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Abstract 

For over half a century, phonon hydrodynamic transport was deemed exotic and mattered only at 

extremely low temperatures. In this work, by combining the theoretical and experimental approach, 

we successfully predict and confirm the existence of phonon hydrodynamic transport in graphite 

above 200 K.  More specifically, we introduce a direction-dependent definition of normal and 

Umklapp scattering, which gives an improved description of mode-specific phonon dynamics. By 

extending the classical Fuchs-Sondheimer solution, we developed a first-principles framework to 

study phonon hydrodynamics under the size effect with mode-by-mode phonon scattering details. 

We unambiguously revealed the Poiseuille heat flow by studying the variation of heat flow as the 

graphite ribbon width and identified for the first time the existence of phonon Knudsen minimum 

– an unusual phenomenon unique to hydrodynamic regime – which can be observed up to 90 K. 

Using a sub-picosecond transient grating technique, we directly observed second sound in graphite 

at record-high temperatures of 200 K. With the enlarged grating-period window, we firstly 

reported the dispersion of thermal wave, whose velocity increases with decreasing grating period. 

Our experimental findings are well explained with the interplay among “three fluids”: ballistic, 

diffusive, and hydrodynamic phonons. We believe our study may stimulate further work into 

discovering more material systems possessing significant phonon hydrodynamic features, as well 
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as new research into understanding and manipulating the phonon transport in the hydrodynamic 

scheme. 
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Chapter 1 Introduction  

1.1 Phonon	hydrodynamic	transport	

Phonon hydrodynamic transport is regime where phonons behaves like fluid molecules. Phonons 

are the majors heat carrier in non-metallic solids, whose transport is usually described by the 

Fourier laws:  

 

 𝐽 = −𝜅∇𝑇 (1-1) 

 

Where J is the heat flux, k is the thermal conductivity and ∇𝑇 is the temperature gradient.  

Similarly, molecular flow at the macroscale can be described by the Euler’s equation: 

 

 𝑑(𝜌𝐮)
𝑑𝑡 = −	∇p (1-2) 

 

Where r and u are the density and velocity of the fluid element respectively, and p is the pressure.  

Eq. (1-1) and (1-2) indicate that the thermoelectric driving force for heat and molecular flow are 

temperature and pressure gradient respective. Moreover, Eq. (1-1) predicts, a constant heat flux 

for a given temperature gradient, indicating an intrinsic damping in heat flow.  However, Eq. (1-2) 

shows the acceleration of molecular under the pressure gradient without any damping effect.  

The different behaviors of the damping in the phonons and molecular flows is dues to the 

interactions/scattering between them is different. More specifically, momentum is always 

conserved in the molecule-molecule collision process, while the phonon-phonon scattering process 

are not always momentum conserved. As suggested by Peierls1, phonon-phonon scattering 

processes consist of momentum-conserving scattering and momentum-destroying scattering. As 

shown in Figure 1-1, if the wavevector of the newly-formed phonon is within the 1st Brillion zone 

(BZ) as shown in this picture, then it is a momentum conserving process called normal scattering 
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(N-scattering). If it is outside of the first BZ, momentum if not conserved, and it is called Umklapp 

scattering (U-scattering).  Though not rigorous, it is generally accepted that U-scattering is the 

origin of thermal resistance. Intuitively, if N-scattering dominates, then phonon flow, will behave 

similar to fluid flow. However, in most materials, at room temperature, it is actually U-scattering 

is much stronger, leading to the large damping effect in solid materials. Further discussion on this 

analysis is provided in Chapter 2. 

 

 

Figure 1-1 Schematic illustration of normal scattering (N-scattering) and Umklapp scattering (U-
scattering) processes, as conventionally defined. (a) N-scattering, (b) U-scattering. 

 

One unique feature of the phonon hydrodynamic transport is the collective motion.  As in the case 

of the fluid flow, all the molecules share the same drift velocity.  The equilibrium distribution of 

phonons with strong N-scattering rate is the displaced Bose-Einstein distribution: 

 

 𝑓6 =
1

exp 9ℏ(𝜔 − 𝐪 ∙ 𝐮)𝑘?𝑇
@ − 1

 
(1-3) 
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Where , w, q, kB and T denote the reduced Planck constant, phonon frequency, phonon 

wavevector, the Boltzmann constant, and temperature, respectively. u is constant for all phonon 

modes in the hydrodynamic regime.  

Associated with the drift motion of phonons, there are three signature transport phenomena that 

are unique to hydrodynamic regimes: phonon Poiseuille flow (Figure 1-2a) and phonon Knudsen 

Minimum and second sound (Figure 1-2c), which are analogous to Poiseuille flow Knudsen 

Minimum and ordinary sound in a fluid respectively.  For an infinity long sample under a steady 

temperature gradient, the heat flux is uniform in the diffusive regime (Figure 1-2b), while heat flux 

is gradually decrease from the center to boundary in the hydrodynamic regime. The difference lies 

in the source of thermal resistance. In the diffuse regime, the dominating thermal resistance is the 

phonon-phonon scattering occurring everywhere. However, the diffusive boundary scattering 

accounting for major thermal resistance in Poiseuille flow. Base on the source thermal resistance, 

we could deduce geometric condition for Poiseuille flow to occur. Intuitively, the width of the 

sample need be greater than the mean free path of the N scattering, but smaller than mean free path 

of the R-scattering (including U-scattering and E-scattering). A detailed analysis is provided in 

Chapter 3. The conclusion here is that there is a requirement in the width of the sample, and the 

size of the allowed window depends on the difference between N-scattering and R-scattering rates.  

In addition, due to the difference in the origin of resistance, distinguished size and temperature 

dependence is expected for the hydrodynamic regime. More specifically, a superlinear width 

dependent and larger temperature dependent thermal conductivity is expected in the hydrodynamic 

regime. As the ribbon width keeps decreasing, phonon transport eventually transitions from the 

hydrodynamic to the ballistic regime, where N-scattering suppress the thermal conductivity. A 

sublinear width dependent thermal conductivity is expected in this regime. Combined together, the 

existence of both a sublinear and a superlinear width-dependent thermal conductivity dictates the 

existence of a phonon Knudsen minimum.  Second sound refers to the propagation of a temperature 

wave (or phonon density wave) provoked by a heat pulse, analogous to pressure wave propagation 

in a fluid. In the diffusive regime, the temperature wave will be damped by the momentum 

destroying R-scattering. (Figure 1-2d).  In the hydrodynamic regime, the pulse could be 

transmitted by many N-scatterings. (Figure 1-2c). 

!
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Figure 1-2 (a,b) The steady-state heat flux profiles in hydrodynamic and ballistic regimes, 

respectively, under a temperature gradient. (c,d) The propagation of a heat pulse in the 

hydrodynamic and diffusive regimes, respectively. Figures are adapted from Fig. 1 in 2 

 

1.2 Boltzman	transport	theory	

Boltzman transport theory is a powerful tool to study weakly-interacting3, and it describes the time 

evolution of the distribution functions:  

 

 𝜕𝑓
𝜕𝑡 + 𝐯D ∙ ∇𝑓 = E

𝜕𝑓
𝜕𝑡FG

 (1-4) 

   

where  is the phonon distribution function, which is the number of phonons at position 

 , at time ,  with wavevector  per unit solid angle, per unit wave number interval, per unit 

volume.  and  are the phonon group velocity and wavevector respectively. Eq. (1-4) indicates 

that phonon distribution could change due to phonon convection in the real space. The collision 

term on the right-hand side of the equation denotes the change in the phonon distribution function 

due to collisions between phonons.  In general, the collision term is a function of all the phonon 

distribution functions, as a result, solving BTE is usually a not trivial problem.  

Under the relaxation time approximation (RTA), one can approximate the collision terms as: 

( , , )f tr q

r t q

gv q
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 E
𝜕𝑓
𝜕𝑡FG

= −
𝑓 − 𝑓H
𝜏  (1-5) 

 

Where 𝑓H =
J

KLME ℏNOPQ
FRJ

 is the equilibrium Bose-Einstein distribution function. RTA much 

simplified the problem and make the BTE easily solvable and demonstrate certain predictive power 

in thermal conductivity calculation4–6.  However, treating all the phonon scattering processes as 

U-scattering,  the RTA significantly underestimates the thermal conductivity when strong N-

scattering is present7.  Moreover, it cannot be used to study phonon hydrodynamic transport, where 

N-scattering process plays critical roles. 

To correct for this discrepancy, Callaway proposed a new model to separate the effects of N-

scattering and U-scattering on the heat transport8, and write the collision term as: 

 

 E
𝜕𝑓
𝜕𝑡FG

= −
𝑓 − 𝑓H
𝜏S

−
𝑓 − 𝑓6
𝜏T

 (1-6) 

 

Where 𝑓6 =
J

KLM9ℏ(NU𝐪∙𝐮)OPQ
@RJ

 is the displaced Bose-Einstein distribution function and u is the 

collective drift velocity shared by all the phonon modes. Its effectiveness was first demonstrated 

for modeling thermal conductivities at low temperatures8,9, especially for phonon 

hydrodynamics10,11, such as phonon Poiseuille flow12, Knudsen minimum12,13, and second sound11. 

The exact collision operator could be written with the full scattering matrix: 

 

 
V
𝜕𝑓W

𝜕𝑡 X
G
= −Y𝑊W[(𝑓[ − 𝑓H

[)
[

 (1-7) 
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The matrix W has the dimension of number of phonons modes. Its construction and relation with 

the usually three-phonon coupling matrix are discussed in Ref. 14.  Calculation with the full matrix 

is of high accuracy while computationally expensive.  

 

1.3 First-principles	simulation	

The recent development of density functional theory (DFT)15 and density functional perturbation 

theory (DFPT)16 enables one to predict the physical properties without fitting parameters. In this 

section, we are not intending to introduce the development of the first-principles simulation, while 

focusing on specifying the package used and necessary modifications we made.  

The formulation and procedure to perform phonon transport calculation is presented in Ref. 17. In 

addition, we have added in the following two features: 

1) Distinguish N-scattering rate and U-scattering process. 

2) Construct the full scattering matrix from the three-phonon scattering matrix.  

All the DFT calculation are performed with Vienna Ab Initio Package (VASP) 18–20 or Quantum 

ESPRESSO package 21.  The Phonopy package22 was used to obtain the second-order force 

constants. The thirdorder.py and ShengBTE packages17 were used to obtain the third-order force 

constants and the exact solution to BTE respectively. 

The in-house developed code will be released: https://github.com/dingzhiwei007 

 

1.4 Thermal	transient	grating		

Several optical experimental approaches have been developed  and utilized to measure thermal 

transport including flash23, pump-probe transient thermoreflectance (TTR)24 and thermal transient 

grating (TTG)25–27. In TTG, two crossed laser pulse created a spatially sinusoidal temperature 

profile (thermal grating) in the sample and the dynamic of the acoustic and thermal response are 

monitored via the diffraction of the prove laser beam (Figure 1-3). TTG measurements can be 

greatly enhanced by optical heterodyne detection after resolving the ambiguities in the 

interpretation of transient thermal grating signals28–30.  
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Figure 1-3 Schematic illustration of the experiment. A thermal grating is produced by two crossed 
pump pulses. Thermal expansion gives rise to a surface modulation that is detected via diffraction 
of the probe beam, and the reference beam is used for optical heterodyne detection.  

 

To briefly discussed TTG signal, while the details could in found in Ref. 30. When two short 

excitation pulses of wavelength l with incidence angle q are crossed at the surface of the sample. 

Optical interference results in a periodic intensity profile with spacing L given as: 

 

 𝐿 =
2𝜋
𝑞 =

𝜆

2	sin	(𝜃2)
 (1-8) 

Where q is the grating wavevector magnitude.   

Optical fields of the probe and reference beams could be written as: 

 

 
𝐸f = 𝐸gf exp h𝑖 V𝑘fj −

𝑞j

4 X

J
j
𝑧 − 𝑖 m

𝑞
2n𝑥 − 𝑖𝜔f𝑡 + 𝑖𝜙fq	 (1-9) 

 
𝐸r = 𝑡s𝐸gf exp h𝑖 V𝑘fj −

𝑞j

4 X

J
j
𝑧 + 𝑖 m

𝑞
2n𝑥 − 𝑖𝜔f𝑡 + 𝑖𝜙rq 

(1-10) 
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Where E0p is the original amplitude of the probe, kp is the optical wavevector, wp is the optical 
frequency, fp and fR are the phase of the probe and reference beam respectively, tr is the 
attenuation factor for the reference beam.  The diffracted signal can be written as: 

 

 𝑡∗(𝑡) = 𝑟g{1 + cos(𝑞𝑥) y𝑟z(𝑡) + 𝑖{𝑟zz(𝑡) − 2𝑘f𝑢(𝑡)𝑐𝑜𝑠𝛽f��} (1-11) 

   

Where u(t) is the vertical surface displacement, bp is the incidence angle of the probe beam on the 

surface, and the dynamic complex reflection coefficient is given by 𝑟∗(𝑡) = 𝑟g[1 + 𝑟z(𝑡) +

𝑖𝑟zz(𝑡)].  

 

The first order diffraction field of the probe by multiplying Eq. (1-9) with Eq. (1-11): 

 
𝐸f(�J) =

1
2𝐸gf rgexp h𝑖 V𝑘f

j −
𝑞j

4 X

J
j
𝑧 − 𝑖 m

𝑞
2n𝑥 − 𝑖𝜔f𝑡 + 𝑖𝜙fq (1-12) 

   

And the reflection reference field is simply obtained as: 

 
𝐸r(g) = 𝑟g𝑡s𝐸gf exp h𝑖 V𝑘fj −

𝑞j

4 X

J
j
𝑧 + 𝑖 m

𝑞
2n𝑥 − 𝑖𝜔f𝑡 + 𝑖𝜙rq (1-13) 

 

The two beams are colinear and their interference gives an intensity: 

 

 𝐼� =
1
2 𝐼gf𝑅g

�𝑡sj + 𝑟zj(𝑡) + y𝑟zzj(𝑡) + 2𝑘fj𝑢j(𝑡)𝑐𝑜𝑠𝛽f�
j

+ 2𝑡sy𝑟z(𝑡) cos𝜙 − {𝑟zz(𝑡) − 2𝑘f𝑢(𝑡)𝑐𝑜𝑠𝛽f�𝑠𝑖𝑛𝜙�� 
(1-14) 
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Where 𝐼gf is the intensity of the probe beam, 𝑅g = |𝑟g|j is the surface reflectivity, and 𝜙 = 𝜙f −

𝜙r  is the heterodyne phase.  If the intensity of the reference beam is much greater than that of the 

diffracted probe, then the time dependent signal is dominated by the heterodyne term 

 

 𝐼��� = 2𝐼gf𝑅gy𝑟z(𝑡) cos𝜙 − {𝑟zz(𝑡) − 2𝑘f𝑢(𝑡)𝑐𝑜𝑠𝛽f�𝑠𝑖𝑛𝜙� (1-15) 

Eq. (1-15) indicates that the TTG signal have both the reflectivity and displacement.  

1.5 	Thesis	outline	

In this thesis, we will focus on the phonon hydrodynamic transport in graphite with a combine 

theoretical and experimental approach.  

In Chapter 2, we discuss the wisdom of N-scattering and U-scattering process. By introducing a 

direction-dependent definition of normal and Umklapp scattering, we can model thermal transport 

in anisotropic materials using the Callaway model accurately. This accuracy is physically rooted 

in the improved description of mode-specific phonon dynamics. Finally, we demonstrate the 

necessity of the new definition in the phonon hydrodynamic transport regime by computing the 

propagation length of second sound.  

In Chapter 3, by extending the classical Fuchs-Sondheimer solution, we developed a first-

principles framework to study phonon hydrodynamics under the size effect with mode-by-mode 

phonon scattering details. We identify graphite as a three-dimensional material for high-

temperature phonon hydrodynamics, thus generalizing a range of 2D materials with strong 

hydrodynamic characteristics to its bulk van der Waals (vdW) material family. We unambiguously 

revealed the Poiseuille heat flow by studying the variation of heat flow as the graphite ribbon 

width. Especially, we identified for the first time the existence of phonon Knudsen minimum – an 

unusual phenomenon unique to hydrodynamic regime – which can be observed up to 90 K. A 

thorough microscopic explanation for the phonon Knudsen minimum is elaborated based on the 

concept of momentum-conserved scattering processes. 

In Chapter 4, sub-picosecond transient grating technique was employed to enable direct 

observation of second sound at a record-high temperature of over 200 K. In addition, with the 

enlarged grating-period window, we firstly reported the dispersion of thermal wave, whose 
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velocity increases with decreasing grating period due to the increasing contribution of thermal zero 

sound—the thermal wave due to ballistic phonons. Our experimental findings are well explained 

with the interplay among “three fluids”: ballistic, diffusive, and hydrodynamic phonons. All the 

results and analyses are qualitatively supported by first-principle-based solutions of the Peierls-

Boltzmann transport equation, which further predicts a large isotope effect on thermal waves and 

the existence of second sound at room temperature in isotopically pure graphite. 

In the last Chapter, we will conclude with our main findings and suggest possible future directions 

along the path. 
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Chapter 2 Umklapp Scatterings Are Not Necessarily 

Resistive 

Phonons are the major heat carriers in semiconductors and dielectrics. Since Peierls’ pioneering 

work, it is generally accepted that phonon-phonon scattering processes consist of momentum-

conserving normal scatterings and momentum-destroying Umklapp scatterings, and that the latter 

always induce thermal resistance. Peierls’ theory is written into textbooks and used without 

discrimination. In this chapter, we show that Umklapp scattering processes cause thermal 

resistance only when they destroy phonon momentum projected along the heat transport direction. 

This new insight is important for anisotropic materials such as 2D materials and graphite. By 

introducing a direction-dependent definition of normal and Umklapp scattering, we can model 

thermal transport in anisotropic materials using the Callaway model accurately. This accuracy is 

physically rooted in the improved description of mode-specific phonon dynamics. Finally, we 

demonstrate that second sound might persist over much longer distance than previously thought. 

 

2.1 Background	

Phonons are major heat carriers in semiconductors and dielectrics. In crystalline solids, Peierls1,31 

attributed the origin of thermal resistance to the combination of anharmonicity and the discrete 

nature of crystal lattice. Anharmonicity results in interactions between the lattice vibrational 

waves, referred to as phonon-phonon scattering processes. However, anharmonicity alone cannot 

induce resistance as discussed by Peierls1—an infinite thermal conductivity is expected if all the 

phonon scattering processes conserve momentum. To explain the finite thermal conductivity, 

Peierls proposed that from the perspective of momentum, phonon-phonon scattering could be 

divided into two categories: normal scattering (N-scattering)32 and Umklapp scattering (U-

scattering). A N-scattering process conserves the phonon momentum and induce no thermal 

resistance by itself, and it merely redistributes momentum among different phonon modes. In 

comparison, U-scattering is a momentum-destroying process that leads to thermal resistance1,3,33–

35.  More specifically, for a three-phonon absorption scattering process, the wavevectors of the 

three phonons satisfy the following constraint: 
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  (2-1) 

 

where q and q′ are the wavevectors of the interacting phonons, q″ is the wavevector of the newly 

created phonon, and G represents a reciprocal lattice vector or zero vector. The conventional 

definition of N-scattering and U-scattering is illustrated in Figure 2-1, where the first Brillouin 

zone (BZ) is depicted as a square for simplicity. If the wavevector of the new phonon q″ is within 

the first BZ, the three-phonon interaction conserves momentum and is considered as N-scattering 

(Figure 2-1(a)). However, if q″ is outside the first BZ (Figure 2-1(b)), the phonon momentum is 

not conserved (G ≠0) and the process is categorized as U-scattering.  Proper treatment of N-

scattering and U-scattering holds the key to model phonon transport, especially to capture the 

collective drift motion of phonons, which characterizes phonon hydrodynamic transport36,37—in 

analogy to the hydrodynamic flow of molecules38. Many exotic phenomena of fundamental 

importance emerge in the hydrodynamic transport regime, such as phonon Poiseuille flow12,39, 

Knudsen minimum3, and second sound 40–44.  

 

Figure 2-1 Schematic illustration of normal scattering (N-scattering) and Umklapp scattering (U-
scattering) processes, as conventionally defined. (a) N-scattering does not induce thermal 
resistance in either x- or y-direction, while (b) U-scattering induces resistance in x-direction but 
not in y-direction. 

+ = +' ''q q q G
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Major advances in first-principles computations over last decade have enabled solving the 

phonon Boltzmann transport equation (BTE) numerically without the distinction between N-

scattering and U-scattering processes5,14,45. However, the high computational cost limits the 

applicability of such exact solution processes to simple materials, where the number of atoms in a 

unit cell is within computational resource limits.  A more affordable approach appropriate for 

mesoscale structures is to model phonon-phonon interactions using the relaxation time 

approximation (RTA), which treats all the phonon scattering processes as U-scattering and 

represents them with a single lifetime4–6. However, the RTA significantly underestimates the 

thermal conductivity when strong N-scattering is present7. To correct for this discrepancy, 

Callaway proposed a new model to separate the effects of N-scattering and U-scattering on the 

heat transport, which can be written as:  

 

 
 (2-2) 

 

where f and vg denote the phonon distribution function and group velocity, and tU-1 and tN-1 

represent the U-scattering and N-scattering rates, respectively. While the U-scattering processes 

relax the phonon distribution to the equilibrium Bose-Einstein distribution f0, the N-scattering 

processes facilitate the establishment of a displaced distribution fd, which can be written as: 

 

  
(2-3) 

 

Here, , w, q, kB and T denote the reduced Planck constant, phonon frequency, phonon 

wavevector, the Boltzmann constant, and temperature, respectively. The collective phonon drift 

velocity u is discussed in ref.46 and can be determined from the conservation of momentum in N-

scattering processes: 
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  (2-4) 

 

where the summation is over all phonon modes (same below unless specified). The displaced 

distribution function is analogous to the BGK approximation for rarefied gas flow.47 

The Callaway model preserves the efficiency of the RTA while significantly approaches 

the accuracy of the exact solution schemes and has been truly instrumental to phonon transport 

studies since it was proposed in 1959. Its effectiveness was first demonstrated for modeling 

thermal conductivities at low temperatures8,9, especially for phonon hydrodynamics 10,11, such as 

phonon Poiseuille flow12, Knudsen minimum 12,13, and second sound 11. In past studies, all U-

scattering processes are grouped into tU, i.e., assumed to create resistance to heat flow.  

However, not all U-scatterings as conventionally defined (Figure 2-1) create thermal 

resistance. In fact, a U-scattering process does not really cause any thermal resistance if the 

projection of the phonon momentum involved in the scattering is conserved in the heat flow 

direction. For example, the U-scattering event shown in Figure 2-1(b) only induces resistance to 

heat flow in the x-direction, but not in the y-direction. We will show later that this distinction is 

especially important for anisotropic materials.  We hereby propose that a proper classification of 

N-scattering and U-scattering should be based on the projected phonon momentum in the heat flow 

direction. A scattering process should be considered N-scattering as long as the phonon momentum 

is conserved in the direction of heat flow. With this understanding, Eq. (2-1) should be rewritten 

as:   

 

  (2-5) 

 

where j represents the heat transport direction,  and  represent the projections of vectors q 

and G along j . A scattering event is N-scattering as long as Gj = 0, which holds when G = 0 or G 

is a reciprocal lattice vector orthorgonal to j. Therefore, all the conventional N-scattering processes 
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remains N-scattering with the new definition, but some scattering processes originally catergorized 

as U-scatteirng are now classified as N-scattering. To avoid confusion, we denote the heat transport 

direction-dependent N- and U-scattering processes as Nj- and Uj-scattering. In what follows, by 

comparing with the exact solutions of the phonon BTE, we demonstrate that the proposed new 

classification of N-scattering and U-scattering processes leads to much more accurate predictions 

of thermal conductivity using the Callaway model. We then conclude with a discussion of the 

significant consequence of the new definition on the propagation length of second sound in the 

phonon hydrodynamic transport regime.  

 

2.2 Thermal	conductivity	

We use black phosphorus (BP) and graphite as the prototypical materials to demonstrate how our 

new definition can improve the performance of Callaway model. These two materials are chosen 

because they are representative of anisotropic two-dimensional (2D) and 3D materials with one 

primitive vector orthogonal to the others. The atomic structures of the two materials are shown as 

insets of Figure 2-2. The computed thermal conductivity of BP along the zigzag (ZZ) direction 

and graphite in the basal plane direction are plotted in Figure 2-2 as a function of temperature. We 

focus on transport in these directions because the transport property in the armchair (AM) direction 

of BP and the cross-plane direction of graphite is insensitive to the treatment of N- and U-scattering 

(Figure 2-3). Here we compare the thermal conductivities predicted using four different methods: 

<1> iterative numerical soluton to the BTE which is exact and serves as the reference, <2> 

Callaway model with the new definition of N- and U-scattering, i.e. Nj- and Uj-scattering, <3> 

Callaway model with the original definition of N- and U-scattering, and <4> RTA. All the 

scattering rates were obtained from first-principles calculations. The details for computing thermal 

conductivity using RTA, Callaway, and the iterative method can be found in Ref. 48. One can see 

that both the RTA and the Callaway model with the original definition of N- and U-scattering rates 

underestimate the thermal conductivity across the wide temperature range considered (100 K - 500 

K). With the new definition, the performance of the Callaway model improves significantly at all 

temperatures. For graphite in particular, the calculated thermal conductivity using Callaway model 

with the new definition is less than 3% smaller than the exact value. 
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Figure 2-2 Thermal conductivity of (a) BP in the zigzag direction and (b) Graphite in the basal 
direction. Insets show atomic structures of BP and graphite, as well as the reciprocal space for 
graphite. 
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Figure 2-3 Variation of thermal conductivity of BP in the y direction (a) and graphite in the cross-
plane direction with temperature 

 

2.3 Effective	phonon	lifetime	

For a more detailed picture, we define an effective phonon lifetime as 

 

  
(2-6) 

 

where f is the phonon mode distribution obtained by solving BTE with a temperature gradient 

in the x-direction. With this effective lifetime, one can readily obtain thermal conductivity 

via the phonon gas model. In Figure 2-4, we can see that the RTA and the Callaway model with 

the original definition of N- and U- scattering not only underestimate the effective phonon lifetime, 

but also leads to effective lifetime distributions that are dramatically different from the exact 

solution. In contrast, the performance of the Callaway model substantially improves when 

combined with the Nj- and Uj-scattering rates. In particular, we highlight the region enclosed by 

the white semi-circle. Phonons in this region is most strongly affected by our modification of the 

definition of N- and U-scattering. Based on the conventional definition of U-scattering, phonons 
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with wavevectors near the zone boundary are prone to U-scattering with G ≠ 0 in Eq. (2-6). 

However, our new definition treats a phonon scattering event as Nj-scattering as long as the 

projection of G in the heat transport direction j is zero. For example, in BP a phonon with large qy 

is prone to U-scattering with G = Gy in Eq. (2-1), where Gy is the lattice vector in the reciprocal 

space along the ky-direction. However, this process should be considered as Nj-scattering if heat 

transport along the x-direction is of interest, as the momentum in the x-direction is conserved [Gj 

= 0 in Eq. (2-5)]. Such difference is clearly observed in the distribution of U-scattering percentage 

in the reciprocal space shown in Figure 2-5. For phonons with small qy, the percentage of U-

scattering rates remains almost unchanged with the modification of definition, while the 

percentage of U-scattering rates significantly reduces for phonons with large qy (Figure 2-5). A 

similar analysis was also performed in graphite for phonons with large qz [Figure 2-4 (e-h) and 

Figure 2-6)].  

 

Figure 2-4 Effective lifetime at 300 K under a tempearature gradient in the x-direction obtained 
for BP (a-d) and graphite (e-h) based on (a,e) exact iterative solution; (b,f) the Callaway model 
with new definition of N- and R-scattering rates; (c,g) the Callaway model with orignal definition; 
and  (d,h) the RTA model. For phonons enclosed by the white semi-circle at the zone boundary in 
the y-direction, conventional U-scattering events can readily take place. However, these scatterings 
are considered N-scatterings based on the new definition. 
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Figure 2-5 Distribution of U-scattering percentage in the reciprocal space for BP with (a) new 
definition and (b) original definition of N- and U-scattering at 300 K, under a temperature gradient 
in the x-direction. 

 

Figure 2-6 Distribution of U-scattering percentage in the reciprocal space of in graphite (a) with 
modified definition and (b) original definition of N&U-scattering at 300 K under a temperature 
gradient in the x direction. 
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2.4 Second	sound	propagation	length	

Beyond diffusive transport, phonon hydrodynamic transport has been of great fundamental interest 

for decades and has recently drawn much revived attention 2,10,49,50. The Callaway model has been 

widely employed to investigate many of the characteristic phenomena in hydrodynamic transport 

such as phonon Poiseuille flow 2,12, second sound 10,11,50, phonon Knudsen minimum 12,13 and 

phonon viscous flow 51.  Second sound refers to the propogation of heat in a phonon gas, in analogy 

to the propogation of ordinary sound waves in  solids 52,53. Second sound is of particular interest53 

in thermal transport since it is the most direct demonstration that heat can travel as waves, in 

contrast to the diffusion process underlying the Fourier heat conduction law. This phenomenon 

results from the collective phonon motion established by N-scattering when it dominates over U-

scattering. Second sound has been experimentally observed at cryogenic temperatures by first 

applying a heat pulse on one end of a sample then measuring the transient temperature response 

on the opposite end 42,44,54,55. The velocity and propagation length of second sound are two critical 

characteristics for experimental observations.  

Following Ref. 56,57, we derive the second sound velocity and propagation length from the energy 

and momentum-balance equation derived from Boltzmann transport equation (BTE) and Callaway 

model.  The linearized BTE can be written as: (here we assume temperature gradient is along the 

x direction, but it can be easily extended to higher dimension) 

 

  (2-7) 

                                          

where ℏ ,w, q, kB and T denote the reduced Planck constant, phonon frequency, phonon 

wavevector, the Boltzmann constant, and temperature, respectively. tU-1 and tN-1 are the U-

scattering and N-scattering rates respectively and u is the collective drift velocity as discussed in 

ref.46 
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Denote the background reference temperature as To, and following Ref.56, when tN-1 is much larger 

than tU-1, we can linearize the distribution function in terms of the deviation temperature T-To and 

drift velocity u: 

 

 
 (2-8) 

 

where is the deviation temperature T-To 

The energy and momentum conservation can be derived by multiplying Eq. (2-7) by ℏ𝜔 and ℏ𝑞� 

respectively and sum over all the modes.   

For the energy conservation, as the phonon-phonon scattering process are always energy 

conserved, the right side of the equation is zero, i.e. 〈ℏ�(�R��)
��

〉 = 0, we get, 

 

 
 (2-9) 

 

where <> means summation over all the phonon mode, Cq is mode heat capacity.   

Similar for momentum conservation, N-scattering process are momentum-conserved, i.e. 

〈ℏ��(�R��)
��

〉 = 0, thus  
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Combining the above two equations, we get the damped wave equations of the same form as in 

ref.58 

 

 
 (2-11) 

 

with the second sound velocity  and relaxing time  given as: 

 

 (2-12) 

 

 (2-13) 

 

The effective mean free path l of the damped wave is given by59: 

 

  (2-14) 

 

The propagation lengths of second sound in BP and graphite predicted using both the original and 

the new definition are shown in Figure 2-7. One can see that using our new definition, the predicted 

propagation lengths in both BP and graphite are almost an order of magnitude larger, which 

indicates the necessity of our new definition in studying phonon hydrodynamic transport 
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Figure 2-7 Propagation length of second sound as a function of temperature computed using the 
Callaway model with different definitions of N-scattering and U-scattering in (a) BP and (b) 
graphite. 

 

2.5 The	role	of	anisotropic	

The new interpretation regarding whether a phonon scattering process should be viewed as a U-

scattering process is particularly critical in anisotropic materials, where phonons dispersion along 

one direction (denoted as “soft” axis) is much softer than the other directions (“stiff” directions). 

For example, in graphite, the weak inter-layer Van der Waals interactions lead to nearly flat 

dispersion along the cross-plane direction. In such case, if one consider heat flow along stiff  axis 

(e.g. in-plane direction for graphite), there will be significant phonon scatterings involving 

phonons along the “soft” axis, due to the large scattering phase space provided by the flat phonon 

band along this axis  and their high phonon occupations resulting from the low phonon frequencies. 

Therefore, phonons as shown in Figure 2-8 (b), suffer from a large amount of scatterings with G 

= Gcross (see Eq. (2-1), where Gcross is the lattice vector in the reciprocal space along the cross-

plane direction), which are regarded as a Umklapp scattering process based on the conventional 

wisdom, but have no effect on heat flow along the “stiff” direction in our revised picture.  
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Figure 2-8 Variation of U-scattering rate of the first phonon brantch in (a) BP and (b) graphite due 
to the breakdown of the momentum conservation in different directions at 300 K, where G = Gx 
implies that the scattering process is specified by G = Gx as in Eq. (1). Gx(y) represents the lattice 
vector in the reciprocal space in BP along kx (ky) directions, and Gin(cross) represents the lattice 
vector in the reciprocal space in graphite along the in-plane (cross-plane) direction. 

 

2.6 Conclusion	

In summary, we have shown that, contrary to conventional wisdom pioneered by Peierls, not all 

U-scattering processes are resistive. Whether or not a U-scattering event contributes to thermal 

resistance depends on its projection to the heat flow direction. A U-scattering process causes 

thermal resistance only when the projected momentum is not conserved. This distinction is crucial 

in anisotropic materials. Using the new definition of N-scattering and U-scattering, we show that 

the Callaway model combined with the first principles calculations gives a much more precise 

prediction of the total thermal conductivity and the mode-specific properties as well. By showing 

its substantial effects on second sound propagation length, we also demonstrate the necessity of 

our new definition in studying phonon hydrodynamic transport.   
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Chapter 3 Phonon Hydrodynamic Heat Conduction and 

Knudsen Minimum in Graphite 

 

In the hydrodynamic regime, phonons drift with a nonzero collective velocity under a temperature 

gradient, reminiscent of viscous gas and fluid flow. The study of hydrodynamic phonon transport 

has spanned over half a century but has been mostly limited to cryogenic temperatures (~1 K) and 

more recently to low-dimensional materials. In this chapter, we identify graphite as a three-

dimensional material that supports phonon hydrodynamics at significantly higher temperatures 

(~100 K) based on first-principles calculations. In particular, by solving the Boltzmann equation 

for phonon transport in graphite ribbons, we predict that phonon Poiseuille flow and Knudsen 

minimum can be experimentally observed above liquid nitrogen temperature. Further, we reveal 

the microscopic origin of these intriguing phenomena in terms of the dependence of the effective 

boundary scattering rate on momentum-conserving phonon-phonon scattering processes and the 

collective motion of phonons. The significant hydrodynamic nature of phonon transport in graphite 

is attributed to its strong intralayer sp2 hybrid bonding and weak van der Waals interlayer 

interactions. More intriguingly, the reflection symmetry associated with a single graphene layer is 

broken in graphite, which opens up more momentum-conserving phonon-phonon scattering 

channels and results in stronger hydrodynamic features in graphite than graphene. As a boundary-

sensitive transport regime, phonon hydrodynamics opens up new possibilities for thermal 

management and energy conversion. 

 

3.1 Background	

Phonons are the dominant heat carriers in most dielectric materials. Phonon transport is usually 

diffusive and follows Fourier’s law of heat conduction, which originates from momentum-

destroying phonon scattering processes (R-scattering) such as Umklapp scattering (U-scattering), 

isotope scattering and impurity scattering. However, collisions between phonons are not 

necessarily momentum-destroying. Phonon-phonon normal scattering (N-scattering) indeed 

conserves the total momentum of phonons. If normal scattering is dominant, phonons can develop 
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a nonzero drift velocity when subjected to a temperature gradient, very much like the viscous flow 

of a fluid driven by a pressure gradient. In analogy, such a heat conduction regime is called 

hydrodynamic phonon transport.36 In general, at sufficiently small length scales and low 

temperatures, Fourier’s law breaks down while hydrodynamic36 and ballistic61 transport of 

phonons emerge. Hydrodynamic transport has been widely studied in diverse systems such as 

viscous electron flow,62,63 cold atoms64 and quark-gluon plasmas.65 However, for phonons, 

compared to the extensive studies on its ballistic transport,66–68 phonon hydrodynamics has drawn 

much less attention. For decades in the 20th century, it was believed that phonon hydrodynamics 

occurs only at very low temperatures (~1 K).42,69–71 More recently, investigations into low-

dimensional (1D and 2D) materials have predicted that phonon hydrodynamic transport can also 

occur at significantly higher temperatures and over a wide temperature range.2,10,11,72 However, it 

remains a long-standing challenge to identify bulk materials in which phonon hydrodynamics can 

take place at relatively high temperatures.  

 

In the hydrodynamic regime, the collective drift of phonons leads to quite a few intriguing 

phenomena, such as second sound and phonon Poiseuille flow.2,40,73 The former refers to the wave 

motion of heat in a phonon gas, which is similar to the propagation of sound waves in ordinary 

matter; while the latter is analogous to Poiseuille flow of a viscous fluid in a pipe, and is 

characterized by a phonon thermal conductivity that increases superlinearly with channel width.37 

Further, due to the presence of hydrodynamic effect, a phonon Knudsen minimum is expected near 

the transition from ballistic to Poiseuille heat conduction. The concept of Knudsen minimum was 

first introduced in the kinetic transport of rarified gases.38 It refers to the phenomenon that the 

normalized flow rate in a channel with respect to the channel width (d) experiences a minimum 

when d becomes comparable to the mean free path (l) of the fluid particles, i.e., when the Knudsen 

number  is around 1. Such a Knudsen minimum was first observed experimentally by 

Knudsen38 in 1909 and explained numerically by Cercignani74 in 1963 by solving the fluid 

Boltzmann transport equation (BTE). Recently, a similar transport minimum was predicted for 

viscous electron flow75,76 and in dilute granular systems.77,78 The observation of phonon Knudsen 

minimum was reported many decades ago for heat flow in liquid helium between 0.25 K and 0.7 

K.79 However, its existence in solids above cryogenic temperatures remains an open question.3 

/Kn dl=
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Hydrodynamic transport is especially sensitive to boundary conditions, and thus offers new 

opportunities for controlling heat flow via size effect, which is key to efficient thermal 

management of electronics and thermoelectric energy conversion.80 Despite past progress in 

modeling thermal transport in nanostructures,81–85 studies of various size effects on heat flow were 

mostly based on the relaxation time approximation (RTA), which considers all phonon-phonon 

interactions as momentum-destroying and therefore is not suitable for discussing hydrodynamic 

transport. Description of phonon Poiseuille flow requires proper inclusion of normal scattering 

processes and phonon drift. Although full BTE solutions with mode-dependent phonon-phonon 

interactions have been obtained for single crystals, incorporating the size effect imposed by the 

heat flow boundaries still presents a significant challenge. 

In this chapter, we develop a first-principles framework to study phonon hydrodynamics based on 

mode-specific phonon-phonon scattering details. In particular, we identify graphite as a 

remarkable three-dimensional material for high-temperature phonon hydrodynamic transport 

based on a recursive solution to the phonon BTE. This generalizes a range of 2D materials with 

strong hydrodynamic characteristics to bulk van der Waals (vdW) materials. Combining the 

relaxation times obtained from first-principles simulations with the Callaway model,8,86 we solve 

the linearized BTE for graphite ribbons of different widths. Here, the classical Fuchs-Sondheimer 

solution87–89 for the thermal conductivity of a thin film is extended to include phonon drift. We 

unambiguously reveal the existence of Poiseuille heat flow and superlinear size-dependent thermal 

transport – a non-trivial signature inherent to the hydrodynamic regime – in graphite ribbons at 

temperatures up to 90 K. In contrast, Poiseuille heat flow has only been previously observed in 

liquid helium below 1 K.39 Further, we predict that the phonon Knudsen minimum – an unusual 

phenomenon that marks the crossover from ballistic to hydrodynamic transport – can be observed 

up to 90 K. The microscopic origin of these intriguing phenomena is elaborated based on the 

interplay between phonon-phonon normal scattering and boundary scattering in a pseudo material.  
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3.2 Collective phonon drift  

A defining signature of hydrodynamic phonon transport is the collective drift motion of phonons, 

which mathematically manifests itself in the phonon distribution function. As bosons, phonons 

follow the Bose-Einstein distribution at thermal equilibrium. However, in the presence of a 

temperature gradient and when N-scattering dominates over R-scattering, phonons would 

equilibrate towards a displaced Bose-Einstein distribution46 which is written as: 

 

  
(3-1) 

 

where , w, q, kB and T denote the reduced Planck constant, phonon frequency, phonon 

wavevector, the Boltzmann constant, and temperature, respectively. The drift velocity, u, is 

constant for all phonon modes regardless of polarization and wavevector. Assuming a small 

temperature gradient and drift velocity, Eq. (3-1) can be linearized as: 

 

 
 (3-2) 

 

where f0 is the Bose-Einstein distribution.  

Here, using a first-principles calculation framework5,14,45,90 implemented by the ShengBTE 

package,17 the phonon distribution function in an infinitely large graphite crystal under a constant 

temperature gradient in the zigzag (x) direction is calculated under a steady temperature gradient 

in the  direction (zigzag) is calculated. To intuitively demonstrate the existence of phonon drift, 

we define a normalized deviation of the distribution function2 from the equilibrium Bose-Einstein 

distribution as = , where f is the exact solution to the phonon BTE  
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Figure 3-1 Signatures of phonon hydrodynamics in graphite (with 0.1% 13C) under a constant 
temperature gradient along the zigzag (x) direction. The normalized deviation of distribution 
function for the bending acoustic (BA) phonon mode in graphite at (a) 100 K and. Signatures of 
phonon hydrodynamics in graphite (with 0.1% 13C) under a constant temperature gradient along 
the zigzag (x) direction. The normalized deviation of distribution function for the bending acoustic 
(BA) phonon mode in graphite at (a) 100 K and (b) 300 K. (c) The normalized deviation for the 
three lowest-frequency phonon branches (BO and TA stand for bending optical and transverse 
acoustic, respectively) along the x direction with qy = qz = 0 at 100 K. (d) Projection of the out-of-
equilibrium phonon distribution onto the drifting distribution. Comparison of N-scattering and R-
scattering rates with qz = 0 at (e) 100 K and (f) 300 K, where a characteristic frequency fT = kT / 
2ph is marked. 
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 Figure 3-1 a-b  presents a map of the normalized deviation for the bending acoustic (BA) phonons, 

where appears linear with q along the temperature gradient direction (qx) at 100 K but the 

linearity disappears at 300 K (see also Figure 3-2).  Moreover, we observe in Figure 3-1c that, at 

100 K,  is linearly proportional to qx actually with the same slope for the first three phonon 

branches, indicating according to Eq. (3-2) a common drift velocity shared by all three branches. 

Our computation suggests that these three phonon branches contribute more than 90% of the total 

thermal conductivity (Figure 3-3). With the dominant phonon branches sharing a common drift 

velocity, we conclude that phonon transport in graphite is in the hydrodynamic regime even at 100 

K. Note that the deviation from linearity for high frequency phonons (Figure 3-1c) is exaggerated 

due to the small values of f0.  

To quantify how close the calculated phonon distribution f is to the ideal displaced 

distribution fd, we follow Ref. 10 and define a phonon drifting component as: 

 

 
 (3-3) 

 

where C is the specific heat and the summation is over all phonon modes (same below unless 

specified). It is easy to see that rd = 1 when f = fd. We plot the drifting component for graphite at 

different temperatures in Figure 3-1d, and reveal that more than 90% of the phonon distribution 

comes from the collective drift motion at temperatures below 100 K. At room temperature, the 

drift component reduces to about 40%.  

As mentioned earlier, the establishment of a collective phonon drift requires that N-

scattering processes dominate over R-scattering. Quantitatively, we plot the mode-specific 

scattering rates at 100 K and 300 K in Figure 3-1e-f. A characteristic frequency, , is also 

marked, below which phonons can be readily activated at a given temperature. Based on these 

scattering details, we reveal two mechanisms responsible for the suppression of hydrodynamic 

phonon transport at high temperatures. First, we observe that the significant dominance of N-
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scattering over R-scattering rates is reduced at higher temperatures, due to a generally steeper 

temperature dependence of R-scattering. Moreover, higher temperatures allow phonons of higher 

frequencies to be populated and contribute to heat flow. However, these high frequency phonons 

tend to have larger R-scattering rates.  

 

 
Figure 3-2 The normalized deviation of distribution function for the bending optical (BO) phonon 
mode in graphite at (a) 100 K and (b) 300 K 

 

.  

Figure 3-3 Contributions of different phonon branches to the thermal conductivity of graphite at 
100 K. The first three braches (BA, BO and TA) contribute to more than 90% of the total thermal 
conductivity. 
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3.3 Solving	BTE	for	graphite	ribbons	under	the	Callaway	model:	

We have demonstrated that at 100 K heat transport in graphite is hydrodynamic in nature, as it is 

dominated by drifting phonons (Figure 3-1d). To further explore the regime of hydrodynamic 

phonon transport, we consider a graphite ribbon instead of a bulk crystal. In analogy to fluid flow 

in a pipe, phonon Poiseuille flow and Knudsen minimum become possible with the addition of the 

flow boundaries.2,37  

We begin by discussing some general features of heat flow in an infinitely long graphite 

ribbon (Figure 3-4a). When the sample width is much larger than the R-scattering mean free path 

(MFP), the transport is in the diffusive regime, and a uniform heat flux profile develops across the 

ribbon width (Figure 3-4b) because phonon diffusion is dominated by R-scattering throughout the 

sample. In comparison, ballistic transport occurs when the sample is much narrower than the N-

scattering MFP, which is also characterized by a nearly uniform heat flux profile since there is no 

scattering within the medium. Hydrodynamic transport takes place when the sample width is larger 

than the N-scattering MFP and but smaller than the R-scattering MFP. Here a quadratic heat flux 

profile is expected and the phenomenon is thus called phonon Poiseuille flow, analogous to viscous 

fluid flow.2,37 The resistance to phonon Poiseuille flow comes mainly from an interplay between 

diffuse boundary scattering and phonon normal scattering. Briefly, under a temperature gradient a 

collective phonon drift develops via N-scattering. Since R-scattering is too weak, phonons near 

the center of the ribbon rarely experiences momentum loss. However, at the ribbon boundaries 

phonons scatter diffusely and lose a considerable amount of momentum. This leads to a decrease 

of heat flux from the center to the boundary of the ribbon. Due to the collective phonon drift, the 

effective boundary scattering rate differs from the Casimir limit.61,91 Such difference underlies the 

pronounced size dependence of phonon Poiseuille flow as detailed below.  

To accurately calculate the thermal conductivity and heat flux profile in the zigzag graphite 

ribbon (Figure 3-4a), we have incorporated the Callaway model into the phonon BTE. As 

demonstrated in a previous study10 and in Figure 3-5, Callaway model can capture the thermal 

conductivity of a bulk crystal with good accuracy in the presence of collective phonon drift, since 

it properly separates the momentum-conserving N-scattering from the resistive scattering 

processes. Here we further extend this framework to take into account the existence of flow 

boundaries. 
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Figure 3-4 Schematic illustration of heat flow in a zigzag graphite ribbon. (a) Modeled graphite 

ribbon highlighting the finite width and phonon boundary scattering. (b) Heat flux profile in the 

ballistic, hydrodynamic and diffusive transport regime. The heat flux is essentially uniform in the 

diffusive and ballistic regimes, while a quadratic profile is expected in the hydrodynamic regime. 

 

 

Figure 3-5 Comparison of calculated and measured lattice thermal conductivity of graphite as a 
function of temperature. The experimental data are extracted from Ref. 6. 
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For the steady state, the BTE can be written as: 

 
 (3-4) 

 

where the term on the right side represents changes in the distribution due to collisions between 

phonons. 

With a temperature gradient applied in  direction, the sample has a finite width in the direction 

but an infinite thickness in the direction. Thus the system is invariant in the direction. With 

the Callaway model, the BTE can be written as: 

 

 
 (3-5) 

 

                             

Denote the deviational distribution functions from and as: 

 

  (3-6) 

  (3-7) 

 

Assume that there is no temperature variation in the  direction and the variation of  is much 

smaller than that of , i.e. and  
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  (3-8) 

 

where is drift velocity in the x direction and other components of the drift velocity are zeros 

Also from the Matthiessen’s rule92, the total scattering rate can be written as:  

 

 
 (3-9) 

 

Substituting in Eq. (3-7)(3-8)&(3-9), Eq. (3-4) can be simplified as: 

 

 
 (3-10) 

 

The general solution to Eq. (3-10) can be written as: 

 

 
 (3-11) 

 
 (3-12) 

 

where  is an arbitrary constant needs to be determined from the boundary conditions. 

Diffusive boundary conditions are assumed at the top and bottom edges, which implies: 
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  (3-13) 

  (3-14) 

 

where the width of the sample as is indicated in Figure 3-4(a) 

The constant  in Eq. (3-11) can be evaluated accordingly from the boundary conditions. The 

general solution of the distribution function could be written as: 

 

 
 (3-15) 

 
 (3-16) 

 

Now we have obtained the distribution function in terms of the drift velocity.  

The drift velocity can be determined from the local equilibrium condition, where the total crystal 

momentum is conserved during the normal scattering process as discussed in ref. 86   

 

  (3-17) 

 

Define  as summation over all the states, and  as summation over all the 

states with positive, negative and zero velocity in  direction respectively 

Substitute Eq. (3-15) and (3-16) into Eq. (3-17), and eliminate , we get an integral equation of 
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 (3-18) 

With  

 
 (3-19) 

 
 (3-20) 

 
 (3-21) 

 

where is the step function, i.e.  and , otherwise.  

We notice that Eq. (3-18) is a Fredholm integral equation of the second kind which can be solved 

numerically74.   

After obtaining the drift velocity, the distribution function can be obtained by plugging the value 

of drift velocity into Eq. (3-12)(3-15)&(3-16),from which the heat flux and thermal conductivity 

can be calculated respectively as: 

 

  (3-22) 

 
 (3-23) 

 

where  is the number of mesh points and  is volume of unit cell. 
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In the above derivation, we have assumed a diffuse boundary condition. Now we demonstrate its 

justification. The specularity of the boundary can be quantified via the specularity parameter, 

which can be estimated using Ziman’s formula:35,93 

 
 (3-24) 

where z and h are the phonon wavelength and root mean square of the edge roughness 

respectively. Diffuse boundary condition is specified by a specularity parameter p = 0, while 

specular boundary condition is given by p = 1. 

Because the specularity depends on the phonon wavelength, we present the normalized 

accumulated thermal conductivity with respect to the phonon wavelength at 50 K and 90 K in 

Figure 3-6a, where the accumulated thermal conductivity is defined as: 

 

 
 (3-25) 

 

The experimentally reported edge roughness h for graphene is around 3 nm94, which is about 40% 

more than the edge roughness of bulk graphite95. We think a reasonable estimation for the edge 

roughness in graphite is 2 nm. The variation of specularity parameter with phonon wavelength for 

an edge roughness of 2 nm is presented in Figure 3-6b. The accumulated thermal conductivity plot 

suggests that phonons dominantly contributing to the thermal transport have wavelengths less than 

10 nm. For 10 nm and below, the specularity plot then shows that these modes are mostly diffusely 

scattered at the boundary, with specularity parameters mostly <0.002. This justifies the assumption 

of fully diffuse boundary condition in our model within the temperature range we studied. 

2 2

2

16( ) expp p hV
V

æ ö
= -ç ÷

è ø

( )
( ) m
m

k

k
VV

VV

q V V
k V

-
=
å
å



 54 

 

Figure 3-6 Diffuse boundary scattering in graphite at low temperature. (a) Normalized 
accumulation function. (b) Specularity parameter (p) estimated from Eq. (16) with edge roughness 
h = 2 nm. 

 

This allows us to investigate phonon hydrodynamic transport in the context of size effect. 

Our calculation shows that the heat flux profiles in graphite ribbons of different widths at 70 K 

exhibit clear transitions between the ballistic, hydrodynamic and diffusive regime, when N-

scattering dominates over R-scattering (Figure 3-7a). This is a direct consequence of the large 

phonon drift at low temperatures (Figure 3-1d). In comparison, at 300 K the hydrodynamic regime 

is missing because R-scattering dominates the phonon transport (Figure 3-7b).  
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Figure 3-7 Calculated and normalized heat flux profile for different sample widths at (a) 70 K and 
(b) 300 K. Clear transitions between the ballistic, hydrodynamic and diffusive regime at 70 K are 
observed when N-scattering dominates over R-scattering. In comparison, the hydrodynamic 
regime is missing at 300 K, where R-scattering dominates. 

 

3.4 Phonon	Poiseuille	flow	and	Knudsen	minimum		

We now explore how the thermal conductivity (k) of a graphite ribbon varies as a function 

of ribbon width (d) at different temperatures, as shown in Figure 3-8a. A finite sample width in 

general suppresses heat transport, but the width dependence of thermal conductivity may vary with 

temperature. To characterize the various transport regimes, we define a dimensionless scaling ratio 

a as  (Figure 3-8b), which suggests that around width d the thermal 

conductivity scales as . And  relation is typical for diffusive transport (size-

independent), while  implies a superlinear size-dependence. At low temperature, where 

phonon hydrodynamic transport plays a critical role, we find that the scaling ratio with respect to 

the width increases first before reducing to zero eventually in the diffusive regime (Figure 3-8b). 

Intriguingly, at low temperatures (say 50 K) when drifting phonons dominate the transport, a 

superlinear (a > 1) width dependence of thermal conductivity is clearly observed (Figure 3-8b), 

which is a direct consequence of the phonon Poiseuille flow.2,37 

Such superlinear scaling can be understood based on the kinetic transport theory, in which 

the thermal conductivity k is expressed as: 

α = ∂ln(k) ∂ln(d )

k daµ 0a =

1a >
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  (3-26) 

 

where n is the phonon group velocity, and t is the phonon lifetime due to resistive scattering 

processes which can be expressed using Matthiessen’s rule:92 

 

 
 (3-27) 

 

where the subscripts U, I and B denote Umklapp scattering, isotope scattering and boundary 

scattering, respectively. In the Poiseuille hydrodynamic regime, phonon scattering at the 

boundaries (tB) dominates, which is often described by the Casimir theory:61 

 

 
 (3-28) 

 

where d is the sample width and  is the phonon group velocity perpendicular to the boundary. 
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Figure 3-8 Thermal transport in graphite ribbons as a function of ribbon width and temperature. 
(a) Thermal conductivity variation with ribbon width at different temperatures. (b) Scaling of 
thermal conductivity with respect to ribbon width. A superlinear scaling scaling window is 
observed at 50 K. (c) A map of various heat transport regimes with respect to ribbon width and 
temperature, using the superlinear size-dependence as a signature of Poiseuille heat flow. (d) 
Variation of the dimensionless thermal conductivity with the inverse phonon Knudsen number at 
different temperatures. The solid lines are obtained for graphite with 0.1% 13C and the dashed lines 
are for isotopically pure graphite. Thermal conductivity as a function of temperature for graphite 
ribbons of different widths. (e) Thermal conductivity, and (f) thermal conductivity normalized by 
heat capacity, k/C. Increasing k/C with rising temperature is an indicator of hydrodynamic 
Poiseuille heat flow. The horizontal dashed lines in (f) mark zero temperature dependence. 
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Although the Casimir theory indeed captures diffuse phonon scattering at the flow boundaries, it 

only leads to sublinear width dependence for the thermal conductivity. To explain the unusual 

superlinear width dependence, one has to re-think how boundary scatterings effectively destroy 

phonon momentum when there is collective drift motion. When explaining the temperature 

dependence of thermal conductivity in crystalline He4,96 Gurzhi97,98 proposed that phonons in the 

hydrodynamic regime should experience an effective boundary scattering given by: 

 

 
 (3-29) 

 

where lN is the N-scattering mean free path (lN = vtN). Equation (3-29) relates phonon boundary 

scattering to N-scattering. Further, the boundary scattering rate is proportional to the inverse square 

of the ribbon width, rather than the inverse width as in Eq. (3-28). Compared to the Casimir theory, 

Gurzhi essentially suggests that phonons experience progressively less scatterings from the 

boundary in the hydrodynamic regime, as the ribbon width increases. The microscopic mechanism 

for this will be discussed in detail later. We note that although the relaxation time given by Eq. 

(3-29) is only an estimation for the effective boundary scattering, it does correctly capture the 

qualitative feature of the hydrodynamic regime – a superlinear width dependence of the ribbon 

thermal conductivity.  

Using the superlinear scaling as a signature for phonon Poiseuille flow, we have further 

mapped out the different transport regimes with respect to sample width and temperature (Figure 

3-8c). At 80 K, the phonon Poiseuille flow could be observed when the sample width is within 2.5 

– 3.0 µm, and increasingly wider range is predicted at lower temperatures. We note that the 

maximum temperature to observe phonon Poiseuille flow can be further increased by reducing 

isotope scattering. Specifically, a width window of 1.7 – 2.7 µm is predicted for isotopically pure 

graphite ribbon at 90 K (Figure 3-8b).  

As the ribbon width keeps decreasing, phonon transport eventually transitions from the 

hydrodynamic to the ballistic regime. At the transition width, the phonon Knudsen minimum is 

expected to occur. As discussed earlier, phonon Knudsen minimum for heat flow has only been 
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reported in liquid helium between 0.25 K and 0.7 K.79 Here we predict that in graphite ribbons the 

Knudsen minimum in phonon transport can be observed at temperatures as high as 90 K. In 

analogy to the dimensionless flow rate in rarified gas flow, we define a dimensionless thermal 

conductivity as:79  

 
 (3-30) 

 

where vs is the sound velocity in graphite.99 The non-dimensionalization in Eq. (3-30) follows a 

definition traditionally used to describe Knudsen minimum in rarefied gas flow,2,37 and differs 

from the normalized thermal conductivity plotted in Fig. 3a, which is the ratio of the ribbon thermal 

conductivity to the bulk value. Further, considering the broad distribution of phonon MFP, we 

define an average phonon MFP associated with N-scattering and weighted by the mode-specific 

contribution to the total thermal conductivity as: 100 

 

 

 

 (3-31) 

This allows us to use an effective phonon Knudsen number (defined as Kn = <lN>/d) to 

characterize the heat flow. The dimensionless thermal conductivity with respect to the inverse 

phonon Knudsen number at different temperatures is shown in Figure 3-8d, with the conductivity 

minima highlighted by the red dots. Strikingly, the phonon Knudsen minimum can be observed at 

temperatures up to 90 K, under the assumption of diffuse boundary scattering. The highest 

temperature to observe Poiseuille flow is expected to vary with respect to edge roughness as 

discussed in the dilute granular system.77 Smoother boundary conditions facilitate the observation 

of Poiseuille flow and Knudsen minimum for relatively rough surfaces.77 Therefore, employing 

diffuse boundary condition represents a conservative estimation for the temperature limit in 

practical cases. 

Another evidence of phonon Poiseuille flow is found in the temperature dependence of the 

ribbon thermal conductivity,96–98 which can be written as k = Cvl based on kinetic theory. Since 
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the group velocity v is essentially temperature independent, the heat-capacity-normalized thermal 

conductivity, k/C, should have the same temperature dependence as the phonon MFP, l. In the 

ballistic regime, l is limited by boundary scattering thus mostly temperature independent, leading 

to an almost constant k/C with varying temperature. In the diffusive regime, l decreases with 

increasing temperature due to increased U-scattering rates. However, with Poiseuille phonon flow, 

l is expected to increase as temperature rises. This is because in the hydrodynamic regime, the 

thermal resistance mainly comes from boundary scattering. As temperature increases, normal 

scattering between phonons becomes more frequent, effectively making the boundary scattering 

smaller [see Eq. (3-29)]. Therefore, an increase of k/C with temperature serves as an indicator of 

hydrodynamic heat flow. As shown in Figure 3-8 e-f, a clear increase of k/C with rising 

temperature is observed when the graphite ribbon width is about 3 µm, suggesting hydrodynamic 

thermal transport. When the ribbon width is 250 nm, k/C is essentially constant (slightly 

decreasing) with temperature, indicative of the ballistic regime. For a ribbon width of 10 µm, k/C 

first increases at low temperatures but starts decreasing at higher temperatures, demonstrating a 

transition from hydrodynamic to diffusive transport. All these observations are consistent with the 

regime map shown in Figure 3-8c. 

At last we note that real samples are hardly perfect. In order to investigate the robustness of 

phonon hydrodynamics with respect to sample quality, we looked into the effect of vacancies as 

an example. We treat vacancy scattering as mass disorder,101 and find that collective phonon drift 

motion is destroyed when the vacancy concentration is about 0.01%, but can still be observed 

when the concentration is about 0.001% (Fig. 4a-b). The regime map of graphite with 0.001% and 

0.002% vacancy defects are shown in Fig. 4c-d. One can see that, in the presence of defects, 

phonon Poiseuille flow can become insignificant at low temperatures (Fig. 4d). This is because, at 

very low temperatures, both N-scattering and U-scattering are reduced, while defects scattering 

becomes dominant. Because phonon scatterings by defects are not momentum conserving, phonon 

hydrodynamic flow disappears at sufficiently low temperatures.  
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Figure 3-9 Thermal transport in graphite ribbons with defects. The normalized deviation of 
distribution function of the three lowest frequency phonon branches along the x-direction with qy 
= qz = 0 at 60 K in graphite with (a) 0.001% and (b) 0.01% vacancies. Maps of various heat 
transport regimes with respect to ribbon width and temperature, using the superlinear size-
dependence as a signature of Poiseuille heat flow in graphite with (c) 0.001% (d) 0.002% vacancies  
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3.5 Microscopic	origin	of	Knudsen	minimum		

The existence of phonon Knudsen minimum has been elusive in theory, particularly in solid 

materials. Here, we present a microscopic picture for the origin of the phonon Knudsen minimum. 

To elaborate on the effect of collective drift motion of the size effect, we constructed a pseudo 

material with adjustable scattering rates.  More specifically, we consider a material with Debye 

temperature of 500K with a sound velocity 1 . A sphere is assumed for the first Brillouin zone 

and a mesh grid  is used. We vary the N-scattering:  and  for 

comparison. Further, we neglect R-scattering while only considering N-scattering and boundary 

scattering. For N-scattering, we compare cases with a scattering rate of 1010 Hz or zero, with zero 

indicating the absence of N-scattering. Before delving into the computational results, it may be 

instructive to note that in fluid flow, all scattering events are momentum-conserving and there is 

intrinsically no mechanism equivalent to phonon-phonon U-scattering. This means that the phonon 

flow in our pseudo material is actually a faithful analog of fluid flow. The existence of U-scattering 

will make the thermal conductivity eventually saturate at large width limit, as shown in Figure 

3-10, which is an effect the fluid flow does not have. 

 

 

 Figure 3-10 Calculated thermal conductivity of a pseudo-material as a function of sample width. 
Both N- and R-scattering are considered. 
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In Figure 3-11a we plot the calculated thermal conductivity of the pseudo material ribbon 

as a function of ribbon width, while Figure 3-11b shows the corresponding dimensionless thermal 

conductivity. When N-scattering is absent, phonons propagate ballistically until being diffusely 

scattered at the boundary, which translates to an effective MFP linearly proportional to the sample 

width. By writing Eq. (3-26) in terms of phonon MFP as  , one can see that in ballistic 

transport the sample thermal conductivity linearly varies with the sample width. According to Eq. 

(3-30), this means that the dimensionless thermal conductivity remains constant with varying 

sample width. When N-scattering is added into the picture, however, the thermal conductivity can 

be suppressed or enhanced, depending on the sample width (Figure 3-11a). For small sample 

width, N-scattering serves mainly to increase boundary scattering, which reduces the sample 

thermal conductivity at a given width and leads to a smaller dimensionless thermal conductivity 

than the ballistic case. While for large sample width, N-scattering actually weakens boundary 

scattering, as previously pointed out by Gurzhi,97,98 thereby leading to a larger dimensionless 

thermal conductivity than ballistic transport. These two considerations imply that there must be a 

minimum dimensionless thermal conductivity, that is, the phonon Knudsen minimum.  
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Figure 3-11 The microscopic origin of phonon Knudsen. (a) Calculated thermal conductivity of a 
pseudo material as a function of sample width. (b) Variation of the dimensionless thermal 
conductivity with sample width. Phonon angle-dependent heat flux contribution with/without N-
scattering for selected sample widths: (c) d = 20 nm, (d) d = 60 nm, (e) d = 2000 nm, assuming a 
constant N-scattering MFP (lN) of 100 nm. Illustration of the effect of N-scattering on the effective 
boundary scattering for (f) d = 20 nm (g) d = 60 nm. The dashed circle represents the N-scattering 
MFP. Boundary scattering of phonons traveling along a direction in the red region is affected by 
N-scattering, while phonons in the green region are not affected. (h) A schematic of the random 
walk of phonons in a very wide (d = 2000 nm) sample.  
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To understand the microscopic mechanism of the effect of N-scattering on phonon 

transport, we compute and plot the contribution to the total heat flux by phonons moving in 

different directions at various sample widths (Figure 3-11c-e). In particular, we note that the MFP 

that affects the total thermal conductivity according to  should be regarded as the 

momentum-loss MFP, which characterizes the average distance that phonons travel before their 

momenta are randomized. In Figure 3-11c-e,  is defined as the angle between the phonon 

propagating direction and the boundary normal direction, as indicated in  Figure 3-11f. Phonons 

propagating parallel to sample boundaries are denoted by . When the sample width is much 

smaller than the dominant N-scattering MFP (Figure 3-11c), only phonons propagating almost 

parallel to sample boundaries are significantly affected by N-scattering, while most other phonons 

are not affected. More intuitively as shown in Figure 3-11f, for phonons starting from the center 

of the ribbon, if their propagating direction is within the green region, they are less affected by N-

scattering because they reach the boundary before experiencing significant N-scattering 

(corresponding MFP denoted by the dashed circle). On the other hand, phonons propagating along 

the direction in the red region will be redirected by N-scattering. When they are redirected towards 

the boundary, the boundary scattering rate is effectively increased. In other words, their 

contribution to the sample thermal conductivity is suppressed due to N-scattering. Such 

suppression becomes more severe as the sample width becomes larger (Figure 3-11d), because 

more phonons (as indicated by the larger red region) are now affected by N-scattering before they 

reach the boundary (Figure 3-11g). This leads to the initial decrease of the dimensionless thermal 

conductivity with increasing sample width (Figure 3-11b). If we define the sample thermal 

conductivity without N-scattering as k*, and the suppression ratio due to N-scattering as , then 

the thermal conductivity with N-scattering can be expressed as k = k* / s. As discussed earlier, k* 

is proportional to d in the ballistic regime. Since s increases with increasing d based on the analysis 

of Fig. 5c-d, the thermal conductivity should have a sublinear width dependence.  

However, when the sample width becomes much larger than the N-scattering MFP, N-

scattering processes can dramatically enhance the total thermal conductivity. Microscopically, this 

can be understood qualitatively from the picture of random walk.37,98 When the sample width is 

much larger than the N-scattering MFP, each phonon experiences many N-scattering events before 

reaching the boundary. Because N-scattering conserves phonon momentum, the effective 
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momentum-loss MFP then corresponds to the summation of all the individual propagation paths 

that eventually lead the phonon to the sample boundary, since only at the boundary is the collective 

phonon drift momentum lost. During such a random walk, the velocity of a phonon is randomized 

at each N-scattering event. Consequently, the average time for phonons to traverse a certain 

distance then quadratically depends on the square of distance, leading to an effective relaxation 

time given by Gurzhi97,98 as . This is distinct from the ballistic regime, where the time 

needed for phonons to reach the boundary is linearly proportional to the sample size. Such a 

modified boundary scattering term underlies the superlinear width-dependent thermal 

conductivity, when sample is sufficiently wide and the transport is dominated by drifting phonons. 

Combined together, the existence of both a sublinear and a superlinear width-dependent thermal 

conductivity dictates the existence of a phonon Knudsen minimum.  

3.6 From	2D	to	3D	

The noteworthy hydrodynamic feature in graphene has been attributed to its high Debye 

temperature, quadratic phonon band and diverging Grüneisen parameter.2 Here, the Debye 

temperature can be interpreted as the maximum acoustic frequency and a high Debye temperature 

implies that, at typical temperatures of interest, most of the activated acoustic phonons are located 

near the G point, which tend to have high N-scattering rates.  We found that all these three favorable 

features are preserved in graphite (Figure 3-12a-b), which contribute to its significant 

hydrodynamic behavior. This may be understood if we notice that the weak van der Waals 

interlayer interactions may not severely distort the lattice dynamics of individual graphene layers. 

However, we emphasize that the interlayer interactions do induce intriguing and unique features 

in graphite. First, the bending mode becomes stiffened in graphite (Figure 3-13) and opens up a 

gap at the long-wavelength limit. More importantly, the interlayer interaction breaks the reflection 

symmetry carried by a single graphene sheet.102 This renders many originally forbidden phonon-

phonon scattering channels in graphene (such as BA + BA <=> BA, due to the vanishing coupling 

matrix102) accessible in graphite, which accounts for the lower thermal conductivity of graphite 

compared to graphene at room temperature. However, at low temperatures, as the thermally 

activated phonons mostly have small in-plane wavenumbers, the newly opened scattering channels 

are mainly N-scattering processes and actually facilitate the hydrodynamic transport. This is 

observed in Figure 3-12 c-d and Figure 3-14, where comparisons between graphene and graphite 

( )22 N Nd l t
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are made in terms of the average linewidths (Figure 3-12c), as well as the N- and R-scattering rates 

(Figure 3-14), with the average linewidths defined as 

 

 

 

 (3-32) 

 

 

Figure 3-12 Comparison between graphite and graphene. Phonon band structure (a) and mode 
Grüneisen parameter (b) of graphite along the high symmetry lines. The blue circles are from Ref. 
103, the red triangles are from Ref. 104, and the green squares are from Ref. 105. (c) Ratio of average 
N-scattering and R-scattering linewidth. (d) Projection of the out-of-equilibrium phonon 
distribution onto the drifting distribution. 
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As a result, the collective phonon drift is more significant and accounts for a larger percentage 

of the total thermal conductivity in graphite 

 

 

Figure 3-13 Comaprison of phonon band structure between graphene and graphite. (a) Phonon 
band structure.  (b) Zoomed in near the G points 

 

3.7 Concluding	remarks	

In conclusion, we predict that phonon hydrodynamic transport can occur in graphite at up to 100 

K. As discussed in ref. 2, the significant hydrodynamic feature in graphene is attributed to its high 

Debye temperature, quadratic phonon band and diverging Grüneisen parameter. Here we predict 

that all the three favorable features are preserved in graphite due to the weak van der Waals 

interlayer interactions. More importantly, we demonstrate that the hydrodynamic nature of phonon 

transport in graphite can be even more pronounced than in graphene. This is because the interlayer 

interaction, although weak, breaks a selection rule on phonon-phonon scattering and creates more 

N-scattering channels, which facilitates hydrodynamic transport. Thus we extend the strong 

hydrodynamic transport in 2D materials10 to its vdW layered family. By taking into consideration 

of phonon drift motion, we extend the classical size effect into the hydrodynamic regime. We 

found that though N-scattering does not induce resistance itself, it can enhance or reduce the 
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thermal conductivity by varying the effective boundary scattering rate. By solving the BTE for 

graphite ribbon, a superlinear size dependent thermal conductivity is predicted, which is a direct 

evidence of the phonon Poiseuille flow. Phonon Knudsen minimum in solids is predicted using a 

first principle calculation for the first time and a microscopic explanation is provided. Our results 

will hopefully stimulate further work into discovering novel material systems with significant 

phonon hydrodynamics, as well as new research into understanding and manipulating the phonon 

transport in the hydrodynamic regime. 

 

 

Figure 3-14 Comparison between graphene and graphite. Variation of average linewidth as a 
function of temperature in graphene and graphite: (a) N-scattering (b) R-scattering. Comparison 
of N-scattering rates and R-scattering rates in graphene and graphite at (c) 50 K and (d) 80 K  
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Chapter 4 Observation of Second Sound in Graphite over 

200 K 

 

Second sound refers to the phenomenon of heat propagation as temperature waves in the phonon 

hydrodynamic transport regime. Here, we directly observed second sound in graphite at record-

high temperatures of over 200 K using a sub-picosecond transient grating technique. The 

experimentally determined dispersion relation of the thermal-wave velocity increases with 

decreasing grating period, consistent with first-principle-based solution of the Peierls-Boltzmann 

transport equation. Through simulation, we reveal this increase as a result of thermal zero sound—

the thermal waves due to ballistic phonons. Our experimental findings are well explained with the 

interplay among “three fluids”: ballistic, diffusive, and hydrodynamic phonons. Our ab initio 

calculations further predict a large isotope effect on the properties of thermal waves and the 

existence of second sound at room temperature in isotopically pure graphite. 

 

4.1 Background	

Thermal transport in dielectrics and semiconductors is often mediated by the random walk of 

phonons and follows Fourier’s law of heat diffusion. However, Fourier’s law breaks down at 

sufficiently small length scales and/or low temperatures, which lead to the unusual regimes of 

ballistic and hydrodynamic phonon transport. In the ballistic regime, phonons could travel a 

distance longer than the conduction length scale, leading to an effectively reduced thermal 

conductivity. Size effect in this regime has been studied extensively for its importance in 

applications such as electronics thermal management and thermoelectric energy 

conversion66,68,106,107. The hydrodynamic regime takes place when the momentum-conserving 

normal scattering (N-scattering) is stronger than the momentum-destroying resistive scattering (R-

scattering), leading to a collective drift motion of phonons under a temperature gradient. This 

strongly correlated collective motion of phonons leads to peculiar thermal transport phenomena 

such as second sound11,37,56,59,108–110, phonon Poiseuille flow2,12,37 and Knudsen minimum3,12, 

parallel to the hydrodynamic regime of strongly correlated electrons63,111–113. For over half a 
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century, phonon hydrodynamic transport was deemed exotic and mattered only at extremely low 

temperatures. However, phonon hydrodynamics at substantially higher temperatures in low-

dimensional and van der Waals materials has recently been theoretically predicted and 

experimentally observed, stimulating renewed interest, especially in second sound2,12,49,50,114–117. 

 

Second sound is the wavelike propagation of heat as opposed to diffusion118. First observed 

by Peshkov in 1944 in superfluidic 3He at 1.4~1.6 K119 and explained with Landau’s two-fluid 

model120, it was later predicted to exist also in solids when phonon-phonon N-scattering dominates 

over R-scattering56. Experimentally, second sound in solids was initially observed via heat-pulse 

methods near liquid-helium temperatures, for example, at 1.2~4.0 K in Bi121 and 10~18 K in 

NaF122. Some of us recently reported observation of second sound around 100 K in graphite using 

the transient thermal grating (TTG) technique116. However, the temporal resolution of our 

continuous-wave-laser-probed TTG system (0.5 ns) prevented further reduction of the grating 

period where second sound is expected at even higher temperatures. 

 

Theoretically, phonon-mediated second sound is described as damped temperature waves 

derived either from the phonon Peierls-Boltzmann transport equation (PBTE)11,37,59,109 or 

equilibrium correlation functions40,110. In particular, the dispersion of second sound has been 

discussed by applying a temperature perturbation to the PBTE109 and analytically solving the 

transport equation for the quasi-momentum auto-correlation function110. However, all these efforts 

focus on the frequency windows to observe second sound, while the wavevector dependence of 

the second-sound velocity, i.e., the dispersion of the velocity, has not been discussed. 

 

While second sound originates from phonons in local thermal equilibrium caused by strong 

normal scattering (a drifted equilibrium)37, ballistic phonons can also generate a wavelike signal 

of heat flow, as was evident in past experiments on NaF and Bi121,122, in which heat pulses due to 

the ballistic longitudinal and transverse phonons reach the detectors before the emergence of the 

second sound. These thermally excited phonons were mistakenly attributed to the first sound, but 

it was shown123 that thermal excitation cannot excite a mechanical wave of large amplitude, and 
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vice versa. The mechanically excited first sound could be damped by phonons in local equilibrium 

via the Landau-Rumer124 and the Akhiezer mechanisms125, because the wavelength of the first 

sound is much larger than the phonon thermalization length. If the mean free path (MFP) of 

phonons is longer than the wavelength of the first sound, it was called zero sound, in analogy to 

the propagation of zero sound waves across a Fermi liquid in the ballistic limit126–129. In analogy 

to the zero sound for mechanical sound wave, we call the ballistic thermal wave the thermal zero 

sound. In the heat-pulse experiments121,122, phonons are excited into all directions by the heater, 

but only those propagating within a small solid angle subtended by the detector are recorded, 

leading to thermal zero-sound velocities close to those of the longitudinal and transverse phonons. 

Oscillations due to thermal zero sound were also seen in solving PBTE under constant MFP 

approximation for the TTG experimental geometries130. 

 

In this chapter, we report the observation of second sound at record-high temperatures of over 200 

K via pulsed-laser-probed TTG measurements at grating periods around 2 µm. However, this 

second sound also includes contributions from thermal zero sound of ballistic phonons. We show 

that the transport can be viewed as a mixture of “three fluids”: the hydrodynamic phonons 

experiencing strong normal scattering contributing to the second sound, the ballistic phonons 

contributing to the thermal zero sound, and the resistive phonons diffusing along the temperature 

gradient. Using exact solutions of the PBTE, we demonstrate the increasing contributions of the 

thermal zero sound to the TTG signal with decreasing grating period. We also predict a large 

isotope effect on the second sound. Notably, room-temperature second sound is expected in 

isotopically enriched graphite. 

 

4.2 Observation	of	second	sound	in	graphite	above	200	K	

As discussed in Ref. 116, second sound can be observed in graphite via transient thermal grating 

(TTG) measurement at around 100 K. However, the time resolution of the continuous-wave (CW) 

probe laser prevents further reduction of the grating period where second sound is expected at 

much higher temperatures. In this work, we replace the CW-laser with a femtosecond pulsed-laser 

using standard pump-probe time-delay detection technique131,132.  To capture the fast dynamics of 
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second sound at micrometer transport length, we employ femtosecond laser pump-probe 

spectroscopy. The schematic of our femtosecond laser thermal transient grating experimental setup 

is shown in Figure 4-1. Ultrafast laser pulses with 290 fs pulse width, 515 nm and 532 nm 

wavelength, are generated by a second harmonic generator and an optical parameter amplifier, 

respectively. The repetition rates of the laser pulses are both 25 KHz. The 515 nm laser is used as 

pump, the 532 nm one is use for detection. The pump laser is modulated by an optical chopper 

working at frequency around 2 KHz, and directed into a delay stage, which can cause up to 16 ns 

time delay between the pump and the detection pulses. Two laser beams cross vertically at a phase 

mask, which diffracts the laser into +1 and -1 orders. Lens 1 locates away from the phase mask by 

one of its focal length and collects the +1 and -1 order diffractions. The +1 order of the detection 

laser is taken as reference beam, and its intensity is reduced by an attenuator made of a 100 nm Au 

film coated on a 170 µm-thick glass slide. The -1 order of detection laser is taken as the probe 

beam. One 170 µm-thick glass slide mounted in a rotor is inserted in the light path of probe beam 

to adjust the heterodyne phase shift between the probe and the reference laser by rotating its angle. 

Two pumps, the reference, and the probe are collected by Lens 2 and focused onto the surface of 

a natural graphite sample sitting in a cryostat chamber, with spot size of 120 µm 1/e2 diameter for 

pumps and 105 µm 1/e2 diameter for probe and reference. The two pumps interfere with each other 

and generate transient thermal grating in the graphite sample. The probe pulse is diffracted by the 

transient thermal grating, and the diffraction coincides with the reflection of the reference pulse, 

both spatially and temporally. After passing through Lens 2, probe diffraction and reference 

reflection are directed by a mirror and collected by a photo detector as the heterodyned transient 

thermal grating diffraction signal. The output of the photo detector is analyzed by a lock-in 

amplifier which is synchronized with an optical chopper. Pump pulse energy is set at 70 nJ, while 

the probe pulse energy is set at 52 nJ. By the time the second sound signal is observed, the average 

temperature rise due to the pump is estimated to be less than 3 K. 
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Figure 4-1 Schematic of the femtosecond laser TTG setup. (a) Top view. The difference in the 

diffracted angle after the phase mask between the 515 nm and the 532 nm laser beams is 

exaggerated for better drawing. (b) Side view 

 

Following the Green function approach developed by Chiloyan et al.133, we also simulate the TTG 

response using first-principle calculations with no fitting parameters. All the calculation are based 

on the temperature response with an arbitrary heating profile derived in Ref.133. Here we briefly 

recap its derivation.  

Start with PBTE: 
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where 𝜇 is a short hand index for a given phonon mode (branch and wavevector in the Brillouin 
zone), 𝜔�  is the frequency of the given phonon mode, 𝑓� is the non-equilibrium distribution. 
function, 𝑓�g is the equilibrium distribution function, which is given by the Bose-Einstein function. 
W is the phonon scattering matrix.  

Write the Eq.  in terms of deviational phonon energy density: 
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where 𝑔� =
ℏ�¨
T¤

y𝑓� − 𝑓�g(𝑇g)�  and the volumetric heat generation rate 𝑄�, is replaced by	𝑄𝑝� , 

where 𝑄 is the macroscopic volumetric heat generation rate, and 𝑝�	 corresponds to how much a 
given mode is excited by the heating. We assume initial heating is thermally distributed, i.e. 𝑝� =
𝑐©/𝐶, where 𝐶 = ∑ 𝑐�� is the heat capacity.  

Take the spatial and temporal Fourier transform of Eq. (4-2): 
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where dummy index indicates summation as in Einstein notation, i.e. 𝑎�𝑏� = ∑ 𝑎	�𝑏�� , with 
𝐷�¤ = 𝛿�¤{Ω + 𝑘�⃗ ∙ 𝑣�����⃗ � and 𝐴�¤ =

�¸
�¹
𝑊�¤ + 𝑖𝐷�¤. It should be noticed that  Ω  and 𝑘�⃗  represent 

the frequency and wavevector from the Fourier transform  

Sum the Eq. (4-3) over all the phonon modes and express the deviation temperature as: 
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We obtain a general expression for temperature response for heating with frequency Ω  and 

wavevector 𝑘�⃗ 	as: 

 

 

 

∆𝑇®(Ω, 𝑘�⃗ ) = 𝑄®(Ω, 𝑘�⃗ )
sum[𝐀RJ𝑝]
sum[𝑖𝐀RJ𝐷𝑐] 

(4-5) 

 

where we define the sum operation of a vector to add up the values of its elements, i.e. sum[𝐚] =

∑ 𝑎�	¿ .   

To obtained temperate response of TTG measurement with grating period 𝑙, we need to substitute 

the following heating profile and take inverse Fourier transform: 
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(4-6) 

As demonstrated in the simulated TTG signal (Figure 4-2a), second sound is characterized by the 

flip of sign in the grating response116, which arises when the phase of the temperature wave differs 

from the reference by p. The strength of the wavelike feature can be measured by the ratio of the 

dip depth to the peak height. Using the normalized dip depth as the metric for the strength of the 

wavelike effect, the second-sound windows are shown in Figure 4-2b with the experimental 

observations indicated by the markers. Considering the limitation of sample quality and 

experimental challenge, the line of normalized depth 0.05 can be considered as the boundary to 

experimentally observe second sound. TTG signals often contain oscillations due to surface 

acoustic waves (SAWs), which have much lower damping rates. We found that the SAW signal 

could be mitigated by maximizing the signal peak height via adjusting the phase as discussed in 

SM1. At 250 K (Figure 4-2c), the sign flip is inundated by the SAW due to the relatively low 

signal-to-noise ratio. But the clear hallmark of second sound is observed at 200 K (Figure 4-2d) 

and 225K (Figure 4-4a). Second-sound windows (Figure 4-2b) indicates that second sound can be 
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observed at longer grating period at lower temperature, which is consistent with the experimental 

observation at 100 K (Figure 4-2e). A larger discrepancy between the experiment and simulation 

is observed at 100 K (Figure 4-2e) than 200 K (Figure 4-2f). This might result from the increased 

importance of impurity scattering at lower temperature compared with phonon-phonon scattering. 

At 100 K (Figure 4-2f), about 0.02% of vacancy defect could explain the discrepancy between 

simulation and experiments, while the simulated response with the same level of defect showed 

much smaller variation at 200 K (Figure 4-5). 

 

4.3 Dispersion	of	measured	thermal	wave	

For a damped wave, the propagation speed 𝑣f and propagation length 𝑙f could be estimated based 

on the dip position and depth as (Figure 4-2a): 

 

 𝑣f =
𝑙
2𝑡6

 (4-7) 

 𝑙f =
𝑙

−2	ln	(−𝑇6)
 (4-8) 

 

where l is the grating period and td is the dip position, which is the time duration it takes for the 

thermal wave to travel from the high temperature region to the low temperature region (half of the 

grating period); Td is the temperature response at the dip bottom. For exponentially decaying wave, 

the amplitude after traveling 𝑙/2 is reduced to exp	(− 𝑙 2𝑙f⁄ ), which gives (4-8). Using (4-7), we 

can determine the thermal wave propagation velocity and propagation length from both 

experimental and simulated temperature responses. 
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Figure 4-2 Measured (markers) and simulated (curves) TTG signals for graphite after 
normalization with respect to the peak height. (a) The simulated temperature response at 125 K 
with a 10 µm grating period. The negative dip is the hallmark of thermal wave and its depth 
represents second-sound strength. (b) Second-sound window. The color bar shows the normalized 
dip depth. The circles (diamonds) indicate success (failure) to observe thermal waves. TTG signals 
at (c) 250 K, (d) 200 K, and (e) 100 K for various grating periods. (f) The effect of vacancies on 
the TTG signal.  
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Figure 4-3 (a) Measured TTG signals at 200 K 2um grating period under two heterodyne phases. 
One phase is set to maximize the 1st peak, while the other phase is set to minimize the 2nd peak, 
corresponding to the phase grating signal and the amplitude grating, respectively. (b) Normalized 
phase grating signal and its smoothed data using the Savitzky-Golay method.   

 

 

Figure 4-4 Temperature response of TTG at (a) 225K (b) 175K (c) 150K. (d) 125K. 
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Figure 4-5 TTG temperature response with the existence of vacancy defects at 200 K with grating 
period 2µm. Dot are the experimental collected data and curves are the calculations.  

 

The wave propagation velocity and propagation length at different temperatures and 

grating periods from TTG temperature response are shown in Figure 4-6a and Figure 4-6b, which 

show qualitative agreement between simulation and experimental results. We attribute the 

discrepancy between experiments and simulation to the defects in graphite. As discussed in 

Refs.134, using the energy and momentum conservation equations derived from the PBTE with the 

Callaway model 8, the second sound velocity 𝑣��	and propagation length 𝑙�� in the x-direction can 

be written as: 
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where < > means summation over all the phonon modes, 𝐶�, 𝑞�, 𝑣�,	𝜔� , and	𝜏�rRJ are mode-specific 

heat capacity, wavevector, group velocity, frequency, and R-scattering rate, respectively.  
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Figure 4-6 Dispersion of thermal waves. The measured and calculated data are represented by 
markers and curves, respectively. (a) Dependence of wave velocity on grating period. Also shown 
are the intrinsic second sound limit from Eq. (2) and the thermal zero sound limit as discussed in 
Methods. Damping reduces the second sound velocity below the intrinsic limit at large grating 
periods, while zero sound increases the measured wave velocity at small grating periods. (b) 
Propagation length variation with grating period at different temperatures. (c) Ballistic limit of the 
TTG signal at 100 K. (d) Variation of the ballistic and intrinsic second sound limits with 
temperature. (e) Dispersion of second sound. (f) Variation of the normalized dip depth with grating 
period. 
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We refer to the second-sound velocity and propagation length obtained from Eq. (4-7) and (4-8) 

as the intrinsic limits. To further understand the dispersion of the measured wave propagation 

velocity, we also simulated the TTG temperature response at the ballistic limit, where phonons 

propagate without interactions.  

The 1D-PBTE at ballistic limit for TTG could be write as: 
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with initial condition:  

 

 

 

𝑓H(𝑥) = 𝑓Åcos	(𝑞𝑥) (4-12) 

where q=jÆ
Ç

  with 𝑙 being the grating period, 𝑓Å  is the amplitude of the initial distribute due to the 

laser heating. If initial heat is thermally distributed, then 𝑓Å =
ÈÉÊ

ℏ�ËÈÉÌ
, where 𝑄 is the total heating.  

  

Then the distribution at 𝑡 ≥ 0	is: 

 

 

 

𝑓(𝑥, 𝑡) = 𝑓H(𝑥 − 𝑣�𝑡) = 𝑓Å cos[𝑞(𝑥 − 𝑣�𝑡)] (4-13) 

 

Then the measured TTG signal, i.e. the temperature difference between 𝑇(𝑥 = 0) and 𝑇(𝑥 = 𝑙/2), 

can be written as: 
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∆𝑇 =
< 𝑓(0, 𝑡)ℏ𝜔 >

< 𝐶� >
−
< 𝑓 m𝑙2 , 𝑡n ℏ𝜔 >

< 𝐶� >
= 2𝑄

〈𝐶�cos	(qvLt	)〉
〈𝐶�〉

	

				                                                                     

(4-14) 

Wavelike behaviors due to the thermal zero sound are also observed in the investigated temperature 

range in the ballistic regime (Figure 4-6c and Figure 4-7), although the wave contains multiple 

frequencies from different polarizations. A similar wave propagation velocity could be defined 

based on the position of the first dip, which is referred as thermal zero sound velocity. The thermal 

zero sound is faster than the intrinsic second sound speed at all the investigated temperatures 

(Figure 4-6d) as expected, because the second sound involves mixing and scattering of different 

phonons to approach a local thermal equilibrium37,59. We can also consider longitudinal and 

transverse waves separately as these waves do not interact in the ballistic limit, as plotted in Figure 

4-6c. At 100 K, the flexural mode dominates the signal and its superposition with longitudinal and 

transverse waves leads to higher thermal zero sound velocity. Both second sound velocity obtained 

from Eq. (4-9) and thermal zero sound velocity increase from 100 K to 125K first, and then start 

to decrease (Figure 4-6d). However, the group velocity of the measured thermal wave, which 

includes both second sound and thermal zero sound, at fixed grating period monotonically 

decreases with increasing temperature (Figure 4-6a and Figure 4-8a). As the grating period 

decreases, the measured wave propagation speed increases from the bulk second sound velocity to 

the thermal zero sound propagation speed (Figure 4-6a). On the other hand, the measured 

propagation length increases at longer grating period (Figure 4-6b) because of the reduced 

contributions of ballistic phonons with effective propagation lengths limited by the grating period. 
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Figure 4-7 Ballistic limit of the TTG response signal at different temperatures. 

 

 

Figure 4-8 Variation of (a) second sound speed and (b) propagation length with grating period at 
different temperature. 

For a damped temperature wave with wavevector 𝑘 = jÆ
Ç

 and frequency Ωs and decay rate ΩW, the 

temperature could be written as: 

 

 

 

𝑇(𝑥, 𝑡) = exp	(−ΩW𝑡)cos(Ω𝒓𝑡 − 𝑘𝑥) (4-15) 
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The TTG measure signal Δ𝑇 is proportional to the temperature difference between 𝑇(0, 𝑡) and 

𝑇(𝑙/2, 𝑡): 

 

 

 

Δ𝑇(𝑡) = exp(−ΩW𝑡) cos(Ω𝒓𝑡) (4-16) 

The comparison of Eq. (4-16) with the measured TTG signal is shown in  

The Fourier transform is: 

 

 

 

Δ𝑇(𝜔) =
1

ΩW + 𝑖(𝜔 − Ωs)
+

1
ΩW + 𝑖(𝜔 + Ωs)

 (4-17) 

This is sharply peaked near Ωs; near this frequency, we could ignore the second term in Eq. (4-17) 

as its magnitude is much smaller than the first term, frequency spectrum can be approximated as: 

 

 

 

 

|∆𝑇Õ (𝜔)|j ≈
1

ΩWj + (𝜔 − Ωs)j
 (4-18) 

 

Therefore, the frequency of the temperature wave could be obtained by Lorentzian fitted with the 

temperature response function at certain wavevector given by Eq. (4-5) as shown in Figure 4-9. 

The measured grating-period-dependent wave propagation speed indicates a convex 

dispersion, which is consistent with the calculated dispersion. In addition, the gap between the real 

and imaginary part of the frequency is maximized at mid-wavevector, which is consistent with the 

trend of the second-sound strength metric (i.e. normalized dip depth) we defined (Figure 4-6f). 
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Figure 4-9 (a) Comparison of the damped temperature wave and exact signal (b)The Frequency 
spectrum (C) The Lorentz fitting to obtain the real part and imaginary part of the temperature wave. 

 

4.4 Three-fluid	model	

Phonons participating in the transport are mixture of those experiencing N-scattering, ballistic 

transport, and R-scattering135. The observed thermal wave is a superposition of ballistic, diffusive 

and hydrodynamic phonons. The dispersion of the measured thermal waves and temperature-

dependent characteristic can be understood with this “three-fluid” models, i.e. ballistic phonons, 

diffusive phonons and hydrodynamic phonons. To qualitatively describe how much 

ballistic/diffusive component are contributing to the measured thermal waves, we calculate the 

fraction of the initially excited phonons with traveling distance shorter/longer than the 

corresponding mean free path as: 

 

 
𝑓? =

< 𝐶�vLj	𝑓?
�(ΛH, 𝑑) >

< 𝐶�𝑣�j >
 (4-19) 

 
𝑓6 =

< 𝐶�vLj	𝑓6
�(Λr, 𝑑) >

< 𝐶�𝑣�j >
 (4-20) 

 

where d is the traveling distance, and ΛH  and Λr  are the total and resistive MFP, 

respectively.	𝑓?/6
�  is the ballistic/diffusive contribution function for phonon mode 𝑞. The TTG 
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measure signal Δ𝑇 is proportional to the temperature difference between 𝑇(0) and 𝑇(𝑙/2). All 

the TTG signals coming from the initial excited phonon, which has a spatial cosine distribution. 

For phonon with positive group velocity excited at x, the distance d it travels to reach Ç
j
  is Ç

j
− 𝑥. 

Whether the contribution is from ballistic or diffusive is determined by the relationship between 

d and the total MFP 	ΛH and R-scattering Λr .  If Λr < 𝑑, then it is diffusive transport. If 	ΛH >

𝑑, then it is ballistic. Therefore, the ballistic/diffusive components contributing to the measured 

wave are proportional to the pink/green area in Fig. S8a respectively.  The variation of the mode 

ballistic or diffusive contribution to the TTG signal with respect to MFP are shown in Figs. S8b 

and S8c.  Sum over all the phonon modes with weights 𝑐�𝑣�j, we obtain Figure 4-10a and Figure 

4-10b in the main text. It should be noticed that this is not a rigorous estimation of the 

ballistic/diffusive contribution, but it should be qualitative reliable. Figure 4-11a and Figure 

4-11b shows the fractions of diffusive and ballistic phonons so defined at different grating periods 

and temperatures. 

Figure 4-11c shows the TTG response when hydrodynamic and diffusive phonons co-exist. The 

diffusive transport leads to an exponentially decaying TTG signal. The superposition of 

dominantly hydrodynamic phonons with some diffusive phonons still look like a damped 

temperature waves but with slower effective propagation speed and smaller dip depth. On the 

other hand, Figure 4-11d shows that the existence of some ballistic phonons modifies the 

dominant second sound signal to higher speed and also smaller dip. These trends are summarized 

in Figure 4-11e for velocity changes and Figure 4-11f for the dip changes with changing mixing 

ratio. The dispersion of the measured wave property and its variation with temperature and 

isotope reported in the previous section could be interpreted with this three-fluid model. 
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Figure 4-10 (a) Diffusive and ballistic contribution to the TTG signal of phonon mode with positive 

group velocity, (b) Variation of the mode diffusive contribution to the TTG signal with respect 

toR-scattering MFP to grating period l ratio, LR/l, (c) Variation of the mode diffusive contribution 

to the TTG signal with respect to total MFP to grating period ratio, Lo/l. 
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Figure 4-11 The “three-fluid” model. Fraction of excited phonons phonons in the (a) diffusion and (b) 
ballistic regime based on Eq. (4). (c) Superposition of contributions from hydrodynamic (80%) and diffusive 
phonons (20%). The dashed line is 100% hydrodynamic. Diffusion slows down the thermal wave and reduces 
its strength. (d) Superposition of hydrodynamic (80%) and ballistic phonons (20%). Ballistic phonons accelerate 
the thermal wave but also reduces its strength. The dots are the minima. (e) Wave propagation speed and (f) 
normalized dip depth for different fractions of diffusive and ballistic phonons. The TTG signals of diffusive, 
hydrodynamic, and ballistic phonons in (c)-(f) are all calculated for graphite at 125 K with a grating period of 
10	𝜇𝑚 
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As the grating period decreases, more phonons go through the ballistic transport (Figure 

4-11b), hence the wave propagation velocity increases from the bulk second sound velocity to the 

thermal zero sound velocity (Figure 4-6a). For the same reason, the second sound propagation 

length increases with longer grating period (Figure 4-6b), as more phonons participate in the 

second sound wave type of propagation rather than ballistic transport (Figure 4-11b). Velocity of 

the wavelike mode at fixed grating period monotonically decreases with increasing temperature 

(Figure 4-6a and Fig. S5a), as less phonons participate in ballistic transport at higher temperature 

due to increasing phonon scattering rates (Figure 4-11b). The second-sound strength, as measured 

by the normalized dip depth, is strongest at an intermediate grating spacing (Figure 4-6f). This can 

be understood as follows. When the spacing is large, R scattering dominates. The increased 

diffusive transport leads to smaller dip depth. When the spacing is small, ballistic phonons, which 

does not dip much below zero due to superposition of three different polarizations, mix with second 

sound waves and diminish the measured normalized dip depth. The thermal wave we observed on 

200K mainly comes from second sound signals, which is supported by the large difference between 

the experimental signals and ballistic limit in Figure 4-2d. 

 

4.5 Strong	isotope	effect			

Large enhancements in the thermal conductivity via isotope enrichment has been reported in high-

thermal conductivity materials136. Isotope scattering is a R-scattering process and can significantly 

influence second sound. Figure 4-12a and Figure 4-12b compares simulated wave propagation 

speed and propagation length in isotopically-enriched graphite with natural graphite. In 

isotopically enriched graphite, the propagation speed is more than 15% higher than natural graphite 

across all the grating period at 125 K and larger enhancement in the propagation length are 

observed. Moreover, in isotopically pure sample, our simulations indicate that we could observe 

second sound even at the room temperature at the grating period of 1.0 𝜇𝑚 (Figure 4-12c) and 1.5 

𝜇𝑚  (Figure 4-12d). The smaller measured wave propagation speed (Figure 4-12a) in natural 

graphite than isotopically enriched graphite, could be understood as the increased contribution of 

diffusive phonons.  
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Figure 4-12 Isotope effect on second sound. Variation of (a) second sound velocity and (b) propagation 

length with grating period at 125 K in natural and isotopically pure graphite. TTG signal at 300 K with a grating 

period of (c) 1.5	𝜇𝑚 and (d) 1	𝜇𝑚. 

 

4.6 Discussion	

The “three-fluids” picture degenerates into Fourier diffusion when diffusive phonons dominate. In 

the TTG experiment, thermal transport in the form the second sound when hydrodynamic phonons 

are dominant and in the thermal zero sound when the ballistic phonons are dominant. When the 

“three-fluids” co-exist, the wave propagation velocity increases with decreasing grating period 

because (1) the thermal zero sound makes more contribution at shorter grating period, and (2) the 

thermal zero sound velocity is faster than the intrinsic second sound velocity. The latter is 

guaranteed because second sound involves mixing of phonons via normal scattering process. For 

example, The TTG signal in the ballistic is given as Eq. (9). For a Debye material with sound 
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velocity 𝑣, where k is magnitude of wavevector. We replace the mode summation in Eq. (9) by 

integration, then the TTG signal can be written as: 

 

 

 

∆𝑇 = 𝑠𝑖𝑛𝑐(𝑞𝑣𝑡) (4-21) 

The time of the first dip 𝑡6 can be obtained the setting the derivative of the T to zeros, which gives: 

 

 

 

𝑞𝑣𝑡6 ≈	4.4934 (4-22) 

Substitute 𝑞 = jÆ
Ç

 into the above equation we obtain the thermal zero sound velocity as: 

 

 

 

vÚÛÜ ≈ 0.7	𝑣 (4-23) 

Eq. 2a for a Debye material gives the intrinsic second sound velocity: 

 

 

 

 

𝑣�� =
𝑣
√3

 (4-24) 

Therefore vÚÛÜ > 𝑣�� for a Debye material.  

 

To summarize, we directly observe second sound in graphite above 200 K through TTG 

experiment. The TTG experiment signal also includes contributions of thermal zero sound: the 

propagation of ballistic phonon thermal waves. The experimental results can be explained by the 
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existence of “three-fluid” model: ballistic, diffusive, hydrodynamic phonons in solid. The 

measured wave propagation velocity increases with decreasing grating period due to increased 

influenced of the thermal zero sound. The experimental results in thermal wave dispersion and 

strength are in qualitative agreement with first-principles simulations. In isotopically pure graphite, 

we predict the observation of second sound even at room temperature, and largely enhanced 

measured wave propagation speed and propagation length.  
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Chapter 5 Summary and future directions 

 

5.1 Summary	and	discussions	

In this thesis, we have identified graphite as a good candidate material for phonon hydrodynamic 

transport by first-principles simulation. More specifically, we unambiguously revealed the 

Poiseuille heat flow and the existence of phonon Knudsen minimum in graphite by studying the 

variation of heat flow as the graphite ribbon width.  A thorough microscopic explanation for the 

phonon Knudsen minimum is elaborated based on the concept of momentum-conserved scattering 

processes. In addition, by combining cutting-edge experiment with state-of-the-art theoretical 

framework, we confirmed the observation of second sound at a record-high temperature of over 

200 K. In addition, with the enlarged grating-period window, we firstly reported the dispersion of 

thermal wave, whose velocity increases with decreasing grating period due to the increasing 

contribution of thermal zero sound—the thermal wave due to ballistic phonons.  

The significant hydrodynamic nature of phonon transport in graphite is attributed to its strong 

intralayer sp2 hybrid bonding and weak van der Waals interlayer interactions.  The weak van der 

Waals interlayer interactions preserves the nearly diverging Grüneisen parameter and results in the 

strong scattering rates. On the other hand, the strong intralayer sp2 hybrid bonding ensure high 

Debye temperature. As a result, most of the scattering process are N-scattering when studying in-

plane transport.   

5.2 Future	directions		

It is expected that our theory could be easily generalized to other layered system. The next system 

to explore is hexagonal Boron Nitride (hBN). Our preliminary calculation indicated the existence 

of second sound in hBN up to 125K, but it is hard to conduct experiments due to the weak 

absorption of hBN associated with the large bandgap. Similarly, it is expected that our analysis 

could be applied to 2D materials like graphene and 1D materials, like carbon nanotubes. However, 

it could be very challenging to do the measurements.  

In addition to the layered system, our calculation also predicts the existence of the thermal waves 

in isotopically enriched diamond up to a temperature of 200K. Surprisingly, the gap between N-
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scattering and U-scattering rate in diamond is not large. We suspected that this is another type of 

second sound as discussed by Hardy. 57 It is definitely a direction worth investigating.  

Lastly, it remains unexplored how phonon hydrodynamic transport regime could be applied. 
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