newly sampled vertex,

converting that direction into the local coordinates of the previous vertex, convert-

ing the previous direction from world coordinates to the local coordinate system of

the previous vertex, computing the PDF of sampling the new direction, computing

the Jacobian for transforming the solid angle PDF into an area PDF. Both pbrt

and Mitsuba provide many of these operationsindividually but they are scattered

throughout the code and require the user to aggregate them together when imple-

menting an algorithm. This is error prone and prevents the aggregated operations

from being reused.

Ideally, these aggregate operations would be encapsulated in some way, for exam-

ple, as samplevertex() and pdfvertex(). The bene�ts of this are twofold: the logic for

generating samples and computing PDFs is localized in once place, making it easier

to reason about and less error prone, and these operations are then reusable within

algorithms and across algorithms.

Separation of Concerns

For both, their algorithm implementations mix together sampling code, PDF code,

and integrand code, presumably with the of view of achieving higher performance.

Conciseness and Expressiveness

Neither supports particularly concise implementations. There is considerable code

duplication across algorithms. On the other hand, they are both expressive systems.

They provide few limitations on what kinds of algorithms can be implemented.

53

Performance

Both systems are research style renderers. Their focus is not performance but they

both are reasonably performant. They both support thread based parallelism. Mit-

suba 2 can be compiled to use vectorized instructions.

Multiple Hardware Backends

Mitsuba 2 supports both CPU and GPU. It uses templates to compile for the selected

backend. However, it does not support more advanced algorithms like bidirectional

path tracing, either on the CPU or GPU. The upcoming pbrt 4 also supports CPU

and GPU. It is unclear whether advanced algorithms will be supported on the GPU.

2.5.2 Probabilistic Programming Languages

Probabilistic programming languages typically provide support for two main capabil-

ities: modeling of probabilistic programs, andinference over these programs. Many

such languages have been proposed, with varying properties and features: Church [21]

(generative models, inference); webppl [22] (inference); Stan [69] (Bayesian inference),

Factorie [48] (factoring graphical models, inference), BLOG [51] (inference), PyMC3

[65] (inference), Edward [74] (inference, criticism) and many others. More recent work

(e.g. Venture [47], Turing [19], Pyro [10], Gen [17]) has focused on greater modeling

expressivity � allowing users to write a wider range of probabilistic programs � and

inference �exibility � allowing users to write custom inference algorithms instead of

relying on language-provided black-box functions.

These languages share some similarities with the sampling and probability com-

putations performed in rendering, but there are some notable di�erences.

The modeling capabilities of probabilistic programming languages allow users to

write programs that can generate samples from some underlying distribution. This

is very similar to rendering were we also write code to generate samples from dis-

tributions. But in probabilistic programming, the distribution itself is generally not

known in closed form. They may provide some primitive distributions (e.g. binomial,

54

beta, Gaussian, etc.) with known density functions but for more complex user-written

programs that compose these primitives, the density function is generally not known

and is often infeasible to compute. They instead rely on inference, typically involving

some collected data, to reason about the underlying probabilities.

On the other hand, for most rendering algorithms like path tracing and bidi-

rectional path tracing, we generally sample from local distributions that are known

analytically, then compute their p(x) values for evaluating Monte Carlo estimates.

Designing these kinds of rendering algorithms typically involves starting from distri-

butions with known densities that you want to sample from. The distributions are

carefully selected with speci�c properties in mind e.g. for importance sampling, and

in these cases, we don't rely on observed data at all. Since rendering typically re-

quires an analytic density, the range of distributions expressible is more restricted and

domain speci�c than that of general purpose probabilistic programming languages.

For other algorithms like Metropolis light transport, there is a closer connection

to probabilistic programming languages, many of which provide Metropolis Hastings

as an inference algorithm. For them to be usable in the context of rendering, there

are additional challenges that would need to be overcome. First, the probabilistic

programming language would need to be composable with existing rendering compo-

nents. And second, the language would need to support user written proposals, since

Metropolis light transport relies on domain speci�c proposals. Unfortunately, Most

probabilistic programming languages have limited composability but newer languages

like Gen can interoperate with external code. Gen is written in Julia, however, so

composing it with existing C++ rendering components would be di�cult. Gen does

support user written proposals however.

Even if these roadblocks could be overcome, perhaps the biggest challenge for

all rendering algorithms is that knowing the analytic density and inverse of the cho-

sen distributions is crucial for MIS, which to our knowledge is not supported in any

probabilistic programming languages. They support much more general purpose sam-

pling procedures for which they don't support analytic inverses. In theory, it might

be possible to create a probabilistic programming language that did support ana-

55

lytic densities and inverses, but this would greatly restrict the expressibility of its

modelling capabilities.

In general, probabilistic programming languages focus on the Bayesian setting:

data collection and inference about probabilities. In contrast, in rendering we know

the sampling process and need to compute the corresponding probabilities. We are

solving the forward problem � starting with known distributions, generating samples,

then computing arbitrary probabilities for MIS � they are solving the reverse problem

� starting with samples (in the form of collected data) and using inference to reason

about the underlying distributions.

2.6 Discussion

When designing and implementing rendering systems, there is a fundamental tension

between separation of concerns and performance. In order to achieve good perfor-

mance, there is an incentive to implement algorithms that store as little state as

possible to minimize memory accesses and that mix sampling code, PDF code, and

integrand code together to avoid redundant computation. But in doing so, code be-

comes highly coupled to each algorithm implementation. It is di�cult to reuse code,

and implementations become harder to reason about and error prone. Further, it is

di�cult to systematically address the major correctness challenges of Monte Carlo

rendering � keeping sampling code and PDF code consistent, computing PDFs of

paths according to arbitrary distributions, and the bookkeeping involved when com-

bining combinatorially many samples with MIS.

We can address many of these problems by instead recognizing that many al-

gorithms are closely related and are constructed from a set of common operations,

making it is possible to express them in a more uni�ed, systematic way. There are a

range of possible ways to implement these common operations, introducing additional

trade-o� decisions between correctness, performance, and expressiveness.

Regardless of the chosen implementation speci�cs, a uni�ed approach improves

separation of concerns and makes complex rendering algorithm code in general more

56

reusable, easier to reason about, and easier to implement correctly, but at the cost of

performance. This is the major tension that should inform the design and implemen-

tation of rendering systems.

57

58

Chapter 3

Aether: An Embedded Domain

Speci�c Sampling Language for

Monte Carlo Rendering

Probabilistic integration techniques used in lighting simulation shine by their combi-

nation of elegance and e�ciency. The pseudocode for an algorithm like bidirectional

path tracing with multiple importance sampling �ts in a small �gure and reveals

at once its power and sophistication. Unfortunately, while the implementation of a

simple path tracer is relatively straightforward, achieving a correct implementation

of more advanced algorithms, such as bidirectional path tracing or Metropolis light

transport, is a major undertaking prone to subtle probability bugs that are extremely

challenging to chase down.

A major implementation di�culty lies with correct handling of probabilities, both

in terms of mathematical correctness and book-keeping, by which we mean the care

required for drawing samples and combining estimates from several di�erent, complex

samplers, which are, in addition, often de�ned on di�erent parameterizations (mea-

sures). In particular, algorithms such as multiple importance sampling and Metropolis

require the computation of not only the probability of a sample with respect to the

strategy that generated it, but also with respect to other strategies. This means that

simply keeping track of probabilities as we generate a sample is not su�cient. In

59

addition to the challenge of deriving correct PDF formulas for the sampling of con-

tinuous variables, algorithms that assemble sub-paths also need to carefully track and

account for the many di�erent combinatorial ways to generate the same path.

For concreteness, the interested reader can compare and contrast the implemen-

tations of path tracing and bidirectional path tracing in either the publicly available

Mitsuba or pbrt-v3 renderers. It is readily apparent that the move from path trac-

ing to bidirectional path tracing necessitates large changes in software architecture,

including the data structures used for holding path data, as well as a signi�cant

increase in code complexity stemming from computation of multiple importance sam-

pling weights. Now imagine experimenting with new sampling ideas, such as a tridi-

rectional approach that would trace sub-paths from not only the eye and the light

source, but also from a known important opening such as a keyhole or a pinhole.

This would require the proper probability computation and book keeping for many

di�erent subpath generation strategies, a daunting task with current pen-and-paper

approaches.

To address these di�culties, we propose Aether, a new domain speci�c language

that dramatically simpli�es the implementation of unbiased Monte Carlo integration.

Our central goal is to relieve the programmer of the tasks of deriving and imple-

menting probability density functions, performing explicit measure conversions, and

dealing with the book keeping and combinatorics of di�erent sampling strategies. Im-

portantly, we need to facilitate complex samplers that are able to evaluate their PDFs

at arbitrary sample points that may have been sampled through other samplers, as

required by, for instance, multiple importance sampling or Metropolis. In our lan-

guage, the programmer writes only sampling code, and the language automatically

generates the necessary density code by computing symbolic derivatives and func-

tion inverses at compile time. This ensures consistency between a given sample and

its density, and eliminates the need for explicit measure conversions. The language

also generates the book keeping and sample combination code to deal with multiple

samples. Finally, it can compute conditional probabilities, as required by Metropolis-

Hastings algorithms. The resulting code is compact and correct by construction,

60

making it easier to focus on higher-level algorithmic and mathematical design. Our

focus is on correctness and not speed. While the resulting generated code is currently

below hand optimized implementations, the language facilitates the implemention of

algorithms that can be di�cult to achieve with existings renderers. Our succinct

implementations of gradient-domain path tracing and the novel tridirectional path

tracing demonstrate the potential of our language.

Aether is publicly available in the Aether repository (https://github.com/aekul/aether)

and our rendering algorithm implementations are available in the Yotsuba repository

(https://github.com/aekul/yotsuba).

3.1 Prior Work

Rendering Systems

pbrt [62] and Mitsuba [30] are two well known physically based rendering systems

widely used by the research community as testbeds for developing and verifying new

algorithms. While they both include sampling functionality, neither supports a sim-

ple, robust way to write new code. They both require manual derivations of density

functions, and place the burden on the programmer to keep track of the samples, their

measures, and how they are to be combined. In particular, both pbrt and Mitsuba

keep a record of density values together with their associated samples. This approach

is error prone, particularly for inexperienced users, because it does not inform the

user of which sampling strategy the density values were obtained from. They both

also feature tight coupling of sampling code, density code, and the code for computing

the integrand and estimate. This makes it di�cult to reuse existing code and extend

the systems with implementations of new algorithms.

Probabilistic Programming Languages

Many probabilistic programming languages have been proposed. They are discussed

in Section 2.5.2. Their goals are di�erent from those of the sampling and probabilities

involved in rendering. They focus on data collection and inference about probabil-

61

ities, whereas in rendering we know the sampling process and need to compute the

probabilities of arbitrary samples for MIS. As a result, we require a rendering speci�c

approach.

Symbolic Algebra Systems

There are numerous existing symbolic algebra systems: Mathematica [88], SAGE,

sympy, and others. While Mathematica and sympy can be incorporated into other

programs through compilation or simple importing, none o�er a simple way to write

compile time expressions in C++. Further, these systems are typically general pur-

pose. In comparison, we only have to handle more restricted operations. This sim-

pli�es our task of computing symbolic derivatives and inverses since we only have to

handle more domain speci�c scenarios.

Dimensional Analysis

SafeGI [57] is a C++ software library that o�ers compile time checking of physical

dimensions, units, and geometric spaces for rendering systems. This kind of library

is orthogonal to our language and could potentially be incorporated into it.

3.2 Mathematical Background

In physically-based light transport simulation, the intensity of a pixelj is given by

the integral

I j =
Z

hj (x)f (x)d� (x) (3.1)

where
 is the set of all light paths,hj is the sensor response function for pixelj , and f

is the contribution function that measures the light throughput of a path in a chosen

measure� [77]. A path x = f x1; x2; : : : ; xkg is a sequence of vertices (scattering

events) in the scene, starting from the light and ending at a virtual sensor.

Modern Monte Carlo techniques, our focus, often sampleN random light paths

from M distinct distributions and combine them. Each light pathx i is sampled from

62

a distribution pj (x), which is one of theM distributions. An estimate of the integral

from the paths' contributions f (x i) is weighted according to

I �
1
N

NX

i

Wi (x i)
f (x i)
pj (x i)

; (3.2)

where the combination weight heuristicWi (x i) is a function of all the probability

densitiesp1(x i); p2(x i); : : : ; pM (x i), not just the density of the sampler that actually

drew x i .

In a di�erent vein, Markov Chain Monte Carlo methods such as Metropolis Light

Transport [80] make use of random walks where the proposed random step from path

x to path y is accepted with probability

min
�

1;
f (y) pj (xjy)
f (x) pj (y jx)

�
: (3.3)

Here, pj (y jx) is one of potentially many conditional probability densities used for

randomly sampling mutations. Implementing the mutation samplers and the com-

putation of its conditional probability density are challenging to the point that few

complete implementations of the Metropolis algorithm are known.

3.2.1 Path Samplers and Their Densities

Most current light transport algorithms make use of sequential local sampling, where

paths are extended one interaction at a time by sampling directions for extension

rays. The process may start from the camera, from the light, or generally anywhere.

The PDF of the entire path is the product of the individual sampling probabilities:

p(x) = p(x1)p(x2jx1)p(x3jx2; x1) : : : (3.4)

The standard approach for constructing local importance sampling distributions is to

�nd a function that warps a 2D uniformly distributed random variable (u1; u2) onto

the (hemi-)sphere of directions, i.e.,! = w(u1; u2), with the desired density. The

63

next path vertex x i +1 is then found by tracing a ray from the current vertexx i in this

direction. Hence, a sequential sampler S is a mapping from a series of 2D uniform

random variables to a sequence of vertices,x = f x1; x2; : : : g = S(u1; u2; : : :). While

we omit explicit dependence on location, it is understood that the shape ofw may

depend on, e.g., the incoming direction from the previous vertex, the surface normal,

and the re�ectance function.

To evaluate the probability density of a sampled local direction, standard proba-

bility calculus yields

p(!) =
p(u1; u2)

p
j det J T J j

(3.5)

whereJ = @w
@u1 ;u2

is the 3� 2 Jacobian of the mapping from the square to the sphere.

Note that evaluating the density at an arbitrary direction ! that was not sampled

from the same PDF � so that we do not know the u1; u2 that produced ! � requires

�rst the inversion

w� 1(!) = (u1; u2): (3.6)

Standard hand-derived density functions implicitly include both the Jacobian and

the inversion in the �nal formula. When computing the density of an entire pathy

sampled from another distribution, we must perform the multidimensional inversion

u1; u2; : : : = S� 1(y). This reduces to a series of local 2D inversions of the form (3.6).

3.2.2 Case Study: Path Tracing

Standard implementations of estimators in the form of Equation (3.2) mix path gen-

eration, density computations, and integrand evaluation in a tangled, error-prone

manner, making even relatively simple algorithms challenging to get right. Figure

3-1 features a pseudocode representation of a standard recursive path tracer with

next event estimation. The code features functions for sampling BSDFs, picking light

sources, and sampling points on light sources (blue); evaluating BSDFs and light

emission for arbitrary points and directions (green), as well as code for evaluating

densities and MIS weights for all combinations of samples drawn from the light and

64

BSDF samplers. Not shown are code for generating samples from a non-pinhole

camera, etc.

While the basic algorithm is easy to describe � append a shadow ray segment

and a BSDF sample segment to the current path to create two �virtual� paths, add

the contribution of light sources from the two paths with MIS, discard the shadow

ray and extend the current path with the BSDF sample, recurse � this structure

is barely visible from the code. Even in this simple case, it remains challenging to

ensure the density and MIS weight code (red) is consistent with the sampling code

(blue), as path generation, evaluation, and density code are all interspersed with each

other.

Evaluating the estimator (Equation 3.2) for a more sophisticated path sampler,

such as bidirectional path tracing [77] poses even further challenges due to the manual

application of surface area measure conversion factors, and, particularly, the fact that

all the combinatorial ways of generating a path have to be matched by the manually

speci�ed full-path PDF code.

Fundamentally, implementing simple formulations such as Equation (3.2) is dif-

�cult for two reasons. First, the computation of pj (x i) must be consistent with the

sampling procedure that generates thex i . Second, while the integrandf and density

pj are mathematically expressed as simple functions, ray-tracing code usually com-

putes them incrementally as bounces are simulated, keeping track of partial values

such as marginal probabilities and products of re�ectance or radiance. This means

that there is no single place wheref or p are evaluated and the code for sampling,

evaluating the integrand, and computing the density are interleaved, making it hard

to create modular strategies.

In contrast, our language focuses on the concept of paths that are built from

reusable and composablestrategies, each of which encapsulates a simple operation

such as BSDF sampling. Our language o�ers automatically derived full-path PDF and

MIS weight code, e�ectively separating these computations from path construction.

The interested reader may want to skip ahead and consult Figure 3-2 to see how this

results in more readable and conceptually simpler code. While already helpful with

65

the simple path tracer, the bene�ts compound when implementing more sophisticated

methods.

Li = 0; throughput = 1;
Ray ray = spawn ray from camera
its = intersect ray with scene

while (path length is less than maxDepth) {
break if its is invalid
bsdf = its.bsdf; P = its.point; N = its.normal;
wi = -ray.dir; Ld = 0;

// Next event estimation (shadow ray) with MIS
lightSrc = discretely pick light source
lightP = sample point on lightSrc
if (light is not blocked) {

lightBsdfPdf = PDF if lightP sampled by bsdf
lightPdf = PDF if lightP sampled by light
weight = MISWeight(lightPdf, lightBsdfPdf)
Le = evaluate lightSrc emission for P, lightP
f = evaluate bsdf for wi, lightWo
Ld += weight * Le * f / lightPdf

}

// Sample BSDF with MIS
wo = sample outgoing direction from bsdf
ray.o = P; ray.dir = wo
its = intersect ray with scene
f = evaluate bsdf for wi, wo
bsdfPdf = PDF if wo sampled by bsdf
if (hit a light) {

bsdfLightPdf = PDF if wo sampled by light
weight = MISWeight(bsdfPdf, bsdfLightPdf)
Le = evaluate lightSrc emission for P, wo
Ld += Le * f * weight / bsdfPdf

}

Li += throughput * Ld
throughput *= f / bsdfPdf

}

Figure 3-1: Pseudocode for a path tracer with MIS. Integrand and estimator code
highlighted in green; sampling code highlighted in blue; and PDF and MIS code
highlighted in red. We omit some details like geometry terms and conversions between
solid angle and area measure.

66

3.3 Goals and Design

3.3.1 Goals

Correctness By Construction

Estimators written in our language should have the correct expected value. The user

may write code that is ine�cient and has poor variance, but the expected value should

be correct. This means, in particular, that sampling code and the corresponding PDF

code must be ensured to be consistent.

Conciseness and Expressiveness

Code should be simple, readable, and expressive enough for complex rendering algo-

rithms.

Modularity and Reusability

User code, such as sampling strategies, should be modular and reusable across di�er-

ent algorithms.

Easy Integration with Existing Ray Tracing Kernels

Our language focuses on the probabilistic part of an algorithm, and users should be

free to use any existing or novel library to perform computations such as ray casting

and radiometric calculations.

Dimensionality of Samples

Rendering algorithms often need to generate samples that have a lower dimensionality

than their ambient space, such as the use of 3D coordinates for directions or surface

intersection points. We need to properly account for the probabilities on the lower-

dimensional manifold.

67

Flexible Uniform Generation

The user should be free to drive the rendering algorithm using random or quasi-

random number generators of their choice.

3.3.2 Design Decisions

Sampling vs. Density

To make the sampling and PDF code consistent, we chose to require the user to write

the sampling code while we derive the corresponding PDF. It is much simpler than

the opposite, since the PDF derivation requires a simple derivative, while deducing

sampling from a PDF can be arbitrarily hard, especially for multi-dimensional cases.

Embedding in C++

As most renderers are written in C++ or C, we chose to embed our language in C++

for easy composition. The language requires no additional tools beyond a normal

compiler and we use template metaprogramming [82] to perform compile time code

generation for PDF calculation and other features.

Parameterization and Measure

Renderers often mix path parameterizations, requiring error-prone measure conver-

sion. In our language, the programmer speci�es an integrand in a single chosen

parameterization (e.g., surface area). They must provide all samples in the same

parameterization, via conversion code written in our language. However, it isnot

required to account for measure changes (geometry terms) explicitly because the

compiler does it automatically.

Interaction with Deterministic Code

The derivation of probabilities for samples computed according to operations such as

ray casting requires the symbolic inversion and di�erentiation of, e.g., the intersection

68

point. Writing full ray casting in our language would be prohibitive and violate our

goal of interportability. To achieve both mathematical correctness and modularity,

we require values coming from external code to be constant in the neighborhood of

a sample. This means that, for example, ray casting will pass the vertices of the

intersected triangle, and that the intersection coordinates need to be re-computed in

our language.

Incremental Paths

In order to make the symbolic expression of path sampling functions tractable, we

assume that all paths are sampled sequentially and at each step only a single vertex

is sampled. For some special cases, such as tridirectional path tracing (Section 3.6.4),

we provide a construct to sample two or more vertices at the same time. Samplers

with global dependencies, such as the Manifold perturbation of Jakob and Marschner

[31], remain future work.

3.3.3 Approach

Our language focuses on sampling and integration in probabilistic ray tracing. It is

embedded in C++ via template metaprogramming and can be used with existing

libraries for ray casting and shading. Users are responsible for sampling and path

assembly, while the computation of densities (both at the local ray level and global

path level, for the current strategy as well as other strategies) and the combination

of samples for MIS are handled automatically. For this, users write sampling code

and append vertices to a path data structure in our language, but use existing C++

libraries for ray casting and geometric acceleration, as well as for the computation

of shading and path throughput. What needs to be (re)written in our language is

the importance sampling portion of a shader and the calculation of the intersection

location within a visible primitive.

Our language is centered on �ve main types of constructs. We providesampling

primitives (discrete, continuous, and strategies, which subsume and combine the two)

69

// Create camera subpath
RandomSequence<Vertex> camPath;
camPath.Append(sampleCamera) // Append always called with a strategy
camPath.Append(samplePrimaryHit)
while (camPath length is less than maxDepth) {

camPath.Append(sampleBSDF)
}

Li = 0;
for (pathLen = 2...camPath.Size()) {

bsdfPath = camPath[1...pathLen + 1] // first pathLen+1 vertices
directPath = camPath[1...pathLen] // first pathLen vertices
directPath.Append(sampleLight) // add shadow ray target

// MIS weights
combined = combine(bsdfPath, directPath);
foreach (path in combined) {

Li += path.weight * integrand of path / path.Pdf();
}

}
return Li;

Figure 3-2: Pseudocode for a path tracer with MIS in our language. Integrand and
estimator code highlighted in green; sampling code highlighted in blue; and PDF and
MIS code highlighted in red.

where the programmer writes code that produces multidimensional path samples

by transforming a series of 2D uniform random variables into sequences of vertices.

Multiple importance sampling is handled through acombineprimitive that takes care

of weight computation. We provide apath data structureto which vertices can be

appended and which takes care of density computation. It can also handle complex

cases, such as in bidirectional path tracing, where vertices are inserted both from the

light and from the eye. We clearly separate the de�nition of anintegrand from the

sampling code for modularity. Our code interacts with deterministic external code via

a locally-constantconstruct where values are assumed constant in the neighborhood

of a sample. These constructs are then extended to handle Markov chain Monte Carlo

approaches such as Metropolis.

The pseudocode in Figure 3-2 shows the implementation of a path tracer as it

70

would be written in our language. It highlights several of the main primitives of

our language. It also shows how our approach di�ers from a regular path tracer

implementation in several ways.

Sampling and PDF

We provide �ve sampling primitives:

ˆ Random variables generate one dimensional samples (Section 3.4.1)

ˆ Random vectors generate multi-dimensional samples (Section 3.4.1)

ˆ Discrete random variables for making discrete choices (Section 3.4.2)

ˆ Strategies are a compound sampling primitive. They use random variables and

random vectors as building blocks (Section 3.4.3) and can also include discrete

distributions. They are used to sample the next vertex in a path.

ˆ A generic data structure (RandomSequence) for sampling light paths (Section

3.4.6). They are constructed from a list of strategies.

All PDF computations are handled by our language. In standard renderers, the

programmer must manually account for PDFs, which is error prone, and further com-

plicated by the fact some importance sampling code features a mixture of continuous

(e.g. BSDF sampling) and discrete sampling (e.g. choosing a light source).

Whenever generating a sample in our language, the sample is drawn from one of

our language primitives. The programmer does not need to write PDF code: all prim-

itives have an automatically derivedPdf() method. We use symbolic di�erentiation

to compute the Jacobians needed to generate PDF code (Equation 3.5).

Combine

In a path tracer with MIS, even with only 2 di�erent sampling distributions, there

are 4 necessary PDFs to compute. In standard renderers, this is error prone; it is

the responsibility of the programmer to manually account for how each sample is

71

actually sampled. This becomes increasingly complex as the number of combinations

increases.

In our language, every sample maintains a record of how it was sampled and has

an automatically derived Pdf() method. This method can be called on arbitrary

samples, which is enabled by symbolic inversion (Equation 3.6). MIS then becomes

simple (Section 3.4.4); our language o�ers a conveniencecombine() primitive for this

purpose.

Path Data Structure

Our language introduces theRandomSequence(Section 3.4.6) data structure, which

we use to store path data. It is the fundamental building block of all algorithm imple-

mentations in our language. Random sequences can be extended with new samples,

o�er the automatically derived Pdf() method for computing the PDF of the path,

and have methods for slicing, concatenating, and reversing sequences, while maintain-

ing the samePdf() interface on the new sequence. These methods are particularly

useful in algorithms like bidirectional path tracing where many paths are sliced and

concatenated for MIS.

Constructing a path involves implementing strategies.sampleCamera,

samplePrimaryHit , and sampleBSDFare strategies for sampling the camera vertex,

obtaining the primary hit vertex, and sampling the previous BSDF and raycasting to

obtain the next vertex. One notable advantage of using strategies to construct paths

is that they are then reusable in other algorithms.

Random sequences are sampled sequentially so the full density functions (Equa-

tion 3.4) can be built from the primitive operations of 2D/3D function inversion and

taking Jacobians. In contrast to typical path tracer implementations, we explicitly

sample full paths before combining them or computing the integrand. We feel this is

a clearer way of constructing paths.

72

Separate Integrand and Sampling

Typical path tracer implementations generally mix integrand, sampling, PDF, and

MIS code together inside a for loop. Combining all of these elements reduces the

clarity of the algorithm and makes it di�cult to reuse any of them in other algorithms.

In our language we handle these aspects of the algorithm separately. This allows

sampling strategies and integrand evaluation code to be reused.

Our language is implemented using C++ template metaprogramming, allowing all

necessary inversion and Jacobian computation to be resolved at compile time. That

is, the template mechanism is used as a programming language where templates act

as functions and types act as values. Under the hood, each symbolic expression is

represented as a complex type, and template instantiation is used to transform these

symbolic expressions. Template metaprogramming can constrain the possible syntax

(e.g. we de�ne real number literals as1_l , 2_l , etc.) but it enables powerful compile

time symbolic manipulation, including symbolic inversion and symbolic di�erentia-

tion, before code generation.

3.3.4 Scope and Limitations

Our language can handle Monte Carlo rendering methods that can be expressed in

a form similar to Equation (3.2), which proceed by weighted summation of point

estimates of an analytic integrandf at sample locations generated probabilistically.

Sampling can include discrete and continuous random variables, based on the multi-

dimensional analytic mapping of uniform random variables. This includes most forms

of importance sampling, path tracing, bidirectional path tracing, and Markov-chain

methods such as Metropolis. We support cases where samples are correlated, in par-

ticular when subpaths are reused for di�erent estimates, which allows us to express

virtual point light source methods such as instant radiosity [37] (see Section 3.6.6),

where light subpaths are reused. We can also support methods such as photon map-

ping [33] (see Section 3.6.7), which can be expressed with an additional convolution

of the integrand with a density estimation kernel. We can handle adaptive sam-

73

pling techniques where the number of samples or the importance function depends

on previous samples.

Adaptive Approximation of the Integrand

Techniques such as irradiance caching [87], lightcuts [85], or multi-dimensional adap-

tive sampling and reconstruction [26] which can be seen as performing adaptive ap-

proximations of the integrand, are not supported by our approach, and in particu-

lar we cannot o�er correctness guarantees. However, parallel versions of irradiance

caching (e.g. [86, 35]) that populate the cache ahead of time could probably be ex-

pressed with a combination of correlated samples and convolution of the integrand

similar to virtual point lights and photon mapping, although we have not implemented

it.

Non-Analytic PDFs

We focus on transform sampling techniques for analytic PDFs. We currently can-

not handle numerical techniques such as manifold walk sampling [31] or Woodcock

tracking [89] used in volumetric rendering.

Dirac Delta Functions

Our language currently does not handle Dirac functions, such as point light sources

and mirrors. The exception to this is the pinhole camera, which we support for

sampling eye subpaths. We assume the ratio between position density on the �lm

plane and the integrand is 1, but do not use an explicit construct to characterize it as

a Dirac. These functions could potentially be handled symbolically, by storing each

Dirac as a symbolic function and relying on our symbolic simplication to cancel out

the same Diracs in the numerator and denominator of a given expression, but this

is not implemented at present. We approximate perfect specularity with extremely

shiny BSDFs, as detailed later.

74

Zero PDFs

Our code has the correct expected value only if the user sampling code can generate

samples almost everywhere where the integrand is non-zero.

Inversion

Symbolic inversion can be in theory intractable, although our language has so far man-

aged the samplers we have implemented. The system assumes all provided sampling

functions are bijective. If a non-bijective function is provided, either the inversion

will fail and result in a compile error, or the inversion will succeed but only provide

one of the possibly many inverse values.

Volumes

We currently do not support volumetric interactions.

Performance

Both compile time and run time performance of samplers written in our language are

below hand optimized implementations.

3.4 The Domain Speci�c Language

We now introduce our embedded domain speci�c language, Aether. We �rst illustrate

the important constructs of our language with a simple example of Monte Carlo

integration with importance sampling, before moving to more advanced features.

3.4.1 Example: Estimating Irradiance at a Point

Suppose we want to compute the irradiance at a �xed point by using Monte Carlo

integration to evaluate the hemispherical integral

E =
Z

L i (!) cos� d!:

75

Sampling the Hemisphere

We want to sample the hemisphere using importance sampling according tocos� [62]:

// Declare symbolic uniform random variables
variable<1> u1;
variable<2> u2;

auto r = sqrt(u1);
auto phi = 2_l * pi * u2; // 2_l is a literal for 2.0
auto cosHemisphere = random_vector<2>(

r * cos(phi),
r * sin(phi),
sqrt(1 - u1)

);

The above code looks similar to regular numeric sampling code, but under the hood

all of the expressions are symbolic to enable the derivation of the inverse and the PDF.

It starts with symbolic uniform random variable u1 and u2 and de�nes the symbolic

expression to transform them into arandom variable(cosHemisphere) representing

directions on the hemisphere. Therandom_vector<N>() function constructs a vector

of random variables, where2 is the number of uniform random variables on which

it depends. In this example, there are 2 uniforms � u1 and u2 � and the random

vector has 3 outputs, because directions are two-dimensional but encoded with 3

coordinates.

The compiler automatically generates aSample() method, which evaluates this

function. More importantly, the compiler also computes the symbolic Jacobian de-

terminant and symbolic inverse, both of which are used in the other automatically

generated method,Pdf() . This function can not only compute the PDF at a point

sampled with the strategy, but also for any given direction. It is fairly straightforward

in this simple example, but becomes more valuable for sophisticated samplers.

Compute an Estimate

Using the language providedPdf() method, computing an estimate is simple:

// User provided uniform sampler
MyRng rng;

76

Spectrum total(0);
int N = 10000;

auto myIntegrand = [](const auto& sample) -> Spectrum {
// user provided regular C++ code to compute Li * |cos(theta)|

}

for (int i = 0; i < N; i++) {
// Draw a sample
auto xCos = cosHemisphere.Sample(rng(), rng());

// Compute the integrand
auto f = myIntegrand(xCos);

// Compute the PDF
auto p = cosHemisphere.Pdf(xCos);

// Add f(xCos) / p(xCos) to running total
total += f / p;

}

// Compute the final estimate
auto estimate = total / N;

To samplecosHemisphere the user provides 2 numbers between 0 and 1 to the

Sample() method. These uniforms can be obtained from any random number genera-

tor, or they can come from a quasi-Monte Carlo sequence. This estimator is correct by

construction because Aether uses symbolic di�erentiation to ensure that the sampling

and PDF code are consistent.

For convenience, Aether provides anEstimator object construct, which stores the

integrand and handles the computation off (x)
p(x) (and also handles boundary cases, e.g.

when p(x) = 0). It is especially useful when combining multiple samples, where it

also handles computing the necessary weighting values.

3.4.2 Discrete Random Variables

In addition to continuous random variables, Aether also supports discrete random

variables, which are frequently used in rendering algorithms, e.g. when discretely

sampling a light source or discretely sampling a component of a multi-layered BSDF.

77

They are constructed from standard C++ containers, and support the same

Sample() and Pdf() methods as the continuous random variables.

Consider the example of discretely sampling a light source:

std::vector<Emitter*> emitters = scene.getEmitters();
// Create a uniform discrete distribution
auto emitterDiscrete = discrete(emitters);

// Sample an emitter
auto em = emitterDiscrete.Sample(rng());

// Compute its probability
auto p = emitterDiscrete.Pdf(em);

Aether also supports piecewise constant and piecewise linear distributions, which

are useful for enviroment map sampling.

3.4.3 Sampling Strategies

So far, we have seen simple continuous and discrete random variables. We now in-

troduce strategies, the most general sampling construct in Aether, that encapsulate

operations such as BSDF importance sampling, light sampling, lens sampling, etc.

Strategies combine together continuous random variables and vectors as well as dis-

crete random variables � for instance, for choosing light sources or BSDF layers �

while still providing automatic PDF derivation. Strategies are designed to be supplied

to random sequences (Section 3.4.6) to create incrementally sampled paths.

To implement a strategy, the user writes sampling code as usual, but it is encap-

sulated within a function object with a particular form:

struct SamplePointOnLightStrategy {
template <typename T>
auto operator()(Context<T>& context,

MyRng& rng,
const std::vector<Emitter*>& emitters) const {

// Create a uniform discrete distribution
auto emitterDiscrete = discrete(emitters);

// Randomly pick an emitting triangle
auto emitter = context.Sample(emitterDiscrete, context.Uniform1D(rng));

78

// random variable for uniform point on emitter
// (for implementation, see the Yotsuba repository)
auto triPt = emitter.randomPoint();

// Sample the point
auto uv = context.Uniform2D(rng);
return triPt.Sample(uv[0], uv[1]);

}
};

The body of the strategy looks similar to the continuous and discrete sampling code

we have already seen, with three exceptions: �rst, the sampler is wrapped in a func-

tion call operator() ; second, discrete random variables (emitterDiscrete) are not

sampled directly, but are passed as an argument tocontext.Sample() ; and third,

context.Uniform1D() and context.Uniform2D() are used to generate uniforms.

The Context is an internal component needed for keeping track of discrete choices,

as detailed in Section 3.5, and does not concern the user apart from the above.

3.4.4 Multiple Importance Sampling

Multiple importance sampling requires evaluating several probability densities for

each sample drawn (Equation 3.2). Suppose we wish to use MIS to combine the cosine

hemisphere samples with samples from an analogous uniform hemisphere random

variable uniformHemisphere. A key language feature that enables this is that the

Pdf() method of random variables accepts as argument not just samples generated by

its own Sample() method, but any sample. As a result, evaluating all four densities

is easy. Denoting the cosine-weighted sample byxCos and the uniform sample by

xUniform, we simply compute

// PDF of xCos if sampled by cosHemisphere
auto pCos = xCos.Pdf(xCos);
// PDF of xCos if sampled by uniformHemisphere
auto pUniformCos = xUniform.Pdf(xCos);
// PDF of xUniform if sampled by uniformHemisphere
auto pUniform = xUniform.Pdf(xUniform);
// PDF of xUniform if sampled by cosHemisphere
auto pCosUniform = xCos.Pdf(xUniform);

79

These two strategies (four densities) can then be combined using a MIS heuristic of

our choice. As the samplesxCosand xUniform also store the random variable from

which they were sampled, we can use theirPdf() methods directly to compute the

PDFs. However, no extra storage is needed at run time because all such dependencies

are resolved statically.

If the sample provided toPdf() is not of the correct dimension or domain (e.g.

querying a light sampler for a direction outside the light), the inverse will return

invalid uniforms (outside [0; 1]) and Pdf() simply returns 0. The MIS heuristic will

then ensure correct operation. The programmer does not need to manually check for

these cases.

To simplify the process of combining potentially arbitrary numbers of samples,

our language provides thecombine() primitive, which accepts a user de�ned combin-

ing heuristic and any number of samples. The above example can be written more

concisely as

Estimator<Spectrum> myEstimator(myIntegrand);

// User provided code to compute the MIS weight
auto myWeightFn = [](float pdfA, float pdfB) {

// e.g. the power heuristic:
return (pdfA * pdfA) / (pdfA * pdfA + pdfB * pdfB);

};

// Combine samples with power heuristic
auto combined = combine<PowerHeuristic>(xCos, xUniform);

// Accumulate weighted integrand values
total += myEstimator(combined);

3.4.5 Interfacing with Deterministic Code

We want our language to be usable with external code such as ray casting engines.

This creates the need to compute densities that depend on data computed outside

our language, for which symbolic descriptions are unavailable. To balance the need

for such an interface with the need for symbolic derivation, we require that the data

coming from the deterministic external code be constant in the neighborhood of a

80

sample. This means, for example, that ray casting cannot directly return an inter-

section point, but should instead return the triangle's vertices, which are constant

in a neighborhood of the intersection, and that the intersection point coordinates

must be computed in our language. This ensures that proper derivatives, inverses

and densities can be derived symbolically.

Our language provides theConstantCall mechanism for calling external deter-

ministic code. A triangle intersection is implemented as

// Intersect ray (p, dir) with the scene and expect a constant as a result
Intersection its = context.ConstantCall(

raycaster,
Ray(p.Value(), dir.Value())

);

// Compute ray-triangle intersection in our language
auto v0 = constant(its.v0);
auto v1 = constant(its.v1);
auto v2 = constant(its.v2);
auto e1 = v0 - v2;
auto e2 = v1 - v2;
auto N = cross(e1, e2);
auto t = dot(v0 - p, N) / dot(dir, N);
return p + t * dir;

The Intersection object returned by the ray casting engine includes the vertices

(and other relevant information) of the intersected object. We �rst cast each vertex

to a constant (constant(its.v0) , etc.) and implement a standard ray-triangle in-

tersection in our language to obtain the �nal intersection point. (As it turns out,

the Jacobian determinant of this step equals the standard geometry term needed for

measure conversions, but the programmer never needs to write it out.) Di�erent im-

portance samplers may require other information, in which case constant per-vertex

normals or material properties may need to be included withIntersection as well.

3.4.6 Random Sequences

The random vector introduced above (Section 3.4.1) has a �xed size and is designed

for situations when all its coordinates are sampled at once. Aether o�ers another im-

portant data structure, RandomSequence, which supports the creation of incremental

81

sequences of generic random variables, where each element is assumed to depend only

on the previous element. Each element of a random sequence is sampled from a strat-

egy. We use this type to represent transport paths. The type of data stored in the

sequence is user provided, e.g., a Vertex type representing a point on a surface.

Consider sampling a 2-vertex path segment starting from an emitter. This is im-

plemented by a random sequence of two strategies,SamplePointOnLightStrategy

(de�ned above), and SampleHemiAndIntersectStrategy , a strategy that picks a

cosine-weighted direction, traces a ray starting at the previous path vertex, and com-

putes the intersection:

// Strategy for sampling a cosine-weighted direction
// and intersecting it with the scene
struct SampleHemiAndIntersectStrategy {

template <typename T>
auto operator()(Context<T>& context,

const RandomSequence<Vertex>& path,
MyRng& rng,
Raycaster& raycaster) const {

// Sample uniforms between 0 and 1
auto uv = context.Uniform2D(rng);

// Sample the outgoing direction
// cosHemisphere is defined as above
auto dir = cosHemisphere.Sample(uv[0], uv[1]);

// Get the previous Vertex from RandomSequence
auto p = path.Back();

// Compute intersection for ray (p, dir) as above
// ...

}
};

// Create an initially empty path
RandomSequence<Vertex> path;

// Append a point on a light
SamplePointOnLightStrategy samplePointOnLight;
path.Append(samplePointOnLight, rng, emitters);

// Append an intersection point

82

SampleHemiAndIntersectStrategy sampleHemiAndIntersect;
path.Append(sampleHemiAndIntersect, rng, raycaster);

// Actually sample the strategies
path.Sample();

The fundamental operation of a random sequence is toAppendnew elements

to the sequence. Whenpath.Append(samplePointOnLight, ...) is called, the

samplePointOnLight strategy is stored, without being sampled. Random sequences

are evaluated lazily. WhenSample() is called, each strategy is then sampled in se-

quence withpath as an argument (along with any other provided arguments). The

result is a newVertex sample, which is stored along with the strategy from which it

was sampled.

Like the other random variables in the language, random sequences o�er aPdf()

method. Since each element of the random sequence stores a strategy, which itself

has aPdf() method, the PDF of the random sequence is computed by sequentially

computing the PDF of each sample against its corresponding strategy (Equation 3.4).

Like all other random variables, the random sequencePdf() method can be used to

compute the density of any sequence, not just itself, and hence random sequences can

be combined with MIS just as easily.

Our language also provides the functionsslice , concat , and reverse for extract-

ing subsequences, concatenating sequences, and reversing their order.

The separation of strategies and random sequences has the additional bene�t that

strategies can be built to be orthogonal and easily reused: they are not tied to a

speci�c random sequence nor to a particular algorithm. For instance, in the above

example, changing the cosine-weighted hemisphere sampling to uniform sampling

would be as simple as de�ning a new strategy based onuniformHemisphere and

appending that instead. The rendering algorithms described in Section 3.6 make

much use of this freedom.

83

3.4.7 Conditional Probability for Metropolis Sampling

Aether also provides constructs for Metropolis-Hastings based sampling algorithms,

which require conditional probabilities of mutators that alter existing paths in random

ways (Equation 3.3). Mutations are implemented as functions that take in a random

sequence and return a new sequence, in the same manner as strategies. This allows

primitive strategies such as BSDF, lens, and emitter samplers to be reused when

implementing mutations.

We automatically derive theConditionalPdf() function for computing the con-

ditional PDF of mutating one sample into another:

// p(curPath | proposalPath)
auto pCurGivenProposal = ConditionalPdf(myMutation, curPath, proposalPath);
// p(proposalPath | curPath)
auto pProposalGivenCur = ConditionalPdf(myMutation, proposalPath, curPath);

Internally, the conditioned sample is treated as a constant input, and the PDF of

the mutation strategy is then evaluated like the non-conditional PDF of a strategy.

Please consult Section 3.6 for an example mutation implementation.

Aether provides further convenience constructs to simplify MCMC implementa-

tions: a MarkovChainState object, which stores a sample, its target density, and its

contribution; an acceptProbability function, which computes the necessary con-

ditional PDFs and acceptance ratio; and aMutation wrapper that applies a given

mutation to the current state to produce a proposal, and usesacceptProbability

to compute the acceptance ratio for the pair of states.

3.5 Implementation

3.5.1 Basic Data Types

The basic data types of Aether are �oating point numbers, uniforms, random vari-

ables, random vectors, and random sequences.

84

Uniform Random Variables

The fundamental operation of Aether is to transform uniform random variables (uni-

forms) into more general random variables. Uniforms are the only programming

variables in the language. They are declared with a unique ID (unique within an

expression):

variable<1> u1; variable<2> u2;

Each uniform declared in this manner instantiates a new type.

Expressions

Basic expressions of Aether are composed of literals, uniforms, and constant param-

eters. The language includes standard mathematical functions (sqrt , sin , cos, tan ,

etc.) and operators (*, +, -, \) for transforming uniform random variables into

more complex expressions. Our syntax mimics the standard mathematical format of

regular C++. This is achieved by templated operator overloading.

As C++ lacks support for compile-time templatized �oats, �oating-point literals

have to be declared with a special syntax . For example,2_l is the compile time

literal representation of the �oating point number 2.0. All literal numbers in Aether

are written in this form. Other �oats, with values not known at compile time, must

be introduced with constant() , but they will not then be simpli�ed.

Expressions are Types

All expressions in Aether are represented by composing types into symbolic tree struc-

tures of expressions and subexpressions calledexpression templates[81]. Internally,

each expression is represented as a single empty templated type. We use template

metaprogramming extensively to manipulate these expressions. We implemented a

standard library of compile time containers and algorithms that operate on types,

designed speci�cally for working with large, nested types.

The use of theauto keyword is helpful not just for brevity. The expressions are

not evaluated immediately, they are represented as templatized symbolic algebraic

85

expression trees, and as such, have complex types (of the formExpr<Type>). The

exact type of the expressions is not important to the user soauto is preferred.

Simpli�cation

We use template metaprogramming to automatically simplify all expressions to a

canonical form. Upon creation at compile time, we recursively sort the subtrees of

each expression by variable ID, variable degree, size of tree, operator precedence, and

lexicographic order. During this process, expressions are simpli�ed where possible

using template pattern matching and various simpli�cation rules. This helps reduce

the size of the expression tree, and hence, the size of its type. This improves compile

time so we always simplify expressions immediately instead of lazily. When dealing

with large type expressions, the language will sometimes avoid simpli�cation rules

(e.g. expanding power expressions or large matrix vector products) that would greatly

increase the size of the type, which would likely have a negative impact on compile

time. The language uses the heuristic of expression size to determine whether a

simpli�cation rule should be applied. In these cases, the resulting expression may not

be fully simpli�ed.

Vector Expressions

Simple expressions can be combined into vector expressions, which are represented

symbolically as typelists of expressions. These provide indexed access and can be

transformed with standard vector operations (dot , cross , normalize , length , etc.).

They are simpli�ed in the same manner as basic expressions. Vector expressions

can also be combined into matrix expressions, which are represented symbolically as

typelists of vector expressions.

Branching

Aether also provides condition expressions (e.g.2_l * u1 > 1_l) and logic opera-

tors (&&, ||, !). These are used in the language'spattern construct for creating

86

symbolic branch expressions (like if/else, but with a mandatory default case), which

is a list of (condition expression, value expression) pairs. For example:

auto a = // vector expr
auto b = // another vector expr
auto value = pattern(

// First condition; return a
when(dot(a, a) - dot(b, b) > 0_l, a)
, otherwise(b) // default case; return b

);

Like simpler expressions, these too are simpli�ed automatically at compile time.

We use this construct frequently, e.g. for orienting tangent vectors when constructing a

coordinate basis at a surface point or branching over di�erent possible BSDF samplers

(the language provides aCompositeRandomVariabletype to simplify the construction

of branches over multiple possible samplers).

Sample

The result of calling Sample() on a random variable is a sample, which is itself a

random variable: it stores the same expression tree as the sampled random variable,

as well as the uniforms that were passed toSample() and the result of evaluating the

random variable's expression tree. Since the expression trees are simply type names,

there is almost no overhead in copying or storing them (except the storage required

for any parameters of the random variable).

3.5.2 Symbolic PDF Derivation

In order to compute the PDF of a random variable, we require the symbolic Jacobian

and the symbolic inverse.

Symbolic Jacobian of a Random Variable

Computing the Jacobian requires partial derivatives. To obtain them, we recursively

apply fundamental rules of di�erentiation to the symbolic expression trees that rep-

resent random variables:

87

d(a + b, x) = d(a, x) + d(b, x)
d(a * b, x) = d(a, x) * b + a * d(b, x)
d(c, x) = 0 // c is a constant
d(x, x) = 1
etc.

Like all expressions in Aether, each partial derivative is simpli�ed automatically. The

partial derivatives are then collected in the symbolic Jacobian and the determinant

is computed.

Symbolic Inversion of a Random Variable

To invert an expression, we �rst recursively decompose any subexpression containing

a variable into a new equation. For example, when solving foru in x = cos(2� � � u),

we �rst decompose tox = cos(y1); y1 = 2 � � � u, then solve each equation individually,

and re-compose the results. This step greatly reduces the size of the expression tree

for each equation that needs to be solved, which is bene�cial for compile times.

Our solver is pattern matching and rule based. It iteratively attempts to match

the equation against a set of patterns until the variable of interest is isolated. If a

match in one iteration is successful, the corresponding rule is applied, and the process

restarted. This is not guaranteed to terminate, but it is able to successfully solve all

the necessary equations for our implemented samplers. Examples of speci�c patterns

include equations with barycentric coordinates, linear systems, and scaled vectors.

If the equation does not match one of these speci�c patterns, we apply more generic

rules. The goal of this heuristic stage is to transform the equation at each step into

a form to which we can apply primitive inverse operations. This mainly involves

attempting to simplify the equation until there is only a single occurrence of the

variable of interest. Examples of these generic patterns include separating constants

from variables, expanding variables inside parentheses, and factoring variables. Once

there is only a single occurrence of the variable of interest, the solver applies primitive

inverse operations (e.g.sin(u) = x => u = arcsin(x)) to obtain the �nal result.

A more complete list of the patterns used by the solver is available in the Aether

repository.

88

Sampling a Strategy

When a strategy is sampled, at run time a newSamplingContext object is created and

passed to the strategy function. The function is then evaluated like regular sampling

code. When calls likecontext.Sample(emitterDiscrete, context.Uniform1D(

rng)) are encountered, theSamplingContext simply callsrng() and passes the result

to emitterDiscrete.Sample() . This style of writing indirect method calls has no

impact when sampling, but is essential for computing the PDF.

Density of a Strategy: Enumerating Discrete Choices

In order to compute the PDF of a strategy, we need to be able to handle both discrete

and continuous random variables together.

Consider the case of thesamplePointOnLight strategy from Section 3.4: we dis-

cretely sample a light source, then sample a point on it. To compute the PDF of a

sample, we need to evaluate both the discrete probability and the continuous PDF.

This is di�cult, because samplePointOnLight.Pdf() needs to �rst determine which

light source was sampled by the discrete random variable before evaluating the cor-

responding continuous random variable.

Suppose there are two light sources, atriangleLight and a

sphericalLight , and a point in spacep, sampled from some other source. We want

to evaluate samplePointOnLight.Pdf(p) .

There are two possibilities: eitherp was sampled ontriangleLight by its random

variable (a uniform triangle) or it was sampled onsphericalLight by its random

variable (a uniform sphere). But given onlyp, we do not know which light it was

sampled on. Instead, we need to try both possibilities and sum the results. That

is, we need to enumerate all possible discrete choices, compute the resulting PDF of

each of them and sum the results. This approach of enumeration is similarly used in

some probabilistic programming languages [22] to compute marginal distributions of

a computation.

When samplePointOnLight.Pdf(p) is called, a newPdfContext object is created

89

to help compute the PDF. The main purpose ofPdfContext is recording the discrete

choices made during this process. It also prevents the user-provided random number

generator from drawing uniforms; we do not need uniforms since we are not sampling

anything, just computing the PDF. This is why in strategies uniforms are generated

with context.Uniform1D(rng) instead of simplyrng() .

The strategy is then run. When attempting to make a discrete choice,

e.g. sampling a light source withcontext.Sample(emitterDiscrete, context.

Uniform1D(rng)); , emitterDiscrete.Sample() is not actually called. Instead,

the PdfContext records that a discrete choice has been reached: it returns the 1st

result (triangleLight) from the discrete random variable and records its discrete

probability (emitterDiscrete.Pdf(triangleLight)). The function continues with

triangleLight as the sampled light source and returns its uniform triangle ran-

dom variable. We compute the PDF ofp according to this random variable and

multiply it by the previously recorded discrete probability. This is the value of

samplePointOnLight.Pdf(p) if the triangleLight had been discretely sampled.

The PdfContext checks its recorded choices and recognizes that only the 1st

of 2 possible choices has been evaluated. So the function is run again with the

samePdfContext object. This time, context.Sample(emitterDiscrete, context.

Uniform1D(rng)); returns the 2nd possible result (sphericalLight) for the discrete

choice and records its discrete probability (emitterDiscrete.Pdf(sphericalLight

)). The function continues with sphericalLight as the sampled light source and

returns its uniform sphere random variable. We compute the PDF ofp according to

this random variable and multiply it by the previously recorded discrete probability.

This is the value ofsamplePointOnLight.Pdf(p) if the sphericalLight had been

discretely sampled.

The PdfContext consults its recorded choices again. Both choices have been

evaluated; there are no more. The process ends and the �nal result is the sum of the

two PDFs.

The PdfContext maintains its record of discrete choices as a stack so this process

works even for multiple discrete random variables in the one strategy.

90

To ensure correctness we require that the strategy is a pure function i.e. the

function has no side e�ects; the result is always the same given the same arguments.

Our language assumes this to be the case for all strategies. C++ does not support

pure functions so it is the programmer's responsibility to ensure this assumption is

true. In particular, care should be taken to avoid any global variables that may

introduce side e�ects.

Computing the PDF of a Random Sequence

Every random sequence maintains the strategies with which it was created. Comput-

ing the PDF of a provided random sequence according to this list of strategies involves

iteratively computing the PDF of each vertex with respect to the corresponding strat-

egy and multiplying them together.

Multiple Samples in a Strategy

It is possible to return 2 samples from a strategy (instead of just 1), usingsample_tuple

() . This is used for our tridirectional path tracer where 2 vertices are dependent on

one another and are sampled together. Handling higher numbers of samples is chal-

lenging because the size of the expression trees will quickly become very large, which

our solver is not currently equipped to deal with and which has a negative impact on

compile time. Extending the language to handle this is left as future work.

3.6 Results

Using Aether we implemented several Monte Carlo rendering algorithms. Speci�-

cally, we implemented a path tracer [36], a bidirectional path tracer [78], a path-

space Metropolis light transport algorithm [80], a novel tridirectional path tracer, a

gradient-domain path tracer [38], instant radiosity [37], and a probabilistic progressive

photon mapper [39]. The algorithms are incorporated into two renderers: embree's

example renderer [84] and Mitsuba [30]. We reuse the raycasting and integrand eval-

uation code (e.g. BRDF evaluation) inside the renderers, and write our own code

91

Mitsuba

Ours

(a) path tracing

Mitsuba

Ours

(b) bidirectional path trac-
ing

Mitsuba

Ours

(c) path-space Metropolis light
transport

Figure 3-3: Three scenes modelled after the test scenes in the original papers of mul-
tiple importance sampling, bidirectional path tracing, and Metropolis light transport
papers. The scenes contain a variety of di�erent materials, geometry types, and light-
ing conditions. The images are rendered by the respective light transport algorithm
in Mitsuba and our implementation.

for generating samples. We never call the original PDF evaluation functions in the

renderers. The results shown here are generated from our Mitsuba-based renderer.

We implemented importance sampling functions for thedi�use , roughplastic, rough-

conductor, and roughdielectric materials in Mitsuba with the Beckmann microfacet

distribution. We also implemented light source importance sampling for triangular-

mesh-based area lights, spherical area lights [66], and environment lights. We veri�ed

the importance sampling PDFs generated by our code against manually derived PDFs.

Thanks to the modular nature of the sampling strategies, it is relatively easy to add

more material types and light types.

The rest of this section consists of code of our rendering algorithms and our

implementation experiences. We verify our implementation by rendering multiple

classical test scenes and comparing them to Mitsuba's implementation. The details

of the sampling strategies such assampCamPos, sampBSDF, etc., can be found in the

Yotsuba repository.

We assume the following common inputs to all algorithms:

vector<Emitter*> emitters; // List of light sources
UniDist uniDist; // Draws from U(0, 1)
Raycaster raycaster; // Ray-scene intersection
Integrand integrand; // Evaluates f(x)
int maxDepth; // Maximum depth
int x, y; // Pixel coordinate

92

// Create camera subpath
RandomSequence<Vertex> camPath;
// Append the camera position
camPath.Append(sampCamPos, uniDist);
// Append the primary intersection point for pixel (x, y)
camPath.Append(sampCamDir, uniDist, raycaster, x, y);
// Extend by successive BSDF sampling until max depth
for (; camPath.Size() <= maxDepth;) {

camPath.Append(sampBSDF, uniDist, raycaster);
}
camPath.Sample();

Spectrum Li(0);
for (int length = 2; length < camPath.Size(); length++) {

// BSDF sampled path
auto bsdfPath = camPath.Slice(0, length + 1);
// BSDF sampled path + direct light sampling
auto directPath = camPath.Slice(0, length);
// Direct sampling the light
directPath.Append(sampEmtDirect, uniDist, emitters);
directPath.Sample();
// Combine bsdf path and direct path
// Returns a list of paths with their MIS weights
auto combinedList =

combine<PowerHeuristic>(bsdfPath, directPath);
// Sum up the contributions
for (const auto &combined : combinedList) {

const auto &path = combined.sequence;
Li += combined.weight *

(integrand(path) / path.Pdf());
}

}
return Li;

Figure 3-4: Our path tracer code

Film* film; // For splatting contribution

3.6.1 Path Tracer

Figure 3-4 shows the main logic of our path tracer written in Aether. Although

unidirectional path tracers are usually considered simple to implement, multiple im-

portance sampling already introduces a certain degree of complexity. In order to

compute the MIS weights, it is necessary to compute all4 combination densities be-

tween the BSDF and light source samplers (bsdfPath , directPath). The combine

call automatically handles this complication. Note that there is no need for the user to

maintain a throughput value during the BSDF sampling loop. Russian roulette [6] can

be done in thesampBSDFstrategy using a discrete random variable (Section 3.4.2), and

93

the probability of termination is automatically handled insidepath.Pdf() and MIS

weight computation. As a side note, most modern path tracers, including Mitsuba

and pbrt, ignore the probability of path termination when computing MIS weights.

(Note that this does not break correctness as the weights still sum to one.)

We verify our implementation by comparing to the reference implementation in

Mitsuba. Figure 3-3a shows a comparison. The scene also showcases the ability of

our language to handle di�erent types of geometry and layered BRDFs.

3.6.2 Bidirectional Path Tracer

The complexity of bidirectional path tracing is a major driving force of our develop-

ment of the language. The main logic of our Aether implementation (Figure 3-5) is

only ten lines longer (after removing all the empty lines and comments) than the pre-

vious path tracer. The major additions are the sampling of the emitter subpaths and

the extra path slicing and concatenation. In contrast, Mitsuba and pbrt's implemen-

tations for bidirectional path tracing are signi�cantly longer than their unidirectional

path tracers.

Some variants of bidirectional path tracing perform additional direct light source

sampling when concatenating the camera and emitter subpaths. Existing implementa-

tion techniques lead to the additional complexity spilling out of the relevant samplers,

decreasing readability and maintainability. For example, in Mitsuba's implementa-

tion, the sampleDirect �ag has to be checked several times during sampling, PDF

computation, integrand evaluation, and MIS computation. In our language, the same

is achieved by a simple change in constructing the subpaths. The modi�cation is

self-contained due to automatic handling of PDF computation and the decoupling of

sampling and integrand code.

We verify our implementation by comparing to the reference implementation in

Mitsuba. Figure 3-3b shows a comparison. Further code is available in the Yotsuba

repository.

94

RandomSequence<Vertex> camPath;
// ... sample camera subpath as in the path tracer

// Create emitter subpath
RandomSequence<Vertex> emtPath;
// Randomly sample a light and a position on the light
emtPath.Append(sampEmtPos, uniDist, emitters);
// Sample direction from emitter and intersect with scene
emtPath.Append(sampEmtDir, uniDist, raycaster);
for (; emtPath.Size() <= maxDepth;) {

emtPath.Append(sampBSDF, uniDist, raycaster);
}
emtPath.Sample();

// Combine subpaths
for (int length = 2; length <= maxDepth + 1; length++) {

// Collect paths with specified length
std::vector<RandomSequence<Vertex>> paths;
for (int camSize = 0; camSize < length; camSize++) {

const int emtSize = length - camSize;
// Slice the subpaths and connect them together
auto camSlice = camPath.Slice(0, camSize);
auto emtSlice = emtPath.Slice(0, emtSize);
paths.push_back(camSlice.Concat(reverse(emtSlice)));

}
// Combine bsdf path and direct path
// Returns a list of paths with their MIS weights
auto combinedList = combine<PowerHeuristic>(paths);
for (const auto &combined : combinedList) {

const auto &path = combined.sequence;
// Compute w*f/p and splats contribution
film->Record(project(path),

combined.weight * (integrand(path) / path.Pdf()));
}

}

Figure 3-5: Our bidirectional path tracer code

3.6.3 Metropolis Light Transport

The original Metropolis light transport algorithm proposed by Veach and Guibas [80]

is notoriously di�cult to implement. To our knowledge, after its introduction in

1997, there was no publicly available implementation until Mitsuba 0.4 was released

in 2012. Our language provides constructs that address both main sources of imple-

mentation di�culty: the asymmetric Metropolis-Hastings acceptance probabilities,

and maintaining the light path data structure. Indeed, our language automatically

generates the required conditional PDF code, and provides constructs such asSlice

and Concat for editing the path data structures.

We implement the four mutation strategies proposed by Veach and Guibas: bidi-

95

auto operator()(Context<T>& context,
const RandomSequence<Vertex>& path) {

// ...sample the discrete random variables that
// determine the no. of vertices to delete/insert.
// The results are stored in delBegin, delEnd,
// camInsertLen, and emtInsertLen

auto camPath = slice(path, 0, delBegin);
auto emtPath = slice(path, delEnd,

path.Size() - delEnd);
auto rEmtPath = reverse(emtPath);
// Append vertices to the eye subpath
for (int i = 0; i < camInsertLen; i++) {

if (camPath.Size() == 0) {
camPath.Append(sampCamPos, uniDist);

} else if (camPath.Size() == 1) {
camPath.Append(sampCamDir, uniDist, raycaster);

} else {
camPath.Append(sampBSDF, uniDist, raycaster);

}
}
// Append vertices to the light subpath
if (emtInsertLen == 1 && rEmtPath.Size() == 0) {

// Specialized direct importance sampling
camPath.Append(sampEmtDirect, uniDist, emitters);

} else {
for (int i = 0; i < emtInsertLen; i++) {

if (rEmtPath.Size() == 0) {
rEmtPath.Append(sampEmtPos, uniDist, emitters);

} else if (rEmtPath.Size() == 1) {
rEmtPath.Append(sampEmtDir, uniDist, raycaster);

} else {
rEmtPath.Append(sampBSDF, uniDist, raycaster);

}
}

}
return camPath.Concat(reverse(rEmtPath));

}

Figure 3-6: Our bidirectional mutation code

rectional mutation, lens perturbation, caustic perturbation, and multi-chain pertur-

bation. For illustration, we show code for the main part of the bidirectional mutation

here (Figure 3-6). Interested readers are referred to the Yotsuba repository for the

entire code.

Bidirectional Mutation

The bidirectional mutation strategy is responsible for producing large changes to the

path in Metropolis light transport. It �rst selects a range of the light path to delete.

This breaks the light path into a camera subpath and an emitter subpath. It then

96

selects the number of vertices to be inserted for the camera subpath and emitter

subpath respectively. We implement the discrete selection process using the discrete

random variable construct introduced in Section 3.4.2. The insertion is done in a

bidirectional-path-tracing-like fashion. We then simplySlice , Append, and Concat

the paths to form the proposal path.

Lens, Caustics, and Multi-Chain Perturbations

These perturbation strategies attempt to make small changes to the path, then prop-

agate the changes through a chain of specular surfaces. We set a threshold on the

roughness of the BSDF, below which we consider the surface to be specular, and

follow the specular chain by importance sampling the BSDF andAppendthe vertices.

We only sample the transmissive components of the BSDF when the original path is

transmissive, and vice versa. After termination, the perturbed path is reconnected

to the original using Slice and Concat. We approximate perfect specularity by ex-

tremely shiny BSDFs, for which the procedure yields essentially the same result as

Veach's perturbation. The code for these mutation strategies can be found in the

Yotsuba repository.

We compare our Metropolis light transport implementation to Mitsuba's imple-

mentation. Figure 3-3c shows a comparison. The Mitsuba rendering uses a perfectly

specular glass material.

3.6.4 Tridirectional Path Tracer

To demonstrate the �exibility of Aether, we introduce an extension to bidirectional

path tracing, which we call tridirectional path tracing. As motivation, consider a

scene where the camera and the light are placed in separate rooms, and there is only

a relatively small aperture connecting the two (e.g. Figure 3-7). If we apply bidirec-

tional path tracing to such a scene, only those paths where by chance a connection

edge (or the camera or emitter subpath) passes through the small aperture will con-

tribute to the image, leading to high variance. Indeed, this challenge was one of the

97

Camera Obscura Scene Bidirectional, 64 spp Our Tridirectional, 64 spp

Figure 3-7: A scene that is challenging to render for traditional Monte Carlo methods:
the Sponza Palace atrium projected into a box through a pinhole. The area of the
pinhole is only0:01 percent of the face of the pinhole camera. Using our language we
designed a specialized tridirectional path tracing algorithm that generates a light path
segment passing through the pinhole. The image shows an equal sample comparison
between bidirectional path tracing and our tridirectional path tracing.

original motivators for Metropolis light transport.

To increase the likelihood of obtaining paths through the small aperture, we extend

bidirectional path tracing by sampling a 2-vertex �portal segment� that passes through

the small aperture (Figure 3-8) by construction. We connect each camera pre�x

segment to each emitter su�x segment as usual, but also connect each camera pre�x

and emitter su�x segment to the portal segment. Figure 3-7 and Figure 3-9 illustrate

the reduced variance at equal sample counts.

We assume that the geometry of the small aperture is known in advance. Sampling

the 2-vertex segment involves �rst sampling a positionx on the surface of the small

aperture, then sampling an outgoing direction! ; we intersect 2 rays(x; !) and (x; � !)

with the scene to obtain the 2 vertices, one on each side of the small aperture.

The code for slicing and concatenating the paths is shown in Figure 3-10.

3.6.5 Gradient-Domain Path Tracing

Gradient-domain path tracing [38] samples image gradients using pairs of correlated

paths, and reconstructs the �nal image by solving a screened Poisson problem. The

path pairs are generated by shifting paths generated by a standard path tracer by one

pixel using a deterministic shift mapping, and accumulating di�erences in throughput

98

