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Abstract

The dynamical behavior of topological defects created in symmetry breaking phasc transitions is a
universal phenomenon which is important in describing properties of systems in cosmology and in
particle physics. However, to date, most of the research in this area has been theoretical in nature.
This thesis represents an effort to pioneer the experimental investigation of defect dynamics, through
a study of behavior associated with the broken symmetry phase of a simple condensed matter system
— the liquid crystal.

The bulk of my thesis deals with experimzntal observations of strings and monopoles in a volume
of nematic liquid crystal (NLC). These defects are created in a rapid, pressure—jump induced isotropic
to nematic phase transition, and observed with a high speed video camera. | have also observed the
decay of texture through a dynamical instability mechanism in a thin film preparation. My most im-
portant experimental results are (1) an experimental confirmation of the “one-scale” modcl originally
developed for describing cosmic string evolution; (2) the categorization of defect interactions into
sixteen distinct events identified by five “quantum numbers;” and (3) the accumulation of statistics
describing the time evolutionary behavior of monopole, loop, and vertex densities, and various cvent
branching ratios. I also document observations of string intercommutation and loop collapsc.

The remainder of my results follow from my numerical investigations of defect dynamics in the
2D smectic, 2D nematic, and 3D nematic liquid crystals. I present a new formulation of the cquations
of motion for the NLC which utilize a SO(3) tensor field to reflect the underlying symmetrics of the
physical system. I also discuss data showing the scaling behavior of the structurc function and
monopole density in the 2D smectic simulation.



For the benefit of the reader, I review (1) the fundamental theories describing the behavior of
the liquid crystal, (2) the underlying concepts of homotopy classification of topological defecis,
and (3) the mathematical description of defect structures. I also include numerous drawings and
pictures showing the various defects and how they interact. My conclusion from this study is that
certain theories can indeed be tested successfully through laboratory observations of the dynamics of
symmetry breaking phase transitions in liquid crystals. I believe that liquid crystal research, in the
context of cosmology and particle physics theories, promises to provide experimental insights which
have never been within reach before.
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Chapter 1

Introduction

This thesis presents the results of a study of the dynamics of topological defects created in a symmetry
breaking phase transition of a liquid crystal. Through numerical simulations and direct experimen-
tal observations, I have systematically attempted to quantify the evolutionary behavior of strings,
monopoles, and texture defects as they interact following their creation in a rapid isotropic to ne-
matic phase transition.

In the introduction, I discuss the moiivation for this work, provide some background on liquid
crysials, describe the research goals, and cite some pertinent literature. I conclude by summarizing

the organization of the remainder of the thesis.

1.1 Motivation

This study of defect dynamics is metivated by a perception of the growing importance of the role
played by defects produced in symmetry breaking phase transitions in explaining the fundamental
properties of physical systems, from particle and condensed matter physics to cosmology. For ex-
ample, the standard model of particle physics is built on the notion of spontancously broken internal
symmetries. Recent work indicates that processes involving gauged texture defects in the dynam-
ics of the eiectroweak phase transition play a major role in determining the final matter-antimatter
asymmetry in the universe[KRS85, Shad7, Sha88, TZ90] In hot big bang cosmology, defects are pro-
duced as the universe cools through symmetry breaking phase transitions[Kib76]; many cosmologists
are attracted by the idea that such defects later seeded the large scale structure cbserved in the
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universe today. Finally, in condensed matter physics, we are now beginning to develop an under-
standing of non-equilibrium scaling behavior, particularly near phase transitions, through study of
defect dynamics[GMSSB. Fur85, Kaw85, TH87, Bras9],

The universality of symmetry breaking phenomena suggests that theories dealing with time and
space scales beyond the grasp of human manipulation may nevertheless be explored by observing
similar systems in which all the relevant lengths have been uniformly scaled down to within reach
of the experimentalist, while preserving the essential physics. In this spirit, Zurek proposed [Zur85] in
1985 a test of one of the key elements of the cosmological scenario, the Kibble mechanism, through
observations of a quench-induced phase transition from normal 4He to the superfluid. His idea was
that in a rapid quench, topological string defects (vortex lines) would be created in the same way
that some cosmological theories predict. Studying the resuliing distribution of strings in the broken
symmetry phase might thus give valuable clues about how analogous one-dimensional defects in
cosmology, cosmic strings, should behave. Unfortunately, the experiment was never successfully
performed, in part due to the difficulties of working with liquid helium.

The superfluid transition in liquid helium is described in terms of the transition from a paraboloid
to a “mexican hat” free energy density. The analogy between this and similar “Higgs potentials™
in particle physics theories motivated Zurek's proposal. Such potentials are ubiquitous in particle
physics theories, providing the mechanism through which elementary particles get their masses. They
are also ubiquitous in the description of phase transitions in condensed matter, so that it might well
be hoped that a more experimentally tractable physical system could be found, in which Zurek’s
proposal would be realised. Liquid crystals provide such a system.

1.2 Background

Liquid crystals!KL88, VdI83, dG74, DR78] are organic compounds which have phases intermediate to
the liquid and solid phases. These mesophases, of which more than eight distinct types have been
identified so far, are characterized by certain symmetries in the orientations of the rod-like molecules
of the liquid crystalline substances. Typically, phase transitions occur between 10 and 200°C, and
result in structures with length scales on the order of tens of microns to centimeters which may coarsen
with a time scale on the order of seconds. Their preparation has been extensively studied[dG74 DR78],
and in contrast to superfluid 4He, they are relativeiy easy io work with in the laboratory, and require
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Substance — Ordering Properties
Liquids | Isotropic — (high temp. phase) molecules randomly oriented, randomly located

Nematics Aligned molecules - preferred orientation, random position
Smectics Stacked planes —~ positional order in one dimension, random orientation
Crystals Lattice — (low temp. phase) Pesitional and orientational regularity

Table 1.1: Liquid crystals in perspective.

only an optical microscope for observation. However, the main focus of the majority of work with
liquid crystals has been <n the static properties of defects — I shall be more interested in their
dynamics, on which there has apparently been little work.

Table 1.1 provides some framework in which to judge the role of liquid crystals. The smectic
liquid crystal (SLC) and nematic liquid crystal (NLC) are two mesophasic systems. The molecules
in a SLC and NLC, in the broken symmetry phase, have more orientational and positional order than
in a liquid, but less than in a crystal. Temperature changes are the primary mechanism for causing a
system to move from one phase to another, but pressure jumps also work. The intermediate states of
NLC or SLC systems, as they undergo a phase transition from a high-temperature isotropic phase to
the coolcr nematic or smectic phase, are characterized by the presence of topological defects. These
defects interact with the viscous medium, dissipating energy; in an infinite sysiem, the density of
defects drops according to some power law, eventually reaching zero. This behavior is the subject
of my study.

Why do topological defects form? Defects are unavoidably created in symmetry breaking phase
transitions because of the finite speed of communication between different parts of a system. Imagine
that there is a characteristic velocity vif, at which information propagates between molecules, and
consider the process of suddenly cooling a volume of NLC which was previously equilibrated in its
high-temperature, isotropic phase. Suppose that the isotropic—nematic phase transition takes place in
some small time fquench- Upon undergoing the phase transition, all £ 3= (vinﬁ,tqu,.,;h)3 sub-volumes
of the NLC will select a random, preferred orientation. However, because v, is typically much
slower than the scale of the system divided by quench, there are a huge number of these sub-volumes
which have independently orienied themselves. Furthermore, because the tendency in the nematic
phase of all molecules to align in one direction as uniformly as possible, the individual £ 3 volumes
will subsequently communicate and attempt to come to a consensus. In this process, the characteristic
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length scale £ for which molecule orientations are correlated will grow larger. Soon, patches of one
orientation bump into patches of another orientation, resulting in conflicts which can only be resolved
by the destruction of one of the contenders. Such conflicts are topological defects. I will discuss
their formation and behavior in greater detail in Chapter 2.

Finally, I note a few points about the nomenclature used in this thesis. I have chosen to call
one-dimensional defects “strings”, in keeping with the convention used in high-energy physics and
cosmology. In condensed matter physics, especially in the study of liquid crystals, strings are often
referred to as “disclination lines.” The two topological charges of monopoles and strings, +1 and
+1, are usually delincated as being “type-1" and “type-3;"” however, I will simply describe them by
their charges. Also, I denote the 73(M,) defect in ithe NLC as “texture,” following the convention
of Turok et. al.[Tur89); texture defects are sometimes referred to as topological solitons. The term
“texture” is also sometimes used in the literature to refer to the pattern of the director field in liquid

crystals; this can be confusing, and I do not use that corvention here.

1.3 The Research Goals

The goals of this research were to study the dynamics of topological defects in a nematic liquid
crystal, and to try to understand observations in the context of various models drawn from theories
of ordering dynamics in condensed matter physics and cosmology. I approached these goals with
two tools: numerical simulations and experimental observations. In my experiments, I studied string
intercommutation and loop-collapse, and I searched for texture defects. I also quantified monopole
creation and annihilation mechanisms, and sought to characterize defect interactions through the
formulation of a systematic categorization strategy. In my numerical work, my goal was to implement
a full simulation of the 3D NLC.

Several models have been important in this study. In particular, one of my goals was to ex-
perimenially investigate the workings of the “Kibble mechanism™ of defect production(Kib80] (the
scenario described in the previous section), and test the “one-scale”[AT89] model for string network
evolution. I also studicd the behavior of the structure function, or two-point correlation function, in
a simulation of a two dimnensional SL.C system.

Finally, because of the pioneering nature of this work, I also saw an opportunity to develop novel
numerical and experimental techniques for studying defect dynamics in liquid crystals. Numerical
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simulation of NLC systems is complicated by the need to preservc the underiying physical symmetries.
Together with B. Yurke, I attempted, and succeeded, in devising and applying a new formulation of
the NLC equations of motion. We also sought to develop new experimental techniques for observing
defect dynamics in vivo, by designing and constructing a pressure cell to allow study of rapid, pressure
jump induced isotropic—nematic phase transitions, and a thin film apparatus to allow mechanical

manipulation of line defects in thin films of material.

1.4 A Brief Review of the Literature

Literature pertinent to the research described in this thesis can be divided into three general categeries,
including those describing (1) liquid crystal chemistry and propertics, (2) dynamics of topological

defects, and (3) numerical simulations of broken symmetry systems.

1.4.1 Liquid Crystal Properties

Liquid crystal research has mostly been driven by its commercial use in display technology. The
majority of the fundamental experimental work was published in the early 1970s, by French re-
searchers. Several beautiful review articles, [Bou81, Bou74, Bou73, KL88], present an overview of
static properties and structures of defects observed in various liquid crystals. The fundamental text
in this area is by de Gennes{dG74], | have also found [VdJ88] and [DR78] useful references.
Certain works I have referred to are of particular note. A derivation of the Frank free encrgy,
including the saddle-splay curvature term is presented in [NS71]. Previous high pressure studies of

liquid crystal properties are reviewed in [CS79].

1.4.2 Topological Defects

My discussion of topological defects and homotopy theory, using simple physical arguments, is
most approachable from the presentations by Mermin[Mer?9] and Michel(Mic80l, The specific appli-
cation of homotopy theory to a discussion of defects in liquid crystals is discussed by Kurik and
Lavrentovich(KL88], Texture, and its role in seeding large-scale structure in the universe is described
in {GST90, CPT90] and [TS90, Tur89], and cosmic string seeded galaxies are discussed in [Vil81].
The properties of cosmic strings are reviewed in [Vil85], and string scaling, intercommutation, and

kinks are discussed by [AC90].



The static structure of defects in liquid crystals has been widely studied. A good overview is pro-
vided by Kléman[K!e83], Notable work in this area includes a discussion of monopole structure {Ost81]
and an experimental study of %1 string structure[WPC72a],

Literature on the the dynamics of defects in liquid crystals is sparse. The dynamics of string
defects are discussed by [CvSFK87, Rey90, GSG75, GGS73, MYT*77]. Lavrentovich and Rozhkov
have also considered +1 strings terminated by boojums[LR88]. Finally, a Japanese research group has
reported an interesting study of the coarsening dynamics and scaling properties of defects in twisted
nematicsNOI87, OI86],

1.4.3 Numerical Simulations

The ordering dynamics of a physical system that has undergone a deep quench from a phase of higher
symmetry to a phase of lower symmetry is a topic of considerable interest[Fur85, HH77, Voo85, GMS83],
The behavior of such systems is expected to depend on the dimensionality and intemal symmetry
of the system, and the presence of conservation laws. The bulk of the experimental(CW90, GSM&7)
and theoretical(RED88, Bra%9, Kaw85, K1e90, TCG88, Hus86, ASM88, MV8T] work that has been reported is
on the phase separation dynamics (spinodal decomposition) of binary mixtures.

More recently, attention has also focused on systems whose Hamiltonian has a continuous rather
than discrete symmetry[MG90, TH87, Toy90Q, NN89, dPT86, MZ85]  Generally, theoretical work has con-
centrated on models characterized by the time-dependent Landau-Ginzburg equation[NN891, For such
models, with nonconserved order paramester, it is generally predicted[TH87. MZ85] that the defect line
density should scale as t~1. However, a scaling behavior of t=0-7540-05 from numerical simulations
has been reported in three dimensions{NN89], and ¢~1:004:0.04 i two dimensions[MG90],

The specific simulation of nematic liquids has been investigated in [CF90], and the simulation of
string networks is discussed in [BB90], [AT85], [MMRO90}, and other works.

1.5 Organization of the Manuscript

The outline of this thesis is as follows: in Chapter 2, I introduce a mathematical discussion of
topological defects, through a brief introduction to homotopy theory. I also introduce the field
cquations specific to the nematic and smectic liquid crystal simulations which will be discussed later.

Chapter 3 summarizes my understanding of monopole, string, and texture defect structures, relying
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primarily on developing visual representations of molecule arrangements and the homotopy theory
of the previous chapter. A study of these defects through numerical simulation is the subject of
Chapter 4. I performed three simulations, and discuss them in order of complexity: the 2D-SLC,
the 2D-NLC, and the 3D-NLC. My results for the scaling of the structure function and monopole
density measured for the 2D-SLC are inconclusive, and data generated by my 3D-NLC simuiation
show nothing unexpected. However, my work successfully implemented and tested a new method of
using a SO(3) icmsor field for simulating the NLC.

Next, I present my experimental results, in Chapter 5. I find that though the “one-scale’ model for
string network evolution properly characterizes our! results remarkably well, the monopole statistics
we have gathered do not agree with our expectations. Other observations I record include a string
intercommutation sequence, loop collapses, and monopole creation and annihilation events. These
defect interactions can be understood in terms of a microscopic model characterized by a certain events
which occur with some probability. Chapter 5 concludes with a discussion of an event categorization
strategy which I and B. Yurke propose for describing defect dynamics in the NLC. Finally, in the

conclusion, I briefly summarize my results and present ideas for future work.

!The research described in this thesis is principally the result of my own design, unless otherwise noted. However, all
the experimental work was performed in close cooperation with B. Yurke. Thus, I will take liberty in using the first person
plural.






Chapter 2

Theory

The existence of topological defects resulting from symmetry breaking phase transitions is most simply
understood from a group theoretic standpoint. Their particular structure, however, is determined by
the specific equations governing the system under study - for the liquid crystal, these are given by
the Frank free energyldG74]. I shall begin the discussion with a presentation of the equations of
motion governing liquid crystal molecules, then conclude with an introduction to topological defects

and homotopy theory.

2.1 ‘Liquid Crystal Formalisms

The nematic liquid crystal can be viewed as a fluid of rod-like molecules. These rods can be
approximated to have complete cylindrical and inversion symmetry. In the neraatic phase, all the
rods align in one preferred direction, known as the “nematic axis,” while in the isotropic phase,
the rods become completely orientationally disordered (Figure 2-1). The state of the system can be
quantified by the “order parameter,” which varies from some finite nonzero value in the nematic
phase to 0 in the isotropic phase. A rod-molecule fluid can also be characierized microscopically, by
the so-called “director field” 7(+), a vector (or tensor) field which simply gives the orientations of all
the molecules. The free energy density is determined by the relative local orientations of molecules;
thus, it can be written as a function of (7). In the following discussion, I will construct the order
parameter for a rod-molecule fluid and discuss how the free energy comes about. I will conclude this
section by deriving the equations of motion from the free energy functional.
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Figure 2-1: The nematic and isotropic phases of an assembly of rod-like molecules. The isotropic

phase, shown on the left, is characterized by orientational disorder. In the nematic phase, on the
are shown on a lattice (with positional order) only for clarity; in the actual case, the rods would be

right, the molecules align in one preferred direction, known as the “nematic axis.” Note that the rods
randomly positioned.

10



2.1.1 The Order Parameter

The orientations of rod-molecules in a fluid can be described collectively by the probability p(8, ¢)
of finding a rod oriented in the 8, ¢ direction, where @ is the polar angle and ¢ is the azimuthal angle,
as usual, and Z is taken to be the nematic axis. In both the nematic and isotropic phases, p(@, ¢)
is independent of ¢, and p(#) = p(@ + 7). However, in the nematic phase, p(#) is peaked around
f = 0 and # = %, and minimal for § = 7 /2, following from our definition of the nematic axis. In the
isotropic phase, p(#) is a constant. Thus, the simplest single parameter which describes the phase of
the fluid is

S= %(3(c052 8y~ 1), 2.1)

where the brackets refer to averaging over the solid angle d(2, and 8 are the orientations of the
individual rods. In the nematic phase, cos?8 = 1, so that § = 1, and in the isotropic phase,
(cos?8) := 1, so that § = 0.

Generalization of Eq. (2.1) gives a tensor order parameter
1
Qab =S5 [nanb - §6ab ’ (2.2)

with n, a three-vector giving the z, y, and z components of the orientation of a rod molecule. S
is a normalization factor. Here, and in the following discussion, I use implicit summation rules,
where repeated Roman indices are to be summed over {z,y,2}, referred to as {1,2,3}. The free
energy density F' of a nematic fluid may be expanded in terms of powers of Q.. Following de
Gennes(dG74];

F = Fo+ 5A(T)QuiQua + 3B(T)QuiQueQun + 0(Q"), (23)

where T is the temperature. The existence of a non-vanishing term of order Q3 is important, and indi-
cates that the isotropic—nematic phase transition is of first order, in agreement with experiment [VdJ88],
Inclusion of a Q3 term is mandated because a state of Q.5 does not necessarily have the same free
energy as one of —(Q),; there is no symmetry relation. The behavior of the free energy as a func-
tion of the order parameter can thus be depicted as in Figure 2-2 near the isotropic—nematic phase
transition.

The existence of a phase transition in the NLC can also be understood as occurring thrugh com-
petition between positional entropy, which favors the rods being randomly located, and orientaticnal
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Figure 2-2: The behavior of the free energy density F' near the isotropic—nematic phase transition,
as a function of the order parameter @), for various temperatures 7. T is the critical temperature.

entropy. which favors them being randomly oriented.! At high pressure, or low temperatures, maxi-
mizing positional entropy is most important, and the favored phase is the “nematic” phase, where the
rods are all nearly aligned along the nematic axis. Conversely, at low pressure, or high temperature,
the “isotropic” phase is instead favored.

I shall not find the order parameter uscful in the remainder of the discussion in this thesis, but

its presentation here serves to connect the NLC system to others studied in statistical mechanics.

2.1.2 The Frank Free Energy

The molecules of the NLC obey symmetries invariant under rigid rotations (about the molecular
axes) and inversions (7 — —). These symmetries naturally lead to a free energy which, in the most

general case, consists of four terms:

b = 5 [T+ k- 9 x )2 2.4)

thalix (P x D) + ke¥ - (7 ) - 7( h‘))] :

The four terms in Eq. (2.5) are known as the “splay,” “twist,” “bend,” and “saddle-splay curvature”

terms, respectively[Bou8ll, Usually, the k; are not equal; in the particular substance I have studied (see

This argument was first given by Onsager (see [dG74]).
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section 5.1), k; & k3 = 2k,. Nevertheless, a popular approximation is tc take the k,; equal. In such a
case, & becomes related to the free energy for that of an analogous field theory with spontaneously
broken global symmetry (where global SO(3) intemal symmetry is spontaneously broken to O(2) by
a traceless symmetric tensor?), as follows:

k—k,

Ete = Epe + 3

[(Bana)? = (9sma)(Bams)] - (2.5)

Furthermore, the k4 term is usually neglected, because it does not appear in the equations of motion,
being a surface term. For k = k; = k; = k3, and k4 — k = 0, Eq. (2.5) becomes what is known as

the “equal-constant™ approximation:
= £10 = & (Bams)’ 2
gequal consiant = Cft = ) ( anb) ’ \-"6)

where n; are the czriesian components of the director field.

The Frank free erergy is Eq. (2.5) without the k4 surface term. This is written as follows:
EF\-ank [nn am"ru] = '2"(00"0) + ?(ncfabcaonb) + 'é‘\lecendfabcaanb) . (27)

Note that Eprank is positive definite. Generally, the Frank free energy is taken to be the most “correct”
energy density to use in describing the properties of a liquid crystal (after all, it has the greatest number
of degrecs of freedom). However, a simpler expressicn, which resulis from setting the #; equal in
the Frank free energy, is much easier to work with. It differs from the equal constant expression only
by a surface term, which is usually neglected. Because the fundamental physics I am interested in
can be studied in the equal constant approximation, I will oftcn use Eq. (2.6) in favor of Eq. (2.7).

2.1.3 The Equations of Motion

The equations governing the motion of the molecules in the nemaiic liquid crystal are most easily
approached by considering first a two-dimensional system without an inversion symmetry. This is
the smectic liquid crystal (SLC). After I discuss the 2D SLC, I will extend my calcuiations to the 2D
and 3D NLC cases.

The SLC is described by a director field in which the the #(7) in each x-y plare R? are tilted by

2for a further discussion of this point, see [CDTY90].
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some constant angle §; with respect to the z-axis. The azimuthal angle ¢(z, y) is left undetermined,
and the 6; is usually the same from plane to plane. Once again, note that the symmetry of the NLC
is more complicated. Its director field has a local inversion symmetry, whereby the replacement
ii(7)——1(F) does not change any of the NLC’s physical observables.

The dynamics of the director field in the NLC and the 2D SLC are governed by the Frank free
energy functional. Normally, the magnitude of #() is constant and chosen to be unity, for both the
SLC and the NLC. However, because the free energy diverges at a singularity (a terrible thing to have
to cope with in numerical simulations), I add an additional term which cuts off infinite divergences
by allowing the length of the #(7) to change in the locality of defects. Such a cutoff is introduced
naturally by the finite size of the molecules in the actual physical system. Thus, the total energy
functional I use in deriving the equations of motion is a sum of the field energy and a lambda potential

cnergy term:
_ 1k 2, ke 2, k3 2, A 2
e [nu amnw] = ?(aana) + ?(ncfabcaanb) + ?(fdcendfabcaa"b) + Z(nana - 1) . (2-8)

The equations of motion for the 2D SLC can be derived directly from this energy functional
by using the variational principle. Similar equations for the NLC are more complicated to derive,
because this expression does not include the local inversion symmetry required by the nematic. To
analyze the NLC therefore, I will first rewrite the free energy in tensor form, using SO(2) and SO(3)
matrices® for the 2D and the 3D cases, respectively. As in the smectic, the equations of motion will

then follow from variationaliy minimizing the energy.

2.1.4 2D SLC Equations of Motion

Because the SLC has a planar symmetry, it is appropriate to model only a single, 2D layer of SLC.
Also, I choose to study only planar configurations of SLC because they can be related to experimental

results from free standing thin films. In two dimensions, Eq. (2.8) reduces to:
k k A
€2 = 5-(8ana)’ + S (easdams)’ + Z(nana ~ 1)%, (2.9)

where the indices vary over 1, 2, and €;; = €22 = 0,¢12 = 1, and €27 = —1. The equations of motion

3S0(n) are the groups formed from the set of proper rotations in n-dimensional Euclidean space. They can be represented
as symmetric n Xn matrices.
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follow from the Euler-Lagrange equation, modified appropriately to refiect the dissipative nature of

this system:

0 il
[a'" 8(Omnrk) 3nk] &0 = 1kn . (2.10)

The equations of motion for the 2D SLC are thus:

YOni = k10k0anta + kacck€ap0:0;,np — A(Rane — )0y . (2.11)

2.1.5 2D NLC Equations of Motion

The symmetry of the NLC under local inversion of the director field corresponds to a group symmetry
of SO(2) and SO(3) matrices for a two or three dimensional system. The major problem with writing
a SO(2) or SO(3) tensor formulation of Eq. (2.7), however, is that the energy must be positive definite,
in order to allow variational minimization. Gne way to assure this is to construct equivalent tensor
expressions for the terms in the parentheses in Eq. (2.7). This approach begins by writing down all
possible low-order combinations of derivatives and tensors using N4, = n,n, and combining them
creatively until the desired expressions are found. By construction, identities which can be exploited

include:

Naa =1 2.12)
Nap = Nia (2.13)
0Ny = 0. (2.14)
In two dimensions, these identities become
noiny +ngding = 0 (2.15)
n1dany + nadany = 0 (2.16)
nf+n? = 1. 2.17)
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For the 2D, SO(2) tensor case, the following free energy expression is equivalent to the &;p

of Eq. (2.9):

k
&p-NLC = 71' [0aNab ~ NeaBo Nes] [0aNap — NedOaNes] (2.18)
k
+33- [Nae€obOaNoa) [Nhe€598; Ngh)

pY A
+7"[N.a 1%+ TB [NapNas — 1)2.

Again, a lambda potential term has been added to cutoff infinite divergences at the cores of singular-
ities. Unlike for the vector free energy though, there are two terms. In the case where A4 — oo and
Ag — 00, the SO(2) tensor has a unique mapping io a B2 vector (except for the desired inversion

degeneracy):

7y = VN1 = Nia/VNoy (2.19)
ny = /N = Ni2/\/Ny;. (2.20)

When )4 and Ap are finite, as they are in my compuier simulations, there is no unique mapping;
however, significant deviation will only occur at the cores of singularities, where knowledge of the
exact orientation of the director field is not crucial.

Finally, using the variational principle leads to the complete equations of motior. for the 2D NLC,
as given in Figure 2-3.

A simplified version of the free energy, given by setting & = k; = ks, is considerably easier to
deal with:

a2 = S(0uNse)(uNoc) + 38 W~ 1P 4 2B [Nu N~ 12 (220)

The corresponding equations of motion are:
Y0 Nix = gaaaaNik = Aab6ik(Nag — 1) — ApNip(NapNap — 1) . (2.25)

2.1.6 3D NLC Equations of Motion

The 3D NLC equations of motion are similar to those of the 2D NLC case. Instead of SO(2) tensors,
SO(3) tensors form the underlying field. Also, the rank of the levi-civita tensors must be raised from
16
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k
+?3€abf[y(8aNbd)(NdkajNgi + NgifyNoi)
+I\A6|'k(Naa - 1) + '\BNik(NabNab - 1)

- k
6,,.-352,;')"—;:5 = ?l [6mibks — NimOis + 6mrbis ~ Nimbip) (2.22)
X [0n0aNap — NeaOm3aNep — (OmNea)(0aNa))
+k2—l [6kbamNim + Jibamem] [aaNab - NcaaaNcb]

k
+?3€ab€my [6ig0kn + Sixdiy)
X [NdeNneamaaNbd + Nde(amNne)(aaNbd)Nne(‘amNde)(acNbd)]

9€p_NLc  9En-NLC
3(0mNik) 0N

YONik = Om (2.23)

Figure 2-3: Equations of motion for the 2D NLC
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two to three, and subsequently the k3 term changes. Finally, a k2 term must be included, and the
Ap term must be expanded (because there are more degrees of freedom in the 3 X 3 matrices which

must be fixed). The free energy becomes:

k
&p-NLC = ?l [0aNgp NcaaaNcb] [adN‘"’ - NedadNeb] @29
k
+—23 [€abe NaaBs Nea]?
k
.i-?s [NabObNea) [NgeDe Nea)

A A
+T" [Nea = 112 + -:‘E [NabNea — NacNpa] [NapNea — NocNyd)

The corresponding equations of motion are straightforward but lengthy to caiculate; I leave them as

an exercise for the reader.

Simplified equations of motion

The 3D NLC equivalent of Eq. (2.25) is given by using the free energy expression:

k A A
gsimpSD = z(aaNbc)(aaNbc) + 'f"[Naa - 1]2 + ‘42 [Nachd - Nachd] [Nachd - Nachd] )
(2.27)

where k = k; = ky = k3. The corresponding equations of motion are:
k ,
YO Ny = -2-3a3aN.'k — Aabik(Naa — 1)AB [2N31,N.'k — NaiNskNop — Nakol'Nab] . (2.28)

The equivalence of Eq. (2.27) to Eq. (2.6) is established by substituting N o, = n,ny into Eq. (2.27),
and expanding (the A tec.ns can be disregarded):

k
gsimpSD = Z(aaNbc)(aaNbc) (2-29)

k

= Y (Ga(msnc)) (Bu(monc))

= ;(ncaanb + np0anc) (nc0any + 'nbaanc)
k

= 9 [(ncaanb)(ncaanb) + (ncaanb)(nbaanc)]
k

= b) (Oame )2
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= Eequnl constant -

The identity 2n,0,7p = 9, Ny = 0, derived from Eq. (2.14), is used in the fifth line. These steps are

typical of the process used to progressively derive tensor expressions equivalent to the usual vector

ones.

Mapping from SO(3) to 7

The: mapping of a SO(3) matrix to a three-vector can be accomplished in three ways. The symmetric
raatrix N is defined as
n2 ngn, ngn,
Nix = n?  ayn, |- (2.30)
n

The A4 and Ap terms impose the following restrictions:

Ni+Npp+ Nz = 1 (2.31)
N} = NublNy (2.32)

N3 = NulNy (2.33)

Ni2N23 = NaxNjys (2.34)

When A4 = Ag — 00, these restrictions are obeyed perfectly. However, for finite A’s, there will be
some degeneracy between the possible mappings from N to 1. I use the following criteria: the first
of the diagonal elements N;; (starting with ¢ = 1) which is substantially greater than zero is chosen
as a starting point, and n; = +/Nj; is calculated. From the off diagonal elements Ny3, Ny3, and Na3
are derived the two remaining components. I have found this method to work well enough o allow

proper visualization of the field as it is evolved.

2.1.7 Summary

The results of this section are summarized in Table 2.1. 1 have devised a potential contribution
modification to the free energy to allow cutoff of singularities, and derived equations of motion for
the two-dimensional smectic, nematic, and three-dimensional nematic systems. The NLC equations
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[ System [ Eq. Motion Free Energy

2D smectic | Eq. (2.11) Ep = !‘,\-(&na)’ + 5}(6,,534115)2 + %(nan,, —-1)2
2D nematic | Eq. 2.25) | &simp2D = £(8aNoc)(8aNoc) + 42 [naa — 12 + -'}-1& [Rabnas — 1]2
3D nematic | Eq. (2.28) EximpaD = £(0aNyc)(0aNie) + 24 [Nag — 1)

428 [NapNeg — NacNod) [NapNea = NacNoa)

Table 2.1: Free energies and equations of motion for the 2D smectic, nematic, and 3D nematic
systems.

are based on SO(2) and SO(3) tensor fields, while the SLC is a simple vector ficld model. I next tum
to the macroscopic (as opposed to microscopic) properties of the director field, and begin a discussion

of topological defects.

2.2 Topological defects

Topclogical defects can be created when a system undergoes a symmetry breaking phase transition.
Crudely put, a topological defect is an aberration which is usually very localized, and often easily
identified as a singularity in energy density. Whether or not one is created, and what form it may take,
is most concisely determined by using results from group theory [Mer79, Mic80), as will be sketched
below. The principle concems are to develop abstractions which describe the degeneracies in minimal
energy states of the system under consideration, and to use these abstractions to describe a mapping
from physical space to the degeneracy space. Such concems are fundamentally about the symmetries
of a system and how they change.

Symmetry breaking refers to the loss of symmetry in the configuration of a system which occurs
when the system is brought from one energy state to a lower one. For example, when a liquid is
frozen, the molecules in the resulting solid no longer have isotropic symmetry; instead, they may
have a discrete rotational symmetry, or some more ccmplicated symmetry. Many physical systems
undergo such symmetry breaking to reach a lower energy state. The classical example is that of a
knitting needle, which buckles in one particular direction when compressed by a force applied at both
ends along its axis. The result is that the needle is no longer symmetric with respect to rotations
about its axis.
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2.2.1 Domain Walls

Topological defects arise when large ensembies of objects collectively undergo symmetry breaking.
As a simple example, consider u two dimensional ensemble of spins which are free to point either
up or down, initially in equilibrium with a heat bath at some high t‘emperature. We can imagine that
nearest neighbor molecules are coupled in such 1 way that they all prefer to be oriented in the same
direction. However, because of the hot heat bath, they are jiggling so hard that kT is larger than
the coupling energy J. Suppose we now lower the temperzature of our heat bath suddenly. As kT
becomes smaller than J, the spins begin aligning themselves to each other, forming local patches of
up and down-spins. Where these patches meet a wall of high energy forms. There is no way for
this “domain wall” to disappear except by growing out to infinity, collapsing by shrinking in, or by
annihilating on an opposite polarity counterpart. Dorain walls are a class of topological defects.
The formation of domain walls can be predicted by studying the symmetry groups of the high
temperature versus the low temperature phases. In the high temperature phase, each spin can be in
one of two states, but in the low temperature phase, after the system has settled and is very cold, all
the spins are in the same state, either up or down. Mathematically, we say that the spin system has
undergone a Z; -— Z; symmetry breaking transition?. In this case, the set of possible final states
which are equal in energy, otherwise known as the vacuum manifold My, is described as Z,. Z; can
be represented as two disconnected points. The existence of domain walls can therefore be predicted,
on the basis that there is no continuous transfcrmation from one point to another in M o. The utility

of this approach becomes more apparent as more complicated symmetries arise.

2.2.2 Monopoles and Strings, and Homotopy Theory

Consider next a two dimensional lattice of continuous spins, orientable in any direction from 0 to
2r. The symmetry of the high temperature phase of this system is O(2), and the symmetry of the
low temperature phase is Z;, and Mo = S; (the one-sphere®), because the set of possible final states
include all 27 dircctions. Now, we introduce the basic elements of homotopy theory. A uniform

field, one with all the spins oriented in the same direction, is shown in Figure 2-4. On top of this

*The group Z, is isomorphic to the additive group of integers, modulo n. In this text, I will use Z, to denote the
identity, because it arises infrequently in the discussion; in the literature, the identity is usually denoted as 1.

S, are groups formed from the set of points on the surface of spheres in (n + 1)-dimensional Euclidean space. Such
sets can be described by n free parameters. For example, the circle, a sphere in two-dimensional space, is parametrized by
8, and is known as a *one-sphere.”
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field is shown a closed, oriented contour +; at all points on this contour, the spins are oriented in the
same direction ¢ = 7 /2 (choose ¢ to be measured from the horizontal, and the origin in the center of
the figure). Thus, we say that 7 maps to a single point I' in the phase space of possible orientations,
M. This is schematically depicted in Figure 2-5.
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Figure 2-4: A uniform field. The spins on the one-sphere 4 are all oriented in the same direction;
thus, ¥ maps to a single point I in orientation space.
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Figure 2-5: Orientation space configuration map. The single point plotted corresponds to a uniform
field.

Figure 2-6 shows a sequence in which a warped field configuration is deformed continuodsly.
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The rules for deformation are that each spin may be turned by a small angle df, but that neighbering
spins must be oriented in nearly the same direction (the director field desires to remain as continuous
as possible). The analogous deformation sequence in orientation space is shown in Figure 2-7. The
circle, or *“one-sphere”, shown in the figure is a representation of Mpy; each point on the circle
corresponds to a spin orientation from 0 to 2x. The centours, I', correspond to the crientations of the
spins in physical space along the contour . The fact that the left hand configuration car be deformed
continuously into & uniform field is equivalent to the fact that I' can be shrunk continucusiy to a

point on the one-sphere.
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Figure 2-6: The continuous deformation of a warped field to a uniform field. The original field, on
the left, is thus nonsingular.

/1"

Figure 2-7: Deformation of a warped field shown in orientation space.

The power of homotopy theory is the reversibility of this last statement. Spin orientation configu-
rations for which there exists a mapping from a closed contour 4 to a closed contour I' in orientation
space, which cannot be shrunk to a point, belong to a class of configurations which cannot be made
to disappear without overcoming a significant energy barrier. Such mappings are known as “non-
trivial.” Trivial maps are those which lead to ' which can be shrunk to a point on M. Note that
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continuous deformations of the field in physical space correspond to allowing the contour I’ to be

perturbed continuously on M. Also, note that I' cannot be broken ~ it must remain a closed contour.

An example of a configuration with a non-trivial y—I' map in our model system is shown in
Figure 2-8. The contour I' which corresponds to v follows a closed path around the one-sphere. No
continuous perturbation of I' allow us to shrink it to a point. Thus, the configuration of Figure 2-8
is one of a class of configurations which are “topologically stable.” Other configurations which are
topologically related to this one correspond to rotations of I' around M, such as those shown in

Figure 2-9. This class of topological defects are known as monopoles.

Figure 2-8: Splay energy defect. The picture on the left shows the spin configuration, and the
onc on the right shows the mapping from the contour 7 in physical space to the contour I' in
orientation space. Because I' cannot be continuously deformed into a point, this spin configuration
is topologically stable.

As we have just shown, monopoles are known to exist because there exists a mapping from a
closed contour v in physical space to an unshrinkable contour I' on M. In our particular case,
the physical system is two-dimensional, and v is isomorphic to a one-sphere (S;). Thus, monopoles
correspond to nontrivial maps from S; to M. Such maps, from S,, to My, are generally written as
Ta(Mop). Defects of dimensionality ¢ in a d-dimensional system are classified according to the map
T4-t—1(Ma). These categories are summarized in Table 2.2.
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Figure 2-9: Two degenerate energy “bent” splay defects.

Defect Dimensionality | 2D System Homotopy
Deomain Walls 2 mo(Mo)
Strings 1 m1(Mo)
Monopoles 0 71(Mp) m2(Mo)
Texture S 7F2(Mo) 1I'3(M0)

Table 2.2: Homotopy classification of topological defects in 2D and 3D systems.
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2.2.3 Summary

My discussion of topological defects from a group theoretical standpoint relies primarily on drawing
pictures which present the important physics and on developing a general intuition. Unfortunately,
the lack of mati:ematical specifics precludes a discussion of more advanced subjects, such as relative
vs. absolute homotopy, and more powerful tools, such as exact homotopy sequences. However, I
quote an important result here. As will be discussed in the next chapter, the vacuum manifold of the
NLCIKMT77] j5 §,/Z,. Mathematicians would say about the NLC that “using an exact homotopy
sequence, it can be shown that the homotopy of My is as follows: m3(Mpg) = 22, m2(Mo) = Z,
m3(Mp) = Z.” The meaning of this statement is that we should expect to find one type of string,
integrally charged monopoles, and integrally charged texture, in the NLC. For more details, the reader

is kindly referred to group theory texts, or Mermin'’s excellent review of the subject!Mer79],

2.3 Summary

The two sections in this chapter have discussed the microscopic and the macroscopic properties of
systems made of rod-like molecules with certain continuous symmetries. In Section 2.1, we leamed
that the order parameter @, of the NLC is given by a function of iis director field 7. The iree
encrgy, when expanded in powers of @, shows the existence of a first-order symmetry breaking
phase transition. The symmetries of the low temperature, nematic phase, give rise to the Frank frce
cnergy, from which can be derived equations of motion governing the dynamics of 7.

As we will see in Chapter 4, these equations of motion will naturally lead to the creation of
topological defects when applied to an initial configuration with random, isotropically distributed rod
orientations. Section 2.2 presented a group theory based understanding of why particular topological
defects exist, and how to predict their existence based on the fundamental symmetries of the system
under study. The NLC, for which Mg is S?/2Z,, the two-sphere with antipodal points identified,
allows the existence of monopoles, strings, and texture.

The next chapter will begin to unify the theory presented in this chapter. And in Chapters 4
and 5, 1 will begin applying this knowledge of topological defects and field equations to numerical

simulations and experimental observations of liquid crystal systems.
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Chapter 3

Defect Structure

In this chapter, I suminarize our understanding of NLC defect struciures. First, I consider defects in
two-dimensional systems. Defects in threc-dimensional systems have similar fundamental structure,
but are significantly complicated by extra degrees of freedom. Also, in R3, monopoles and texture
defects arise, while the +1 defects of the R? become non-singular. Throughout the discussion, I
concentrate on visualizing the defects by imagining a volume filled with stiff rods. In Section 3.5,
I show that a comparison between the energy density in a volume ¢ containing different defects can
be used to estimate the evolution of the relative defect abundances as £ grows. The modei I use in
my analysis is known as the “equal constant™ approximation; in the non-cqual constant case, defect
structure soiutions do change slightly, but little enough to leave the main conclusions and pictoral

intuition intact.

3.1 Defects in R?

The isotropic—nematic phase transition in a thin, essentially two-dimensional layer of NLC can
properly ve described as an O(2)/ 22 — Z, symmetry breaking transition!. Initially, in the high
temperature isotropic phase, the molecules of the liquid crystal are free to point in whatever direction
they please, but afier the transition, the molecules gradually relax to a state in which they all point
in one particular direction. The final state is Z2 symmetric because of the inversion symmetry of the

rod-like molecules of the nematic. Because the final orientation of the molecules is undetermined,

!Note that the group O(n) refers to the set of rigid bedy rotatiens in n-dimensional Euclidean space. Thus, O(n) can
be characterized by n — 1 free parameters.
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Charge | Director field
+1 i = cos ¢z + sin ¢
-1 i = — cos ¢Z + sin ¢F
+3 ﬁ:cos%a‘:+singﬁ

-3 1'£=—cos%:i:+sinfzg

Table 3.1: Director field structure of +1 and +3 defects in R2.

the set of possible minimal energy configurations, otherwise known as the vacuum manifold M g, is
a one-sphere with opposite points identified S1/2,.

The isotropic—smectic-C transition is similar o the isotropic—nematic transition, but is not com-
plicated by the presence of an inversion symmeiry. It is described simply as a O(2)—Z; symmetry
breaking transition, with M= 8;. Thus, as discussed in the last chapter, monopoles, which corre-
spond to nontrivial (M), will exist in the smectic. These monopoles are known as charge +1
monopoles; the tcpological charge m of a defect is calculated as an integral over the director field

on a closed loop v which encloses the defect in question:
m= -l-f Vol (3.1)
2r J, !

where 8 = tan—1(n,/n;) gives the orientation of the director field elements. Rod pictures of +1
and —1 monopoles are shown in Figures 4-1 and 4-2.

Topological charge :t:% monopoles will also exist in the nematic, because of the additional Z,
symmetry. Closed contours in physical space along which 8 varies from 0 to 7/2 will correspond
to nontrivial m;(M,), because of the identification of antipodal points of S2/2;. Table 3.1 gives
the director field # for £1 and :l-.-;- monopoles in R, and Figure 3-1 shows 2 rod picture of a +%
monopole. Other configurations, which correspond to global rotations of 7, are equivalent (in the
equal constant approximation).

These defects can be observed under a micrcscope by placing a thin preparation of liquid crystal
material between crossed polarizers, to produce what is known as a “Schlieren” image. Regions in
which the molecules are oriented at 7 /4 with respect to the polarizers are brightest, while regions
oriented close to the directions of either polarizer are the darkest. +1 monopoles produce four
altemnating light-dark bands (sometimes described as a Maltise cross pattern), and :I:% monopoles,
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Figure 3-1: Director field of a +3 monopole.

two bands.

Note that two oppositely charged monopoles will attract each other and eventually annihilate.
The director field configuration for a pair of monopoles is given by 8 = (6, — 8;)/s, where 3 = 1
or 2 for £1 and :h% monopoles, respectively.

Finally, I mention a few details conceming the actual structure of the core of a monopole. As
given in Table 3.1, monopole cores are singularities in energy. In reality, this cannot be the case.
Some believe that in the NLC, the core is actually composed of a higher energy phase, i.e., of isotropic
fluid(KL38], In the NLC, the core size is believed to be somewhere in the range of . =~ 10 to 100 A
in size. This length scale is much smaller than the length scales £ normally observed experimentally.

3.2 Strings

Topological defects in the three dimensional NLC can be complicated, because not only are strings,
monopoles, and texture possible, but also because there may be many different kinds of each.

First, consider strings. In the most naive approach, strings may be constructed by taking R 2
defects and sweeping out world lines with their cores. However, this neglects the possibility for the
molecules to twist out of the plane (along the direction of the string), thus allowing +1 strings to
become nonsingular. Director field configurations for singular core strings are given in cylindrical
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coordinates by
i = O [ cos(3¢) + §sin(s9)] , (3.2)

where s =1 or 1/2 for £1 and :I:% strings, respectively, and O is a global rotation matrix, as before.

41 sirings can have very low energy density, by becoming very broad, diffuse objects. This
property, known as their ability to “escape,”? can be justified from group theory arguments. The
isotropic—nematic transition is a SO(3)—0(2) symmetry breaking transition; before the transition
the molecules find themselves free to orient in any direction, and afterwards, they all line up in
one particular direction. The vacuum manifold is the quoctient group SC(3)/0O(2) and is found to
be S2/Z,, the two-sphere with antipodal points identified3. A closed contour in physical space
enclosing the center of a +1 string would correspond to a closed contour I‘:}_ in symmetry space, on
the two-sphere, from the north pole to the south pole; the north and south poles are actually the same
point (Figure 3-2). There is no way to continuously deform I’ } into a single point on the two-sphere,
because of the “anchoring™ properties of the antipodal points denoted “N” and “S” in the Figure;
shrinking I’ p o the left, away from the north pole, would necessitate warping the bottom part of the
curve towards the right, away from the south pole. On the other hand, a closed contour in physical
space enclosing the center of a £1 string would correspond to a closed contour I'; in symmetry space
forming a great circle (Figure 3-3). Clearly, I'; can be deformed continuously to simply roll it off
the top of the sphere into a point. Mathematically, it is said that +1 strings have trivial 7 ,(M,)
homotopy.

A physical picture which justifies the non-singular nature of “escaped” 1 strings can oe con-
structed by considering the +1 and :i:% defects in R?, with an additioral degree of freedom in which
the rods of the director field are allowed to swivel out of the plane. First. consider the string given
by

i = £coexcos¢+ §cosxsing + Zsin x, (3.3)

with x = 0 far away from the origin. Now, imagine that towards the crigin, x gradually increases to

7 /2, whereupon the rods all tilt upwards out of the plane. Recalling the equal-constant exprescion

>This is also refered to in the literature as “escape in the third dimension” (see [CK72, WPC72b)).
3The symmetry group may equally well be taken to be O(3) broken to D o, but since the comresponding crbits are the
same, O(3)i = SO(3)d, it is sufficient to consider SO(3) broken to O(2).
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Figure 3-2: Diagram showing a nontrivial 71(Mg) map corresponding to a +2 string in the NLC.
Mo = S3/Z,, the two-sphere with antipodal points identified. The contour I' cannot be deformed
continuously into a point because the two peints marked “N” and “S™ arc constrained to remain

opposite each other at all times.
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Figure 3-3: Diagram showing a trivial 7;(My) map corresponding to a +1 string in the NLC.
My = S2/2,, the two-sphere with antipodal points identified. The contour I' can be deformed
continuously into a point by simply rolling it up to the top of the sphere.
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for the energy density
£ = (0,m) = Z(Vn.-)2 , (3.4)

we see that because the rods are no longer pointing towards each other, and ir fact become parallel
to each other at the origin, the energy density is minimal.

+1} strings can be written as 7 = O [£ cos($/2) + §sin(¢/2)], where O is a constant rotation
matrix. Compare this picture with that of a ﬂ:% defect which tries io escape; the director field is
shown in Figure 3-1. Imagine the rods trying to lift themselves out of the planc as they approach the
origin, remembering that i wants to remain as continuous as possible (the higher dn, the higher the
energy cost). We sce that because of the extra berd in the :I:% defects, the director does not want to
tilt upwards out of the plane.

Other forms of +1 defects exist; in particular, there exists the +1 R? monopole whose rods
are arranged along concentric circles. This and all the other £1 defects may escape to become
nonsingular; one possibility would be for the rods in the circles to gradually twist themselves as
they near the center, until they are arranged as in Eq. (3.3), which we have already seen can escape.
Finaly, a matter of nomenclature: because 1 strings can become nonsingular, I shall somtimes refer
to them as flux tubes rather than as strings. When 1 strings escape to become nonsingular, they are

seen as fuzzing out and becoming very broad.

3.3 Monopole Structure

Monopoles exist in three as well as in two dimensions, although they have many more degrees of
freedom in R23. Their structure can be visualized by thinking of a curled up hedgehog (or a porcupine),
which has all its quills pointing out from its center. In spherical coordinates, the orientation of the
director field of a monopole would be given by its 8, ¢ position, such that the field always points
inward towards the origin. All other monopole configurations may be produced by globally rotating

the 7 of the hedgehog. In cariesian coordinates, this configuration is written as
i = O [cos ¢sin 0% + sin ¢sin 8§ + cos62] . (3.5)

Typically, the flux coming out of a monopole bunchs up into two tubes going in cpposite directions
out from (or in to) the monopole. Thus, monopoles are observed as blips of highly concentrated energy
32



(black dots) sitting on £1 flux tubes. Again, because %1 strings can escape to become nonsingular
objects, the flux tubes coming out of 2 monopole may quickly disappear into nothingness, but at the
monopole itself, the flux is necessarily pinched into a point. Furthermore, in order for a monopole to
be formed, the two +1 strings on either side of the monopole must be escaped in opposite directions,
and their charges must be the same.

The topological charge of an isolated monopole is arbitrary, but the relative charge of two
monopoles is well-defined. It is determined by the charge of the +1 strings connecting them. Be-
cause m2(Mg) = Z, we know that topological charge 0,+1,32,... exist. However, it would be
impossible 10 determine if a monopole formed by the intercommutation of two +1 strings were of

charge 0 or £2.

3.4 Texture Structure

Texture is a completely nonsingular topological defect, except when it forms a singularity for an
instant as it collapses. Mathematically, texture corresponds to homotopically nontrivial maps from
S3 to Sz (i.e., nontrivial m3(Mo)); they are a special case of the Hopf fibration(Ste5!], They are
constructed as follows: using the fact that SU(2) is isomorphic to S3, a map from a uniform field
onto SU(2) can be written as g(£) = exp(ix(r)Z - &/r), with the Pauli matrices & and x(r) a
function running from 0 at the origin to  at infinity. Subsequently, g(£) is mapped onto S using
ii(£) - & = g(F)o3g(£)~!. The resulting director field is:

L T2 . z T . 22
i = (r_2(1 — cos2x) — -il-.-sm 2x, g—‘(l - cos2x) + - sin 2x, ;—2-(1 —cos2x) + cos2x). (3.6)

This configuration may be viewed as two concentric, escaped *1 strings of opposite charge. There
are no singularities anywhere, but by Derrick’s theorem[Der64], the configuration must collapse and
unwind itself, or be stabilised by higher derivative terms (this possibility was considered in [WZ89]).
To see that the configuration is topologically nontrivial, and must produce a singularity in the un-
winding process, consider lines of constant 7 in space. These lines form two rings about the z axis
which link once (this is known as a Hopf link). If the configuration is to relax to a configuration of
constant 7, these linked lines must cross. It being impossible for @ to take two values at once, there

must be a singularity produced at the crossing point. Bouligand has actually observed such linked
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rings in a cholesteric liquid crystals{Bou81, Bou74],

Although texture contains no singularities, i.e., the director field of a texture cannot be deformed

continuously into a homogeneous state, texture is properly classiried as a topological soliton [Sha77),

Unfortunately, a precise balance in centering the two %1 strings seems to be critical in determining
whether or not a texture defect will decay through the expected mechanism, by collapsing and
unwinding itself (it is expected that the inner loop collapses first, forming a monopole which is later
annihiiated when the outer loop collapses around the same peins). If the two strings are not perfecily
concentric, it is possible for the two loops to intersect at a sitgle point, while they are shrinking. At
this intersection, an intercommutation will occur, leaving behind twe monopoles sitting on the ends
of the two broken rings®. The monopoles quickly recede from each other and eventually annihilate.

I discuss this scenario further in Section 5.4.

3.5 Defect Energetics

A possible measure for the relative abundances of defects is given by a comparison between their
encrgy densities and how that behaves versus the length scale of the system. In this section, I first
consider Low such energies are calculated, and then proceed with the calculation for the monopole,

+3 string, and escaped £1 sting.

3.5.1 Calculating Ejr.c. in a Volume £3

Consider a volume of space with length scale £ containing a monopole or a section of a string.
Neglecting the core energies of the defects, what is the total energy E contained in this space? We

can calculate the energy density £ using the equal-constani expression:

k
gequnl constant = E(aaﬂ'b)2 . (37)

*Does this mean that the two strings must be escaped in the same @ direction? The equations show that the strings are
escaped in opposite directions!
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The total field energy (recalling that Eequal constant = i with our definitions) is given by the integral
of £ over the space, possibly with some cutoff limit at the core:

'3
E= / £r?sin 8 dr df do (3.8)
Te

However, Eq. (3.7) neglecis a surface term which appears in the Frank free energy, £q. (2.7). We
can calculate this contribution separately, as follows: |

glc = gequal constant +£au.rface (39)
s = 25 [(0una)? - Bina)omy)] = E2Rr9 (3.10)

where I have defined G as the surface component (or otherwise known as the “saddle-splay-curvature”

term) of the energy density to be:
G=a(V. &) (7 V)7. 73.11)
Sciting k4 = 0, the surface term contribution to the energy is thus given by:
-_k [~ . .
Equrface = /Esurfacedz = EfG -£dS. (3.12)

Though the surface term does not contribute to the equations of motion which describe the dynamical

behavior of a particular defect, it does contribute to the energy of a defect.

Whether or not the surface term should be included is a judgement which can be based on the
nature of the pioblem under study. If it is desired that all solutions should be related by glebal
rotations, then the equal constant expression, Eq. (3.7), should be used, because it is invariant under
global rotations of iZ. On the other hand, when a surface term is included, this symmetry is broken.
Also, the individual terms in the Frank free energy are clearly not invariant under global rotations.
In the following discussion, I will separately present both the field and surface term energies.
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3.5.2 Monopole Energy Density

Using Eq. (3.5), and the definition of the gradient V = 78, +818y+ ¢ L0, in spherical coordinates,

we calculate the derivatives of n; to be

Vn, = é%cosacosqfo—cf:%sin«ﬁ (3.13)
vn, = é%cosOsin¢+$%cos¢
Vn, = -652¢

r

The energy density is found to be £ = £ [(Vn;.,)2 +(Vny)? + (Vn,)z] = %, and the total energy

in a sphere of radius £ is given by an integral over space to be
Emonopole = 47rk£ . (3.14)

The energy contributed by the surface term of £ is given by calculating G from Eq. (3.11). We
use the fact that in spherical coorainates, our monopole is given by #i = #, to get G = 27 /r. The
integral of Eq. (3.12) is trivial:

Erurface = g (ﬁ) - Fr2dQ = 4rke (3.15)

T

where we have evaluated the integral on a sphere of radius r = £.

3.5.3 Singular String Energy Density

The energy density of a localized +1 or :t% string is calculated by using as the director field:
il = i sin(s¢) + § cos(sg), (38.16)

with s = i% for £} strings and s = %1 for +1 strings. The derivatives are calculated in cylindrical
coordinates to get:

Vn,
n,

q's; cos(s¢) (3.17)
- $2 sin(s¢)
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and the energy density follows immediately, giving £ = %1- The total field energy per unit length

of string is given by an integral in cylindrical coordinates:

. . §
d—E"“S‘;’t" string _ J[ Erdrdé = ws’kIn (ri) . (3.18)

The energy of a +1 string in a volume of scale £? is therefore given by setting s = 1 and multiplying

by the string length £:
Esingular atring = %kfln (i) ) (3.19)

Te
We can calculate the surface term contribution by re-expressing the director field in cylindrical

coordinates as:
i = #sin(s'p) + ¢ cos(s'd) (3.20)

where ¢ = s + 1. The # component of G is thus:

1-—-

s - s cos(2s'9). (3.21)

Gr=n,(V-7) = (- V)n, = ."_’rLl sin?(s'¢) — T_l-cosz(s'tﬁ) =

It follows that because the surface integral
2
(1- s')f cos(2s'¢p)dp =0, (3.22)
0
for s’ of the form m /2, where m is an integer, there is no surface energy contribution.
Egurfue - 0 . (3-23)

3.5.4 Escaped String Energy Density

Another case is that of an escaped +1 string, with a director field configuration as given by Eq. (3.3).

Here the derivatives (again, in cylindrical coordinates) are:

Vny = #cosxcosdd,x — Jé sin x sin ¢ 3.24)
Vn, = #cosyxsin¢d.x+ &é sin x cos ¢
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Vn, = -—fsindd.x.

x is a function only of radius r which parametrizes the escape of the string. We will calculate this
function by variationally minimizing the energy. The energy density is given by the sum of the

squares of the above derivatives
=k [(a x)* + L sin? x] (3.25)
21 r2 ’ '
and the total energy per unit length is calculated from the integral
¢ R 2
e _ / Erdrdé = kn / r(0rx)? + —2%| dr. (3.26)
dl () 0 T

Minimizing E by varying x gives the equation of motion:

sinycosyx _

0: [r0:x] — p

0. (3.27)

which, with the boundary conditions that x(r = 0) = 0 and x(r — o0} = 7/2, gives us the first
order differential equation
(r8,x)* = A? — cos? x, (3.28)

and A = £1. Integrating this equation gives us our final expression for x, the function parameterizing
the string escape:
r

x = 2tan™! (E) . (3.29)

This expression can be substituted into Eq. (3.26) to give the finai total energy per unit length for an

escaped X1 string:

i@ﬂ%dm = 2rk. (3.30)

The total field energy of an escaped 1 string in a volume of scale £3 is thus:

Eeacaped string = 2TkE . (3.31)

The surface term contribution is straightforward to calculate. Eq. (3.24) is rewritten in cylindrical
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[ Defect Field energy | Surface energy | Total energy
Monopole 4nk€ 4mké 8mke

Localized +} string | Zk¢1n (£) 0 Zkgln (£)
Escaped 1 string | 27k§ wk§ SrkE

Table 3.2: Comparison of defect ene-gies. The field and surface energies of a moncpole, a singular
string defect, and a nonsingular string defect in a volume of characteristic length scale £3 are tabulated.

coordinates as:

fl = fsiny + Zcos x, (3.32)

and the radial component of @ is found to be:
Gy = np(V - &) = (7-V)n, = ésinz X (3.33)

G, is zero, so there is no contribution from the top and bottom surfaces of the integration cylinder.
The surface integral makes use of Eq. (3.29), and the radius is evaluated at 7 = £ to arrive at the

final expression for the surface energy contribution:
k¢
Buuctsce = - }( G,rdé = Tkt . (3.34)

I note that our resulis are in agreement with those found in the literatue[CK72, WCK73] byt the

derivation I have presented is simpler.

3.5.5 Comparison of Defect Voiumetric Energies

The various defect energetics are summarized in Table 3.2. Knowing that £ o t1/2 (a scaling
relationship which will be discussed in section 5.2.3) the 1, and +1 string and monopole energies
can be rewritten as functions of time, thus giving some very general criteria for judging when one
defect population should be larger than another. A qualitative plot of the three energies Figure 3-4,
shows the existence of three “epochs,” the first of which could be dominated by + £ strings, followed
by £1 strings and monopoles. Though such a comparison is crude at best, at least it does provide a
prediction for the evoluticnary growth of the three defect populations.
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Energy

in(2)

Figure 3-4: Qualitative plot showing the scaling of defect energies in a volume £2, where £ is the
characteristic length scale. Field energies of monopoles, i% stsings, and escaped +1 strings are
plotted (see Table 3.2 for surface term contributions). Until £ = r.e8, :I:-;- strings are energetically
favored to dominate the system. In the next “epoch,” from £ = r.e® to r.e6, 1 stiings become
dominant. In the final stage, monopoles become favored over +3 strings.



3.6 The Non-equal Constant Case

The equations of motion derived from the equal-constant approximation to the energy density Eq. (2.6)
posses full intemnal and spatial rotational symmetries. In this medel, we expect that all defects related
by intemal rotations would occur with equal abundances in the bulk. However, these symmetries
are broken in the real system, in which the k; are unequal. I briefly note here the differences which
appear, and how they can be quantified.

The siructure of the minimal energy monopole in the unequal k; case can be calculated by
minimizing §£/60, where O is the global rotation matrix as discussed previously, and the cnergy
density £ is taken as a functional of k;. Turok has sh:own that when §k; = 6ky > 0, 6k = 0,
the minimal energy monopcele for free boundary conditions is given (up to rigid rotations) by # =
& sin @ cos(¢ — 27/3) + §sin @sin(¢p — 27/3) + Zccs 6. As long as thie §k; are different, the minimal
energy solution is cylindrically, rather than spherically symmetric.

Goldhaber has shown that monopoles in the one-constant approximation have an additional de-
generacy in energy, given by a class of deformations which, at no cost in energy, concentrate all
the flux-lines frore a monopole into a single arbitrarily thin tube[Gel89], However, the unequal £;
monopole solution given above can be shown to be stable under Goldhaber’s deformation. Thus,
monopoles survive in cylindrically symmetric, stable configurations. '

The family of :h% string solutions which are degenerate under 6k: = 0 can be envisioned as strings
which are high in twist, bend, or splay energy, or combinations of two of the three. For 6k, = 6k > 0,
and 6k3 = 0, the minimal energy solutions are given by rigid rotations of & = Z cos(¢/2)+ 2 sin(¢/2),
a solution in which the director twists out of the plane perpendicular to the string as it is encircled

in space.

3.7 Suminary

The defects in two and three dimensional systems are summarized in Table 3.3, and pictures of the

director field of R? defects are shown in Table 3.7. By studying the ¢ -aling behavior of the cnergy

densities of monopoles, escaped +1 strings, and :I:-;- strings in the R3 NLC, we have found that

there are distinct “epochs” in which one of the three defects has a distinctly lower volumetric encrgy

density, suggesting that the defect population of an evolving system which has reached a scaling state
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i System Mo | Homotopy Defect Director

2DSLC & 71(Mo) +1 monopoles i =Zcos¢ I §sin¢
2DNLC &i/2; | mi(Mo) +1 monopoles i = Zcos¢ & gsing
m1(Mo) +1 monopoles il = Zcos /2 + §sin /2

3IDNLC S/2; | m(Mpg) | 1 strings (nonsingular) | # = £sin xcos@ * Jsinp+ Zcos x

m1(Mo) +% strings (singular) i = Zcos@/2* {sin ¢/2
mo(Mo) monopoles =3+ Lj4 22
wa(Mo) texture Eq. (3.6)

Table 3.3: Summary of defect structures.

will be dominated by d:% strings at first, followed by escaped £1 strings, then by moncpoles.
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Description

+1, -1 moncpoies
+3, —1 monopoles
~2 moncpole

Defect Structure
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Table 3.4: Structures of topological defects in the 2D NLC.







Chapter 4

Numerical Simulations

Numerical integration of the SLC and NLC equations of motion for a system composed of a lattice of
vector and tensor spins provides a valuable tool for investigating the dynamical behavior of the defects
discussed in the last chapter. Observables which can be measured include the structure function and
the monopolc density. Also, the evolution of a system can be monitored through generation of crossed
polarizer, energy density, and director field pictures. I will discuss my simulation results in order of

increasing complexity, beginning with the 2D SLC, then the ZD NLC, and finally the 3D NLC.

4.1 The 2D Smectic

The 2D SLC is the simplest system to study numerically. As discussed in Chapter 3, the 2D SLC
is populated by only =1 monopoles. These monopoles are formed with linear combinations of k
and k3 cnergy; I shall denote purely k; and purely k3 energy menopoles as “splay” and “bend”
singularities in this discussion. Numerical simulation is accomplished by straightforward iniegration
of the equations of mction given in Section 2.1.4, and periodic calculation of observables useful in
describing the behavior of the system.
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4.1.1 The Equaticns of Moticn

Eq. (2.11) is the basis for my nuraerical simulation of the 2D SLC. The summations can be expanded

to give the following two coupled differential equations for n. and n,:

2 2
y2e o g T k;" 2 4 (ks — ks) 5L - X(a 4}~ D, @
15 ‘ks%;" +1e,‘9 o + (k1 - ka)a 2=~ A(nZ +nZ — L)ny, “.2)

which are discretized in the usual way, by replacing n. and n, with discrete values z; ; and ¥i,; on

a 2D grid, gridspacing a, and by approximating the derivatives by finite differences:

, At

zij = Tij+ g [k (Zin1 — 2205 + 2ic1,5) + ks (Zigea — 276 + Tijo1) 4.3)

4va
+(k1 = k3) (Yi1,541 = Yi41,5-1 — Vicrjr + Yie1,j-1) — 4) (z?,,- +yi - 1) z‘.',,']

At
Yij = Vit Tt (k1 (Ziv1,j = 205 + Yi-15) + k3 (Vij41 — 2905 + ¥ij—1) 4.4)

(k1 = k3) (Zit1,j41 = Tit1,j-1 ~ Tim1j41 + Tic1,4-1) — 4A (:r?,,- + 9% - 1) yi.j] .

The terras on the Lh.s. are used to fill a new lattice, which replaces the old one after the entire
set of new z;; and y;; are calculated. The diffusion constant v, timestep At, laitice constant a,
elasticity constants k1, k3, and A are the free parameters at this stage. Following a single evolutionary
step, Langevin noise is applied to the spins in the lattice, by calculating the angle of each spin
8 = tan~1(n,/n;) and adding to it a random value 68 = 2xT'La7. 7 is a gaussian random number,
with (n) = 0 and (1?) = 1.0. The combinaticn of a single evolutionary step and a Langevin step is

known as an iteration. After n;. iterations, measurements are made on the system and recorded.

4.1.2 Operational Parameters

I typically operated the simulation with y = 1, ky = k3 = 0.1, a timestep of At = 0.005, a Langevin
noise amplitude of I',o = 0.01, a gridspacing a = 0.1, and a potential depth of A = 4. Naturally,
only the ratio At/ya? is relevant, but I hold to the nomenclature for sentimental reasons. By varving
At over a wide range, with the lattice grid size a and the diffusion constant v set to unity, I found
that the 2D SLC evolution algorithm presented in Egs. 4.3-4.4 was stable over the range At < 0.25 (I
recognized instability as a condition where the system did not equilibrate after protracted evolution).
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I also studied the behavior of the simulation for larger I'o; with I'La > 0.5 or so, the system became
100 noisy to observe any coarsening dynamics.

For the evolution, I selected periodic boundary conditions. Periodic boundary conditions (PBC’s)
effectively create an infinite system, in which the single system under study is replicated and repeated
on all sides, forming a large mosaic-like tile. In other words, the left side of the system is equivalent
to the right, and the top to the bottom. Such a wazped system can also be envisioned as being the
surface of a doughnut shaped torus. FBC's are popular because they allow finite size effects to be
minimized, but they create problems related to unanticipated interactions with the infinite images

extending on all sides.

4.1.3 Initial Conditions

My initial condition configurations include totally random spins, random with various amounts of
averaging, and splay, bend, and dipole singularity configurations.

The random configurations are generated as follows: the totally random (TR) configuration gener-
ates spins with a uniform probability distribution pg(8) = 1/2x for 8 € [0,2x]. The singly averaged
random configuration (AR) is generated by convolving the n and n, components of a TR configu-

ration with the averaging matrix:

1 21
1
'M“"Ts' 2 4 2. (4.5)
1 21

Note that convolving § with M sr will not work, because such an averaging destroys the uniform

distribution in 8§ € [0, 2x]. I have alsc used three other averaging matrices,

(131

M = 52|38 3 @.6)
131
(104 1]

Mas = 35| 4 12 4 @7
141



1 5 1
i
MARIS = —15 20 5 ’ (4-8)
1 6§ 1

which generate configurations I will denote as AR1, AR2, and AR3, respeciively. Averaging is done
to produce a more realistic physical system, for which the director field is usually a locally smooth
function. My experience has shown that using the TR configuration may lead to a spurious start-up
transient in some observables, which may hide important features of the dynamics under study.

The splay singularity is that of a +1 monopole (Table 3.1), for which 8 = x + tan~1(y/z). The
bend singularity is that of a +1 monopole whose rods are arranged along concentric circles, for which
# = 3r/2 + tan—}(y/z). The dipole singularity is that of a pair of oppositely charged monopoles
separated by distance d, for which 6; ; = tan=![y/(z + d)] — tan=![y/(z — d)]. Note that the core
structure is ignored in all of these configurations.

4.1.4 Observations

The primary tool used to observe the 2D SLC as it evolves is the generation of “Schlieren” images,
pictures of what the system would look like between crossed polarizers. Schlieren images may be
generated by producing a grey-scale image with the intensity at a point in the system fixed to be
I = 5in?(26), where @ is defined to be the local angle of the molecule 0 = tan—!(n,/n;). As
discussed in Section 3.1, such images produce high contrast, four pronged “Maltise” crosses centered
at the locztion of the 1 menopoles in the system.

Arncther useful tool for visualization is a simple direc: plot of the field, using an assembly of rods
whose lengths and orientations are given by n; and n,. Other observables which can be calculated
include the monopole density, and the two-point correlation function. Data from these calculations

will be discussed later in this chapter, in Section 4.4.

Eigenstates

Bend and splay singularities (+1 monopoles) are solutions to the equations of motion of the 2D
SLC. Thus, in my simulation, with periodic boundary conditions, it should be possible to reach a
steady-state solution in which oppositely charged bend or splay singularities form a lattice to balance
against each other. For example, if a +1 monopole is placed in the middle of the system, another
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+1 monopole should form in the four comers (one quarter of a monopole in each comer, from the
perspective shown), and two —1 monopoles formed between the left and right sides, and the top
and bottom. Eventually the system should equilibrate to a state with tctal monopole charge of zero.

These states are pictured in Figures 4-2 and 4-1.
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Figure 4-1: Lattice of “bend” singularities generated by evolving a single bend energy monopole in
a system with periodic boundary conditicns.
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Figure 4-2: Lattice of “splay” singularities.
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Monopole coalescence

Two monopoles of opposite charge attracting each other are expected to approach at a rate given by
T } Figure A-1 shows a typical crossed-polarizer image of a monopole pair. I have measured the
distance r between two monopoles as a function of time (in units of number of evolution steps), in
128x 128 and 256256 sized systems. The data from my 256x256 simulations, shown in Figure 4-3,
agree well with the expected results. The simulation was run on a Cray X-MP for 24 hours, with the
operating parameters as given in Table 4.1. The monopole sepzration was obtained by measuring the
separation of the cores on a large printed Schlieren image. Figure 44 shows the same data plotted

differently, with 72 vs. time.

2D SLC Monopole Coalescence
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Figure 4-3: Data from a 256x256 sized niumerical simulation showing the rate of monopole coa-
lescence in the 2D SLC. Monopole separation is measured in units of lattice spacings, and time is
measured in thousands of evolutionary steps. The results are in agreement with theoretical expecta-
tions predicting that # = 1/r. tg is the time at which the two monopoles have annihilated with each
other.
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o, 2D SLC Monopole Coalescence
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Figure 44: Same data as in Figure 4-3 plotted differently, with 72 vs to — ¢. This plot shows that
the expected r? o (2o — t) behavior is seen even for small ¢y — 2.
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Thermal quench

Evolution from an iniiial configuration of randomly oriented spins can be considered to be equivalent
to the evolution of a system immediately after it has undergone a transition from a state of lower to
higher symmetry. It is in fact, the evolution of the 2D SLC as it undergoes a symmetry breaking phase
transitica from O(2) to 2;. Initially, the system reacts sirongly to the disorder in the rod orientations,
and spontaneously forms a plethora of monopoles. During the next stage, the monopoles coalesce,
reducing the density of defects in the system. The final state leaves the director field uniformly

oriented in one random direction. Such a sequence of events is shown in Figure A-2.

4.2 The 2D Nematic

Analysis of the 2D NLC is the next natural step towards the ultimate goal of simulating the behavior
of the 3D NLC. The 2D NLC differs from the 2D SLC only in the addition of a rod inversion
symmetry: —# + 7. Unfortunately, however, such an identification is difficult to implement in a
straightforward fashion when a vector field is used as the director field. Possible approaches include
(1) exploiting the computer’s ability to mechanically calculaie all pessible +1i combinations, and (2)
the use of an analytic solution, in which # is replaced with SO(3) tensors N, which contain the

desired inversion degeneracy. I discuss these two approaches and my results below.

4.2.1 The Vector Model 2D NLC Equations of Moticn

The identification between @@ and —# which gives the added symmetry distinguishing the 2D NLC
from the 2D SLC can be implemented by evolving a system whose field components are n, and
ny, as in the 2D SLC case, but additionally inserting a procedure in the evolution step by which all
possible combinations of the local z;4n,,j4n; and Yitn,,j+n; are enumerated and the least energy set
are chosen to calculate the new z;; and y; ;. The two possible orientations of a certain spin at 7, j
are given by (z j,¥i,;) and (—z; j, —¥i ;). Unfortunately however, the energy density £2p, Eq. (2.8),
contains only first derivatives of n, and n,, and thus cannot be discretized symmetrically.

My goal in this procedure would be to calculate the optimal sign for n; and n, at the five sites,
i+1,j7,¢j%1, and 4, j used in integrating Egs. 4.3 and 4.4. I do this by calculating the local cnergy
density centered at each of the sites, in such a way that the total energy density £ = £; + &; is
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minimal, where £; = (8112 + 82n2)? and £; = 3"(81nz — &2m,)? are the splay and bend energies,
respectively. With reference to the cell locations defined in Figure 4-5, £y, and &3 are calculated as

follows:
&
fll = (28— z6 +yu — 43)° + (27 — 25 + 10 — 2’ (“4.9)
+(za— 22+ 3 — 1) + (29 — 274 112 — ¥4)® + (212 — Z10 + 113 — ¥7)°
&
_k? = (23— zu+ys—¥%)° + (22— z10+ yr — 35)° (4.10)

+(z1— 27+ v — y2)2 +(z4— 212+ 10 - 317)2 + (27— 213+ Y12 - .%Im)2 .

10 11 12

13

Figure 4-5: Sites used in energy density calculation.

Though cnly the five sites shown in Figure 4-6 are needed, the eight sunounding sites are also
required to determine what the minimal energy signs are. The total of 213 possible combinations
are prohibitive, if I presume to calculate £ for all of possibilities. A possible simplification of this
scheme is to select NV of the possibilities, and to choose the minimal energy configuration from that
set. Mechanically, that is done by rolling a log, N sided dice, and using the individual bits of the
random number to determine which subset of the 13 cells gets their signs flipped. However, I found
that even with a large N, this method was sub-optimal. At worst, one evolution step would take N
times longer than a 2D SLC evolution step, and N needed to be on the order of 103 or 10 before the
procedure started being effective in imposing the desired inversion symmetry. This was discouraging.
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i-1,j 1 1) i+1,j

Figure 4-6: Sites used in integrating equations of motion.
4.2.2 The Tensor Model 2D NLC Equations of Moticn

Because of the number problems I encountered implementing vector field equations of motion for the
2D NLC, I tumed instead to applying the SO(2) tensor model for the director field evolution which
was introduced in Section 2.1.5. Though this method increased the number of field components from
two to three, and introduced a degeneracy in the mapping into physical space, all of the troubles
described in the previous subsection were avoided.

The equations of motion (allowing for unequal &;) goveming the evolution of the Ng(¢,7) at
the sites i,j are given in Figure 2-3. I mechenically enumeraied all the summation indices and
discretized the derivatives as before, then ran the resulting mess through Macsyma! to reach a final
set of simplified explicit equations of motion for each of the N,. This procedure worked, but
cvolution was disappointingly slow, psimarily because of the sheer complexity of the equations.

My next try was to simplify the equations of motion to the equal corstant case, Eq. (2.25). At
last, the simulation worked reasonably rapidly (at about one-quarter the speed of the 2D SLC), and

allowed me to successfully produce Schlieren images showing chains of :I:% monopoles.

4.2.3 Observations

The set of initial configurations I used were the same as for the 2D SLC. Shown in Figure 4-7 is
the director ficld of a single +§- monopole sitting in the center of the system. PBC’s have forced
the system to create a —% monopole sitting at the middlz of the right hand side wall. Figure A-3

1A symbolic math package originally developed at MIT through Project MAC at the Laboratory for Computer Science.
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shows three pairs of :I:% monopoles coalescing in the late stages of evolution of a 2D NLC, and
Figures A-4 and A-5 show the director field configuration and corresponding Schlieren image of a

system evolved from an initial random corfiguration.
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Figure 4-7: Director field of a +% monopole in the 2D NLC.

The first, and most striking observation was that £1 monopoles, though they could be creatcd
in the system, slowly decomposed into pairs of :t% monopoles which wouid annihilaie with their
counterparts separating from the image +1 monopole formed by the periodic boundary conditions. 1
interpret this observation as an indication that the energy of a -1 monopole is greater than that of

two :t% monopoles in the 2D NLC, at least in the equal constant approximation.

4.3 The 3D Nematic

The 3D NLC is the most complicated of all the numerical simulations I devised. Not only is the
evolution of the system more difficult and time-consuming to calculate, but also, defects in the sysiem
arc much harder to visualize. I studied x X y X z systems, with x, y, z = 8, 16, 32 and 64. | also
used a variety of initial conditions which allowed a rich set of interaction possibilities io be explored,
including string and loop formation, texture collapse, and +1 string escape.
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4.3.1 The 3D NLC Equations of Motion

Foliowing my experience with the 2D NLC, I first tried integration of the full equations of motion for
the 3D NLC, but then gave that up in favor of using the equal-constant approximation, Eq. (2.28). I
mechanically enforced the symmetry of the 3x3 N;; matrices (my representation of SO(3) tensors),
and as before, enumerated the summation indices and simplified the expressions using Macsyma.
Furthermore. I implemented fixed boundary conditions, as well as periodic boundary conditions
(PBC’s). In my fixed boundary conditions, the director on the boundary can be fixed to be parallel
or perpendicular to the boundary. ,

Note that in contrast to the 2D SLC calculation, but similar to the 2D NLC, no Langevin noise

was applied.

4.3.2 Initial Conditions

I observed the evolution of eight different initial configurations. These are listed below:
Fa

¢ Random - Unit Iength spins which are distributed evenly in orientation space (over 47 stera-
dians).

» Texture — m3(Mp) defect, with the director field as given in Eq. (3.6), and x = 2rr/s, with
s being the scale, or the size, of the texture.

e Deformed texture — m3(M,) defect, with x = x(1 + tanh( f—‘—‘('—‘*%'-‘ﬂ)lz)), where ¢ is the
normmal azimuthal angle, s is the scale, d is the deformation parameter, and w is the width of
the texture.

e +1 string — An escaped +1 string, axis along the Z axis, with the director field given by
i = Zcos¢ + gsin¢g + 10(tanh(-r/3) + 1)z, r = /22 + y2.

) +% splay string loop — Infinite +% string used as a cross section of revolution to produce a
loop (with a monopole in the middle). 7@ = £ cos(¢/2) — § sin dsin(P/2) + 2 cos ¢sin($H/2).

e Pair of +1 splay strings — Two infinite (by PBC’s) splay energy strings, axes in 2 direction,
parallel to each other, separated by distance 2d. i = £ cos(¢1 —p2+7/2)+7 sin(Ppl —¢2+7/2),
$1 = tan~1(y/(z - d)), $2 +> tan=}(y/(z + d)).

o Pair of d:% twist strings ~ Two infinite (by PBC’s) twist energy strings, axes in Z dircction,
parallel to each other, scparated by distance 2d. @ = £ cos(¢1—@2+7/2)+ 2 sin($l —p2+7/2),
¢1 = tan~'(y/(z - d)), ¢2 = tan~'(y/(z + 2)).

o Converging :I:% string pair — Two infinite (by PBC’s) twist energy strings, axes in § direction,
gradually coming together at a point. @ = Zcos(¢; — ¢2 + 7/2) + Zsin(Pl — ¢2 4 7/2),
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¢1 = tan~!(y/(z - d)), ¢2 = tan~Y(y/(= + d(r))), d(r) = \/d§ — y? (for y > do, @ = 3),
where dp is half the maximum string-string separation.

4.3.3 Observations

I observed many interesting defects in formation, and several decay processes. My three main tools
were direct observation of cartesian planes of the director field (rod pictures), cartesian planes of
the energy density, and volumetric surfaces of constant energy. The general procedure was to write
the initialization code, and sct up the program te run for several hours (or days, in several cases),
periodically storing the entire configuration state on disk for later analysis and to allow restart in case
of premature termination (like the cray system manager killing my 5 Megaword process. . .).
Separate analysis programs were written to allow interactive visualization of the rod orientations,
and rendering of the energy density into shaded volumetric surfaces. I used NCSA XDataSlice and
XImage extensively. My discussion below begins with a survey of defects produced from a random
initial configuration, and continues on to observations of +1 and :l:%- strings. Finally, I describe the

behavior of balanced and deformed texture in this simulation.

Defects from a random initialization

I ren several long simulations beginning with an initial configuration of random spins, generated
as described in the previous subsection. The two largest runs of size 64x64x32 with PBC’s were
performed, one on a Cray X-MP for three days, and another on & Sun Sparcstation 1 for two weeks.
Analysis of the data was accomplished by processing the saved configurations with a program which
calculated the local energy density £ at each lattice site, normalized the values, and generated a
3D-SDS (Scientific Data Set) input file for use in NCSA XDataSlice.

Figure A-7 shows a picture of the final result of the cray simulation. Plotted are constant-energy
surfaces, viewed from different angles. Note the existence of several closed loops. I believe that all
of these defects are :k-;- strings, because of the ability of 1 strings to cscape — to become very diffuse
in energy. I expect 1 strings to be very difficult to see using my rendering technique, because the
constant-energy surfaces would be very large. The :i:-'z- strings, on the other hand, are easily located
by their sharp singularities in energy density. Furthermore, the size of simulated system may be too
small to favor creation of £1 strings, as discussed in Section 3.5.
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The final state of the evolution of a smaller, 32x32x 16 system, is shown in Figure A-8. Here,
two :i:% loops remain, one which has already collapsed to the point that it looks like 2 blob on this
visualization scale. Ido not believe it to be a menopole. In fact, I have not seen any monopoles created
from my random start simulations. Monopoles should appear as very, very obvious, concentrated
point-singularities in the energy field, and would be attached to two =1 strings. I have also checked
(in vain) for the existence of monopoles by studying the rod pictures directly, in search of a hedgehog
like configuration. Creation of monopoles may be inhibited by the same mechanism which suppresses

creation of +1 strings in my relatively small systems.

+1 strings

I attempted to create an infinite +1 splay energy string in two ways. First, I tried a director field with
no z component, just layers of 2D splay singularities: @ = £ cos ¢ -+ §sin ¢, for an azimuthal angle
#, and with the same # for all z. The evolution parameters were At = 0.1, Apa=Ag=v=a=1,
and k = 0.1, and the system was 32x32x16 in size. I hoped that the periodic boundary conditions
in 2 would create an essentially infinite length string, and that the PBC’s in £ and § would arrange to
create an oppositely charged string, to leave a system with a total monopole charge of zero. However,
this configuration quickly decayed into two :t% string loops, as shown in Figure A-9. Study of the
rod pictures of these loops, Figure A-10, revealed that the two opposite segments of the rectangular
loop were of opposite charge, and adjoining segments were of differing energy type (splay-bend or
twist).

My second attempt to create a stable infinite +1 string succeeded, but with an unpredicted side
effect. T used the escaped +1 string initial state configuration described in Section 4.3.2, and evolved
the system for 24,000 steps, at which point it had equilibrated into a state with a stable infinite +1
string, with a companion compound —1 object formed of two infinite —% strings. A rod-picture of

this configuration is shown in Figure 4-8.

+1 strings

I also experimented with creating i:% strings, as pairs of infinite strings, and as loops. The +% splay
string loop I created (see section 4.3.2) collapsed immediately. I did not think of a way to create a
stable loop in a system with PBC’s. However, the :l:% splay string pair configuration did stabilize,
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Figure 4-8: z — y cross section of a 52x32x 16 system with a stable, escaped +1 string (upper right
comer) and a bound state of two —% strings (lower left comer).

as expected. A rod picture of the cross section ic shown in Figure 4-9.

Texture

I performed several simulations to observe the decay of texture in my 3D NLC system, but did not
study it systematically enough to draw any conclusions. Figure A-11 shows the cross section of an
undeformed texture as it collapses. I also studied the decay behavior of a deformed texture, in a
64 x64x64 sized system, with scale s = 32, deformation d = 0.5, width w = 5, and fixed, parallel
BC'’s on all sides. However, I placed the texture too far to one side of the box; as a result, the outer
+1 string developed two “holes™ where the rods glued themselves to the walls, and the entire defect
rapidly decaycd through interactions with the boundary.

Turok has developed a different numerical simulation pregram in which he treats the equations of
motion as a diffusion cquation, and calculates the new spin from an average of the old, neighboring
spins. He has extenced his simulation to allow for the inversion symmetry of the nematic, by
calculating all the possible rod configurations and choosing the minimal energy set, similar to what
was attempted in this work; however, his algorithm succeeded, because he had fewer degrees of
frcedom to deal with. Turok has simulated the behavior of texture in the 3D NLC extensively,
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Figure 4-9: Cross section of stable configuration of two infinite d:% strings.

though mostly in the approximation in which the NLC's rod inversion symmetry is neglected *. His
resulis indicate that though the undeformed texture collapses as might be expected, deformed textures
decay prematurely, through a dynamical instability in which the two X1 strings pinch off and form two
monopoles. These predictions are in good qualitative agreement with our experimental observations
(in an actual thin film of NLC), as will be discussed in Section 5.4.

4.4 2D SLC Evolution Dynamics

Scaling exponents are important in characterizing the dynamics of topological defects in liquid crystals
as they interact after being creaied in an symmetry breaking phase transition. Exponents for various
processes may be caiculated by measuring the rate of change of their observables in a simulation,
beginning from a random initial configuration. I have measured two observablcs in the 2D SLC

system: the structure function, and the monopole density.

2For texture simulations, inclusion of the rod inversion symmetry should not be necessary, because the only singularitics
in the system are +1 strings.
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4.4.1 Scaling of the Structure Function
Theory

The two-point correlation function of the director field is given by:

C() = 575 5 nalFna(F~ 7). (4.11)
2

where n, are the components of the director field for the 2D SLC. Typically, because cnly the scaling

of C with respect to the distance r = |7} is interesting, an integration over 6 is done:

C(r) = j[ r dIC(7). (4.12)

In theories dealing with spinodal decomposition, the position of the first minima in C(r) indicates
the characteristic length scale of the domain walis[GMS83], However, in the 2D SLC, whether there
should be a distinct peak or not is unclear; instead, I would expect the correlation function to begin
at 0.5 near r = 0, and decrease monotonically to some floor level.

The structure function C(k) is defined as the Fourier transform of C(r). Quantities which are

often used to characterize the structure function are the i*® moments &;, defined as:

ki = Ml (4.13)

Tk C(k)
Analogous moments r; for C(r) may also be calculated. In the 2D SLC, it may be expecied that ry
should reflect the characteristic length scale, so that in the scaling regime, r1(a-1(1)), where a,1(t)

is the scaling function, should be a constant of time. The scaling ansatz for r; is
an(t) x 1, (4.14)

using the notation common in the literature.

Another measure which is frequently used to calculate scaling exponents for scaling laws is k,,
which is the location of the first maxima of C(k). In the case where C(k) (or C(r)) doesn’t have
a peak, the points r;, for which C(ry,) = [; is a constant of time could be watched instead. If the
general shape of C(r) doesn’t change significantly with time, this measure should be valid (no proof
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given), and scale as
a;(t) o t*. (4.15)

Note that ¢ will not necessarily be equal to a’.

Figurc 4-10: Plot of two-point correlation function vs. radius and time.

Experiment

The correlation function of Eq. (4.11) is most easily calculated using three 2D Fourier transforms:

() = F-1 ([f(nz(r*))l’ + [f(nu(r“))l’) , (4.16)

where F is the Fourier transform operator
- 1 —ikr
i) = Flo(r) = 5= [ ar)e®7ar, (4.17)

and F~1 is the inverse Fourier transform cperator, defined as usual. Both operations are implemented
using the Danielson-Lanczos FFT algorithm[PFTV86], The integration over 8 is done by simply binning
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points into groups with integer radii r;, 0 < r; < rmax and averaging:

C(r) = 1\.} é\: C(7), (4.18)
r []=ri

where N, is the number of sites in the lattice at position |7] = r;. The eror in C(r;) are calculated
by finding the standard deviation in the distribution of the C(F) which are summed:

1= " 1=

2
UC(Ti)=\| - 3 CxR) - (TV-‘- ) cm) : (4.19)

C(7;), and the errors o¢(r;) are calculated and recorded during the evoluticn of a system, at expo-

nentially increasing time intervals.

Data from file: ../data/spcorr/spc33p.xdr

. ;i;-,
R

In(RI(i])

In(time)

Figure 4-11: Plot of Inr;; vs In ¢.

The data is analyzed by first studying a contour plot of In C(r,Int). If the scaling ansatz of
Eq. (4.15) holds, then there should be lines of constant slope in the contour plot. The analysis is
further refined by using the three points (C(rx), &), % € [1, 3], in the neighborhood of C(r;;) = [; to
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interpolate, using a parabola, a set of r;; for various levels /;. Errors are propagated by numerically
determining dry,/dC(r¢) and propagating oc(rx). Subsequently, Inry, vs. Int is examined to
determine the range of ¢ where it is linear, and then best-fit to determine the slope a;;. Finally, a is
dctermined by averaging over {;, for a set of a;; which have been calculated from an averaged set of
C(r;). Similarly, a’ is found by calculating r; using Eq. (4.13) for C(r;), and fitting Inr; to In¢ in

the scaling regime.

Data from file: ../_da_ta/_sgcqrr/_sppS}p.xdr
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Figurc 4-12: Plot of first and second moments of the two-point correlation function (see text for an
explanation of the labels).

Data

Figure 4-10 shows a plot of —In C(r,t) vs. Int and radius r, for dataset spc56p, which is the
statistical average of six datasets taken on a 1282 lattice, beginning with a AR initial configuration.
r is cut off at r = 30 in the plot, although it continues out to » = 91, because there are no interesting
features in the extended range. No peaks or troughs are evident in the correlation funciion. I found
that using progressively less averaging resulted in smaller values of In C at early times. With ro
averaging, the curve increased sharply at early times, before leveling off around Int = 3; the AR1
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and AR2 configurations resulted in longer straight-line behavior in the data. A contour plot of the
In C(r,t) surface shows sets of nearly parallel lines emanating from time ¢ = 0, which are straight
at first, but begin curving over around t = 400. These features are clearly indicated in Figure 4-11,
which is a plot of In ry; vsIn ¢, for {; = exp{—1 + 0.2¢) (the numbers on the lines give ). Evidenly,
the scaling regime occurs approximately between In¢ = 2 and In¢ = 5.5, if the relationship in
Eq. (4.15) is to be believed. Best fits to this data give a’ = 0.342 £+ 0.002. The scaling behavior
of this data is most clearly shown by actually applying the scaling relationship of Eq. (4.15) to time
slices from 3 < Int < 6 (the most likely selection for a “scaling regime™); the results, shown in

Figure 4-13, clearly support my results for a’.

Exponent 0.0 , Exponent -0.25

0.10 0.10f

C(r)
C(r)

0.01

0.01

0 10 20 30 40
Radius r Rediusr

Exponent 0.33 Exponent -0.50

0.10} 0.10

C(r)
C(r)

0.01E, 0.01¢,

Figure 4-13: Four picures showing the application of different exponents in renormalizing numerical
mcasurements of the scaling function for a 2D SLC system. An exponent of a’ = 0.33 appears to be
correct for the 3 < Int < 6 data plotted.

Unfortunately, however, the data on ry, the first moment of C(r), are not so good. The three
lines in figure 4-12 correspond to 0 — In \/r2 — (r1)?, 1 = Inr;, and 2 — In r,. They are plotted
vs. Int. If Int > 3 is taken to be the linear region for r; and ro, then the exponents are about 0.13
and 0.17, respectively. Not only is the scaling regime apparently different from that found for the 7y,
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data, but also, the exponents differ. Data gathered from 2562 sized systems are almost identical to
these 1282 data.
Cilearly, more work remains to be done to resolve these problems, and to come to a better

theoretical understanding of the scaling relationships.

4.4.2 Scaling of the 2D SLC Monopole Density
Theory

Mean field studies of the coalescence of pointlike topoiogical defects in the time-dependent Ginzburg-
Landau model indicate that the density of monopoles p in a two-dimensional system should decrease
with time as p o« t=2/(+1) where 8 is the exponent indicating the separation dependence of the
force between defects(Tey90. Ost81] For the 2D NLC, 8 = 1. A simpler dimensional argument with
the same result goes as follows: the energy in a volume containing two monopoles is £ o In(r) (see
the discussion on defect energetics, Section 3.5). Thus, the rate of coalescence of a monopole pair
can be calculated as:
dr i} 1

Straightforward integration of this equation relates the separation with the time:
T X +lg—1. (4.21)

If the distance r is taken to be the characteristic length scale £, and if it is assumed that one monopole

exists per area £2, and then an immediate relationship can be written down between p and t:

1 -
p=€—2~t1. (4.22)

Experiment

The central problem in the numerical experiment is the deterrination of the number of monopoles
in a given system. This can be done by looking for points in the lattice at which the lambda encrgy
is above some value F)., grouping together points which are within some distance r;, of each
other, then counting the final number of groups found. Such a procedure is certainly feasible; shown
in Figure A-6 is a grey scale intensity image of E) in which monopole cores are clearly visible.
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However, this algorithm is susceptible to undercounting when the p is large, because it is hard to
distinguish two monopoles which are close together. Furnthermore, because the algorithm also relies
on selecting group members by thresholding, p is indcterminate until the system equilibrates to the
point where distinct monopoles have formed.

Otherwise, the procedure is straightforward. A initial system with averaged randosn spin ori-
entations is allowed to evolve until (dp/dt) is small. During the evolution, p(t) is measured ai
exponentially increasing time intervals. The data is analyzed by plotting p(¢) vs. ¢ on a log-log scale

to determine the scaling exponent.

2D SLC: Monopole Density vs. Time
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Figure 4-14: Log-log plot of three sets of data showing the scaling behavior of the monopole density
in the 2D SLC simulation. Data from the 64 x64 sized systems are plotted as diamonds, 128x 128 as
triangles, and 256256 as boxes. The straight line through the data has slope —0.75, and the dashed
linc has slope —1. The expected slope, from a mean field calculation, is —1.

Data

Figurc 4-14 shows a plot of the monopole density p vs. time. The data indicate that the best
exponent is closer to 0.75 than to one. Specifically, the best-fit exponents for the 64x64, 128128,
and 256x256 sized system runs are 0.72, 0.78, and 0.74, respectively. The operational parameters
are given in Table 4.1. Although my results disagree from the naive expectations, and from those
of mean field calculations, the scaling exponent of 0.75 does agree with the “early-time” results of
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Parameter Value

Gridsize a 0.1
potential depth A 6
timestep size At 0.005

diffusion constant 1

Langevin noise amplitude I'4 | 0.01

Elasticity constants ky = k3 =& | 0.1

Table 4.1: 2D SLC operating parameters for the four 64x64, 128x 128, and 256256 sized system
simulations used in gathering monopole density and monopole pair coalescence data.

(MG90] (they aiso found that r ~ ¢=%75), and the results of [NN89] (they studied the dynamics
of line defects in a 3D system, and found that the length of defect line decreases with time as
I(t) =~ ¢~0-754£0.05)  Unfortunately, because of time constraints, I have not had the opporturiity to

analyze my results further.

4.5 Summary

The numerical simulations of the 2D SLC, 2D NLC, and 3D NLC discussed in this chapter provide a
bountiful testing ground for examining simple thecries of defect dynamics, and defect structure. The
simplicity of the 2D SLC simulation also lends itself towards calculation of observables to measure
possible scaling behavior of the system. Unfortunately, interpretation of the data is unclear, in part
because of the lack of computational power to analyze the behavior of larger systems, and in part
because of the lack of time to pin down all the loose ends, such as finite size effects and freczing
problems.

Nevertheless, the numerical simulations are very helpful in establishing some intuition about the
expected behavior of an actial system, especially by allowing direct examination of the director field,
an important variable which can only be observed indirectly in actual systems. This chapter closcs
my discussion of the exploration of NLC topological defects in numerical simulations. I turn next to

the real thing, a study of the behavior of defects in 4-cyano-4’-n-pentylbiphenal.
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Chapter S

Experimental Observations

I and B. Yurke have systematically and extensively studied the dynamics of strings, monopoles, and
texture defec*s in one particular nematic liquid crystal, using two experimental apparatuses designed to
apply pressure und temperatere quenches to smali, thin volumes of material. Our optical microscope
observations are recoded by a high speed video camera, and later played back for visual and computer
analysis. We have developed scphisticated image processing te<..aiques for automatically quantifying
the defect density, and have manually counted the monopoic and loop densities as a function of
time after initially being created in a symmetry breaking phase transition. Our datc indicate good
agreement with thy relative defect densities expecied from the “Kibble mechanism” of cosmological
defect production, and fit the predictions of the “one-scale’ model for string evolution. However, our
data also show unexpected behavior in the monopele and loop density evolution. In this chapter, 1

will describe our equipment, techniques, and experimental results.

5.1 Experimental Techniques

We have constructed cquipment for studying rapid pressure and temperature induced isotropic—nematic

transitions in a nematic liquid crystal (NLC), 4-cyano-4'-n-pentylbiphenyl (commercially known as

“K15", or “SCB"). Our mate-ial was obtained from BDH chemicals, and used without dilution or

further purification. At atmospheric pressure, this NLC has an isutropic-+nematic transition temper-

ature at 35.3°C, and a nematic—crystalline transition at 24° C. Measuremients of the splay, bend,

and twist elastic constants!KM77] and the viscoelastic coefficient!WC88] for this material have been
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reported in the literature. At 25°C, X, = 1.15, K2 = 0.6, and K3 = 1.55 udynes. We measured the
slope AP/AT of the isotropic-nematic phase coexistence curve to be 2.47 MPa/K, between 0.7 and
17 MPa. This slope and the 35.3°C transition temperature determine the pressure vs. temperature
line which must be crossed to force an isotropic-+nematic phase transition.

Our experimental apparatuses consist of a pressure cell, used to force a rapid pressure jump
induced phase transition, and a free suspension loop, used to observe the effects of a temperature
quench. We have also designed and tested a third apparatus which combines features from both of
ouv workhorses. I will discuss the design and operation of three devices in this section, as well as

the image processing techniques we have developed for analyzing the string density data.

5.1.1 The Pressure Cell

The pressure cell apparatus consists of a stainless steel pressure cell with observation windows, and
supporting pressurization hardware. The cell contains the liquid crystal between two 1.5 mm thick
sapphire windows. The thickness of the NLC layer can be adjusted by changing the lcvel of a
threcaded top plug which is scaled by an O-ring. Typically, the layer is between 150 and 300 um
thick. The viewing arca has a diameter of about 3 mm. Less than 1 cc of NLC fiils the cell and the
tube connecting it to a diaphragm, which isolates the liquid crystal from the pressurizing fluid, water.
A simple hand-tumed piston (pump) is used to provide between 0.7 and 34 MPa of pressure, and a
valve between the pump and the diaphragm is used to apply a sudden pressure jump. Attached to
the ccll are a thermocouple and heating wire, to provide temperature control; the whole cell is also
cncascd in styrofoam insulation.

The cell is mounted on the stage of a white-light transmission observation microscope, and a
high speed videco camera with a 5-millisecond resolution clock is used to record data onto vidcotape.
t = 0 is determined by closure of a microswitch which operaies when the pressure jump valve is
~ opened. A schematic drawing of the apparatus is shown in Figure 5-1.

Boundary conditions on the cell surfaces are established by treating the sapphire windows with
the homeotmpic alignment material N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilylchioride
(otherwise known as DMOAP), using standard procedures(Kah3], For our purposes, we consider the
window surfaces as imposing fixed, perpendicular boundary conditions on the NLC (the liquid crystal
molecules are assumed to be “hanging” from the interfaces). The aligrment effect is evident from the
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Figure 5-1: Schematic drawing of the pressure cell apparatus.

difference in appearance of the NLC between the untreated and treated cases; when the windows are
untreated, the nematic takes on a “marbled” look, modulating the light with broad sweeping bands
of brown even after equilibrating. When the windows have been treated, the equilibrated nematic is

clear, except for the normal flickering of the directer.

Typically, the cell is operated by allowing it to thermalize at a temperature around 37°C, and a
pressure below that of the coexistence line. After equilibrium has been reached, the piston is brought
to the desired final pressure, and the video camera is readied. Opening the pressure jump valve
simultaneously starts the camera’s clock and forces a phase transition in the NLC. The speed of the
transition is theoretically limited by the velocity of sound in the material; we have judged that it
occurs in less than 30 ms, by timing the period between when the NLC is clear (in the isotropic
phase) and when string defects first become visible out of the dark mess which is seen on the camera
immediately following the pressure jump. Depending on the depth of the pressure jump, and the
operating temperature, the NLC coarsens to a point where few defects are visible in the camera in
as little as eight seconds and as much as 6() seconds.

71



5.1.2 The Thin Freely Suspended Film

The thin, freely suspended film apparatus is substantially different in design and operation from the
pressure cell. It is simply a loop of wire attached to a heating element (a 1 KQ resistor). A droplet
of NLC is carefully suspended in the loop; the precise amount is gauged to give as flat a surface as
possible, to minimize lensing effects. Above the loop is mounted a dust shield with a cover glass for
clear viewing, and beneath the loop are mounted two probes on zyz micrometer stages. The probes
are made of single fine glass threads pulled from an approximately 1.5 mm diameter giass rod. They
can be inscrted into the NLC film and used to manipulate defects directly.

This entire assembly is mounted on the stage of a Zeiss microscope. The NLC film is backiit
with a bright arc lamp, and is observed with 2X, 4X, and 10X objectives. In the isotropic phase, it
appears as a clear, quiet fluid, while in the nematic, flickering of ihe rod molecules can be seen. The
arc lamp lends a slight green tint to the appearance of the liquid. Defects are generated suddenly
when the film is allowed to cool by convection, after heating by allowing a current to flow through
the attached resistive element. About 400 mW applied for 8 seconds is sufficient to heat the NLC into
the isotropic phase. Because the edges of the film cool faster than does the center (heat is conducted
from the wire loop), defects usually spring forth from the sides, forming a mass of wiggling strings
between the edge and an inward propagating circular domain wall dividing the nematic and isotropic
phases. Often, this occurs with sufficient symmetry that a boojum (haif moncpole atiached to the top
of bottom surfaces) is crcated in the center of the droplet. Following the phase transition, the sirings
quickly intercommute with each other, coarsening into a state where most of the defects are attached
to the wire loop. However, the bulk of the film will remain populated with assorted defects, including
boojums, monopolcs, +1, and :i:% strings for more than half a minute beforc clearing. Shown in
Figure A-12 is a photograph of the defect tangle produced about ten seconds after a temperature

quench.

The primary utility of this apparatus is to allow manufacture of defects by direct manipulation.
When a glass probe is inscried into the NLC, defects move out of its way. However, after the NLC
has sctiled, the probe can be moved slowly and a £1 string will trail from it. This string will slowly
escape, diffusing into a golden lialo which eventually disappears, but with enough diligence and somic
cleverncss, +1 strings can be led to cross each other and create monopoles. 1 strings can also be
brought near :l:% strings to observer their interactions.
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Finally, we! have been able to manipulate £1 strings to intercommute with each other in such a
way as to leave behind what appeared at first to be a single, closed +1 string. Almost immediately,
a golden halo appeared around it; these golden halos are the hallmark of diffuse, very escaped *1
strings. We observed several of these events, and believe they may be the signature of the creation

of a texture defect. 1 will discuss this experiment in more detail in Section 5.4.

5.1.3 The Thin Film Pressure Cell

Experience with our pressure cell and thin free suspension film gave us incentive to design and
construct a2 new apparatus which can combine the best of both. The biggest problems with the
pressure cell come with window imperfections (scratches) and dust which drifts into the viewing
rcgion after repeated use. Also, the pressure cell is difficult to clean and refill, because of the volume
of material it contains. However, its advantage is that pressure jumps cause much more rapid phase
transitions than do thermal quenches; rapid transitions do not allow the NLC to nucleate on dust.
Instead, nucleation effectively happens spontaneously, cverywhere in the cell. On the other hand, the
advantages of the thin film are that the top and bottom surfaces are unencumber. = by tricky boundary
conditions — there is only a liquid-air interface. Furthermore, thin films offer the opportunity to create

very thin preparations in which essentially two-dimensional behavior may be observed.

A means to combine the best of both was proposed by Yurke. He suggested that a thin NLC
film might be successfully suspended in a low vapor point liquid if a sufficiently nonintcracting
substance could be found. He further suggesied the use of fluorinated hydrocarbons, or fluorocarbons.
Such liquids are typically used as refrigerants, and have a very low vapor pressure. One such
chemical is widely available commercially under the trade name “Fluorinert”{Fltl, We purchased
some perfluorodecalin, and successfully trial tested this idea using a new cell. We obscrved a
beautiful, pressure jump initiated phase transition, creating a plethora of defects. However, we have
not yet been able to take data with this new cell, being too busy analyzing data from the last runs,

and short of sufficient quantities of fluorocarbon to fill the pressurization system.

'Neil Turok deserves the credit for being at the micrometer controls during this sensitive operation!
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5.1.4 1Image Processing

A dense tangle of strings is created in a pressure jump initiated rapid isotropic—nematic phase
transition. This tangle interacts with itself, by intercommuting, and forming loops which collapse.
Observations of this coarsening process are recorded onto videotape, and later played back for com-
puter analysis. The goal of this analysis, using scveral image processing steps, is to determine the
density of strings (lines) in the picture. In this subsection, I summarize our final, best procedure, and
then discuss how it was developed.

The gu.Jing principle behind our application of image processing to clarify the string tangle
pictures was to do as little processing as possible before estimating the string density. We used a
four step analysis, including 3x3 median filtering, adaptive background subtraction, sobel gradient
calculation, and a cleaning algorithm similar to morphological dilation and erosion [GW87], Adaptive
background subtraction was accomplished by dividing the 512x400 images into 128x100 sized
sub-images, calculating for cach regioa the average of each of the 32x25 sub-regions weighticd by
its standard deviation, fitting a 2D B-spline to the sub-image points to get 512x400 “background”
images, and subtracting these from the original images. The grey levels were then rescaled such
that the mean was a light grey and the standard deviation spanned the resoiution of the display.
This successfully normalized the light intensity across our images. Next, we calculated the Sobel
gradient image. Finally, the string density was estimated from the processed images by counting the
number of points above a set threshold. Examples of images generated by this procedure are shown
in Fig. A-15. We chose to calibrate the siring density so that it represents the numbey of strings per
unit area crossing a plane. The calibration for each data set was obtained by counting the number of
strings crossing a line drawn across the image, averaged over several lines and images, and dividing

by the crossectional area, i.c., the depth of the cell times the width of the image.

We arrived at this final procedure only after considerable experimentation with various algorithms.
Scveral problems had to be addressed. First, the images had to be normalized in light intensity and
distribution. This could be accomplished several ways, such as by taking a background image, and
subtracting it from the onie under analysis. This did not work well, because of the wide variation in
average intensity between images (dense tangle images were much darker than the final, relatively
clcar ones). We also tried histogram :qualization, but that only brought out all the noise in the
background; we desired that the background be suppressed as much as possible, and that the dark
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lines (the strings) in the image be made sharp and highly contrasting. We also wanted the lines to be
uniform in intensity and width. Because lines are large scale objects, we tumed to median filtering, a
procedure which takes each sub-arca of an image and replaces the middle pixel by the median value
in the sub-area. Mcdian filtering is known to preserve sharp edges and blur high frequency noise. In
addition to median filtering, we also devised the adaptive background subtraction method described

in the previous paragraph.

The next step in the processing is to convert the image into useful information, either by locating
the lines, or by dirccly calculating some useful quantity. From our experience with studying the
stracture function, we believed that a similar observable might be calculated directly from the image
by taking its 2D Fourier transform, doing 2 radial integral, and calculating the width of the resulting
distribution as a function of time after the phase transition. Unfortunately, this idea did not work,
because of the noise and non-uniformity of the image, even after the first stage filtering. We found
the results of the FFT to be highly dependent on the amount of filtering done the image, indicating

that the noise in the image was broadband and significant.

Instead of a FFT analysis, we decided to devise a line finding algorithm. At first we devised a
scheme of our own which worked fairly well. The idea was that lines could be identified locally, as
humps in the intensity distribution. Humps with a certain width and depth would be validated, and
others ignored. Furthermore, we could scan for humps in one dimensional strips of the image, first
processing the rows then the columns. Pixels thought to be at the center of a hump would be marked,
thus building up a sccond image which contained only those points which were elements of lincs in
the image. For each one-dimensional strip, we would window an eight to fifieen point segment and
fit a parabola to the points to determine the height, width, and center of a hump. If these paramecters
fell within fixed tolerances, the central point was validated. The drawbacks of this method were that
it significantly broadened the lines from their actual widths, and it sometimes failed to correctly find
lincs at intersections. The method also incorrectly identified isolated grey “blips” in the image as
being parts of lines. Evidently, what was needed was some sort of algorithm with more than a local

sense of “line.”

Our next candidate for line identification was the canonical Sobel gradient operator. The Sobel
operator gives two uscful pieces of information: the local gradient magnitude G, and its direction
6. Typically, G and # are used together with some thresholds to determine the existence of line
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segments, and to link isclated segments together by projecting aleng the direction of the current
scgment. Additionally, before this “linking and chaining” procedure, the G' and  images can be
cleaned uplCRK90] by discarding all points for whick G is either less than 3o of a threshold G in,
or less than 20 of Gy if the point is the neighbor of an above thresliold point. G in and o are
calculated by dividing the Sobel image into non-overlapping 10x 10 squares, calculating the standard
deviation o; and mean G; for each region. Gmin and o are chosen to be the smallest G; and its
corresponding o;. We use this cleaning procedure following calculation of the Sobel image G in our
final procedure. We do not use a linking and chaining algorithm, because the simple implementation
we wrote was time consuming and would have been prohibitively expensive in processing all forty
of our final data images. One possibility for the future would be implementation of the Boie-Cox

linc-edge detection algerithm[BC89), which is supposed o be optimal for line recognition.

5.2 The Behavior of Strings

String defects are interesting creatures which behave very predictably, given a few simple assumptions.
First, strings can be characterized as having some tension force T' per unit length. Because of this
intcrnal tension, they try to unwind themselves into the straightest possible configuration, to reach a
state of lowest energy. Second, strings which intersect each other while moving exchange partners;
this is known as “intercommuting.” Third, strings carry topological charge; like charges repel and
opposite charges attract. Finally, the NLC is a dissipative system. The motion of strings in this
mcdium competes with the damping due to viscous forces. An assembly of many strings will evolve
by untangling itself, gradually becoming less and less dense. This is known as string coarsening. In
this scction, I will present first our observations of string intercommutation and loop collapse, then

discuss our coarsening experiments. I conclude with a study of the various string intersections.

5.2.1 String Intercommutation

We frequently observe strings interccmmuting with each other. Several scerarios can be imagined.
Two :l:,l,- strings, bent outwards from each other, could be arranged such that they are or are not
within each others arcs. If they arc, then the natural straightening of the strings could pull them
into each other, whereupon they would intercommute. Moreover, if they are of like charge, an
intercommutation would only occur if the line tension force exceeded the repulsive force. If they
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arc not within each others arcs, then, normally, it would be expected that natura! straightening would
simply move them further apart; however, if they are of opposite polarity, then they will attract and
thus intercommute.

The intercommutation of like-charged strings could be expected to sometimes result in the creation
of a £1 string in-between the intercommuted :!:% strings. However, such sequences are very rare.
More often, we sece sequences in which two oppositely charged :i:% strings attract each other and
then intercommute, as shown in Figure A-13. Furthermore, after the intercommutation, the newly
formed strings appear to have no discontinuity at the junctions where the exchange took place. This
is a clear indication that some mechanism is available for a + 3 string to join continuously to a - 3
string. i suggest that such junctions may occur through an intermediate transition from a splay-bend
cnergy to a twist energy :l:i- string. In other words, for example, a i = & cos(¢/2) + §sin(¢/2)
string in the Z direction should be able to connect continuously to a 7 = Z cos(¢/2) — §sin(¢/2)

string by an intermediate Iength of @ = £ cos(¢$/2) £ Zsin(¢/2) string, which is high in twist energy.

5.2.2 Loop Collapse

Loops of :!:% strings often form, as a result of intercommutations leaving behind an isolated, closed
length of string. These loops are unstablc objects, and collapse under their own tension force. By
disappearing, they have reached the lowest energy state possible. Observations of the rate of loop
collapses provides a good measurement of the ratio of the siring tension to the viscosity cocfficient,
and measurement of the evolution of the density of loops produced after a isotropic—nematic phase
transition gives insight into the competing defect production mechanisms at work. I discuss these

issues in this subsection, beginning with a presentation of the theory and our Ioop collapse data.

Theory

The dynamics of string motion are controlled by the string tension and the viscous forces. In particular,
the string tension 7 scales as In R/r. where r, is the core radius and R is the typical spacing between
strings. For a string moving through the medium with a constant velocity v, it can be shown, using
nematodynamic equations[dG74];
&
ot = ——, .
Yo 5 (5 1)
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that the damping force T is also proportional to In R/r.. £ is the Frank free energy, given by:
1 =2 - =12 = -\ 2
£ =5 |k(V -8 + ka7 ¥ x ) +hs(ix (¥ x )| . (5.2)

The ratio T'/T should thus be independent of R. We have tested this expectation by measuring the
rate of collapse of +3 string loops.

The rate of collapse of loops is determined by T'/T', the ratio of the string tension to the coefficient
of viscosity. This can be understood by considering the mction of a differential arc segment ds for
which the string tension T' and the viscous force Fr are balanced. From Figure 5-2 we sce that
2T sin(d@)/2ds is the total string tension per unit length in the arc segment, and this must be
balanced by Fr = —I'f. Approximating sin(df) =~ df and replacing df by d0 = s/r, we get:

T dr
=T

r= \/%T'(‘o —1). (5.4)

Thus, we expect loop radii to shrink with time according to the following general expression:

(5.3)

which when integrated, yields:

ro (o - )7, (5.5)

where the theoretical prediction gives a=0.5.

Loop collapse data

Our experimental goal was to measure the exponent a in Eq. (5.5), by observing the decrease in
radius r of several loops. We selected seven events from our coarsening data pressure cell runs (see
Section 5.2.3) which happened to leave nearly circular isolated loops at a late stage in the evolution
of the system, and measured r as a function of #g — £, to being the time of disappearance of the loop.

Fig. 5-3 shows data from a typical loop collapse, for which the exponent was a=0.494:0.002.
Fig. 5-4 shows the exponents calculated from seven events chosen for having eccentricities? less

than 0.6. Avecraging these results gave a=0.501+0.03, which is in agrcement with the expecied

?Eccentricity is defined as e = v/a? — b?/a, where 2a is the length of major axis and 2b is the length of the minor axis
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Fr

Figure 5-2: Relationships used in calculating the rate collapse of a + } loop.

value of 0.50. The loops we observed did riot leave monopoles behind, nor did they collapse around
monopoles. Hence, these loops must have consisted of equal numbers of +% and —-;- string segments.
Finally, from Eq. (5.4), we estimated that T'/T" varied from about about 200 to 300 um?/second in
the 5.6 to 8.3 MPa, 37°C regime.

Loop density data

An understanding of the behavior of the densiiy of loops p; versus time after an isotropic—nematic
phase transition is important because if the system has truly reached a scaling state, we expect p;
to have a large value at early times, and to decrease monotonically. Measurement of p; is simple:
we define a +1 loop in this experiment to be any isolated, closed length of +1 string. In tum,
“isolated” is defined as not being connected to any other :l:a} string. Connections to :t1 strings are
permitted (X1 strings have a much lower string tension than :l:% strings, and therefore the behavior
of +1 strings is believed to dominate the coarsening process). The procedure for this experiment
is to slowly play back recorded videotapes of pressure cell runs (described in Section 5.2.3), and
identify the times at which loops are created and annihilated. Timelines showning the lifetimes of
loops can then be combined to calculate the number of loops in existence at any one point in time,
and division by the measured cell volume converts this to a loop density, p(t).

Log-log plots of these data, taken from run 8 (see 5.2.3 for the operating parameters) are shown
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in Figures 5-5 and 5-6. Note that the late time (¢ > 3 sec.) behavior of p; behaves as expected.
The simple dimensional argument is that one loop should be found in each volume €3, where € is
the characteristic length scale of the system at a the time of interest. From the one-scale model, and
from our coarsening data (section 5.2.3), we expect that £ ~ t~1/2, Thus, we expect p; ~ t=3/2, as

scen.
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Figure 5-5: Timelines of loops found in ten pressure jump initiaied phase transitions. Data collected
by A. Pargellis.

However, the early and mid-time behavior of the system shows some anomalous behavior. As
wc mentioned earler, we expected p; to decrease morotonically from an initial level reached almost
immecdiately after the phase transition. This graph shows that many loops are created approximately
one to two seconds after the phase transition, for this particular choice of operational parameters.
Onc sccond is a very long time on the time scale of the speed of the phase transition, which we had
cstimated to take place in less than 30 ms. Although the defect density at times earlicr than onc
sccond is too high to image (for the objective magnification and camera resolution we are using), we
do not attribute the precipitous drop in p; to experimental difficulty in identifying loops. Rather, we
fcel that one second is a firm lower bound on the times for which we believe we can reliably identify

fecatures in the system,
At t = 1 sec, £ =90 um, which means that strings should be separated by about 90 um.
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Cumulative Loop Density
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Figure 5-6: Cumulative loop density p; from Run 8 data. The data is to be considered accurate for
t > 1.0 seconds only. The straight line, with slope -3/2, shows that the late time scaling behavior of
the p; behaves as expected: p; & t=15. Data collected by A. Pargeilis.

Allowing for the thickness of the cell, 230 um, the observed strings should be separated by about
90%/230=35 pm, a distance which we find to be distinguishable in our 400 zm by 312 pm pictures.
Furthermore, these measurements were taken by studying a large monitor showing the sequences, and
the creation and annihilation times were individually measured, and weighed with experience gained
from extensively studying the dynamics of the string interactions. Therefore, we have confidence in
our data. We belicve there is a definite anomaly in the ¢ < 3 second behavior of p(t).

A possible explanation for the initially low level of p;, and its subsequent rise, is given by
the defect energetics argument of Section 3.5. Another explanation comes from possible finite size
cffects. It is conceivable that the the boundary conditions at the window surfaces either encourage
defects to move away from them, or attract defects which stick to the surfaces. We have considered

these effects, and will study them further in the next subsection.

5.2.3 String Coarsening

The most interesting behavior of the tangle of defects created in the isotropic—nematic phase tran-
sition is the coarsening process. Theoretical arguments of the Lifshitz-Slyosov typell-S61] describe
how late time coarsening dynamics should proceed. The premise is that the string network may be
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characterized by a single scale £, defined by p, = £~2, where p; is the line length per unit volume
~therwise known as the string density). The typical radius of curvature of the strings, and the typical
inter-string separation are both proportional to £. This model is known as the “‘one-scale” model for
string evolution, in cosmology theories. Our examination of the string coarsening dynamics in the
NLC provide a striking confirmation of this theory. In the following discussion, I sketch the theory,

present our data, then consider possible secondary influences such as finite-size effects.

Theory

The characteristic velocity v of a string is found by equating the characteristic string tension force,
which is proportional to T'/€, with the characteristic friction force I'v per unit length. We find that
v o« T/T€. The rate of loss of energy from the string network is thus W = Twp/€ = T?p%/T per
unit volume. The rate of decrease of p can be calculated by equating this energy loss with the time

derivative of the string energy density W o« Tp to get:

where a constant of proportionality, ¢, hias been introduced.

A second effect which contributes to the coarsening of the string network is the loss of length
from the long strings into loops: this is always favored by phase space over reconnection of loops
onio long string[AT891. A long string loses length to loops at a rate given by a geometrical constant
times v/£, which scales the same way as the viscous force damping term. Thus, the constant ¢ may
be taken to include both these effects. Integrating Eq. (5.6), we find that the general scaling solution
is given by

p=(T/cT)t™", (5.7)

with v = 1 expected.

Similar arguments have been given in the condensed matter literature before — applicd both to do-
mains in two dimensions(Lif82], and strings in three[TH87], With the assumption of scaling, the deriva-
tion of the exponent is little more than dimensional analysis. However this basic assumption secms to
have been studied and tested more comprehensively in the cosmological literature [AT89, BB89, AS90]
for string networks at least.
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Coarsening data

We experimentally tested the p o ¢~ string density scaling prediction by recording high speed video
pictures of the evolution of the string network which forms after performing a rapid pressure jump (of
A P) 1o force an isotropic—nematic phase transition. The data were analyzed by the image processing
procedure described in section 5.1.4. Four pictures typical of the string tangle in evolution are shown

in Figure A-14,

We estimated the depth of the visible region to be 15848 um for the AP ~ 2.00 MPa run
and 234423 pm for the other three. With greater cell thicknesses, we found that identifying strings
became more difficult, because of occlusions and light scatiering. All the data were taken using a 10X
objective, with a depth of field large enough such that all defects anywhere between both surfaces
of the windows were clearly identifiable. Ten different observations of the NLC after pressure juinp
initiated phase transitions were recorded for each of the four data sets, known as runs 5, 7, 8, and 9.
All the runs began at the same state, at approximately 37°C and 3.6 MPa, but differed in the depths
of the pressure jumps. For runs S, 7, 8, and 9, AP was 2.00, 2.62, 4.69, and 2.28 MPa, respectively.

The pressure jump depths of the four runs are indicated on the phase diagram in Figure 5-7.

We found that for times between 1 second and 32 seconds, the string network was low enough
in density for the strings to be clearly distinguished. Our scaling results are shown in Figurc 5-8.
The statistical errors, obtained by averaging over several runs, are smaller than the symbol sizes.
Repeating the experiment at increasing AP, we found the same scaling with time, but decreasing
string density at a fixed time, consistent with the effect expected, where if the string tension is

increased, so was the scaling value of £.

The data do show systematic deviations from straight line behavior. We expect that at early
times, line thicknesses (caused by the finite camera resolution) spuriously lower the calculated string
density because of string overlap, and that at late times, image noise significantly increases the density
estimation (it is not as detrimental to the early-time data, because the amount of noise is constant,
and the string density is higher for smaller t). Omitting the first and last points in each data set, a
least squares fit gives a scaling exponent of v=1.0240.04, which is close to the predicted ¢~! power
law.
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Figure 5-7: Phase diagram showing the four pressure cell coarsening data runs.

String density calibration

String density is measured in units of line length per unit volume. As I mentioned in Section 5.1.4, our
simple calibration method to measure string density was to count the number of lines intersecting a
line drawn across an image; the number of intersections divided by the cross sectional area determined
by the line and the thickness of the cell would thus give a quantity related by a geometrical factor to

the actual string density.

We later re-measured the string density by using a commercial tool available for measuring
distances on a map. We selected a single set of images from the run 9 data, showing the string
network at ¢ = 5.8 sec., and found the average line length to be about 88.5 mm per mm3. This
value was only about 1.4 (about 7/2) times larger than the ps ~ 55.6 mm~—2 result which we had
previously arrived at. Because the new technique allowed the absolute calibration of pg, we re-scaled

our data to be 1.4 times larger. The data in Figure 5-8 are calibrated absolutely.
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Figure 5-8: String density data, accumulated at four different AP. The scaling relationship was
experimentally determined to be £ ~ t0-51£0.02 where p = 1/£2. For higher A P, the string tension
is higher and one expects from the analysis in the text for the scaling density to be lower, as is
observed. Errors are smaller than the symbol sizes. The data were calibrated absolutely (see text).
Time is measured from the pressure-jump initiated phase transition.

86



Finite size effects

Interpretation of the data is, however, complicated by possible finite size effects due to the interactions
with the window surfaces. We saw no evidence of pinning of defects to the interfaces. Because of our
treatment of the windows, we saw no marbled patches. Furthermore, though disclination lines were
sometimes observed to terminate on the surface, they showed no evidence of pinning. Consequently, it
may have been possible for the defect tangle to pull away from the windows and become concentrated
in the center of the cell. To check this possibility, we studied the evolution of the number of string
crossings seen in our data. As we discuss in the following section, these *“X-intersections” should
scale as px « p3, where ps is the string density. Because intersections are one-dimensional objects,
they should be found with density 1/£3, but because our images are two-dimensional projections of a
three-dimensional systcm, an extra factor of £ must be added to reflect the possibility cf string-string
occlusions producing X-intersections in the pictures. Figure 5-9 shows our results from analyzing
data from the AP=4.69 MPa run. The data points at late times show a consistent deviation below
the t~2 behavior expected for a three-dimensional system whose line density is given to scale as ¢ 1.

However, at early times there is good agreement.
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Figure 5-9: Scaling behavior of the number of :i:% string crossings vs. time from the Run 8 data.
‘The error bars indicate the statistical errors from averaging eight data sets. The solid line shows the
expected t=2 scaling for the bulk.
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A model for the deviation observed in the behavior of px vs. ¢ can be constructed by assuming
that the cause is a shrinking of the effective thickness d of the defect layer in the pressure cell.
Thus, by extracting d from the data in Figure 5-9, a correction for the proper string density p can be
estimated. Using this procedure, and fitting to the linear regime in the corrected In p vs. In ¢ data, a
corrected scaling exponent of ,=0.931+0.06 is obtained. This number can be understeod as a bound
on possible deviations in bulk behavior for the coarsening exponent v, and is reasonably incorporated
as an additional contribution to the error bars originally given for v. Our conclusion is that the bulk

scaling exponent for our K15 system is v=1.024+0.09.

5.2.4 String Intersections

Two +-;- strings may intersect at a three-string vertex with a +-1 also string coming off of the junction
(this is also true for strings of the opposite sign). We denote such intersections as “T-intersections,”
because of the way they often appear in our pictures; a schematic drawing of a T-intersection is
shown in Figure 5-10. Simpler yet, when viewed as a two-dimensional projection (we observe our
three-dimensional slab of NLC from the top and see cverything through to the bottom), strings cross
cach other; we call these crossings “X-intersections.” The scaling of T and X-intersections is expected

to be similar to the behavior of £ vs. time.

Figure 5-10: Intersection between two +% strings and one +1 string. This is known as a “T-
intersection.”

Because string intersections are one-dimensional objects, we‘expect to find ore intersection per
volume £3, such that the density of intersections should be p = 1/£3. However, X-intersections arc
generated by the occlusion of one string by another (occlusions producing apparent T-intersections
do not happen, because the flux of +1 strings is pinched at T-intersections, and otherwise diffuse).
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String Observable | Expectsd Scaling Behavior
String density ps ~ t~1
T-intersection density oT = t15
X-intersection density px et

Table 5.1: Scaling behavior of the string, T-intersection, and X-intersection densities as a function of
time, assuming that the characteristic length scales as £ ~ t1/2,

Thus, we expect that while the density of T-intersections should scale as pt = 1/£2, the density of
X-intersections should scale with an extra factor of : px = 1/£". Rewritten using the relationship
£ ~ 11/2, and including the string density for comparison, we arrive at the scaling results given in
Table 5.1.

Data measuring the behavior of ps and px were already acquired for the analyses of the previous
subsection; we added to our collection by manually counting the number of T-intersections from
run 7 data. Our results, shown in Figure 5-11, agree well with the predictions, at early times. The
systematic deviation for late time datapoints can be understood in terms of the finite size cffects

discussed in Section 5.2.3.

5.3 Monopole Statistics

The second class of defects observable in the NLC are monopoles (corresponding to nontrivial
m2(Mo)). Monopoles appear as dark dots sitting on +1 strings, where the flux appears to converge
to a single point. We see relatively few of them in the pressure jump initiated phase transition
data, but they are created in abundance following temperature quenches. We do not know exactly
why this is the case, but believe that it may have something to do with the speed of the phase
transition. In trying to understand monopole behavior, and creation and destruction mechanisms, we
have systematically studied the evolution of monopole density in our pressure cell data, in a manner

similar to our study of loop densities.

5.3.1 Creation and Annihiiation Mechanisms

We observed that the most common mechanism for creation of a monopole is the collapse of a
:t% loop carrying +1 monopole charge and having two +1 strings attached to it. This process is
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Figure 5-11: Experimental data showing the scaling behavior of the string density ps (diamonds),
the T-intersection density pt (plus-symbols), and the X-intersection density px (stars). The string
density scale should be multiplied by 1.4 to give the actual, calibratea string length per unit volume
(this has no effect on the slope, which is the major point of this graph). The slopes of the lines
indicate the scaling behavior of the three observables: ps = 1=, pr =~ t~1:5, and px ~ t~2.
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diagrammed in Figure 5-12. Another mechanism we believe we have have observed is the production
of a monopole by two *1 strings which are attached to a ﬂ:-;— string drawing together and pulling
off, as shown in Figure 5-13. We have not observed any other mechanisms for creating monopoles
in data from the pressure cell experiment. Two events, showing the creation of a monopole by the

collapse of a 3 loop, are shown in Figures A-17 and A-18.

Figure 5-12: Collapse of a %3 loop into a monopole.

Figure 5-13: Creation of a monopole by two +1 strings pinching off of a :I:% string.

5.3.2 Monopole Density

Monopoles seem to be created only infrequently. We have gathered statistics on the density of

monopoles as a function of time pn,,(t) from the data of runs 7, 8, and 9. Our results are shown in

Figure 5-14. The top plot gives p,, for the three data sets; the middle plot shows how they look when

¢ is multiplicatively scaled for the data of runs 7 and 9, to bring the means of the three distributions

together. The cumulative monopole density in the bottom plot is simply the sum of the three rescaled

distributions. The two straight lines show the approximate asymptotic slopes of each side; they toth
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have slope —3. We do not have a theory explaining why these slopes should be —3.

5.4 Texture Decay

Texture is the third class of defects in the NLC I consider here. It can be a difficult topological defect
to observe experimentally, especially because it is entirely nonsingular except at it moment of collapse.
Ideally, we would imagine being able to create an isolated texture defect which can be observed as
it delays. We set about doing this using our thin film apparatus arid mechanical manipulators, but
discovered that though we came close to producing the textures described in Section 3.4, the objects
we saw decayed unexpectedly. This occurred several times. One such sequence is shown in the
left hand column of Figure A-16. Our observations were that although we could create two nearly
concentric +1 strings, they would always be unbalanced enough that instead of shrinking uniformly,
the rings would pinch off at one point, and form a monopole-antimonopole pair.

Turok analyzed this decay behavior by performing a simple relaxation simulation of a liquid
crystal in the one constant approximation. He discretized space as a cubic (403) lattice, and performed
multiple sweeps through the lattice, minimizing the energy at each site as a function of the director at
that site while keeping the director at neighboring sites fixed. The initial shape and size of the texture
was fixed by x(r) = n(1 + tanh((r — S)/W)), where S determined the size of the ring, and W its
width. A perfectly circular texture of this form collapsed with the inner ring first shrinking to a point
and forming a monopole, then the outer ring subsequently collapsing to annihilate the monopole.
However, when the texture was slightly perturbed (replacing the argument of the hyperbolic tangent
by (r — S(1 + } cos¢))/W, with ¢ the azimuthal angle), Turok observed a very different evolution.
Similar to our observations in the thin film NLC, the +1 ring pinched off at one point, forming
a monopole-antimonopole pair which was clearly identifiable in plots of the director ficld. The
monopoles would then travel arcund opposite halves of the ring and annihilate on the far side. The
simulation results are shown alongside our experimental observations in Figure A-16.

A detailed examination of the two monopoles and the texture equation indicates that the two +1
strings emanating from the monopole are apparently escaped in the same direction on either sidz
of the monopcle. This possibility is contrary to the expectation that the flux on either side of a
monopole should be escaped in opposite directions (to see this, consider a hedgehog monopole, with
all the 7 pointing radially inwards toward the origin, and note that in each half space, all of the rods
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Figure 5-14: Three plots showning our monopole density data, pm(t).
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arc pointing towards the other side). We believe that there is a simple explanation for this seeming
contradiction, and anticipate being able to resolve it through a direct examination of the director field
of the simulation results.

Our conclusion is that texture has a decay channel into monopole-antimonopole pairs. Viewed in
terms of Hopf links, the monopole and antimonopole evidently act as sources from which all lines
emerge. Apparently, the linked lines all cross at once, forming the pair, and then break apart as the

monopole-antimonopole pair move apart.

5.5 Defect Interactions

Thus far, in our discussion of the dynamical behavior of defects in the NLC, I have primarily
concentrated on analyzing the properties of macroscopic observables such as defect densities. In
this section, I turn to a microscopic characterization of defect dynamics, by considering “pair” and
higher-order interactions. I consider the following questions: How do defects interact? What can

interactions result in? How often do they occur?

5.5.1 Event Classifications

We have already seen examples of several defect interactions, namely, string intercommutations
(Figure A-13) and loop col'apses. In the following discussion. I will refer to these interactions
not as continuous processes, but rather, as specific events which occur within immeasurably small
time windows. I will characterize events by their reactants and products; for example, :i:% string
intercommutations take place between two +1 strings, and result in two +1 strings with different
orientations than the original two strings. Loop collapses are events which take place when a :i:%
string loop disappears into nothingness. Another event, shown in Figure A-19, is the decay of a +1
string connecting two parts of the same i% string. Interactions leading to monopole annihilations
and creations are also events worth noting.

I and B. Yurke have developed the following event classification scheme, based on our experi-
mental observations of defect interactions in our pressure cell data. We have identified sixteen basic
cvents, identified by a event code number and pictograph, as described in Table 5.2. The basic
components are :i:% strings, %1 strings, and monopoles. We have left out texture, because we have

not identified any texture defects which havs been created spontaneously; none appear in the pressurc
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cell data. d:% strings are singular defects, and appear as sharp black lines; thus, we represent them in
our pictographs as single black lines. %1 strings are nonsingular, and appear as diffuse “flux tubes.”
Thus, we represent *1 strings by pairs of dotted lines. Monopoles are singular; they are represented

as black dots which sit on £1 strings at points where the flux lines (the dotted lines) converge.

5.5.2 Quantum Numbers?

The construction of an event classification scheme leads to the question of the existence of natu-
ral groupings for the various events. We have studied five groupings, based on quantities which
arc changed incrementally in certain events. These quantities are the number of T-intersections,
monopoles, links, isolated :l:% strings, and isolated +1 strings (Table 5.3). We symbolize their
change as Ant, Any, Anp, Anye, and An%u, respectively, and itemize their behavior for the
various events in Table 5.4.

Note that AnT=1 refers to the creation of orne T-intersection. Most of the events in Table 5.4
cither create or destroy two T-intersections; never have we observed the creation or destruction of a
single T-intersection. One further note about An;s and An 1s° W define an “isolated” segment of
string as one which is not attached to any other defect participating in the event.

We gathered statistics comparing the probable occurrences of each of our selected events. We
recorded the time and location of 435 events observed in our Run 8 pressure cell data. The resulting
probabilities, also given in Table 5.4, are shown in a histogram in Figure 5-15. Figure 5-16 shows
the number of occurrences of events #1 and #8 as a function of time; these data are typical of our
statistics. We found that to the resolution of our data, the relative probabilities of different events

remained approximately constant as a function of time afier two seconds.

5.5.3 Branching Ratios

The occurrence probabilities of Table 5.4 can be reduced by categories of observables to give “branch-
ing ratios,” i.e., probabilities of different mechanisms which result in the change of a certain quantum
number. I tabulate our results in Tables B.1 through B.9.

One of our results can be explained by a simple counting argument. Mornopoles can be created
when a :i:% loop collapses and brings two +1 strings together, as indicated in #15. However, not
all loop collapses bringing together +1 strings result in the creation of a monopole. If we postulate
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Code Event pictograph Description
. X_. )( Intercommutation of two + 1 strings (The two initial
] strings are separated in space)
2 :“:-')( Decay of a £1 across two +3's into two +1s
3 ]D[")( Decay of two +1’s across two 3 ’s into two +1’s
. J Intercommutation of a £ and a +1 resulting in a
4 ,\\’ L"_ +1 with two T-intersections
6 _”-H——“ N Unlinking of two +1's from a +1
. et~ Untinking of two +1°s from a + Lresulting in a sin-
| — g 2 g
7 _ln' AN gle +1 and a monopole carrying +1
- Decay of a +1 connecting two parts of the same
8 ]D D +3 into a single +1
s S i e Decay of a £1 connected at both ends to a straight
9 '..“..’- —— E————— ) 1
) segment of 3
10 I X S — Decay of a monopole carrying +1 connected at both
gl ends to a straight scgment of +1
Decay of a monopole sitting on a £1 by absorption
n f-1r noadh : YRR
2
12 O" X Collapse of a +3 loop (no end products)
13 ([D" x Collapse of a £ loop with a £1 across it
14 e NN Col!apse of a +1 loop with two +1’s coming out
~ at either end, resulting in a single 41
15 i W Col!aps'e of a fc% loop with. two attached +1’s, re-
~ sulting in a monopole carrying +1
16 =]l‘_L= Collapse of a +3 loop with four attached £1's, rc-
sulting in a four-+1 vertex which escapes
Wy Intercommutation of two 4 1's resulting in two +1°s
17 X 7\ connected by a %1

Table 5.2: Defect event classifications.

96



Observable Descripticn

Any T-intersection creation

Any Monopole creation

Anyg Creation of isolated +1 string segments
Any, [ Creation of isclated £ string segments

Table 5.3: Description of our five postulated “cuantum numbers.”

Defect Interaction Event Probabilities
0_30,4 T T T T T T T 1T 7T T T T 7

Z .
™ .
D —e
g i
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Qa2 « ]

- &£ 358888 s8;

8 12 612142011 91513 310 716 4171819 5

Event Code

Figure 5-15: Histogram showing the relative probabilities of occurrence for the 16 events we classi-
fied. Code 20 refers to unclassifiable events, which were recorded to provide an estimate of the error
in our measurements. Codes 18, 19, and 5 can be ignored.
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Code Event % Prob. | Anz | Any | Any, | Any, | Any,
1 X=X 266
2 =X 103 | 2 1| -1
3 J0=X 10 | -4 1| -2
4 R atan 02 | +2 +1
6 M- 89 | -2 -1
7 A — <) 06 | 2 | +1 | -1
8 D- 258 | -2 -1
9 | womd —e ————— 7 | 2 -1
10 | igld —v =— 0.8 2 | -1 -1
1 =1 23 -1
12 O—x 89 1
13 D= 12 | 2 1| -1
14 { == s8 | 2 -1
15 L === 14 | 2 |+ -1
16 O 04 | 4 -1
17 X=X 02 | +2 +1 | +1

Table 5.4: Defect events, their probabilities, and associated observables. Probabilities were measured
from the observation of about 485 events from Run 8 data. Code 20 (not listed above) refers to
unclassifiable events, which were found with probability 3.9%.
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Figure 5-16: Number of occurrences of events #1 and #8 as a function of time.
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At = 0.2 sec. Not all events were recorded for ¢ < 2.0 sec.

g | A | Monopole produced?
+11 +1 No
+1] -1 Yes
-1|+1 No
-11]-1 No

The bin size is

Table 5.5: Monopole production possibilities. ¢ and A are the relative charges and escape directions
of two £1 strings which are brought together by a loop collapse. Contrary to the expectations
tabulated above, Turok’s texture collapse simulations indicate that 2 ¢ = —1, A = +1 configuration
(with the two %1 strings of opposite charge but escaped in the same direction) might also produce a

monopole.



that monopoles may only be created when two 1 strings of the same charge and opposite escape
directions are brought together, then the probability of the creation of a monopole by a the collapse of
a loop with two attached +1 strings is found to be 25% as follows: first, assign each of the two strings
a charge, ¢1,2 = %1, and an escape direction A; 2 = 1. The relative charges and escape directions
can be represented by the products of the individual quantities: ¢ = ¢1¢2 and A = AjA2. The four
possibilities are enumerated in Table 5.5. By our postulate, only one of the fuur combinations of
charge and escape direction result in the production of a monopole. Reading from Table 5.4, we
find that of the combination of events #14 and #15, event #15, which results in the production of a

monopole, occurs 20% of the time. This is in reasonable agreement with our prediction of 25%.

5.5.4 Summary

My discussion of defect interactions ends the presentation of our experimental observations. I have not
yet had an opportunity to further analyze the statistics gathered, but can imagine several interesting
experiments. First, I expect to be able to greatly improve the time resolution of our statistics by
gathering more data; we hope to be able to quantitatively identify the different epochs in the evolution
of the NLC system which are dominated by proliferous production of certain defects. We also intend
to perform space-time correlation measurements on our data; we know from our observations that
some events are highly interdependent - for example, the collapse of a loop is necessarily predicated
by several :I:% string intercommutations. These observations may be quantified using the classification
scheme we have developed.

In concluding this section, I present a typical sequence of observations showing the combined
action of various events, in Figure A-20. We see the creation of a loop through several :i:% string
intercommutations, and the decay of several +1 strings. The loop subsequently coitapses. I find it
wenderful to observe the way events take place while preserving the scaling behavior of the system

which we have observed.

5.6 Summary

The primary findings of this chapter are summarized in Figures 5-3, 5-6, 5-8, 5-11, and 5-14, and
Table 5.4. I have shown that the dynamical behavior of strings observed in the NLC are consistent
with expectations from the “one-scale” model of cosmology, and do not contradict expectations from
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the workings of the Kibble mechanism. However, our observations of loop and monopole densities
vs. time do not agree with expectations from a simple scaling medel. Though such deviations may
perhaps be explained by the relative energetics model of Chapter 3, I really do not fully understand
all our observations.

Thus, I tumed to a characterization of the microscopic behavior of defect interactions, by devising
an event categorization strategy in which the probabilities of creating T-intersections, monopoles, new
links, and isolated string segments can be quantified directly. Though I do not view our categorization
as comprehensive, it certainly encompasses all of the interactions we have observed in our data on
defect behavior in pressure jump initiated NLC phase transitions. I challenge the interested reader to
attempt to come to a more complete theoretical understanding which predicts the branching ratios of
the events we have described.

This chapter concludes the discussion of my work. I next summarize briefly my principle findings,

and present my suggestions for future work.
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Chapter 6

Conclusion

The research presented in this thesis represents significant progress in understanding the dynami-
cal behavior of topological defects in a simple condensed matter system. Through my numerical
and experimental study of the nematic liquid crystal (NLC), I have developed valuable tools for
investigating defect behavior. I have also gathered data both supporting and centradicting various
cosmological scenarios for defect formation and evolution. The principle accomplishments of my

work are summarized in Figure 6-1.

6.1 Future Work

A multitude of future projects can be spawned from the work I have accomplished in this thesis.
Numerical simulations of dynamical systems such as the NLC will continue as a matter of course, but
the insight gained in this work will likely influence the particular numerical experiments which will
be performed. I also hope that the tensor field methods I presented will be useful. However, truth
be said, the bulk of the most interesting research will be continuations of the experimental initiatives
I have established. The pressure jump initiated phase transition data I carefully gathered has been
the main source of our experimental data, and was worth all the tedium and painstaking attention to
detail, but our experiences suggest new and even betier techniques to develop and experiments to
perform. Certainly, more challenges lie ahead. In this section, I summarize some of what I believe
1o be the most importarit projects currently facing us.
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Experimental confirmation of the applicability cf the “one-scale” model of string network
evolution for describing the coarsening behavior of a tangle of string defects in the nematic
liquid crystal, by systematic measurement of string density as a function of time.

Formulation of a defect interaction event categorization strategy, and associated *“quantum
numbers” which identify fundamental processes such as T-intersection, monopole, and link
creation and annihilation.

Accumulation of statistics describing the evolution of monopole, loop, T-intersection and
X-intersection densities as a function of time; measurement of event “branching ratios.”

Experimental observation of a dynamical mechanism for texture decay, string intercommu-
tation, and loop collapse.

Development of NLC equations of motion utilizing a SO(3) tensor field.

Qualitative prediction of relative defect abundances based on a comparison of the total
energy of each defect within a volume £3.

Design and implementation of two experimental apparatuses for observation of defect dy-
namics in a thin film and bulk volume of liquid crystal.

Figure 6-1: Principle accomplishments of this thesis.
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6.1.1 Numerical Simulations

Possible future numerical simulation work includes further analysis of monopole production mecha-
nisms and study of the means by which oppositely charged segments of :!:-;- string seem to be able
to link together continuously. I also believe that with little additional effort, the 2D SLC structure
function and monopole density scaling results can be made self-consistent and rigorous; our study
of defect energetics indicate that the monopole density should in fact not scale at times for which
the characteristic length scale is small enough (compared to the monopole core size) that logarithmic

corrections in the attractive force become important.

6.1.2 Experimental Research

There are many potentially interesting topics of research in the experimental arena. First and foremost,
the classification of defect interaction events of Section 5.5 represents only the tip of an iceberg.
A great deal of work remains to be done, for example, in formulating a model which explains
theoretically what the different branching ratios which we measured should be. Furthermore, I
expect that though our classification scheme will be extremely useful in future research, refinements
arc not unlikely.

Second, I believe that a more comprehensive test of the Kibble mechanism itself can be designed.
At best, our experiments test the Kibble mechanism only inferentially; a detailed examination of the
relative defect densities immediately afier the phase transition would be a natural step. Also, Turok
has suggested that it should be possible to predict the relative proportions of defects produced by a
moving domain wall; such predictions could be tested by arranging to have a film of NLC undergo
a slow phase transition while under observation by a high speed camera.

One final, obvious possibility is the study of defects in other liquid crystals, such as biaxial
nematics, cholesterics, and lytropics. Liquid crystals composed of very large assemblies of molecules
exist, and may be amicable for use in studying the details of defect core structure. We suggest an
interferometric experiment in which the core of a line defect is imaged by coherent light; the size,
and also any internal structure (such as an isotropic core region), should be quantifiable. Also, as I
have noted, Bouligand has observed texture in cholesteric liquid crystalsIBou73]; if textures can be
created in abundance in cholesterics, statistics can be gathered to quantify how they interact with
other defects, and how they affect the evolution of a defect tangle.
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6.2 Kirei Desu Ne!

In conclusion, I must say that liquid crystals are most fascinating systems to study. Not only are the
pictures generated by the ensemble of molecules in a liquid crystal very beautiful, but also, the laws
obeyed by these molecules are determined by aesthetically appealing symmetries in the fundamental
physics of the systems. Furthermore, liquid crystals are amazingly easy for the experimentalist to
work with, and because of the universality of symmetry breaking phenomena, analogies can be drawn
to relate studies of defect dynamics in liquid crystals to theoretical studies in cosmelogy and particle
physics. This study indicates that certain cosmological theories can indeed be tested successfully
through laboratory observations of some physics in liquid crystals. I hope that mcre research in
the same vein will be soon to follow. Liquid crystal research, in the context of cosmology and
particle physics theories, promises to provide experimental insights which have never been within

reach before.
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Appendix A

Images and Photographs

This Appendix contains a collectior of images and phoiographs of the various systems we studied.

A.1 The 2D SLC: Simulated Schlieren Images
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| t=0 tertion ] | =0 iertis

Isim 2D-SLC simulation.  File: semectic/monopole/monop.ps. generated from monop|.cmd simulation (128x128) [Wed Jul 11 17:14:12 1990]

Figure A-1: A sequence of four simulated schlieren images of a SLC thin film, showing monopole
coalesence. The images are of a 128 x 128 sized system.

A2



2D SLC ~simulaton,  File: sle-guench.ps. generated front input spe 15 (25601561 [Mon Dee 10 (9:52:33 1990]

Figure A-2: Numerical simulation of a quench-induced isotropic—$ tnectic phase transition in a
256x256 sized 2D SLC system. Times are given in number of iterations. Thz evolution parameters
are as follows: Langevin noise amplitude I',4 = 0.001, viscous coefficient ¥ = 1, potential depth
)\ = 4, elastic constants k; = k3 = 0.1, time stepsize At = 0.05, and gridsize a = 1.
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A.2 The 2D NLC: Director Fields and Schliren Images

Figure A-3: Picture of the director field of a 64x64 2D NLC system showing three pairs of +3
monopoles in the process of annihilating with each other.
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Figure A-4: Director field of a 2D NLC evolved from a random initial configuration. Note the
absence of +1 monopoles.
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Figure A-5: Crossed polarizer image of the director field of Figure A-4.
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Crossed olarizer image Splay energy image

LA

~

Bend energy image Lambda potehtial energy image

KIS Liquid Crystal. File: ic/icl-m34.ps. generated from input icfic 1-m3draw (19251560 |Sat Oct 13 21:07:02 19940]

Figure A-6: Four images showing various features of a densely populated 2D-SLC system. The
Schlieren image is a simple function of the dircctor ficld itself, while the bend, splay, and lambda
energy pictures indicate the points in the system which are high in the respective energy components.
Note their correspondence with the various monopole locations.
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A3 The 3D NLC: Director fields and Isometric Energy Surfaces

K15 Liguid Crystal.  File: nic-tangle.ps. gencrated from input tt14al4-iso45000y20.hdr (S00x5(X)) [ Wed Aug 29 19:39:54 2990|

Figure A-7: Simulation results showing the tangle of strings generated by quench of a 3D NLC into
the nematic phase. The six frames show the same defect tangle from different perspectives. Surfaces
of constant energy density were volume-rendered using NCSA X-DataSlice, with data gencrated from
our SO(3) tensor model 3D NLC simulaton running on a Cray X-MP. See Figure A-22 for a full-scalc
rendition of the tangle.
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K15 Liguid Crystal.  File: u10d41.ps. generated from input t110d41-iso4000y 10 (404x404) [Wed Aug 29 19:44:04 [990]

Figure A-8: Simulation results showing two :!:% loops, one collapsed to near extintion, generated by
quench of a 3D NLC into the nematic phase.
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K15 Liguid Crystal.  File: 13d-pone-decay.ps. generated from input tt1 Ib51-iso3000rotxy (356x356) [Wed Aug 29 19:04:15 1990]

Figure A-9: Two :}:% loops, created by the decomposition of an unescaped +1 string.
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Figure A-10: Cartesian crossection rod pictures of Figure A-9 The z-z plane of the 32x32x 16 sized

system is shown at four levels (top, y=28; middle, y=29, y=30; bottom, y=31). The length and

orientation of the rods are given by their n, and n, components. Half of one loop can be seen.
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A.4 The Thin Fiim NLC

Figure A-12: Photograph of the defect tangle in a thin film of freely suspended nematic liquid crystal
after a temperature quench. The dark, sharp lines in the picture are typc--‘i strings. In the top-center
of the picture, is a diffuse but visible type-1 string with three monopoles, which appear as black spots
on the string. Below that is a type-% string attached in two places to a type-1 string which is also
supporting a monopole. Various other features in the photograph include boojums, which are defects
wiich are attached to the surface of the film and appear as lines which terminate in dark blobs, and
many instances of type-1 strings cutting across horseshoe shaped type % strings. The picture is about
790 pm wide.
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A5 Pressure Ceil Data Images

t=43.05 sec

~$=43.20 sec =43.40 sec

K15 Liquid Crystal. ~ File: ic/ici-m34.ps, generated from input ic/icl-m34.raw (192x156) [Sat Oct 13 21:07:02 1990]

Figure A-13: String intercommutation sequence, showing two type -;- strings crossing each other and
reconnecting the other way. Each picture is about 140 um wide. Note that the two strings lie almost
in the same plane - the intercommutation occurs after the strings move toward each other under their
mutual attraction.
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t=2.9 sec | .8 sec

K15 Liquid Crysial.  File: ic/icl-m34.ps. g=nerated from input ic/ici-m34.raw (192x156) [Sut Oct |3 21:07:02 1990]

Figure A-14: A coarsening sequence showing the strings visible in our 230 um thick pressure cell
containing K15 nematic liquid crystal, at t=1.0, 1.7, 2.9, and 4.8 seconds after a pressure jump of
AP = 4.7 MPa from an initially isotropic state in equilibrium at approximately 37°C and 3.6 MPa.
The evolution of the string network shows self-similar er “scaling” behavior. Each picture is about
360 um wide. Al5



t=2.9 sec £=4.8 sec

K15 Liquid Crysial, File: icfic]-m34.ps, geoeraied from input ic/ic1-m34.raw (192x156) [Sat Oct 13 21:07:02 1990)

Figure A-15: Processed versions of the data in Figure A-14. The images were cleaned using 3x3
median filtering, adaptive background subtraction, sobel gradient calculation, and ntorphological
dilation/erosion.
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Figure A-16: A time scquence showing the evolution of a w3 “texture” in a freely suspended thin
film of nematic liquid crystal (left column), and as simulated numerically (right column). The texture
breaks at one point to form a monopole-antimonopole pair which then move around the ring to
annihilate on the far side. Each frame is about 260 zm wide.
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b sec

K15 Liquid Crystal.  File: mlc98-six.ps. generated from input mlc98.raw (138x132) [Fri Nov 16 17:06:58 1990]

Figure A-17: Creation of a monopole from the collapse of a £1 loop. The figure shows actual
picturcs recorded from one pressure jump of the set of ten in Run 9.
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K15 Liquid Crystal, File: mhist-six.ps. generated from input monop/mhist.ps (256x256) [Thu Nov 15 19:42:29 1990]

Figure A-18: Another monopole creation event, from the collapse of a :i:-% loop.
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t=4.

40 sec

K15 Liguid Crystal.  File: /myd/

vh-four.ps g d from input och.ps (116x176) [Thu Nov 15 19:44:20 1990)

Figure A-19: Decay of a +1 string connecting two parts of the same :!:% string. This is a very
common event. We denote it as event code 8 in our classification (Table 5.2).
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t=4 0 Sec | i=4.6 sec

K15 Liquid Crystal. File: loop-history/loop-six.ps. generated from input loop.raw (128x128) [Fri Nov 16 16:20:51 1990]

Figure A-20: Observation of the creation of a loop from various defect events. The loop subsequently
collapses.
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A.6 Additional Images
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Figure A-21: The Schliren image of a 512x512 sized 2D SLC system, showing numerous monopoies.
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IThu Dec 13 20:40:46 19901 File: it14a14-iso4500v20.hdf > stdout [11

Figure A-22: The defect tangle created by a 3D NLC simulation starting from a random configuration
(see Figure A-7).
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Appendix B

Defect Interaction Event Branching
Ratios

This Appendix contains data tabulating our observations of the branching ratios of various defect
interaction events. Refer to section 5.5 for a discussion of the data and the nomerclature used in the
tables.

Code Event Probability (%)

4 A hr 50
17 X 50

Table B.1: Branching ratios of T-intersection creation (AnT = +1) events. A total of 4 T-intersection
creation events were observed.

Bl



Code Event Probability (%)

2 =X 189
3 JO-X 33
6 1M 13.7

— 7 LI

i0 gl T 1.6
13 ([D"’ X 1.6
14 L =-== 96
15 L= 25
16 S 11
Tablc B.2: Branching ratios of T-intersection annihilation (AnT = —1) events. A total of 730
T-intersection events were observed.
Code Event Probability (%) -
7 M= 692
15 L =—== 30.8
S

Table B.3: Branching ratios of mcnopole creation (Anpy = +1) events. A total of 13 events were
observed.
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Code Event Probability (%)

10 31.6

N B e

Table B.4: Branching ratios of monopole annihilation (Anpy = —1) events. A total 19 events were
observed.

Code Event Probability (%)
; A= 5
17 X~ 50

Table B.S: Branching ratios of link creation (Any, = +1) events. A total of two events were observed.

Code Event Probability (%)

2 =X 53.5
3 JO-X 47
6 - 38
7| - ri—°'<a 31

Table B.6: Branching ratios of link annihilation (Anp, = —1) evenis. A total of 295 events were
obscrved.



| Code I Event Probability (%) |

17 X=X 100

Table B.7: Branching ratics of £1 string creation (An;, = +1) events. A total of one event was
observed.

Code Event Probability (%)

2 =X 28
3 JOC=X 23
8 D-D 63.0

1 0 ."::".o'.. -_—

3 M- 23

Table B.8: Branching ratios of *1 string annihilation (An,, = —1) evenis. A total of 257 events
were observed.

| -

B4



Code Event Probability (%)

12 O-x 50.5
13 D-x 5.7

14 L= 17.9
15 L=< 8.6
16 =3 19

Table B.9: Branching ratios of +1 string annihilation (Any, = —1) events. A total of 105 events
were observed.
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Appendix C: The Physics of Haggling Defects

Isaac Chuang

January 31, 1991

1 Introeduction

This brief summary is meant for those who absolutely insist on understanding the physics underlying
my EE’91 thesis. My goal is to address the question “What are the dynamics of defects in a liguid
crystal?” aside from all considerations about what a topological defect is, and with as Little group
theory as possible. As opposed to just presenting results, I will attempt to explain what ie happening
in the most general and applicable form.

2 The Scenario

First, allow me to review the scenario under consideration. A liquid crystal can be considered to be
an assembly of rod-like molecules. Experimentally, a drop of liquid crystal can be studied under a
microscope as the temperature is lowered suddenly. When it is hot, the individual molecules orient and
position themselves randomly. However, as the system is cooled down, it undergoes a transition into
the “nematic” state wherein tke individual molecules orient themselves along some preferred direction
(in three dimensional space).

Because each individual molecule chooses some random orientation direction, immediately after the
phase transition the system is charucterized as having many patches of molecules orienied in different
directions. These patches will haggle with each other until all the molecules agree, and find one
common preferred orientation. During this process, because the system energetically prefers that the
orientation of adjacent molecules be as continuous as possible, disagreements in molecule orientation
will be localized as much as possible.

These “disagreements” are known as “topological defects,” and will be referred to simply as “defects”
in our discussion. The interaction of these defects, the haggling by which they come to terms (sometimes
through mutual annihilation), can be a beautiful dance which is over in less than a minute. The rules
of this dance are the subject of our review.

3 The First Order: A String Network

In the nematic liquid crystal system we are studying, the predominant defect is the + 1 string. To a
good first approximation, the defect dynamics in a nematic liquid crystal can be approximated as those

1



How to Create Topological Defects

e Gather together an ensemble of many objects

e Give the objects some local interaction

e Create a configuration space with a degeneracy in energy
e Suddenly, and globally, abolish the degeneracy

e Allow the system to relax

Figure 1: Cookbook’ recipe for topological defects

A

Characteristics of the Nematic Liquid Crystal

¢ Dissipative system (highly viscous medium)
o +} strings dominated defect dynamics

o Other defects: monopoles and +1 strings

o Free energy proportional to |V - ii|

Figure 2: Important properties of the nematic liquid crystal

of a 1} string network. “Strings” are one-dimensional defects. They are infinitely long except when
they form loops. Strings move under a balance of forces between their own internal “string tension”
and the viscous force due to moving through the liquid medium. Their goal is to straighten themselves
out. While doing so, they sometimes intersect each other and trade ends. This process have some
probability of creating a loop, which will shrink and disappear. See [Vil83] for a comprehensive review
article on the subject of strings and their properties.

The dynamics of this “string coarsening” behavior is described extremely well by the so-called “one-
scale” model, which criginated in the astrophysics community [TH87,Lif82,AT89,BB89,A590), we vwiil
discuss that model bere, and its consequcices for our system.



3.1 The one-scale model

The string tension T arises from a string’s desire to straighten itself out as much as possible, and thus
decrease the derivatives in the orientations of its compositicnal elements, the rod-like molecules. (As
mentioned before, the free energy in the liquid crystal system is proportional to the magnitude of ¥ - 7,
where i1 is a vecior field which gives the orientations of the molecules.) T can be considered to be
constant to a good approximation.

The viscous force per unit length, I'/¢, which a moving string eacounters iz proportional to ths
velocity at which it is moving. The force balance on a moving string is thus written as:

fvilcoul = fatr!.ng tension 49
I.T
£ ¢

Next, consider an ensemble of strings, ali tangied up together. Knowing the above force balance
equaticn, can e calculate the evolutionary behavior of the string density ps (the line length per unit
volume)? Keep in mind that we know that psmust decrease as the strings streighten themselves cut.

A relationship between ps and time ¢ can be caiculated by examining the rate of loss of energy from
the string network. We assume that essentially all the strings at time ¢ can be characterized as having
a radius of curvature {, and that the string density is approximately pg ~ £-2. Recalling that energy

loss is force x velocity, we can write the rate of loss of energy as:
aw _Tv (2)
dt 63 b Vi

per unit volume £3. However, we also know that the string energy density directly:
W =Tps. (3)
Thus, we can arrive at a differential equation for pg by equating the time-derivative of Eq. (3) with
Eq. (2):
s L *
where a constant of proportionality, ¢, has been introduced. The general solution for the evoludon of
the string density with time is given by:

r _ N
ps:ﬁt Y (5’

with ¥ = 1 as the expected scaling exponient. Note that this solution 2lso implies that the characteristic
length scale of a string network £ is related to time as:

€ o Ve, (6)

I will simply ncte here that a similar consideration of the balance of forces upon an arc segment of
a loop of string results in the same relationship r « /¢. Specifically, Eq.(5.4) shows that

r= ‘/%’-(to—t). (7

3



Experimenta! data measuring the rate of loop collapse has been used to estimste that T'/T" lies between
200 and 300 um?/second in the specific material studied; of course, its precise value depends on the
ambient pressure and temperature. A further discussion of the specific values of the elastic constents
for the nematic liquid crysial may be found in [KM77] and {WC88].

3.2 In perspective...

One great significance of my work was in showing that the string density actually did evolve &g expectad
in a laboratory bench system. I experimentally found that pg = t~1-02£0-09 for girings produced in a
certain nematic liquid crystal. As far as I know, this is the first such confirmation of the cae-gcale
model.

3.3 A one-scale molecular dynamics sysiem

A consequence of the validity of the cne-scale model in faithfully describing the coarsening behavior of
a string network is that it may be possible to study other systems which are characterizable by a single
scale to gain insight into the dynamics of string coarsening. Of course, the motivation would be to find
a simpler system (string dynamics are notoriously difficult to simulate). As an example, consider the
following, weli-known[T0y%0] molecular dynamics construction, wherein an ensemble of particles and
anti-particles interact together via a Lagrangian

L=KE-~§&, (8)

where ® is the interaction potential. We approximate the medium in which the particles interect to
be 50 viscous that a particle under no force will immediately come to rest. That is, the equations of
motion for the particle position variables 7; are given by

0 dr;

- 8_17, = 1?[ ’ (9)
where 7 is a damping constant. Setting # to be a logarithmic potential (this will give us the correct
scaling behavior later):

# =3 qqg;Inlfi -7, (10)

(ird)
we find that the instantancous velocity of a particle is givea by

g Ny T T
# = —q-ijm- (11)
7

Given this equation of motion, how does the density of particles behave? In an infinite system with
randomly and homogeneously distributed particles and anti-particles, the particle density p obeys &
simple rate equation:

d
d_l: = —ap, (12)
where a is the inverse of the characteristic lifetime of a particle. Dimensionally, a can be constructed

from the characteristic velocity and length scales such that a ~ v/£. Using Eq. (11), we finad v ~ 1/§,
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and thus a ~ £~2. Substituting into Eq. (12) along with the definition p = £ ~2, we bave ths differential
equation
g x fa x
at
which has the solution £ ~ /%, as desired.

Thus, we have seen that a the evolution of a two-dimessional ensemble of charged particles does
indeed evidence one-scale behavior, at lease in equilibrium. A simple physical picture for understunging
wby such a model exists can be drawn by considering & two-dimensional cross section of an ensemble
of strings. Disregarding strings which lie in the plane, we see that all strings pass (hrough the plane
at a point. Some of these points will be “positive” or “negative” (strings hove charge algo - their
topological charge is given by a line integral around a closed contour around the strings axes). Ag the
strings streich out and intercommute with each other, these points in our plane will move about, and
opposites will attract and like will repel. The motion of the points is entirely anslogous to the moticn
of the points in the model we have created. Likewise, the scaling behavior of the charecteristic distance
between particles in the molecular dynamics system is exactly like the scaling bebavior of the string
deusity.

In this section, we have discussed how the physics of the “one-scale” model complietely describe the
dynamics observed in the string network, the first order approximation to the defect tangle of (ke nematic
liquid crysial. We have also seen how a simpler, two-dimensionai molecular dynamics model replicates
all of the essential physics, because of the simpiicity of the “one-scale” comcept. We will consider next
interactions of higher order, which lead to non-scaling behavior and require the introduction of new
models to explain experimentally observed behsvior.

Ea (13)

4 The Second Order: Monopoles and +1 Strings

Second order interactions involve two other defects present in the nematic liquid crystal: monopoles
and +1 strings. Monopoles are zero dimensional (point) defects, and appear as blobs sitting on fAlux
tubes. +1 strings are flux tubes. They are non-singular strings, and can readily achieve a lower energy
state by diffusing out (and just disappearing into nowhere). An imaginative (but not very accurate)
analogy might associate a wooden stick with a :i:-} string and a thin cardboard tube with a +1 string;
a :!:} string has a definitive core which canaot go away by itself, while a +1 string really has mo core.

The density of monopoles py; is very small compared to p45. The line length per unit volume of
visible +1 string po also appears (o be small compared to ps. Furthermore, neither zeem to have
any significant effect on the scaling behavior of ps. Experimentzl data indicate that +1 etrings do
interact with +4 strings, but independent measurement of po is not feasible because of the difficulty in
identifying what constitutes & +1 string. However, py can be quantified accurately, since moncpoles
are straightforward (if tedious) to identify and locate.

4.1 Monopole density non-scaling behavior?

The evolution of py is interesting because experiment has shown thst apparently it does not have a
scaling behavior untii relatively late times. That is to say, while ps seemed to be proporiicasl to ¢!



after £, ~ 1.3 seconds (i.e, log p3 points plotted vs. logt fell on a straight line of slope —1 afiter ¢,), it
was clear that py rose sharply from a very small value and was still rising at time ¢ = ¢,, and leveled
off at about ¢, ~ 1.6 sec. (times quoted from run 8 data, see my thesis for more details).

I wili digress from the original aims of this article for two paragraphs for the purposes of elucidating
a recent and possibly important insight into explaining the apparent non-scaling behavior of p .

Two models have been advanced to explain this observation. The first involves a hypotheticol
limiting mechanism due to the presence of a second length scale in the system, the core radivs ..
Defect energetics arguments, which compare the amount of energy contained inside a £2 volume box
enclosing either of three defects (+1 string, +1 string, or monopole), indicate the existence of three
“epochs” in which the costs of creating one defect over another shift relative to each other. According
to this argument, at first the creation of i% strings are energetically favored, while moaopoles are the
least favored. Next, the 11 strings become favored over +3 strings, and finally, monopole production
becomes favored over +3 strings (see Figure 3-4). The key point is that the crossover times are
exponential functions of r.. Unfortunately, however, it is not clear whether or not this comparigon is
physicaily meaningful, because it compares isolated defects.

A second model is based on describing the production of monopoles through a simple rate equation,
balancing the number of loop collapses (the basic mechanism for monopole creation) with the sbsorption
of moaopoles into a :l:-} string (the basic annjhilation mechanism). The initial form of this equation,
as proposed by Turok, included a logarithmic function of the core radius as a means for shutting off
the monopole creation term, schematically as follows:

d
o = PloopIn(1r) — Bow. (14)

It was felt that the logarithm was needed because of the obvious non-equilibrium behavior of pp s
compared to pg at the same times. However, I iater realized that the same effect could be echieved by
discarding the logarithmic term:

d%tM_ = aploop - ﬂpM ’ (]5)
and replacing it with a specification of an initial condition which would place the system out of
equilibrium. For example, requiring that p ~ 0 at ¢t = 0 is sufficient, because it necessitates an
initial increase in pp in order to reach equilibrium, after which point py could then decrease as
expected, and consistent with experimental observations. The presumption of the existence of such an
initial condition is not untenable. Turok has calculated that in the Kibble mechanism essentially zero
monopoles are created. This is fundamentally because the probability of randomly coming up with
molecule orientations compietely wrapping the two-sphere is very small.

Unfortunately, the direct exploration of the non-scaling behavior of py in a simulation of string
dynamics is prohibitive, because of the difficulties associated with simulating an ensemble of strings
in three dimensions. However, these difficulties can be circumvented by developing a simple model
applicable to the molecular dynamics system described at the end of the last section.

4.2 A simple monopole behavior medel

Monopole creation and arnihiiation dynamics can be explored through a simple extension of the molec-
ular dynamics model previously discussed. In this subsection, we shall develop the rationsle behind this
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extension, and glong the way, highlight some of the main considerations in dealing with simplifying
from the actual defect dynamics system.

As preseated, only two species of particles exist in the molecular dynamics model, positive ond
negative charges. By adding & new species to represent monopoles, and by giving it the appropriate
creation and annihilation mechanisms, we can hope to compare pp and pg at specific times.

The mutual annihilation of a pair of oppositely charged particles roughly comresponds to the intercom-
mutation ¢f two strings or the collapse of a loop, because of the rapid, local loss of string length during
those two processes. Monopoles are created in approximately one quarter of all loop collapse events,
and perhaps ten percent of ell string intercommutations result in a loop creation. Thus, monopols
production should indeed a relativeiy rare process. One way of implementing a monopole crestion
mechanism is to create a monopole at the site of a pair annihilation, with some fixed probability, and
immediately after the arnihilation event. Monopole annihilation can be implemented directly analo-
gously to the observed physics; we see that monopoles disappear by first being attracted towards 2 + 3
string then being absorbed by it. Thus, we may create an attractive potential & 5; ~ log r between
monopoles and both positive and negative particles (no difference due to charge).

A typical scenario for this model goes as follows: an initial distribution of totally randomly located
charged particles in an infinite system, with no monopoles, is allowed to evolve. At first, the mozopole
deasity should increase, until the raie of monopole creation it in equilibrium with the rate of annihilation.
This will happen when the cumulative excess number of monopoles created arrives at a total sufficient
to sustain an annihilation rate commensurate with the creation rate, which continually decreases from
the start because the charged particle density decreases. The crucial questions are whether or not the
particle density reaches a scaling solution sooner than does the monopole density, and if the monopole
density also attains a scaling solution at late times.

A numerical simulaiion of the model just described was implemented, and experiments with 400
to 3200 particles and various stepsizes and lattice sizes were run in a box wiin periodic boundary
conditions. Specific results will not be presented here, but preliminary data (see Figure 3) indicate that
given the initial condition py = 0, the monopole density py reaches a scaling solution distinctly after
the string density ps does. This observation is consistent with laboratory experiment dotn, and adds
confidence to the model expressed in Eq. (15).

5 Conclusion

Much more remains to be said about this topic. To wit, I could continue by reiterating the discussion
about my motivation for and results from my numerical simulations of Chapter 4. I could also rehash
my ceatral conclusions and recommendations for future work. However, allow me to simply refer the
reader back (o the thesis for more details on those subjects, and end by reflecting on what we kave
reviewed in this article.

We have seen that in the first approximation, the essential physics of a defect ensemble are given
by the “one-scale” model, which describes the evolutionary bebavior of a string network. This model
can also be used to describe the behavior of an ensemble of charged particles interacting through a
logarithmic potential, in what we denoted as the molecular dynamics model. Such an approach, much
like viewing a crossection of an ensemble of strings, is valuable for its simplicity. In the final gection,
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Figure 2: Data from molecular dynamics simulation modified to include the effect of monopole creation
and annihilation. The upper curve indicates the density of particles in the system as & function of time,
and the lower curve shows the monopole density vs. time. The final slope of the particle density line
is ~0.9; theoretically, it should be exactly 1.0. Operational parameters for this run were as follows:
di=0.1, probability of monopole creation for each pair annihiletion 10%, size of system 128x 128,
margin box size 20x 20, initial number of particles = 800.



we discussed a specific application of the molecular dynamics model (owards the explosation of a
second order effect, the non-scaling behavior of the monopole density. Preliminary results from the
numerical simulations are promising, but are certainly wanting for future, more rigorous work.



