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Abstract
Current systems produce a large and growing amount of data, which is often referred to
as Big Data. Providing valuable insights from this data requires new computing systems
to store and process it efficiently. For a fast response time, Big Data typically relies on
in-memory computing, which requires a cluster of machines with enough aggregate DRAM
to accommodate the entire datasets for the duration of the computation. Big Data typically
exceeds several terabytes, therefore this approach can incur significant overhead in power,
space and equipment. If the amount of DRAM is not sufficient to hold the working-set of
a query, the performance deteriorates catastrophically. Although NAND flash can provide
high-bandwidth data access and has higher capacity density and lower cost per bit than
DRAM, flash storage has dramatically different characteristics than DRAM, such as large
access granularity and longer access latency. Therefore, there are many challenges for Big-
Data applications to enable flash-centric computing and achieve performance comparable to
that of in-memory computing.

This thesis presents flash-centric hardware architectures that provide high processing
throughput for data-intensive applications while hiding long flash access latency. Specifically
we describe two novel flash-centric hardware accelerators, BlueCache and AQUOMAN. These
systems lower the cost of two common data-center workloads, key-value cache and SQL
analytics. We have built BlueCache and AQUOMAN using FPGAs and flash storage, and
show that they can provide competitive performance of computing Big-Data applications
with multi-terabyte datasets. BlueCache provides a 10-100× cheaper key-value cache than
DRAM-based solution, and can outperform DRAM-based system when the latter has more
than 7.4% misses for a read-intensive workloads. A desktop-class machine with single
instance of 1TB AQUOMAN disk can achieve performance similar to that of a dual-socket
general-purpose server with off-the-shelf SSDs. We believe BlueCache and AQUOMAN can
bring down the cost of acquiring and operating high-performance computing systems for
data-center-scale Big-Data applications dramatically.

Thesis Supervisor: Arvind
Title: Johnson Professor of Computer Science and Engineering
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Chapter 1

Introduction

Current systems generate a vast amount of data continuously in various settings, such as

eCommerce [46, 103], social networking [49, 166], web search [107], and sharing econ-

omy [39]. For example, in 2018 Uber generated 100 terabytes of trip data daily, and

performed analytics on 100 petabytes of collected data [39]. Such a vast and fast growing

data is often referred to as Big Data. This collection of Big Data and, the application of data

science and machine learning methods to it, has become one of the largest drivers of today’s

IT industry. However, as the amount of data continues to grow, further progress will depend

on our ability to store and analyze it cost-effectively.

Big Data, by definition, does not fit in the main memory of a single server (∼1TB

maximum), and typically requires a server cluster to manage and run complex queries

on it. Typically such Big-Data applications are run in the “cloud”, where application

servers and storage servers are physically separate and connected via a network. In such

a “disaggregated” data-center architecture, applications typically need to fetch data from

storage servers to the application servers, and then perform computations on the data.

One way to provide fast query responses is by deploying in-memory solution, where

datasets are kept in DRAM for the duration of computation and large-scale systems are

created by aggregating main memories of server machines. Such in-memory solutions are

highly popular in the cloud, and are used by many Big-Data frameworks, such as Spark [211,

213]. This RAMCloud [170] style of system organization can provide fast random word-

level accesses to datasets and overcome the long latency, large access granularity and
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limited bandwidth of central storage, but is only effective when application’s working set is

captured by the aggregated DRAM capacity. At the same time, this requires a significant

amount of hardware resources, CPUs and DRAM, to deliver high-performance Big-Data

applications, and results in high cost of equipment, area and power. Meanwhile, if the

amount of DRAM is not sufficient to hold the working-set of an application, performance

deteriorates catastrophically [208].

Another popular solution to mitigate the slow storage access over network is by offload-

ing computation to storage. Recent research [141] has explored extending high-performance

key-value stores with storage function offloading support, which can push and execute code

near data with microsecond latency. Analytic workloads using databases has also explored

such a solution; however storage servers does not have sufficient CPU and DRAM resources

for complex operators, and only simple operators such as Filter and Aggregate without

GroupBy are offloaded in production systems [28, 43, 191]. Near-storage offloading method

can offer an order-of-magnitude performance improvements [210], but is still 100× inferior

to a share-nothing distributed database where each server has local data access [195]. More

aggressive computation push-down would essentially bypass the slow network entirely, but

inevitably increases the CPU and DRAM capabilities of storage servers significantly.

In this thesis we explore whether flash storage and hardware accelerators can provide a

cheaper and more power-efficient solution to big-data applications in the cloud. Using flash

storage instead of DRAM can greatly reduce the high cost of acquiring and operating a large

cluster of in-memory computing systems, because flash storage has 100× higher density than

DRAM, is 100× cheaper per bit and operates at one fiftieth of DRAM’s power. Computing

Big-Data applications near flash can potentially bring down the high cost of acquiring and

operating a server cluster needed for in-memory computing. Using conventional computing

processors for flash-centric computing, such as CPUs and GPUs, can yield satisfactory

performance with a much smaller DRAM requirement, but they are still power hungry and

consume several hundreds of watts per machine [85, 216] . Hardware accelerators can

greatly improve performance and efficiency of query processing by specialization. A single

hardware accelerator often consumes around tens of watts, and can typically fit within the

power limit of a storage peripheral device [126,127,129,208]. If Big-Data applications store
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datasets entirely in flash and use hardware accelerators to run queries without degrading

performance then the cost of Big-Data applications can be lowered dramatically than the

current solutions.

This thesis addresses the challenges of building new flash-centric hardware architectures

to lower the cost of Big-Data applications with multi-terabytes datasets using FPGAs and

flash storage in data-centers. In particular, we focus on two important types of workloads

that run in the “elastic” cloud: latency-sensitive interactive online services, such as internet

searches and social networking, and analytic workloads on terabytes/petabytes datasets. For

latency-sensitive workloads one typically employs a middle-layer of DRAM-based “caching

services” to overcome the long-latency and coarse-grain storage accesses, while for analytic

workloads, application servers typically push simple computations, such as filtering, into

storage servers to reduce data movement over the network.

We provide alternative solutions for both types of workloads: BlueCache [208], a

scalable flash-based key-value store, for latency-sensitive workloads, and AQUOMAN [207],

an end-to-end in-storage analytic-query offloading solution, which offloads most SQL

operators, including multi-way joins, to SSDs.

BlueCache is a 10∼100× cheaper rack-level appliance for data-center-scale key-value

cache than in-memory solutions. In BlueCache, all software components including KVS

operations, the flash controller and the network are directly implemented in hardware, to

guarantee sub-millisecond processing latency. BlueCache can outperform DRAM-based

KVS when the latter has more than 7.4% misses for a read-intensive application.

AQUOMAN uses a streaming computation model, which allows AQUOMAN to process

queries with a reasonable amount of DRAM for intermediate results. AQUOMAN is a general

analytic query processor, which can be integrated in the database software stack transparently.

AQUOMAN-augmented SSDs can greatly increase the query offloading capability of storage

servers without increasing their CPU and DRAM resources.

The rest of chapter is a deep dive into the background and motivation of using flash

storage and hardware accelerator for more efficient Big-Data processing, and is organized

as follows:

• Section 1.1 describes the elastic cloud, example workloads which operate in the cloud,
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the network bottleneck in the cloud architecture and existing solutions to mitigate the

bottleneck.

• Section 1.2 describes the opportunities and challenges of using flash storage as the

main memory for Big-Data applications.

• Section 1.3 discusses why hardware accelerators are needed for near-flash Big-Data

computation, and why we used FPGAs to implement our accelerators.

• Section 1.5 and 1.6 describes the contributions and the organization of this thesis.

1.1 “Elastic” Clouds for Big-Data Applications

Public clouds, such as Amazon AWS [8], Microsoft Azure [22], offers cheaper and more

flexible server systems needed for computation and storage of Big-data than “on-perm”

or private clouds. Public cloud are “elastic”, where users can customize their general-

purpose server resources in terms of CPU/GPU, DRAM, network and storage, and can

dynamically add or reduce resources on the fly based on their applications’ requirements.

Moreover, major public cloud vendors can support server deployment of ultra-large scale

across multiple geo-locations, which is highly infeasible and expensive for a “on-perm”

deployment. Therefore many Big-data applications are running on public cloud to maintain

a low cost of managing highly elastic server clusters of high quality.

Network

Application 
Server

Application 
Server

Application 
Server… Application Layer

User Requests Data Center

MySQL … Storage LayerAmazon S3 HDFS

… End Users

Storage Access

Figure 1-1: “Disaggregated” Data-center Architecture
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Modern public cloud are typically employs a “disaggrgated” architecture, where ap-

plication and storage servers are physically separated and independently managed. As

illustrated in Figure 1-1, in such a cloud, the application servers and storage servers are

connected via a relatively slow network. This “disaggregated” organization is highly popular

because it allows independent compute and storage resources allocations, which increases

resources utilization, simplifies server resource management and lower the overall system

cost for many big-data applications. For example, many popular data warehousing and

analytics systems, such as Presto [26], Snowflake [81], Amazon Redshift [7], are designed

purposefully to support running queries on such a “disaggregated” cloud architecture.

1.1.1 Example Applications in “Elastic” Cloud

The emergence of warehouse-scale compute systems, such as public clouds, has brought

a large number of big-data applications to the forefront in the form of social networking,

web searches, business intelligence, software-as-a-service and more. In general cloud com-

puting platforms aim to provide high-throughput and low-latency computational capability

to support high-quality user experience for big-data applications. Yet various big-data

applications have their own characteristics, and are concerned with optimizing performance

metrics, such as latency and query processing throughput, at vastly different scales. To

understand how “disaggregated” cloud architecture can affect the performance of big-data

applications, it is important to understand each application’s characteristics and its own

system design requirements. In this thesis we focus on improving two popular types of

big-data applications, interactive online services and analytic workloads. The rest of this

section discusses their characteristics, their typical latency and throughput requirements in

system designs, analyses their bottlenecks in the cloud and describes existing solutions to

mitigate such bottlenecks.

Interactive Online Services

Large user-facing web services, such as online searches, social networks and e-commerce,

are ubiquitous and have become a part of people’s normal daily lives. Such applications are
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highly interactive, where millions of users actively engage in online activities and expect

fluid interactions with the cloud where their queries are serviced. A popular large online

service can have hundreds of millions of daily users [167], which puts a significant amount

of computational, storage and network-I/O stress to the cloud architecture of today. An

interactive online application is typically serviced by a diverse mixture of backend services,

such as database, recommender systems, advertise systems and more. Typically the backend

services organize some indexed data-structures on large data sets to quickly identify the

objects of interests for each query, to avoid scanning the entire raw data. Interactive online

services need its cloud computing infrastructure to provide high-performance services of

extremely high throughput and low latency to ensure fast and engaging user experiences.

1) Millions-Per-Second Request Rate: Because of such a large number of interactive

online services, an interactive online application can generate a large number of end-users

requests, which ranges from hundreds of millions to billions of requests per second [152,153].

Such a high request rate typically puts an extraordinary amount of query processing pressure

to back-end storage layer, where complex software such as relational databases manages

user datasets persistently on disks.

2) Millisecond-scale Tail-Latency: Low latency is critical for the interactive online

services. Based on a recent report by Akamai, a 100-millisecond delay is significant,

which can reduce customer’s conversion rate by 7% and impacts web services’ business

revenue negatively [5]. Many applications can tolerate milliseconds of latency to provide

high-quality interactive online activities for end users. Such user-facing online applications

are especially concerned with tail latency, such as 99th percentile (P99) of the end-user

requests. For example, Microsoft online news and retail software stores need deliver fast

user experience with 150-millisecond P99 latency [58]. Such a consideration in performance

metrics, in addition to throughput and average latency, is as a result of how each end-user

request is processed. A single end-user request results in multiple queries to a mixture

of backend services, and a request is incomplete until all of its backend requests have

finished. Achieving low tail-latency for data-center-scale computing is challenging, because

components in a large-scale system have high degree of variance, and user request traffic

changes rapidly, which requires systems to quickly adapt to new situations by redistributing
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various computing resources on short notice [84]. To provide low end-user latency for fluid

end-user experiences essentially means to mitigate the effects of backend query latency

variability and to make sure that the majority of back-end queries are completed within a

certain latency bound.

Analytic Workload

Complex analysis of “Big-data” can provide tremendously valuable insights for many

domains, such as business intelligence [192], social studies [49], biology [23, 157], person-

al/public health [15] and more. Typically a large user-facing online service can generate

several terabytes of user activity data on a daily basis [39], which is first stored in various

online transaction processing (OLTP) systems such as MySQL and Postgres databases.

Every once in a while (e.g. every 24 hours), data stored in a diverse mixture of OLTP

services is ingested into a “data lake” or “data warehouse”, which unifies the content, format

and metadata of all the datasets that need to be analyzed in one place. Typically a “data

warehouse” is massively multi-tenant service hosted by a distributed file system, such as

HDFS [16], where datasets are stored in compressed columnar format (e.g. Apache Par-

quet [10]) because of better space and processing efficiency. Data analysts run analytical

programs via distributed analytical engines (e.g. Spark [212] and Presto [26]), which fetches

relevant data from the data warehouse from the storage layer, and performs computations

using a server cluster in the applications layer. A significant number of analytic queries

are expressed as SQL statements, which perform database operations such as filter, join

and aggregate. Analytical workloads have system design goals with drastically different

performance measurements than those of interactive online services.

1) 10-100 Concurrent Requests: Unlike interactive online services with millions to

billions of active users, analytic workloads are typically internal service within a company,

where several business functions and organizational units share the access to the data-sets

in the data warehouse. Typically hundreds to thousands of professional data analysts can

access the data warehouse [39], which can result in tens to hundreds of concurrent analytic

queries in-flight [26].

2) Seconds-Hours Query Latency: Many analytic queries are exploratory and dynamic,
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which can have no index pre-built for fast data retrieval, therefore need to scan raw data files

to generate a result. Because of this, analytic workload generally take longer to process a

query than interactive online services do. Analytic queries have different ranges of latency

depending on the amount of data which are being examined. Interactive queries typically

examines a relatively small amount of data (∼50GB-3TB compressed), which are sometimes

canceled after initial results are returned [26]. Such queries are aimed at gaining quick

intuition, which typically take several seconds to 30 minutes to run [26]. Other queries need

to provide deep insights on complete and accurate datasets, which can read tens of terabytes

of input data and take several hours to complete [26, 129].

1.1.2 Network Bottlenecks in Disaggregated Clouds

“Disaggregated clouds” greatly reduce the cost of data-center resource management, but

the network that connects application servers and storage servers can present as a major

system bottleneck. To perform queries on data-sets, application needs to bring data from

the back-end storage layer over the network, and then apply computation and service the

end-user request. The network access can be slow both in terms of latency and bandwidth.

Latency Overhead

Although data-center networks have improved greatly, applications still suffer from long

remote storage access latency. For example, remote storage accesses to Amazon Simple

Storage Service (S3) or Google’s cloud storage have latencies from tens to hundreds of

milliseconds on average [1,83]. In comparison, NAND flash disk access over local PCIe link

can be as low as 23 microseconds [20], and high-speed key-value store device can support

average access latencies from 150 to 300 microseconds [115]. Therefore a disaggregated

cloud architecture can have more than 100× access storage latency overhead, measured in

hundreds of milliseconds.

More importantly, storage tail latency over the network, e.g. 99th percentile latency,

can be an order-of-magnitude slower than the average access latency [84]. Therefore it

quickly becomes highly challenging for interactive online services to keep the tail latency
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distribution short, as the complexity and the size of the system scales up and the number of

user requests increases [17].

Analytic workloads are generally less sensitive to the latency overhead since query

completion times are measured in minutes to hours instead of milliseconds.

Bandwidth Bottleneck

In a disaggregated architecture, analytic workloads need to scan terabytes of datasets,

which is bounded by the network throughput between the application and storage layer.

Typically the internal bandwidth of a storage server is much higher than the external network

bandwidth over which data are accessed by application servers. For example, traffic to and

from Amazon AWS S3 storage server can now take advantage of up to 25 Gbps (3.125GB/s)

of bandwidth [55]. Such a external network bandwidth is roughly less than half of a single

high-speed NVMe SSD’s bandwidth (e.g. 7GB/s) [30]. In addition a 2U storage server

blade can typically support 24 such high-speed storage devices [14]. Although high-speed

network such as 400GbE may hit the mainstream soon, which can mitigate the interconnect

bandwidth bottleneck in the data center [3], moving a large amount of data around via

data-center network can still consume a significant amount of power [61].

Because of this enormous gap in local and remote storage access bandwidth in current sys-

tems, it has been shown that analytic workloads (e.g. SQL analytics), which perform query

processing in a disaggregated architecture, can suffer more than two orders-of-magnitude

performance degradation than in a conventional shared-nothing architecture [195].

Interactive online services can be also suffer from limited bandwidth because of large

amount back-end requests associated with each end-user request; however recent work [59,

189] indicates that processing small network packet, which are typical for interactive

applications, can quickly become a bottleneck before network bandwidth are depleted.

1.1.3 Mitigation of the Network Bottleneck

Two intuitive solutions exist to mitigate the network bottleneck in a disaggregated cloud:

DRAM-based caching and near-data computing.
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DRAM-based Caching for Interactive Online Services

DRAM accesses is much superior than storage server accesses both in terms of access

latency and throughput. Local DRAM access can support 100-nanosecond latency and

hundreds of gigabytes per second bandwidth. Remote direct DRAM access (RDMA) can

support 2 microsecond latency and 100Gbps bandwidth per NIC port [131], which is still

several orders-of-magnitude faster than remote storage access. With DRAM-based caching,

the application server load the data from the storage server once, cache it in main memory,

and then reuses it many times to amortize the high cost of data retrieval from the back-

end storage. As a result, an application can improve its performance significantly if its

working-set can be cached effectively in DRAM for the duration of computation.

Big-data, by definition, cannot fit within the main memory of a single general purpose

machine. Therefore a distributed server cluster needs to be built to aggregate enough DRAM

capacity to provide enough cache capacity for applications. Such a RAMCloud system

can aggregate 64TB DRAM storage capacity over 1000 servers connected via high-speed

network [169, 170]. Compared to a distributed disk-based storage cluster of similar scale,

RAMCloud can provide 100× to 1000× better performance.

Interactive online services can have high temporal and spatial locality in end-user queries,

because users in similar region typically have similar interests at a similar time. Because

of this, DRAM-based caching is a highly amenable solution to improve the performance

of interactive online services, by reducing load to the backend services significantly and

decreasing query processing tail latency greatly because of fast data retrieval from in-memory

storage. One of DRAM-based caching systems for large-scale datacenter applications are

distributed in-memory key-value stores (KVS). They are used to augment the slower backend

persistent storage, and are highly popular due to its simplicity and effectiveness. To use such

a KVS cache, an application server transforms a user read-request into hundreds of KVS

requests, where the key in a key-value pair represents the query for the backend and the

value represents the corresponding query result. Facebook’s memcached cluster [167] and

the open-source project Redis [27] are good examples of such a data-center caching systems.

In 2008 Facebook maintained over 28 TBs of memcache distributed cache running over
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800 servers in its data center to cache billions of objects and support billions of requests per

second from over a billion users around the globe [42].

DRAM-based caching solutions can mitigate the slow storage access overhead greatly,

but is extremely expensive in terms of energy consumption, price per bit and storage

density, which limits its widespread use except for latency-critical interactive workloads

with high user-request rates. Moreover it has been observed repeatedly that applications’

performance deteriorates significantly if the a significant portion of the working-set cannot

fit in DRAM [127, 208].

Near-data Computing for Analytic Workloads

Historically near-data computing has been motivated by two different problems: 1) insuffi-

cient DRAM to hold the buffer pool and 2) slow I/O to move the data from storage to DRAM.

Two techniques have been used to tackle small DRAM challenges. One is to partition the

input data-set and run the query on each partition [88]. Partitioning reduces random disk

I/Os at the cost more sequential disk accesses. The other way is to push computation to

disks to avoid bringing data into DRAM, which reduces I/O traffic. This idea was explored

as early as in the 80’s [87]. The primary motivation for early work for near-data computation

was to avoid moving data through slow storage network.

In recent years, similar ideas of near-data computation are widely used in production

systems in the cloud [28,105], because of the network bandwidth bottleneck caused by com-

pute and storage separation needed for an elastic cloud. The primary classes of applications

in the cloud that offload computation near data are analytic workloads because of a large

amount of data needed to be processed by each query. Typically simple operators, such as

filtering and aggregate, are offloaded in storage because they requires only a reasonably

small amount of computation power and DRAM capacity to perform computation of such

operators. Examples include IBM/Netezza [191] and Amazon Aqua [43], which pushes

filtering and aggregate to reconfigurable fabrics near storage.

Amazon S3 Select is one of the most popular examples that uses this idea of near-

data computing in the cloud. In 2018 AWS released a new service called S3 Select [28]

which pushes a limited set of SQL operators to the storage nodes which possesses the data
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persistently. Standard S3 API exposes GET and PUT operators which reads and writes the

entire data objects or part of it based of byte offset ranges. S3 select adds three simple SQL

operators to the standard S3 API, which offloads filtering, projection, aggregate without

groupby to storage servers. A recent study shows that computation push-down using S3

Select can improve analytic query’s performance by 6.7× compared to a baseline without

near-data capabilities [210].

Offloading simple operators such as filtering is effective, however to achieve query

performance similar to that of conventional share-nothing databases, more database operators

needs to be pushed to the storage servers [195]. In order to accommodate more aggressive

offloading, including multi-way join, storage servers need to increase its CPU and DRAM

capability significantly to manage large complex data structures stored as intermediate results

in memory. Our micro-benchmarks have shown that 11 HW threads and 128GB DRAM are

needed to perform hash-join and saturate 2.4 GB/s of disk bandwidth for TPC-H queries.

Such an aggressive pushdown approach using general-purpose computing can increase the

cost of storage servers dramatically. Meanwhile it also goes against the design principles of

such a disaggregated architecture, which separates compute and storage resources.

1.2 Flash Storage: Opportunities and Challenges

One of the most important aspects for high-performance cloud computing systems for

“Big-data” is fast access to large datasets. Most platforms today support complex queries on

large datasets using sophisticated software packages running on general-purpose machines.

For a fast response time, such systems typically rely on in-memory computing, which

stores datasets in DRAM for the duration of the computation. Since a single high-end

server is limited to 0.5TB∼1TB of DRAM, this approach requires a cluster of machines to

accommodate multiple terabyte-size data-sets at a high cost of power, space and equipment.

Additionally, it has been observed that the performance plummets if working-set size of a

query exceeds the total DRAM size.

Recent advances in storage technology have given a new push to process complex queries

with high-bandwidth Non-Volatile Memory (NVM). As illustrated in Table 1.1, NAND
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flash costs 100× less per bit, consumes 100× less power and offers two orders of higher

storage density than DRAM. These characteristics makes flash-based computing systems a

cheaper and more power-efficient alternative to in-memory computing systems for Big-data

applications.

Table 1.1: Storage device comparison (prices are representative numbers for 2021 on the
Internet)

Properties
Samsung
980 PRO Series [31,
32]

Samsung
870 EVO Series [29]

Samsung
M393AAG40M3B-
CYF [2, 33]

Storage
Technology

3D V-NAND
PCIe NVMe

3D V-NAND
SATA SSD

DDR4-2933MHz
ECC RDIMM

Capacity
(GB)

2000 4000 128

Bandwidth
(GB/s)

7.00 0.56 23.37

Power
(Watt)

3.51 2.5 15

Price
(Dollar)

379.99 479.99 1710.00

Price/Capacity
(USD/GB)

0.19 0.12 13.36

Power/Capacity
(mWatt/GB)

1.76 0.625 117.19

1.2.1 Opportunities for High-performance Data Processing with Flash

Storage I/O bandwidth plays a critical role in overall data processing performance, which

even affects the efficiency of in-memory computing systems [217]. The bandwidth evolution

of NAND-flash-based storage over the last decade has greatly outpaced the ability for CPUs

to move data from DRAM by 13X [182].

The primary source of the high bandwidth of modern flash storage drives are multi-chip

parallelism. In solid-state drives, NAND flash chips are typically organized with a two-level

hierarchy, channels and banks. Each channel essentially is a independent bus, and flash-chip

commands and responses can be intertwined completely across different flash channels. On

each flash channel there are multiple flash chips or banks that are connected to the same bus.
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Because of multi-bank parallelism, flash commands and responses on each channel can be

performed in a non-blocking manner, which overlaps the latency of access between flash

command and actual data movement.

This two-level architecture of flash chip organization is able to provide scalable flash

bandwidth inside the storage device. For example, a sixteen-channel and single-bank

flash drive, which is fairly common in production systems nowadays, can provide 6.4

GB/s of throughput [135]. In 2017 the fastest SSD can provide 13GB/s of sequential read

bandwidth [34], which is comparable to that of a single DRAM module, such as DDR4-1600

(12.8GB/s). A single dual-socket server could fit 8-16 DDR4 DIMMs while a high-end

storage server can fit 20-40 high-speed SSDs, which means that the total storage bandwidth

can be similar to or even surpasses the total DRAM bandwidth in a single server.

Another benefit of the two-level architecture is that random accesses to flash chips is

as fast as sequential accesses, while traditionally random disks seeks can be orders-of-

magnitude slower than sequential seeks for rotating hard drives.

Such a bandwidth trend could even accelerate with the advent of emerging non-volatile

memory, such as Intel’s Phase-Change Memory technology [19]. And there are a tremendous

opportunities to use flash storage for analytic workloads, whose performance is bounded by

the dataset access throughput.

Disks used to be regarded as slow secondary storage devices which can have hundreds

of milliseconds of access latency. Flash-based storage devices has pushed the access latency

envelop to 26 microseconds in 2021 [30]. Although flash access latency is still 1000×

longer than DRAM access latency (∼20-35 ns), microsecond-scale latency has made flash

storage a viable choice for latency-critical applications, such as interactive online services,

which can tolerates 1-100 milliseconds latency (See Section 1.1.1).

However there are many hurdles that flash-based computing systems have to overcome

to reach the performance of DRAM-based systems. Flash-based drive are designed as

drop-in replacements of conventional hard drives, not DRAM. There are attempts to use

as persistent memory plugged in DIMM slots of a general-purpose machine [21], but such

approaches can have high inefficiency because a conventional processor pipeline cannot

hide the three orders-of-magnitude longer access latency than DRAM. Many challenges
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of using flash storage as the primary memory for big-data applications are because of the

unique characteristics of NAND flash memory.

1.2.2 NAND Flash Characteristics

Large Access Granularity

NAND-flash are read and written in page granularity, which is typically 4KB or 8KB in

size [70]. Large access granularity can create serious bandwidth issues for storage devices

for fine-grained work-level random accesses, which are often referred as read and write

amplifications.

• Read Amplification: Small random reads can amplify the effective read I/O to flash.

For example, if only an 8-byte word are read from 8KB flash page, the effective flash

read bandwidth requirement is amplified by a factor of 1024.

• Write Amplification: Random in-place small updates to flash pages can cause even

more performance drop than small-sized reads. To update an 8-byte word to a page,

the entirety of an 8KB old page has to be read, merged with the new update, which

are then written to a new page location. Because of such an extreme level write

amplification, some work [70, 144, 148, 181] appends updates and new writes to a log

on NAND-flash sequentially, which are later merged with old flash pages through a

background process called garbage collection.

Compared with NAND flash, DRAM can be read and written in much smaller units

of cachelines, which is typically 64 bytes. Such a 128× differential in access-granularity

between flash memory and DRAM can lead sharp performance degradation of applications,

if NAND storage are naively used as a extension of main memory.

Complexity and Side-effects of Flash Write

Flash writes can be performed only to pages that are previously erased, which is a even

costlier operation than flash write itself. Pages are erased by a even coarser granularity of
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blocks, which typically consists of 128-256 continuous pages, and are performed in several

milliseconds [160].

Flash writes and erasures can also introduce lifetime issues of flash drive because they

can cause physical wear of the storage cells. As flash cells are erased and over-written

repeatedly for many cycles, the bit error rate (BER) of each flash page also increases.

Because of increasing BER, each flash page typically have extra bits reserved for error-

correction code (ECC) to extend the usable life-cycle of each flash page. Flash pages become

unusable if they cannot be error-corrected or erased successfully.

1.2.3 Legacy Storage Architecture

NAND-flash-based SSDs have been developed largely as a higher-performance drop-in

replacement of rotating disks, which require special SSD firmware called flash translation

layer to hide NAND-flash characteristics, and provide a similar storage interface as hard

drives. In addition conventional host storage stack were designed for slow I/O devices,

which can become a bottleneck for general-purpose machines to fully exploit high-speed

storage I/O.

NAND Flash Translation Layer

In order to provide a view that is consistent with a conventional hard drive, commercial

NAND-flash-based SSDs uses special software and hardware inside the storage device,

which is called a Flash Translation Layer (FTL). FTL provides a familiar Logic Block

Address view for SSD as a drop-in replacement of hard drives, which translates address

mapping from logical to physical space and handles many flash issues, such as the complexity

and side-effects of writes. Typically, an FTL is a software running on embedded processor

inside a SSD, and provides several important functionalities.

1. Address Mapping: FTL manages mapping from a logical address space to physical

address space in flash chips, because a) flash pages can become unusable after a

certain number of write cycles; b) an updated page can be moved and mapped to a

new physical location.
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2. Garbage Collection: Page updates can cause invalidation of old pages, which are then

marked by the FTL. When the number of invalid pages become large, FTL performs

garage collection. The FTL selects a block with a only a few valid pages, moves the

valid pages in new locations, changes it address mapping, and erase the old block for

future use. FTL can run sophisticated algorithm to minimize write amplification, such

that the valid pages in a block to during garbage collection is small [148].

3. Wear-Leveling: FTL also performs wear-leveling management for flash, to fairly

distribute writes and erasures evenly across all physical storage cells. It ensures that

NAND flash blocks don’t fail prematurely because of a high number of erasure cycles.

4. Error Correction: When a page has bit errors, FTL corrects the errors with the error

correction code (ECC), such as Reed-Solomon Code [44, 160] and Hamming ECC

algorithm [109]. Each NAND flash page has extra space of a few bytes (e.g. 32 bytes)

by default, where a checksum generated by a ECC algorithm is stored.

5. Bad-Block Management: It is normal for NAND flash to contain bad blocks of page.

A bad block contains one or more invalid bits, so its data reliability can no longer be

guaranteed. Blocks can turn “bad” during erase operation or during manufacturing

process. FTL can detect such bad blocks, move the data to good blocks and mark

them as bad so that they would be no longer be used.

Because of significant size of data structure and computation involved in FTL, a com-

mercial SSD needs significant hardware resources. Embedded ARM processors with 8 or

more cores and multi-GB DRAM are commonly used in a NAND flash drive controller to

handle the complexity FTL [148]. Going through this additional layer can add a considerable

amount of access latency. Because FTL is typically hidden by manufacturers and managed

transparently, it can also cause significant variability in access latency, which interferes with

guaranteeing a low tail latency.

Furthermore, there are duplicated functionalities in flash-optimized file systems and

FTL, because of complete isolation of these two entities. Each entity makes their best effort

to maximize the performance and longevity of flash drives, which can sometimes work
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against each other and lead to sub-optimal efficiency [147]. To overcome such issues, there

are recent research endeavors in file systems to remove the overhead of FTL, which use host

storage stack to manage raw flash chips directly [111, 148].

Host Storage Stack Overhead

Traditionally, drives are regarded as slow secondary persistent storage, which only has

several hundreds of megabytes of bandwidth and several hundreds of milliseconds of latency.

Therefore the host storage stack were designed under the following assumptions:

1. The interconnect between host and storage device has more bandwidth than the storage

bandwidth available internally;

2. The execution speed of host storage software stack, including filesystem, block-device

driver, and etc, is much faster than accessing secondary storage.

Such assumptions no longer hold because of rapid storage technology advancements.

As discussed earlier in Section 1.2.1, flash drives nowadays can provide tens of gigabytes

of bandwidth, and support tens of microseconds of latency. Because of this, legacy host

storage stack can become obstacles for NAND flash memory to reach its full potential.

The storage interconnect in host storage stack can be slow compared to the aggregate

internal bandwidth of NAND flash chips. Although the state-of-art interconnect, PCIe

gen4, can provide 2GB/s bidirectional data transmission speed per lane, this still remains

insufficient to keep up the bandwidth scaling of flash drives [182]. Because of storage

density, pin limitations and cost restrictions, most commercial NVMe drives (e.g. products

from Samsung [31] and Intel [19]) use four PCIe lanes as a standard, which implies

8GB/s maximum duplex transfer speed. Such an external interconnect speed can be easily

transcended by the internal bandwidth provided by massively parallel NAND-flash chips [34].

The evolution of storage interconnect has remained stagnant, which only had two major

updates in 2007 and 2017. Although PCIe evolution has picked up its pace recently and

PCIe gen5 is just around the corner [9], the storage interconnect may still remain relatively

slow compared to storage drives, because emerging non-volatile memory, e.g. Resitive

RAMs, have even higher bandwidth than flash [66]. Such new storage devices are rapidly
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becoming widely accessible [19]. Even if storage interconnect bottleneck disappears in

the futures, conventional computing systems still face obstacles in achieving high power

efficiency, because a significant amount of energy is needed to move data quickly between

storage cells and the processor registers in order to perform computation [61].

On the other hand, because storage access latency has been significantly reduced,

execution of the host storage stack is becoming significant in comparison. PCIe bus can

have 1-20 microsecond round-trip latency [136,152], and host-side software can add another

20 microsecond or more latency [66, 68]. In comparison an SSD in 2021 can provide

26 microsecond latency [30]. Recent work in kernel-bypass I/O has improved storage

software stack with tens to hundreds of microsecond latency [99, 137, 168]. However, future

generations of NVM drives can potentially deliver sub-microsecond latency [66], which

could be beyond the limit of the most sophisticated host storage-software-stack.

1.2.4 In-Storage Computing

In-storage computing (ISC) has been explored as earlier as 1980s by researchers in Wiscon-

sin [87]. There main motive was to reduce data movement from storage to compute. Early

work has suggested adding processors to disks to do simple filtering [53, 149, 186], however

the performance improvement did not justify the cost of adding special-purpose hardware at

that time.

As data-sets become larger and hit “memory wall” more frequently, there is a revival of

interests in in-storage computing in research community [126, 140, 182, 187], to overcome

the aforementioned system bottlenecks in legacy host storage stack . Such a resurgence

of ISC research are also encouraged by great improvements of VLSI technology, which

dramatically brought down the cost of chip designs and integration.

The primary motivation of recent ISC work is to address the storage interconnect

bottleneck by offloading computations, such as filtering, which can have major reduction

in I/O traffic by producing a much smaller result than raw input data. By computing near

storage, ISC can also utilize the full internal storage bandwidth, bypassing the slow external

interconnect [78, 120, 140, 177, 197]. In addition to higher bandwidth utilization, work [115]
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shows that ISC can also deliver lower and less variable access latency, by completely

bypassing the host storage OS stack.

A number of ISC research projects [66, 89, 120, 140, 187] use the embedded ARM

processors that run FTL software and are already in the SSDs. They show some promising

results in offloading simple operators, such as filter. However, such performance gain

quickly disappear when more complex computation is offloaded to such power-constrained

processors.

Another line of ISC research is to integrate FPGAs in storage, where specialized hard-

ware accelerators for more complex computation can be deployed near data [126, 129,

182, 203]. Industry production systems, such as IBM/Nettezza [191] and Samsung’s

SmartSSD [35], have also explored the use of FPGA-based accelerators near data. Re-

configurable hardware can deliver much higher performance than embedded processor [182],

and provides much greater flexibility than ASIC accelerators.

1.3 Reconfigurable Hardware Accelerators

Because of the end of Dennard scaling, performance improvement of multi-core CPU has

slowed down [94], which makes it increasingly difficult to keep up with the ever-increasing

high speed of secondary drives (See Section 1.2.1). Although ASIC accelerators can address

provide much higher performance and power-efficiency than CPUs by specialization [73,75,

76,92,158], they lacks the flexibility that general-purpose processors have. More importantly,

the high development cost of ASIC make it difficult to justify their widespread deployments

unless when they can accelerate a wide class of applications [123].

Reconfigurable hardware accelerators [142,159] have become a important technology to

continue the performance scaling of general purpose processors, while providing high degree

of flexibility and configurability. The most prominent reconfigurable hardware accelerator

technology is Field-Programmable Gate Arrays (FPGA). FPGAs are composed of many

small programmable logic blocks and memories, which are all connected via a reconfigurable

network. Most FPGAs also include a large number of Digital Signal Processing (DSP)

blocks, which are hardened ASICs to implement high-performance floating point operations
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or matrix-multiplications. State-of-art FPGAs (e.g. Xilinx Ultrascale Plus Series) have

millions of logic cells, hundreds of gigabits of memory and thousands of DSP blocks [41],

which can be used to accelerate a wide range of application spaces from microprocessor

simulator [77, 134, 196], machine learning [64, 98, 102, 110, 214, 215], genomics [198],

databases [43, 79, 182, 191, 202, 203], networking [152, 179, 189] and more.

The key characteristics of FPGAs that make it more attractive than ASIC are its pro-

grammability, and quick adaptability to new applications. An FPGA circuit can be compiled

in minutes or hours, and a compiled FPGA image take only several milliseconds to program.

This is much more desirable than the long and expensive design and tape-out cycle of

ASIC circuit. Meanwhile the new FPGA feature of partial reconfiguration allows repro-

gramming parts of FPGAs to adapt to new application requirements, without deactivating

commonly-used hardware IPs, such as PCIe Endpoint, DRAM controller, network and etc.

This can increase overall system availability greatly, when FPGAs are integrated in large

computing systems (e.g. data-center network), such that mission-critical datapath can always

be active [179, 189] in FPGA.

1.3.1 Addressing General Questions and Concerns about FPGAs

Although FPGAs have been actively used in the architecture research community, usually

software and system people have questions and concerns about FPGAs, especially when to

be deployed in production systems. The following paragraphs try to address some of the

general questions and concerns about FPGAs raised by software people.

What kind of applications are suitable for FPGA?

There are no simple answers to this question by naming a domain of applications suitable for

FPGA. In fact, when an application domain can benefit from specialized circuits significantly,

they are typically hardened as ASIC, such as Digital Signal Processing (DSP) units.

To understand which applications are better fitted for FPGAs, we need to understand

where performance gains come from for hardware accelerators, which also include ASICs.

Generally speaking, hardware accelerators offer more power-efficiency and performance
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than CPUs or GPUs because of specialization. For example, some machine learning

applications may benefit from low bit-precision arithmetic units which are unsupported

on CPUs or GPUs. Some applications, such as graph-pattern mining [74], may only issue

load operations to a shared memory, therefore its hardware accelerator can run without

cache-coherency support, and has a much simpler and more scalable memory subsystem

than CPU’s. Because of specialization, hardware accelerators also have higher power-

efficiency than general-purpose circuits, since their circuits only need the logic and memory

customized for a specific workload.

Architecturally speaking, hardware accelerators can capture both massive pipeline-level

and data-level parallelism, which are hard to seize simultaneously by CPU or GPU. Through

customization, a hardware accelerator has the ability to efficiently capture the inherent

parallelism of an application. For example, data-level parallelism can be captured with

by replicating homogeneous processing elements as a SIMD unit [176]. Pipeline-level

parallelism can be seized by creating deep hardware pipelines that are tailor-made for

applications [124,207, 208]. Applications which expose abundant inherent parallelism of

such types can benefit greatly from hardware acceleration.

Compared to ASIC-based, FPGAs offer much higher reconfigurability in addition

to all the benefits from hardware accelerations. FPGA-based accelerators become more

advantageous than ASICs when

1. An application domain is still evolving rapidly and new functionalities needs to be

added frequently, therefore its accelerator architecture is unstable to be a hardened as

an ASIC circuit;

2. An application domain can be accelerated significantly by specialized circuits, but are

too narrow to justify the high cost of developing ASIC-based accelerators.

FPGAs run at slower clock, therefore it must be slower than ASIC

FPGAs typically runs at hundreds of megahertz (MHz), while ASIC circuit runs at one or

two gigahertz (GHz). Although FPGAs operate at an order-of-magnitude lower frequency

than than ASICs, it can still provide competitive processing throughput by more aggressive
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pipelining [183]. Although many of the component in FPGAs that are critical for perfor-

mance are hardened as ASIC (e.g. DSPs, high-speeed serial transceiver), and FPGA’s “soft”

logic only implements control logic which maybe less sensitive to a lower clock frequency.

Meanwhile, newer generation of FPGAs can be clocked at higher frequency because of

technology improvement. For example, it is common to clock accelerators around 300MHz

frequency on Xilinx’s VCU118 FPGA which uses 14nm/16nm technology [207], and some

high-performance FPGA implementation can even run at 600Mhz [40].

FPGAs are difficult to program

Programmers write hardware description languages or high-level synthesis code, to assemble

generic logic and memory blocks together as a “soft” circuit, which runs custom application-

specific acceleration logic. Hardware codes generally can be compiled for different FPGAs

vendors, and it is easy to port code from one platform to another when subtle differences are

accounted for (e.g. different BRAM sizes between Xilinx and Altera). More often than not,

high-level design languages(e.g. Bluespec System Verilog, HLS) have managed such small

subtle differences transparently for programmers.

Although FPGAs can take longer to build and maybe are harder to debug than software,

they typically offer much higher performance and efficiency than software running on CPUs.

Real-world large-scale FPGA deployment, such as Microsoft Catapult Project [67, 179],

shows that FPGAs can be programmed and used in production settings, just as easily and

efficiently as software systems.

FPGA accelerators are less area-efficient than ASIC

This is true to an extend because FPGAs uses programmable logic blocks and routing

network to map a “soft” logic. The generic logic portion of a circuit, excluding memory, can

be 10-20× bigger on FPGA than ASIC [189]. However, in general, the area of a hardware

accelerator is typically dominated by the size of SRAM, which are hard circuits on FPGAs.

Other complex circuitry which supports off-chip accesses to peripherals and memory, such

as high-speed transceiver for PCIe and NIC, DRAM controller, are also hardened on FPGAs.

Modern FPGA silicons are including more and more hardened logic blocks, even embedded
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processors, to close the area-efficiency gap from ASICs. In practice, FPGAs take 2-3×

larger area than an ASIC with similar functionality [189].

FPGAs are expensive

FPGA market is quite competitive with 2 strong vendors, Xilinx and Altera. Like ASIC

and any other silicons, FPGAs’ price per unit can be competitive when purchased in large

volumes. Two important factors for silicon prices are their yield rate and area. As discussed

in previous paragraphs, FPGAs can have 2-3× large area than a special purpose silicon of

similar functionality, but are much area-efficient than other dominant silicons in a general-

purpose machine, such as CPUs, DRAMs and GPUs. Also FPGAs typically have high yield

rate because of their regular structure [189]. Moreover, because of the reconfigurability of

FPGAs, the initial equipment cost of FPGAs can be amortized when they accelerate a wide

class of applications in a large scale.

1.3.2 High availability of FPGAs in the Cloud

Because of the acceleration and flexibility of FPGAs, there is immense interests in industry

in incorporating FPGAs into cloud infrastructures. Two of the largest public cloud providers

in North America, Microsoft and Amazon, have deployed FPGAs in a large-scale in their

data centers.

Microsoft has deployed all new Azure and Bing servers which have Altera FPGAs

built into the network interface card, and are capable of providing sub-microsecond access

latency between accelerators in a data center [67, 179]. A large number of workloads

are being accelerated by FPGAs in Microsoft Azure, including Host Software-Defined

Network [96,189], machine learning [98], web searches [67,179] and data compression [97].

Amazon AWS is offering F1 instances with Xilinx FPGAs [6], and provides a hardware

shell of base functionalities for accelerator development, as well as complete tool chain for

building and programming the FPGAs. Many hardware accelerators have been developed for

AWS F1 instances and have show competitiveness in performance and efficiency [183, 198].

Many public clouds in emerging market, such as Alibaba Cloud, are also working with
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FPGA vendors to offer FPGA instances to their users [13].

The high availability of FPGA-equipped instances in the public cloud have made ac-

celerating Big-data applications using hardware accelerators practical, with an immerse

amount of FPGA resources already in place in data centers, which are easily accessible for

developers and researches around the globe.

1.4 BlueDBM: Near-flash Hardware Accelerator Platform

We used MIT’s BlueDBM [125, 126, 127] cluster to explore various flash-centric hardware

accelerators for Big-Data applications; a detailed discussion of the system can be found in

the paper by Sang-Woo Jun et al. [126]
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Figure 1-2: BlueDBM System Architecture

BlueDBM is a multi-FPGA platform consisting of identical nodes as shown in Figure 1-2.

Each node is a Intel Xeon server with a BlueDBM storage node plugged into a PCIe slot.

Each BlueDBM node storage consists of a Xilinx VC707 or VCU108 FPGA development

board with two 0.5TB custom flash cards. When BlueDBM was built, the VC707 board is

the primary carrier card, which has a Virtex-7 and a 1GB DDR3 SODIMM. Later around

2018, some of the primary carrier cards were updated to VCU108 board, which has a

VirtexUltrascale FPGA and 4GB DDR4 DIMM. Each flash card is plugged into a standard

FPGA Mezzanine Card (FMC) port on the primary carrier board, and provides an error-free
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parallel access into an array NAND flash chips (1.2GB/s or 150K IOPs for random 8KB page

read) [160]. Each BlueDBM storage node has four 10Gbps serial transceivers configured

as Aurora 64B/66B encoded links with 0.5µs latency per hop. BlueDBM storage nodes

are connected via a customized storage area network (SAN) using serial links. BlueDBM

also supports a virtual network over the serial links, which provides virtual channels with

end-to-end flow control [128].

1.4.1 BlueDBM Storage Software Interface

BlueDBM provides a set of software interfaces to support the execution of existing applica-

tion as well as modified applications that leverage the in-storage processors in the system.

Furthermore, software layers and/or hardware accelerator in BlueDBM must perform flash

management functions because BlueDBM uses a raw flash interface in hardware for higher

efficiency. The storage software stack is shown in Figure 1-3. User applications can access

accelerated flash via four interfaces.

• A raw interface to NAND flash storage via the PCIe driver;

• A block device driver interface;

• A file system interface;

• An accelerator interface over PCIe.

In Figure 1-3, the first three interfaces correspond to the three leftmost arrows. Accelerator

interface corresponds to the two rightmost arrows.
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Figure 1-3: BlueDBM Software Interface
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Figure 1-3 also shows how user-level applications access hardware accelerators.

1. In the BlueDBM software stack, user-level applications can query the file system

for the physical locations of files on the flash. This was made possible because the

file system maintains the mapping information to the actual physical locations of the

pages.

2. Applications can then provide near-storage accelerator with a stream of physical flash

page addresses.

3. Near-storage accelerator can directly access data from flash with low latency.

4. The results are sent to software memory and the user application can be notified via

interrupt.

Please note that Step 1 is not mandatory if the flash storage is managed completely by

hardware accelerators like in BlueCache. In such a case, user-space application can directly

interact with hardware-accelerated storage via an application-specific interface.

1.5 Thesis Contributions

This thesis shows the viability of using cheaper flash-storage instead of costly DRAM for

Big-Data applications, by evaluating two important classes of applications, latency-critical

applications and analytic workloads, using novel system architecture based on flash storage

and in-storage hardware acceleration. The thesis is divided into two parts, where the first

part describes BlueCache and the second part describes AQUOMAN.

The following summarizes the contributions of Part I:

1. Design and implementation of BlueCache, a rack-level appliance of a scalable flash-

based key-value cache.

2. End-to-end system evaluation that shows BlueCache as an attractive point in the

cost-performance trade-off for data-center-scale key-value caches.

Part II makes the following contributions:

1. AQUOMAN, a novel micro-architecture for an in-storage accelerator capable of stream

processing a Table Task which is a static dataflow graph of operators;

45



2. Examples of how to derive the dataflow graph of operators to create Table Tasks for

an SQL query, including multi-way joins;

3. A complete in-storage solution which can be fully integrated into a database manage-

ment software (DBMS);

4. An FPGA-based implementation of AQUOMAN, which can process data stream at the

line-rate of our flash controller.

5. An end-to-end evaluation of AQUOMAN using TPC-H benchmarks on 1TB data-set

against the baseline of an x86 server with 16 dual-threaded cores and 128GB DRAM.

1.6 Thesis Organization

Part I is organized as follows:

• Chapter 2 movitates the design and implementation of BlueCache, and introduces

basic operations of Key-value Caches and discusses and existing research on both

DRAM-based and flash-based KVS caches. We also emphasized the importance of a

capacity cache misses in analyzing the performance of Key-value Cache.

• Chapter 3 describes the architecture of BlueCache, which consists of a homoge-

neous array of hardware accelerators which directly manage key-value pairs on

error-corrected NAND-flash array of chips without any general purpose processor.

In this chapter we also describe the software library to access BlueCache hardware,

which allows many multi-threaded applications to share BlueCache concurently via

simple GET, SET and DELETE APIs.

• Chapter 4 describes a hardware implementation of BlueCache using FPGAs and

discusses its implementation platform, hardware resource usage, and power charac-

teristics. In this chapter we also evaluates the raw performance of BlueCache, and

show our results of various micro-benchmarks to examine the throughput, latency
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and scalablity characteristics of BlueCache. In this chapter we also shows an end-to-

end social-networking benchmark that compares BlueCache against other standard

software-based KVS solutions as data-center caches.

Part II is organized as follows:

• Chapter 5 motivates the design and implementation of AQUOMAN, and introduces

background information and existing research work in accelerating analytical working

load using FPGAs and/or ASICs.

• Chapter 6 discusses the anatomy of query processing on database tables, and is

followed by examples of translating SQL queries into dataflow maps, or a sequence

of Table Tasks.

• Chapter 7 gives an overview of AQUOMAN micro-architecture, an in-storage generic

query offloading machine which maps the execution of a Table Task. We also describe

the system integration overview of AQUOMAN and its software interface.

• Chapter 8 describes the detailed micro-architecture of AQUOMAN, which consists

of three major components, Row Selector, Row Transformer and SQL Swissknife.

We also describe several reasons why a query may not be completely processed by

AQUOMAN, and discuss that such scenarios of query suspensions on AQUOMAN are

uncommon.

• Chapter 9 describes an FPGA implementation of AQUOMAN prototype and shows the

results of query evaluations.

• Chapter 10 shows the results of an end-to-end evaluation of AQUOMAN using TPC-H

benchmarks on 1TB data-set against the baseline of an x86 server with 16 dual-

threaded cores and 128GB DRAM.

• We conclude this thesis and present possible future research directions in Chapter 11.
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Flash-based Key-value Cache for

Latency-critical Applications
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Chapter 2

Part I Introduction and Background

2.1 Overview and Motivation

Big-data applications such as eCommerce, interactive social networking, and on-line search-

ing, process large amounts of data to provide valuable information for end users in real-time.

For example, in 2014, Google received over 4 million search queries per minute, and

processed about 20 petabytes of information per day [107]. For many web applications,

persistent data is kept in ten thousand to hundred thousand rotating disks or SSDs and is

managed using software such as MySQL, HDFS. Such systems have to be augmented with

a middle layer of fast cache in the form of distributed in-memory KVS to keep up with the

rate of incoming user requests.

An application server transforms a user read-request into hundreds of KVS requests,

where the key in a key-value pair represents the query for the backend and the value represents

the corresponding query result. Facebook’s memcached [167] and open-source Redis [27],

are good examples of such an architecture (Figure 2-1). Facebook’s memcached KVS

cluster caches trillions of objects and processes billions of requests per second to provide

high-quality social networking services for over a billion users around the globe [167].

KVS caches are used extensively in web infrastructures because of their simplicity and

effectiveness.

Applications that use KVS caches in data centers are the ones that have guaranteed

high hit-rates. Nevertheless, different applications have very different characteristics in
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terms of the size of queries, the size of replies and the request rate. KVS servers are further

subdivided into application pools, each representing a separate application domain, to deal

with these differences. Each application pool has its own prefix of the keys and typically it

does not share its key-value pairs with other applications. Application mixes also change

constantly, therefore it is important for applications to share KVS for efficient resource

usage. The effective size of a KVS cache is determined by the number of application pools

that share the KVS cluster and the sizes of each application’s working set of queries. In

particular, the effective size of a KVS has little to do with of the size of the backend storage

holding the data. Given the growth of web services, the scalability of KVS caches, in

addition to the throughput and latency, is of great importance in KVS design.
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Figure 2-1: Using key-value stores as caching layer

In theory, one can scale up the KVS cluster by increasing the total amount of RAM or the

number of servers in the KVS cluster. In practice, however, hardware cost, power/thermal

concerns and floor space can become obstacles to scaling the memory pool size. NAND

flash is 100× cheaper, consumes 10-100× less power and offers two orders of magnitude

greater storage density over DRAM. These characteristics make flash-based KVS a viable

alternative for scaling up the KVS cache size. A downside of flash-based KVS is that

flash has significantly higher latency than DRAM. Typically flash memory has read latency

of 100µs and write latency of milliseconds. DRAM, on the other hand, offers latency of

10-20ns, which is more than four orders of magnitude better than flash. Thus to realize
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the advantage of flash, a flash-based architecture must overcome this enormous latency

differential. One silver lining is that many applications can tolerate millisecond latency in

responses. Facebook’s memcached cluster reports 95th percentile latency of 1.135 ms [167].

Netflix’s EVCache KVS cluster has 99th percentile latency of 20 ms and is still able to

deliver rich experience for its end users [24].

We present BlueCache, a new flash-based architecture for KVS clusters. BlueCache uses

hardware accelerators to speed up KVS operations and manages communications between

KVS nodes completely in hardware. It employs several technical innovations to fully exploit

flash bandwidth and to overcome flash’s long latencies:

1. Hardware-assisted auto-batching of KVS requests;

2. In-storage hardware-managed network, with dynamic allocation of dedicated virtual

channels for different applications;

3. Hardware-optimized set-associative KV-index cache;

4. Elimination of flash translation layer (FTL) with a log-structured KVS flash manager,

which implements simple garbage collection and schedules out-of-order flash requests

to maximize parallelism.

Our prototype implementation of BlueCache supports 75X more bytes per watt than the

DRAM-based KVS and shows:

• 4.18X higher throughput and 4.68X lower latency than the software implementation

of a flash-based KVS, such as Fatcache [199].

• Superior performance than memcached if capacity cache misses are taken into account.

For example, for applications with the average query size of 1KB, GET/PUT ratio of

99.9%, BlueCache can outperform memcached when the latter has more than 7.4%

misses.

We also offer preliminary evidence that the BlueCache solution is scalable: a four-node

prototype uses 97.8% of the flash bandwidth. A production version of BlueCache can

easily support 8TB of flash per node with 2.5 million requests per second (MRPS) for 8B
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to 8KB values. In comparison to an x86-based KVS with 256GB of DRAM, BlueCache

provides 32X larger capacity with 1/8 power consumption. It is difficult to assess the relative

performance of the DRAM-based KVS because it crucially depends on the assumptions

about cache miss rate, which in turn depends upon the average value size. BlueCache

presents an attractive point in the cost-performance trade-off for data-center-scale key-value

caches for many applications.

Even though this thesis is about KVS caches and does not exploit the persistence of flash

storage, the solution presented can be extended easily to design a persistent KVS.

We will first present the basic operations of KVS caches and discuss the related work

for both DRAM-based and flash-based KVS.

2.2 A Use Case of Key-Value Store

A common use case of KVSs is to provide a fast look-aside cache of frequently accessed

queries by web applications (See Figure 2-1). KVS provides primitive hash-table-like

operations, SET, GET and DELETE on key-value pairs, as well as other more complex

operations built on top of them. To use KVS as a cache, the application server transforms

a user read-request into multiple GET requests, and checks if data exists in KVS. If there

is a cache hit, the application server collects the data returned from KVS and formats it as

a response to the end user. If there is a cache miss, application server queries the backend

storage for data, and then issues a SET request to refill the KVS with the missing data.

A user write-request, e.g. a Facebook user’s “unfriend” request, is transformed by the

application server into DELETE requests for the relevant key-value pairs in the KVS, and

the new data is sent to the backend storage. The next GET request for the updated data

automatically results in a miss which forces a cache refill. In real-world applications, more

than 90% KVS queries are GETs [48, 62].

Application servers usually employ hashing to ensure load balancing across KVS nodes.

Inside the KVS node, another level of hashing is performed to compute the internal memory

address of the key-value pairs. KVS nodes do not communicate with each other, as each is

responsible for its own independent range of keys.
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2.3 DRAM-based Key-Value Store

DRAM-based key-value stores are ubiquitous as caching solutions in data centers. Like

RAMCloud [170], hundreds to thousands of such KVS nodes are clustered togother to

provide a distributed in-memory hash table over fast network. Figure 2-2 shows a typical

DRAM-based KVS node. Key-value data structures are stored on KVS server’s main

memory, and external clients communicate with the KVS server over network interface card

(NIC). Since both keys and values can be of arbitrary size, an KV-index cache for each

key-value pair is kept in a separate data structure. In the KV-index cache the data-part of

the key-value pair just contains a pointer to the data which resides in some other part of the

cache. This index data structure is accessed by hashing the key generated by the application

server. If the key is found in the KV-index cache, the data is accessed in the DRAM by

following the pointer in the KV-index cache. Otherwise, the KV-index cache and the DRAM

have to be updated by accessing the backend storage.

KVS caches have two important software components: 1) the network stack that pro-

cesses network packets and injects them into CPU cores; 2) the key-value data access that

reads/writes key-value data structures in main-memory. These two components have a

strong producer-consumer dataflow relationship, and a lot of work has been done to optimize

each component as well as the communication between them.

App Server

App Server

App Server

App Server
NIC CPU

Cores

Network

stack

Key-value

data
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KV-Index

Cache

Main Memory

KVS Node

KV-Data

Store

Hardware components Software components Key-Value Data structures

Figure 2-2: Components of in-memory key-value store

A past study [180] has found that more than 90% processing time in memcached is

spent in the OS kernel network processing. Researchers have demonstrated as much as

10X performance improvement by having user-space network stack [90, 121, 122, 130, 153,
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155, 164, 194]. For example, Jose et al. [121, 122] investigated the use of RDMA-based

communication over InfiniBand QDR network, which reduced KVS process latency to below

12µs and enhanced throughput to 1.8MRPS. Another example, MICA [153, 155], exploits

modern NIC features such as multiple queues and flow-steering features to distribute packets

to different CPU cores. It also exploits Intel Data Direct I/O Technology (DDIO) [116]

and open-source driver DPDK [117] to let NICs directly inject packets into processors’

LLC, bypassing the main memory. MICA shards/partitions key-value data on DRAM and

allocates a single core to each partition. Thus, a core can access its own partition in parallel

with other cores, with minimal need for locking. MICA relies on software prefetch for both

packets and KVS data structures to reduce latency and keep up with high speed network.

With such a holistic approach, a single MICA node has shown 120MRPS throughput with

95th percentile latency of 96µs [153].

Berezecki et al. [57] use a 64-core Tilera processor (TILEPro64) to run memcached,

and show that a tuned version of memached on TILEPro64 can yield at least 67% higher

throughput than low-power x86 servers at comparable latency. It showed 4 TILEPro64

processors running at 866Mhz can achieve 1.34MRPS. This approache offers less satisfactory

improvements than x86-based optimizations.

Heterogeneous CPU-GPU KVS architectures have also been explored [112, 113, 216].

In particular, Mega-KV [216] stores KV-index cache on GPUs’ DRAM, and exploits GPUs’

parallel processing cores and massive memory bandwidth to accelerate the KV-index cache

accesses. KV-data store is kept separately on the server DRAM, and network packets are

processed, like in MICA, using Intel’s high-speed I/O [116, 117]. On a commodity PC with

two Nvidia GTX 780 GPUs and two CPUs, Mega-KV can process up to 166 MRPS with

95th percentile latency of 410µs [216].

Researchers have also used FPGAs to offload parts [100,143,156] or the entirety [59,69]

of KVS, and demonstrated good performance with great power efficiency. Xilinx’s KVS has

the highest performance based on this approach, and achieves up to 13.2MRPS by saturating

one 10GbE port [59], with the round-trip latency of 3.5µs to 4.5µs. It also shows more than

10x energy efficiency compared with commodity servers running stock memcached.
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2.3.1 Discussion of KVS performance comparison

An insightful performance comparison of different approaches is difficult. First of all, all

performance results are reported assuming no capacity cache misses. Even cache misses due

to updates are not properly described. For example, both MICA and Mega-KV experiments

that showed the highest performance (>120MRPS) assumed 8B key and 8B value. If

the application had 1KB values, then the same cache will hold 128X fewer objects, which

should significantly increase the number of capacity misses. Unfortunately, the capacity

misses vary from application to application and cannot be estimated based of the number

of objects in KVS. Even if capacity misses are rare, the throughput in terms of MRPS will

be much lower for larger values. For example, MICA performance drops from 5MRPS

to .538MRPS per core if the value size is increased from 8B to 1KB [155]. Moreover, a

simple calculation shows that for 1KB values, one 10Gbps port cannot support more than

1.25MRPS.

The second point to note is that higher throughput requires more hardware resources.

Mega-KV shows 1.38X more performance than MICA but also increased power consumption

by 2X. This is because it uses two Nvidia GTX 780 GPUs which consume approximately

500W [25]. If we look at the performance normalized by the number and speed of network

ports then we will reach a different conclusion. For example, MICA shows a performance of

120MRPS using 12 10Gbps Ethernet ports (10MRPS per port), while Xilinx [59] achieves

13.2MRPS using only one 10Gbps port.

One can also ask the question exactly how much resources are needed to keep a 10Gbps

port busy. MICA experiments show that 2 Xeon cores are enough to keep up with a 10Gbps

Ethernet port [153], and Xilinx experiments show that an FPGA-based implementation

can also easily keep up with the 10Gbps port [59]. A past study has pointed out that

traditional super-scalar CPU core pipeline of x86 can be grossly underutilized in performing

the required KVS computations (networking, hashing and accessing key-value pairs) [156].

The last level data cache, which takes as much as half of the processor area, can be

ineffective [156] and can waste a considerable amount of energy. A simple calculation in

terms of cache needed to hold all in-flight requests and network packets shows that MICA’s
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120MRPS throughput can be sustained with only 3.3 MB of LLC, while a dual-socket Intel

Xeon processor has a 60MB LLC!

2.4 Flash-based Key-Value Store

There have been several efforts to use NAND flash in KVS designs because it provides much

higher storage density, lower power per GB and higher GB per dollar than DRAM [56, 146,

160, 161, 178, 193]. In one organization, NAND flash is used as a simple swap device [138,

185] for DRAM. However, the virtual memory management of the existing OS kernels is

not suitable for NAND flash because it leads to excessive read/write traffic. NAND flash is

undesirable for small random writes because an entire page has to be erased before new data

is appended. High write-traffic not only wastes the I/O bandwidth but shortens the NAND

lifetime [50].

A better flash-based KVS architecture uses flash as a cache for objects where the object

granularity is one page or larger [101, 154]. Examples of such an architecture include

Twitter’s Fatcache [199], FAWN-KV [47], Hybrid Memory [174], Xilinx’s KVS [60] and

FlashStore [85]. KV-index cache stores key-value metadata such as timestamps, which has

frequent updates. Like Figure 2-2, they move key-value data to flash while keeping KV-

index cache in DRAM, because in-place index updates on flash would make it prohibitively

inefficient and complicated. The NAND flash chips are written as a sequence of blocks

produced by a log-structured flash management layer to overcome NAND flash’s overwriting

limitations [147, 148].

A superior way of maintaining an in-memory KV-index cache is to use fixed-size

representation for variable size keys (See Figure 2-3). This can be done by applying a hash

function like SHA-1 to keys [85,199] and keeping the fixed-size abbreviated keys on DRAM

with pointers to the full keys and values on flash. False positive match of an abbreviated

key can be detected by comparing request key with the full key stored on flash. Such data

structure organization ensures that 1) on a KV-index cache miss, there is no flash access; and

2) on a KV-index cache hit, a single flash access is needed to access both the key and data.

One can calculate the rarity of a false positive match of an abbreviated key. Assuming
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Figure 2-3: Internal data structures of DRAM-based KVS and flash-based KVS

each hash bucket has four 128-bit entries, an 8GB hash table has 233−2−4 = 227 hash buckets.

Assuming 21-bit abbreviated keys, the false positive for key hit on a index entry is as low as

1/(227+21) = 1/248. This ensures that a negligible portion of KVS misses are penalized by

expensive flash reads.

One can estimate the size of KV-index cache based on the average size of objects in the

workload. For example, assuming 16-byte index entries, a 16GB KV-index cache can store

230 or ~a billion key-value pairs in flash. Such an index cache can address 1TB KV-data

store, assuming average object size of 1KB, or can address 250GB KV-data store, assuming

average object size of 256B. Thus, in this system organization, a terabyte of SSD can be

paired with 10 to 50 GB of DRAM to increase the size of KVS by 10X to 100X on a single

server.

KV-index cache reduces write traffic to NAND flash by 81% [174], which implies

5.3X improvement in storage lifetime. FlashStore [85] is the best performing single-node

flash-backed KVS in this category, achieving 57.2 KRPS. Though the capacity is much

larger, the total performance, ignoring DRAM cache misses, is more than one to two orders

of magnitude less than the DRAM-based solutions. Unlike MICA [153], the throughput

of FlashStore is limited by the bandwidth of the flash device and not the NIC. If the flash

device organizes NAND chips into more parallel buses, the throughput of flash-based KVS

will increase, and it should be possible for the KVS to saturate a 10Gbps Ethernet. The

throughput can be increased even further by eliminating flash translation layer (FTL) [80]
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in SSDs, as has been shown for flash-based filesystems, such as SDF [171], F2FS [144],

REDO [147] and AMF [148].
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Chapter 3

BlueCache Architecture
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Figure 3-1: BlueCache high-level system architecture

The BlueCache architecture consists of a homogeneous array of hardware accelerators

which directly manage key-value pairs on error-corrected NAND-flash array of chips without

any general purpose processor (See Figure 3-1). It organizes key-value data structures the

same way as shown in Figure 2-3. The KV-index cache stores abbreviated keys and key-

value pointers on DRAM, and the KV data, i.e., the full key and value pairs, on flash.

BlueCache also uses a small portion of DRAM to cache hot KV-data-store entries. Based on

the average size of key-value pairs, BlueCache architecture typically requires the DRAM

capacity to be 1/100 to 1/10 of the flash capacity in order to address all the data on flash.

The KVS Protocol Engine is plugged into each application server’s PCIe slot and

forwards each KVS request to the BlueCache KVS node responsible for processing it. In
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order to maximize parallelism and maintain high performance, KVS requests are batched on

application server’s DRAM and transferred to the Protocol Engine as DMA bursts. When

responses are returned from various KVS nodes, the Protocol Engine batches the responses

and sends them back to the application server. The Protocol Engine communicates with

KVS nodes via high-speed BlueCache network accessed using the Network Engine; there is

no communication between KVS nodes.

Each KVS node (See Figure 3-1) runs a KV-Index Cache Manager and a KV-Data Store

Manager to manage the KV-index cache and the KV-data store, respectively. Based on the

size of KV-index cache, some DRAM is also used to cache KV-data store. Just like the KVS

cluster described in Section 2.2, BlueCache architecture deploys two levels of hashing to

process a key-value query. The first level of hashing is performed by the KVS Protocol

Engine to find the KVS node responsible for the query, while the second level of hashing

is performed within the KVS node to find the corresponding index entry in the KV-index

cache.

We use Field-programmable Gate Arrays (FPGA) to implement BlueCache (See Chap-

ter 4). In our FPGA-based implementation, each FPGA board has its own DRAM and

NAND flash chips and is directly plugged into a PCI Express slot of the application server

(see Figure 3-2). Both the KVS Protocol Engine and the KVS node are mapped into a single

FPGA board and share the same Network Engine. FPGA boards can communicate with

each other using 8 10Gbps bidirectional serial links [128]. In the following sections, we
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describe each hardware accelerator in detail.

3.1 KVS Protocol Engine

Unlike memcached [167], which relies on client software (e.g. getMulti(String[] keys))

to batch KVS queries, Bluecache uses hardware accelerators to automatically batch KVS

requests from multiple applications. The application server collects KVS requests in 8KB

segments in the DRAM and, when a segment is filled up, passes the segment ID to the

Protocol Engine for a DMA transfer (See Figure 3-3). The application server then picks up

a new free segment and repeats the above process. The Protocol Engine receives requests in

order and sends an acknowledgement to the application server after reading the segment.

A segment can be reused by the application server after the acknowledgement has been

received. Since KVS requests are of variable length, a request can be misaligned with

the segment boundary. In such cases, the Protocol Engine merges segments to produce

a complete KVS request. KVS responses are batched together similarly by the Protocol

Engine and sent as DMA bursts to the application server. Our implementation uses 128

segments DMA buffers in each direction.

The request decoder (See Figure 3-3) computes the destination BlueCache node ID by

using the equation:

nodeID = hash(key) mod #nodes (3.1)

to distribute the requests across the KVS nodes evenly. The hash function in the equation

should be a consistent hashing function [133], so that when a node joins or leaves the cluster,

minimum number of key-value pairs have to be reshuffled. KVS Protocol Engine also keeps

a table of the in-flight request keys because the responses do not necessarily came back in

order. In Section 3.3 we will describe how request and response keys are matched to form a

response for the application server.
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Figure 3-3: Application to KVS Protocol Engine communication

3.2 Network Engine

Each request carries a destination node ID which is used by the Network Engine to route the

requests to its destination. Each request also carries the source ID, i.e., the ID of the node

that sends the request; these are used by the Network Engine to send back responses. The

Network Engine splits the KVS requests into local and remote request queues (Figure 3-4).

The requests in the remote-request queue are forwarded to remote node via the network router.

When a remote request is received at its destination node, it is merged into the local-request

queue of the remote node. Similarly, the responses are split into the local-response queue

and the remote-response queue depending on their requests’ origins. The response network

router forwards the non-local KVS responses to the remote nodes, which are later merged

into the local response queues at their sources. The request and response networks are kept

separate using the support for virtual networks in our network implementation [128]. With
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the support of virtual networks, Bluecache can also dynamically assign a dedicated network

channel for a running application, so that the network interference between applications is

minized.
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Our multi-FPGA platforms network is designed to be lossless and thus, uses a simple

handshake network protocol. Before sending a payload, the sender sends a reserve request

to the receiver with the size of the payload. The receiver then reserves the memory for the

incoming payload, and acknowledges the sender. After receiving the acknowledgment, the

sender sends the payload data to the receiver. Because of the simplicity of the protocol, our

network has only a 1.5µs latency per hop.

63



3.3 KV-Index Cache Manager

KV-index cache stores key-value metadata such as timestamps, which has frequent updates.

BlueCache keeps KV-index cache in DRAM because in-place index updates on flash would

make it prohibitively inefficient and complicated. To facilitate this, BlueCache organizes the

data structures of KV-index cache and KV-data store differently than DRAM-based solution

(See Figure 2-3). Like Fatcache [199], abbreviated keys instead of the full keys are kept in

KV-index cache. The abbreviated key is SHA-1 hash of the key, and it acts as an unique

identifier for each object. The complete key is stored together with the value in the KV-data

store. False positives from SHA-1 hash collision are detected when objects are retrieved

from KV-data store and compared with the requested key. Such data structure organization

ensures that 1) there are no flash accesses because of KV-index-cache misses; and 2) on a

KV-index cache hit, a single flash access is needed to access both the key and data. This

organization also quickly detects cache misses which can arise because of rare SHA-1 hash

function collisions.
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Figure 3-5: 4-way set-associative KV-index cache

The KV-index cache is organized as a set-associative hash table on DRAM (Figure 3-5).

A key is mapped into a hash bucket by computing the Jenkins hash function [4], which is

64



also used in memcached. A hash bucket contains fixed number of 128-bit index entries,

each of which contain 5 fields describing a key-value pair. A 41-bit key-value pointer field

points to the location of the key-value pair in a 2TB address space; a 8-bit key length field

represents the key size (up to 255B); a 20-bit value length field represents value size (up to

1MB); a 32-bit timestamp field represents the key-value pair’s latest access time, which is

used to evict an index entry; and a 21-bit field stores the truncated SHA-1 hash value of the

key to resolve hash function collisions. The maximum key and value sizes are chosen as in

memcached. If there is a need to support a larger key or value size, the index entry has to be

changed by either increasing the size of the index entry, or decreasing the abbreviated key

field size within an acceptable false positive hit rate.

Since it is inefficient to use linked list or rehashing to handle hash function collisions in

hardware, we check all four index entries in the hash bucket in parallel. For a KV-index

cache hit, the requested key needs to match the abbreviated key and the key length.

Because our FPGA platform returns 512-bit data per DRAM request, we assign each

hash bucket to every 512-bit aligned DRAM address. In this way, each hash bucket has

four index entries. Yet, such a 4-way set-associative hash table design can guarantee good

performance since each hash table operation only needs one DRAM read to check keys, and

one DRAM write to update timestamps and/or insert a new entry. Higher set associativity

can reduce conflict misses of KV-index cache and increase performance in theory. Yet,

increasing associativity requires more hardware, more DRAM requests and more clock

cycles per operation, which can offset benefits of a higher hit rate.

A simple calculation can also demonstrate the rarity of false positive hits with such a

simple hash table design. An 8GB 4-way set-associative hash table with 128-bit per entry

233−2−4 = 227 hash buckets. With 21 bits for abbreviated keys, the false positive for key hit

on a index entry is as low as 1/(227+21) = 1/248. This ensures that KV-index cache itself

is able to filter out most misses, and that a negligible portion of misses are penalized by

expensive flash reads.

When there are more than four collisions at a hash bucket, an old index entry is evicted.

Since KVS workload shows strong temporal locality [48], the KV-Index Cache Manager

uses LRU replacement policy to select the victim by reading their timestamps. When a
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key-value pair is deleted, only its index entry is removed from KV-index cache, and the

object on KV-data store is simply ignored, which can be garbage collected later.

3.4 KV-Data Store Manager

The key-value object data is stored either in the DRAM or in the flash (Figure 3-6). Key-

value pairs are first written in DRAM and when it becomes full, less popular key-value pairs

are evicted to the flash to make space. Each entry in the KV-data store keeps a backward

pointer to the corresponding entry in the KV-index cache. When the KV data is moved from

the DRAM to the flash, the corresponding KV index entry is updated. The most significant

bit of key-value pair pointer in the KV-index cache indicates whether the data is in DRAM

or flash.
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Figure 3-6: KV-data store architecture

3.4.1 DRAM KV-Data Store

The DRAM KV-data store is organized as a collection of slab classes, where each slab

class stores objects of a predetermined size (Figure 3-6). A slab-structured DRAM store

implementation requires simple hardware logic, and its dense format enables better RAM

efficiency. The KV-data store in memcached [167] uses a similar technique in order to

minimize DRAM fragmentation in software. When an object needs to be moved to the flash,

the victim is determined by the entry with the oldest timestamps amongst four randomly-

chosen entries in the slab. After the victim is evicted, the in-memory KV-index cache is
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updated using backward pointer of the evicted object. This policy behaves like a pseudo-

LRU replacement policy, which keeps hot objects in DRAM. Since the KV-Data Store

shares the DRAM with the KV-index cache, and the size of DRAM KV-data store can be

dynamically adjusted in respect to the size of active KV-index cache.

3.4.2 Flash KV-Data Store

The data structure on the KV flash data store is very different from the DRAM KV-data

store. On flash one has to erase a page before it can be overwritten. Though flash chip

allows reads and writes at the granularity of a page, it permits only block erasures, where

the typical size of a block is 64 to 128 pages. Block erasure has high overhead (several

milliseconds) and is performed in the background as needed. To avoid small overwrites,

we use log-structured techniques [147, 148] for writing in flash. Victims from the DRAM

KV-data store are collected in a separate DRAM buffer, and written to flash in 128-page

chunks as a log (Figure 3-6, Figure 3-7). The KV-data manager has the flexibility to map the

data pages on the flash array and instead writing a 128-page chunk on one chip, it stripes the

chunk across N flash chips for maximum parallelism. This also ensures good wear-leveling

of flash blocks. The manager also has to maintain a list of bad blocks, because flash blocks

wear out with usage (Figure 3-7).

Similar to the work of Chen et al [71], the KV-Data Store Manager schedules reads

concurrently to maximize parallelism, and consequently, the responses do not necessarily

come back in order. A reorder buffer is used to assemble pages to construct the response for

a request [160].

Flash KV-data store also implements a minimalist garbage collection algorithm for

KV-data store. When space is needed, an old flash chunk from the beginning of the log is

simply erased and overwritten. The keys corresponding to the erased data have to be deleted

from the KV-index cache to produce a miss. In KVS workloads, newly written data has

higher popularity [48] and by overwriting the oldest data, it is more likely that cold objects

are replaced by hot ones. Consequently new objects are always written in the DRAM cache.

BlueCache’s simple garbage collection ensures good temporal locality.
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Figure 3-7: Log-structured flash store architecture

Such a KV-data store requires direct accesses to NAND flash chips, which is very

difficult to implement with commercial SSDs. Manufactures often deploy a flash translation

layer (FTL) inside SSDs to emulate hard drives behaviors, and this comes in the way of

exploiting the full flash bandwidth [60, 171]. The BlueCache architecture eliminates FTL

and uses direct management of parallel NAND flash chips to support KVS operations.

3.5 From KVS Cache to Persistent KVS

The BlueCache architecture described so far does not use the non-volatility of flash; it only

exploits the capacity advantage of flash over DRAM. However, it can be easily transformed

into a persistent KVS.

In order to guarantee persistency, BlueCache needs to recover from crashes due to power

outage as well as other system failures. If the KV-index cache is lost then the KV-data store
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essentially becomes inaccessible. Like filesystems [144, 148], we can periodically write

the KV-index cache to flash for persistency. The KV-index cache checkpoints are stored in

a different region of the flash than the one hold the KV data. In this way, a slightly older

version of KV-index cache can be brought back in DRAM quickly. We can read the flash

KV-data store, replay log from the timestamp of the KV-index cache checkpoint, and apply

SET operation on the key-value pairs sequentially from the log to recover the KV-index

cache. When checkpoints are being made, updates to KV-index cache should not be allowed.

To allow high availability of the KVS, we could devise a small interim KV hash table, which

can be merged later with KV-index cache and KV-data store after the checkpoint operation

finishes.

The write policy for the DRAM data cache should depend on the requirement of data

recovery by different applications. For applications that need fast retrieval of hot data,

write-through policy should be chosen because key-value pairs will be immediately logged

on to flash. Yet, this comes at the cost of having a smaller effective KVS size. On the

other hand, write-back policy works for applications which have relaxed requirement for

recovering the most recent data and benefit from larger capacity.

3.6 Architectural Innovations

We have described the hardware component of BlueCache. The following highlights the

optimiztions applied on each component to maximize the overall performance of BlueCache.

1. Hardware-assisted auto-batching for the KVS request processing.

2. In-storage hardware-managed network for KVS node communication with dynamic

allocation of dedicated virtual channels for different applications.

3. Hardware-optimized set-associative KV-index cache.

4. Elimination of FTL with log-structured KVS flash manager, which implements simple

garbage collection and schedules out-of-order flash requests to maximize parallelism.
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As discussed in Chapter 2, almost every element of BlueCache is present in some work

on KVS and/or flash system. Yet our system architecture as a whole is unique. BlueCache

presents novel flash-based KVS solution which has balanced architecure that can fully utilize

flash’s performance.

3.7 BlueCache Software Interface

In data centers, a KVS cluster is typically shared by multiple application. BlueCache

provides a software interface, which allows many multi-threaded applications to share the

KVS concurrently. The software interface implements a partial memcached client API

consisting of three basic C++ functions: GET, SET, DELETE, as listed below. The C++

functions can be also accessed by other programming languages via their C wrappers, such

as JAVA through Java Native Interface (JNI).

bool bluecache_set(char* key , char* value , size_t

key_length , size_t value_length);

void bluecache_get(char* key , size_t key_length , char**

value , size_t* value_length);

bool bluecache_delete(char* key , size_t key_length);

These functions provides synchronous interfaces. The BlueCache KVS throughput via

the software interface increases as there are more concurrent accesses, and it stops scaling

beyond 128 concurrent application threads (See Section 4.5).

BlueCache software interface is implemented by using three types of threads (Figure 3-

8). Application threads send KVS queries via the API. Flushing thread periodically pushes

partially filled DMA segments to host interface in background if there are no incoming

requests. Response thread handles DMA interrupts from hardware, and dispatches responses

to the application threads.

Furthermore, BlueCache software interface has three data structures owned by different

threads. The request queue buffers all KVS requests, and is shared by the application
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Figure 3-8: BlueCache software interface

threads and the flushing thread. The response queue buffers all KVS responses returned

from hardware, which is solely owned by the response thread. The KVS return pointer table

is shared by the application threads and the response threads, and maintains an array of

return pointers for each clients. Once the hardware returns KVS query results, the response

thread can signal the right application thread with the data. All the shared data structures are

protected by mutex locks.

Figure 3-8 also illustrates the internal operations of the software interface. When an

application thread queries BlueCache, it first sets up its return pointers on the KVS return

pointer table. Second, the application thread push the KVS queries to the request queue,

which is later send to BlueCache via DMA. The client thread then waits for the response.

The response thread receives an interrupt from the hardware after BlueCache pushes KVS

query results to the response queue. The response thread then dequeues the KVS response,

copies response data into a byte array, and signals the application thread with the response

by referring to the information on the KVS return pointer table.
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Chapter 4

Implementation and Evaluation

We use Field Programmable Gate Arrays (FPGA) to implement BlueCache. In this chapter

we describe BlueCache’s implementation platform, hardware resource usage, and power

characteristics in order. And then we will evaluate BlueCache using micro-benchmarks and

an end-to-end social networkign benchmark.

4.1 BlueDBM Platform

BlueCache is built on BlueDBM Platform as described in Section 1.4. BlueCache KVS

components are mapped into different BlueDBM parts. The Xeon computer nodes are used

as application servers, and BlueDBM storage nodes are used as the KVS. On each BlueDBM

storage node, the KV-index cache is stored in the DDR3 SODIMM, and the KV-data store

is stored in the flash. The high-speed serial links are used as the BlueCache network. The

Virtex-7 FPGA hosts all the hardware accelerators, which are developed in the high-level

hardware description language Bluespec [12].

On the BlueDBM’s Xeon servers, the software interface is developed on Ubuntu 12.04

with Linux 3.13.0 kernel. We used the Connectal [136] hardware-software codesign library

which provides RPC-like interfaces and DMA over PCIe. We used a PCIe gen 1 version of

Connectal, which supports 1 GB/s to and 1.6GB/s from FPGA. Two flash cards would pro-

vide a total of 2.4 GB/s bandwidth which would exceed the PCIe gen 1 speed; however, only

one flash card is used due the limitation of FPGA resources to be explained in Section 4.1.1.
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4.1.1 FPGA Resource Utilization

Table 4.1: Host Virtex 7 resource usage

Module Name LUTs Registers RAMB36 RAMB18
KVS Protocol Engine 17128 13477 8 0
Network Engine 74968 184926 189 11
KV Data Store Manager 33454 32373 228 2
KV Index Cache Manager Table 52920 49122 0 0
Virtex-7 Total 265660 227662 524 25

(88%) (37%) (51%) (1%)

Table 4.1 shows the VC707 resource usage for a single node of a four node configuration

with one active flash card per node. This configuration uses most (88%) of the LUTs and

half the BRAM blocks. Given the current design, the VC707 does not support a full-scale

BlueCache KVS by using all the hardware resources provided by BlueDBM platform

(20-node KVS node with 20TB flash capacity).

4.2 Power Consumption

Table 4.2: BlueCache power consumption vs. other KVS platforms

Platforms
Capacity Power Capacity/Watt

(GB) (Watt) (GB/Watt)
FPGA with Raw Flash Memory(BlueCache) 20,000 800 25.00
FPGA with SATA SSD(memcached) [60] 272 27.2 10.00
Xeon Server(FlashStore) [85] 80 83.5 0.96
Xeon Server(optimized MICA) [153] 128 399.2 0.32
Xeon Server+GPU(Mega-KV) [216] 128 899.2 0.14

Table 4.2 compares the power consumption of BlueCache with other KVS systems.

Thanks to the lower power consumption of FPGAs, one BlueCache node consumes only

about 40 Watts at peak. A 20-node BlueCache cluster consumes 800 Watts and provides

20TB of key-value capacity. Compared to other top KVS platforms in literature, BlueCache

has the highest capacity per watt, which is at least 25X better than x86 Xeon server platforms,

and 2.5X over an FPGA-based KVS with SATA SSDs. A production system of BlueCache
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Figure 4-1: Single-node operation throughput on DRAM only

can easily support 8TB NAND flash chips per node, and a single node can provide 2.5M

IOPs of random 8KB page read and comsumes less than 50W (1/8 of a Xeon server) [184].

4.3 Single-Node Performance

We evaluated GET and SET operation performance on a single BlueCache node. We

measured both throughput and latency of the operations. Measurements are made from

application servers without multi-thread software interface to test the peak performance of

the BlueCache hardware.

4.3.1 DRAM-only Performance

This part evaluates the performance of a single-node BlueCache DRAM-only implementa-

tion. All key-value pairs are resident on the slab-structured DRAM store of the KV data

cache. Measurements are made with key-value pairs of different sizes, keys are all 32B.

Operation Throughput

Figure 4-1 shows the throughput of a single-node DRAM-only BlueCache. DRAM-only

BlueCache has peak performance of 4.14MRPS for SET operations and 4.01MRPS for GET.
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Figure 4-2: Single-node operation latency on DRAM only

This is a 10X improvement over the stock memcached running on a Xeon server which

support 410 KRPS at peak.

BlueCache operation throughput is limited by different hardware components depending

on the size of key-value pairs. For small key-value pairs (<512B), operation throughput

is bottlenecked by random access bandwidth of the DDR3 memory. DRAMs support fast

sequential accesses, but is slow for random accesses. As measured from the 1GB DDR3

DRAM, bandwidth is 12.8GB/s for sequential access vs 1.28GB/s for random access. For

large key-value pairs (>512B), DRAM sequential accesses dominate but PCIe bandwidth

limits the performance of BlueCache. PCIe gen1 limits transfers from the application server

to BlueCache at 1.2GB/s for SETs and 1.6GB/s in the reverse direction for GETs.

Operation Latency

Operation latency consists of PCIe latency, data transfer latency and software latency.

Figure 4-2 shows that operation latency of single-node DRAM-only BlueCache varies

from 20µs to 1200µs. PCIe latency is constant about 20µs (10µs per direction), and it is

the dominant latency source when key-value pairs are small(<8KB). Data transfer latency

increases as key-value pairs become larger, and it dominates latency for key-value pairs larger

than 8KB. Software latency includes processing time of PCIe interrupts, DMA requests
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Figure 4-3: Single-node operation throughput on flash

and other software components. Software latency is small because only one interrupt is

needed for key-value sizes smaller than 8KB. For bigger key-value pairs, there are more

DMA bursts which requires more interrupts per KVS request, and the software overhead

becomes significant.

4.3.2 Performance with Flash

This section evaluates the performance of a single-node BlueCache implementation with

flash. All key-value pairs are resident on the log-structured flash store of the key-value data

cache. Measurements are made with key-value pairs of different sizes, keys are all 32B.

Operation Throughput

Figure 4-3 shows the throughput of a single-node BlueCache with one flash board. Using

flash, BlueCache has a peak performance of 6.45MRPS for SET operations because writes

are first buffered in DRAM before writing to flash. GET operations with 64 byte key-value

pairs achieve 148.49KRPS.

For SET operations, key-value pairs are buffered in DRAM and then written to flash

in bulk at the 430MB/s NAND Flash write bandwidth (Figure 4-3(a)). For 64-byte key-

value pairs, SET operations on flash has more bandwidth than DRAM (Figure 4-3(a) vs.
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Figure 4-4: Single-node operation latency on flash

Figure 4-1(a)). The slower performance on DRAM is due to poor random accesses on the

single-channel DDR3 SDRAM. For flash, performance is better because there are more

sequential DRAM write pattern from the DRAM write buffer on the flash KV data store.

For GET operations, the requirement to read 8KB NAND pages limits throughput to

148K IO/s. As shown in Figure 4-3(a), for key-value pairs smaller than 8KB, only one

page of flash is read and so the operation throughput is same as that of flash (~148KPS).

For key-value pairs greater than 8KB, multiple pages are read from flash, and operation

throughput is limited by flash read bandwidth.

Operation Latency

Figure 4-4 shows operation latency of a single-node BlueCache. SET operation latency of

BlueCache using flash varies from 21µs to 1100µs, which is similar to that using DRAM

only, because all SET operations are buffered in DRAM before being written to flash. GET

operation latency consists of PCIe latency, flash read latency, data transfer latency, and

software latency. GET operation latency varies from 150µ to 1024µs. Data transfer latency

dominates, because an entire flash page needs to be fetched even for small reads.

In conclusion, raw flash device latency is the dominant latency source of BlueCache

processing on flash store. And accelerating GET/SET operations on FPGA with flash adds a
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Figure 4-5: Multi-node GET operation bandwidth. (a) single app server, multiple BlueCache
nodes, (b) multiple app servers, single Bluecache node, (c) multiple app servers, multiple
BlueCache nodes

negligible latency to the overall key-value processing time.

4.4 Multi-Node Performance

We measured multi-node performance by chaining four BlueCache nodes together in a linear

array. Each BlueCache node is attached to an application server via PCIe.

4.4.1 Operation Throughput

We measured BlueCache throughput under the following scenarios: (1) a single application

server accessing multiple BlueCache nodes (Figure 4-5(a)). (2) multiple application servers

accessing a single BlueCache node (Figure 4-5(b)). (3) multiple application servers accessing

multiple BlueCache nodes (Figure 4-5(c)). All accesses are 40,000 random GET operations

of 8KB key-value pairs on flash.

The first scenario examines the scalability of BlueCache when there is only one appli-

cation server accessing BlueCache. We observed some speed-up (from 148 KPRS to 200

KRPS) by accessing multiple storage nodes in parallel (See Figure 4-5(a)), but ultimately

we are bottlenecked by PCIe (current x8 Gen 1.0 at 1.6GB/s). We are currently upgrading

BlueCache pipeline for PCIe Gen 2.0, which would double the bandwidth. In general, since

the total throughput from multiple BlueCache servers is extremely high, a single application

server with a host interface cannot consume the aggregate internal bandwidth of a BlueCache
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KVS cluster.

The second scenario examines the behavior of BlueCache when there is resource con-

tention for a BlueCache storage node by multiple application servers. Figure 4-5(b) shows

that the network engine is able to maintain the peak flash performance, but favors the

application server to which it is attached. In the current implementation, half of the flash

bandwidth is allocated to the application server attached to a storage node.

The last scenario illustrates the aggregated bandwidth scalability of BlueCache KVS

cluster, with multiple application servers accessing all KVS nodes. The line in Figure 4-5(c)

shows the total maximum internal flash bandwidth of all BlueCache nodes, and the stacked

bars show overall throughput achieved by all application servers. We achieved 99.4% of the

maximum potential scaling for 2 nodes, 97.7% for 3 nodes, and 92.7% for 4 nodes at total

of 550.16 KRPS.

4.4.2 Operation Latency

Figure 4-6 shows the average GET operation latency for 8KB key-value pairs over multiple

hops of BlueCache nodes. Latency is measured from both DRAM and flash. We measured

that that each hop takes ~0.5µs, therefore BlueCache handshake network protocol only takes

1.5µs per hop. When key-value pairs are on DRAM, we observed a ~2µs increase of access

latency per hop for various number of node traversals, which is much smaller than overall

access latency (~25µs). Access variations from other parts of BlueCache hardware are far

greater than the network latency, as shown as error bars in Figure 4-6. Because accessing

remote nodes are equally as fast as local nodes, the entire BlueCache KVS cluster appears

as a fast local KVS storage, even though it is physically distributed among different devices.

4.5 Application Multi-Access Performance

Applications use BlueCache’s software interface (See Chapter 3.7) to access BlueCache

KVS cluster concurrently. Figure 4-7 shows the performance of BlueCache’s software

interface when there are multiple application threads sending synchronous GET requests.

When there are a small number of application threads, BlueCache delivers nearly raw flash
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Figure 4-6: Multi-node GET operation latency on DRAM/Flash

device latency of 200µs. However, flash bandwidth is not saturated because there are

not enough outstanding requests. Increasing the number of concurrent threads increases

in-flight KVS requests and KVS throughput. However, if there are too many threads, latency

increases to the undesirable millisecond range because of significant software overheads

from context switching, locking, and request clustering. Configuring the application with

128 threads delivers 132.552 KRPS throughput at only 640.90 µs average latency on 1KB

key-value pair GETs.

We also ran the same experiments on Fatcache, which is an SSD-backed software KVS

implemention. We ran Fatcache on a 24-core Xeon server with one 0.5TB PCIe-based

Samsung SSD and one 1Gbps Ethernet. The SSD performs like BlueCache’s Flash board

(130K IOPs vs 150K IOPs for 8KB page reads). Our result shows that Fatcache only

provides 32KRPS throughput and 3000µs average latency. In comparison, BlueCache can

fully exploit the raw flash device performance, and shows 4.18X higher throughput and

4.68X lower latency over Fatcache.

Figure 4-8 breaks down the latency of Fatcache and BlueCache requests. The actual

Flash access latency is the same, but BlueCache eliminates 300µs of network latency [169],
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Figure 4-7: Accessing BlueCache via software interface, key-value pair sizes are 1KB

128 µs of NIC latency [169, 180], and 2000 µs of KVS software latency.

4.6 Social Networking Benchmark

We used BG [54], a social networking benchmark, to evaluate BlueCache as a data-center

cache. BG consists of a back-end storing profiles for a fixed number of users, and a front-end

multi-threaded workload simulator. Each front-end thread simulates a user performing social

actions. Social actions consist of View Profile, List Friends, Post Comment, Delete Comment,
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Figure 4-8: End-to-end processing latency comparison of SSD KVS software and BlueCache
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and so forth.

An example of a BG backend is a MySQL database. The MySQL database persistently

stores member profiles in four tables with proper primary/foreign keys and secondary

indexes to enable efficient database operations. BG implements 11 social actions which can

be translated to SQL statements to access the database.

BG also supports augmenting the back-end with a KVS cache. A social action type

is prefixed with the member ID to form a KVS request key, the corresponding MySQL

query result is stored as the value. The interactions between KVS and MySQL database

are the same as were described in Section 2.2. The average size of key-value pairs of BG

benchmark is 1.54KB.

We performed experiments with BG benchmark by using three different KVS sys-

tems: BlueCache, a DRAM-based KVS (stock memcached) and a flash-based KVS (Fat-

cache [199]). In the next two sections we describe the experiment setup and three experi-

ments to evaluate BlueCache.

In our experiment configurations, the back-end data store of BG is a cache-augmented

MySQL database. The MySQL database persistently stores member profiles in four tables

with proper primary/foreign keys and secondary indexes to enable efficient database opera-

tions. BG implements 11 social actions which can be translated to SQL statements to access

the database. A particular key-value store of interest augments the MySQL database as the

cache. BG uses social action type with the member ID as the key, and the corresponding

social action results as the value. The average size of key-value pairs of BG benchmark

is 1.54KB, with maximum size of 4.6KB. For read-only social actions, BG consults the

MySQL database only if results fail being fetched from the key-value cache. For social

actions which update the data store, it deletes relevant key-value pairs from the cache and

updates the database, to make the cache coherent with the persistent storage.

The front-end workload simulator of BG is a multi-threaded java program making

requests to the back-end data store. Zipfian is used to simulate the accessing distribution by

active users. BG allows us to adjust parameters such as number of active users, and mixture

of different type of social actions, to examine different behaviors of back-end stores.
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4.6.1 Experiment setup

MySQL Server runs a MySQL database containing persistent user data of BG benchmark.

It is a single dedicated machine which has two Intel Xeon E5-2665 CPUs (32 logical cores,

2.4GHz), 64GB DRAM, 3x 0.5TB M.2 PCIe SSDs in RAID-0 (~3GB/s bandwidth) and a

1Gbps Ethernet adapter. The database is pre-populated with member profiles of 20 millions

users, which is ~600GB of data. The database is configured with a 40GB InnoDB buffer

pool.

Application Server runs BG’s front-end workload simulator on a single machine which has

two Intel Xeon X5670 CPUs (24 logic cores, 2.93GHz), and 48GB DRAM. BG’s front-end

multi-threaded workload simulator supports a maximum of 6 million active users on this

server, which is about 20GB of working set. The front end has a zipfian distribution with

mean value of 0.27, to mimic the skew nature of the workload.

Key-Value Store caches MySQL database query results. We experimented with three KVS

systems to examine behaviors of different KVSs as data-center caching solutions.

System A, Software DRAM-based KVS: System A uses stock memcached as a in-memory

key-value cache, and uses 48 application threads to maximize throughput of memcached.

System B, Hardware flash-based KVS: System B uses a single BlueCache node as a

key-value cache. The BlueCache node is attached to the client server via PCIe. System B

uses 128 application threads to maximize throughput of BlueCache.

System C, Software flash-based KVS: System C uses Fatcache, a software implementation

of memcached on commodity SSD. System C uses 48 application threads to maximize

throughput of Fatcache.

Table 4.3 compares the characteristics of storage medium used by three different KVS

systems.

Table 4.3: KVS storage technology comparison

KVS systems Storage Media Capacity Bandwidth
memcached DDR3 SDRAM DIMMs 15GB 64GB/s
BlueCache NAND flash chips 0.5TB 1.2GB/s or 150K IOPs
FatCache Samsung m.2 PCIe SSD 0.5TB 1GB/s or 130K IOPs
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Figure 4-9: Throughput of memcached for relative network latencies

We also found that running the benchmark frontend and memcached on the same server

has higher throughput than running them on separate machines. The network connection

speed between the application server and the KVS plays a critical role in the overall

system performance. Figure 4-9 shows that the throughput of stock memcached decreases

exponentially when more of the processing time is spent on network compared to actual

in-memory KVS access. We measured peak throughput of stock memcached via 1Gbps

Ethernet, which is about 113 KRPS and is lower than the peak throughput of BlueCache.

The 1Gbps Ethernet can limit the performance of System A and C, while BlueCache’s fast

network is not a bottleneck for System B. When memcached and the application runs on

the same server, the throughput is 423KRPS, and the server utilizes <50% of CPU cycles

at peak, which means sharing CPU cycles was not a bottleneck in such a set-up. For our

experiments, we eliminated the 1Gbps network bottleneck and deployed both System A and

C on the same physical machine of the application server, to have a fair comparison with

System B.
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Figure 4-10: Performance of BlueCache and other KVS systems as augmentations to
a MySQL database, which stores simulated data of a social network generated by BG
benchmark. Evaluations are made with various numbers of active social network users.

4.6.2 Experiments

We ran BG benchmark with our experimental setup to evaluate the characteristics of Blue-

Cache and other KVSs as data-center caches. Misses from KVS are penalized by reading

the slower backend to refill the KVS cache, thus KVS miss rate is an important metric to

evaluate the efficacy of the cache. There are two types of misses for KVS caches. First

type happens when KVS capacity is limited and can not hold the entire working set of the

application. We call them capacity misses. The second type of KVS misses are caused by

updates to the backend. When new data is written, the application DELETEs the relevant

key-value pairs in KVS to make KVS coherent with the new data in the backend. In this

case, the next corresponding GET request will return a miss. We call such misses coherence

misses.
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We ran three experiments to examine how KVS misses can effect the overall performance

of different KVS cache solutions.

• Experiment 1 evaluates the benefits of a slow and large KVS cache over a fast and

small one. Like typical real use cases [48, 62], the front-end application in this

experiment has a very low update rate (0.1%), thus coherence misses are rare. DRAM-

based solution (memcached) is faster than flash-based solution (BlueCache), but its

superiority can quickly diminish as the former suffers from more capacity misses. We

will show the cross point where BlueCache overtakes memcached. We will also show

the superiority of a hardware-accelerated flashed-based KVS solution over a software

implementation (BlueCache vs. Fatcache).

• Experiment 2 examines the behavior of BlueCache and memcached when they have

the same capacity. In such cases, both KVS solutions will experience capacity misses,

and we will show the performance drop as capacity misses increase for both systems.

• Experiment 3 examines the behavior of BlueCache and memcached when the ap-

plication has more updates to the backend. In such cases, both KVS solutions will

experience coherence misses, and we will show the performance drop as coherence

misses increase for both systems.

Experiment 1 Results

Experiment 1 shows that BlueCache can sustain more request rate than memcached, when

the latter has the more than 7.4% misses (See Figure 4-10(a)(b)). With no capacity misses,

memcached sustains 3.8X higher request rate (415KRPS) than BlueCache (123KRPS),

and 12.9X higher than Fatcache (32KRPS). As the number of active users increases, the

capacity of memcached is exceeded and its miss rate increases. Increasing miss rate degrades

throughput of the overall system, since each memcached miss requires MySQL accesses.

BlueCache and memcached meet at the cross point at 7.4% miss rate. Fatcache, on the other

hand, is 4.18X slower than memcached, and its Fatcache throughput does not exceed that of

87



 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.05  0.1  0.15  0.2  0.25

T
hr

ou
gh

pu
t (

K
R

P
S

)

Cache Miss Rate
(a) System Throughput

memcached
Bluecache

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  0.05  0.1  0.15  0.2  0.25

A
ve

ra
ge

 L
at

en
cy

 (
us

)

Cache Miss Rate
(b) System Latency

Memcached on local DRAM
Bluecache

Figure 4-11: BG performance for different capacity miss rates, both memcached and
BlueCache have the same capacity of 15GB

memcached until the number of active users exceeds 5.75 million and memcached’s miss

rate exceeds 18%.

Similar trend can also be found in the end-to-end application latency of BG bench-

mark for different KVS solutions (Figure 4-10(c)(d)). When there are no capacity misses,

memcached provides an average latency of 100µs that is 20X faster than BlueCache.When

memcached suffers more than 10% misses, BlueCache shows much better 95th percentile

latency (2600µs) than memcached (3600µs-6900µs), because of miss penalties by MySQL.

On the other hand, Fatcache shows about similar average latency with BlueCache (1700µs

vs. 2100µs), but it has much larger variations in the latency profile and has 1.5X shorter

95th percentile latency than BlueCache (4000µs vs. 2600µs).

Experiment 2 Results

Experiment 2 examines the behavior of capacity cache misses of BlueCache and memcached.

In this experiment, we configured the BlueCache to the same size of as memcached of

15GB, and made the benchmark to issue read-only requests. Thus, all misses are capacity

misses. Figure 4-11(a) shows that throughput of both KVSs decreases as miss rate increases,

with memcached dropping at a faster pace. Beyond 16% miss rate, both KVSs merge at
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Figure 4-12: BG performance for different coherence miss rates

the same throughput when the backend becomes the bottleneck. Figure 4-11(b) shows that

latency also increases as miss rate increases, but memcached delivers shorter latency than

BlueCache in general. On Figure 4-11(b), there is a breakpoint of the latency for BlueCache,

because of change of thread counts of the benchmark. The benchmark changes the thread

count from 128 to 64 at the breakpoint, in order to reduce request congestion and lower

latency while maintaining maximum throughput. In an ideal case, the benchmark would

dynamically adjust the request admission rate, so that the curve in Figure 4-11(b) would be

smooth.

Experiment 3 Results

Experiment 3 examines the behavior of coherence cache misses of BlueCache and mem-

cached. In this experiment, we vary read/write ratios of the benchmark, to control the

coherence cache miss rate. Similar to Experiment 1, the throughput of both KVSs decreases

as miss rate increases, with memcached dropping at a faster pace (Figure 4-12(a)). And at

merely 6% miss rate, both KVSs merge at the same throughput when the backend becomes

the bottleneck. Figure 4-12(b) shows that latency also increases as miss rate increases, but

memcached delivers shorter latency than BlueCache in general. Similar to Experiment 2,

the break point of latency for BlueCache is due to change of request thread count to reduce
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request congestion from the applications.

4.7 Part I Conclusion

We have presented BlueCache, a fast distributed flash-based key value store appliance that

uses near-storage KVS-aware flash management and integrated network as an alternative to

the DRAM-based software solutions at much lower cost and power. A rack-sized BlueCache

mini-cluster is likely to be an order of magnitude cheaper than an in-memory KVS cloud with

enough DRAM to accommodate 10~20TB of data. We have demonstrated the performance

benefits of BlueCache over other flash-based key value store software without KVS-aware

flash management. We have demonstrated the scalability of BlueCache by using the fast

integrated network.

BlueCache has a clear advantage over a DRAM-based solution, if an application can

tolerate milliseconds of tail-latency, and has large size response associated with each user-

query. In data centers, many applications, such as video streaming, can tolerate tail-latency

of several milliseconds [24]. When average cached object size of the workload is big, say

greater than 8KB, the performance-per-watt of Bluecache is almost certain to beat DRAM-

based system, because large sequential reads to flash drive amortizes penalty of page read

amplification, and results similar performance to DRAM-based system with superior power

efficiency. In addition, when a workload has large average value size associated with its

queries, it can lead to extra pressure on KVS systems for more caching capacity. Under

such a scenario, Bluecache can provide orders-of-magnitude larger cache capacity at a much

lower cost than DRAM-based solutions.

When a workload’s KV sizes are small, BlueCache can still win over DRAM-based

systems under certain conditions, especially when the overall system suffers from cache

capacity misses. We have shown that the performance of a system which relies data being

resident in in-memory KVS, drops rapidly even if a small portion of data has to be stored in

the secondary storage. With more that 7.4% misses from in-memory KVS, BlueCache is

superior solution in data centers than a DRAM-based KVS, with more affordable and much

larger storage capacity.
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All of the source codes of the work are available to the public under the MIT license.

Please refer to the git repositories: https://github.com/xushuotao/bluecache.git

and https://github.com/sangwoojun/bluedbm.git.

4.8 A Retrospective on Hardware-acceleration near Flash

for Latency-sensitive Workloads

BlueCache implements the entire flash-based KVS stack in hardware, and showed in 2017

that such an hardware-centric approach could achieve 25× power-efficiency improvement

over general-purpose solutions. By integrating compute, network and storage layers tightly

in hardware, BlueCache could process queries at hundreds of microseconds latency at the

I/O device limits, without incurring software overhead.

Since 2017, when BlueCache first came in the public view, general-purpose machines

have made great strides in providing low-latency solutions. Intel integrated DDIO technology

in their new Xeon cores, which enables direct I/O traffics to and from last-level cache and

allows x86 cores to process I/O packets with a much lower latency [116]. Industry also has

open-sourced many software development packages such as DPDK [117] and SPDK [37],

which reduces or bypasses the high operating system overhead in accessing I/O devices.

Because of such advancements, a single core can process near a million of remote storage I/O

requests per second with several hundreds of microseconds latency [137]. Moreover, recent

academic projects have shown that, by aggressively optimizing software scheduling, latency-

sensitive applications running on general-purpose machines can achieve µs-level tail-latency,

in spite of unpredictable interference from other co-hosted workloads [99, 137, 168].

Many recent software systems [52, 93, 150, 151] have also used latest NVM technology,

such as 3D Xpoint memory technology [18], to overcome the high-cost of in-memory

computing like BlueCache. In 2018 Facebook used Intel Optane drive as the secondary

cache of DRAM in this production persistent KVS software, which greatly reduced the

amount of DRAM required without compromising applications’ throughput, latency and

storage efficiency [93].
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Although software solutions have shown great improvement in enabling low-latency

systems [99, 137, 168], and lowered the cost of in-memory computing by replacing DRAM

with NVM in some cases [93], it does not make BlueCache obsolete as a hardware-centric

solution for low-latency workloads in data-centers.

Advantages of hardware acceleration over general-purpose solutions

First, hardware accelerators are still 10× better than general-purpose solutions in terms

of pure performance. To this date, the state-of-the-art in-memory KVS solution, KV-

direct [152], uses FPGAs to accelerate networking and KV-processing like BlueCache. It is

able to provide 1.22 billions KV requests per second in a single server chassis, which is an

order-of-magnitude performance improvement over x86 machines [152]. Most importantly,

KV-direct can keep the tail latency below 10µs [152], which is still difficult for general-

purpose machines to achieve today. BlueCache has more than 100µs latency because

of NAND flash access is 10×-100× longer than DRAM. Therefore, the latest state-of-

the-art general-purpose solutions can have sufficient latency headroom to compete with

BlueCache [99, 137]. However, low-latency NVMs are on the horizon: Intel ReRAM-

based NVMs [19] are now available provide 10µs latency, which could be used to upgrade

BlueCache to lower its access latency similar to that of KV-direct.

Second, hardware accelerators are orders-of-magnitude more power-efficient than general-

purpose solutions because of specialization. KV-direct is able to improve the power con-

sumption of in-memory KVS by 3× over CPU-base solutions [152]. And BlueCache is

able to improve at least 25× better power per GB than software systems running on Xeon

servers. Typically server-class machines use highly complex out-of-order (OoO) superscalar

processors with tens to hundreds of megabytes of LLC to compute data-center workloads.

Complex OoO superscalar cores could result in low efficiency in processing KVS operations,

and incur power consumption overhead. A past study shows that traditional super-scalar

general-purpose core pipeline can be grossly underutilized in performing the required KVS

computations (networking, hashing and accessing key-value pairs) [156]. As discussed in

Section 2.3.1, the last level data cache, which typically takes half of the size of processor

area, could also be inefficient and waste energy for KVS cache systems, because large
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hash-table-based KVS often exhibit poor locality due to random accesses to a large data-set.

One could argue that high-performance hardware acceleration of KVS operations with

billions of requests per second and tens of µs latency could be an overkill for latency-

sensitive applications today and that software solutions are more than adequate. Meanwhile,

general-purpose machines can co-host many applications with intelligent scheduling al-

gorithms to maximize the utilization of the power-hungry processor without sacrificing

latency-sensitive applications [99]. However, there are still strong economic incentives

to use hardware accelerators to save energy and burn less cores in the public clouds. For

example, Microsoft Azure cloud uses FPGAs to accelerate many data-center workload,

which saves CPU time/energy spent on many applications, such as networking, machine

learning, search ranking and more [67, 179]. In addition, public cloud can also sell saved

cores to cloud end-users and make significant business profits [189].

Limitations of hardware acceleration flash-based KVS

Although hardware acceleration of flash-based KVS can offer 10×-100× higher performance-

per-watt than general-purpose solutions, BlueCache still suffers from some limitations

compared to software solutions.

Limited Algorithm Complexity: In principle one can write any algorithm as a hardware

accelerator, but designing a highly complex end-to-end system entirely as a hardware

accelerator can lead to overhead in chip area, difficulty in design verification and etc. In fact,

hardware accelerators typically strive for simplicity in order to yield low chip area and high

clock frequency. For example, in BlueCache we designed highly efficient circuits, such as

way-associative hash-table, circular logging and customized lossless network protocol,

to make sure BlueCache a practical end-to-end design for a high-performance FPGA

implementation. If more KVS features, such as range queries are needed, a more complex

KVS design (e.g. log-structured merge tree) is required, which makes a hardware accelerator

implementation infeasible. In fact, many data-structures, such as trees, are efficient to run

on general-purpose machines, because they fit well in the processor memory-hierarchy. In

such scenarios, we can use a hybrid approach to accelerate the commonly-used operations

in hardware accelerators, such as networking, bloom-filtering, compression/decompression,
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while leaving the uncommonly used complex component in software, such as garbage

collection.

Highly Specialized Storage Stack: In practice, flash-based KVS systems use the storage

stack to access commercial storage drives. The storage stack includes filesystem, page-cache,

RAID support, FTL and more, and provide a clean and convenient programming interface

for user-space applications. The legacy storage stack also takes care of many challenges

that flash-based systems face. For example, page-cache mitigates read-amplification of

flash storage by merging small reads to pages cached in DRAM. And FTL takes care of

necessary flash management, such as wear-leveling, garbage collection, and etc. Instead

of accessing flash via legacy storage stack, BlueCache uses a customized flash card with

raw flash chips [160] and manages NAND flash storage with in a highly specialized way:

BlueCache implemented the entire storage stack in hardware, because storage stack may

incur additional overhead in accessing flash. For example, FTL is often provided as a

black-box inside SSD. Latency-sensitive applications typically have no control over when

garbage collection would occur, and maybe be interfered by unexpected flash-I/O spikes

triggered by the FTL. Many recent works in user-space storage stack have optimized flash

I/O storage stack across layers, which expose more information to applications to utilize

fast I/O devices efficiently [137, 144, 148]. In light of advancements in storage stack, a

future version of BlueCache could be designed as an accelerator integrated in the NIC on a

general-purpose machine, which would also host multiple commercial NVM drives. The

hardware accelerators on the NIC can process KV requests partially, including networking,

hashing and KV index access. And later host software can take over partially-processed

KV-requests, access the storage via user-space storage I/O stack and pass the results back

to the accelerator. In this way, future BlueCache designs can take advantages of both the

convenience of fast and efficient software storage stack and the lower-power high-speed

processing by hardware accelerators.
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Part II

In-storage Analytic-Query Accelerator

for SQL Analytics
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Chapter 5

Part II Introduction and Background

5.1 Overview and Motivation

Multi-terabyte/petabyte datasets are now commonplace for analytic workloads. In many

cases, the data is stored in relational format on hard drives and analyzed by SQL database

software such as Presto [26], Vertical [11], and MonetDB [38]. To process an analytic query,

the database software brings the input data on demand from hard drives to DRAM, and then

uses powerful CPUs to compute with this data. In a data warehousing architecture in the

cloud, application servers and storage servers are separate and connected via a network [7].

Application servers initiate analytical queries, fetch data from the central storage and then

process it. Such a “disaggregated” architecture is popular in the cloud because customers

can scale the application servers and storage servers independently. For fast query responses,

analytical software typically requires application servers to have sufficient hardware threads

(i.e., virtual cores) and DRAM to hold the input data to overcome the long latency, large

access granularity and limited bandwidth of central storage accesses. In April 2020 the

largest storage-optimized Amazon EC2 server (i3.metal) can accommodate 8 1.9TB SSDs,

and is equipped with 72 virtual cores and 512GB DRAM. Such large processing power

and DRAM are needed to be able to fully exploit the high-bandwidth of SSDs. Storage

throughput, because of advances in flash technology, has improved by 13X in the past

decade [182], and has greatly outpaced CPUs ability to process data in memory [95,165]. As

denser and faster storage devices become available in the future, it will become increasingly
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difficult for storage servers to provide sufficient CPUs and DRAM to have a cost-effective

balanced system.

An alternative solution is to push part of query processing to the storage to eliminate

unnecessary data movement. Such a solution has been deployed in several commercial

systems, for example, Oracle Exadata Server [105], IBM Netezza Machine [191], and

IDM [200]. One of the most recent systems is Amazon Web Services (AWS)’s “S3 Select”

feature, which pushes filter operation to the shared cloud storage service, and can get up to

4X performance benefits for these operations [28]. In this thesis we propose an in-storage

Analytic QUery Offloading MAchiNe (AQUOMAN), which pushes this idea of “off-loading”

query processing to storage much more aggressively (See Figure 5-1).
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Figure 5-1: Using AQUOMAN for SQL analytics

AQUOMAN’s programming model is based on a sequence of Table Tasks, each of which

applies a static dataflow graph of SQL operators on an input table in a streaming manner to

produce an output table. It takes inputs from flash, in a file format used by column-oriented

database like MonetDB, because it is better suited for analytic workloads. Given the SQL

query execution plan - a tree of SQL operators - we identify the subtrees that can be directly

translated into Table Tasks. By employing a streaming model, AQUOMAN significantly

reduces the DRAM requirement for intermediate tables.

We want to keep the memory in AQUOMAN to be small enough, say 16GB per 1TB-SSD,

so that AQUOMAN can be embedded in an SSD. This prevents us from fully off-loading

some queries, for example, a multi-way join, whose intermediate tables exceed the DRAM

capacity of AQUOMAN. Despite these limitations (Section 8.5), AQUOMAN can profitably
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execute the majority of queries in the TPC-H benchmark suite on a 1TB dataset, giving us

an opportunity to reduce both number of hardware threads and DRAM usage in the host.

We will show, using TPC-H benchmarks on 1TB data sets, that a single instance of 1TB

AQUOMAN disk, on average, can free up 70% CPU cycles and reduce DRAM usage by

60%. Thus, replacing standard SSDs with AQUOMAN SSDs in database systems is a sound

economic proposition.

One way to visualize this saving is to think that if we run queries sequentially and ignore

inter-query page cache reuse, MonetDB running on a 4-core, 16GB-DRAM machine with

AQUOMAN augmented SSDs performs, on average, as well as a MonetDB running on a

32-core, 128GB-DRAM machine with standard SSDs.

5.2 Background: Database Accelertors

Accel. Type Related Work Impl. Supported SQL oper-
ator

Evaluated TPC-
H Queries

Data Sz.
(GB)

In-memory Q100 [204, 205]
MasterOfNone [162] ASIC All

All 22 queries
w/o regular ex-
pression

0.01

In-storage

SmartSSD [89] ARMs
Filter
Aggregate Group-By

Q6, 2 custom
queries 100

Summarizer [140] Filter
Q1,6,14, a cus-
tom query 0.1

Biscuit [106]
YourSQL [120]

ARMs&
ASIC Filter

All (8 is par-
tially offloaded) 100

Ibex [203]
FPGA

Filter
Aggregate Group-By

Q13, 6, custom
queries 10

Insider [182] Filter
A Custom
Query 60

FCAccel [202]
Filter
Aggregate Group-By
Arithmetic

Q1,6, and a cus-
tom query 100

AQUOMAN FPGA All All (14 are fully
offloaded) 1000

Table 5.1: Representative near-data SQL accelerators

There is a long history of attempts to use specialized hardware to accelerate database

query processing [63, 86, 87] but it has never caught on. One reason is that the dramatic

increase in processing power and DRAM capacity of commodity hardware over the last

four decades has reduced the incentive to use special hardware. However, with the rise of
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specialized hardware in datacenters [67,123,179,189] and the increase of storage throughput

in the last decade [182], there is a resurgence of interest in accelerating analytical workload

using FPGAs or ASICs.

Table 5.1 gives a summary of the recent work to accelerate database operations near

storage. The first family of In-Storage Processing (ISP) architectures leverages the existing

ARM cores of the SSD controller to offload simple tasks like filtering [89, 140]. However,

the embedded cores in the SSD controller can be 100X slower than x86 cores [197], and

offloaded programs can suffer 10X slowdowns [78]. Biscuit [106] and YourSQL [120] use

embedded processors in conjunction with a pattern-matching ASIC to offload filtering. They

showed offloading filtering is profitable only when the selectivity is sufficiently high.

Another class of ISP (e.g. Insider [182]) uses FPGAs to add processing power to SSDs for

a variety of applications to saturate large internal disk bandwidths. One example application

of Insider is offloading database filtering, and it provides performance benefits similar to

the one provided by a high-end ARM-based solution. Ibex [203] and FCAccel [202] use

FPGAs to offload more SQL operators, such as Aggregate Group-By, but do not provide a

plan to offload a join, which is one of the most dominant operators in analytic queries such

as TPC-H.

Unlike existing ISP approaches, AQUOMAN offloads all major types of SQL operators in

storage, including the computation-intensive join. AQUOMAN, given an SQL query plan,

regroups SQL operators as Table Tasks, which is the programming model for AQUOMAN’s

streaming architecture. This enables a transparent integration of ISP with the existing DBMS

software. It is also important to note that previous database accelerator research has used

much smaller data sets (10MB to 100GB [79, 89, 106, 120, 140, 202, 204]) for evaluation

(Table 5.1) and has not addressed the issue of computing with large dataset. In the rest of

this section we provide a more detailed discussion of the related work.

5.2.1 In-storage big data analytics framework

As early as 1980’s, researchers looked for methods to push computation down into mass

storage to process terabytes or even petabytes of data [87]. Following are some of the in-
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storage frameworks that have been proposed: DBMS [89,120,202], graph analytics [129,145,

163], HPC applications [197] or general workloads [78,82,106,118,126,140,172,182,187].

The main difference between databases and other big data applications is that the later

usually requires running complex programs on large data structures designed for the purpose,

while databases are more specific and focus on running structured queries on relational

tables. The shared concerns include how to reduce DRAM requirements, reduce network

traffic, and exploit the massive internal flash bandwidth.

5.2.2 General database accelerators

Q100 [204, 205] and its newer variant [162] are general query accelerators based on a

programmable spatial-array architecture. Both systems assume inputs and outputs are

consumed and produced in the main memory. In terms of executing SQL operators in a

data-flow style, AQUOMAN is similar to Q100 and its variant but it addresses the main

bottlenecks that both architectures ignored:

1. Scalability to larger dataset: Q100’s speedup over single-thread software dropped

10X-100X on 1GB TPC-H, and it disappeared almost completely in comparison

to multi-threaded software [204]. The functional tiles for sort and join in Q100’s

ASIC prototype can handle up to 1024 records at 315MHz on a 256-bit datapath

(10.08GB/s) [204, 205]. This forces Q100 to divide-and-conquer large input tables to

a huge number of small partitions which causes poor scalability. We have drastically

improved the sorter and the join functional units in AQUOMAN. Our FPGA sorter can

stream-sort 1GB data at 12GB/s, and 256GB data at 6GB/s if there is enough DRAM

accessible to the sorter. We ran AQUOMAN on a 1TB TPC-H and still showed speedup

over a 32-thread software baseline.

2. Routing between functional tiles: Q100 architecture [205] is built around a complex

2D-mesh network-on-chip (NOC), which takes 30-50% of the area and could be

challenging to implement in practice. In their more recent work [162], instead of

establishing arbitrary connections between heterogeneous tiles, they chose a fixed grid

of homogeneous core. The routing simpler but now each tile needed the capabilities of
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all the heterogeneous cores of [205]. If the tiles are designed to process big workloads,

its size will become too big to be realistic. AQUOMAN addresses this issue using a

hybrid solution, which supports the common dataflow with a fixed pipeline of three

different programmable units: selection, map, SQL swissknife(join/sort/aggregate).

3. Missing memory subsystem specification for terabyte dataset: Firstly, Q100 and its

variant assume inputs are in-memory, and did not specify the method to access to the

underlying mass storage, which is necessary for analyzing terabyte dataset. Secondly,

like AQUOMAN, when the entire query cannot be mapped to available functional tiles

at once, Q100 and its variant have to fold the query computation into several temporal

steps by consuming and producing intermediate results from memory. In such cases,

Q100 and its variant evaluated the maximum dataset of 1GB and did not describe

the size of memory required for storing intermediate results when evaluating a much

larger dataset. AQUOMAN is fully intergrated inside flash drive and assumes inputs are

in-storage. To reduce the memory footprint, AQUOMAN only stores the join keys and

the row index of tables temporally in DRAM, not materializing entire intermediate

tables. AQUOMAN also tries to keep row index on flash whenever possible. For 1TB

of TPC-H, without optimizing query planner for AQUOMAN, a maximum of 40GB

of DRAM is needed for evaluating a large join. With 16GB of memory, we can run

15 out of 22 TPC-H queries on AQUOMAN. Therefore, for large real-life databases,

Q100-like design will either be bottlenecked by external disk bandwidth or have to

bear the significant power consumption of DRAM-based systems.

Besides, our system advances designs of some critical operator tiles, especially the

high-throughput hardware sorter, while Q100 exposes no such microarchitecture internals.

Other work notice the lack of instruction level parallelism in database workloads. Hence,

they replace standard x86 cores with more smaller power-efficient hardware threads: Oracle’s

RAPID [45, 51] has a rack-scale many-core system specialized for big data analytics. At

its core sits a power-efficient general-purpose processor aided by hardware acceleration for

data movement and data partitioning. Unlike AQUOMAN’s streaming model, the execution

model of RAPID is essentially running map-reduce on many cores. Only very primitive
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SQL operators, bit-vector load and filter, are hardware-accelerated and exposed as special

CPU instructions. Mondrian Database Engine [91] employs a similar approach but uses

general-purpose cores with SIMD extension as a near-memory processor (NMP) on the

logic-layer of a stacked Hybrid-Memory Cube (HMC). While fitting into a restrained power

budget, no hardware accelerators for SQL operators are used by Mondrian.

5.2.3 Accelerators for certain database operators

Examples of research focused on implementing specific database operators in hardware

include: selection [65,120,203,206], hash join [108,139], sort-merge join [65,72], group-by

aggregation [203], pattern matching [175, 190], and table histogram generation [119]. Most

of these accelerators are attached to memory while a few operate in storage [119, 120, 203].

Operator-specific accelerators assist host-side query execution by task offloading. Our work

may use similar operator implementation but our focus is on entire query execution in

storage.

FCAccel [202] aggregates SQL accelerators for selection, data aggregation, and hashing

on a PCIe-attached FPGA. Like AQUOMAN, FCAccel allows stream processing of selection

and aggregation, but used a different technique by dividing tables into small data segments

buffered in DRAM. FCAccel is reported to have similar performance as MonetDB running

on RAM-disk. FCAccel proposes a collaborative solution with the DBMS software for

two-way join. Using a custom query FCAccel shows two tables can be filtered and pre-

aggregated and later hash-joined by the host opportunistically. Unlike AQUOMAN, it does

not offer a plan to offload multi-way joins.

5.2.4 Query-specific reconfigurable accelerators

To avoid the complexity of designing a general query accelerator, some researchers propose

to reconfigure FPGAs for a specific query. SQL operators are implemented as hardware

libraries in advance, and are then called and assembled for a particular analytical workload.

For example, [79, 201, 218] provide flexible hardware templates for common database oper-

ators, while [162] proposes a CGRA architecture where reconfigurable tiles are organized
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in a systolic manner. The cost of this methodology comes from both the reconfiguration

overhead as well as the requirement of using reconfigurable hardware. Baidu [173] has a

hybrid solution; certain fixed-function tiles are connected by default in a way that is similar

to Q100, but some tiles are reconfigured on demand.
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Chapter 6

Dataflow map of a query

We will first discuss the anatomy of query processing on tables and then describe how these

steps are mapped on AQUOMAN.

6.1 Single table query

First, consider the query over a single table sales_transactions shown in Figure 6-1.

SELECT
department,
sum(price*(1-discount)) as netsale,
sum(price*(1-discount) * (1+tax)) as revenue,

FROM sales_transactions
WHERE saledate<=’2018-12-01’
GROUP BY department;

Figure 6-1: Aggregate Query

The columns of the sales_transactions table are <transactionID, department,

saledate, price, discount, tax>. Each row corresponds to a purchase identified by

a unique transactionID, which is the primary key for this table and the cheapest way to

refer to its rows. From a semantics perspective, the query of Figure 6-2 should return the net

sale and revenue of each department before 2018-12-01. To produce such an answer, the

DBMS typically makes what is called a query plan, for example:
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filter (X <= 1998-12-01)

accNetsale accRevenue
Accumulate 

Per Department

discntdpt sdate price tax

discntdpt sdate price tax

X*(1-Y)

X*(1+Y)

netsaledpt revenue

netsaledpt revenue

Figure 6-2: Dataflow of an Aggregate Query

1. Filter all rows of the table verifying a predicate: here the saledate value should be

smaller than 2018-12-01.

2. Produce a new intermediate table of three columns <department, netsale, reve–

nue>. Each row of this intermediate table is computed purely from each row selected

in Step 1. The department value is directly reported from the incoming row, while the

net sale and revenue values are simple arithmetic computation based on the price, the

tax and the discount value of the input row.

3. Produce the output table by aggregating the data in the intermediate table, grouped by

department.

Note that the first two operations are map: they apply functions on each row indepen-

dently. The last step aggregates data coming from different rows. Those 3 steps can be

thought of as a dataflow graph which define how rows of the input table contribute to the

query’s answer (See Figure 6-2). Actually, the dataflow of this particular query illustrates a

common plan of row filtering, intermediate table generation and final reductions. Of course
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the functions used for row filtering, table creation and reductions are query specific.The

commonality and high value of this fixed but parameterized dataflow in analytics query

processing makes it possible to design a fixed accelerator to process such queries efficiently.

6.2 Join – a multiple table query

Suppose the sales_transactions table has an extra column to indicate the purchased item.

The purchased item is represented as the inventoryID, which is the primary key of another

table, the inventory table. The inventory table has many columns: <inventoryID,

category, quantity, productname, ...>, where category represents the type of an

item.

The following query (Figure 6-3) computes the total sale of shoes sold after "2018-03-

15".

SELECT sum(price) as shoe_sales
FROM inventory as ti, sales_transactions as ts
WHERE ti.invtID=ts.invtID

and ti.category="Shoes" and ts.saledate>’2018-3-15’;

Figure 6-3: A Join Query

This query needs to compute a so-called inner equi-join on the tables inventory and

sales_transactions. Typically, this join query would be processed as follows:

1. Select all the rows that have category "shoes" in the inventory.

2. Produce an intermediate table <transactionID, inventoryID> from the sales_t–

ransactions table; to get all the items (referred to by inventoryID) that were sold

after 2018-03-15.

3. Merge the two intermediate tables produced by the two previous step: every items

that are shoes (intermediate table out of Step1) is filtered based on if there exists a

sale of that item within the date specified (intermediate table from Step 2).
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ti.invtID ts.invtID

Merge when 
ti.invtID==ts.invtID

sorted sorted

sorted

… …

Figure 6-4: Dataflow of a join query

Notice that the Step 1 and 2 are similar to the steps in the previous example; however in

this example they are working on two different tables. In contrast, Step 3 does not seem

to fit into the fixed dataflow illustrated in the previous example: it merges data from two

intermediate tables.

If we assume that the intermediate tables are generated sequentially and stored in the

accelerator DRAM, then a streaming sorter can be placed between the producer and the

DRAM, to make the joining easy. Typically these intermediate data (the keys involved in

the join) are small enough to be stored in few Gigabytes for Terabytes datasets. In rare

cases where the intermediate tables is bigger than the accelerator DRAM, AQUOMAN would

relinquish processing to the host. Joins require fast hardware sorters to keep up with the

streaming rate of the underlying storage. Two-way join generalizes to multi-way join by

iteratively storing the sorted intermediate tables in the accelerator DRAM.
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Chapter 7

Overview of AQUOMAN Architecture
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Figure 7-1: Overall Architecture of AQUOMAN

AQUOMAN targets accelerating column-oriented databases like MonetDB. We chose

MonetDB because in our TPC-H benchmark evaluation, on average MonetDB was 2X faster

than a commercial row-oriented database. In column-oriented database systems, a relational

table is stored as a collection of column files. Each column file stores a sequence of column

values in ascending row order in either compressed or uncompressed format.

A modern flash drive has huge I/O bandwidth which can easily produce more than one

column value per “data beat”. For example, a flash hardware controller running at 125MHz
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with 4GB/s bandwidth is able to produce 32 bytes - equivalent to 8 32-bit column values -

per clock cycle.

To allow line-rate data processing, AQUOMAN processes the column data files as a

collection of Row Vectors, which consists of 32 column values of consecutive rows, indexed

by Row-Vector ID. A bit-vector that marks which rows have been selected for processing is

also stored as part of the table. The overall architecture of AQUOMAN is shown in Figure 7-1.

The heart of AQUOMAN consists of 3 accelerators Row Selector, Row Transformer and

a SQL Swissknife, corresponding to accelerators for the three kind of dataflow operators

identified in the previous section. AQUOMAN also relies on one extra Sorter to keep the

intermediate streams ordered on the required keys.

The Row Selector generates the bitvector masks used to efficiently select the input table

data (see Section 8 for more details on the expressivity of the Row Selector). The columns of

the rows that have not been masked and are necessary to compute the intermediate table are

then streamed to the Row Transformer. The Row Transformer is composed of a collection

of Processing Elements organized to apply a stateless function on each row to produce a

new intermediate table. Finally, the generated rows are fed into the SQL Swissknife. The

SQL Swissknife contains accelerators to perform the standard SQL operators: accumulate,

sort, merge, computes the biggest k values . . .

The SQL Swissknife is equipped with a direct access to AQUOMAN’s DRAM, it can

leave an intermediate reduced table in it, or consume an intermediate table from it. We will

see the usefulness of that patterns when discussing the acceleration of joins. The dataflow

between the three accelerators of AQUOMAN is fixed - the generality and programmability

of AQUOMAN comes from the predicates the Row Selector applies, the functions the Row

Transformer computes, and the operators the SQL Swissknife runs.

Architecturally speaking, the Row Transformer directly streams the intermediate table to

the SQL Swissknife without materializing it in DRAM. In the benchmark we evaluated, this

drastically reduced the need of DRAM for AQUOMAN.
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7.1 Multi-SSD AQUOMAN

When input data are stored on many SSDs because of the need for higher capacity, perfor-

mance or fault tolerance, the database software can process the query without changing

its processing model because it can simply read the input data from the centralized page

cache. AQUOMAN can handle multi-SSD scenario with a similar approach by devising a

small DRAM buffer where input data from different SSDs are gathered.

For a Table Task involving a single input table that would be resident on several AQUO-

MAN-augmented SSD, we would map the same Table Task to all the AQUOMANs and return

the partial results to the host, responsible to reduce the computation. In case of a Table Task

involving multiple tables, we would need to broadcast the intermediate table outputs across

the different AQUOMAN-augmented SSD, either using a PCIE multicast, or using a custom

link directly between the AQUOMANs.

7.2 Programming AQUOMAN

7.2.1 Software Interface

User Space

Linux Kernel 

Flash Drive

Block Device Driver

Filesystem (e.g. RFS, Ext4..)

Flash Device Driver

AQUOMAN Executor

AQUOMAN Compiler

AQUOMAN-enabled DBMS

NAND Flash Chips DB files

PCIe

AQUOMAN 
programs

AQUOMAN

Flash Controller Switch

Host I/O Queues

AQUOMAN 
Results

Query Compiler

Query Executor

Figure 7-2: System Stack with AQUOMAN

As shown in Figure 7-2, AQUOMAN is located inside the flash drive, so has direct data

access to the NAND flash arrays. AQUOMAN and the x86-host can both access NAND flash
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simultaneously via a flash controller switch inside the flash device, which fairly arbitrates

flash commands of page_read, page_write, block_erase. User-level applications can access

the flash drive via legacy operating I/O stack, such as filesytem and block device drive.

In addition to legacy I/O path, AQUOMAN-enabled software can also send AQUOMAN

programs to AQUOMAN inside the flash drive, which directly reads the required database

files, executes the program and returns their result to the host.

In general a SQL query is compiled to a graph of Table Task(s). We first describe the

structure of a Table Task:

typedef struct {
string table;
ProcessingMaskSrc maskSrc;
RowSelectionProgram rowSel;
RowTransformationProgram rowTransf;
SQLOperator operator;
OutputDestination outDest;

} TableTask;

Figure 7-3: Table Task Structure

A Table Task is described as follows:

• table specifies the input table of the Table Task.

• maskSrc specifies the source of the row processing masks, which is generated by a

Row Selection Program. It can come from the Host software, or from AQUOMAN

DRAM if produced by a previous Table Task.

• rowSel specifies a Row Selection Program. This selection mechanism can only

compute single column predicates, but it provides a fast layer of selectivity to avoid

having to stream all the data to later stages.

• rowTransf specifies a straightline Row Transformation Program, which is mapped

over all the rows to transform each one into a row of the new intermediate table. The

columns of the intermediate table may be different from those of the source table.
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• operator specifies a reduction function in the SQL Swissknife as an SQL operation on

the output table of Row Transformation Program. There are seven operators presented

in table 7.1

• Output specifies the output destination of the Table Task, which can be either AQUO-

MAN or the Host.

Operator Description
NOP Pass through the output table of Row Transformation Pro-

gram
AGGREGATE Summarizes columns of a table with min, max, sum, cnt
AGGREGATE_GROUBBY Summarizes columns of a table with min, max, sum, cnt

per group
SORT Sort a single-column table of key-value pairs by key
MERGE Merge two single-columnn tables of sorted key-value pairs
SORT_MERGE Sort a single-column table of key-value pairs and merge with

another single-column table of sorted key-value pairs
TOPK Returns the biggest k values of a single-column table

Table 7.1: SQL (Sub)Operators

For simple queries such as the Aggregate Group-By query of Fig 6-1, it should be clear

from the previous section that only one table task is needed.

For more complex queries, AQUOMAN programs can have multiple Table Tasks, each of

them run sequentially using an SQL operator in SQL Swissknife that consumes the data left

by the previous Table Task in the AQUOMAN’s DRAM (See Sec. 8.4).

For example, to accelerate the join query (Figure 6-4), the user can create the three Table

Tasks (Figure 7-4) and the associated dataflow graph as shown in Figure 7-5.

Since executing a single Table Task on AQUOMAN can saturate the flash bandwidth,

executing Table Tasks sequentially is sufficient to keep up the line rate. AQUOMAN records

the intermediate results for the join in its DRAM.

7.2.2 Query-planning for AQUOMAN

For a good integration of AQUOMAN in a DBMS, we will need to modify the query-planner

to identify maximal sub-trees of the query-plan that have shapes that can be mapped to
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auto tabletask_0 = TableTask{
.table = "inventory",
.maskSrc = RowSelectionProgram,
.rowSel = [predicate: category == "shoes"],
.rowTransf = [in: inventoryID][out: inventoryID],
.operator = NOP,
.output = AQUOMAN_MEM_0};

auto tabletask_1 = TableTask{
.table = "sales_transactions",
.maskSrc = RowSelectionProgram,
.rowSel = [predicate: saledate> 2018-03-15’],
.rowTransf = [in: inventoryID][out: inventoryID];
.operator = SORT_MERGE[with AQUOMAN_MEM_0],
.output = AQUOMAN_MEM_1};

auto tabletask_2 = TableTask{
.table = "lineitem",
.maskSrc = AQUOMAN_MEM_1,
.rowSel = [NOP]
.rowTransf = [in: price][out: price];
.operator = AGGREGATE
.output = Host};

Figure 7-4: JOIN query Table Tasks
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Figure 7-5: JOIN query data-flow graph
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Table Tasks, and run those parts on AQUOMAN. A query-optimizer is also needed for

AQUOMAN to optimize some tradeoffs in any such mapping; commuting of filters, ordering

of multi-way joins, copying vs. sequentializing the use of an intermediate table. We consider

such full-blown compiler work premature before establishing the efficacy of AQUOMAN

architecture.

7.3 Query-planning for AQUOMAN

A query-plan, a graph of SQL operators has to be mapped into AQUOMAN’s fix dataflow

stages Select/Transform/Reduce. Since any of these stages can be bypassed (treated as an

identity operator), we can simply create a Table Task for each supported SQL operator. The

task would store intermediate tables in AQUOMAN’s DRAM if necessary. Special SQL

operators that are not implemented on AQUOMAN, would simply be run on the host. Such a

naive strategy would probably turn AQUOMAN into a decelerator!

For a good integration of AQUOMAN in a DBMS, we will need to modify the query-

planner to identify maximal sub-trees of the query-plan that have shapes that can be mapped

to Table Tasks, and run those parts on AQUOMAN. A query-optimizer is also needed for

AQUOMAN to optimize some tradeoffs in any such mapping; commuting of filters, ordering

of multi-way joins, copying vs. sequentializing the use of an intermediate table. Such

tradeoffs depend on the amount of DRAM available and the bandwidth of the mass storage,

etc. We consider such full-blown compiler work premature before establishing the efficacy

of AQUOMAN architecture. Still we have modified MonetDB’s query planner to identify

Table Tasks from unmodified query plans, and integrated it with a trace-based AQUOMAN

simulator. A full Table Task compiler with a plan optimizer is not done; however a number

of TPC-H queries are hand-coded to Table Tasks and evaluated on FPGA.
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Chapter 8

AQUOMAN Microarchitecture

To execute a Table Task, AQUOMAN first configures the Row Selector, the Row Transformer

and the SQL Swissknife using the parameters of the first Table Task in the task queue. Before

processing a Row-Vector ID, the Row Selector reserves a Row-Mask Vector slot in the

Row-Mask Vector Array in circular order. It notifies the Row Transformer by sending it the

Row-Vector ID.

The Row Transformer collects the Row Vectors of the base table, and applies a table

transformation on it to produce the Row Vectors of the intermediate table. The Row

Transformer then releases the slot in the Row-Mask buffer and passes the Row Vectors of

the intermediate table to the SQL Swissknife to apply the specified SQL operation on the

intermediate table. The output is written into AQUOMAN DRAM.

The AQUOMAN runs the three accelerators simultaneously in a pipeline fashion, as long

as it can reserve a slot in the row-mask vector array. The maximum number of in-flight

Row-Vector IDs is determined by the depth of the flash command queue, which determines

the size of the Row-Mask Vector Circular Buffer. For example, for a flash controller with

a command queue of depth of 128, the Row-Mask Vector Circular Buffer needs to hold a

maximum of 128×8K rows of 1-byte elements or 32K 32-element Row Vectors.
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8.1 Row Selector

The Row Selector is a vector unit in charge of evaluating the predicate for selection. It

accepts predicates in the form:

Pr = F(CP0, . . . ,CPn−1)

where CPi is a comparison or an equality to a constant for the value in column i, and

F is a simple boolean function. For example (price > 25)&(data < 2019− 11− 26) is

representable with F = & and CP0 = price > 25 and CP1 < 2019−11−26. The maximum

number of permissible CP terms in a filter predicate is determined by the number of Column

Predicate Evaluators; 4 to 6 evaluators are enough for most of the filter predicates in TPC-H.

When the Row Selector cannot compute a predicate, e.g. predicates which require more than

one column, or regular-expression filtering, it forwards them to Row Transformer, the next

stage in data-flow.
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Figure 8-1: Architecture of Row Vector Selection

To have the Row Selector compute such a predicate, we first put F in a minimal sum-of-

product (SOP) form. Then the Row Selector computes as follow: it starts with a constant 0
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in an orbv accumulator and a constant 1∗ in an andbv accumulator. 1. It accumulates the

first product of the SOP predicate, one term at a time in the andbv accumulator. When it

reaches the end of the first product, it accumulates the complete first product andbv into the

partial sum: orbv = orbv|andbv and reset the product accumulator: andbv = 1∗. This way it

accumulates all the products one by one in the partial sum.

The Filter predicate in SOP form only requires two one-bit of memory storage per row

for accumulating intermediate predicate results, one for AND operation and one for OR

operation making it cheap to implement.

We envision that time-sharing one Column Predicate Evaluator between several predi-

cates could be useful for more complex predicates, but this has not been done yet.

Finally, the computation based on the SOP form - using only minimal memory footprint -

may be sometimes suboptimal in the sense that it may require reevaluating the same column

predicate twice (e.g CP0 ·CP3 +CP0 ·CP2 ·CP6).

8.2 Row Transformer
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Reader

PE0 PE1 PEn-1…

Row Transformer Systolic Array

Row Transformer
Flash I/O

RowVecID

Row-Mask Vector

Release Buffer

Inter. Row 
Vector
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Figure 8-2: Row Transformer Architecture

The Row Transformer has three components: the Table Reader, the Row Transformation

Systolic Array and the Mask Reader, as shown in Figure 8-2.

1Note that it is a vector processor, hence the suffix "bv" for bitvector, but one can read the section with in
mind a Row Selector of vector-width 1 without loss of generality
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SELECT l_quantity as qty,
l_extendedprice as base_price,
l_extendedprice*(1-l_discount) as disc_price,
l_extendedprice*(1-l_discount)*(1+l_tax) as charge,

FROM lineitem WHERE l_shipdate <= date ’1998-09-01’;

Figure 8-3: SQL Query Example for Table Transformation
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Figure 8-4: Data-Flow Execution Diagram of Table Transform

The Table Reader initiates reading the flash drive when it receives a Row-Vector ID from

the Row Selector. It skips reading a flash page if all its Row-Vector IDs are marked as zero

in the bitvector mask. The Table Reader streams out Row Vectors to the Row Transformation

Systolic Array in increasing order of Row-Vector IDs; within each Row-Vector ID, streaming

is done from the leftmost column to the rightmost one.

Inside the Table Reader there is also a Regular-Expression Accelerator. It pre-processes

variable-sized (string) columns to a one-bit column (true/false). The accelerator has a 1MB

memory to store the strings of the column. 1MB is sufficient to cover many cases where the

strings have a small domain, for example, the "country name" column.

The Row Transformation Systolic Array applies a mapping function to each row of the

input table to produce an intermediate output table. That is, only column data of the same

row are taken together to calculate columns of a new row.
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Figure 8-5: Micro-architecture of a Row Transformer PE

The Row Transformation Systolic Array is a systolic architecture where the transfor-

mation function implied by a query is mapped to an array of PEs. Since the Table Reader

streams out Row Vectors per Row-Vector ID in a fixed order, we can draw a data-flow

graph of transformation steps from the input columns to output columns. For example, the

mapping of the data-flow graph for the query in Figure 8-3 is shown in Figure 8-4. An

AQUOMAN compiler can balance the transformation data-flow graph by inserting PASS

nodes (NOPs), so that it can be mapped onto the PE. It can share common subexpressions

used in computing several output columns by inserting FORK nodes (Copy Instruction).

The compiler must maintain the invariant that the nodes of the compiled data-flow graph

can only have data transfers to their south and/or east neighbor(s). In particular, no cycles

are allowed in the dataflow graph.

Each PE performs transformation steps for multiple output columns in a circular sched-

ule. It also produces new Row-Mask Vectors for filtering (sub)predicates which have not

been processed by the Row Selector. The Mask Reader then merges the old Row-Mask

Vector (produced by the Mask Reader) and the new Row-Mask Vector and passes it to SQL

Swissknife. Finally, it releases the slot in the Row-Mask Vector Circular Buffer.

Each processing engine (PE) in the Row Transformation Systolic Array is a simple

4-stage integer arithmetic vector processor with no branch instructions or data memory

(Figure 8-5). It implements a simple 32-bit instruction set described in Table 8.1. Each PE

has 7 general purpose registers (rf[1],. . . , rf[7]), an operand fifo (opReg). Finally it has

a special fifo, which can be accessed as a register (rf[0]), hardwired to be read as input

fifo and written into as the output of the PE.

The instruction memories of the PEs are initialized by the Table Task. Since there are no
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Opcode AluOp Descr.
Pass rf[rd]<=rf[rs]
Copy rf[rd]<=rf[rs]; opReg<=rf[rs]
Store opReg<=rf[rs]

ALU(Imm)

Add rf[rd]<=rf[rs] + <OpReg|imm>.
Sub rf[rd]<=rf[rs] - <OpReg|imm>
Mul rf[rd]<=rf[rs] * <OpReg|imm>
Div rf[rd]<=rf[rs] / <OpReg|imm>
EQ rf[rd]<=rf[rs] == <OpReg|imm>
LT rf[rd]<=rf[rs] < <OpReg|imm>
GT rf[rd]<=rf[rs] > <OpReg|imm>

Table 8.1: PE Instruction Set

branches, the program counter (PC) will always increment by 1 and roll back to 0 at the end

of the program. The size of the instruction memory of each PE should be bigger than the

number of nodes in the transformation diagram, which equals the number of input columns

to be transformed.

Once an instruction is fetched and decoded, the input Row Vector is read either internally

from the Register File or externally (rs==0). The Row Vector is placed either in an operand

register waiting for the second operand, or sent to a pipelined ALU with its other waiting

operand. The Execute stage performs the operation and in the write-back stage, the output

of the ALU is either written in the register file or streamed out (rd==0). The Register File is

used only for data passing vertically between nodes when multiple nodes of a vertical slice

of the graph are mapped to a single PE. Such a case happens only when the number of PEs

exceeds the number of horizontal layers of the data-flow graph.

8.3 SQL Swissknife

The SQL Swissknife is configured by the Table Task, which takes the intermediate table

output from the Row Transformer, and applies one of the SQL (sub)operations listed in

Section 7.2. Inside the SQL Swissknife is an array of accelerators, whose connection to the

external input is configured by the Table Task (Figure 8-6). When Row Vectors are streamed

in, they are tagged with a Column ID which is needed for processing a table of more than
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one columns (e.g the input table of an Aggregate GroupBy). Each SQL operation is mapped

to its corresponding accelerator(s). SQL sub-operators of SORT, MERGE and SORT_MERGE

are mapped to two serially linked accelerators: the Streaming Sorter and the Merger. For

SORT and MERGE, one of them is configured as a NOP.

New SQL operation accelerator can be added into SQL Swissknife with or without

DRAM access as needed. In our current version of the SQL Swissknife, only the Streaming

Sorter and Merger are connected to the DRAM.

8.3.1 Aggregate GroupBy

The Aggregate GroupBy accelerator handles grouping rows of the same group identifier

into summaries of aggregation attributes of sum, min, max, and cnt. It does local Aggregate
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Group-By operation per Row-Vector ID, and then scatters and updates the local group

aggregates to the corresponding global aggregates stored in SRAM.

As shown in Figure 8-7, the Aggregate GroupBy accelerator separates Row Vectors

of columns into two different streams using their Column IDs. If Row Vectors are used

for identifying groups, they are sent to the Column Zipper, otherwise they are sent to the

Reduce-By-Group-Number block, waiting for their groupIDs to be assigned.

Column Zipper zips multiple Row Vectors of the same Row-Vector ID into a super Row

Vector named the Group Identifier Vector. The Group Number Assign component assigns

it a Group Number using a hash-table of 1024 buckets. Each bucket can hold at most one

group identifier of maximum size of 16B. New group numbers are assigned in an increasing

order from 0 to 1023. In case of a hash collision of two group identifiers, one group is kept

and the other one is marked as a spill-over group, which is sent to x86 host for processing.

(more on this in Section 6.5)

After a Group Identifier Vector is given a Group Number, it is sent to the Reduce By

Group Number block, in which its corresponding Row Vector(s) are reduced per group.

The reduction results of sum, min, max, cnt are scattered into an SRAM and accumu-

lated with the global aggregates indexed by group number. Each aggregate slot can store

aggregates for 8 individual columns.

Since the SRAMs are expected to scatter/gather a maximum of 32 addresses per request,

we have partitioned the SRAM into 32 partitions by striping the address space, allowing

bigger bandwidth through banking. If addresses per scatter or gather request are uniform,

we can pipeline the requests without many memory stalls.

8.3.2 TopK

The TopK accelerator takes in a stream of Row Vector from a table and keeps the biggest

k rows of the stream. In software, the TopK operation is computed using minHeap, which

cannot be easily pipelined in hardware. Instead, we use a chain of Vector Compare-And-

Swap blocks (VCAS) to store the k biggest elements, as illustrated in Figure 8-8. Each

VCAS stores n elements where n is the input vector size. When a vector of size n is fed

124



K/n VCAS, (n= Row Vector Size)

Pipelined Bitonic
Vector Sorter

Vector Compare-
And-Swap 

(VCAS)

Tn-1

Tn-2

…

T0

Tn-1 Tn-1

Tn-2
VIn-1

VIn-2

..

VI0 CAS 
Step 0

CAS
Step 1

CAS
Step n-1

…

VOn-1

VOn-2

..

VO0

VCAS VCAS…

So
rt

ed
 In

p
u

t 
V

ec
to

r

So
rt

ed
 O

u
p

u
t

V
ec

to
r

Figure 8-8: TopK Accelerator

into a VCAS, VCAS compare-and-swaps it with the n elements stored inside the VCAS,

where the bigger half of 2n elements are kept, and the smaller half is streamed out. We can

daisy-chain k/n VCAS to keep the top k elements.

Before sending it into the chain of VCAS, the input vector is first sorted using a pipelined

bitonic sorter. This is done because the pipelining of VCAS operation for sorted vectors

can be done more efficiently, as shown in Figure 8-8. Each VCAS operation of two sorted

vectors of size n can be divided into n steps of compare-and-swap element-wise, as shown

in Algorithm 1. The ith element-wise CAS step generates a partial result of the top-i vector

Algorithm 1 Vector Compare-and-Swap
Variables: InVec: Input Vector sorted in ascending order
TopVec: Top-n Vector sorted in ascending order

tailIn = tailTop = n−1
2: for i in 0..n−1 do

if InVec[tailIn]> TopVec[tailTop] then
4: swap(InVec[tailIn],TopVec[tailIn])

tailIn = tailIn−1
6: else

tailTop = tailTop−1
8: end if

end for
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which can be consumed by the ith step of the next input vector immediately. Therefore, a

VCAS hardware can be pipelined properly. Each ith pipeline stage of the VCAS takes up

reasonably small hardware resources with one pair of i-to-1 muxes for compare, and one

pair of i-to-1 muxes for data update.

8.3.3 Merger

The Merger accelerator outputs the intersection of two sorted list. The Merger accelerator

first merges two sorted list into one sorted list using 2-to-1 Merger, and then passes it

through an Intersection Engine where the non-intersected part is dropped (Figure 8-9).

In case of duplicate values in the input sources, the merger always tries to alternate the

input sources. This way the Intersection Engine only needs a look-ahead of one to decide if

it should drop a value or not. Indeed if in the final sorted stream two consecutive values are

equal but not coming from the same source, one of them can be dropped knowing that the

same value from the other source could not arrive later.

Inside the 2-to-1 Merger, we have the Vector Compare-And-Swap Engine which does

the merging, and a Scheduler which decides which input vectors of the two sorted streams

should be fetched. Since items of each input vector are sorted and the input vectors per

data stream are sorted, the Scheduler only needs to compare the top items of the two input

vectors and send the input vector with the smaller top item to VCAS.
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8.3.4 1GB-Block Streaming Sorter

The 1GB-Block Streaming Sorter takes an unsorted stream of input vectors, and outputs a

stream of sorted 1GB blocks. The Streaming Sorter consists of a Pipelined Bitonic Sorter

which sorts 64-byte input vectors, and merge 224 64 bytes vectors into a 1GB sorted stream

using three layers of 256-to-1 Mergers (Figure 8-10).

The first two layers of the 256-to-1 mergers merge 256 64B-blocks to a 16KB block,

and 256 16KB-blocks to 4MB-block respectively. They store the immediate results on

SRAMs. The last layer merges 256 4MB-blocks to 1GB block using DRAM. The SRAMs

and DRAM need to be duplicated per layer to maintain the line-rate of input stream. If the

sorter had enough DRAM, it can sort 256GB by folding the last 256-to-1 merging step at

the half of the streaming speed.

Each 256-to-1 Merger is constructed using a binary tree of 2-to-1 mergers which were

introduced in Section 8.3.3. Since the average of utilization of 2i 2-to-1 mergers at the same

depth i of the binary tree is only 1, we make 2-to-1 mergers at the same depth share the

same VCAS component capable of keeping multiple contexts. In this way, we can decrease

the size of N-to-1 merger from O(2N−1) to (O(logN)) while still able to keep up with the

input rate.

To perform sort-merge join, both join-key columns don’t have to be totally sorted. As

long as one column is totally sorted, a partially-sorted second column can be merged with

it at the cost of re-streaming the first one for every 1GB of data stream. This can cause

more than 1GB DRAM reads per 1GB flash reads, but is OK because DRAM is an order-of-

magnitude faster than flash. In many cases, AQUOMAN doesn’t even need to sort the first

column, since primary keys are already stored by MonetDB in its internal representation.
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8.4 AQUOMAN Memory Management

Because of the fixed dataflow pipeline of AQUOMAN, a SQL query often needs to be broken

into multiple Table Tasks which are executed on AQUOMAN sequentially. AQUOMAN stores

the intermediate tables produced by each Table Task in DRAM and merges them using

subsequent Table Tasks. AQUOMAN’s memory management system only keeps the row

indices of tables and join keys in DRAM to compute multi-way joins, which allows us

to keep the DRAM footprint small. AQUOMAN memory management does not buffer the

results of Aggregate Group-By and TopK operators, because such operators are typically

at the end of an SQL execution plan. When such operators are not the last operator of the

query, we cannot off-load the part of the query following the Aggregate Group-By or TopK

operator. Such cases are uncommon and AQUOMAN can often accelerate even partially

offloaded queries (see Section 10.3).

T0.RowID T1.RowID

JK2

T0

RowID JK0 JK1 JK3

JK0

Sort MergeSort

RowID

M1.RowID JK2

T0.RowID

Intermediate Table M0 … M1

… M3

Sort

M1.RowID T2.RowID

Sort Merge

T1 T2

.. M2

Flash

DRAM

Table Task Data Flows

<JK3, T2.RowID><JK2, M1.RowID><JK1, T1.RowID><JK0, T0.RowID>

<JK0, T0.RowID>

<JK2, M1.RowID>

Figure 8-11: AQUOMAN memory operations of a three-way join (T0.JK0=T1.JK1 and
T1.JK2=T2.JK3)

Figure 8-11 exemplifies how AQUOMAN manage s DRAM for a three-way Join query.

In the figure there are 3 input tables on the flash drive, T0,T1 and T3, which are to be joined

based on T0.JK0=T1.JK1 and T1.JK2=T2.JK3. We also have 4 intermediate tables, M0,

M1, M2 and M3, which are stored temporarily on DRAM. In our table data structure, each

table has its own "virtual" RowID column which are simply the row offsets of table and not

materialized on flash or DRAM. The intermediate tables on DRAM can store columns of
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join keys and RowIDs which are backward pointers to the rows of other tables.

A RowID column provides index to rows of a table. Such a column is implicit and does

not need to be stored in DRAM or flash. A multi-way join is decomposed into two-way

joins, where each two-way join is executed using a sort-merge join expressed by two Table

Tasks. Each data flow arc which goes into sort and sort-merge operations carries key-value

pairs, where the key field is used for sorting and merging, and the value field has the RowID

representing where the join key is read from. The Table Tasks of each two-way join produces

two intermediate tables. The intermediate tables produced by sort Table Tasks are consumed

by their subsequent sort-merge Table Tasks, and can be garbage collected immediately.

The intermediate tables produced by sort-merge Table Tasks store backward pointers, i.e.

RowIDs, which are needed for constructing the final result of a multi-way join. And they

are stored for the entire lifetime of a multi-way join query.

AQUOMAN also deploys MonetDB-specific optimizations to save memory. MonetDB

uses RowIDs to represent the primary keys of tables internally, and for each foreign key

column it materializes an additional column of RowIDs referring to the primary keys.

MonetDB uses RowIDs to perform join whenever is possible. AQUOMAN is aware of the

internal structure used by MonetDB and avoids loading the RowIDs to DRAM whenever

possible. Such an optimization opportunity arises when all the primary keys of a table are

used for a join operation, i.e. no row of the table has been deleted or filtered out. No join

operation is required by AQUOMAN in this case since all foreign keys of the second table are

guaranteed to find their matching primary keys. Therefore we can avoid using DRAM and

directly construct the join result using the materialized RowIDs on flash.

8.5 Suspending Query Processing on AQUOMAN

There are several reasons why a query may not be completely processed by AQUOMAN:

1. A query has an Aggregate Group-By operator in the middle of an execution plan,

which breaks references to the base tables on flash.

2. A query does regular-expression filtering on a variable-sized string column which
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requires pointer references to a string heap file. When there are many unique strings,

such string operations cause random reads to the string heap on the flash and is

unsuitable for processing by AQUOMAN.

3. An Aggregate Group-By operator in a query generates more groups than what AQUO-

MAN’s SRAM can accommodate.

4. A multi-way join operation in a query produces intermediate tables that exceed

AQUOMAN’s DRAM capacity.

Conditions 1 and 2 can be detected by examining the query plan, and AQUOMAN can

simply suspend processing the query at the appropriate point and pass the intermediate table

of results to the host, which can resume processing the query. Since the host will need

to access the AQUOMAN SSD when it resumes the query processing, that SSD remains

essentially unavailable to AQUOMAN until the query to AQUOMAN has been processed

completely. Conditions 3 and 4 can be detected only during query execution. If the database

system has an estimate for the size of the intermediate data structure for a specific dataset, it

may decide not to offload a part of the query to AQUOMAN. Otherwise, AQUOMAN may use

the suspension strategy described next.

For large Aggregate Group-By operator, AQUOMAN computes all the hashes but performs

the accumulate operation on some buckets in AQUOMAN, while the accumulation for the

“spillover” buckets is performed by the host. To not slow down AQUOMAN, the host needs to

keep up with the spills generated by AQUOMAN.

For multi-way Joins, when the AQUOMAN DRAM becomes full, it keeps sorting 1GB-

data-blocks and sends them to the host via DMA. The host completes the join operation by

merging these sorted blocks with the sorted data stored in its DRAM.

A natural question to wonder about is how common are these suspensions. As we will

show in Chapter 10, 14 out of the 22 queries of TPC-H can be offloaded completely to

AQUOMAN with sufficient DRAM. Queries (11,17,18,22) encounter Aggregate Group-By

operator in the middle and thus, had to be suspended; all except Q22 benefited by partial

offloading. There was no benefit to offload queries (9,13,16,20) because they involved

regular-expression filtering on a string column.
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Seven queries caused spillovers in the Aggregate Group-By operation. Only Q18 caused a

significant spillover (required ~1.5 billion buckets while AQUOMAN has only 1024 buckets!).

Partial offloading of Q18 was still profitable, assuming the host could perform ~200 millions

memory lookup-and-accumulates per seconds. With 40GB DRAM in AQUOMAN there

were no suspensions due to multi-way Joins. A conservative approximation of the effect on

performance of memory limitations is discussed in Chapter 10.

8.6 AQUOMAN as a Near-memory Accelerator

AQUOMAN is designed firstly as a near-storage accelerator because we believe that 1)

there is a significant number of SQL analytic queries that analyse a vast of amount data

and their input data-sets cannot fit in DRAM; 2) When DRAM caching of input data is

ineffective, the query speed is bounded by the storage access bandwidth. Therefore the

design of AQUOMAN is tailored deliberately for a moderate date stream rate (∼12.8GB/s

maximum), which can saturate a modern high-speed NVM drive bandwidth. We also

designed AQUOMAN circuit for an FPGA implementation, because FPGA is the common

compute fabric for high-performance near-storage accelerator in commercial SSDs [36].

For example, our sort-merger was deeply pipelined using a series of vector compare-and-

swap engine (See Section 8.3.2), which may not be needed for an high-speed ASIC design

(because ASIC designs are able to close timing for high frequency more easily than FPGAs).

If certain analytic workloads can benefit from caching reused data in DRAM, AQUOMAN

design can also be efficiently adopted as a near-memory accelerator. In such a case, we

assume AQUOMAN is integrated with a general-purpose processor, which shares the DRAM

via the memory controller like an embedded GPU. CPU programs AQUOMAN using Table

Tasks, and provides a input data pointer to memory. And AQUOMAN will execute the query

by consuming the input data from DRAM.

A near-memory AQUOMAN should be designed as an ASIC to be able to process at

100-200 GB/s rate, which is the total DRAM bandwidth on a typical general-purpose server.

AQUOMAN can be adapted for high-performance ASIC designs by redesigning some of its

circuits because they were designed for much slower FPGA clock speed. For example, the
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aggressive pipelining of the merger can be relaxed to use less area while still achieving good

clock frequency on an ASIC.

If some input data are not DRAM-resident, CPU can also orchestrate data streams for

near-meory AQUOMAN by loading input data from secondary storage to DRAM. Essentially

CPU acts as a data prefetcher for AQUOMAN, and it should overlap prefetching data with

the data processing by AQUOMAN. If a significant portion of input data are read from

storage, DRAM is essentially a “streaming cache” for AQUOMAN and the query speed will

be bottlenecked by storage I/O bandwidth.
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Chapter 9

FPGA Implementation and Evaluation

9.1 FPGA Prototype

We implemented AQUOMAN on BlueDBM [126], where a hardware-accelerated storage

device is plugged into the PCIe bus of 12-core Xeon X5670 machine. Each storage device

consists of a Xilinx Virtex Ultrascale FPGA development board, VCU108, attached to 1TB

of open-channel NAND flash array capable of 2.4GB/s read access and 800MB/s write

access. The Xilinx VCU108 FPGA also provides 4GB of DDR4 memory for a maximum

bandwidth of 36GB/s.

We synthesized the Sorter and the rest of AQUOMAN on two different FPGAs because

together their area exceeded the capacity of the VCU108 FPGA. In our AQUOMAN imple-

mentation (Table 9.1) the Row Selector has 4 Column Predicate Evaluators, and the Row

Transformer has 4 processing engines each with 8 instructions. Our design meets the timing

requirement for 125MHz and provides 4GB/s processing rate for AQUOMAN.

1GB-Block Hardware Sorter: We synthesized the 1GB-block streaming sorter for four

data types: 32/64-bit integers, and key-value pairs of 32/64-bit integers. All designs were

synthesized with a 512-bit data path and met the timing requirement for 200MHz on Xilinx

UltrascalePlus VCU118. Flip-Flops usage was around 40% for each configuration (see

Table 9.2).

The area of Sorter and AQUOMAN together exceeds the Xilinx VCU118 capacity by 2%

but we are confident that with a few area optimization we can fit both of them on a VCU118.
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Module Name LUTs Flip-Flops RAMB36 DSP48
Row Selector 42023 36725 0 0
Row Transformer 47859 29660 0 256
SQL Swissknife (w/o sorter) 95077 76823 140 0
FlashPageBuffer 14087 17143 228 0
RowMask 190 41 58 0
VCU108 Total 302398 273245 448 256

(56%) (24%) (26%) (33%)

Table 9.1: AQUOMAN resource usage on VCU108

Element Type LUTs RAMB36 URAM
uint32 855867 (72%) 1133 (52%) 256 (27%)�

256-to-1 Merger to 16KB

�

240567 (20%)

�

177 (8%)

�

0 (0%)�

Vector CAS

�

101476 (8%)

�

0 (0%)

�

0 (0%)�

Merger Scheduler

�

139091 (12%)

�

177 (8%)

�

0 (0%)�

256-to-1 Merger to 4MB

�

263610 (22%)

�

291 (13%)

�

256 (27%)�

256-to-1 Merger to 1GB

�

261400 (22%)

�

505 (23%)

�

0 (0%)
uint64 925572 (78%) 1133 (52%) 256 (27%)
kv<uint32,uint32> 720183(60%) 1133 (52%) 256 (27%)
kv<uint64,uint64> 900087(76%) 855 (40%) 256 (27%)

Table 9.2: Streaming Sorter resource usage on VCU118

Unfortunately VCU118 is incompatible with the custom flash card in BlueDBM.

Although AQUOMAN uses 64-bit key and value pairs as the Sorter configuration, we

evaluated the streaming sorter for all sorter configurations. As expected, all configurations

have the same throughput. Table 9.3 summarizes the performance of the Sorter for different

input lengths and sortedness using a traffic generator. Hence our Sorter meets the goal of

keeping up with AQUOMAN processing bandwidth (4GB/s).

Input Length Input Sortedness
(GB) Sorted Reverse Sorted Random

1 4.4 GB/s 4.4 GB/s 6.2 GB/s
10 7.9 GB/s 7.9 GB/s 11.0 GB/s

100 8.5 GB/s 8.5 GB/s 11.9 GB/s
1000 8.6 GB/s 8.6 GB/s 12.0 GB/s

Table 9.3: 1GB-Block Streaming Sorter Throughput
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9.2 Query Evaluation Setup

9.2.1 Evaluation Data-Set

We used the TPC-H synthetic data-set with a scaling factor of 1000, generating 1TB of

tables. We have loaded the data-set on MonetDB-11.27.9, whose column files are the inputs

of AQUOMAN.

9.2.2 Baseline Setup

The baseline is MonetDB software (11.27.9) running on single server with a 16 hyper-

threaded cores of Intel Xeon E5-2690(2.90GHz) and 128 GB of DRAM. For data storage,

the server has a RAID-0 consisting of five 1TB Samsung EVO 970 NVMes, which is

throttled to 2.4 GB/s to match the flash bandwidth of BlueDBM storage device. MonetDB

does not implement a page buffer bool for caching hot pages, instead it relies on page cache

provided by Linux kernel to take advantage of page locality.

When evaluating each query, we use cgroup to limit MonetDB with a range of the

maximum DRAM sizes, which is used for both page cache and intermediate tables by query

processing. For each query evaluation, we purge the page cache first and then run the query

four times. The first run time is recorded as cold run, the average of the last four run times

is recorded as hot run.

9.2.3 AQUOMAN Setup

We have hand-coded SQL queries as Table Tasks. Each Table Task execution except Join

do not need to use DRAM for buffering the tables between Table Tasks. AQUOMAN has a

maximum of 4GB DRAM buffer for Table Task outputs.
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9.3 Single-Table Query Evaluations

9.3.1 Query A: Filter Operation with High Selectivity

The following query is a variant of Q06 in TPC-H benchmark.

SELECT sum(l_extendedprice * l_tax) as total_tax

FROM lineitem

WHERE l_shipdate >= date ’1994-01-01’

and l_shipdate < date ’1994-01-01’ + interval ’1’ year

and l_discount between 0.06 - 0.01 and 0.06 + 0.01

and l_quantity < 24;

This query evaluates a complex filter operation followed by an aggregate on the

lineitem table of 6 billion rows. The total input data-set is 178GB, and Row Trans-

form and Row Select do not share input columns. The selectivity of this query is high and

only 1.9% of rows are actually selected for aggregation. Due to the high selectivity, the

memory footprint of MonetDB for this query is only around 3GB.

Figure 9-1 shows the evaluation result of the query. We can see that MonetDB can

process the query across the full range of DRAM capacities due to the small memory

footprint. Yet the input data-set of the query is 178GB, which cannot fit in the Linux

page cache capacity. This query needs to scan the large input data-set which thrashes the

LRU-based Linux page cache. Although on cold runs MonetDB also experiences a similar

level of page-cache misses to hot runs, we hypothesize that the cost of finding misses in a

fully populated page-cache is much larger because operating system needs to transverse a

bigger page-cache index structure to find nothing.

For this query AQUOMAN does not need any DRAM since we are only processing a

single Table Task. The result shows that AQUOMAN is bottle-necked by BlueDBM’s storage

drive which streams data at 2.4GB/s. Compared to the baseline which also does efficient

row selection, AQUOMAN has 13% to 23% improvement over MonetDB.
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Figure 9-1: Query A: High-selectivity Filter: No Column Reuse

9.3.2 Query B: Query with column reuse

The following query is the Q06 of the TPC-H benchmark.

SELECT sum(l_extendedprice * l_quantity) as revenue

FROM lineitem

WHERE l_shipdate >= date ’1994-01-01’

and l_shipdate < date ’1994-01-01’ + interval ’1’ year

and l_discount between 0.06 - 0.01 and 0.06 + 0.01

and l_quantity < 24;

It has the same filter predicate as the previous query, except that the l_quantity column is

reused for aggregation. Therefore the total input data-set is reduced to 134GB, where the

Row Transformer and the Row Selector do share the l_quantity column of 44GB.

Figure 9-2 shows the evaluation result of this query. Due to small memory foot print

of this query processing, MonetDB can process query efficiently in full range of DRAM

capacities. When the DRAM size for the baseline is 128GB and is near input data-set size,

we can see that the baseline has better performance in hot runs than in cold runs, since the

system gets page-cache hits. For cases when the DRAM is smaller 128GB, MonetDB begins

thrashing the page-cache in hot runs again.

Our current implementation of AQUOMAN does not allow us to effectively reuse the col-

umn data between Row Select and Row Transform since our flash-page buffer on AQUOMAN
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Figure 9-2: Query B: High-selectivity Filter: Column Reuse

has only one read port which matches the speed of the flash controller. The read port is

multiplexed by the Row Select and Row Transform. For processing this query, AQUOMAN

has to re-stream the l_quantity column from the flash-page buffer at the speed of our flash

drive, whereas MonetDB can take advantage of locality by reusing the column data cached

in DRAM. AQUOMAN has performance within +/-5% of the baseline when the baseline

has DRAM capacity between 32GB to 96GB to effectively cache the reused l_quantity

column file of 44GB. When the DRAM capacity drops below 32GB, AQUOMAN, without

effective column reuse, outperforms the baseline by 1.2X to 1.3X since MonetDB com-

putes selection and aggregation in steps, and DRAM cannot effectively cache the entire

l_quantity column file. With 128GB DRAM, the performance of the baseline prevails

over AQUOMAN by 36% since the page-cache has sufficient capacity to effectively cache

the entire input data-set, which allows MonetDB to take advantage of locality opportunities

available both between queries and within the query.

If either the data-path size or the clock rate of the flash page buffer inside AQUOMAN

doubled, AQUOMAN could make full reuse of column data shared between the Row Selector

and the Row Transformer. Our projected AQUOMAN performance shows that it could have

1.2X to 1.4X improvement over the baseline when MonetDB’s DRAM is smaller than

128GB. When the baseline has a 128GB DRAM, AQUOMAN is within -12% of the baseline

performance, even though MonetDB is computing with data fetched from a hot page cache

at an-order-of-magnitude faster clock speed than our prototype AQUOMAN.
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9.3.3 Query C: Aggregation GroupBy

The following query is TPC-H benchmark Q01 without the Order-By operation on the final

output table. The Order-By operation is trivial to compute since the final table has only

4 rows of different groups. The total input data set takes 190GB with no shared columns

between Row Select and Row Transform. The filtering predicate of this query has low

selectivity which selects 98.6% of the 6 billion rows from the lineitem table.

SELECT l_returnflag, l_linestatus,

sum(l_quantity), sum(l_extendedprice),

sum(l_extendedprice*(1-l_discount)),

sum(l_extendedprice*(1-l_discount)*(1+l_tax)),

avg(l_quantity), avg(l_extendedprice), avg(l_discount),

count(*)

FROM lineitem

WHERE l_shipdate <= date ’1998-12-01’ - interval ’90’ day

GROUP BY l_returnflag, l_linestatus;

Since this query has such a lower filter rate and need to derive an intermediate table of

as many columns as the input Aggregate Group-By, the memory footprint on the baseline

system is as large as 48GB. Like the previous query, AQUOMAN does not require DRAM

for merging Table Tasks outputs. Indeed only one Table Task is needed. Moreover, this

query has only 4 groups whose aggregates of 4 columns can be easily stored on AQUOMAN’s

SRAM.

As shown in the result in Figure 9-3, the performance of the baseline deteriorates

dramatically when its DRAM is below 32GB since it starts swapping pages to disk. The

baseline cannot finish processing the query within 20 minutes in such scenarios, whereas

AQUOMAN dominates over the baseline by producing the result in 86 seconds without the

need of DRAM. Even when more than 64GB DRAM is provided to the baseline, MonetDB

reserves 48GB of DRAM for computing the query, which leaves little DRAM to cache

the input data-set of 190GB. Like in Query A, the baseline in hot runs begins thrashing

LRU-based page-cache as explained earlier.
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Figure 9-3: Query C: Aggregate-GroupBy Query

When it has sufficient DRAM for intermediate tables, MonetDB can finish processing

this query in around 210 seconds. AQUOMAN is 2.5X faster than MonetDB in such scenarios.

9.3.4 Query D: TopK

The following query selects the highest 10 discounted prices whose shipdate is prior to

1998-09-02.

SELECT l_extendedprice * (1 - l_discount) as disc_price

FROM lineitem

WHERE l_shipdate <= date ’1998-12-01’ - interval ’90’ day

ORDER BY disc_price desc LIMIT 10;

The query uses the same filter predicate as Query C, which yields low selectivity: 98.6% of

6 billion rows. The input data-set is 111GB while the memory footprint of the baseline is

around 8GB. The baseline chooses to div-and-conquer this query, where the whole data-set

is partitioned. MonetDB computes the top 10 results for each the partition in parallel. Then

the top 10 results for each partition are merged from which the final top 10 results are

produced. Each top 10 computation is performed using minHeap.

The evaluation result in Figure 9-4 shows that the baseline begins to swap to disk

when the memory is below 8GB. With only 4GB of DRAM, the disk swapping becomes

predominant such that the baseline cannot finish processing within 20 minutes. Like in
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Figure 9-4: Query D: TopK

the previous queries, AQUOMAN’s streaming model allows it to perform the computation

without DRAM and can produce the result consistently in 49 seconds.

When the baseline has sufficient DRAM, it can finish processing the query between 80

to 95 seconds. It also shows that between 16GB to 96GB, MonetDB starts thrashing the

page-cache which makes the hot runs slower than the cold run as explained earlier. In such

scenarios AQUOMAN has 1.6X to 2X performance improvement over the baseline.

9.3.5 Discussion on Row Selectivity

Query A and B have low row selectivity. Little data is left to be further processed after row

selection. This has been the primary focus of previous in-storage accelerator work [89, 106,

140, 202, 203] for the benefits of PCIe I/O reduction. However x86 processors are good at

filtering (mainly arithmetic comparison that can be mapped across threads), thus these type

of queries are easily I/O bound and rarely benefit from in-storage acceleration when the

PCIe bandwidth is similar to the SSDs’ aggregated bandwidth. Query A and B are similar

except that Query B reuses column l_quantity in row filtering for aggregation. MonetDB

can take advantage of locality by reusing the column data cached in DRAM. Query C and D

have high row selectivity, so a large amount of data has to be processed by the subsequent

operators (e.g. Aggregate-Groupby, TopK, . . . ). In those queries, the x86 CPU is stressed

before the disk bandwidth becomes a bottleneck. Since AQUOMAN can process subsequent
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operators after row selection at line speed, AQUOMAN is faster in such queries.

9.4 Multi-Table Queries

9.4.1 AQUOMAN Multi-table Evaluation Methodology

Currently we cannot fit AQUOMAN and the Sorter on a single FPGA, so we are not able to

run multi-table queries end-to-end on AQUOMAN. In the design of AQUOMAN, Table Tasks

are executed sequentially. We execute each Table Task of a query individually and sums up

the execution time of each Table Task for the end-to-end query run time. For the Table Tasks

that involve Sort, we use a traffic generator as opposed to real data, throttled at the same

speed as AQUOMAN’s flash card (2.4GB/s). This is because our flash card is incompatible

with Xilinx VCU118’s newer version of the FMC+ connector.

9.4.2 Query E: Join

SELECT sum(l_extendedprice) FROM lineitem, orders

WHERE l_orderkey = o_orderkey

and o_orderdate < date ’1992-03-15’

and l_shipdate > date ’1992-03-15’;

Query E is an inner equi-join query which summarizes the revenue of total prices for

shipped orders made by 1992-03-15.

Joins of Tables are typically performed on primary keys (sorted) and foreign keys

(unsorted). Whenever a column of a table is set as the primary key, MonetDB creates an

extra column of oids (object id) materialized to disk, which are sorted row indices of the

table. When a column of another table is set as a foreign key, MonetDB creates another

column of cross-referencing oids to the primary keys of the referred table. MonetDB relies

on the oids to perform join operators.

AQUOMAN needs three Table Tasks to compute this query, as shown in Table 9.4.

• Step 1: The first Table Task works on filtering the orders table and produces a sorted

column of oid_o_orderkeys. AQUOMAN will not need to sort this column since
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Table Task Seq. Operations Input Sz Filter Sel. Output Sz Execute Tm
0 Row Select 17.2GB 5.8% 352MB 7.2s
1 Row Select −→ Sort_Merge 68.7GB 99% 1.9GB 28.6s
2 Sort −→ Aggregate 45.8GB NA NA 19.1s

Total: 131.6GB 54.9s

Table 9.4: Table Tasks of Query E

it is already sorted on disk. The intermediate result is 352MB, and is buffered on

AQUOMAN’s DRAM.

• Step 2: The second Table Task works on the lineitem table by producing sorted 1GB

blocks of key-value (KV) pairs of selected <oid_l_orderkey, oid_l_lineitemkey>.

The oid_lineitemkey is the primary key of the lineitem table which is needed to

select the rows that are aggregated in the third Table Task.

The streaming Sorter sorts the KV pairs by the oid_l_orderkey foreign key. The output

stream of the Sorter is sorted per 1GB block. AQUOMAN stream-merges each 1GB blocks

on the fly with the output of the first Table Task coming from AQUOMAN’s DRAM. The

merged result are KV pairs of the primary keys of the orders and the lineitem tables:

<oid_o_orderkey, oid_l_lineitemkey>. It has 127 million entries for a total size of

1.9GB. Step 3: The third Table Task also works on the lineitem table, which reads from

DRAM the value part of the key-value pairs <oid_o_orderkey, oid_l_lineitemkey>.

AQUOMAN will use the Sorter again to sort oid_l_lineitemkey to generate a row-vector

mask, stream out the rows and compute the aggregation. All the intermediate outputs

produced by the Table Tasks fit on AQUOMAN’s DRAM, and AQUOMAN can finish the query

in 55 seconds. Although we have not fully integrated the Sorter with AQUOMAN due to

the resource constraint of a single FPGA, we can comfortably extrapolate that AQUOMAN

could process Query E in around 55 seconds by consuming the input data size of 131GB at

2.4GB/s.

For Query E, AQUOMAN is 2X-5X faster than all baselines that have enough DRAM

(see Figure 9-5). Without enough DRAM the baseline systems start swapping to disk and

their performance deteriorate. SSD-A swapping causes bigger penalty since it is near its full

capacity, which incurs garbage collection inside the SSD.
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Figure 9-5: Sort-Merge Join(AQUOMAN) vs. Merge Join(MonetDB)

For this particular query, the baseline performs a merge-join algorithm because the

filtered foreign key/oids also happens to be sorted. AQUOMAN does not have this infor-

mation until it finishes streaming all foreign key oids, therefore it cannot do a merge-join.

Instead AQUOMAN performs a sort-merge join. The performance is not affected because

AQUOMAN’s streaming sorter simply behaves as a long-latency FIFO when the input stream

happens to be sorted. AQUOMAN is 2X faster than the baselines even when the baseline

performs merge-join. MonetDB has a 16GB memory footprint to process Query E using

merge-join.
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Figure 9-6: Sort-Merge Join(AQUOMAN) vs. Hash Join(MonetDB)

To understand how AQUOMAN competes with a more commonly-used join algorithm,
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hash-join, we modified the MonetDB’s kernel to make it run hash-join on Query E. Figure 9-

5 shows that AQUOMAN is 5.5X faster than all baseline systems. The memory footprint

of hash-join is slightly bigger than merge-join since it also needs to keep a hash-table in

DRAM while processing the query.
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Chapter 10

TPC-H Benchmark with AQUOMAN

AQUOMAN was first implemented on an FPGA, although soon afterwards we discovered

several reasons which prevented us from evaluating most TPC-H queries on the FPGA

prototype:

• Our FPGA evaluation board has only 4GB of DRAM, which is not big enough to

evaluate multi-way joins that generate bigger intermediate tables.

• AQUOMAN with the Sorter exceeded the total area of the FPGA in BlueDBM. Our

bigger FPGA, VCU118, is not compatible with the FMC port of the custom flash card

in BlueDBM.

• A robust regular-expression accelerator, which has been done previously [104], is also

needed for string columns but required significantly more implementation effort than

this project justified.

• A full-blow compiler is needed to generate Table Tasks for FPGA evaluation; manual

compilation effort is too high for most TPC-H queries. (Investment in such a compiler

would be justified only after the efficacy of AQUOMAN has been established.)

In order to evaluate more queries and to properly evaluate the AQUOMAN architecture, we

also developed a trace-base AQUOMAN simulator and fully integrated it in the MonetDB’s

software stack . We validated some of our simulation results on the FPGA proptotype

(Section 10.4)
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10.1 AQUOMAN Simulator

We implemented a trace-based AQUOMAN simulator which is fully integrated in MonetDB

11.27.9. In MonetDB the software translates the SQL execution plan into a customized

middle-layer language, Monet Assembly Language(MAL), which is then later optimized

and interpreted [114]. We implemented the AQUOMAN simulator by extending MAL to

allow instrumenting traces for AQUOMAN Table Tasks. The AQUOMAN simulator does not

execute Table Tasks, but executes the original SQL plan expressed in MAL and collects

AQUOMAN traces such as flash traffic, AQUOMAN memory footprint, and sorter usage. The

AQUOMAN simulator assumes a flash drive of 8KB page access granularity and 2.4GB/s

flash read bandwidth, one streaming sorter and one regular expression accelerator with 1MB

cache for string heap. The specifications of flash drive and streaming sorter in AQUOMAN

simulator are the same with the ones in the AQUOMAN FPGA prototype in Section 4.1.1.

We assume as big Row Selector and Row Transformer as needed as their small relative sizes

compared to the sorter as shown in Section 4.1.1. When a multi-way join query exceeds

AQUOMAN memory size, we assume that the host processes “handed-off” sub-query at the

same speed as the baseline solution, which is a conservative assumption.

In the SQL frontend, we modified MonetDB’s query planner to identify Table Tasks

in the query execution plan tree, and mark relevant nodes as AQUOMAN nodes which are

targets for offloading. We also changed MonetDB’s SQL plan to MAL compiler, such that

AQUOMAN tracing instrumentation will be automatically inserted on identified Table Tasks.

The total execution time of a query with AQUOMAN simulator is calculated by the sum of

AQUOMAN execution time based on the traces and non-AQUOMAN nodes’ execution time

processed by MonetDB.

10.2 Experiment Setup

10.2.1 Evaluation Data-set

We used the TPC-H synthetic data-set with a scaling factor of 1000, generating 1TB of

tables. We loaded the data-set on MonetDB-11.27.9, whose column files are the inputs for
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AQUOMAN.

10.2.2 Baseline Setup

We ran MonetDB (11.27.9) with two setups S and L to represent two different machine sizes

(Table 10.1). The baseline used five 1TB Samsung 970 EVO m.2 SSDs capped at 2.4GB/s,

to match the bandwidth of the BlueDBM storage device. Such a setup was needed for a fair

baseline 1) to mitigate side-effects of garbage collections with over-provisioned capacity

and 2) to provide 2.4GB/s average access bandwidth unavailable in a single off-the-shelf

SSD. When MonetDB run out of DRAM for intermediate tables, it can still process queries

effectively by using its own disk-swap management, which exploits fast sequential SSD

writes.

MonetDB does not implement a page buffer pool for caching hot pages, instead it relies

on Linux’s LRU-based page cache to take advantage of page locality. For 1TB dataset, we

observed that Linux’s page cache on a 128GB DRAM is ineffective for TPC-H queries.

In fact, for MonetDB hot runs are slightly slower than cold runs, even though both runs

experience a similar level of page-cache misses. We hypothesize that the cost of finding

misses in a fully populated page-cache is larger because the operating system needs to

traverse a bigger page-cache index structure to find nothing. Therefore our evaluations

assume cold page cache.

x86 Setup HW Threads x86 DRAM
S (Small) 4 Threads 16GB
L (Large) 32 Threads 128GB

AQUOMAN Setup DRAM
AQUOMAN 40GB
AQUOMAN16 16GB

Table 10.1: x86 Host and AQUOMAN Disk Setup

10.2.3 AQUOMAN Setup

All TPC-H queries are evaluated on the AQUOMAN simulator, which has two setups: AQUO-

MAN with 40GB memory and AQUOMAN16 with 16GB memory (Table 10.1). The AQUO-

MAN implementation on FPGA could be used for evaluating only a few TPC-H queries
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Figure 10-1: TPC-H SF-1000 AQUOMAN Performance Profiling
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because of the reasons discussed earlier (Section 10). However, the FPGA implementation

was very useful to validate the AQUOMAN simulator (Section 10.4).

10.3 AQUOMAN TPC-H Evaluation

We compare the performance of MonetDB running on a system with ordinary SSDs with

a system where the ordinary SSDs are replaced by AQUOMAN SSDs. For an extensive

coverage of the design space, two host machines S, L (Figure 10.1) are used, each with and

without AQUOMAN disks. We also paired the small host System S with AQUOMAN16 disk,

which has 16GB of in-storage DRAM.

We first examine the runtime of each query, including the breakdown of the time spent

on AQUOMAN and the host. We then perform a similar analysis for the memory footprint.

10.3.1 Run Time

The queries run time for the different systems are presented in Figure 10-1(a), while the

fraction of processing time each query spent on AQUOMAN for system (L) is shown in

Figure 10-1(d) . Let us first focus on L and L-AQUOMAN, that we study in more detail. On

average, 71% of the CPU time can be saved by AQUOMAN when it is added to System L.

Note that AQUOMAN actually speeds up many queries, on average a 1.5X-2X speed-up over

the baseline in Figure 10-1(a). Still there are some outliers, queries (17,18) show up to 13X

speed-ups for System L, while others show none. It is important to realize that AQUOMAN

cannot speed up a query if it is IO bound in the baseline system. In such cases it can only

save host resources. Note that a processing time dominated by AQUOMAN processing does

not necessarily means a high speed-up. For example, we found that two queries (6,14) can

be almost completely off-loaded to AQUOMAN but show little speedup because they are

disk-bound on the baseline systems.

For 14 out of the 22 queries are off-loaded to AQUOMAN nearly 100% of the time. Even

when AQUOMAN can only do a part of the query, its resulting benefits can be significant.

For example, the runtimes of Q17 and Q18 decrease significantly because the part that is
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off-loaded happens to execute sequentially on the host, effectively using only one hardware

thread.

The reasons for queries to be suspended early were discussed in Section 8.5. As we said

earlier queries (17,18,22,11) corresponds to cases with an early Aggregate Group-By node

in the execution plan. All of them except Q22 do enough processing on AQUOMAN to show

speedups. Queries (9,13,16,20) represent the cases where the size of the string heap does

not fit in AQUOMAN and so have to be completely handled by the host.

Figure 10-1(b) shows the benefits of AQUOMAN in terms of changes in x86 HW threads.

System L requires a maximum of 11 threads to pair with a single SSD’s bandwidth when

executing computational intensive queries such as q14. On average System L needs 3

HW threads per SSD for the entire SSD benchmark. Please note although System S has 4

HW threads, some query execution time on System S would drop because of insufficient

DRAM for storing intermediate results (See Figure 10-1(c)). When System L is paired with

AQUOMAN, the maximum x86 HW threads can be reduced to 4 and the average can be

reduced to 1.1 Overall when a host machine replaces its SSDs with an AQUOMAN disk, it

can save on an average 71% of the CPU time for TPC-H queries running on System L.

10.3.2 Memory Footprint

Figure 10-1(c) shows the maximum and average memory resident set size (RSS) of AQUO-

MAN and the system-L baseline, respectively. When a query is adequately offloaded,

AQUOMAN reduces host memory footprint significantly except when it has to aggregate on a

huge number of groups in the host as for Q18 (See Section 8.5). AQUOMAN has 20~128GB

smaller memory footprint than the baseline even when most of the query is processed by

AQUOMAN. The memory saving is primarily because of the streaming model of Table Tasks

and only keeping row IDs in the DRAM. The maximum memory requirement for the TPC-H

benchmark by AQUOMAN on 1TB data-set is 40GB. In fact when equipped with 16GB

DRAM, only 4 queries (4,5,8,21) are affected and AQUOMAN can offload 12 of 22 TPC-H

queries profitably. We also note that while AQUOMAN reduces the average DRAM used

significantly (by a factor 3), the maximum DRAM needed is left almost unchanged. Indeed
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an important part of Q18 has to be processed by the host, and it requires almost 128GB of

DRAM.

10.3.3 Advantages of AQUOMAN

In the previous section we have shown significant hardware threads and memory savings. In

this section we propose a way to visualize the benefits from those savings (70% of CPU and

60% of the average memory). As a first approximation, Figure 10-1(a) shows that running

the entire TPC-H benchmark on a 32-cores machine with 128GB DRAM (System L) is on

average 1.6X as fast as running the same benchmark of on a 4-core machine with 16GB

DRAM (system S). However, replacing the SSD of the small machine by an AQUOMAN

augmented SSD (S-AQUOMAN16) bridges that gap completely!

This comparison does not evaluate the opportunity for the system to run many queries

in parallel, which may show different results because of inter-query data locality and

parallelization. Evaluating such a parallel system requires a very different setup than what

we have presented in this paper.

10.4 Validating simulation results on FPGA

The AQUOMAN FPGA prototype has the key AQUOMAN components: Row Selector, Row

Transformer, and SQL Swissknife with a high-performance Sorter but is limited by 4 GB of

DRAM. We evaluated a subset of TPC-H queries using the AQUOMAN FPGA prototype to

validate some of our simulation results.

We picked two classes of TPC-H queries and hand-coded them to Table Tasks to execute

on the FPGA prototype. The first type of queries (1,6) have no join operations. Those queries

are evaluated end-to-end and produce the same query results as the MonetDB software. The

second type of queries (3,10) are multi-way join queries but need less than 4GB AQUOMAN

DRAM. We used the same evaluation methodology described in Section 9.4.1 for join query

evaluations on our FPGA.

For each query, we compared the run time and memory usage of the FPGA prototype

with those of AQUOMAN simulator (Figure 10-2). We can see the FPGA prototype has
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Figure 10-2: TPC-H queries on FPGA prototype

similar run times and the same memory usage as the AQUOMAN simulator, which validates

the basic performance modeling of AQUOMAN.

Compared to FCAccel [202], our FPGA evaluation used 10X the dataset size and

evaluated more queries including fully-offloaded joins. Therefore we cannot provide direct

query run-time comparison, but we can compare in terms of rows/sec with FCAccel’s

evaluation. AQUOMAN’s FPGA performance is competitive to that of FCAccel. For the

straightforward filter-and-aggregate with high selectivity (Q6), AQUOMAN has similar

throughput (100.5M rows/s vs. 111M rows/s). When a query has low selectivity and requires

more computation, such as row transform and Aggregate Group-By in Q1, AQUOMAN is

2.5X better than FCAccel (69M rows/s vs. 27M rows/s). This is thanks to AQUOMAN ’s

systolic-array design for highly-pipelined row transformation (Section 8.2), while FCAccel

uses on multi-cycle logic designs.
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10.5 Part II Conclusion

We have presented AQUOMAN, an end-to-end DBMS system solution for in-storage an-

alytical SQL query acceleration. AQUOMAN aggressively pushes the idea of “in-storage

computing” by offloading most of the query processing, including multi-way Joins, for

terabyte data-sets. AQUOMAN is based on a novel stream-oriented microarchitecture to

execute static dataflow graphs of SQL operators organized as Table Tasks. We have built a

prototype of AQUOMAN using a Xilinx VCU108 FPGA development board, and shown that

it computes Table Tasks at a 4GB/s, saturating the flash-drive bandwidth. (For power, cost

and area reasons, a commercially viable version of AQUOMAN will have to be implemented

using ASICs).

We have run experiments to show a clear-winning case for AQUOMAN over existing

general purpose servers when page-cache is ineffective. When data-set size is just too

big or temporal locality of queries are limited, general-purpose machine can struggle to

provide enough DRAM capacity to offer effective page-caching of database tables. In

such cases, AQUOMAN can provide compelling performance than general-purpose solutions

because both solutions are both disk-IO bound and AQUOMAN has superior query processing

efficiency because of specialization. We have shown AQUOMAN can have a 1.2X-13.0X

single-query performance improvement when MonetDB’s page cache becomes ineffective.

We have also shown that an AQUOMAN instance can free up 2~20 HW threads and 20~128GB

DRAM needed by a pure software solution to saturate a single SSD.

One way to think of the benefits provided by offloading queries to AQUOMAN is to

imagine running SQL queries on a one-terabyte TPC-H benchmark data-set on two systems:

MonetDB running on a 4-core, 16GB-DRAM machine with AQUOMAN-augmented SSDs

and MonetDB running on a 32-core, 128GB-DRAM machine with standard SSDs. Overall,

if we run TPCH queries sequentially and assume no reuse of page-cache by different queries,

the two system provide the same performance.

Future work needs to be done to determine if AQUOMAN can win over general-purpose

solution when the latter has enough DRAM for caching reused pages. It is conceivable

AQUOMAN can still win if there are enough aggregate disk bandwidth allocated for AQUO-
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MAN, because database queries mostly results in sequential scans of rows of tables and

sequential flash drive reads are highly efficient. Such work on AQUOMAN requires (1) an

experimental setup to evaluate parallel execution of queries and (2) distributed execution of

queries whose data is spread over multiple AQUOMAN SSDs.
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Chapter 11

Conclusion and Future Work

Existing computing systems process increasingly large amounts of data. Data is key for

many modern workloads. Important workloads, such as machine learning/artificial intelli-

gence, bioinformatics, graph analytics, databases, video analytics, are data-intensive and

needs the underling computing systems to process a vast amount of data that is continuously

being generated today. Modern computing systems are typically processor-centric, where

computing units are interconnected via highly sophisticated hierarchies of memory subsys-

tems, networks and storage devices. Running large-scale data processing on such systems

requires bringing data piece-wise over the memory/network-hierarchy into the processing

logic pipeline to perform computation, which exists both in the micro-level (single-node

machine) and macro-level (server clusters). Such processor-centric designs leads to large

amounts of data movement across the entire system, degrading performance and consuming

the majority of machine energy [61]. With the exponential increase of data generated by

applications, future worloads can quickly overwhelm the storage capacity(cache/DRAM),

communication capability(processor interconnect/memory bus/network), and computational

capability(general-purpose processors) of modern machines we design today. Meanwhile

caches and interconnects of a modern processor can easily take the majority of processor

area(e.g. 80-95%), and their efficacy is quickly diminishes with decreasing data locali-

ty/reuse for large data sets. I believe that the challenges of future computing systems is

to address the performance, efficiency and scalability issues related to the data-movement

bottlenecks for data-intensive applications.
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My research goal was to build future data-centric computing systems which can offer

high programmability, high energy-efficiency and high performance for data-intensive

workloads. Fundamentally such data-centric computing systems should minimize data-

movement by enabling computational capability near where data resides. Two types of

memory technologies can potentially offer high efficiency as the memory substrate for

data-centric computing for large data-sets. The first is flash-centric computing systems

which performs computation in the secondary storage, such as SSDs. This thesis has shown

such systems can easily address several terabytes of data using a single node, and can offer

competitive performance with extreme power efficiency [124, 129, 207, 208]. And I plan to

build on my ongoing flash-centric work in the short term.

The second idea is near-memory computing, which is driven by the 3D-stacked memory

technology, such as hybrid memory cubes (HBM). 3D stacked-memory technology allows

logic/memory layers to be vertically stacked and exposes massive memory channels across

vertical layers. Near-memory computing can offer high-performance for a wide class data-

intensive applications that has hundreds of gigabytes dataset and can fit in memory (E.g.

in-memory database, graph-pattern mining). I am also interested in designing and building

memory-centric systems using latest memory technologies in the longer term. This thesis

laid out some initial steps towards achieving these goals, and I am excited to use my skills

to continue solving more interesting problems in this area.

11.1 Short-term Future Work

I plan to build upon my ongoing flash-centric hardware accelerators research as follows:

11.1.1 Distributed In-storage SQL analytic Offloading

The previous study of AQUOMAN focused on a single instance of such an offloading

hardware accelerator. The AQUOMAN architecture assumes local access to flash chips for

input data and thus, required that the data accessed by a query reside on a single SSD. I

plan to build a a distributed version of AQUOMANs, i.e. AQUAFarm, to process much

bigger datasets and to provide query-processing scalability on hundreds of terabytes or
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petabytes of datasets. I plan to use map-and-reduce compute paradigm to allow many

offloading accelerators cooperate on a single query. The scalability of executing Table Tasks

on AQUAFarm is highly dependent on the amount of data that needs to be shuffled over

the network. To reduce network traffic, data transmission can be efficiently compressed

using delta encoding since the Table Task outputs are sorted. To make the SQL queries run

transparently on AQUAFarm, I plan to integrate AQUAFarm into Presto [188], Facebook’s

open-source distributed SQL engine for big-data SQL analtyics.

11.1.2 Graph-Pattern Mining using Accelerated Flash Storage

Prior work in graph-pattern mining (GPM) accelerators [74,132,209] assumes graph datasets

are DRAM resident, which limits the size of processing of large graphs to 10-100 gigabytes.

In order to mine sub-graphs in terabytes of graph datasets without using a large distributed

server cluster with enough aggregate DRAM for storing input graphs, I plan to build on our

previous work, FlexMiner [74], to process GPM in storage. One of challenges in processing

GPM using flash storage is that while extending a sub-graph, flash access granularity leads

to significant read amplification. I plan to explore a memory subsystem which sorts and

merges flash read requests from a massive amount of parallel mining engines, to make most

efficient use of secondary storage I/O.

11.1.3 Machine Learning Accelerators

Many important applications now arise in the area of Artificial Intelligence, where their

needs are poorly met by current storage systems. With the rapid growth of data for a wide

range of AI applications, this space holds exciting opportunities for impactful research. I

plan to expand my research into accelerating machine learning algorithms which exhibits

highly intensive and irregular data access patterns, such as Graph Neural Networks(GNNs).
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11.2 Long-Term Future Work

My long term goals are 1) to make programming flash-centric computing easier, and 2) to

design and build memory-centric machines using emerging memory technologies.

11.2.1 Make programming flash-centric computing easier

One of my longer-term goals is to make programming hardware accelerators for flash centric

computing easier for a wider audiences across different disciplines. One way to make the

use of hardware accelerators more widespread is designing good system integration with the

software package for the end-users, just like what I did in AQUOMAN [207]. In this case, users

run their applications transparently without any knowledge of hardware accelerators. The

second way is to provide a programming interface for hardware accelerators by designing a

domain-specific language (DSL). This allows the domain experts to upload programming

parameters to accelerators for each query, like what we did in Flexminer [74]. Both methods

allows hardware accelerators to be fixed functions in ASIC, and I am interested in designing

and building flash controller SoCs with hardware accelerators, as well as provide end-to-end

software package for them.

The third way is to design and develop a programming model and platform for general-

purpose programming on reconfigurable hardware accelerators, just like how Hadoop and

Spark made distributed computing using map-and-reduce paradigm easier. In this scenario,

programmers need to define their own hardware modules using RTL, Bluespec, HLS or

others, but needs to obey a certain execution model, such as map-and-reduce. I am interested

in using all three methods to make programming flash-centric hardware accelerators easier

to widespread their dividends in performance and efficiency.

11.2.2 Memory-centric computing with emerging memory technology

Emerging storage technologies, such as PRAM, MRAM, and Intel X-points, challenge

fundamental assumptions in systems design. For example, the storage bandwidth scaling

has dramatically exceeded DRAM bandwidth scaling to CPUs [95,165], and the bottlenecks

of many data-intensive workloads has shifted from I/O bandwidth to CPU with newer
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storage devices [150]. At the same time, latest silicon manufacturing has allowed integrating

layers of silicon logic and memory(e.g. Hybrid Memory Cubes) on a 3D stack, which

opens up opportunities and challenges for hardware architectures for emerging applications.

The push of 3D-stacked memory and emerging NVM has opened up new frontiers of

near-memory computing, where processing units can be vertically stacked with gigabytes

of memory and have tens of terabytes per second bandwidth. To offload data-intensive

computation efficiently near memory, I am interested in studying different forms of near-

memory computing, such as fixed accelerators, FPGAs and light-weight processor arrays,

which have different trade-offs of generality and performance.

Meanwhile general-purpose processors can still access 3D-stacked memory via a tra-

ditional memory bus. This opens up a new paradigm on how to design memory-centric

machines which can efficiently and easily bifurcate computation in processors and near-

memory logic. One can imagine that cache-friendly computation is more efficient on

processors, while data intensive workload with less locality opportunity can benefit from

computing near memory. In memory-centric computing conventional processors can cooper-

ate on computation with near-memory logic in a much more fine-grained manner. Therefore,

new system challenges such as coherence and virtual memory are likely to arise in memory-

centric computing. I am excited to investigate such system challenges to enable ease and

efficient migrating processor-centric programs to memory-centric computing and pursue

building real SoC systems of such memory-centric computing machines in the future.
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