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Soft Aerial Manipulation

by

Joshua Fishman

Submitted to the Department of Mechanical Engineering
on May 14, 2021, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

This thesis explores the theory and implementation of a soft drone, consisting of a
quadrotor and a tendon-actuated soft gripper, which for the first time fully exploits
the advantages of softness in aerial manipulation. Manipulation and grasping with
unmanned aerial vehicles (UAVs) currently require accurate positioning and are often
executed at reduced speed to ensure successful grasps. This is because modern aerial
manipulation platforms employ rigid manipulators with few degrees of freedom, limit-
ing their capability to compensate for disturbances caused by the vehicle positioning
errors and maintain stability despite external contact forces. Biological systems, on
the other hand, exploit softness to overcome similar limitations, and leverage com-
pliance to enable aggressive grasping. To the best of our knowledge, ours is the first
work at the intersection between soft manipulation and UAV control.

We present a control and planning approach for the soft drone (quadrotor and
soft gripper), decoupling the two subsystems and employing (i) a geometric controller
and a minimum-snap trajectory optimization for the quadrotor (rigid) base, and (ii) a
quasi-static finite element model and control-space interpolation for the soft gripper.
We prove that the geometric controller asymptotically stabilizes the quadrotor veloc-
ity and attitude despite the addition of the soft load. Next, we describe our soft drone
prototype, including electro-mechanical design, software infrastructure, and fabrica-
tion. Finally, we evaluate the proposed system in a realistic soft dynamics simulator
(SOFA) and in real tests, and show that: (i) the geometric controller is fairly insen-
sitive to the soft payload, (ii) in simulation, our soft drone outperforms more rigid
alternatives, (iii) the platform can reliably grasp unknown objects despite inaccurate
positioning and initial conditions, both in simulation and in real testing. Our soft
drone can grasp at up to 2m/s in simulation and consistently grasps at 0.2m/s in
real tests (91.7% success rate).

Video attachments:
https://youtu.be/NNpQxP0SPFk
https://youtu.be/mqbj8mEyCdk
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Chapter 1

Introduction

1.1 Motivation

Aerial manipulation – intentional physical interaction with the world with a flying

platform – is a fundamental capability for autonomous aerial systems with the po-

tential to transform numerous applications, including: autonomous transportation

and construction [29], medical goods delivery [50], agriculture and forestry (water

sampling [39], forest canopy sampling [23]), infrastructure monitoring and mainte-

nance [5], and autonomous charging via perching [37], among others [24].

Quadrotors have been researched extensively as platforms for navigation and in-

spection [13, 5] due to their versatility and maneuverability, but have several limita-

tions when used for manipulation. First, small quadrotors (often called micro aerial

vehicles [29]) have limited payload, and can therefore only carry relatively simple and

lightweight manipulators. This intrinsically limits their capability to compensate for

disturbances, such as those caused by vehicle positioning errors during grasp exe-

cution. Second, aerial systems are inherently fragile and imprecise [11]; unplanned

external forces (due to contact, aerodynamic effects etc.) need to be mitigated or

avoided in order to preserve stability [24]. Many works circumvent these issues by

reducing the speed and accelerations of the quadrotor [10, 43]. This reduces the

magnitude of external contact forces but has the drawback of making operation inef-

ficient, especially considering the short flight time of small quadrotors. One exception,
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Figure 1-1: We investigate control and trajectory optimization for a soft aerial manip-

ulator, consisting of a quadrotor (yellow frame with propeller thrusts in magenta) and a
tendon-actuated soft gripper (cyan). The figure shows a temporal sequence leading to a
successful grasp in a realistic soft dynamics simulator (a) and in real tests (b).

Thomas et al. [51], demonstrates aggressive aerial grasping at up to 2m/s but the

problem setup is simplified to avoid unplanned contact forces (i.e., the object to grasp

is extremely light and suspended rather than lying on a surface).

The recent literature bears witness to an increasing interest in compliant aerial

manipulation as a means of mitigating these limitations. Compliance and under-

actuation are now widely exploited, to enable the manipulation of objects of varying

shape and to minimize disturbances imposed by the environment [2]. However, to

our knowledge this has been restricted to cases where the compliant elements either

have limited degrees of freedom (often due to payload constraints) or do not exert a

torque on the quadrotor (e.g., cable-slung loads).

On the other hand, soft materials are ubiquitous in nature and enable the per-

formance and robustness which so differentiate natural from artificial systems [3].

Soft manipulators passively conform to the grasped object, enabling tolerance to im-

precisions and reducing the need for explicit grasp analysis; this is an example of

20



(a) (b)

Figure 1-2: Morphological computation refers to the ability of an underactuated physical
system to supplement explicit control with passive deformation. Here, we show our soft
gripper achieving successful grasps despite significant variations in the quadrotor position;
the gripper command is the same in (a)-(b).

morphological computation, the exploitation of passive mechanical elements to sup-

plement explicit control [44]. Despite the potential to use soft grippers as a lightweight

and compliant alternative for aerial manipulation, little attempt has yet been made

to explicitly model and control continuously deformable, soft structures in an aerial

context. In general, such soft elements are continuously deformable and possess the-

oretically infinite degrees of freedom. Therefore, they cannot be modeled in closed

form and are not differentially flat, putting them at odds with typical techniques for

UAV control [52]. However, modern techniques and approximations of soft robotics

enable principled modeling, planning and control for soft systems. These have yet to

be extended to the aerial domain.

1.2 Thesis Overview

This thesis bridges the quadrotor control and planning literature with the growing

field of soft robotics. In particular, we present a soft aerial manipulator (our soft

drone– Fig. 1-1), investigate control and trajectory optimization algorithms to enable

aggressive grasping of an object lying on a surface and describe the real evaluation

and testing of our system.

After reviewing the literature in Section 1.3, Chapter 2 presents a theoretical

solution to the planning and control problem of grasping with a soft drone. Section 2.1
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describes the proposed soft drone and states the grasping problem in terms of the

concurrent planning and control of both the rigid quadrotor base and the soft gripper.

The section also provides an overview of the proposed algorithmic approach, based on

decoupling the control and planning for the rigid and soft components; this is made

possible by the insight in Theorem 2 and the resilience to positioning errors afforded

by the soft gripper (Fig. 1-2).

Section 2.2 describes the control law and the trajectory optimization approach

for the soft gripper. We assume that the gripper remains in quasi-static equilibrium

and compute forward kinematics by minimizing total energy (defined via finite ele-

ment methods) using Newton’s method. We then compute optimal tendon control

with a gradient descent methodology and linearly interpolate these over the length

of the trajectory. In defining an objective function for the gripper we assume that

the quadrotor attains its nominal trajectory, relying on the inherent adaptability of

the soft gripper to compensate for deviations (again, Fig. 1-2). Section 2.3 reviews

a standard geometric controller for a quadrotor. The novel insight here is that by

modeling the gripper as a symmetric soft payload and treating torque imposed by it

as a disturbance, we can prove that the geometric controller stabilizes the quadro-

tor velocity and attitude irrespective of the soft gripper (Theorem 2). Moreover,

we use minimum-snap polynomial optimization to plan a trajectory satisfying grasp

constraints, while abstracting away the manipulation aspects (accounted for by the

gripper).

Next, Chapter 3 describes our soft drone implementation, including material

choice, design principles, electronics and fabrication. Section 3.1 gives an overview

of the soft drone prototype: we develop a modular tendon-actuated soft gripper,

consisting of silicone fingers attached to a 3-D printed base and controlled by an

Arduino Due microcontroller over a USB connection and mounted to an Intel Aero

Ready-to-Fly quadrotor. Section 3.2 describes the design of our soft fingers: draw-

ing inspiration from biology, we maximize their adaptability and utility by choosing

proportions modeled after a human finger. Section 3.4 reports the development of

the 3-D printed gripper base, including internal tendon routing, considerations of
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modular attachment points for optional components and the development of a sim-

ple method to easily independently adjust tendon rest lengths. Section 3.3 describes

the choice and layout of our electronics, including a microcontroller, motor drivers,

motors/encoders and a voltage regulator.

Chapter 4 reports our results. Section 4.1 presents numerical experiments per-

formed in a realistic soft dynamics simulator, SOFA [14]. The experiments highlight

the effectiveness of the proposed system and show that: (i) the geometric controller

is fairly insensitive to the soft payload, (ii) the platform can reliably grasp unknown

objects at up to 2m/s despite inaccurate positioning and starting from a variety of

initial conditions, and (iii) our soft aerial manipulation platform outperforms more-

rigid alternatives. Section 4.2 presents the results of grasping tests at 0.2m/s with

our real platform and discusses discrepancies from simulation. We grasp successfully

on 21 out of 23 attempts, despite the presence of unmodeled aerodynamic and other

effects; moreover, our 2 failures were due to catastrophic state estimation divergences

unrelated to the novel attributes of the soft drone.

Finally, Chapter 5 summarizes the conclusions of this thesis while Chapter 6

(appendices) reports the detailed mathematical implementation of the soft material

model we use, as well as a proof of stability for our complete system.

1.3 Related Work

Aerial Manipulation. Aerial manipulation with under-actuated and un-actuated

components has been subject of extensive research; however, this has been restricted

to components with limited degrees of freedom and in which the combined system is

differentially flat. Cable-slung loads (Föhn et al. [17], Sreenath et al. [49]) are a well-

studied under-actuated payload, but are differentially flat and are typically designed

not to impose a torque on the aerial platform. The continuously deformable cable is

either treated as massless or reduced to a finite number of links (Goodarzi et al. [20]).

Pounds et al. [40] develop an influential underactuated gripper with rigid links

and compliant joints (the so-called SDM Hand) specifically for aerial manipulation.
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Backus et al. [2] optimize tendon routing and palm size for manipulators of this

type, using a mathematical model to minimize the tendon forces required to grasp.

Thomas et al. [51] carry out aggressive aerial manipulation inspired by birds of prey at

up to 2m/s, employing a gripper based on the SDM Hand ; their work focuses on the

case of a very light suspended object (26 g), minimizing disturbances due to collisions

and unmodeled aerodynamic effects. The AEROARMS project (Caballero et al. [8])

explored the use of a manipulator with a flexible link to minimize disturbance on

the aerial platform, but incorporated a passive joint between the flexible link and

the quadrotor body specifically to avoid considering the impact of compliance on the

drone dynamics. Yuksel et al. [52] show differential flatness for aerial manipulators

with arbitrary but finite numbers of rigid or compliant joints; this result does not

hold for the continuously deformable case.

Morphing Drones. While not being targeted at manipulation, a recent set of

papers investigates the design of UAV platforms that can mechanically change shape

to tolerate collisions or fit into narrow gaps. Mintchev et al. [36] use insect-inspired

structural compliance in a quadrotor frame to minimize impact damage, but this

compliance does not affect the quadrotor dynamics during flight. Falanga et al. [13]

develop a drone that can fold its arms to fit into narrow gaps; morphological adapt-

ability is limited to the plane so that the resulting dynamics can be expressed in closed

form. Ramon et al. [41] propose soft landing gear (similar in spirit to our design),

but do not model the soft component nor its interaction with the quadrotor controller

or control the soft landing gear beyond a binary open/close; moreover, the work fo-

cuses on landing rather than manipulation. Deng et al. [9] implement and control a

soft-bodied multicopter in simulation; their work relies on a gray-box neural network

for system identification and does not consider manipulation. Other related work in-

cludes quadrotors with tilting body or propellers (Ryll et al. [45, 46], Hintz et al. [22],

Riviere et al. [42]), scissor-like foldable quadrotors (Zhao et al. [53]), quadrotors with

sprung-hinge-based foldable arms (Bucki and Mueller [7]), and small-winged drones

with morphing wing design (Di Luca et al. [31]). Unlike these works we consider a

quadrotor carrying a soft gripper, explicitly considering the impact of softness on the

24



stability and dynamics of our platform and specifically targeting manipulation (with

our related publications [15, 16]).

Soft Robotics. Continuously deformable, entirely compliant robots represent

the extremum of the trend towards compliance and under-actuation. However, tra-

ditional rigid-body modeling and control techniques fall short when confronted with

infinite degrees of freedom. The emerging discipline of soft robotics has developed

principled approaches to allow control of these systems, opening a new frontier in

manipulation. Rus and Tolley [44] and Thuruthel et al. [18] provide a comprehen-

sive review of soft robotics and soft manipulation. King et al. [25], Manti et al. [32],

and Hassan et al. [21] design bio-inspired tendon-actuated soft grippers. March-

ese et al. [33, 34] implement kinematics and trajectory optimization for hydraulic soft

manipulators based on piecewise-constant-curvature approximations. Bern et al. [4, 3]

and Duriez et al. [12] model the kinematics and dynamics of tendon-actuated soft

robots using finite element methods. These works have not been applied in an aerial

context, where the soft manipulator impacts the UAV dynamics and offers unique

opportunities in aerial manipulation.
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Chapter 2

Control and Trajectory Optimization

for Soft Aerial Manipulation

In this chapter we present a theoretical solution to the planning and control problem of

grasping with a soft drone. Our proposed algorithmic approach is based on decoupling

the control and planning for the rigid and soft components; this is made possible by

the stability of a standard quadrotor controller despite the addition of the soft gripper

(Theorem 2) and the resilience to positioning errors afforded by the soft gripper.

2.1 Soft Aerial Manipulation: Problem Statement

and Decoupled Approach

2.1.1 System Overview and Problem Statement

Our soft aerial manipulator (Fig. 1-2) comprises the frame of a standard quadrotor

with the (rigid and heavy) landing gear replaced by a soft gripper. The gripper

consists of four soft fingers and is based on the design by Hassan et al. [21]. Each

finger is attached to the quadrotor base and actuated with two pairs of tendons on

opposite sides (Fig. 2-1).

Each finger is actuated by setting a desired length (later called the rest length)

at the tendons. Similarly to [3], actuation of a pair of tendons (lying on the same
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Figure 2-1: Soft finger with two pairs of tendons on opposite sides. Tendons (black, top)
are modeled as passing through a set of nodes (red, top) in a tetrahedral mesh discretization
of the finger (blue, top). Pulling a tendon causes a contraction of the finger (bottom).

side of the finger) is coupled to prevent finger twist. The quadrotor base uses four

motors and propellers for actuation, as usual. In summary, the system uses 12 control

variables (four motor speeds for the quadrotor, and one for each pair of tendons on

the two sides of the fingers) to control an infinite-dimensional state (including the

finite-dimensional quadrotor state and the infinite-dimensional state describing the

configuration of the soft gripper). The soft gripper model is described in Section 2.2,

while the quadrotor model is given in Section 2.3.

Our manipulator is tasked with grasping an object of unknown shape lying over

an unknown surface: the system is only provided with the centroid of the object. In

particular, we are interested in (i) computing a trajectory of state variables over time,

and (ii) developing a control law that can track the computed trajectory to ensure a

successful grasp in the face of external disturbances. We assume we can measure the

full state of the quadrotor (its 3D pose and linear and angular velocities, typically

observable using a motion capture system [35] or visual-inertial state estimation [30]),

while we operate the soft gripper in open loop (i.e., our approach does not need to

measure the state of the gripper). While our goal is to simultaneously obtain trajec-

tories and controllers for the soft gripper and the rigid quadrotor, in the following

we propose a decoupled approach that implements separate planners/controllers for

both subsystems.
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2.1.2 Decoupled Control and Trajectory Optimization

Let us call X(t) the state of the quadrotor base (i.e., a 3D pose and its derivatives) at

time t, and Y (t) the infinite-dimensional matrix describing the 3D position of every

point of the soft gripper. Moreover, call f(t) the quadrotor propeller thrust forces

at time t, and l(t) the tendon rest lengths that actuate the fingers. To simplify the

notation, below we omit the dependence on time t when possible.

The soft aerial grasping problem considered in this thesis can be formulated as an

optimal control problem:

(X?,Y ?,f ?, l?) = argmin
X,Y ,f ,l

R tf
0 J (X,Y ,f , l)dt

subject to D(X,Y ,f , l) = 0

X(0) = X̄0, Y (0) = Ȳ0

X(tf ) = X̄tf , Y (tf ) = Ȳtf

Y (tg) = Ȳtg

(2.1)

where J (X,Y ,f , l) is the cost functional that, for instance, penalizes control usage

or encourages smooth state changes, the constraint D(X,Y ,f , l) = 0 ensures that

the solution satisfies the platform dynamics, (X̄0, Ȳ0) is the given initial state of the

soft aerial manipulator at the initial time t = 0, (X̄tf , Ȳtf ) is the desired state at the

final time tf (say, the end of the execution), and Ȳtg is the desired state of the soft

gripper at the time of grasp tg 2 [0, tf ]. In words, Problem (2.1) looks for minimum-

cost controls such that the platform moves from an initial to a final state, and the

soft gripper is in a suitable configuration during grasp.

While in principle one would like to obtain a control policy that computes a

suitable control (f , l) for every possible state, doing so is hard even without a soft

gripper. Therefore, related work solves problems akin to (2.1) by first performing

trajectory optimization, i.e., computing an open loop state trajectory and then de-

signing a controller that tracks such a trajectory [27]. We follow the same approach

and decouple the optimal control problem into trajectory optimization and tracking

control. However, we are still left with the complexity that our soft aerial manipulator
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is not differentially flat, which is a key requirement for tractable trajectory optimiza-

tion in related work [35]. To circumvent this issue, we further decouple trajectory

optimization and control for the quadrotor base and the soft gripper as follows.

We split Problem (2.1) into the cascade of two problems. First, we solve the

drone control subproblem, where we look for an optimal control action for the

drone propeller forces f while treating the soft payload as an unknown disturbance.

This can be formulated as follows:

(X?,f ?
) = argminX,f

R tf
0 Jq(X,f)dt

subject to Dq(X,Y ,f) = 0

X(0) = X̄0, X(tf ) = X̄tf ,

X(tg) = X̄tg

(2.2)

where Jq and Dq now only involve the quadrotor state and dynamics, and where we

relaxed the grasp condition Y (tg) = Ȳtg in (2.1), with a condition on the state of

the quadrotor during the grasp X(tg) = X̄tg . Intuitively, the drone has to ensure

it is close enough to the object at time tg to enable the soft gripper to grasp, but

without worrying about the specific configuration of the gripper. Note how the drone

dynamics are a function of the soft gripper configuration Y , which is treated as an

unknown disturbance, hence will not used to solve (2.2) (see Section 2.3).

After solving (2.2) and obtaining the nominal (open loop) quadrotor trajectory

X?, we solve the soft-gripper control subproblem, where we look for an optimal

control action for the tendons rest lengths l:

(Y ?, l?) = argminl

R tf
0 Js(X?,Y , l)dt

subject to Ds(X?,Y , l) = 0

Y (0) = Ȳ0, Y (tf ) = Ȳtf (X
?
),

Y (tg) = Ȳtg(X
?
)

(2.3)

where now the soft-gripper dynamics Ds(X?,Y , l), the grasp configuration Ȳtg(X
?
),

and the terminal state Ȳtf (X
?
) depend on the (fixed) nominal drone trajectory X?.
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In practice the object to be grasped has unknown shape and the soft gripper has

an infinite number of points, hence it is unrealistic to enforce the condition Y (tg) =

Ȳtg(X
?
); in Section 2.2.1 we will replace such a condition with a more realistic one

involving only the positions of the 4 fingertips and the object centroid.

In the following sections, we describe our choice of cost functions and discuss how

to attack problems (2.2) and (2.3), using tools from quadrotor control [27] and soft

robotics [4].

2.2 Open-loop Control and Trajectory Optimization

for a Soft Gripper

This section describes how to solve the soft-gripper subproblem (2.3) for a specific

choice of cost function. We make the following key assumption.

Assumption 1 (Quasi-static approximation) The soft gripper is quasi-static, i.e.,

there is an instantaneous relation between rest lengths and gripper configuration.

This allows simplifying the model by neglecting the soft gripper dynamics and is

fairly common in soft robotics [4].

2.2.1 Objectives for Aggressive Soft Grasping

This section discusses our choice of objective function in eq. (2.3). As anticipated in

Section 2.1, rather than matching a desired configuration Ȳtg (which would be hard

to compute without knowing the shape of the object to grasp), we prefer finding a

control which optimizes the positions of the fingertips with respect to the centroid of

the object we want to grasp. Mathematically, we drop the constraint Y (tg) = Ȳtg(X
?
)

in eq. (2.3) and optimize an objective which is only function of the fingertip positions

ytipi (each being a point in Y ) and the centroid o of the object we want to grasp. This

is an exemplary instantiation of the idea of morphological computation: rather than

planning the full configuration of the soft gripper, we only plan for the fingertips and

have the softness of the fingers adjust to the shape of the object we want to grasp.
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Specifically, we plan grasps in two phases, “approach” and “grasp”. Intuitively, the

“approach” phase involves opening the gripper as the quadrotor approaches the target

location so as to allow the fingertips to surround the grasped object, while the “grasp”

phase involves closing the gripper, contracting the fingertips to achieve an enveloping

grasp. Mathematically, this reduces to assuming the following form for the objective

function in eq. (2.3):

Z tf

0

Js(X
?,Y , l)dt =

Z tf

0

Jtendon(X
?,Y , l)dt

+ Capproach(Y (ta))

+ Cgrasp(Y (tg))

(2.4)

where Jtendon will be chosen to penalize the control effort, and Capproach and Cgrasp can

be understood as terminal costs rewarding fingertip configurations at specific times

ta (right before grasping) and tg (time of grasping) which are assumed to be given.

We approximately solve (2.4) by first finding tendon lengths optimizing Capproach(Y (ta))

and Cgrasp(Y (tg)) then solve for intermediate lengths minimizing
R tf
0 Jtendon(X?,Y , l).

Choice of Jtendon. We choose the term Jtendon in the objective function (2.4) as:

Jtendon(X
?,Y , l) = max

0ttf

����
dl

dt

����
1

(2.5)

which penalizes the maximum rate of change of the rest lengths l (our control inputs)

in the interval [0, tf ]. This choice is motivated by the fact that rapid changes in tendon

lengths result in large forces on the tendon attachment points. These are undesirable,

since large forces on specific points (i) create significant localized deformations which

risk damaging the soft gripper, and (ii) cause large local accelerations that violate

the quasi-static assumption.

Choice of Cgrasp. We choose the term Cgrasp in the objective function (2.4) as:

Cgrasp(Y ) =
P4

i=1kytipi � ok22 (2.6)
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which encourages the four fingertips ytipi ⇢ Y to be as close as possible to the target

centroid o at the time of grasping.

Choice of Capproach. We present two potential choices for the term Capproach in

the objective function (2.4). The simplest choice is to set Capproach as:

C1,approach(Y ) = �
P4

i=1kytipi � ok22 (2.7)

which, recalling that minimizing a cost function f is the same as maximizing �f ,

simply maximizes the distance between the fingertips ytipi and the target centroid

o at the time of approach. In the following, we denote this choice as C1. While

optimizing (2.7) intuitively leads to “opening” the fingers of the gripper as much as

possible right before grasping (hence maximizing the distance to the target centroid,

see Fig. 2-2a), such cost may induce suboptimal behaviors, in particular when per-

forming aggressive grasping in which the target is asymmetrically-located with respect

to the fingers (i.e. the drone is not directly above the target, see Fig. 2-2). Therefore,

below we consider an alternative cost that rewards the fingertips for surrounding the

target so to assure that the target remains between the fingers.

A better choice for the objective for the approach phase of an aggressive grasp is

the norm of the cross product of the vectors connecting fingertips and target centroid

(Fig. 2-2(b)):

C2,approach(Y ) = �
P

i=1,3k(ytipi � o)⇥ (ytipi+1 � o)k22 (2.8)

which for simplicity we denote as C2 in the rest of this thesis. Unlike the prior

objective, C2 rewards both fingertip distance and angle. More rigorously, the cross

product denotes the area of the tetrahedron (or triangle in 2D) formed by fingertips

and target centroid. All else being equal, the odds of a successful grasp improve

with the volume of the target object enveloped by the gripper. Without knowing

the target shape, maximization of the volume between fingertips and gripper then

implies maximization of the potential target area to be enveloped. If we approximate

(given finger kinematics and quadrotor motion) that, once the “grasp” phase begins,
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(a) (b)

Figure 2-2: Result of optimizing for two different objectives during the approach phase,
based on the vectors (red) from target centroid (green) to fingertips: (a) maximizes (locally)
the fingertip distance C1 from the target centroid, and (b) maximizes the norm C2 of the cross
product between the vectors connecting the fingertip to the centroid. Since the quadrotor
is moving aggressively towards the target, (b) is more likely to yield an enveloping grasp.

the fingertips will move in a straight line towards the target centroid, then any part

of the target object in the area between fingertips and gripper will ultimately be

enveloped by the gripper and contribute to a successful grasp.

2.2.2 Modeling of a Tendon-Actuated Soft Gripper

This section shows how to compute the instantaneous rest length l?(tg) at time tg

such that the corresponding soft gripper configuration minimizes Cgrasp(Y ) (the same

approach can be used to compute l?(ta) to minimize Capproach(Y )). Note that we can

compute an instantaneous rest length thanks to Assumption 1, which assumes we can

neglect the soft gripper dynamics.

FEM Model. Our approach follows Bern et al. [4], using a finite element approx-

imation to compute tendon lengths minimizing an objective C(Y ) (as we mentioned,

we will use the same approach to minimize Cgrasp(Y ) or Capproach(Y )). We contribute

analytic expressions for all Jacobians (Appendix 6.1). We approximate the infinite-

dimensional soft gripper configuration Y as a set of N discrete nodes, as in finite
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element methods (FEM). With slight abuse of notation, we still use Y to denote the

discretized set of nodes:

Y
.
= [y1 y2 . . . yn] 2 R3⇥N (2.9)

where yi 2 R3 is the position of the i-th node. The nodes are arranged in a tetrahedral

mesh, and the tendons are approximated as one-sided springs. Finally, a set of pins

(also modeled as linear springs) fixes the mesh nodes to the quadrotor base. Based on

this FEM model, we use a Jacobian-based iterative solution to the soft robot inverse

kinematics, i.e., to find the tendon rest lengths l that yield a static configuration Y

minimizing the objective C(Y ).

Inverse Kinematics Overview. We minimize C(Y ) with respect to the rest

lengths l (recall again that Y depends on l) via gradient descent. The complexity in

the “soft case” is that one cannot write the relation between l and Y analytically. To

circumvent this issue, and following [4], we first solve the forward kinematics problem

(determining the initial system state Ȳ for the initial actuation l̄) by minimizing the

total system energy using Newton’s method to find quasi-static equilibrium, a system

state where net force (and acceleration) are zero. Once an equilibrium configuration

is found, we obtain an analytic expression for the actuator Jacobian dY
dl

1. Then we

compute the Jacobian dC
dY analytically based on the definition of C in eqs. (2.6)-(2.8).

Finally, we use dY
dl and dC

dY to compute the gradient of the cost dC
dl =

dC
dY

dY
dl with respect

to the actuation l̄ and find a suitable gradient descent step �l2. We solve for the new

quasi-static configuration Y associated with the new tendon rest lengths l = l̄+�l3

and iterate till convergence. While the computation of dC
dY is straightforward given C,

in the following we describe the expression of the energy and the Jacobian dY
dl .

1To keep a matrix (rather than a tensor) notation, we assume that all Jacobians involving Y ,
e.g., dY

dl , work on a vectorization of Y .
2In practice we use parameters ↵ = 0.5 and � = 0.1 in computing the Armijo-Goldstein rule

[38] in backtracking line search along the gradient, as well as enforcing a step size norm between 1
and 10 cm. Further, we choose a learning rate of 2.5 when computing the approach lengths and 0.25
when computing the grasp lengths.

3We use the Newton-CG implementation in scipy.optimize.minimize, with the linearization Ȳ +
dY
dl �l as an initial guess.
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2.2.3 Jacobian dY
dl via Forward Kinematics

We solve the forward kinematics l 7! Y by minimizing the total energy of a configu-

ration Y for a given choice of l (as in [4]). The total energy of the soft gripper can

be written as:

E(Y , l,X) =Emesh(Y ) + Etendons(Y , l)

+Epins(Y ,X) + Egravity(Y )

(2.10)

with the equilibrium configuration Yeq(l,X) as the minimizer of the energy: Yeq(l,X) =

argminY E(Y , l,X). In the following, we describe each term in the energy (2.10).

Mesh Energy. The energy term Emesh models the contribution to the system

energy due to deformations of the soft material. We compute the energy contribution

of each tetrahedral component Yijkl
.
= [yi yj yk yl] separately. We define the relative

displacement of each node in the element:

�Yijkl =

h
(yi � yl) (yj � yl) (yk � yl)

i

which contains the relative positions of vertices i, j, k with respect to l. When no

forces are applied, the mesh assumes the rest displacement �̄Yijkl. In the pres-

ence of external forces, the mesh assumes a deformed displacement �Yijkl. The

energy of a configuration depends on the mismatch between rest and deformed dis-

placement. Define the deformation gradient G=�Yijkl(�̄Yijkl)
�1, the rest volume

v̄=1/6 det(�̄Yijkl), and the volumetric deformation vF =det(G), which is the ratio

of deformed to undeformed volume. We use a neo-Hookean material model which

defines the mesh energy in terms of Lamé parameters µ,� [48]:

Eijkl
mesh(Y ) = v̄

hµ
2
tr(GTG� I)� µ ln(vF ) +



2
ln

2
(vF )

i
(2.11)

The total mesh energy Emesh(Y ) =
P

ijkl E
ijkl
mesh(Y ) is the sum of the contributions

of all elements ijkl.
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Tendon Energy. The energy term Etendon models the contribution of the tendons

to the system. Each tendon is defined by the set of nodes in the mesh it is attached

to. Let us denote with i1, . . . , in the set of node indices tendon i is attached to (the

so called routing path). Then, the tendon deformation for tendon i is defined as:

�i =
Pn�1

k=1kyik+1
� yikk2 � li (2.12)

which intuitively is the mismatch between the desired routing path length (dictated by

the rest length li) and the actual length according to the mesh nodes (
Pn�1

k=1kyik+1
�

yikk). We can then recover the energy of tendon i by modeling the tendon as a

one-sided spring with spring constant tendon:

Ei
tendon(Y ) =

8
<

:
0 if � < 0

tendon �2i otherwise
(2.13)

The total tendon energy Etendon =
P8

i=1 E
i
tendon(Y ) is the sum of the contribution of

all tendons.

Pin Energy. The energy term Epin models the contribution of the pins (connect-

ing the soft gripper to the quadrotor base) to the system. Each pin i is modeled as a

spring with constant pin, connecting a mesh node yi belonging to the soft gripper,

to a point xpin
i belonging to the quadrotor base (for a given drone state X). The

energy for each pin i is:

Ei
pin(yi,X) = pinkyi � xpin

i k2 (2.14)

The total energy Epin is the sum of the contribution from all pins (we use three pins

per finger).

Gravitational Energy. The energy term Egravity models the impact on the

gravity on the system’s energy. We approximate the gripper mass as concentrated in

the mesh nodes, and denote with mi the mass of node i. The gravitational potential
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energy depends on the mass and height of the node:

Ei
gravity(Y ) = �mi g

Tyi (2.15)

where g
.
= [0, 0,�9.81]Tm/s2 is the gravity vector. The total gravitational energy

Egravity(Y ) =
PN

i=1 E
i
gravity(Y ) is the sum of the contribution of all nodes.

Jacobian
dY
dl . Given a control l (e.g., a point for which we want to obtain

a gradient), we compute a quasi-static configuration Y that minimizes the system

energy (2.10) using Newton’s method. Then, the actuator Jacobian can be computed

from the Hessians of the energy, as shown in [4]:

dY

dl
= � d2E

dY 2

�1 d2E

dY dl
(2.16)

The analytic expressions of the terms on the right-hand-side of (2.16) is reported in

Appendix 6.1. It is worth noting that these terms are readily available as a byproduct

of the application of Newton’s method to the minimization of (2.10).

2.2.4 Trajectory Optimization and Open-loop Control for a

Soft Gripper

The inverse kinematics model in the previous section allows computing the tendon

rest lengths l?(ta) and l?(tg) that ensure that the fingertips of the soft gripper are

away from the target at time ta (in the approach phase) and close to the target

centroid at time tg (i.e., during the grasp). With our choice of Jtendon (Eq. (2.5))

and under Assumption 1, solving problem (2.3) reduces to (i) ensuring that l(tg) is

equal to l?(tg) and that l(ta) is equal to l?(ta) and (ii) minimizing the changes of l

in [0, tf ]. It is straightforward to see that the optimal control trajectory under this

setup consists in linearly interpolating l from the initial rest length (at time 0) to the

lengths l?(ta) (at time ta); then linearly interpolating between lengths l?(ta) to the

lengths l?(tg) (at time tg), and finally keeping them constant afterwards (until tf ).

We apply the resulting control sequence l?(t) in open loop.
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2.3 Geometric Control and Trajectory Optimization

for the Quadrotor Base

This section describes how to solve the drone control subproblem (2.2). Thanks

to the decoupling described in Section 2.1, problem (2.2) falls back to a standard

quadrotor control formulation. Therefore, as done in related work [35], we solve it by

first computing a nominal state trajectory using polynomial trajectory optimization

(briefly reviewed in Section 2.3.1) and then using a geometric controller to track the

nominal trajectory. The element that sets our setup apart is the presence of (the

disturbance) Y in the quadrotor dynamics in (2.2). Intuitively, the soft gripper in

general imposes a torque that acts to orient the quadrotor towards level. While

this torque may prevent the achievement of the control goals or even destabilize the

platform, in the following we show that under certain assumptions on the soft load

(Fig. 2-3) and the aerodynamic forces experienced by the quadrotor, we can bound the

disturbance torque such that a standard geometric controller remains asymptotically

stable. In practice we empirically observe that our platform remains stable even when

these assumptions are violated (see experiments in Section 4.1).

2.3.1 Minimum-Snap Trajectory Optimization

We first compute a nominal trajectory (quadrotor state and its derivatives over time)

by solving (2.2) and neglecting the presence of the disturbance Y . As done in related

work [35], (i) we consider a cost function in (2.2) that penalizes the integral of the

4th derivative of the state (minimum snap), (ii) we assume polynomial trajectories,

and (iii) we leverage differential flatness to express the optimal control problem as

4 decoupled scalar optimization problems over the flat outputs (three for the Carte-

sian position of the quadrotor and one for its yaw angle). Mellinger et al. [35] and

Bry et al. [6] show that the resulting polynomial optimization problems can be solved

efficiently via quadratic programming.
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(a) (b)

Figure 2-3: (a) Quadrotor forces, torques, local and world frames. (b) Without external
perturbation, the soft gripper center of mass is aligned with the local vertical due to the
symmetry of its fingers; forces that deform the gripper might cause its center of mass to be
misaligned.

2.3.2 Geometric Control of a Quadrotor with a Soft Load

Given the quadrotor trajectory X?
(t) generated according to Section 2.3.1, we are

only left to design a controller that is able to track X?
(t) in the face of external

disturbances, including the torque induced by the time-varying soft payload Y . Here

we show that a commonly adopted solution, the geometric controller by Lee et al. [27],

preserves asymptotic stability even in the presence of our soft gripper. We first review

the basics of the geometric controller, then discuss its stability with the added soft

load.

Geometric Controller. In the following, we explicitly write the quadrotor state

(that we generically denoted with X so far) as X
.
= {p,R, ṗ,⌦}, including the

quadrotor position p 2 R3, its rotation R 2 SO(3), the linear velocity ṗ 2 R3, and

the angular velocity ⌦ 2 R3. Using this notation, and denoting the columns of R as

R = [bx by bz], the quadrotor dynamics can be written as:

8
>>><

>>>:

mp̈ = mg + fbz

Ṙ = R⌦̂

J⌦̇ = �⌦⇥ J⌦+ ⌧ + ⌧load

(2.17)
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where m is the total mass of the platform and gripper, g is the gravity vector, J is

the moment of inertia, f is the scalar thrust force (applied at the quadrotor center

of mass and along the local vertical direction bz) resulting from the propeller forces

f1,f2,f3,f4, ⌧ 2 R3 is the torque resulting from the propeller forces, and ⌧load is the

torque exerted by the soft gripper (Fig. 2-3(a)). In (2.17), the symbol ⇥ is the vector

cross product, the hat map ·̂ maps a 3D vector to a 3⇥3 skew symmetric matrix

and its inverse, the vee map ·_, maps a 3⇥3 skew-symmetric matrix to a vector (as

in [27]).

The geometric controller [27] takes as input a desired state X? .
= {pd,Rd, ṗd,⌦d},4

and computes the tracking errors:

ep = p� pd, (position error)

ev = ṗ� ṗd (linear velocity error)

er =
1
2(R

T
dR�RTRd)

_ (rotation error)

e⌦ = ⌦�RTRd⌦d (angular velocity error)

(2.18)

Then the controller decides for suitable thrust force f and torques ⌧ to contrast these

errors using the control law:

f = �bTz (kpep + kvev +mg �mp̈d) (2.19)

⌧ = �krer � k⌦e⌦ +⌦⇥ J⌦ (2.20)

�J(⌦̂RTRd⌦d �RTRd⌦̇d) (2.21)

where kp, kv, kr, k⌦ are suitable control gains. We refer the reader to [27] for de-

tails about how to map the desired total thrust f and torque ⌧ to propeller forces

f1,f2,f3,f4.

Asymptotic Stability. Here we show that the geometric controller above is

stable despite the presence of the soft gripper. We assume that the quadrotor is

upright, i.e. [0 0 1] · bz � 0. The key insight is that as it deforms due to gravity

4In [27], the desired rotation Rd and angular velocity ⌦d are built from a desired yaw angle.
We refer the reader to [27] for details.
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and the quadrotor acceleration,5 the soft gripper center of mass remains below the

local vertical as long as the drone’s horizontal thrust and velocity are aligned6 (Fig. 2-

3(b)); this implies that the soft load imposes a torque ⌧load which acts to orient the

quadrotor towards level. This observation, associated with the assumption that the

desired final state is level and that the soft gripper is symmetric (which ensures that

no torque is asserted when level), allows proving the following result.

Theorem 2 (Stability of Velocity and Attitude Controller) Consider a quadro-

tor confined to the vertical x-z plane [51], with a soft payload which is symmetric about

the quadrotor’s thrust axis when no external forces are applied (Fig. 2-3). Denote with

mL the load’s first moment of mass along the bz axis when the quadrotor is level. As-

sume that kx = 0 (no position control) and p̈d = 0 (no desired acceleration, so the

quadrotor is level at the desired state), and that

bz · [0, 0, 1] � 0

|⌧load|  |mLbz ⇥ g|

sgn(⌧load) = sgn(bz ⇥ g)

(2.22)

Then the geometric controller in (2.19) asymptotically stabilizes the quadrotor velocity

and attitude in (2.17).

The proof is given in Appendix 6.2, which also provides a more extensive dis-

cussion about the assumptions in eq. (2.22). Theorem 2 proves convergence for the

attitude and velocity controller. However, in Sec. 4.1.1, we additionally demonstrate

experimental convergence of the position controller, as well as successful performance

during agile grasping – which in practice entails relaxing the requirement that the
5Note that in the absence of aerodynamic drag, the torque on the gripper due to gravity is equal

and opposite to the torque due to the quadrotor acceleration; gravity as a uniform body force is
unable to exert a net torque on the system. In this case, the quasi-static load does not deform
(remains aligned with the local vertical) and exerts no torque, and the system stability is unaffected
by the load. As aerodynamic forces affect the quadrotor acceleration, the gripper deforms as we
discuss.

6The opposite case – in which thrust and aerodynamic drag are both acting opposite the quadro-
tor’s horizontal velocity – is of necessity transient, as both drag and thrust are acting to restore the
alignment of horizontal velocity with horizontal thrust. See Appendix 6.2 for further discussion.
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quadrotor thrust and velocity align and that the soft gripper remains symmetric with

respect to the quadrotor vertical.

2.3.3 Summary: Grasp Planning for a Soft Aerial Manipula-

tor

Our complete planning/control approach is as follows. First, we plan a minimum-

snap polynomial trajectory towards the target with a predefined grasp time tg and

fixed velocity at the moment of grasp. Given this trajectory, we use root-finding

to find the time at which the horizontal distance from quadrotor to target is small

enough that the base of the leading fingertips is above the target. We choose this

time as the end of the approach phase ta and compute optimal tendon lengths given

this quadrotor position; similarly, we compute optimal tendon lengths for time tg

(Section 2.2.4). Then, at execution time, the quadrotor will track the minimum-snap

polynomial trajectory using a globally-stable geometric controller, which converges

despite the addition of the soft gripper (Section 2.3.2). At the same time, we will

execute the control actions for the soft gripper in open loop, interpolating from the

initial tendon lengths to the optimal lengths at ta and tg. Using this methodology we

consistently achieve grasps at speeds up to 2m/s.
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Chapter 3

Design and Implementation of a Soft

Aerial Manipulator

In this chapter we describe our soft drone implementation, including material choice,

design principles, electronics and fabrication. We develop a modular tendon-actuated

soft gripper based on the human hand, controlled by an Arduino Due microcontroller

over a USB connection and mounted to an Intel Aero Ready-to-Fly quadrotor.

3.1 Overview of the Soft Drone Prototype

Our soft drone system consists of a standard quadrotor with the (rigid and heavy)

landing gear replaced by a soft gripper (Fig. 3-1). The gripper comprises four silicone

rubber fingers attached to the quadrotor base, and placed in a configuration similar

to the rigid landing gear they replace; this configuration allows the fingers to achieve

force closure in an enveloping grasp and support a stable landing. The gripper is

actuated by 16 tendons (similar to the design by Hassan et al. [21]) — two on each

side of each finger. However, there are only four unique tendon lengths: tendons on the

same side of a finger are coupled to prevent finger twist while those on the same side

of each pair of fingers oriented in the same direction are coupled to enforce planarity,

simplifying planning [3]. The quadrotor base uses four motors and propellers for

actuation as usual. In summary, the system uses 8 control variables: 4 motor speeds
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Figure 3-1: Our soft drone is a standard quadrotor (the Intel Aero Ready To Fly) with
the landing gear replaced by a soft gripper, consisting of: four silicone rubber fingers (with
braided fishing line tendons routed through embedded nylon tubing), a 3-D printed base,
winches, tendon guides and other components, and an electronics module consisting of a
microcontrollor, motors/drivers and related modules.
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for the quadrotor, and 4 tendon lengths (later called the rest lengths) for the gripper.

These variables control the 6-dimensional quadrotor pose and the infinite-dimensional

state describing the soft gripper configuration.

3.1.1 Quadrotor

The quadrotor base of our soft drone is based on the Intel Aero Ready To Fly quadro-

tor, which is customizable and can be easily interfaced with the Robot Operating Sys-

tem (ROS) and standard motion capture systems (e.g., Optitrack or Vicon), which

are used to supplement the quadrotor’s state estimation and relay the location of the

target object to grasp. The quadrotor also features a relatively compact combination

of an embedded real-time flight controller running the PX4 Autopilot [26] combined

with a more capable companion computer (the Intel Aero Compute Board) dedicated

to running ROS. This setup allows us to naturally relegate low-level control (running

at 250Hz) to the flight controller and execute trajectory optimization on the drone

(executed offline in our setup, but potentially running online at 50Hz for polynomial

trajectory optimization and 1Hz for soft FEM planning – Sec. 4.1.1).

3.2 Soft Finger Design and Fabrication

3.2.1 Finger Design

Our soft fingers nominally deform continuously, but we add cutouts ("joints") to the

silicone to guide the deformations; the three joints divide the palm and finger into

metacarpal, proximal, medial and distal segments (Fig. 3-2). The fingers are attached

to a 0.14m-wide base (“palm”) at a 45 degree angle.

We considered two different finger designs (Fig. 3-3). Our initial attempt, Design

1, had a total length of 0.18m and was based on the design by Hassan et al. [21],

with the latter three links (the "phalanges") of equal size. Our initial simulation

and testing used this design. However, we found that it was practically ill-suited for

dynamic grasping; because of the length and design of the fingers, the grasp target
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Figure 3-2: Our soft fingers are attached at a 45 degree angle to the 0.14m palm (dark
gray). Tendons (black) are attached to mesh nodes (red). Inspired by a human finger, we
add cutouts to divide each finger into metacarpal, proximal, medial, and distal segments,
measuring the metacarpal from the middle of the palm.

needed to be in a narrow range directly within the gripper for the grasp to succeed

and high tendon forces were needed to grasp successfully.

Our second design iteration (Design 2) used a total length of 0.2m and segment

lengths inspired by a human finger (a common methodology in robotic hand design

[47]). Specifically, we size the metacarpal, proximal, medial and distal segments in

the same approximate 3.5:2.5:1.5:1 ratio as a human finger [1]. Further, we restrict

the nominal range of motion of the cutouts to 90, 90, and 30 degrees, similar to a

human finger.

To understand why these segment ratios are desirable beyond the bare fact of

bio-inspiration, we observe that any choice of segment lengths represents a trade-off.

As our underactuated finger moves, the fingertip follows a spiral path governed by

the lengths of the proximal, medial and distal segments (Fig. 3-4). Maximizing the

length of one of these segments at the expense of the others brings this spiral closer

to a circle, keeping the fingertip farther from the base of the finger. This maximizes

the finger’s workspace, i.e., the area enclosed by the finger as it moves (equivalent to

the area swept out by the line from finger base to fingertip); if both fingertips fail to

reach or surround the object to be grasped, the grasp will not succeed. However, equal

proximal, medial and distal segment lengths intuitively maximize the adaptability of

the finger; minimizing the maximum rigid segment length affords the finger more free-
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Figure 3-3: Our two candidate finger designs. Design 1 had a total length of 0.18m and
equally-sized phalanges (the last 3 segments). Design 2 is inspired by a human finger, with
metacarpal, proximal, medial, and distal segments in a 3.5:2.5:1.5:1 ratio (metacarpal length
is a composite of palm size and the length of the first finger segment, as in Fig. 3-2).

dom to change shape to match the object it envelops. Finally, all else being equal,

maximizing the metacarpal length/palm size minimizes the tendon forces needed to

grasp (shown empirically in [2]). The segment ratios of a human finger then repre-

sent an evolutionarily-selected point along this continuum, presumably optimized for

everyday tasks.

We illustrate these points in Fig. 3-4, which compares a finger with evenly spaced

joints with a range of motion of 60 degrees (comparable to Design 1 but of total

length 0.2m for a fair comparison) to our Design 2 1. Our design exhibits a greater

effective workspace while still being able to grasp or envelop an object. This is visible

intuitively in the first subplot, which shows Design 2 succeeding in a grasp due to its

longer reach while the alternative fails. The second subplot quantifies the discrepancy,

showing that our Design 2 has a longer effective reach (distance from base to fingertip)

throughout its range.

1The underactuated finger technically has two degrees of freedom, corresponding to the two pairs
of tendons. However, in computing the fingertip distance (the lower plot) we approximate its motion
with a single degree of freedom by constraining all joints to rotate at the same relative rate (i.e., as
Joint 1 of Design 2 moves from 0-90 degrees, Joint 3 moves from 0 to 45). The upper plots show this
approximation in purple, overlaid on a timelapse of a full FEM model of the finger grasping – it is
clear that the 1-DOF approximation is a good one. For simplicity we also do not plot Design 2 after
the first joint has exceeded 60 degrees, at which point the fingertips have contacted one another.
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Figure 3-4: We plot the motion of (A) Design 2 and (B) a design with joints of 60, 60,
60 degrees spaced evenly along it, with the fingertip paths shown in purple. In our design,
the fingertip remains farther from the finger base as the finger closes. The lower figure
plots the distance to the fingertip through the range of motion of Design 2 (green) and the
alternative (purple) – Design 2 has longer reach throughout ( 50% longer at the joint limit
of 60 degrees).
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Figure 3-5: Wiring diagram for a single driver/encoder/motor. The TB6612 driver takes
in 12V power/ground from the voltage regulator and 5V signal power/ground from the
microcontroller, and uses a PWM input PwmA and two digital inputs Ain1, Ain2 to drive
a single motor using outputs Aout1, Aout2. These are routed to the motor control inputs
M1, M2 on the encoder, which routs them to the motor. The encoder itself takes in 5V
signal power/ground and has two digital outputs OutA, OutB.

3.2.2 Fabrication

We mold our fingers using Smooth-On Dragon Skin 30 silicone rubber. To route

tendons through the fingers, low-friction nylon tubing is integrated into the mold and

secured with electrical tape (Fig. 3-1); initially we used silicone tubing, which bonded

chemically to the silicone finger, but we found friction between tubing and tendons

compromised performance unacceptably. Our tendons are 80lb-test braided fishing

line (Power-Pro Super 8 Slick).

3.3 Electronics

The gripper is controlled by an Arduino Due microcontroller, which communicates

over a serial (USB) connection with the Intel Aero Compute Board on the quadro-
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tor (or any other computer). The microcontroller receives a stream of byte array

messages encoding a header, footer and four tendon length setpoints2. It issues cor-

responding proportional PWM (pulse-width modulation) commands3 to four motors

via two TB6612 Dual Motor Drivers (with motor voltage via a S18V20F12 12V Step-

Up/Step-Down Voltage Regulator). To control the outer tendons, we used two 298:1

Pololu Micro Metal Gearmotors; for the inner tendons, which are under higher loads,

we use two 250:1 Pololu 20D Metal Gearmotors. Shaft angles for all motors are

measured using Magnetic Rotary Encoders.

A wiring diagram for a single driver/encoder/motor is shown in Fig. 3-5. The

TB6612 driver takes in 12V power and ground from the voltage regulator and 5V

signal power/ground from the Due microcontroller and can independently control two

DC motors, using one PWM and two digital inputs from the microcontroller for each.

The encoder has two digital outputs to the microcontroller and needs to be connected

to 5V signal power/ground. Four motors/encoders therefore require 4 PWM pins and

16 digital pins on the microcontroller (out of 12 PWM and 20 digital pins available),

as well as 12V motor power (from the voltage regulator) and 5V signal power. These

connections are implemented on a custom (hand-soldered) shield mounted on top of

the Due.

3.4 Gripper Base Design

The components described above are attached to a 3D-printed base (Dremel Eco-

ABS – Fig. 3-6), which bolts directly to the 8 columns supporting the baseplate of

the quadrotor. A removable arch over the electronic components protects them from

damage in the likely eventuality of a crash.

The four fingers are mounted to 3-sided sockets in the base and attached by screws

at a 45 degree angle (Fig. 3-7). Absent the socket walls around the finger, the force

from the screw tended to pull the finger along the gripper base away from the desired

2Each encoded in a single byte, interpreted as a length from 0-256 mm.
3With a proportional gain of 1mm�1, mapping to a PWM command 2 0 . . . 254.

52



Figure 3-6: The 3-D printed gripper base, shown with components – fingers, electronics
and 3-D printed winches, ratchets and guides – attached (A) and on its own (B), bolts
directly to the baseplate of the Aero quadrotor. A removable arch (B, outlined in yellow)
protects the electronics in the likelihood of a crash.

Figure 3-7: Finger socket, top and bottom views. 3 walls (traced in yellow) constrain the
finger, which is screwed into the base at a 45 degree angle (red). Tendons are routed from
the finger through holes in the base into channels (blue) which guide them to the motors.

mount point; adding the walls solved this issue completely. Tendons leaving the finger

are routed through the base by 3-D printed channels.

On one end, the tendons are tied to a bolt. Pairs of bolts associated with the same

side of a pair of fingers (as described in Section 2.1) are inserted into a 2.5 cm-diameter

winch (Fig. 3-8), which is mounted on the D-shaft of one of the motors. These bolts

serve the dual purpose of attaching the tendons to the winch and securing the winch

to the D-shaft. Additionally, a channel runs around the perimeter of each winch to

secure the tendons wrapped around it.

The other end of each tendon is tied to a ratchet (Fig. 3-9). This allows us
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Figure 3-8: Winch, top and side views. The 2.5 cm-diameter winch mounts to a motor
D-shaft (red) and has holes (green) for two bolts, which serve a dual purpose as set-screws
for the shaft and tie-off points for the tendons.

Figure 3-9: Ratchet, top and side views. The ratchet rotates freely around a central bolt-
hole (red) unless constrained by a bolt in a blocking hole (green). Tendons are tied off to a
bar (blue) and wrap around the ratchet as it rotates.

to easily adjust the rest length of each tendon by hand, greatly simplifying gripper

setup. Ratchets rotate around a single bolt; after adjusting the initial tendon length,

a second bolt is inserted through one of eight holes around the ratchet perimeter into

a matching hole on the base to block the ratchet from rotating further.

Motors are bolted to mount points along the base (Fig. 3-10). A variety of mount

points allow flexibility in motor placement, as well as allowing us to attach other

components such as guides, which help ensure that tendons cleanly engage with and

disengage from the winches described above.

3.4.1 Spring-Loaded Gripper

An alternative design choice involved passive tendons: replacing the motors involved

in closing the gripper with a pair of springs, preloaded such that the gripper was closed

when they were at rest. This saved weight (100g) and complexity by eliminating two
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Figure 3-10: Components (shown in A) are bolted to modular mount points (green) on
the base (shown alone in B). As shown, these are compatible with motors as well as 3-D
printed guides (yellow), which help keep the tendons aligned with the winches.

motors; control and planning was nearly identical to the primary design, with the

slight modification of decreasing the stiffness of the passive tendons to that of the

springs they were attached to – demonstrating the flexibility of the FEM planner we

use. However, although this design could grasp in hand it only succeeded in 1 out of

15 aerial tests – possibly due to plastic deformation of the springs – and was therefore

abandoned.
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Chapter 4

Experiments

In this chapter we report our results, including numerical experiments performed in a

realistic soft dynamics simulator (SOFA [14]) and real grasping tests at 0.2m/s. We

show that: (i) the geometric controller is fairly insensitive to the soft payload, (ii) in

simulation, our soft drone outperforms more rigid alternatives, (iii) the platform can

reliably grasp unknown objects despite inaccurate positioning and initial conditions,

both in simulation and in real testing.

4.1 Simulation Experiments

We validate our soft aerial manipulator design in SOFA [14], a popular open-source

soft dynamics simulator with dedicated plugins for tendon-actuated soft manipulators

[12].

We carry out two sets of experiments in simulation. The first, implemented to

validate our theoretical conclusions in Section 2.1, use a set of parameters which

yield physically reasonable behavior but are not directly based on our real system.

Additionally, these tests used finger Design 1 (Sec. 3.2.1), contributing to an inability

to grasp above 0.5m/s. These experiments show that (i) the geometric controller

converges regardless of the soft payload, (ii) the platform can reliably grasp objects

of unknown shape, (iii) the decoupled controller is amenable for real-time execution,

and (iv) softer systems tend to outperform more rigid analogues at dynamic grasping
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tasks.

Our second set of simulated experiments were implemented after prototyping the

real system and attempt to directly model its behavior, using parameters as close to

real life as possible. They employ finger Design 2 (Sec. 3.2.1) and an improved adaptive

controller, enabling grasps at up to 2m/s. Further, they show that (v) our soft drone

system dramatically outperforms a fully rigid analogue at aggressive grasping tasks,

succeeding a majority of the time when the rigid system fails completely.

4.1.1 Pre-Prototype Simulation Experiments

Setup

We simulate our soft aerial manipulator in SOFA [14] (see Fig. 1-1 and the video

attachment). We choose a simulation timestep of 0.01 seconds. The rigid frame

of the manipulator is modeled after the frame of the Intel Ready to Fly quadrotor

(size: 0.25 ⇥ 0.25 ⇥ 0.04m), while the four fingers are modeled as in Design 1 in

Section 3.2.1 (each with size: 0.18 ⇥ 0.025 ⇥ 0.025m). We choose quadrotor mass

m = 1kg and inertia J = diag ([0.08, 0.08, 0.14]) kg ·m2. As material parameters, we

choose Young’s modulus E = 2·104N/m2 (similar to a soft rubber) and Poisson’s ratio

⌫ = 0.25, and derive Lamé parameters as µ =
E

2(1+⌫) = 8000N/m2, =
⌫E

(1+⌫)(1�2⌫) =

6667N/m2 [48]. We choose a gripper density ⇢ = 250kg/m3. The controller gains are

set to kp = 16, kv = 5.6, kr = 8.81, k⌦ = 2.54, as in [27].

Geometric Control Evaluation

Fig. 4-1 plots the norm of the velocity, position, and rotation tracking errors defined

in (2.18) for 20 runs of the geometric controller. In each run, we chose a random

target location on the circle of radius 1m (similar to [51], [8]). The figure shows quick

convergence to the desired state, with position error decreasing by 95% within 1.3s.

The shaded area shows the 1-sigma standard deviation for the tracking errors.

Fig. 4-2 shows that convergence occurs regardless of the disturbance induced by

the gripper mass. We simulate increasing gripper densities ⇢ = {10�2, 103, 105}kg/m3,

58



Figure 4-1: Mean and standard deviation of the tracking errors with gripper density
⇢ = 250kg/m3. Statistics are computed over 20 runs with randomly chosen target locations
on the unit circle.

ranging from a gripper ten times lighter than helium to one five times denser than

lead; for each density, we repeat 20 runs and plot the tracking errors in Fig. 4-2. The

figure shows that, while the increased gripper density impacts the convergence rate

(in particular, larger densities induce an increased overshoot and longer convergence

tails), the controller is still able to converge to the desired state within 5s.

Effects of Stiffness on Dynamic Grasping

To validate the effectiveness of the proposed soft aerial manipulator, we task it to

grasp a a light object (0.05 kg) of unknown shape.

Fig. 4-3(a) shows the binary grasp outcome (success/failure) as a function of the

initial quadrotor height (“z”) and horizontal position (“x”) with respect to the target

using objective C1 to compute tendon lengths during the approach phase. For this

objective, we require that the horizontal velocity be zero at the moment of grasp

and add a trajectory setpoint 0.2m above the target. Our proposed soft gripper is

able to successfully grasp for all initial conditions with z > 0.25m, corresponding to

the cases where the fingertips start above the height of the target. To put things in

perspective, Fig. 4-3(b) shows the same statistics for a more “rigid” design, where we

chose Young’s modulus to be E = 2 · 105N/m2 (10 times stiffer that our design, with
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Figure 4-2: Mean and standard deviation of the tracking errors for gripper densities ⇢ =
{10�2, 103, 105}kg/m3.

a Young’s modulus analogous to a typical rubber). Comparing Fig. 4-3(a)-(b) we

realize that the stiffer gripper is more likely to fail. In particular, the stiffer gripper

failed in all conditions with x > 0.3, in which too much momentum was transferred

to the target, hence preventing a successful grasp.

We carried out a similar test using the aggressive grasp objective C2 to compute

tendon lengths during the approach phase and a fixed velocity of [0.5, 0,�0.125] m/s

at the moment of grasp (Fig. 4-4). As above, our proposed gripper design succeeded in

all cases when the fingertips can pass above the target (which is easier when quadrotor

and target are farther apart), while the stiffer gripper (E = 2 · 105N/m2) imparts too

much momentum to the target when starting farther away.

These tests exemplify the advantages of softness in aerial manipulation. The softer

gripper adapts to deviations from the nominal quadrotor trajectory and naturally

mitigates the impact of contact forces on the quadrotor and the target, thus enabling

successful grasps from a wide range of initial conditions in which a more rigid solution

fails.

When we transitioned to heavier objects and more aggressive grasps, we chose to

use a substantially stiffer material (in fact stiffer than either alternative considered

above). The multiple-order-of-magnitude greater grasp forces needed to secure an
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Figure 4-3: Grasp outcome as a function of the initial quadrotor height (“z”) and horizontal
position (“x”) with respect to the target using objective C1 in the approach phase and with
zero horizontal velocity at grasp. (a) proposed soft aerial manipulator; (b) more rigid design
with higher Young’s modulus (E = 2 · 105N/m2).

Figure 4-4: Grasp outcome as a function of the initial quadrotor height (“z”) and horizontal
position (“x”) with respect to the target using objective C2 in the approach phase and with
velocity at grasp of [0.5, 0,�0.125] m/s. (a) proposed soft aerial manipulator; (b) more rigid
design with higher Young’s modulus (E = 2 · 105N/m2).
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object with 20x the weight at 4x the velocity (Sec. 4.2, below) necessitated order-of-

magnitude increases in gripper stiffness. But the principle – that increases in stiffness

correspond to decreases in adaptability, and should be avoided when possible – held

true throughout our testing.

Timing

Our C++ implementation of the soft gripper trajectory optimization approach in

Section 2.2 requires ⇡ 1 s to compute a control sequence for the tendon rest lengths on

an Intel Core i7-5500U CPU. Note that this can be computed offline before execution.

The control is executed in open-loop, hence the computational cost to control the

soft gripper during execution is negligible: interpolating the tendon actuations as

discussed in Section 2.2.4 requires less than a millisecond.

For the minimum-snap quadrotor trajectory optimization, we use the cvxopt pack-

age in python. Our code requires ⇡ 0.02 s to compute a minimum-snap trajectory (as

before, this can be done offline). The implementation of the geometric controller is

also in python and it requires ⇡ 0.01 s to compute the instantaneous control action to

be applied to the quadrotor propellers. In summary, the total computation required

during execution is in the order of tens of milliseconds, and can be further reduced

via an optimized multi-threaded C++ implementation.

4.1.2 Post-Prototype Simulation Experiments

Setup

For these tests, we attempt to model the measured parameters and observed behavior

of our real soft drone. We choose a simulation timestep of 0.005s to prevent clipping

during aggressive grasping (all controllers run at 100hz in simulation independent of

the timestep). The four fingers are modeled after Design 2 in Section 3.2.1 (each

with size: 0.2 ⇥ 0.02 ⇥ 0.025m). We choose quadrotor mass m = 1.7 kg and inertia

J = diag ([0.08, 0.08, 0.14]) kg ·m2 and assume aerodynamic drag on the quadrotor

center of mass with body drag coefficient 0.3. For the soft components, we attempt
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to replicate the material properties of Smooth-On Dragon Skin 30 in simulation: we

use Young’s modulus E = 1MPa, Poisson’s ratio ⌫ = 0.25, Lamé parameters µ =

E
2(1+⌫) =400000N/m2,  =

⌫E
(1+⌫)(1�2⌫) =333333N/m2 [48], and density ⇢ = 1000kg/m3.

Our simulated grasp target weighs 0.1 kg, approximately the same as our intended

real target.

In these tests, we replace the geometric controller with the adaptive controller

formulation of [19], implemented by Samuel Ubellacker. This yielded substantially

more precise trajectory tracking, contributing to our greater success in aggressive

grasping (details are in [16]).

Rigid vs. Soft for Aggressive Grasping

We compare our soft drone against a 2-DOF rigid gripper of identical dimensions

with a pre-programmed open-close action executed in open loop.

Fig. 4-5 compares the success rates of the two candidate systems. We simulated

5 trials of grasping at 4 different desired grasp velocities (0.5m/s, 1m/s, 1.5m/s,

2m/s) and recorded the fraction of tests in which the drone remains stable and

grasps the object. Our soft drone outperforms its rigid analogue at high velocities,

and in particular the success of the rigid gripper drops to 40% (against 100% of the

soft) at 1.5m/s, and all “rigid” tests fail at 2m/s. In general, the rigid gripper fails

because it either makes an unexpected contact with the target or because the very

large contact forces at higher velocities destabilize the controller; the magnitude of

the contact forces is further exacerbated by the limitations of the SOFA simulator as

discussed below. The soft gripper, on the other hand, absorbs large contact forces

and consistently achieves grasping.

Limitations of Soft Simulation. We observed several limitations in our physics

simulation setup. As mentioned above, clipping and penetration between objects are

common in SOFA at high velocities. Moreover, rigid-to-rigid contacts often exhibit ex-

tremely large instantaneous forces; as a consequence, the stability of the high-velocity

grasps (in particular when using the rigid gripper) varies dramatically depending on

the simulation timestep. This is the reason why we reported the post-grasp failures
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Figure 4-5: Grasp success rate for both our approach and a rigid gripper design across
five trials for four different grasp velocities. “Rigid (success)” denotes that the rigid gripper
achieved successful grasping and reached the desired final position, while “Rigid (Post-grasp
Failure)” denotes that the system successfully grasped the target, but then the trajectory
tracking controller diverged.

in Fig. 4-5 as a separate category. These issues add to the fact that our simulator

does not model complex aerodynamic effects, such as the ground effect (see Sec. 4.2.2

below).

4.2 Real Experiments

In real tests, our soft drone ensures successful grasps in 21 out of 23 consecutive tests,

despite unmodeled aerodynamic effects.

Real testing setup

We evaluate our real system using an Optitrack motion capture system for state

estimation, communicating with the Intel Aero drone via ROS.

The Aero used a custom version of PX4 that replaced the original position and

attitude controllers with the adaptive controller formulation of [19], implemented by

Samuel Ubellacker and Nathan Hughes (implementation details are in [16]). The

controller gains for all experiments were set to kp = 7.5, kv = 6.0, kr = 80.0, k⌦ =
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Figure 4-6: A closeup view of the grasping maneuver during a trial of the dynamic grasping
tests. The gripper configuration for the “approach” phase mentioned in Section 2.2 is visible
at t = 0 s. The drone visibly maintains consistent forward progress while grasping. The
compliance of the fingers allows our soft drone to start contact with the grasp object before
the gripper has enveloped the object fully; deformation of the back fingers is visible between
the start of contact (t = 0.5 s) and just before the gripper fully closes (t = 1.0 s). The
softness of the gripper also allows a more secure grasp by conforming to the geometry of the
target object (t = 1.5 s).

8.0, �f = 10, �⌧ = 10, kaf = 2, ka⌧ = 2. We manually calibrate the static translational

offset between the drone body frame as estimated by Optitrack and the drone’s center

of mass to be {0.02, 0.03,�0.03}. Initial tendon rest lengths are calibrated to be

{190, 190, 208, 208}mm. We precomputed tendon lengths of {162, 190, 233, 208}mm

for approach and {225, 225, 190, 190}mm for grasp offline, using the methodology in

Section 2.2; all other computation takes place onboard. Our real grasping experiments

use a foam target weighing 106 g. Our combined quadrotor and gripper weighs 1.9 kg,

while the maximum load for our quadrotor is 2.0 kg. We observe good grasping

performance despite the fact that we operate near the maximum payload.

4.2.1 Dynamic Grasping Results

Fig. 4-6 showcases our real system during dynamic grasping at 0.2m/s. This max-

imum speed is imposed by the physical limitations of our first prototype, including

thrust saturation, state estimation delays, and soft gripper latency; at the same time

it enables us to provide a convincing example of dynamic grasping without the slow,

precise positioning required by most existing aerial manipulators.
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Total Trials Successes Velocity at grasp
23 21 (91.3%) 0.2m/s

Table 4.1: Soft drone performance in real dynamic grasping.

Table 4.1 reports statistics from 23 real tests, while several examples are included

in the video attachment. The 91.3% success rate confirms our soft drone can reliably

perform dynamic grasping without knowledge of the target object and in the face of

real-world disturbances. Moreover, our two observed failures were due to catastrophic

state estimate divergence (causing the drone to crash instantly) and seem unrelated to

grasping; we have observed similar errors in other tests without grasping and without

the soft gripper attached. In this case they occurred at the end of the grasp trajectory

on the fifth and tenth trial, causing the drone to crash while carrying the grasped

object.

The 23 grasping trials took place consecutively across two days and were only

interrupted to replace the batteries or reset the system after a crash. Throughout,

the soft drone’s performance was essentially unchanged. This consistency was despite

adverse positioning errors which often resulted in at least one finger making no con-

tact with the target (and the remaining fingers needing to adapt to compensate) –

exemplifying the advantages of morphological computing.

4.2.2 Impact of Unmodeled Aerodynamic Effects

Despite grasping successfully, we observed several (aerodynamic) phenomena that

were not captured in our simulations and which impact our ability to grasp. The

airflow from the propellers reflects off the ground (or the platform our target rests

on), resulting in a ground effect which pushes the quadrotor upward at low altitudes.

Its influence is clear in Fig. 4-7, which shows the position tracking errors through a

grasp trajectory with and without a target object to grasp: while the position errors

in the horizontal plane (X,Y) are mostly low before grasping (< 5 s), the vertical

error (Z) rapidly increases as the drone’s target altitude decreases immediately before

grasping (tg = 5 s). Note that the ground effect manifests in both the grasp and no

grasp cases, as the platform is present throughout.
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Figure 4-7: Position tracking error along the X, Y, Z axes through a grasp trajectory
across 5 trials, with and without a target object to grasp (“Grasp” and “No Grasp”). The
dashed black vertical line denotes time of grasp (tg = 5 s). Errors likely due to unmodeled
aerodynamic effects (ground effect and thrust stealing) are evident along the Z axis near tg.
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Besides the ground effect that caused poor tracking performance for the drone in

the vicinity of the object, we also observe thrust stealing – where the propeller airflow

is blocked by the grasped object – after a successful grasp. This is visible especially

in the Z error after t = 6 s in the grasp case, but not the no-grasp case. We can rule

out the effect of the relatively small added mass of the grasped object as the sole

cause of these errors: increasing the target surface area while keeping mass the same

left the quadrotor effectively unable to maintain altitude after grasping, and more off-

center grasps (such that the propellers are more blocked by the grasped object) led to

worse post-grasp trajectory tracking performance. While these aerodynamic effects

were exaggerated in our system due to our proximity to the maximum thrust of the

quadrotor, we believe that they will have a substantial impact on the performance of

any aerial manipulation platform and deserve serious consideration in future systems.
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Chapter 5

Conclusion

We presented a soft aerial manipulator that fully exploits compliance to enable aggres-

sive grasping of unknown objects. We proposed a decoupled control and trajectory

optimization approach for the soft gripper and the rigid quadrotor base, and showed

theoretically and experimentally that the quadrotor is stable despite disturbance from

the soft gripper. Finally, we observed that our system achieves consistent grasp of a

target object in realistic simulations and in real testing, and that it is a promising

alternative to a more rigid design.

The fact that our system is capable of grasping consistently with a simple open-

loop trajectory plan is, in our opinion, sufficient to demonstrate its utility compared

to current paradigms of aerial manipulation. However, we believe its promise extends

further. The fastest, most aggressive aerial manipulation carried out in research to our

knowledge took place at 2m/s; in simulation we can meet or exceed that mark, with

larger objects, in less constrained contexts. In real life, though, we have hitherto been

limited to grasping at 0.2m/s – 10% of the speed. Pushing our real system to match

its simulated promise will require substantial engineering/electro-mechanical design

work, to decrease gripper latency and improve performance. However, it will likely

also necessitate compensating for or at least modeling the "ground effect" and "thrust

stealing" aerodynamic effects which cause our trajectory to deviate near the instant

of grasp – and accurately modeling nonlinear aerodynamic phenomena of exactly this

sort is among the most pressing open problems in the field of aerodynamics.
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Another path forward might be incorporating vision, object detection and/or

SLAM in place of the restrictive and error-prone motion-capture environment (which

was associated with the only grasp failures in our tests). Other desirable future work

includes investigating the proposed “soft drone” design for other applications, includ-

ing aggressive landing, perching, and collision-resistant navigation. Softness has the

demonstrated potential to directly address the inherent limitations of aerial manip-

ulation – and the possibility to thereby revolutionize every context in which aerial

systems currently appear.
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Chapter 6

Appendices

6.1 Finite Element Methods for Soft Manipulators

This appendix provides an extended description of the finite element model (FEM)

of our soft gripper, including details on how to compute the energy of the soft gripper

(Sections 6.1.1-6.1.5) and how to obtain the actuator Jacobian (Section 6.1.6) required

to implement the inverse kinematics of Section 2.2 in the main manuscript.

6.1.1 FEM Model and Energy

A standard approach to model a continuously deformable body is to discretize it into

a finite set of nodes [48]:

Y
.
= [y1 y2 . . . yn] 2 R3⇥N (6.1)

where yi 2 R3 is the position of the i-th node.

These nodes are organized in a tetrahedral mesh, where each mesh element in-

cludes four not necessarily unique nodes. In our soft aerial manipulator (following

Bern et al. [4]), the mechanical elements are described by this mesh (parametrized

by Lamé parameters µ and ), tendons (defined by a list of nodes the tendon passes

through, rest length l and stiffness tendon) and pins (defined by a Cartesian position

and stiffness pin).
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The total energy of the soft body is the collective contribution of all of these

components as well as gravity. This depends on the node positions Y , tendon rest

lengths l and quadrotor position X. Mathematically, the total energy can be written

as:

E(Y , l,X) =Emesh(Y ) + Etendons(Y , l)

+Epins(Y ,X) + Egravity(Y )

(6.2)

The force acting on each node is the negative gradient of the total energy with

respect to the node position (a matrix of size 3⇥N), and the stiffness is the Jacobian

of the force or the negative Hessian of the energy; in our derivation, we vectorize Y to

obtain a Hessian of size 3N ⇥3N . All Hessians or Hessian components are vectorized

or referred to specifically using component-wise notation.

In the following we derive analytic expressions for all energies, forces, and stiff-

nesses associated with our mesh model. All of these are required to compute a stable

(energy-minimizing) configuration with Newton’s Method. We additionally describe

an expression for the actuator Jacobian dY
dl , the mapping from changes in tendon rest

lengths to changes in node positions at a stable configuration (following [4]), which

is computed from forces and stiffness already calculated in the process of energy

minimization.

6.1.2 Mesh Energy

Our FEM mesh analysis follows [48].

The energy contribution of each tetrahedral element Yijkl
.
= [yi yj yk yl] is

computed independently. We define the relative displacement of each node in the

element:

�Yijkl =

h
(yi � yl) (yj � yl) (yk � yl)

i

which contains the relative positions of vertices i, j, k with respect to vertex l.

When no force is applied, the element assumes the rest displacement �̄Yijkl; oth-

erwise it assumes a deformed displacement �Yijkl. These define the deformation
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gradient G, which is a linearised map between rest and deformed configurations:

G = �Yijkl(�̄Yijkl)
�1 (6.3)

The rest volume v̄ of the element is:

v̄ =
1

6
|det �̄Yijkl| (6.4)

Following [4] we use a Neo-Hookean material model, in which the strain energy density

of each element is defined in terms of G and vF = det(G), the ratio of deformed to

undeformed volume of the element:

 =
µ

2
tr(GTG� I)� µ ln(vF ) +



2
ln

2
(vF ) (6.5)

and energy Eijkl
mesh =  v̄, where µ and  are the Lamé parameters. The volumet-

ric component of the energy �µ ln(vF ) +

2 ln

2
(vF ) is only quasi-convex in general;

however, it is convex for vF < e
µ
+1 with µ

 � 0, so that for any material properties

convexity is guaranteed when the ratio of deformed to undeformed volume is less than

e.

The nodal force, or the negative energy gradient, is defined in terms of the First

Piola Stress Tensor Ps:

Ps = µ(G�G�T
) +  ln(vF )G

�T (6.6)

The force on the first three nodes in the element is:

h
Fi

mesh Fj
mesh Fk

mesh

i
= �v̄Ps�̄Y �T

ijkl (6.7)

and by conservation of momentum Fl
mesh = �(Fi

mesh + Fj
mesh + Fk

mesh).

The mesh stiffness is the gradient of nodal forces with respect to their positions.

For the purpose of this calculation we vectorize the element Yijkl 2 R12. Let r =
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1, 2, . . . , 12 be an index and Y (r)
ijkl be the r-th entry of Yijkl. First, we calculate

the gradient for the stress tensor, dPs
dYijkl

. We define d�Yijkl

dY
(r)
ijkl

as the constant 3 ⇥ 3

matrix representing the gradient of the deformed displacement matrix with respect

to coordinate Y (r)
ijkl. We first compute the gradient of the deformation gradient G

with respect to coordinate Y (r)
ijkl:

dG

dY (r)
ijkl

=
d�Yijkl

dY (r)
ijkl

�̄Y �1
ijkl (6.8)

We use dG

dY
(r)
ijkl

in (6.8) to compute the gradient of the stress tensor Ps (6.6) with respect

to coordinate Y (r)
ijkl:

dPs

dY (r)
ijkl

= (�µ+  ln(vF ))

 
�G�1 dG

dY (r)
ijkl

G�1

!T

+  tr

 
G�T dG

dY (r)
ijkl

!
G�T

+ µ
dG

dY (r)
ijkl

(6.9)

where dPs

dY
(r)
ijkl

is a 3⇥3 matrix. The relationship of nodal stiffness to the gradient of the

stress tensor is the same as the relationship of the nodal forces to the stress tensor

(6.7):


dFi

mesh

dY
(r)
ijkl

dFj
mesh

dY
(r)
ijkl

dFk
mesh

dY
(r)
ijkl

�
= �v̄

dPs

dY (r)
ijkl

�̄Y �T
ijkl

�
 
dFi

mesh

dY (r)
ijkl

+
dFj

mesh

dY (r)
ijkl

+
dFk

mesh

dY (r)
ijkl

!
=

dFl
mesh

dY (r)
ijkl

(6.10)

We vertically concatenate these four stiffnesses to form a vector dFijkl
mesh

dY
(r)
ijkl

2 R12, which

is the r-th column of the 12 ⇥ 12 vectorized element stiffness matrix. The mesh

energy Emesh, force Fmesh, and stiffness dFmesh
dY are the sums of the contributions of

all elements ijkl.

74



6.1.3 Tendon Energy

The routing path i1, . . . , in is the set of node indices tendon i is attached to; each of

these nodes is a via point. The routing Y ti = [yi1 , . . . ,yin ] is the Cartesian location

of each via point. The tendon length deformation � is defined in terms of Y ti and

rest length li:

�i =
n�1X

k=1

kY ti
k+1 � Y ti

k k2�li (6.11)

Following [4], the energy of tendon i is a smooth polynomial in �i defined in terms

of a small smoothing parameter ✏ (which we choose in practice to be zero) and tendon

modulus t (tendon in the main text):

Ei
tendon =

8
>>><

>>>:

0 if �i < �✏
t
6✏�

3
i +

t
2 �

2
i +

t✏
2 �i +

t✏2

6 if �i < ✏

t�2i +
t✏2

3 otherwise

(6.12)

The tendon tension �i is the (scalar) derivative of tendon energy with respect to

deformation:

�i =
dEi

tendon

d�i
(6.13)

The change in deformation per movement of each via point, d�i
dY ti

, is equivalent to the

sum of the unit vectors pointing from each via point to its neighbors (with trivial

exceptions at the endpoints, where the contribution of a neighbor is 0):

d�i
dY ti

k

=
Y ti

k�1 � Y ti
k

||Y ti
k�1 � Y ti

k ||2
+

Y ti
k+1 � Y ti

k

||Y ti
k+1 � Y ti

k ||2
(6.14)
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The force Fi
tendon = �dEi

tendon
dY ti

= � d�i
dY ti

�i. Tendon stiffness is the force Jacobian:

dFi
tendon

dY ti
= �d2Ei

tendon

(dY ti)2

=
d

dY ti
(� d�i

dY ti
�i)

= � d�i
dY ti

✓
d�i
dY ti

◆T

� d2�i
(dY ti)2

�i

= �d2Ei
tendon

d�2i

d�i
dY ti

✓
d�i
dY ti

◆T

� d2�

(dY ti)2
�i

(6.15)

This requires the second derivative of energy with respect to deformation d2Ei
tendon

d�2
i

,

which is straightforward from (6.12), as well as the gradient d�i
dY ti

in (6.14). It also

requires the tendon deformation Hessian d2�i
(dY ti )2 , which is the Jacobian of d�i

dY ti
(6.14).

Each element of (6.14) is the sum of two unit vectors, so we first determine the

3 ⇥ 3 Jacobian of a unit vector q̂ = [q1, q2, q3]T/
p
q21 + q22 + q23 with respect to its

components:

dq̂l

dqm
=

8
>>>><

>>>>:

q2l�1+q2l�2p
q21+q22+q23

3 if l = m

�qlqmp
q21+q22+q23

3 if l 6= m

(6.16)

The deformation Hessian d2�i
(dY ti )2 is sparse, with blocks on the main 3 ⇥ 3 diagonal

and those immediately above and below it. The main diagonal block k is the sum of

the Jacobians of the unit vectors towards the neighbors of Y ti
k , the block above it is

the negated Jacobian of the vector towards its predecessor, and the block below it is

the negated Jacobian towards its successor. As above, there are trivial exceptions for

endpoints. In other words, if we define qb
a as the unit vector from node Y ti

a to Y ti
b
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and q̂b
a =

qb
a

||qb
a||

the structure of d2�i
(dY ti )2 is as follows:

d2�i
(dY ti)2

=

2

66666666664

dq̂2
1

dq2
1

�dq̂1
2

dq1
2

0 . . . 0

�dq̂2
1

dq2
1

dq̂1
2

dq1
2
+

dq̂3
2

dq3
2

0

0 �dq̂3
2

dq3
2

. . . �dq̂n�2
n�1

dqn�2
n�1

0

... dq̂n�2
n�1

dqn�2
n�1

+
dq̂n

n�1

dqn
n�1

�dq̂n�1
n

dqn�1
n

0 0 0 �dq̂n
n�1

dqn
n�1

dq̂n�1
n

dqn�1
n

3

77777777775

(6.17)

This is used to compute the tendon stiffness as in (6.15).

The tendon energy Etendon, force Ftendon, and stiffness dFtendon
dY are the sums of the

contributions of all tendons.

6.1.4 Pin Energy

Each pin i is modeled as a spring with constant pin, connecting a mesh node yi

belonging to the soft gripper, to a point xpin
i belonging to the quadrotor base (for a

given drone state X). The energy for each pin i is as follows:

Ei
pin(yi,X) = pinkyi � xpin

i k2 (6.18)

The pin force Fi
pin = �dEi

pin

dyi
= �pin(yi�xpin

i ) and stiffness dFi
pin

dyi
= �pinI. The pin

energy, force, and stiffness are the sums of the contributions of all pins.

6.1.5 Gravity Energy

We approximate the gripper mass as concentrated in the mesh nodes, and denote

with mi the mass of node i. The gravitational potential energy is determined by the

mass and height of each node i:

Ei
gravity(Y ) = �mi g

Tyi (6.19)
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where g
.
= [0, 0,�9.81]Tm/s2 is the gravity vector. Gravitational force Fi

gravity = mig

and gravity has no stiffness. The gravitational energy and force are the sum of the

contribution of all nodes.

6.1.6 Actuator Jacobian

Finally, our algorithm requires the actuator Jacobian dY
dl . Our solution follows [4].

First, we note that the quasi-static assumption defines a subspace on which the

overall force F is zero everywhere. Thus, all derivatives of F are likewise 0 on this

subspace. Changing the tendon rest lengths l results in a change in tendon tensions

� and node positions Y ; the total derivative of F with respect to l yields partial

derivatives in � and Y , which sum to zero:

dF

dl
=
�F

��

d�

dl
+
�F

�Y

dY

dl
= 0 (6.20)

Besides dY
dl , which is the quantity for which we are solving, all the remaining terms

are known. �F
�� is exactly the aggregation of the matrices described in equation (6.14)

for each tendon. d�
dl is straightforward to compute from equations (6.11), (6.12),

(6.13). And � �F
�Y is the sparse system Hessian d2E

dY 2 :

d2E

dY 2
=� dFmesh

dY
� dFtendon

dY

� dFpin

dY
� dFgravity

dY

(6.21)

Given these matrices, the resulting sparse linear system (6.20) can be solved with any

linear equation solver.

6.2 Proof of Theorem 2

Here we prove that the quadrotor velocity and attitude, controlled as discussed in

Section 2.3, converge to the desired values despite the presence of the soft gripper.

The challenge lies in the fact that the soft load exerts a torque on the quadrotor center
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of mass which was not accounted for in the original geometric controller design.

6.2.1 Outline

We show that the attitude dynamics stabilize to a unique equilibrium, and the ve-

locity error asymptotically approaches a limit proportional to the deviation of the

attitude from equilibrium. Therefore, an unmodified geometric controller converges

to a desired quadrotor attitude and velocity even in the presence of the disturbance

induced by the soft load. The proof proceeds as follows:

• We analyze the tracking error and restate the theorem assumptions when re-

stricting the quadrotor to the vertical plane.

• We show that the attitude stabilizes asymptotically to ✓ = ✓eq. In general,

✓eq = ✓d iff. ✓d = 0.

• We bound the attitude errors in terms of d✓, the deviation of the attitude from

✓eq; the previous section showed that d✓ asymptotically approaches zero.

• We bound the asymptotic magnitude of the total velocity error proportional to

the horizontal velocity error and |d✓|.

• We show that the horizontal velocity error asymptotically approaches zero. In

light of the previous section, this further implies that the total velocity error

vanishes asymptotically; however, we show explicitly that the vertical velocity

error vanishes as well in the next section.

• Finally, we show that the vertical velocity error also asymptotically approaches

zero.

6.2.2 Tracking Errors and Assumptions in the Plane

As is common in aerial manipulation (see, e.g., Thomas et al. [51]), we consider a case

in which the quadrotor is confined to the vertical plane, with the quadrotor velocity

and attitude denoted as (vx, vz, ✓) (Fig. 6-1). We denote the desired velocity and

attitude as (vxd, vzd, ✓d) where ✓d is chosen such that velocity converges to the desired

velocity (as described in (6.47) below). This allows us to express all control quantities
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defined on the rotation manifold SO(2) in terms of a single angle. In particular, the

rotation errors in (2.18) simplify to elementary trigonometric functions:

 = 1� cos(✓ � ✓d)

er =
d 

d✓
= sin(✓ � ✓d)

e⌦ = ✓̇ � ✓̇d

(6.22)

Similarly, the velocity errors become:

ev = [evx , evz ]
T
= [vx, vz]

T � [vxd, vzd]
T (6.23)

And the quadrotor body frame R is defined solely in terms of the angle ✓:

R = [bx, bz]

=

2

4cos(✓) � sin(✓)

sin(✓) cos(✓)

3

5
(6.24)

We define the load center of mass position relative to the quadrotor center of mass

xload, zload, mass mload and distance from the attachment point to the load center of

mass when the quadrotor is vertical LCM (Fig. 6-1).

Without aerodynamic drag, the load does not deform and there is no uncompen-

sated load torque. Drag (assumed to act on the quadrotor center of mass) results

in a deformation of the load and an uncompensated torque on the quadrotor (Fig.

6-2). This can act either to increase or decrease ✓, depending on whether the x com-

ponents of velocity and thrust are aligned. However, the state in which velocity and

thrust point in opposite directions is inherently transient (because both drag and

thrust act against velocity, thus quickly reducing velocity and drag); similarly for the

case in which drag forces exceed thrust forces. Our assumptions on the load torque

in (2.22) focus on the limiting case in which velocity and acceleration are aligned and

the quadrotor has achieved static equilibrium (zero acceleration), but apply to any

scenario in which the drag force is opposite and smaller than the thrust force (or does

80



Figure 6-1: Quadrotor confined to the vertical plane. The figure shows the quadrotor body
frame R = [bx, bz], angle ✓, soft load center of mass relative to the quadrotor xLoad, zLoad,
and the rigid load centers of mass (also compare to Fig. 2-3(b)).

not exist at all).

We denote the magnitude of the load’s first moment of mass with mL = mloadLCM .

We further define g
.
= kgk, which is the norm of the gravity vector. With this

notation, the assumptions in (2.22) reduce to:

�⇡/2 < ✓ < ⇡/2 and �⇡/2 < ✓d < ⇡/2 (6.25)

|⌧load|  mLg |sin(✓)| (6.26)

sgn(⌧load) = � sgn(✓) (6.27)

Intuitively, (6.25) requires the the drone is not upside-down, while (6.26)-(6.27) re-

quire that (i) when the quadrotor is tilted, the load deforms under gravity such that

its center of mass is lower and closer to the vertical than that of a corresponding rigid

load (Fig. 2-3 and Fig. 6-1), and (ii) at rest and with the quadrotor level, the load

center of mass is directly below the quadrotor center of mass. This implies that the

torque ⌧load (exerted by the soft load) is always of the opposite sign as ✓ and is upper-

bounded by the torque exerted by a rigid load. We remark that these assumptions

are satisfied by a symmetric soft load like that considered in this thesis.

We further define Eload as the gravitational potential energy of the load in the
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(a) (b) (c)

Figure 6-2: (a) With no aerodynamic force and no torque, the load does not deform and
exerts no torque. (b) With aerodynamic forces opposing thrust forces, the load deforms and
exerts a torque which decreases the quadrotor angle. (c) With aerodynamic forces acting
with thrust forces, the load exerts a torque which increases the quadrotor angle.

non-rotating frame fixed to the quadrotor center of mass. Under our assumptions

this is symmetric about ✓ = 0 and upper-bounded by the energy of a rigid load:

Eload = mload zload g

 �mL cos(✓) g
(6.28)

By conservation of energy, the gradient of gravitational potential Eload with respect

to ✓ corresponds to the gravitational torque ⌧load:

dEload

d✓
= �⌧load (6.29)

6.2.3 Attitude Stability

Given moment of inertia J , the attitude dynamics (restricted to the vertical plane)

are:

J ✓̈ = ⌧ + ⌧load (6.30)

We choose the control ⌧ as in (6.22):

⌧ = �krer � k⌦e⌦ + J ✓̈d (6.31)
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where kr, k⌦ are the control gains. Substituting the controller (6.31) back into the

dynamics (6.30), the closed-loop attitude dynamics become:

J ✓̈ = �krer � k⌦e⌦ + J ✓̈d + ⌧load
(6.32)

We show that, under assumptions (6.25)-(6.27), the closed-loop system (6.32) is

stable. We define a Lyapunov function V✓ and show that this is negative semi-definite

so the attitude asymptotically approaches the equilibrium angle ✓ = ✓eq. A Lyapunov

function V✓ can be defined by analogy to the total energy of a double pendulum, where

the upper pendulum stabilizes to ✓d rather than the vertical, the lower pendulum

is non-rigid and in quasi-static equilibrium and there is angular velocity damping

proportional to e⌦:

V✓ =
J

2
e2⌦ + kr + Eload (6.33)

We compute the gradient of V✓ using (6.32), (6.22) and (6.28):

V̇✓ = e⌦(J ✓̈ � J ✓̈d) + krere⌦ � ⌧loade⌦

= e⌦(�krer � k⌦e⌦ + ⌧load) + krere⌦ � ⌧loade⌦

= �k⌦e
2
⌦  0

(6.34)

The Lyapunov function V✓ is negative semi-definite, so the system will converge

to the largest invariant set {e⌦ = 0, ė⌦ = 0}; we substitute these values into (6.32) to

find the equilibrium angle ✓eq:

J ✓̈ � J ✓̈d + k⌦e⌦ = �krer + ⌧load

Jė⌦ + k⌦e⌦ = �krer + ⌧load

0 = �krer(✓eq) + ⌧load(✓eq)

⌧load(✓eq) = kr sin(✓eq � ✓d)

(6.35)
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In general, the stable angle ✓eq is not equal to the desired angle ✓d. We establish

the relationship between these two angles below. Because ⌧load acts to decrease the

magnitude of ✓ (6.27), it is clear that |✓eq| |✓d|. This implies that sgn sin(✓eq � ✓d) =

� sgn ✓d. We denote sgn ✓d as sgn✓d and show that this is equal to sgn ✓eq using (6.27),

(6.35):

sgn(⌧load) = sgn kr sin(✓eq � ✓d)

� sgn ✓eq = sgn sin(✓eq � ✓d)

sgn ✓eq = sgn✓d

(6.36)

We use (6.26), (6.36) to bound (6.35):

mL g |sin(✓eq)| � kr|sin(✓eq � ✓d)|

mL g |sin(✓eq)| � �kr sin(✓eq � ✓d) sgn✓d

(6.37)

Which we expand using the trigonometric identity sin(a�b) = sin(a) cos(b)�cos(a) sin(b):

mL g |sin(✓eq)| � �kr(sin(✓eq) cos(✓d)

� cos(✓eq) sin(✓d)) sgn✓d

mL g |sin(✓eq)| � �kr(|sin(✓eq)|cos(✓d)

� cos(✓eq)|sin(✓d)|)

(6.38)

We solve (6.38) for a bound on the magnitude of ✓eq as a function of ✓d:

mL g � �kr(|sin(✓eq)|cos(✓d)

� cos(✓eq)|sin(✓d)|)/|sin(✓eq)|

mL g � �kr

✓
cos(✓d)�

|sin(✓d)|
|tan(✓eq)|

◆

|tan(✓eq)| �
|sin(✓d)|

mL g
kr

+ cos(✓d)

|✓eq| �

�����tan
�1

 
sin(✓d)

mL g
kr

+ cos(✓d)

!�����

(6.39)
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Thus, we have |✓d| � |✓eq| �
���tan�1

⇣
sin(✓d)

(mL g )/kr+cos(✓d)

⌘���. When ✓d is zero, these bounds

are equal and ✓eq = ✓d = 0; otherwise ✓eq 6= ✓d.

6.2.4 Bounding the Rotation Error

In the previous section, we have shown convergence to ✓eq rather than ✓d. This means

that there exists some equilibrium rotation error er(✓eq). Further, it is convenient to

express er(✓) in general in terms of d✓ = ✓ � ✓eq, rather than as ✓ � ✓d. We provide

upper bounds for both these terms here. To simplify notation, in the following we

denote sin(d✓) by sd✓.

We can bound elementary trigonometric functions of ✓eq using (6.39) and the

definition of the tangent:

|sin(✓eq)| �

��������

sin(✓d)r⇣
mL g
kr

⌘2
+ 2

mL g
kr

cos(✓d) + 1

��������
(6.40)

|cos(✓eq)| 

��������

mL g
kr

+ cos(✓d)r⇣
mL g
kr

⌘2
+ 2

mL g
kr

cos(✓d) + 1

��������
(6.41)

We define a constant ⌘ =

mL g
krq

(
mL g
kr )

2
+1

. From (6.40), (6.41) and (6.25), we show that

the rotation error associated with the equilibrium angle, er(✓eq), can be bounded as
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Figure 6-3: The desired force fd and desired angle ✓d.

a function of sin(✓d):

|er(✓eq)| = |sin(✓eq � ✓d)|

= |sin(✓eq) cos(✓d)� cos(✓eq) sin(✓d)|



��������

sin(✓d) cos(✓d)� [
mL g
kr

+ cos(✓d)] sin(✓d)r⇣
mL g
kr

⌘2
+ 2

mL g
kr

cos(✓d) + 1

��������

1


mL g
krr⇣

mL g
kr

⌘2
+ 2

mL g
kr

cos(✓d) + 1

|sin(✓d)|

 ⌘|sin(✓d)|

(6.42)

And from (6.42), er(✓) in general can be bounded as:

|er(✓)| = |sin(✓eq � ✓d + d✓)|

 |sin(✓eq � ✓d)|+|sd✓|

 ⌘|sin(✓d)|+|sd✓|

(6.43)

These allow us to discuss the evolution of rotation error er as d✓ asymptotically

approaches 0.

1[Footnote to Eq. 6.42]: This is non-trivial. Assume without loss of generality that ✓d, ✓eq are
positive; otherwise we can multiply by sgn✓d as we do elsewhere. This implies that sin(✓d), sin(✓eq)
are positive; cos(✓d), cos(✓eq) are positive from (6.25). Further, from (6.36) sin(✓eq � ✓d) is negative
if ✓d, ✓eq are positive. We have sin(✓eq � ✓d) = sin(✓eq) cos(✓d) � cos(✓eq) sin(✓d), so cos(✓eq) sin(✓d)
must be larger than sin(✓eq) cos(✓d). Therefore, to maximize the magnitude of sin(✓eq � ✓d) we
upper-bound cos(✓eq) and lower-bound sin(✓eq). These are the bounds provided by (6.40), (6.41).
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6.2.5 Bounding the Total Velocity Error

The velocity error dynamics in the vertical plane can be written as:

mėv = mg + fbz (6.44)

We choose the desired thrust force fd and actual thrust force f as in the geometric

controller equations (2.19), which when restricted to the vertical plane and under the

assumptions of the theorem becomes:

fd = �kvev �mg (6.45)

f = fd · bz (6.46)

We choose the desired angle ✓d based on (6.45) to align bz with the desired force fd

(Fig. 6-3).

✓d = sin
�1

✓
�kvevz
||fd||

◆
(6.47)

We define rotation errors and choose torques as in the previous section such that ✓

asymptotically approaches ✓eq.

Similarly to Lee et al. [28], we rewrite the closed-loop dynamics in terms of

attitude error er. First we add and subtract f
cos(✓�✓d)

fd
||fd||

:

mėv = mg +
f

cos(✓ � ✓d)

fd
||fd||

+
f

cos(✓ � ✓d)

✓
cos(✓ � ✓d)bz �

fd
||fd||

◆

= mg +
f

cos(✓ � ✓d)

fd
||fd||

+
f

cos(✓ � ✓d)
w

(6.48)

Where w is defined as:

w = cos(✓ � ✓d)bz �
fd

||fd||
(6.49)
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fd
||fd||

is the desired bz orientation, which from (6.47) is [� sin(✓d), cos(✓d)]T. From

(6.24) bz = [� sin(✓), cos(✓)]T. We substitute these values into (6.49).

w = cos(✓ � ✓d)

2

4� sin(✓)

cos(✓)

3

5�

2

4� sin(✓d)

cos(✓d)

3

5 (6.50)

Using common trigonometric identities, we show that w (6.50) is proportional to the

rotation error er and aligned with the quadrotor axis bx = [cos(✓), sin(✓)]T (6.24).

w = (sin(✓) sin(✓d) + cos(✓) cos(✓d))

2

4� sin(✓)

cos(✓)

3

5

�

2

4� sin(✓d)

cos(✓d)

3

5

=

2

4 sin(✓d)(1� sin
2
(✓))� sin(✓) cos(✓d) cos(✓)

� cos(✓d)(1� cos
2
(✓)) + cos(✓) sin(✓d) cos(✓)

3

5

=

2

4 sin(✓d) cos2(✓)� sin(✓) cos(✓d) cos(✓)

� cos(✓d) sin
2
(✓) + cos(✓) sin(✓d) cos(✓)

3

5

= (sin(✓d) cos(✓)� cos(✓d) sin(✓))

2

4cos(✓)

sin(✓)

3

5

= sin(✓d � ✓)

2

4cos(✓)

sin(✓)

3

5

= �erbx

(6.51)

From (6.46) ||fd||= f
cos(✓�✓d)

. This, with (6.51) and (6.45), allows us to reduce the

closed loop dynamics (6.48) to the desired correction term proportional to the velocity

error, as well as a disturbance term along the quadrotor bx axis proportional to the
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magnitude of the desired force fd and the rotation error er:

mėv = mg + ||fd||
fd

||fd||
+ ||fd||w

= mg + fd � ||fd||erbx

= �kvev � ||fd||erbx

(6.52)

We show that it is possible to define a bound defined by the horizontal velocity

error evx and the deviation from equilibrium attitude d✓, above which the velocity

error decreases. In order to do so we define a Lyapunov candidate Vv and show that

this is negative definite when ||ev|| exceeds some threshold. Consider the Lyapunov

candidate Vv, which if negative definite would demonstrate velocity convergence:

Vv =
1
2m||ev||2 (6.53)

V̇v = ev ·mėv (6.54)

(6.55)

We can upper-bound V̇v (6.54) using (6.52):

V̇v = ev · (�kvev � ||fd||erbx)

 ||ev||(�kv||ev||+||fd|| |er|)
(6.56)

We further upper-bound V̇v by considering the term ||fd|| |er|. As in Appendix 6.2.4,

we define d✓ = ✓ � ✓eq and denote sin(d✓) by sd✓. First, from (6.47) the horizontal

component of the desired force is equal to � sin(✓d)||fd||:

|sin(✓d)| ||fd||= kv|evx | (6.57)

Equations (6.57) and (6.43) allow us to bound ||fd|| |er| as jointly affine in evx , sd✓:

||fd|| |er|  ||fd||(⌘|sin(✓d|) + |sd✓|)

 kv⌘|evx |+||fd|| |sd✓|
(6.58)
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Further, using (6.45) we can bound ||fd|| in terms of its components:

||fd|| kv||ev||+mg (6.59)

Finally, we can bound V̇v (6.56) in terms of evx , sd✓ by using (6.58), (6.59):

V̇v  ||ev||(�kv||ev||+||fd|| |er|)

 ||ev||(�kv||ev||+kv⌘|evx |+||fd|| |sd✓|)

 ||ev||(�kv||ev||+kv⌘|evx |+(kv||ev||+mg ) |sd✓|)

 ||ev||(�kv||ev||(1� |sd✓|) + kv|evx |⌘ +mg |sd✓|)

(6.60)

When ev exceeds some threshold establev , V̇v is negative definite and ||ev|| decreases

monotonically. This occurs when the right-hand-side of (6.60) is negative:

0 � ||ev||(�kv||ev||(1� |sd✓|) + kv|evx |⌘ +mg |sd✓|)

0 � �kv||ev||(1� |sd✓|) + kv|evx |⌘ +mg |sd✓|

||ev|| �
|evx |⌘ + mg

kv
|sd✓|

1� |sd✓|
.
= establev

(6.61)

Equation (6.61) bounds the norm of total velocity error ||ev||, but evx appears in the

bound so velocity stability has not yet been shown. In the next section, we use the

results above to show asymptotic convergence to the desired horizontal velocity as ✓

approaches ✓eq.

6.2.6 Bounding Horizontal Velocity

In the previous section we defined a bound on ||ev|| affine in |evx |, |sd✓| above which

velocity error decreases. However, clearly |evx | ||ev||, so |evx |� establev implies ||ev||�

establev . Therefore, we can substitute |evx | for ||ev|| in (6.61) to define a threshold establevx

proportional only to d✓, above which the magnitude of horizontal velocity error |evx |
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decreases monotonically:

|evx | >
|evx |⌘ + mg

kv
|sd✓|

1� |sd✓|

|evx |(1� |sd✓|�⌘) >
mg

kv
|sd✓|

|evx | >
mg
kv

|sd✓|
(1� |sd✓|�⌘)

.
= establevx

(6.62)

|evx | decreases monotonically to establevx ; this threshold is linear in |sd✓|, so as d✓ asymp-

totically approaches zero evx does likewise. Note that (6.47) implies that ✓d approaches

zero with evx , and that from (6.39) ✓d = 0 implies ✓eq = ✓d. Therefore, horizontal

velocity convergence also implies that rotation error er vanishes asymptotically.

Equation (6.61) provides a bound affine in |evx |, |sd✓| above which velocity error

decreases monotonically. We have now shown that both of these terms asymptotically

approach zero; this is sufficient to establish that velocity error likewise vanishes over

time. However, we also show explicitly below that vertical velocity error evz vanishes.

6.2.7 Bounding Vertical Velocity

Given the previous results, we show that there exists a bound on evz affine in |evx |, |sd✓|

above which it decreases monotonically. Based on (6.48) and the definition bx =

[cos(✓), sin(✓)]T, the vertical velocity dynamics are:

m ˙evz = �kvevz � ||fd||er sin(✓) (6.63)

Consider the Lyapunov candidate Vvz :

Vvz =
1

2
me2vz

˙Vvz = evz(m ˙evz)
(6.64)
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As in (6.60), we can use (6.58), (6.59), (6.63) to bound ˙Vvz (6.64):

˙Vvz  |evz |(�kv|evz |

+ kv|evx |⌘ + (kv||ev||+mg )|sd✓|)
(6.65)

From (6.23) we have ||ev||� |evx |+|evz |, so similarly to (6.61) we set the right-hand-

side of (6.65) to zero in order to find a bound above which evz decreases monotonically:

0 � �kv|evz |

+ kv|evx |⌘ + (kv||ev||+mg )|sd✓|

kv|evz | � kv|evx |⌘ + (kv||ev||+mg )|sd✓|

kv|evz | � kv|evx |⌘ + (kv|evx |+kv|evz |+mg )|sd✓|

kv|evz |(1� |sd✓|) � (⌘ + |sd✓|)kv|evx |+mg |sd✓|

|evz | �
(⌘ + |sd✓|)|evx |+mg

kv
|sd✓|

1� |sd✓|
.
= establevz

(6.66)

|evz | decreases monotonically to establevz . Because d✓, evx , asymptotically approach zero,

establevz – and therefore evz – do so as well. We have now shown explicitly that all

components of the velocity error ev asymptotically approach zero, so the velocity

controller described here asymptotically tracks the desired velocity.
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