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Abstract

The present thesis is concerned with the study of Deligne categories and their ap-
plication to various representation-theoretic problems. The lens that is used to view
Deligne categories in this study is the one of ultrafilters and ultraproducts. As will be
shown in our work, this approach turns out to be a very powerful one. Especially if
one wants to solve such representation-theoretic problems as presented by P.Etingof
in his papers on "Representation theory in complex rank" ([13, 14]).

The results are presented in two parts. In the first one (Chapters 2 and 3) an
introduction to the theory of ultrafilters is given, and the construction of the Deligne
categories through ultrafilters is presented. This also allows us to understand how
one can make sense of Deligne categories as a limit in rank and characteristic.

The later part of the text describes two applications of this construction to actual
representation-theoretic problems. In Chapter 4 the full classification of simple com-
mutative, associative and Lie algebras in Rep(𝑆𝜈) for 𝜈 /∈ Z≥0 is stated and proven.
The second application, the construction of deformed double current algebras as a
space of endomorphisms of a certain ind-object of Rep(𝑆𝜈), is contained in Chapter
5. There it is also proven that this construction agrees with Guay’s deformed double
current algebra of type 𝐴 if the rank 𝑟 ≥ 4 (Guay’s algebra is presently only defined
for such rank), and the presentation by generators and relations for the case of 𝑟 = 1
is given.

Thesis Supervisor: Pavel Etingof
Title: Professor of Mathematics
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Chapter 1

Introduction

Deligne categories, the main object of the studies contained here, were first intro-

duced by P. Deligne and J. Milne in [8], and then studied in more detail by P. Deligne

in his seminal work La catégorie des représentations du groupe symétrique 𝑆𝑡, lorsque

t n’est pas un entier naturel ([7]). In this paper he showed how one can extend the

usual categories of representation of symmetric group Rep(𝑆𝑛) to the non-integer

values of 𝑛. Thus, he was able to construct the category Rep(𝑆𝜈) that will be studied

in the present thesis. Moreover, he also provided an outline of the construction of

other interpolation categories: Rep(𝐺𝐿𝜈),Rep(𝑆𝑂𝜈) and Rep(𝑆𝑝𝜈).

Since then the study of these categories was taken on by many mathematicians.

A lot of important results on Rep(𝑆𝜈) were presented in papers [4, 5] by J. Comes and

V. Ostrik; the notion of interpolation category was also generalized in many ways

through the work of F.Knop in [37, 38] and M. Mori in [42]. However the idea to try

and transfer various representation-theoretic structures from finite rank to Deligne

categories and study them in that setting, which forms the core of the approach to

Deligne categories taken in the present thesis, was first fully expressed in the papers
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on Representation theory in complex rank by P. Etingof ([13, 14]). Since then many

of his students worked on the problems originating in this milieu, including, but not

limited to: I. Entova-Azenbud ([10, 11, 12]), N. Harman ([30, 31]), C. Ryba ([46, 47]),

A. Utiralova ([54, 55]) and the author of the present thesis ([18, 31, 33, 34]).

Mathematicians have also applied different tools to study of Deligne categories.

Initially (for examples in the papers by J. Comes and V. Ostrik) one worked with the

original construction of Rep(𝑆𝜈) as a Karoubian envelope of the additive envelope

of a certain combinatorial skeletal category. However the solution of representation-

theoretical problems in complex rank called for another way of working with Deligne

categories. An approach was needed that would allow one to view Deligne cate-

gories more directly as the categories that interpolate usual finite rank categories

Rep(𝑆𝑛). An outline of one such approach that looks at Deligne categories as cat-

egories parametrized by the A1 scheme can be found in [41, 49]. Another approach

that views Deligne categories as limits in rank and characteristic of the finite rank

categories by using ultrafilters was first outlined by P. Deligne in his letter to V.Ostrik

and later discussed in more detail by N. Harman in [30] and his graduate Thesis.

It is this last approach, which the author of the present thesis found most useful

in his research, and which will be discussed and applied in what follows. What the

reader will find below is the compilation of the three papers written by the author

(together with co-authors) during his graduate studies, namely [31, 18] and [34]. All

of these papers use the construction of Rep(𝑆𝜈) through as an ultraproduct in order

to solve other representation-theoretic problems. Another paper, [33], which applies

the same ideas to the case of the Deligne category Rep(𝐺𝐿𝜈) and the Yangians in

complex rank, is not included here for the sake of space.

In Part I of the thesis, Construction of Deligne categories through ultrafilters, the

foundation for everything else discussed later is given. In Chapter 2 the notation used
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through the rest of the text is introduced, the original construction of the Deligne

category Rep(𝑆𝜈) is given, and, finally, an overview of the theory of ultrafilters and

ultraproducts together with many examples of their application in algebraic setting is

presented. In Chapter 3 the construction of Rep(𝑆𝜈) as an ultraproduct is explained,

together with some other related constructions of the same kind.

After that Part II, Applications, leads the reader, as the name suggests, to look

on a few applications of the tools presented in Part I to some concrete representation-

theoretic problems. The first of them, namely, to classify all possible simple commu-

tative, associative and Lie algebras in Rep(𝑆𝜈) is discussed in Chapter 4. This can

be seen as continuation of the work started by L. Sciarappa in [49], there he classified

all simple commutative algebras in Rep(𝑆𝜈) for transcendental 𝜈1. This problem is

successfully solved by us in the case of associative and Lie algebras (see Theorems

4.2.1.2 and 4.3.2.5) and the conjecture is stated for the case of Lie superalgebras (see

Conjecture 4.4.1.7).

The next application, presented in Chapter 5, is concerned with construction of

deformed double current algebras (DDCAs) through Deligne categories. These al-

gebras were studied at length by N. Guay with co-authors (see [27, 24, 25, 26, 28])

and other mathematicians (see for example [53]). These papers gave various presen-

tations of the DDCA associated with gl𝑟 for 𝑟 ≥ 4. Through Deligne category we

succeed, by using the notion of the extended Cherednik algebra recently introduced

in [19], in constructing these algebras for any integer rank (i.e. value of 𝑟)2. In later

1N. Harman later outlined in [30], how one can extend Sciarappa’s arguments to algebraic 𝜈
using the language of ultrafilters

2However it should be noted that it is not the only advantage of our approach to DDCA.
Another consists in the fact, that by constructing DDCA as a spherical subalgebra of the extended
Cherednik algebra in complex rank, we automatically obtain a large family of representations of
DDCA. Indeed, any representation 𝑀 of the extended Cherednik algebra in complex rank gives us
a structure of a representation of the DDCA on the space of homomorphisms HomRep(𝑆𝜈)(C,𝑀).

13



sections we prove that for 𝑟 ≥ 4 our construction gives the same algebra as the one

studied by Guay. In the last sections of this Chapter we also give a presentation of

DDCA in rank 1 by generators and relations by showing that this algebra is given by

the most general flat filtered deformation of 𝑈(po), a universal enveloping algebra of

the Poisson algebra of polynomials on the symplectic plane. Then, at last, we extend

these considerations to the case of other, more general DDCA in rank one.
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Construction of Deligne categories

through ultrafilters
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Chapter 2

Background and definitions

In this chapter we will provide an overview of the two main conceptual building

blocks of the present thesis: Deligne Category Rep(𝑆𝜈) and ultraproducts.

2.1 General notation and definitions

First, however, let us introduce a number of various definitions and pieces of notation

that might not be entirely standard.

In what follows we will use a lot of different categories of representations. We

will always denote the usual (“finite rank") categories of representations using the

boldface font, and use the regular font for the interpolation categories (e.g. Rep(𝑆𝜈)).

For example we will use the following notation for the categories of representations

of symmetric groups. For convenience set F0 = Q.

Definition 2.1.0.1. By Rep(𝑆𝑛; k) denote the category of (possibly infinite di-

mensional) representations of the symmetric group 𝑆𝑛 over k. By Rep𝑓 (𝑆𝑛;k) de-

note the full subcategory of finite dimensional representations. Also for 𝑝 ≥ 0 set
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Rep𝑝(𝑆𝑛) := Rep(𝑆𝑛;F𝑝) and Rep𝑓𝑝(𝑆𝑛) := Rep𝑓 (𝑆𝑛;F𝑝).

Note that for 𝑝 > 𝑛 the latter category is semi-simple and the irreducible objects

are the same as in characteristic 0. More precisely, irreducible representations over

F𝑝 can be obtained as a reduction modulo 𝑝 of irreducible Q-representations which

sit inside irreducible C-representations as a Q-lattice of the full rank. Below we will

mostly work in the positive characteristic with 𝑝 > 𝑛.

Definition 2.1.0.2. By 𝒜𝑛 denote the subgroup of 𝑆𝑛 consisting of even permuta-

tions.

Now we would like to introduce some notation concerned with Young diagrams.

Definition 2.1.0.3. For a Young diagram 𝜆, by 𝑙(𝜆) denote the number of rows of

the diagram (the length), by |𝜆| the number of boxes (the weight) and by ct(𝜆) the

content of 𝜆, i.e., ct(𝜆) =
∑︀

(𝑖,𝑗)∈𝜆(𝑗 − 𝑖), where (𝑖, 𝑗) denotes the box of 𝜆 in row 𝑖

and column 𝑗.

Now we can fix notation for irreducible representations of 𝑆𝑛.

Definition 2.1.0.4. For 𝑝 = 0 or 𝑝 > 𝑛 and a Young diagram 𝜆 such that |𝜆| = 𝑛

denote by 𝑋𝑝(𝜆) the unique simple object of Rep𝑝(𝑆𝑛) corresponding to 𝜆.

For 𝑛 > 0 and 𝑝 ≥ 0 denote by h𝑝𝑛 ∈ Rep𝑝(𝑆𝑛), or shortly by h𝑛 (if there is no

ambiguity about the characteristic) the standard permutation representation of 𝑆𝑛.

Also, by 𝑠𝑔𝑛 denote the 1-dimensional sign representation of 𝑆𝑛.

There is an important central element in k[𝑆𝑛]:

Definition 2.1.0.5. Denote the central element
∑︀

1≤𝑖<𝑗≤𝑛 𝑠𝑖𝑗 ∈ k[𝑆𝑛] by Ω𝑛.

Remark 2.1.0.6. Note that Ω𝑛 acts on 𝑋𝑝(𝜆) by ct(𝜆).
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As another piece of notation, below we will frequently use the following operation

on Young diagrams:

Definition 2.1.0.7. For a Young diagram 𝜆 and an integer 𝑛 ≥ 𝜆1 + |𝜆| denote by

𝜆|𝑛 the Young diagram (𝑛− |𝜆|, 𝜆1, . . . , 𝜆𝑙(𝜆)), where 𝜆𝑖 is the length of the 𝑖-th row

of 𝜆.

In what follows we will often use the language of tensor categories. Here’s what

we mean by a tensor category (see Definition 4.1.1 in [16]):

Definition 2.1.0.8. A tensor category 𝒞 is a k-linear locally finite abelian rigid

symmetric monoidal category, such that End𝒞(1) ≃ k.

We will also fix a notation for the symmetric structure:

Definition 2.1.0.9. For a couple of object 𝑋, 𝑌 of a tensor category 𝒞, we will

denote by 𝜎𝑋,𝑌 the map from 𝑋 ⊗ 𝑌 to 𝑌 ⊗𝑋, given by the symmetric structure,

i.e., the map permuting 𝑋 and 𝑌 . When 𝑌 = 𝑋 we will also denote this map by

𝜎𝑋 . Oftentimes, when the object we are referring to is obvious from the context, we

will denote it simply by 𝜎.

We will also use the notion of the ind-completion of a category. For a general

category ind-objects are given by diagrams in the category, with morphisms being

morphisms between diagrams. However, in the case of a semisimple category there

is a slightly more direct description.

Definition 2.1.0.10. For a semisimple category 𝒞 with the set of simple objects

{𝑉𝛼} for 𝛼 ∈ 𝐴 the category1 IND(𝒞) is the category 𝒟 with objects
⨁︀

𝛼∈𝐴𝑀𝛼⊗𝑉𝛼,

1We use all uppercase letters to denote IND, so as not to confuse it with the induction functors.
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where 𝑀𝛼 are (possibly infinite dimensional) vector spaces. The morphism spaces

are given by:

Hom𝒟(
⨁︁
𝛼∈𝐴

𝑀𝛼 ⊗ 𝑉𝛼,
⨁︁
𝛽∈𝐴

𝑁𝛽 ⊗ 𝑉𝛽) =
∏︁
𝛼∈𝐴

HomVect(𝑀𝛼, 𝑁𝛼).

Thus, in this case, we can think of ind-objects as infinite direct sums of objects

of 𝒞.

Next we would like to explain a way to define an ind-object of 𝒞.

Construction 2.1.0.11. Suppose 0 = 𝑋0 ⊂ 𝑋1 ⊂ 𝑋2 ⊂ · · · ⊂ 𝑋𝑖 ⊂ . . . is a nested

sequence of objects of 𝒞. Then their formal colimit, which we denote by 𝑋, is an

object of IND(𝒞). We can write it down explicitly in terms of Definition 2.1.0.10.

Indeed, suppose we have 𝑋𝑖 =
⨁︀

𝛼∈𝐴𝑀𝑖,𝛼 ⊗ 𝑉𝛼. Then it follows that:

⋃︁
𝑖∈N

𝑋𝑖 = 𝑋 =
⨁︁
𝛼∈𝐴

(︃⋃︁
𝑖∈N

𝑀𝑖,𝛼

)︃
⊗ 𝑉𝛼,

where
⋃︀
𝑖∈N𝑋𝑖 = lim−→𝑋𝑖 stands for the colimit along the diagram consisting of points

numbered by N and arrows from 𝑖 to 𝑖+ 1 for all 𝑖.

Remark 2.1.0.12. Suppose that 𝑋 and 𝑌 are two objects constructed via Con-

struction 2.1.0.11. Then:

HomIND(𝒞)(𝑋, 𝑌 ) = lim←−
𝑖∈N

⋃︁
𝑗∈N

Hom𝒞(𝑋𝑖, 𝑌𝑗).

In case when 𝑋 is actually an object of 𝒞, this simplifies to:

HomIND(𝒞)(𝑋, 𝑌 ) =
⋃︁
𝑗∈N

Hom𝒞(𝑋, 𝑌𝑗).
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In other words, 𝑋 is a compact object of IND(𝒞).

Example 2.1.0.13. We have Rep𝑝(𝑆𝑛) = IND(Rep𝑓𝑝(𝑆𝑛)). Indeed, this holds for

the representation category of any finite dimensional algebra.

We will also use a notion of a bifiltered algebra below.

Definition 2.1.0.14. A bifiltered vector space 𝑉 is a vector space together with

a collection of subspaces 𝐹 𝑖,𝑗𝑉 for 𝑖, 𝑗 ∈ Z≥0 such that 𝐹 𝑖,𝑗𝑉 ⊂ 𝐹 𝑖+1,𝑗𝑉 and

𝐹 𝑖,𝑗𝑉 ⊂ 𝐹 𝑖,𝑗+1𝑉 , and there exists a basis of 𝑉 such that the intersection of this

basis with 𝐹 𝑖,𝑗𝑉 gives a basis of 𝐹 𝑖,𝑗𝑉 (i.e. the filtrations 𝐹 𝑖,·𝑉 and 𝐹 ·,𝑗𝑉 are com-

patible).

A bifiltered algebra 𝐴 is an algebra which is bifiltered as a vector space such that

𝐹 𝑖,𝑗𝐴 · 𝐹 𝑖′,𝑗′𝐴 ⊂ 𝐹 𝑖+𝑖′,𝑗+𝑗′𝐴.

This structure also induces a few standard filtrations:

Remark 2.1.0.15. Notice that bifiltered structure on 𝐴 induces two filtrations on 𝐴

via restriction. The first one is given by 𝐹 𝑖
ℎ𝐴 = 𝐹 𝑖,∙ and we will call it the horizontal

filtration of 𝐴. The second one is given by 𝐹 𝑖
𝑣𝐴 = 𝐹 ∙,𝑖𝐴 and we will call it the

vertical filtration of 𝐴.

There is another filtration on 𝐴 that we will call the total filtration on 𝐴. It is

given by 𝐹 𝑙
𝑡𝐴 =

⋃︀
𝑖+𝑗=𝑙 𝐹

𝑖,𝑗𝐴.

Also it’s easy to see that to specify a bifiltration it is enough to specify the

horizontal and vertical degree of each generator of 𝐴.

2.1.1 Wreath products 𝑆𝑛 n Γ𝑛

Later on (to deal with DDCA of rank 1 with non-trivial Γ) we will need to use a

certain interpolation of categories of representations of wreath products. Below we
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will state basic facts about representations of wreath products in finite rank.

Definition 2.1.1.1. For a finite group Γ, consider the action of 𝑆𝑛 on Γ𝑛 by permu-

tations. The semidirect product 𝑆𝑛 n Γ𝑛 is called the wreath product.

Remark 2.1.1.2. Outside of the present section we will be interested only in Γ ⊂

SL(2,k). However the results stated in the present section hold for any Γ.

We have the following classification of irreducible representations of 𝑆𝑛 n Γ𝑛.

Proposition 2.1.1.3. Suppose k is an algebraically closed field of characteristic

char(k) = 𝑝 > 𝑛, |Γ| or 𝑝 = 0. Suppose 𝐴 is the set of indices which goes over all

of the irreducible representations of Γ over k, i.e., {𝑊𝛼}𝛼∈𝐴 is the set of irreducible

representations of Γ. Then the set of all irreducible representations of 𝑆𝑛 n Γ𝑛 over

k is in 1-1 correspondence with functions:

𝜆 : 𝐴→ Partitions,

such that
∑︀

𝛼∈𝐴 |𝜆(𝛼)| = 𝑛. The representation corresponding to fixed 𝜆 is given by:

𝑋𝑝(𝜆) = Ind𝑆𝑛nΓ𝑛

(
∏︀

𝛼∈𝐴 𝑆𝜆(𝛼))nΓ𝑛(
⨂︁
𝛼∈𝐴

𝑋𝑝(𝜆(𝛼))⊗𝑊⊗|𝜆(𝛼)|
𝛼 ).

We will use the notations for the representation categories similar to the case of

the symmetric group:

Definition 2.1.1.4. By Rep(𝑆𝑛 n Γ𝑛;k) denote the category of representations of

the wreath product 𝑆𝑛nΓ𝑛 over k. By Rep𝑓 (𝑆𝑛nΓ𝑛; k) denote the full subcategory

of finite dimensional representations.
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Also for 𝑝 ≥ 0 set

Rep𝑝(𝑆𝑛 n Γ𝑛) := Rep(𝑆𝑛 n Γ𝑛;F𝑝), Rep𝑓𝑝(𝑆𝑛 n Γ𝑛) := Rep𝑓 (𝑆𝑛 n Γ𝑛;F𝑝).

2.2 Deligne category Rep(𝑆𝜈)

In this section we will give a standard definition and discuss a few important proper-

ties of the main category used in the present thesis – the Deligne category Rep(𝑆𝜈).

The well known construction that we will present here is due to Deligne [7]. For more

on this topic see [4, 6, 5, 13, 14]. In this section we assume that k has characteristic

0.

We will start by introducing the system of vector spaces which is going to play a

role of the homomorphism spaces in the corresponding skeletal category. Although

these spaces are best understood using diagrams, we will omit this for the sake of

space. We advise anyone seeing Deligne categories for the first time to see [4] for a

much clearer diagrammatic construction of Rep(𝑆𝜈).

Definition 2.2.0.1. Denote by k𝑃𝑛,𝑚 a vector space over a field k with the basis

given by all possible partitions of an 𝑛+𝑚-element set. Diagrammatically an element

of the basis is represented by two rows of ∙’s, the first of length 𝑛 and the second

of length 𝑚, where all ∙’s belonging to the same part of the partition are connected

by edges. So, in other words, it is a graph on 𝑛 +𝑚 vertices, the set of connected

components of which corresponds to a partition of 𝑛+𝑚 (The graphs with the same

set of connected components represent the same basis element).

Define a map 𝜑𝑛,𝑚,𝑘𝜈 : k𝑃𝑚,𝑘 × k𝑃𝑛,𝑚 → k𝑃𝑛,𝑘 for 𝜈 ∈ k as follows. Consider

two basis elements 𝜆 ∈ k𝑃𝑛,𝑚 and 𝜇 ∈ k𝑃𝑚,𝑘. Take a vertical concatenation of the

graphical representations of the corresponding partitions (the last one on top) and
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identify the rows of length 𝑚. After this we are left with a partition of three rows

of ∙’s of length 𝑛,𝑚 and 𝑘. Now let’s denote by 𝑙(𝜇, 𝜆) the number of connected

components consisting purely of ∙’s lying in the second row. Also regard a partition

of rows 𝑛, 𝑘 consisting of the same connected components as the partition of rows

𝑛,𝑚, 𝑘 but with elements of the second row deleted, and denote it by 𝜇 · 𝜆. Then

𝜑𝑛,𝑚,𝑘𝜈 (𝜇, 𝜆) = 𝜈𝑙(𝜇,𝜆)𝜇 · 𝜆.

Define k𝑃𝑛(𝜈) to be k𝑃𝑛,𝑛 with a structure of an algebra given by the map 𝜑𝑛,𝑛,𝑛𝜈 .

This algebra is called the partition algebra and it was introduced by Purdon in [45].

Remark 2.2.0.2. The spaces k𝑃𝑛,𝑚 can be seen as limits of the homomorphism

spaces Hom𝑆𝑁
(h⊗𝑛𝑁 , h⊗𝑚𝑁 ), where h𝑁 is the permutation representation of 𝑆𝑁 .

Using this we can define a preliminary skeletal2 category Rep0(𝑆𝜈 ;k):

Definition 2.2.0.3. For 𝜈 ∈ k we denote by Rep0(𝑆𝜈 ; k) a skeletal rigid symmetric

monoidal k-linear category with objects given by elements of Z≥0, which can be

graphically represented by rows of ∙’s, and denoted by [𝑛].

The set of morphisms HomRep0(𝑆𝜈 ;k)([𝑛], [𝑚]) is equal to k𝑃𝑛,𝑚 and the composi-

tion maps are given by 𝜑𝑛,𝑚,𝑘𝜈 .

Tensor product on objects is defined by the horizontal concatenation of rows

and on morphisms by the horizontal concatenation of diagrams. All objects [𝑛] are

self-dual.

Using this we can define the Deligne category Rep(𝑆𝜈 ;k) itself:

Definition 2.2.0.4. For 𝜈 ∈ k, the Deligne category Rep(𝑆𝜈 ;k) is the Karoubian

envelope of the additive envelope of Rep0(𝑆𝜈 ;k).

2Here "skeletal" means that all isomorphism classes of objects consist of exactly one object
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This means that we add all possible direct sums and direct summands into our

category.

Below we will list a few pieces of notation and results concerning Deligne cate-

gories. They are well known and can be found for example in [4, 13].

Definition 2.2.0.5. The object [1] is called the permutation representation and is

denoted by h. The object [0] is called the trivial representation and is denoted by k

(by a slight abuse of notation).

The important properties of Rep(𝑆𝜈 ; k) are listed below:

Proposition 2.2.0.6. a) For 𝜈 /∈ Z≥0 Rep(𝑆𝜈 ;k) is a semisimple tensor category.

b) For 𝜈 /∈ Z≥0 simple objects of Rep(𝑆𝜈 ;k) are in 1-1 correspondence with Young

diagrams of arbitrary size. They are denoted by 𝒳 (𝜆). Moreover 𝒳 (𝜆) is a direct

summand in [|𝜆|].

c) The categorical dimension of h is 𝜈 and of k is 1.

d) All 𝒳 (𝜆) are self-dual.

The Deligne category enjoys a certain universal property:

Proposition 2.2.0.7. (8.3 in [7]) For any k-linear Karoubian symmetric monoidal

category 𝒯 , the category of k-linear symmetric monoidal functors from Rep(𝑆𝜈 ;k)

to 𝒯 is equivalent to the category 𝒯 𝑓𝜈 of commutative Frobenius algebras in 𝒯 of

dimension 𝜈. The equivalence sends a functor 𝐹 to the object 𝐹 (h).

The important consequence of this result is that for every commutative Frobenius

algebra 𝐴 in a Karoubian symmetric category 𝒯 of dimension 𝜈, we have a symmetric

monoidal functor from Rep(𝑆𝜈 ;k) to 𝒯 which sends h to 𝐴.
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Remark 2.2.0.8. Here by a commutative Frobenius algebra in 𝒯 we mean an object

𝐴 with the following structure. It is an associative commutative algebra with the

corresponding algebraic structure given by 𝜇𝐴, 1𝐴, and if we define a map:

Tr : 𝐴 1⊗coev𝐴−−−−−→ 𝐴⊗ 𝐴⊗ 𝐴* 𝜇𝐴⊗1−−−→ 𝐴⊗ 𝐴* ev𝐴−−→ 1,

then the pairing 𝐴 ⊗ 𝐴 𝜇𝐴−→ 𝐴
Tr−→ 1 is required to be non-degenerate, i.e., it corre-

sponds to an isomorphism between 𝐴 and 𝐴* under the identification of the homo-

morphism space Hom𝒯 (𝐴⊗ 𝐴,1) with Hom𝒯 (𝐴,𝐴
*).

In the rest of the thesis we will use Deligne categories over the following fields:

Definition 2.2.0.9. For 𝜈 ∈ C set Rep(𝑆𝜈) := Rep(𝑆𝜈 ;C). For 𝜈 ∈ C(𝜈) set

Repext(𝑆𝜈) := Rep(𝑆𝜈 ;C(𝜈)).

Remark 2.2.0.10. Note that although C and C(𝜈) are isomorphic as fields, such

isomorphism is not canonical. Thus it will be convenient to distinguish them in the

following discussions.

2.3 Ultrafilters and ultraproducts

In this section we will introduce the reader to the elements of the theory of ultrafilters

and ultraproducts relevant for our presentation. We will start with the definitions of

both of these concepts, provide a number of examples and then move on to define a

notion of a restricted ultraproduct.

2.3.1 Basic definitions

We will begin by defining what an ultrafilter actually is:
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Definition 2.3.1.1. An ultrafilter ℱ on a set 𝑋 is a subset of 2𝑋 satisfying the

following properties:

∙ 𝑋 ∈ ℱ ;

∙ If 𝐴 ∈ ℱ and 𝐴 ⊂ 𝐵, then 𝐵 ∈ ℱ ;

∙ If 𝐴,𝐵 ∈ ℱ , then 𝐴 ∩𝐵 ∈ ℱ ;

∙ For any 𝐴 ⊂ 𝑋 either 𝐴 or 𝑋∖𝐴 belongs to 𝐴, but not both.

For any 𝑋, there is an obvious family of examples of ultrafilters. Indeed, taking

ℱ𝑥 = {𝐴 ∈ 2𝑋 |𝑥 ∈ 𝐴} for any 𝑥 ∈ 𝑋 gives us an ultrafilter. Such ultrafilters are

called principal. Using Zorn’s lemma one can show that non-principal ultrafilters ℱ

exist iff the cardinality of 𝑋 is infinite. However the proof is non-constructive.

From now on we will only work with non-principal ultrafilters on 𝑋 = N.

Definition 2.3.1.2. For the rest of the thesis we will denote by ℱ a fixed non-

principal ultrafilter on N.

Note that it doesn’t matter which non-principal ultrafilter to take, and all our

results do not depend on this choice. Also note that all cofinite sets belong to ℱ .

Indeed, if some cofinite set wouldn’t belong to ℱ , it would follow that a finite set

belongs to ℱ . But from this one can conclude that ℱ is a principal ultrafilter for

one of the elements of this set.

Throughout our presentation we will use the following shorthand phrase.

Definition 2.3.1.3. By the statement “𝐴 holds for almost all 𝑛”, where 𝐴 is a logical

statement depending on 𝑛, we will mean that 𝐴 is true for some subset of natural

numbers 𝑈 , such that 𝑈 ∈ ℱ .

The following is an important lemma describing what happens with the conjuction

and disjunction of statements which “hold for almost all 𝑛".
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Lemma 2.3.1.4. 1) If for two logical statements 𝐴 and 𝐵 we know that 𝐴 holds for

almost all 𝑛 and 𝐵 holds for almost all 𝑛, then 𝐴 ∧𝐵 holds for almost all 𝑛.

2) If for a finite number of logical statements 𝐴𝑖, for 𝑖 ∈ 𝐼, we know that
⋁︀
𝑖∈𝐼 𝐴𝑖

holds for almost all 𝑛, then there is 𝑗 ∈ 𝐼 such that 𝐴𝑗 holds for almost all 𝑛.

Proof. 1) Indeed, we know that there is a set 𝑈𝐴 ∈ ℱ such that 𝐴 holds for all 𝑛 ∈ 𝑈𝐴,

and the corresponding set for 𝐵. Now by definition of the ultrafilter 𝑈𝐴 ∩ 𝑈𝐵 ∈ ℱ ,

and 𝐴 ∧𝐵 holds for all 𝑛 ∈ 𝑈𝐴 ∩ 𝑈𝐵.

2) Suppose that none of the statements 𝐴𝑖 hold for almost all 𝑛. This means that

the sets on which 𝐴𝑖 hold do not belong to ℱ . Thus by definition of the ultrafilter,

the sets 𝑉𝑖 = {𝑛 ∈ N| 𝐴𝑖 does not hold} are in ℱ . Thus 𝑉 =
⋂︀
𝑖∈𝐼 𝑉𝑖 ∈ ℱ . But for

any 𝑛 ∈ 𝑉 we know that all of the statements 𝐴𝑖 do not hold. Hence for any 𝑛 ∈ 𝑉

we know that
⋁︀
𝑖∈𝐼 𝐴𝑖 does not hold. But the set 𝑈 = {𝑛 ∈ 𝑁 |

⋁︀
𝑖∈𝐼 𝐴𝑖} belongs to

ℱ by assumption. So we have 𝑉 and N∖𝑉 belonging to ℱ . A contradiction.

We will use these elementary observations quite frequently, sometimes without

even mentioning it.

Now, define the notion of an ultraproduct.

Definition 2.3.1.5. Suppose we have a sequence of sets 𝐸𝑛 labeled by natural

numbers. Consider the set
∏︀′

ℱ 𝐸𝑛 consisting of the sequences {𝑒𝑛}𝑛∈𝐴 for a set

𝐴 ∈ ℱ and 𝑒𝑛 ∈ 𝐸𝑛. i.e.,
∏︀′

ℱ 𝐸𝑛 consists of sequences of elements of 𝐸𝑛 which are

defined for almost all 𝑛. Then
∏︀

ℱ 𝐸𝑛 is the quotient of
∏︀′

ℱ 𝐸𝑛 by the following

relation: {𝑒𝑛}𝑛∈𝐴 ∼ {𝑒′𝑛}𝑛∈𝐴′ iff 𝑒𝑛 = 𝑒′𝑛 for almost all 𝑛 (i.e., on 𝐵 ⊂ 𝐴′ ∩ 𝐴, such

that 𝐵 ∈ ℱ). The set
∏︀

ℱ 𝐸𝑛 is called the ultraproduct of the sequence {𝐸𝑛}𝑛∈N.

Remark 2.3.1.6. Thus in a nutshell the ultraproduct consists of “germs" of se-

quences of elements which are defined for almost all 𝑛. Because of this in what

follows we will use “sequence” to mean “sequence defined for almost all 𝑛”.
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Remark 2.3.1.7. Note that for any finite set 𝐶, the ultraproduct of its copies
∏︀

ℱ 𝐶𝑖

with 𝐶𝑖 = 𝐶 is equal to 𝐶. Indeed, for any sequence {𝑐𝑛}𝑛∈𝐴, for some 𝐴 ∈ ℱ , we

can define 𝑈𝑑 = {𝑛 ∈ 𝐴|𝑑 = 𝑐𝑛} for any 𝑑 ∈ 𝐶. Then we have
⋃︀
𝑑∈𝐶 𝑈𝑑 = 𝐴, thus one

of the 𝑈𝑑’s must belong to ℱ . So it follows that {𝑐𝑛}𝑛∈𝐴 ∼ {𝑑}𝑛∈𝐴 for this particular

𝑑.

Oftentimes we use the following notation:

Definition 2.3.1.8. For a sequence {𝐸𝑛}𝑛∈N, denote an element {𝑒𝑛}𝑛∈N ∈
∏︀

ℱ 𝐸𝑛

by
∏︀

ℱ 𝑒𝑛.

This construction is interesting for us, because it, in a certain sense, preserves a

lot of algebraic structures. We will explore this dimension of ultraproducts below.

Example 2.3.1.9. First, note that the ultraproduct inherits any operation or any

relation which is defined on a sequence of sets 𝐸𝑛 for almost all 𝑛. For example,

suppose we are given a sequence of 𝑘-ary operations ∘𝑛 defined for almost all 𝑛. Let

𝐸 :=
∏︀

ℱ 𝐸𝑛 and consider the 𝑘-ary operation ∘ : 𝐸 × 𝐸 × · · · × 𝐸 → 𝐸 defined as

∘(𝑒1, 𝑒2, . . . , 𝑒𝑘) = ∘(
∏︁

ℱ
𝑒1𝑛, . . . ,

∏︁
ℱ
𝑒𝑘𝑛) =

∏︁
ℱ
∘𝑛 (𝑒1𝑛, . . . , 𝑒𝑘𝑛).

Note that this is the same as taking ∘ =
∏︀

ℱ∘𝑛 ∈
∏︀

ℱHomSets(𝐸
×𝑘, 𝐸), so we can

call ∘ an ultraproduct of ∘𝑛. Now if we have any sequence of relations 𝑟𝑛 given for

almost all 𝑛, they can be written as a sequence of 𝑘-ary maps with Boolean values.

And one can define 𝑟 to be a relation on 𝐸 in a similar way

𝑟(𝑒1, 𝑒2, . . . , 𝑒𝑘) = 𝑟(
∏︁

ℱ
𝑒1𝑛, . . . ,

∏︁
ℱ
𝑒𝑘𝑛) =

∏︁
ℱ
𝑟𝑛(𝑒

1
𝑛, . . . , 𝑒

𝑘
𝑛) ∈

∏︁
ℱ
2 = 2.3

3Here 2 stands for the Boolean set {0, 1}.
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For the same reason we can call the relation 𝑟 the ultraproduct of the relations

𝑟𝑛. Note that this means that if the relation 𝑟𝑛 was true for almost all 𝑛 (i.e.,

Im(𝑟𝑛) = {1} for almost all 𝑛), it follows that 𝑟 is also true.

One can easily check for oneself that the above examples (2.3.1.9) can be extended

to any collections of sequences of sets, maps between them and relations between

maps. That means that if we have a collection of sequences of sets with a certain

algebraic structure defined by maps between them, we can form the ultraproducts

of these sets and these maps. Moreover if the sequences of maps satisfy a certain

collection of relations, the ultraproduct will satisfy them too.

These observations may be formulated in the following way:

Theorem 2.3.1.10. Łoś’s theorem (Theorem 2.3.2 in [48])

Suppose we have a collection of sequences of sets 𝐸(𝑘)
𝑖 for 𝑘 = 1, . . . ,𝑚, a col-

lection of sequences of elements 𝑓 (𝑟)
𝑖 for 𝑟 = 1, . . . , 𝑙, and a formula of a first order

language 𝜑(𝑥1, . . . , 𝑥𝑙, 𝑌1, . . . , 𝑌𝑚) depending on some parameters 𝑥𝑖 and sets 𝑌𝑗. De-

note by 𝐸(𝑘) =
∏︀

ℱ 𝐸
(𝑘)
𝑛 and 𝑓 (𝑟) =

∏︀
ℱ 𝑓

(𝑟)
𝑛 . Then 𝜑(𝑓

(1)
𝑛 , . . . , 𝑓

(𝑙)
𝑛 , 𝐸

(1)
𝑛 , . . . , 𝐸

(𝑚)
𝑛 ) is

true for almost all 𝑛 iff 𝜑(𝑓 (1), . . . , 𝑓 (𝑙), 𝐸(1), . . . 𝐸(𝑚)) is true.

This theorem might seem very abstract in the form it is given above, but one can

grasp it quite easily by working through a few simple examples of its application.

This is exactly what we are going to do in the next section. Many of these examples

will also be used in the rest of the thesis.

2.3.2 Examples of ultraproducts

Example 2.3.2.1. If 𝐸𝑛 is a sequence of monoids/groups/rings/fields then
∏︀

ℱ 𝐸𝑛

with operations given by taking the ultraproduct of the operations as elements of
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the corresponding sets of set-theoretical maps gives us correspondingly a structure of

a monoid/group/ring/field by Łoś’s theorem.

Example 2.3.2.2. If 𝑉𝑖 are finite dimensional vector spaces over a field k, then∏︀
ℱ 𝑉𝑛 is a vector space over

∏︀
ℱk, which is not necessarily finite dimensional, since

the property of being finite dimensional cannot be written in a first-order language.

But if the dimensions of 𝑉𝑛 are bounded, then they are the same for almost all 𝑛 and

hence 𝑉 has the same dimension (for example, because the ultraproduct of bases is

a basis).

Example 2.3.2.3. Take the ultraproduct of a countably infinite number of copies

of Q. By Łoś’s theorem
∏︀

ℱ Q is a field, which is algebraically closed. It has char-

acteristic zero since ∀𝑘 ∈ Z such that 𝑘 ̸= 0 it follows that 𝑘 =
∏︀

ℱ 𝑘 ̸= 0. Also

it is easy to see that its cardinality is continuum. Hence by Steinitz’s theorem4∏︀
ℱ Q ≃ C. However, there is no canonical isomorphism. We will now use this fact

to show that we can in fact choose such an isomorphism so that
∏︀

ℱ𝑛 maps into any

transcendental element of C.

Indeed, consider the ultraproduct of integers
∏︀

ℱ𝑛. Via the isomorphism con-

structed in the previous paragraph this is an element of C. Notice that this element

cannot satisfy any nontrivial polynomial equation over Q (indeed, the corresponding

polynomial must have infinitely many roots), hence
∏︀

ℱ𝑛 is a transcendental element

of C. By an automorphism of C we can send this element into any transcendental

element of C.

Thus we conclude that for any transcendental element 𝜈 ∈ C there is an isomor-

phism
∏︀

ℱQ ≃ C, such that
∏︀

ℱ𝑛 = 𝜈.

Also notice that by Steinitz’s theorem it follows that C(𝑥) ≃ C, since they
4This theorem tells us that two uncountable algebraically closed fields are isomorphic iff their

characteristic and cardinality are the same. It is proven in [51].
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have the same cardinality. Thus we can also conclude that there is an isomorphism∏︀
ℱQ ≃ C(𝑥) such that

∏︀
ℱ𝑛 = 𝑥.

Example 2.3.2.4. Take the ultraproduct of F𝑝𝑛 for some sequence of distinct prime

numbers 𝑝𝑛. As before, by Łoś’s theorem
∏︀

ℱ F𝑝𝑛 is a field, which is algebraically

closed. Also it has cardinality continuum. Now for any natural number 𝑘, we have

𝑘 =
∏︀

ℱ 𝑘 ̸= 0, since it is equal to zero for at most a finite number of 𝑛. Hence∏︀
ℱ F𝑝𝑛 ≃ C by Steinitz’s theorem, again not in a canonical way. Below we will

show that we can pick a particular isomorphism that satisfies a certain important

property.

Suppose we are given an algebraic number 𝜈 ∈ C. Let us show that there exists

a sequence of integers 𝜈𝑛 and prime numbers 𝑝𝑛 such that 𝜈𝑛 < 𝑝𝑛 and
∏︀

ℱ𝜈𝑛 = 𝜈

inside
∏︀

ℱF𝑝𝑛 ≃ C. This important fact will be used extensively, when we will apply

ultraproducts to Deligne categories.

Let 𝑞(𝑥) ∈ Z[𝑥] be the minimal polynomial for 𝜈. We would like to find an infinite

number of pairs 𝜈𝑛, 𝑝𝑛 such that 𝑞(𝜈𝑛) = 0 mod 𝑝𝑛. Let us show that there is an

infinite number of primes dividing the collection of numbers 𝑞(𝑙) for 𝑙 ∈ N, from this

it would follow that there is an infinite number of pairs since only a finite number of

primes divide each 𝑞(𝑙). Suppose it is not so, and there are only 𝑘 such primes. Fix

𝐶 such that we have 𝑞(𝑙) < 𝐶 · 𝑙deg(𝑞) for all positive integer values of 𝑙. Denote by 𝑄

the number of integers of the form 𝑞(𝑙) for 𝑙 ∈ Z≥0 such that 𝑞(𝑙) < 𝐿. By the above

inequality (that is 𝑞(𝑙) < 𝐶 · 𝑙deg(𝑞) ) 𝑄 is at least 1
𝐶
· 𝐿

1
deg(𝑞) . On the other hand the

number 𝑃 of numbers less than 𝐿 divisible only by 𝑘 fixed primes is less or equal

to log2(𝐿)
𝑘, since each prime number is at least 2. Hence for big enough 𝐿 we have

𝑃 < 𝑄, which contradicts the hypothesis5.

5This proof is also written by Nate Harman in the proof of Prop. 2.2 in [30].
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Hence we can take a sequence of distinct primes 𝑝𝑛 and a sequence of integers 𝜈𝑛

tending to infinity such that 𝑞(𝜈𝑛) = 0 in F𝑝𝑛 and 𝜈𝑛 < 𝑝𝑛. It follows that
∏︀

ℱ𝜈𝑛 in∏︀
ℱF𝑝𝑛 is a root of 𝑞(𝑥). Hence by an automorphism of C we can send

∏︀
ℱ𝜈𝑛 into 𝜈.

Example 2.3.2.5. Suppose 𝒞𝑛 is a sequence of (locally small) categories. We can

define the ultraproduct category ̂︀𝒞 =
∏︀

ℱ 𝒞𝑛 as the category whose objects are se-

quences of objects in 𝒞𝑛. For clarity we will denote the ultraproduct of objects by6∏︀𝐶
ℱ . The morphisms in ̂︀𝒞 are given by

Hom̂︀𝒞(
∏︁𝐶

ℱ
𝑋𝑛,

∏︁𝐶

ℱ
𝑌𝑛) =

∏︁
ℱ
Hom𝒞𝑛(𝑋𝑛, 𝑌𝑛),

and the composition maps are given by the ultraproducts of the composition maps,

i.e., (
∏︀

ℱ 𝑓𝑛)∘(
∏︀

ℱ 𝑔𝑛) =
∏︀

ℱ(𝑓𝑛∘𝑔𝑛). By Łoś’s theorem this data satisfies the axioms

of a category. If the categories 𝒞𝑛 have some "algebraic" structures, for example the

structures of an abelian or monoidal category, then ̂︀𝒞 also has these structures7.

Usually ̂︀𝒞 is too big and it is interesting to consider a certain full subcategory 𝒞 in

there, for example by only considering the ultraproducts of sequences of objects of 𝒞𝑖
bounded in some sense. This will be discussed in more detail in the next subsection.

Remark 2.3.2.6. Note that taking the ultraproduct of a sequence of algebraic ob-

jects as such is different from considering their ultraproduct as a sequence of objects

in certain categories.

For example, consider a sequence of countably-dimensional vector spaces 𝑉𝑛 over

k. By Łoś’s theorem
∏︀

ℱ𝑉𝑛 is a vector space (although its dimension is more than

countable). However, we can also regard 𝑉𝑛 as objects of the categories 𝒞𝑛 = Vectk

6The superscript 𝐶 stands for "category".
7But the finite-length property, for example, does not survive, as it cannot be formulated as a

first-order logical statement.
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and construct
∏︀𝐶

ℱ𝑉𝑛 ∈
∏︀

ℱVectk. The category
∏︀

ℱVectk is not equivalent to the

category of vector spaces (for example, it is rigid and can have objects of non-integer

dimension), so
∏︀𝐶

ℱ𝑉𝑛 is not a vector space in any sense.

Also frequently it is possible to think about an ultraproduct as a certain kind

of a limit as 𝑛 ↦→ ∞, where 𝑛 becomes a “free" parameter. This way of thinking is

actually partially applicable to the setting of Deligne categories that we will discuss

in the next Chapter. In the next example we will show how this is possible in the

case of the ultraproduct of finite-dimensional algebras.

Example 2.3.2.7. Consider a sequence of finite dimensional algebras 𝐴𝑛 over Q

with a sequence of fixed vector space isomorphisms 𝐴𝑛 ≃ 𝑉 . Equivalently, this

means that we have a sequence of binary operations 𝜇𝑛 : 𝑉 ⊗ 𝑉 → 𝑉 which satisfy

all the axioms of an algebra. Suppose in some basis (and hence in any basis) the

matrices of 𝜇𝑛 have entries which depend polynomially on 𝑛.

Consider 𝐴 =
∏︀

ℱ 𝐴𝑛. By Example 2.3.2.3 this is an algebra over C(𝑥). Since 𝐴𝑖

are finite dimensional and all isomorphic to 𝑉 via a fixed isomorphism, we can also

conclude that the binary operation on 𝐴, which we denote by 𝜇, is given by
∏︀

ℱ𝜇𝑛.

Since 𝜇𝑛 depended polynomially on 𝑛 and 𝑥 =
∏︀

ℱ𝑛, it follows that 𝜇 is given by the

same formulas as the sequence 𝜇𝑛 with 𝑛 substituted by 𝑥. In other words, if 𝑐𝛾𝛼,𝛽(𝑛)

are the structure constants of 𝜇𝑛 in a certain basis then 𝑐𝛾𝛼,𝛽(𝑥) are the structure

constants of 𝜇. I.e., 𝑛 becomes a formal parameter in 𝐴.

2.3.3 Restricted ultraproducts

When one works with a sequence of objects which are in some sense infinite dimen-

sional, it’s sometimes useful to consider a subobject in the ultraproduct consisting

of the sequences of elements which are in a some way bounded. This can be called
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a restricted ultraproduct. We have already mentioned this in the case of categories

in Example 2.3.2.5. For example, the Deligne category Rep(𝑆𝜈) itself will be con-

structed as a full subcategory in a certain ultraproduct category.

In this section we will outline the definitions of the restricted ultraproduct which

makes sense in the case of filtered or graded vector spaces and categories.

Definition 2.3.3.1. For a sequence of vector spaces 𝐸𝑛 with an increasing filtration

𝐹 0𝐸𝑛 ⊂ 𝐹 1𝐸𝑛 ⊂ · · · ⊂ 𝐹 𝑘𝐸𝑛 ⊂ . . . , define the restricted ultraproduct
∏︀𝑟

ℱ𝐸𝑛 to be

equal to
⋃︀∞
𝑘=0

∏︀
ℱ𝐹

𝑘𝐸𝑛 ⊂
∏︀

ℱ𝐸𝑛.

Definition 2.3.3.2. For a sequence of vector spaces 𝐸𝑛 with a grading

𝐸𝑛 =
⨁︀∞

𝑘=0 gr
𝑘𝐸𝑛, define the restricted ultraproduct

∏︀𝑟
ℱ𝐸𝑛 to be equal to⨁︀∞

𝑘=0

∏︀
ℱgr

𝑘𝐸𝑛 ⊂
∏︀

ℱ𝐸𝑛. Note that by taking 𝐹 𝑘𝐸𝑛 =
⨁︀𝑘

𝑖=0 gr
𝑖𝐸𝑛, this construc-

tion matches the construction of Definition 2.3.3.1.

We will use this notion in the case when the dimensions of the space 𝐹 𝑘𝐸𝑛 are

finite and stabilize as 𝑛→∞ for fixed 𝑘. Let us give a few examples.

Example 2.3.3.3. Consider a countable-dimensional vector space 𝑉 over k. Con-

sider a sequence of copies of 𝑉 , i.e., 𝑉𝑛 = 𝑉 . Also consider an increasing filtration

𝐹 𝑗𝑉 by finite dimensional subspaces and the same filtration on all 𝑉𝑛. We can

calculate the restricted ultraproduct of this sequence:

∏︁𝑟

ℱ
𝑉𝑛 =

∞⋃︁
𝑘=0

∏︁
ℱ
𝐹 𝑘𝑉𝑛 =

∞⋃︁
𝑘=0

𝐹 𝑘𝑉 = 𝑉.

Whereas the usual ultraproduct
∏︀

ℱ𝑉𝑛 is more than countable-dimensional.

Now let us apply the notion of restricted ultraproduct to the extension of Example

2.3.2.7. This further shows how one can think about an ultraproduct as a certain

"limit” 𝑛→∞.
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Example 2.3.3.4. Consider 𝐴𝑛, a sequence of (possibly infinite dimensional) alge-

bras over Q with an increasing filtration by finite dimensional subspaces, such that

for every 𝑘 ∈ N there is 𝑁𝑘 such that for 𝑛 > 𝑁𝑘 all 𝐹 𝑘𝐴𝑛 are isomorphic as vec-

tor spaces to a fixed vector space 𝐹 𝑘𝐴∞ via fixed isomorphisms. I.e., every filtered

component stabilizes after a certain point.

This means that we have a collection of sequences of coherent multiplication maps

𝜇𝑘,𝑙𝑛 : 𝐹 𝑘𝐴∞ × 𝐹 𝑙𝐴∞ → 𝐹 𝑘+𝑙𝐴∞ defined for almost all 𝑛. Let’s also suppose that

this sequence depends polynomially on 𝑛.

Consider 𝐴 =
∏︀𝑟

ℱ𝐴𝑛. Note that as a vector space the restricted ultraproduct

equals to: ∏︁𝑟

ℱ
𝐴𝑛 =

∞⋃︁
𝑘=0

∏︁
ℱ
𝐹 𝑘𝐴𝑛 =

∞⋃︁
𝑘=0

𝐹 𝑘𝐴∞,

since 𝐹 𝑘𝐴𝑛 = 𝐹 𝑘𝐴∞ for almost all 𝑛.

Now as in Example 2.3.2.7 the ultraproducts 𝜇𝑘,𝑙 =
∏︀

ℱ𝜇
𝑘,𝑙
𝑛 define a coherent

collection of multiplication maps, the union of which defines a map 𝜇 : 𝐴× 𝐴→ 𝐴.

The structure constants of this multiplication can also be obtained by taking the

structure constants of 𝐴𝑛 and plugging in 𝑥 instead of 𝑛.

Note that the same construction works if the structure constants depend on 𝑛 as

rational functions.

This example shows better why it makes sense to think about the ultraproduct

as a limit.

We also would like to introduce a related construction, which we will also call a

restricted ultraproduct. This will take place in the setting of the ultraproducts of

categories. Suppose {𝒟𝑖} is a sequence of artinian abelian categories and 𝒟 =
∏︀

ℱ𝒟𝑖
is their ultraproduct (an abelian category which is, in general, not artinian). Suppose

𝒞 is a full artinian subcategory of 𝒟. Using Construction 2.1.0.11 we can obtain ind-
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objects of 𝒞 in the following way.

Construction 2.3.3.5. Suppose we have a sequence of ind-objects 𝑋𝑛 ∈ IND(𝒟𝑛)

such that each 𝑋𝑛 is equipped with a filtration by objects of 𝒟𝑛. I.e., we have

𝐹 0𝑋𝑛 ⊂ 𝐹 1𝑋𝑛 ⊂ · · · ⊂ 𝐹 𝑖𝑋𝑛 ⊂ . . . , where all 𝐹 𝑖𝑋𝑛 ∈ 𝒟𝑛 and 𝑋𝑛 =
⋃︀
𝑖∈N 𝐹

𝑖𝑋𝑛.

Also suppose that for each 𝑖 ≥ 0,
∏︀𝐶

ℱ𝐹
𝑖𝑋𝑛 ∈ 𝒞. Denote

∏︀𝐶
ℱ𝐹

𝑖𝑋𝑛 by 𝐹 𝑖𝑋∞. It is

clear that we have injections 𝐹 𝑖𝑋∞ →˓ 𝐹 𝑖+1𝑋∞.

It follows that the sequence 𝐹 𝑖𝑋∞ defines an object 𝑋∞ ∈ IND(𝒞) as:

𝑋∞ =
⋃︁
𝑖∈N

𝐹 𝑖𝑋∞ =
⋃︁
𝑖∈N

∏︁𝐶

ℱ
𝐹 𝑖𝑋𝑛.

We will use a special notation for this construction:

Definition 2.3.3.6. In the setting of Construction 2.3.3.5, call 𝑋∞ the restricted

ultraproduct of 𝑋𝑛 with respect to the fixed filtration. We will write

𝑋∞ =
∏︁𝐶,𝑟

ℱ
𝑋𝑛.

Remark 2.3.3.7. Let ̃︀𝐹 ∙ be another filtration on the sequence {𝑋𝑛} such that∏︀𝐶
ℱ𝐹

𝑖𝑋𝑛 ∈ 𝒞, and let ̃︀𝑋∞ be the corresponding restricted ultraproduct. Let us say

that 𝐹, ̃︀𝐹 are equivalent if for any 𝑖 there exist 𝑟(𝑖), 𝑠(𝑖) such that 𝐹 𝑖𝑋𝑛 ⊂ ̃︀𝐹 𝑟(𝑖)𝑋𝑛

and ̃︀𝐹 𝑖𝑋𝑛 ⊂ 𝐹 𝑠(𝑖)𝑋𝑛 for almost all 𝑛. If 𝐹, ̃︀𝐹 are equivalent, then we have maps

𝐹 𝑖𝑋∞ → ̃︀𝐹 𝑟(𝑖)𝑋∞ and ̃︀𝐹 𝑖𝑋𝑛 → 𝐹 𝑠(𝑖)𝑋∞, which give rise to maps 𝑋∞ → ̃︀𝑋∞

and ̃︀𝑋∞ → 𝑋∞ which are clearly inverse to each other; thus 𝑋∞ and ̃︀𝑋∞ are

naturally isomorphic. This shows that 𝑋∞ depends only on the equivalence class of

the filtration 𝐹 .

However, not all filtrations are equivalent. E.g., if 𝑋𝑛 = k𝑛, 𝐹 𝑖𝑋𝑛 is spanned by

the first 𝑖+ 1 standard basis vectors for 𝑖 ≤ 𝑛− 1, 𝑔𝑛 ∈ 𝐺𝐿(𝑛,k) and ̃︀𝐹 = 𝑔𝑛(𝐹 ) on
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𝑋𝑛 then in general 𝐹, ̃︀𝐹 are not equivalent. Thus, without specifying a filtration (at

least up to equivalence), we cannot define the restricted ultraproduct of 𝑋𝑛.

Remark 2.3.3.8. Note that we can easily define the restricted ultraproduct of

a series of bifiltered algebras 𝐴𝑛, with finite-dimensional filtration components as⋃︀
𝑖,𝑗≥0

∏︀
ℱ𝐹

𝑖,𝑗𝐴𝑛. Note that the result is the same as the restricted product taken

with respect to the total filtration of 𝐴𝑛.

The same goes for the sequence of bifiltered ind-objects of artinian categories

similarly to Construction 2.3.3.5.

Thus below we will use these two operations interchangeably.
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Chapter 3

Construction of Deligne categories

through ultrafilters

In this chapter we will show how we can use the notion of ultraproduct introduced in

the previous chapter to construct the Deligne category Rep(𝑆𝜈) as a "limit” of finite

rank categories Rep(𝑆𝑛). We will also show how this can be further used to study

Ind-objects of Rep(𝑆𝜈) and the 𝜈-tensor powers of unital vector spaces in Rep(𝑆𝜈).

In the end we will also outline the construction of the Deligne category of wreath

products Rep(𝑆𝜈nΓ𝜈). The constructions of this chapter will serve as the foundation

for all the applications we will discuss in the later chapters.

3.1 Deligne category Rep(𝑆𝜈) as an ultraproduct

We will begin by showing how one can construct the category Rep(𝑆𝜈) itself using

ultraproducts, and then discuss some important consequences of this construction:

construction of simple objects, restriction and induction functors etc. through ultra-
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products. The main ideas of this approach were contained in [7],[30]1. However we

spell it out in more detail here.

The main idea of this approach is to construct the category Rep(𝑆𝜈) for non-

integer 𝜈 as a full subcategory in the ultraproduct category following Example 2.3.2.5

with 𝒞𝑛 being representation categories of the symmetric group in the finite rank.

We have the following result (See the introduction of [7] or Theorem 1.1 in [30]):

Theorem 3.1.0.1. a) Suppose 𝜈 ∈ C is transcendental. Consider ̂︀𝒞 =∏︀ℱ Rep𝑓0(𝑆𝑛).

Set h𝜈 :=
∏︀𝐶

ℱ h𝑛. Fix an isomorphism
∏︀

ℱ Q ≃ C such that
∏︀

ℱ 𝑖 = 𝜈. Then the

full subcategory of the
∏︀

ℱ Q-linear category ̂︀𝒞 generated by h𝜈 under taking tensor

products, direct sums and direct summands is equivalent to the C–linear category

Rep(𝑆𝜈), in a way consistent with the fixed isomorphism
∏︀

ℱ Q ≃ C.

b) Suppose 𝜈 ∈ C is algebraic but not a nonnegative integer. Fix a sequence of dis-

tinct primes 𝑝𝑛, a sequence of integers 𝜈𝑛, and an isomorphism
∏︀

ℱ F𝑝𝑛 ≃ C such that∏︀
ℱ 𝜈𝑛 = 𝜈. Set ̂︀𝒞 :=

∏︀
ℱ Rep𝑓𝑝𝑛(𝑆𝜈𝑛). Set h𝜈 :=

∏︀𝐶
ℱ h𝜈𝑛𝑝𝑛. Then the full subcategory

of the
∏︀

ℱ F𝑝𝑛-linear category ̂︀𝒞 generated by h𝜈 under taking tensor products, direct

sums and direct summands is equivalent to the C-linear category Rep(𝑆𝜈), in a way

consistent with the fixed isomorphism
∏︀

ℱ F𝑝𝑛 ≃ C.

Proof. a) The required isomorphism of fields exists by Example 2.3.2.3. So we have

a Karoubian symmetric monoidal category ̂︀𝒞 linear over C, with an object
∏︀𝐶

ℱ h𝑛 of

dimension 𝜈. Since every h𝑛 is a commutative Frobenius algebra, it follows by Łoś’s

theorem that h𝜈 is also a commutative Frobenius algebra. Hence by Proposition

2.2.0.7 we obtain a symmetric monoidal functor 𝐹 : Rep(𝑆𝜈)→ ̂︀𝒞 which takes h to h𝜈 .

Since Rep(𝑆𝜈) is generated by h under taking tensor products, direct sums and direct

summands, it follows that the image of Rep(𝑆𝜈) under 𝐹 is the full subcategory 𝒞 in

1For the similar discussion about Rep(𝐺𝐿𝜈) see [7], [30], [33].
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̂︀𝒞 generated by h𝜈 under taking tensor products, direct sums and direct summands.

So we know that 𝐹 : Rep(𝑆𝜈)→ 𝒞 is essentially surjective. Now it is enough to prove

that it is fully faithful.

Note that it is enough to prove that

∏︁
ℱ
Hom𝑆𝑛(h

⊗𝑟
𝑛 , h⊗𝑠𝑛 ) = HomRep(𝑆𝜈)([𝑟], [𝑠]),

and that the composition maps are the same. Indeed, if this is true, both categories

can be obtained as the Karoubian envelopes of the additive envelopes of the categories

consisting of all [𝑟] or h⊗𝑟𝜈 respectively.

But this follows from Theorem 2.6 in [4]. Indeed, there it is stated that there is

an isomorphism between Q𝑃𝑟,𝑠 and Hom𝑆𝑛(h
⊗𝑟
𝑛 , h⊗𝑠𝑛 ) for 𝑛 > 𝑟+ 𝑠. So for almost all

𝑛 we have Hom𝑆𝑛(h
⊗𝑟
𝑛 , h⊗𝑠𝑛 ) = Q𝑃𝑛,𝑚. Also Proposition 2.8 in the same article states

that under this isomorphism the composition rule on Hom𝑆𝑛(h
⊗𝑟
𝑛 , h⊗𝑠𝑛 ) transforms

into the composition rule on Q𝑃𝑟,𝑠 in the definition of Rep0(𝑆𝜈). So it follows that,

indeed,
∏︀

ℱ Hom𝑆𝑛(h
⊗𝑟
𝑛 , h⊗𝑠𝑛 ) = HomRep(𝑆𝜈)([𝑟], [𝑠]), and the composition rule is the

same.

b) Again the required isomorphism exists by Example 2.3.2.4. The rest of the

proof is the same since the representation theory of 𝑆𝑛 is the same in zero charac-

teristic and in characteristic 𝑝 > 𝑛, and 𝑝𝑛 > 𝜈𝑛 for almost all 𝑛.

Remark 3.1.0.2. Note that for the purposes of this theorem we could also have

used the categories Rep𝑝𝑛(𝑆𝜈𝑛).

We can also formulate a similar result for Repext(𝑆𝜈):

Corollary 3.1.0.3. Fix an isomorphism
∏︀

ℱQ ≃ C(𝜈) such that
∏︀

ℱ𝑛 = 𝜈. Set̂︀𝒞 =
∏︀

ℱ Rep𝑓0(𝑆𝑛). Set h𝜈 =
∏︀𝐶

ℱ h𝑛. Then the full subcategory of the
∏︀

ℱ Q-linear
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category ̂︀𝒞 generated by h𝜈 under taking tensor products, direct sums and direct sum-

mands is equivalent to the C(𝜈)-linear category Rep(𝑆𝜈), in a way consistent with the

fixed isomorphism
∏︀

ℱ Q ≃ C(𝜈).

Proof. This follows from the above Theorem and the fact that C ≃ C(𝜈) (see Exam-

ple 2.3.2.3).

Remark 3.1.0.4. As mentioned in the beginning of Section 2.1, to treat the alge-

braic and transcendental cases simultaneously, it’s useful to agree on the convention

that by F0 we will mean Q, and so the case 𝜈𝑛 = 𝑛, 𝑝𝑛 = 0 in the setting of part (𝑏)

of the Theorem 3.1.0.1 gives us transcendental 𝜈. Also below we will always assume

that the sequences 𝑝𝑛 and 𝜈𝑛 are the sequences from Theorem 3.1.0.1 or Corollary

3.1.0.3 corresponding to the given 𝜈. Finally, we will work only with 𝜈 ∈ C∖Z≥0.

Remark 3.1.0.5. Note that for any finite group 𝐺 we can characterize Rep(𝑆𝜈) �

Rep(𝐺;C)2 as a full subcategory in
∏︀

ℱ Rep𝑝𝑛(𝑆𝜈𝑛)� Rep𝑝𝑛(𝐺), which consists of

sequences of objects
∏︀

ℱ 𝑉𝑛 =
∏︀

ℱ
∑︀

𝑘 𝑈𝑛,𝑘⊗𝑌𝑘, where 𝑌𝑘 runs over all the irreducible

objects of 𝐺 (with 𝑝𝑛 > |𝐺|), such that each
∏︀

ℱ 𝑈𝑛,𝑘 is an object of Rep(𝑆𝜈). Indeed

on the level of abelian categories it follows from the fact that Rep𝑝𝑛(𝐺) splits into

a finite sum of categories of vector spaces, and it’s easy to check that the tensor

structure agrees (it’s the same for almost all 𝑛).

Now we would like to explain why this construction of the Deligne categories is

quite useful. To begin with, we would like to construct the simple objects 𝒳 (𝜆) as

ultraproducts. This is easy to do, using the notation from Definition 2.1.0.7:

Proposition 3.1.0.6. The irreducible object 𝒳 (𝜆) of Rep(𝑆𝜈) can be obtained as an

ultraproduct of irreducible objects of Rep𝑓𝑝𝑛(𝑆𝜈𝑛) as 𝒳 (𝜆) =
∏︀𝐶

ℱ 𝑋𝜈𝑛(𝜆|𝜈𝑛).
2Here, we use � to denote a Deligne tensor product of locally finite abelian categories, for the

definition see 1.11 in [16].
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Proof. From Section 3.3 of [4] we know that the algebras k𝑃𝑟(𝜈) for 𝜈 ̸= 0, 1, . . . , 2𝑟

have the same set of idempotents obtained by specialization from idempotents of

k(𝑥)𝑃𝑟(𝑥). Now by construction all simple objects of Rep(𝑆𝜈) are given by the

primitive idempotents of EndRep0(𝑆𝜈 ;k)([𝑟]) = k𝑃𝑟(𝜈). And by Theorem 3.1.0.1,

k𝑃𝑟(𝜈) ≃
∏︀

ℱF𝑝𝑛𝑃𝑟(𝜈𝑛) in such a way that basis elements are ultraproducts of basis

elements. Thus it follows that idempotents in k𝑃𝑟(𝜈) are given by the ultraproducts

of the same idempotents for almost all 𝑛. And so the claim follows.

Note that Theorem 3.1.0.1 does not specify which sequences of finite rank rep-

resentations actually give us an object of the Deligne category. Proposition 3.1.0.6

allows us to reformulate the definition of Rep(𝑆𝜈) as an ultraproduct so that this

becomes apparent.

Proposition 3.1.0.7. In the notation of Theorem 3.1.0.1 the category Rep(𝑆𝜈) can

be described as the full subcategory of ̂︀𝒞 = Rep𝑓𝑝𝑛(𝑆𝜈𝑛) consisting of sequences of

objects 𝑌𝑛 =
⨁︀

𝛼∈𝐴𝑛
𝑋𝑝𝑛(𝜆𝑛,𝛼) for some indexing sets 𝐴𝑛 and Young diagrams 𝜆𝑛,𝛼

such that both the sequence of |𝐴𝑛| and the sequence of max𝛼∈𝐴𝑛(|𝜆𝑛,𝛼| − (𝜆𝑛,𝛼)1),

where (𝜆𝑛,𝛼)1 is the length of the first row, are bounded for almost all 𝑛.

Proof. We know that Rep(𝑆𝜈) is a full subcategory of ̂︀𝒞 so we just need to match

the objects.

On the one hand, suppose 𝑌 ∈ Rep(𝑆𝜈). We know that for some set of Young

diagrams 𝜇𝛼 with 𝛼 ∈ 𝐴, a finite indexing set, we have 𝑌 =
⨁︀

𝛼∈𝐴𝒳 (𝜇𝛼), so

from Proposition 3.1.0.6 it follows that 𝑌 =
∏︀𝐶

ℱ
⨁︀

𝛼∈𝐴𝑋𝑝𝑛(𝜇𝛼|𝜈𝑛). Thus we have a

required sequence with 𝐴𝑛 = 𝐴 and 𝜆𝛼,𝑛 = 𝜇𝛼|𝜈𝑛 . The sequence |𝐴𝑛| = 𝐴 is constant,

hence so is the sequence max𝛼∈𝐴𝑛(|𝜆𝑛,𝛼| − (𝜆𝑛,𝛼)1) = max𝛼∈𝐴(|𝜇𝛼|).

On the other hand, suppose we have a sequence described in the statement of

the Theorem. Since we know that |𝐴𝑛| is bounded for almost all 𝑛, there is a finite

43



number of options for the cardinality of |𝐴𝑛| for almost all 𝑛, thus from part 2 of

Lemma 2.3.1.4 it follows that for almost all 𝑛 the cardinality is the same. Fix 𝐴 to be

a set of this cardinality. So, for almost all 𝑛 we have 𝑌𝑛 =
⨁︀

𝛼∈𝐴𝑋𝑝𝑛(𝜆𝑛,𝛼). Suppose

max𝛼∈𝐴𝑛(|𝜆𝑛,𝛼| − (𝜆𝑛,𝛼)1) is bounded by 𝐿. Now each 𝜆𝑛,𝛼 is a Young diagram of

weight 𝜈𝑛 with at most 𝐿 boxes in the rows above the first one. I.e., for 𝑛 big

enough (namely, 𝜈𝑛 > 2𝐿), it follows that each 𝜆𝑛,𝛼 = 𝜇𝑛,𝛼|𝜈𝑛 where 𝜇𝑛,𝛼 is a Young

diagram of weight at most 𝐿. So for almost all 𝑛 each 𝑌𝑛 is uniquely determined by

a collection of |𝐴| Young diagrams of weight at most 𝐿. Notice that there is only a

finite number of such collections. So by the same Lemma it follows that for almost

all 𝑛 the collection is the same. Denote it by {𝜇𝛼}𝛼∈𝐴. Hence, for almost all 𝑛 up to a

permutation we have 𝑌𝑛 =
⨁︀

𝛼∈𝐴𝑋𝑝𝑛(𝜇𝛼|𝜈𝑛). Hence we have
∏︀𝐶

ℱ𝑌𝑛 =
⨁︀

𝛼∈𝐴𝒳 (𝜇𝛼)

which is indeed an object of Rep(𝑆𝜈).

So, as promised in Example 2.3.2.5, Rep(𝑆𝜈) can indeed be described as given by

ultraproducts bounded in a certain sense.

We will also need to explain how to interpolate the central element Ω𝑛 ∈ k[𝑆𝑛] to

Rep(𝑆𝜈). Recall that we can consider the central elements of k[𝑆𝜈𝑛 ] as endomorphisms

of the identity functor of Rep𝑝𝑛(𝑆𝜈𝑛).

Definition 3.1.0.8. Denote by Ω the endomorphism of the identity functor of

Rep(𝑆𝜈) given by the restriction of the endomorphism
∏︀

ℱΩ𝜈𝑛 .

One can easily calculate the action of Ω on simple objects.

Proposition 3.1.0.9. [13] The action of Ω on an object 𝒳 (𝜆) is given by:

Ω|𝒳 (𝜆) =

(︂
ct(𝜆)− |𝜆|+ (𝜈 − |𝜆|)(𝜈 − |𝜆| − 1)

2

)︂
1𝒳 (𝜆).
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Proof. Since 𝒳 (𝜆) =
∏︀𝐶

ℱ𝑋𝑝𝑛(𝜆|𝜈𝑛), one needs to calculate
∏︀

ℱct(𝜆|𝜈𝑛). It’s easy to

see that each box of 𝜆 contributes an extra −1 to the content of 𝜆|𝜈𝑛 , also 𝜈𝑛 − |𝜆|

new boxes in the first row contribute 0 + 1 + · · · + (𝜈𝑛 − |𝜆| − 1) to the content of

𝜆|𝜈𝑛 , thus we have:

∏︁
ℱ
ct(𝜆|𝜈𝑛) =

∏︁
ℱ

(︂
ct(𝜆)− |𝜆|+ (𝜈𝑛 − |𝜆|)(𝜈𝑛 − |𝜆| − 1)

2

)︂
=

= ct(𝜆)− |𝜆|+ (𝜈 − |𝜆|)(𝜈 − |𝜆| − 1)

2
,

which is exactly the value in the statement of the proposition.

Remark 3.1.0.10. Note that all of the results of this Section work mutatis mutandis

for Repext(𝑆𝜈) (see Definition 2.2.0.9).

We also need to describe the generalizations of the induction and the restriction

functors. First let’s define the latter using the universal property of Rep(𝑆𝜈).

Definition 3.1.0.11. Consider the category Rep(𝑆𝜈−𝑘)�Rep(𝑆𝑘;C) for an integer

𝑘, and in it the object 𝒳 ⊗ C ⊕ C ⊗ 𝑋𝑘. This object is a commutative Frobe-

nius algebra, and has dimension 𝜈, so by the universal property we have a functor

Rep(𝑆𝜈) → Rep(𝑆𝜈−𝑘) � Rep(𝑆𝑘;C). This functor is called the restriction functor

and is denoted by Res𝑆𝜈
𝑆𝜈−𝑘×𝑆𝑘

.

Now we want to describe it in terms of ultraproducts.

Proposition 3.1.0.12. For all 𝜈 /∈ Z≥0, the functor Res𝑆𝜈
𝑆𝜈−𝑘×𝑆𝑘

is equal to∏︀
ℱ Res𝑆𝜈𝑛

𝑆𝜈𝑛−𝑘×𝑆𝑘
, where the latter functors are the regular restriction functors for

the finite groups.

Proof. Recall that the Littlewood-Richardson coefficient 𝑐𝜆𝜉,𝜇 equals to the number

of Littlewood-Richardson tables of the skew shape 𝜆/𝜉 and of weight 𝜇. We will use
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the fact that we have:

Res𝑆|𝜆|
𝑆|𝜆|−𝑘×𝑆𝑘

(𝑋(𝜆)) =
⨁︁

|𝜉|=|𝜆|−𝑘, |𝜇|=𝑘

𝑐𝜆𝜉,𝜇𝑋(𝜉)⊗𝑋(𝜇) .

A priori the above ultraproduct functor is a not a functor between Rep(𝑆𝜈) and

Rep(𝑆𝜈−𝑘) � Rep(𝑆𝑘;C), but between the bigger categories of unrestricted ultra-

products. Indeed this functor acts bewteen:

∏︁
ℱ

Res𝑆𝜈𝑛
𝑆𝜈𝑛−𝑘×𝑆𝑘

:
∏︁
ℱ

Rep𝑝𝑛(𝑆𝜈𝑛)→
∏︁
ℱ

(︀
Rep𝑝𝑛(𝑆𝜈𝑛−𝑘)� Rep𝑝𝑛(𝑆𝑘)

)︀
.

Now by Remark 3 after the Theorem 1.4.1 we know how to characterize the category

Rep(𝑆𝜈−𝑘)�Rep(𝑆𝑘;C) inside the image. So we need to check that if we restrict it

to Rep(𝑆𝜈), we will indeed get objects of Rep(𝑆𝜈−𝑘)� Rep(𝑆𝑘;C).

So consider 𝒳 (𝜆) =
∏︀

ℱ 𝑋(𝜆|𝑛). Now

(︃∏︁
ℱ

Res𝑆𝜈𝑛
𝑆𝜈𝑛−𝑘×𝑆𝑘

)︃
(𝒳 (𝜆)) =

∏︁
ℱ

Res𝑆𝜈𝑛
𝑆𝜈𝑛−𝑘×𝑆𝑘

(𝑋(𝜆|𝑛)) =

=
∏︁
ℱ

⨁︁
|𝜇|=𝑘,|𝜉|=𝑡𝑛−𝑘

𝑐
𝜆|𝑛
𝜉,𝜇𝑋(𝜉)⊗𝑋(𝜇) ,

where the 𝑐’s are the Richardson-Littlewood coefficients.

So if 𝜈𝑛 is sufficiently big, the gap between the first and the second rows of 𝜆|𝜈𝑛 is

bigger than 𝑘. For such 𝜈𝑛 the skew shapes 𝜇/𝜉 for admissible 𝜉 are all disconnected

– there is a part above the first row and the part in the first row. Note that we also

can put any sequence of numbers in the part lying in the first row. Hence if we denote

by 𝑀(𝜇) the set of weights 𝜇′ (not necessarily partitions) such that 0 ≤ 𝜇′
𝑖 ≤ 𝜇𝑖 it
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follows that the previous expression equals

∏︁
ℱ

⨁︁
|𝜇|=𝑘,𝜇′∈𝑀(𝜇),𝜉

𝑐𝜆𝜉,𝜇′𝑋(𝜉|𝜈𝑛)⊗𝑋(𝜇) =
⨁︁

|𝜇|=𝑘,𝜇′∈𝑀(𝜇),𝜉

𝑐𝜆𝜉,𝜇′𝒳 (𝜉)⊗𝑋(𝜇) ,

where 𝑐𝜆𝜉,𝜇′ is the number of skew-shapes 𝜆/𝜉 of weight 𝜇′. Indeed in this formula

we just first summed over the possible choices of fixing the length and the content

of the first row (by fixing 𝜇′) and then the rest. So the image of 𝒳 (𝜆) under the

ultraproduct functor indeed lies in Rep(𝑆𝜈−𝑘)� Rep(𝑆𝑘;C).

Now since
∏︀

ℱ Res𝑆𝜈𝑛
𝑆𝜈𝑛−𝑘×𝑆𝑘

(𝒳 ) = 𝒳 ⊗C⊕C⊗𝑋𝑘, it follows that the ultraproduct

functor sends 𝒳 to 𝒳 ⊗C⊕C⊗𝑋𝑘. So by universality we conclude that the functors

are the same.

Corollary/Definition 3.1.0.13. There is a functor from Rep(𝑆𝜈−𝑘)� Rep(𝑆𝑘;C)

to Rep(𝑆𝜈), which is biadjoint to Res𝑆𝜈
𝑆𝜈−𝑘×𝑆𝑘

, and which is denoted by Ind𝑆𝜈
𝑆𝜈−𝑘×𝑆𝑘

.

This functor equals to
∏︀

ℱ Ind𝑆𝜈𝑛
𝑆𝜈𝑛−𝑘×𝑆𝑘

.

Proof. It can be proven in the same way as above that the ultraproduct of the

induction functors defines a functor into the Deligne category.

After we know this, by Łoś’s theorem it follows that this functor is biadjoint to

the restriction functor, since it is true in the finite rank.

Remark 3.1.0.14. Note that this allows us to define the restriction and the induc-

tion functors for any subgroup of 𝑆𝑘 in the following way:

Ind𝑆𝜈
𝑆𝜈−𝑘×𝐺 = Ind𝑆𝜈

𝑆𝜈−𝑘×𝑆𝑘
∘ Ind𝑆𝜈−𝑘×𝑆𝑘

𝑆𝜈−𝑘×𝐺 ,

where the later functor is defined to be Ind𝑆𝜈−𝑘×𝑆𝑘

𝑆𝜈−𝑘×𝐺 =
(︁
Id � 𝐼𝑛𝑑𝑆𝑘

𝐺

)︁
. The same thing

also holds for restrictions.
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Now we would like to give the reader a general idea of how this can be used

to transfer constructions and facts from representation theory in finite rank to the

context of Deligne categories.

Suppose we have a representation-theoretic structure 𝒴𝑛 in each Rep𝑝𝑛(𝑆𝜈𝑛)

which can be constructed uniformly in an element-free way for every 𝑛. Then we can

try define the same structure 𝒴 in Rep(𝑆𝜈) using the analogs of the same objects

and maps, we would only need to prove that these objects and maps do indeed lie in

Rep(𝑆𝜈). Since the definitions are the same, it would follow that 𝒴 =
∏︀

ℱ𝒴𝑛. Now

one can try to transfer the properties of 𝒴𝑛 to 𝒴 . For some it can be as easy as

a direct application of Łoś’s theorem . Others require quite a bit of technical work

before it becomes possible can do that.

Oftentimes the structure 𝒴 might include some ind-objects of Rep(𝑆𝜈), for ex-

ample if the structures 𝒴𝑛 were of infinite length as 𝑆𝜈𝑛-modules. In the present

thesis this will happen, for example, when we will try to define the rational Chered-

nik algebra and its various generalization in Rep(𝑆𝜈). Thus we need to understand

how deal with ind-objects in the ultraproduct setting. This and some other related

constructions will be discussed in the next section.

3.2 Related constructions

In this section we will discuss several further constructions related to the Deligne

category Rep(𝑆𝜈) and how these constructions can be thought of in terms of ultra-

products.
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3.2.1 Ind-objects of Rep(𝑆𝜈) as restricted ultraproducts

First we are going to explain how ind-objects of Rep(𝑆𝜈) can be obtained as restricted

ultraproducts, thus extending Theorem 3.1.0.1 in a certain way.

To do that, we will use the result of Construction 2.1.0.11.

Proposition 3.2.1.1. Suppose we have a sequence of representations

𝑀𝑛 ∈ Rep𝑝𝑛(𝑆𝜈𝑛), with fixed filtration by subrepresentations of finite length. i.e.,

we have 𝐹 𝑖𝑀𝑛 ∈ Rep𝑓𝑝𝑛(𝑆𝜈𝑛) such that
⋃︀
𝑖∈N 𝐹

𝑖𝑀𝑛 = 𝑀𝑛. Also suppose that∏︀𝐶
ℱ𝐹

𝑖𝑀𝑛 ∈ Rep(𝑆𝜈). Then it follows that 𝑀 =
∏︀𝐶,𝑟

ℱ 𝑀𝑛 =
⋃︀
𝑖∈N
∏︀𝐶

ℱ𝐹
𝑖𝑀𝑛 is an

object of IND(Rep(𝑆𝜈)).3

Proof. This follows from Construction 2.3.3.5.

Remark 3.2.1.2. Note that, using Remark 2.1.0.12, we can conclude that if

𝑀 ∈ IND(Rep(𝑆𝜈)) has finite length, then for any 𝑁 ∈ IND(Rep(𝑆𝜈)) constructed

via Proposition 3.2.1.1, we have:

HomIND(Rep(𝑆𝜈))(𝑀,𝑁) =
⋃︁
𝑗∈N

HomRep(𝑆𝜈)(𝑀,𝐹 𝑗𝑁) =

=
⋃︁
𝑗∈N

∏︁
ℱ
HomRep𝑝𝑛

(𝑆𝜈𝑛 )(𝑀𝑛, 𝐹
𝑗𝑁𝑛) =

∏︁𝑟

ℱ
HomRep𝑝𝑛

(𝑆𝜈𝑛 )(𝑀𝑛, 𝑁𝑛),

with the filtration arising from the filtration on 𝑁 .

3One can also define, through a more involved construction, the category IND(Rep(𝑆𝜈)) as a
subcategory of

∏︀
ℱRep𝑝𝑛(𝑆𝜈𝑛). Note that this subcategory will not be full. In this way one would

also be able to consider
∏︀𝐶

ℱ
⋃︀
𝑖∈N 𝐹

𝑖𝑀𝑛, i.e., take the ultraproduct directly. It can be shown that
this would define the same object 𝑀 .
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3.2.2 Unital vector spaces and complex tensor powers

In this section we will discuss the construction of the complex tensor powers of the

unital vector space in the Deligne category Rep(𝑆𝜈) and a related construction of

the symmetric tensor power of a unital algebra.

Below we will use the notion of a unital vector space. For details see [13].

Definition 3.2.2.1. A unital vector space 𝑉 is a vector space together with a unit,

i.e., a distinguished non-zero vector denoted by 1 ∈ 𝑉 .

In [13] it is shown that given a finite dimensional unital vector space 𝑉 , one

can functorially define an ind-object 𝑉 ⊗𝜈 ∈ Rep(𝑆𝜈). The idea behind this is that,

although there is no way to algebraically define what 𝑥𝜈 is, there is, on the other

hand, a way to define what (1 + 𝑥)𝜈 is. Namely, (1 + 𝑥)𝜈 :=
∑︀

𝑚≥0

(︀
𝜈
𝑚

)︀
𝑥𝑚.

We can also construct this object via an ultraproduct. Anyone not familiar with

[13] might regard this as definition for the purposes of the present thesis.

Proposition 3.2.2.2. For a finite dimensional unital vector space 𝑉 , the ind-object

𝑉 ⊗𝜈 is given by:

𝑉 ⊗𝜈 =
∏︁𝐶,𝑟

ℱ
𝑉 ⊗𝜈𝑛 .

Proof. Using the notation of [13], we have:

𝑉 ⊗𝜈𝑛 =
⨁︁
𝜆

𝑆𝜆|𝜈𝑛𝑉 ⊗𝑋(𝜆|𝜈𝑛),

where 𝑆𝜆|𝜈𝑛 are the corresponding Schur functors. Thus we can define a filtration on

each 𝑉 ⊗𝜈𝑛 as

𝐹 𝑖𝑉 ⊗𝜈𝑛 =
⨁︁
|𝜆|≤𝑖

𝑆𝜆|𝜈𝑛𝑉 ⊗𝑋(𝜆|𝜈𝑛).
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Thus, taking the restricted ultraproduct with respect to this filtration, we obtain

∏︁𝐶,𝑟

ℱ
𝑉 ⊗𝜈𝑛 =

⋃︁
𝑖

⨁︁
|𝜆|≤𝑖

(︁∏︁
ℱ
𝑆𝜆|𝜈𝑛𝑉

)︁
⊗𝒳 (𝜆) =

⨁︁
𝜆

𝑆𝜆,∞𝑉 ⊗𝒳 (𝜆) = 𝑉 ⊗𝜈 ,

as needed.

Note that we could have also used the filtration on 𝑉 ⊗𝜈𝑛 induced by the filtration

on 𝑉 given by 𝐹 0𝑉 = k · 1 and 𝐹 1𝑉 = 𝑉 . I.e. the filtration, there the 𝑖-th term is

spanned by all tensor monomials with no more than 𝑖 elements in the product that

are not equal to 1. Indeed this filtration is a sub-filtration of the filtration used above

in the proof.

Symmetric powers of a unital algebra

In this section we will discuss a related construction in the case of the unital algebra.

Here we will be concerned not with the tensor, but with symmetric powers of the

unital vector space. Since the space of invariants of 𝑉 ⊗𝜈 is an actual vector space,

these objects will be usual vector spaces and not the objects of the Deligne category.

We will discuss the following class of algebras:

Definition 3.2.2.3. Consider 𝐴 – a unital algebra. We will consider this algebra as

a unital vector space with a unit given by the unit of the algebra. We call 𝐴 a filtered

unital algebra if there is an ascending Z≥0-filtration by finite-dimensional subspaces

such that k · 1 ⊂ 𝐹 0𝐴. We will also suppose that such an algebra has a fixed vector

space decomposition 𝐴 = k · 1⊕ 𝐴′.

To make things clearer we will start with considering everything for transcenden-

tal 𝜈. I.e. we have k = Q.
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We would like to consider symmetric powers of a filtered unital algebra. I.e. we

want to study the structure of 𝑆𝑛(𝐴). First of all note that this algebra admits a

bifiltration.

Definition 3.2.2.4. For a filtered unital algebra 𝐴, introduce a standard bifiltration

of the algebra 𝑆𝑛(𝐴) in the following way. Consider 𝑆𝑛(𝐴) as (𝐴⊗𝑛)𝑆𝑛 . Introduce a

bifiltration on 𝐴⊗𝑛 via the following formulas for horizontal and vertical degrees:

degℎ(𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛) = |{𝑖|𝑎𝑖 /∈ k · 1}| ,

deg𝑣(𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛) =
∑︁
𝑖

deg(𝑎𝑖) .

It is easy to see that this bifiltration restricts on the space of invariants of 𝑆𝑛.

Now we can prove the following Proposition.

Proposition 3.2.2.5. The associated graded algebra of the symmetric power 𝑆𝑛(𝐴)

with respect to the horizontal filtration grℎ(𝑆
𝑛(𝐴)) is isomorphic to

⨁︀𝑛
𝑖=0 𝑆

𝑖(𝐴′) as

a vector space.

Proof. Taking the associated graded with respect to the horizontal filtration allows

us to use the standard splitting 𝐴 = k · 1 ⊕ 𝐴′. This allows us to view 𝐴⊗𝑛 as

(k · 1 ⊕ 𝐴′)⊗𝑛. I.e. we have a decomposition of grℎ(𝑆
𝑛(𝐴)) into a direct sum

grℎ(𝑆
𝑛(𝐴)) =

⨁︀𝑛
𝑖=0 grℎ(𝑆

𝑘(𝐴))𝑖, where grℎ(𝑆
𝑛(𝐴))𝑖 consists of symmetric tensors,

the tensor monomials of which have exactly 𝑖 components in 𝐴′ and the rest 𝑛 − 𝑖

components are scalars 1. I.e. we have:

grℎ(𝑆
𝑛(𝐴))𝑖 = [

⨁︁
𝜎∈𝑆ℎ(𝑖,𝑛−𝑖)

𝐶(𝜎(1))⊗ 𝐶(𝜎(2))⊗ · · · ⊗ 𝐶(𝜎(𝑛))]𝑆𝑛 ,
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where 𝐶(1) = · · · = 𝐶(𝑖) = 𝐴′, 𝐶(𝑖+ 1) = · · · = 𝐶(𝑛) = k · 1 and 𝑆ℎ(𝑖, 𝑛− 𝑖) is the

group of shuffles of 𝑖 and 𝑛− 𝑖. Hence:

grℎ(𝑆
𝑛(𝐴))𝑖 ≃ [𝐴′⊗𝑖]𝑆𝑖 ⊗ (k · 1)⊗(𝑛−𝑖) ≃ 𝑆𝑖(𝐴′) ,

under the symmetrizing isomorphism. Hence we conclude that:

grℎ(𝑆
𝑛(𝐴)) ≃

𝑛⨁︁
𝑖=0

𝑆𝑖(𝐴′) .

Notice that the horizontal grading on the l.h.s. translates exactly into the grading

by the degree of symmetric power on the r.h.s and the vertical filtration on l.h.s.

translates into the filtration by the sum of degrees with respect to 𝐴 of the elements

of the term in the symmetric product.

Now we would like to consider an ultraproduct of such algebras:

Definition 3.2.2.6. For a filtered unital algebra 𝐴 over k = Q, define 𝑆𝜈(𝐴) to be

equal to an algebra
∏︀𝑟

ℱ𝑆
𝑛(𝐴) over C, where the restricted ultraproduct is taken with

respect to the total filtration of the bifiltered algebras.

Obviously this algebra inherits a bifiltration from 𝑆𝑛(𝐴). Thus we can consider

grℎ(𝑆
𝜈(𝐴)). We can understand this algebra with the help of the following Proposi-

tion.

Proposition 3.2.2.7. We have a bifiltered vector space isomorphism between

grℎ(𝑆
𝜈(𝐴)) ≃ 𝑆∙(𝐴′)⊗Q C .
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Proof. Indeed we have:

grℎ(𝑆
𝜈(𝐴)) =

∏︁𝑟

ℱ
grℎ(𝑆

𝑛(𝐴)) ≃
∞⨁︁
𝑖=1

∏︁𝑟

ℱ
grℎ(𝑆

𝑛(𝐴))𝑖 ,

where the last restricted ultraproduct is taken with the respect to the filtration on

grℎ(𝑆
𝑛(𝐴))𝑖 induced by the vertical filtration.

Now for each 𝑛 > 𝑖, grℎ(𝑆𝑛(𝐴))𝑖 has a filtered isomorphism with the same vector

space 𝑆𝑖(𝐴′). Hence
∏︀𝑟

ℱgrℎ(𝑆
𝑛(𝐴))𝑖 = 𝑆𝑖(𝐴′)⊗Q C. Thus we conclude:

grℎ(𝑆
𝜈(𝐴)) ≃ 𝑆∙(𝐴′)⊗Q C .

To characterize this algebra more precisely we need to construct a certain map

from 𝐴 to each 𝑆𝑛(𝐴).

Proposition 3.2.2.8. There is a map of Lie algebras 𝛿𝑛 : 𝐴 → 𝑆𝑛(𝐴) (where the

structure of the Lie algebra on both sides is given by the commutator) that sends

𝑎 ∈ 𝐴 to
∑︀𝑛

𝑖=1 𝑎𝑖, where 𝑎𝑖 = 1 ⊗ · · · ⊗ 1 ⊗ 𝑎 ⊗ 1 ⊗ · · · ⊗ 1, where 𝑎 is on the 𝑖-th

place. This gives rise to an algebra map 𝛿 : 𝐴⊗QC→ 𝑆𝜈(𝐴) that sends 1𝐴 ↦→ 𝜈 · 1𝒜.

Proof. Indeed 𝛿𝑛 is a well-defined map and it’s a standard fact that it indeed gives

us a map of Lie algebras. This map also respects the bifiltration if we consider the

horizontal filtration of 𝐴 to be given by 𝐹 0
ℎ𝐴 = k · 1 and 𝐹 1

ℎ𝐴 = 𝐴 and use the usual

filtration on 𝐴 as the vertical one. Hence, taking an ultraproduct
∏︀

ℱ𝛿𝑛 we obtain a

well-defined map 𝛿 : 𝐴⊗Q C→ 𝑆𝜈(𝐴).

Now notice that under this map 𝛿𝑛 we have 𝛿𝑛(1) = 𝑛 · 1⊗ 1⊗ · · · ⊗ 1. Now, the

element 1⊗ · · · ⊗ 1 ∈ 𝑆𝑛(𝐴) is the unity of this algebra. Thus
∏︀

ℱ1⊗ · · · ⊗ 1 is the
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unity of 𝑆𝜈(𝐴). So, we conclude that:

𝛿(1𝐴) =
∏︁

ℱ
𝛿𝑛(1𝐴) =

(︁∏︁
ℱ
𝑛
)︁
·
∏︁

ℱ
1⊗ · · · ⊗ 1 = 𝜈 · 1𝒜 .

This map allows us to define a map from 𝑈(𝐴):

Definition 3.2.2.9. Denote by Δ𝑛 a map from the universal enveloping algebra

𝑈(𝐴) to 𝑆𝑛(𝐴) arising from the map 𝛿𝑛.

Now note that there is a bifiltration on 𝑈(𝐴) which comes from the bifiltration

on 𝑇 ∙(𝐴) arising from the bifiltration on 𝐴 and given by the same formulas as in

Definition 3.2.2.4. With this filtration each Δ𝑛 is a bifiltered morphism. This allows

us to take their ultraproduct:

Lemma 3.2.2.10. The ultraproduct Δ =
∏︀

ℱΔ𝑛 is a well defined bifiltered morphism

from 𝑈(𝐴)⊗Q C to 𝑆𝜈(𝐴).

Now we would like to prove that Δ is a surjective map.

Lemma 3.2.2.11. The map Δ is surjective.

Proof. It’s enough to prove that all Δ𝑛 are surjective and so it is enough to prove

that 𝑆𝑛(𝐴) is generated by the image of 𝛿𝑛. We will do so by induction on the degree

of the horizontal filtration.

Now 𝐹 1,∙𝑆𝑛(𝐴) is precisely the image of 𝛿𝑛 so the base of induction is clear.

Suppose that 𝐹 𝑖−1,∙𝑆𝑛(𝐴) is generated by the image of 𝛿𝑛. Suppose 𝑓 ∈ 𝐹 𝑖,∙𝑆𝑛(𝐴).

Now using the isomorphism of grℎ(𝑆𝑛(𝐴)) with
∑︀𝑛

𝑗=0 𝑆
𝑗(𝐴′), we may assume that

𝑓 = ̃︀𝑓 + 𝑔, where ̃︀𝑓 =
∑︀ ̃︀𝑓𝑙 and each ̃︀𝑓𝑙 = 𝑎

(𝑙)
1 ⊗𝑎

(𝑙)
2 ⊗· · ·⊗𝑎

(𝑙)
𝑛 ⊗ 1⊗· · ·⊗ 1+ shuffles,

where each 𝑎(𝑙)𝑖 ∈ 𝐴′ and 𝑔 ∈ 𝐹 𝑖−1,∙𝑆𝑛(𝐴).
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But now

ℎ𝑙 = 𝛿(𝑎
(𝑙)
1 )𝛿(𝑎

(𝑙)
2 ) . . . 𝛿(𝑎(𝑙)𝑛 ) =

= 𝑎
(𝑙)
1 ⊗𝑎

(𝑙)
2 ⊗· · ·⊗𝑎(𝑙)𝑛 ⊗1⊗· · ·⊗1+ shuffles + lower order terms in horizontal filtration .

Hence 𝑓 −
∑︀
ℎ𝑙 ∈ 𝐹 𝑖−1,∙𝑆𝑘(𝐴) and we are done.

Now since we know that Δ(1𝐴) = 𝜈 · 1𝒜 it follows that 1𝐴 − 𝜈 ∈ ker(Δ).

Proposition 3.2.2.12. The map ̃︀Δ : 𝑈(𝐴)/(1𝐴 − 𝜈) ⊗Q C → 𝑆𝜈(𝐴) is a filtered

algebra isomorphism.

Proof. We already know that this map is surjective. Now this map induces a graded

map of the associated graded algebras with respect to the horizontal filtration.

We know that grℎ(𝑆
𝜈(𝐴)) = 𝑆∙(𝐴′). Now grℎ(𝑈(𝐴)/(1𝑎 − 𝜈)) is isomorphic to

gr(𝑈(𝐴′)) ≃ 𝑆∙(𝐴′). Hence, since the map is surjective, it also has to be injective.

Hence ̃︀Δ is an isomorphism.

Remark 3.2.2.13. The same construction can be repeated in the case of algebraic

𝜈. In order to do so we should consider a lattice filtered unital algebra 𝐴Z defined

over Z and the sequence of algebras 𝐴𝑛 = 𝐴Z ⊗Z F𝑝𝑛 .

In this case as we know 𝜈𝑛 < 𝑝𝑛, all of the constructions which use the isomor-

phisms related to symmetric invariants work in the same way and we can still define

the 𝜈-symmetric power as 𝑆𝜈(𝐴) =
∏︀𝑟

ℱ𝑆
𝜈𝑛(𝐴𝑛). Everything else can be repeated

and we obtain a similar isomorphism ̃︀Δ : 𝑈(𝐴Z ⊗Z C)/(1𝐴 − 𝜈)→ 𝑆𝜈(𝐴).

3.2.3 The category Rep(𝑆𝜈 n Γ𝜈)

In this section we will explain how the category of representations of the wreath

product in complex rank can be constructed.
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There are several ways to approach this problem. One construction was developed

by Knop in [38]. Another approach can be found in [42]. However, in the present

thesis we will use a different approach, outlined in [13], that uses the notion of a

unital vector space outlined in the previous section. For brevity we will only address

the case of transcendental 𝜈 in this section, although with slight modifications the

results can be extended to the algebraic case as well.

Consider a finite subgroup Γ ⊂ SL(2,Q). Proposition 3.2.2.2 allows us to define

the following algebra:

Definition 3.2.3.1. An ind-object C[Γ]⊗𝜈 is constructed via Proposition 3.2.2.2

starting with Q[Γ] as a unital vector space. It has the structure of the algebra given

by the ultraproduct of the algebra structures on Q[Γ]⊗𝑛.

Using this, one can define the category Rep(𝑆𝜈 n Γ𝜈) in the following way:

Definition 3.2.3.2. The category Rep(𝑆𝜈nΓ𝜈) is the category of C[Γ]⊗𝜈-modules in

Rep(𝑆𝜈). I.e., its objects are objects of Rep(𝑆𝜈)) with the structure of a

C[Γ]⊗𝜈-module, and its morphisms are morphisms in Rep(𝑆𝜈) which commute with

the module structure.

It can be shown that Rep(𝑆𝜈 n Γ𝜈) is equivalent to the wreath product category

defined by Knop.

We can construct some of the objects of Rep(𝑆𝜈 n Γ𝜈) as ultraproducts.

Proposition 3.2.3.3. Consider a sequence of modules 𝑀𝑛 ∈ Rep0(𝑆𝑛 n Γ𝑛) whose

ultraproduct as 𝑆𝑛-modules is a well-defined object of Rep(𝑆𝜈). Then, this ultraprod-

uct also lies in Rep(𝑆𝜈 n Γ𝜈).

Proof. Denote 𝑀 =
∏︀𝐶

ℱ𝑀𝑛. Indeed since 𝑀𝑛 has a structure of a Q[Γ]⊗𝑛-module in
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Rep0(𝑆𝑛), it follows that 𝑀 has a structure of
∏︀𝐶

ℱQ[Γ]⊗𝑛 = C[Γ]⊗𝜈-module. Hence

it is an object of Rep(𝑆𝜈 n Γ𝜈).

In this way we can interpolate irreducible objects of Rep0(𝑆𝑛 n Γ𝑛).

Definition 3.2.3.4. In the notation of Proposition 2.1.1.3, consider 𝜆 to be any

function:

𝜆 : 𝐴→ {Partitions}.

Denote by 𝒳 (𝜆) the object of Rep(𝑆𝜈 n Γ𝜈) defined as:

𝒳 (𝜆) =
∏︁𝐶

ℱ
𝑋(𝜆𝑛),

where 𝜆𝑛(triv) = 𝜆(triv)|𝑛 and 𝜆𝑛(𝛼) = 𝜆(𝛼) for all other irreducibles 𝛼 of Γ.

It follows that 𝒳 (𝜆) is irreducible.

Remark 3.2.3.5. We leave out the proof of the fact that these ultraproducts indeed

define an object of Rep(𝑆𝜈). This can be done using the results of [38], but this is

not required for the results we are going to establish in the present thesis.
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Part II

Applications
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Chapter 4

Classification of simple algebras in

Rep(𝑆𝜈)

This chapter will concern the first application of the construction of Rep(𝑆𝜈) through

ultraproducts. We will show how one can use this construction in order to classify

all simple commutative, associative and Lie algebras in Rep(𝑆𝜈).

We will begin by providing a number of technical lemmas concerned with rep-

resentation theory of symmetric group of big enough rank. Then we will use it to

classify simple associative (and commutative as a special case) algebras in Rep(𝑆𝜈).

This will also allow us to state an interesting result concerning the existence of sym-

metric monoidal functors between Deligne categories. Then in the last sections we

will classify simple Lie algebras in Rep(𝑆𝜈) and provide a conjecture regarding the

classification of Lie super-algebras in the same category.
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4.1 Technical results on representations of 𝑆𝑁 .

In this section we prove a few rather technical lemmas which we will use extensively

in our proofs of the classification. The reader can skip this section at first, and then

go back to it when the need arises.

4.1.1 Facts about small-index subgroups in 𝑆𝑁 .

In this subsection we will prove that under some restrictions on the index of a sub-

group of 𝑆𝑁 it is conjugate to either 𝒜𝑛 ×𝐻 or 𝑆𝑛 ×𝐻, where 𝐻 is a subgroup of

𝑆𝑁−𝑛.

So suppose 𝑁 > 10, 𝑟 an integer less then 𝑁/2, and 𝐺 a subgroup of 𝑆𝑁 of index

less than
(︀
𝑁
𝑟

)︀
. First following Theorem 5.2 in [9] we have the following proposition:

Proposition 4.1.1.1. Under the above assumptions, up to a conjugation, 𝐺 contains

the group 𝒜𝑁−𝑗 with 𝑗 < 𝑟, where 𝒜𝑁−𝑗 is the group of even permutations of the

first 𝑁 − 𝑗 elements.

Now we have the second result:

Proposition 4.1.1.2. Suppose 𝐺 is a subgroup of 𝑆𝑁 which contains 𝒜𝑁−𝑗 and

𝑁 > 2𝑗+7, then 𝐺 is conjugate to either 𝑆𝑁−𝑗′×𝐻 or 𝒜𝑁−𝑗′×𝐻 for some 𝐻 ⊂ 𝑆𝑗′

and 𝑗′ ≤ 𝑗.

Proof. Let’s consider the standard action of 𝑆𝑁 on 𝑁 elements. Consider the orbit

of the first element under the action of 𝐺. By assumption it contains the first 𝑁 − 𝑗

elements. Up to taking a group conjugate to 𝐺 (we conjugate by an element fixing

the first 𝑁 − 𝑗 elements) we may assume that the orbit of the first element under 𝐺

is equal to the first 𝑁 − 𝑗′ elements for 𝑗′ ≤ 𝑗. We want to prove that 𝐺 contains
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𝒜𝑁−𝑗′ . To do this, it is enough to prove that any 3-cycle consisting of the first 𝑁−𝑗′

elements belongs to 𝐺.

Let’s denote by 𝐵 the set of the first 𝑁 − 𝑗 elements and by 𝐶 the set of the

𝑗 − 𝑗′ elements directly after 𝐵. So we need to consider 3-cycles of four types.

The first case is a 3-cycle consisting solely of elements of 𝐵. It is trivial by

assumption.

The second case is a 3-cycle permuting elements 𝑥, 𝑦, 𝑧 such that 𝑥, 𝑦 ∈ 𝐵 and

𝑧 ∈ 𝐶. Also let’s denote the first element by 1. Since 𝑧 belongs to the orbit of 1

under 𝐺, it follows that ∃𝑔 ∈ 𝐺 such that 𝑔(𝑧) = 1. Now since |𝐵| = 𝑁 − 𝑗 is

bigger than 𝑗 by at least 6, it follows by the pigeonhole principle that there exist two

elements 𝑎, 𝑏 ∈ 𝐵 such that 𝑔(𝑎), 𝑔(𝑏) ∈ 𝐵 and all 𝑎, 𝑏, 𝑔(𝑎), 𝑔(𝑏), 𝑥, 𝑦 are distinct.

Now consider a double transposition 𝜏 which interchanges 𝑎 ↔ 𝑥 and 𝑏 ↔ 𝑦, it

belongs to 𝒜𝑁−𝑗 and hence to 𝐺. Now consider a 3-cycle 𝜋 permuting 𝑔(𝑎), 𝑔(𝑏) and

1. It also belongs to 𝒜𝑁−𝑗 and hence 𝐺. Now 𝜏𝑔−1𝜋𝑔𝜏 ∈ 𝐺 is a 3-cycle permuting

𝑥, 𝑦, 𝑧. Indeed if 𝑐 ∈ 𝑁 is not equal to 𝑎, 𝑏, 𝑥, 𝑦, 𝑧 then both 𝜋 and 𝜏 act trivially,

hence 𝑐 maps to 𝑐 under the above map. The elements 𝑎 and 𝑚 first map to 𝑥, 𝑦

accordingly, then under 𝑔 they map to something on which 𝜋 acts trivially, so they

are mapped back and then back to 𝑎 and 𝑏. Now (𝑥, 𝑦, 𝑧) first map to (𝑎, 𝑏, 𝑧) then

to (𝑔(𝑎), 𝑔(𝑏), 1), then to (𝑔(𝑏), 1, 𝑔(𝑎)), then to (𝑏, 𝑧, 𝑎) and to (𝑦, 𝑧, 𝑥).

The third case is 𝑥 ∈ 𝐵 and 𝑦, 𝑧 ∈ 𝐶. Again suppose 𝑔 ∈ 𝐺 maps 𝑧 to

1. Again by the pigeonhole principle there are 𝑎, 𝑏, 𝑐 ∈ 𝐵 such that all three

𝑔(𝑎), 𝑔(𝑏), 𝑔(𝑐) ∈ 𝐵 and 𝑎, 𝑏, 𝑐, 𝑔(𝑎), 𝑔(𝑏), 𝑔(𝑐), 𝑥 are distinct. By 𝜏 denote the double

transposition interchanging 𝑎 ↔ 𝑥 and 𝑏 ↔ 𝑐, as before 𝜏 ∈ 𝐺 by the assumptions.

Now using two previous cases it follows that a 3-cycle 𝜋 which permutes 𝑔(𝑎), 1, 𝑔(𝑧)

belongs to 𝐺. Hence by the same logic as above 𝜏𝑔−1𝜋𝑔𝜏 ∈ 𝐺 is the required 3-cycle.

The final case is 𝑥, 𝑦, 𝑧 ∈ 𝐶. As before, fix 𝑔 ∈ 𝐺 mapping 𝑧 to 1. By the above
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cases there is a 3-cycle 𝜋 ∈ 𝐺 permuting 𝑔(𝑦), 𝑔(𝑧), 1. Then 𝑔−1𝜋𝑔 is the required

cycle.

Hence 𝒜𝑁−𝑗′ ⊂ 𝐺′, where 𝐺′ is a group conjugate to 𝐺. Since the orbit of 1

consists of the first 𝑁 − 𝑗′ elements, it follows that 𝐺′ ⊂ 𝑆𝑁−𝑗′ × 𝑆𝑗′ . By the above

discussion we are limited to the two cases: 𝐺′ = 𝒜𝑁−𝑗′ × 𝐻 or 𝐺′ = 𝑆𝑁−𝑗′ × 𝐻,

where 𝐻 ⊂ 𝑆𝑗′ .

Now we are ready to state the main theorem of this section:

Theorem 4.1.1.3. Suppose 𝐺 ⊂ 𝑆𝑁 has index less than
(︀
𝑁
𝑟

)︀
for 𝑁 > 2𝑟 + 8. Then

𝐺 is conjugate either to 𝑆𝑁−𝑗 ×𝐻 or 𝒜𝑁−𝑗 ×𝐻 for some 𝐻 ⊂ 𝑆𝑗 and 𝑗 ≤ 𝑟.

Proof. Using Proposition 4.1.1.1 we conclude that the conjugate group 𝐺′ contains

𝒜𝑁−𝑗′ for 𝑗′ < 𝑟. Now using the Proposition 4.1.1.2 we conclude that the conjugate

group 𝐺′′ is equal to either 𝑆𝑁−𝑗 ×𝐻 or 𝒜𝑁−𝑗 ×𝐻 for some 𝐻 ⊂ 𝑆𝑗 and 𝑗 ≤ 𝑗′ ≤ 𝑟,

since 𝑁 > 2𝑟 + 7 ≥ 2𝑗′ + 7.

4.1.2 Lemmas on ultraproducts of representations of 𝑆𝜈𝑛.

Now we will prove some other results concerned with sequences of representations of

𝑆𝜈𝑛 that give us an element of Rep(𝑆𝜈).

Lemma 4.1.2.1. Suppose 𝑉 is an object of Rep(𝑆𝜈) such that 𝑉 =
∏︀

ℱ 𝑉𝑛 and

𝑉𝑛 = Ind𝑆𝜈𝑛
𝐺𝑛

(𝑊𝑛) for some subgroup 𝐺𝑛 ⊂ 𝑆𝜈𝑛. Then it follows that 𝐺𝑛 = 𝑆𝜈𝑛−𝑗 ×𝐻

for some 𝑗 ∈ Z>0 and 𝐻 ⊂ 𝑆𝑗, for almost all 𝑛. Also 𝑊 =
∏︀

ℱ 𝑊𝑛 is an object of

Rep(𝑆𝜈−𝑗)�Rep(𝐻;C), hence 𝑉 = Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(𝑊 ).

Proof. Suppose 𝑉 is equal to the sum of 𝑙(𝑉 ) simple objects of Rep(𝑆𝜈) such that

each one is a subobject of [𝑚] with𝑚 ≤ 𝑚(𝑉 ). Then for almost all 𝑛 we have 𝑉𝑛 being
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equal to the sum of 𝑙(𝑉 ) irreducible representations included in 𝑉 𝑚 for 𝑚 ≤ 𝑚(𝑉 ).

Hence for almost all 𝑛 we have dim𝑉𝑛 ≤ 𝑙(𝑉 ) · (𝜈𝑛)𝑚(𝑉 ). But since 𝑉𝑛 = Ind𝑆𝜈𝑛
𝐺𝑛

(𝑊𝑛)

for 𝐺𝑛 ⊂ 𝑆𝜈𝑛 , we know that dim𝑉𝑛 = dim𝑊𝑛 · |𝑆𝜈𝑛 |/|𝐺𝑛| ≥ |𝑆𝜈𝑛|/|𝐺𝑛|. Hence we

obtain the following inequality:

𝑙(𝑉 ) · (𝜈𝑛)𝑚(𝑉 ) ≥ |𝑆𝜈𝑛|/|𝐺𝑛| .

So we have a subgroup 𝐺𝑛 ⊂ 𝑆𝜈𝑛 with the index bounded by 𝑙(𝑉 ) · 𝜈𝑚(𝑉 )
𝑛 . Since(︀

𝜈𝑛
𝑚(𝑉 )+1

)︀
is a polynomial of degree 𝑚(𝑉 ) + 1 with the highest term being equal to

𝜈
𝑚(𝑉 )+1
𝑛

(𝑚(𝑉 )+1)!
it follows that all but finite number of 𝜈𝑛 we have

(︀
𝜈𝑛

𝑚(𝑉 )+1

)︀
≥ 𝑙(𝑉 ) ·(𝜈𝑛)𝑚(𝑉 ).

Hence for almost all 𝑛, 𝐺𝑛 satisfies the condition of Theorem 4.1.1.3 with 𝑁 = 𝜈𝑛 and

𝑟 = 𝑚(𝑉 )+1. Thus for almost all 𝑛 we have, after a conjugation, 𝐺′
𝑛 = 𝑆𝜈𝑛−𝑗𝑛 ×𝐻𝑛

or 𝐺′
𝑛 = 𝒜𝜈𝑛−𝑗𝑛 ×𝐻𝑛 for 𝑗 ≤ 𝑚(𝑉 ) + 1 and 𝐻𝑛 ⊂ 𝑆𝑗𝑛 .

For conjugate subgroups 𝐺 and 𝐺′ the objects Ind𝑆𝑁
𝐺 (𝑈) and Ind𝑆𝑁

𝐺′ (𝑈) are iso-

morphic for the correct choice of the action of 𝐺 and 𝐺′ on 𝑈 . Hence we may

suppose that 𝑉𝑛 = Ind𝑆𝜈𝑛

𝐺′
𝑛
(𝑊𝑛). But there is a finite number of subgroups 𝐻 in 𝑆𝑗

for 𝑗 ≤ 𝑚(𝑉 ) + 1, hence there is a finite number of ways to choose 𝐺′
𝑛 for every 𝑛.

Thus (note that here we Lemma 2.3.1.4) for almost all 𝑛 we have the same 𝑗𝑛 = 𝑗

and 𝐻𝑛 = 𝐻 ⊂ 𝑆𝑗, and 𝐺𝑛 = 𝑆𝜈𝑛−𝑗 ×𝐻 or 𝐺𝑛 = 𝒜𝜈𝑛−𝑗 ×𝐻 for almost all 𝑛. First

we need to rule out the possibility 𝐺𝑛 = 𝒜𝜈𝑛−𝑗 ×𝐻.

So suppose 𝐺𝑛 = 𝒜𝜈𝑛−𝑗 ×𝐻. Then

𝑉𝑛 = Ind𝑆𝜈𝑛
𝐺𝑛

(𝑊𝑛) = Ind𝑆𝜈𝑛
𝑆𝜈𝑛−𝑗×𝑆𝑗

(𝑈𝑛) ,

where 𝑈𝑛 is an 𝑆𝜈𝑛−𝑗×𝑆𝑗-module with an action of 𝑆𝜈𝑛−𝑗 induced from the action of

𝒜𝜈𝑛−𝑗. But any such representation is equivalent to itself tensored with the sign rep-
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resentation, hence if a partition 𝜆 appears in the decomposition, so does its conjugate

𝜆*.

However for any partition we have that 𝑙(𝜆) × 𝑙(𝜆*) ≥ |𝜆|, so in particular

max{𝑙(𝜆), 𝑙(𝜆*)} ≥
√︀
|𝜆|. Therefore any representation induced from 𝒜𝜈𝑛−𝑗 to 𝑆𝜈𝑛−𝑗

contains an irreducible component corresponding to a partition of length at least
√
𝜈𝑛 − 𝑗. So

𝑈𝑛 =
∑︁
𝑖

𝑋(𝜆𝑖)⊗𝑋(𝜇𝑖) ,

where |𝜆𝑖| = 𝜈𝑛 − 𝑗, |𝜇𝑖| = 𝑗 and at least one of 𝜆𝑖 is of length at least
√
𝜈𝑛 − 𝑗.

So we have:

𝑉𝑛 =
⨁︁
𝑖,𝜁

𝑋(𝜁)
⊕𝑐𝜁𝜆𝑖,𝜇𝑖 , (4.1)

where 𝜁 are partitions of 𝜈𝑛 and 𝑐’s are the Littlewood-Richardson coefficients.

Suppose 𝜆𝑗 is of length at least
√
𝜈𝑛 − 𝑗. Then there is 𝜁 such that 𝑐𝜁𝜆𝑗 ,𝜇𝑗 ̸= 0

and hence 𝜁 contains 𝜆𝑖 and thus 𝑙(𝜁) ≥ 𝑙(𝜆𝑗) ≥
√
𝜈𝑛 − 𝑗. So the lengths of Young

diagrams appearing in 𝑉𝑛 are unbounded. But this contradicts 𝑉 being an object

of the Deligne category, because all the simple objects appearing in 𝑉 lie in 𝒳⊗𝑚

for some bounded 𝑚, and hence the length of the Young diagrams appearing in 𝑉𝑛

should be bounded for almost all 𝑛. Hence 𝐺𝑛 = 𝑆𝜈𝑛−𝑗 ×𝐻.

So 𝑉𝑛 = Ind𝑆𝜈𝑛
𝑆𝜈𝑛−𝑗×𝐻(𝑊𝑛). The last thing to check is that

∏︀
ℱ 𝑊𝑛 is an object

of the Deligne category. By the Remark 3.1.0.5, writing 𝑊𝑛 = ⊕𝑊 𝑘
𝑛 ⊗ 𝑈𝑘, where

𝑈𝑘 is all possible irreducible representations of 𝐻, it’s enough to check that each

sequence 𝑊 𝑘
𝑛 gives an object of Rep(𝑆𝜈). As we know from our previous discussions

this is true iff the number of irreducible representations in the sequence 𝑊 𝑘
𝑛 for each

𝑘 is bounded and the number of boxes in the corresponding Young diagrams in all

the rows except the first one is bounded too. But note that when we induce, each
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representation in 𝑊 𝑘
𝑛 gives us at least one irreducible representation in the resulting

object, so if the number of irreducible representation is unbounded here it is also

unbounded in 𝑉𝑛. Also if the number of boxes in all the rows except the first one is

unbounded, then it follows that the number of boxes in the irreducible components

of 𝑉𝑛 is also unbounded. Indeed by Littlewood-Richardson rule we only add boxes

to diagrams when applying induction. Hence for 𝑉 to lie in Rep(𝑆𝜈), 𝑊 also should

lie in Rep(𝑆𝜈−𝑗)� Rep(𝐻;C). So we are done and 𝑉 = Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(𝑊 ).

The next lemma concerns the projective representations of 𝑆𝑛. Denote by ̂︀𝑆𝑛
the double cover of 𝑆𝑛. We may regard projective representations of 𝑆𝑛 as a linear

representations of ̂︀𝑆𝑛. We will need the following result ([36]):

Theorem 4.1.2.2. Suppose 𝑛 > 12 and 𝑝 ̸= 2, then any irreducible projective rep-

resentation of 𝑆𝑛, which is faithful as a ̂︀𝑆𝑛-representation has dimension at least:

min
(︁
2⌊

𝑛−1−𝜅𝑛
2

⌋, 2⌊
𝑛−2−𝜅𝑛−1

2
⌋(𝑛− 2− 𝜅𝑛 − 2𝜅𝑛−1)

)︁
,

where 𝜅𝑛 is 1 if 𝑝|𝑛 and 0 otherwise.

Under the same assumptions, any irreducible projective representation of 𝒜𝑛,

which is faithful as a ̂︀𝒜𝑛-representation has dimension at least:

min
(︁
2⌊

𝑛−2−𝜅𝑛
2

⌋, 2⌊
𝑛−3−𝜅𝑛−1

2
⌋(𝑛− 2− 𝜅𝑛 − 2𝜅𝑛−1)

)︁
,

where 𝜅𝑛 is the same.

Since the only nontrivial normal subgroups of ̂︀𝑆𝑛 are ̂︀𝒜𝑛 and the central subgroup,

it follows that any non-linear representation of 𝑆𝑛 satisfies the condition of the above

theorem. Now we can apply this to obtain the following lemma:
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Lemma 4.1.2.3. Suppose 𝑊𝑛 is a sequence of projective representations of 𝑆𝜈𝑛(or

𝒜𝜈𝑛) for some unbounded sequence 𝜈𝑛, such that dim𝑊𝑛 ≤ 𝑀𝜈𝐿𝑛 . Then almost all

𝑊𝑛 are actually linear representations of 𝑆𝜈𝑛 (or 𝒜𝜈𝑛).

Proof. Suppose the action of 𝑆𝜈𝑛 on 𝑊𝑛 is non-linear for almost all 𝑛. Then by

the above theorem it follows that for almost all 𝑛 we have dim𝑊𝑛 ≥ 2⌊
𝜈𝑛−4

2
⌋ and

hence dim𝑊𝑛 ≥ 2𝜈𝑛−5. So we get that for almost all 𝑛 𝑀𝜈𝑙𝑛 ≥ 2𝜈𝑛−5, which is a

contradiction since this inequality holds only for a finite number of 𝑛.

The same proof with dim𝑊𝑛 ≥ 2𝜈𝑛−6 instead of dim𝑊𝑛 ≥ 2𝜈𝑛−5 holds for 𝒜𝜈𝑛 .

To prove the last lemma we will need to use another result, namely Lemma 2.8

from [13]:

Lemma 4.1.2.4. For each 𝐶 > 0 and 𝑘 ∈ Z+ there exists 𝑁(𝐶, 𝑘) ∈ Z+ such that

for each 𝑚 > 𝑁(𝐶, 𝑘), if 𝑋(𝜇) is an irreducible representation of 𝑆𝑚 which has

dimension dim𝑋(𝜇) ≤ 𝐶𝑚𝑘, then either the first row or the first column of 𝜇 has

length ≥ 𝑚− 𝑘.

Now to state our lemma we will need the following definitions:

Definition 4.1.2.5. a) For an object 𝑊 of a symmetric tensor category define

gl(𝑊 ) to be the object 𝑊 ⊗𝑊 *. It has a structure of an associative algebra given by

1⊗ 𝑒𝑣⊗ 1 : gl(𝑊 )⊗ gl(𝑊 )→ gl(𝑊 ), and thus has a structure of a Lie algebra given

by a commutator. b) For an object 𝑊 of a symmetric tensor category define sl(𝑊 )

to be the Lie algebra given by the kernel of the map 𝑒𝑣 : gl(𝑊 )→ 1. In case of the

category 𝑉 𝑒𝑐𝑡 this algebra is simple iff the map 1 → 1 given by the composition of

the evaluation and the coevaluation maps for 𝑊 is not zero.

c) For an object 𝑊 of a symmetric tensor category such that the above map 1→ 1
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is zero, define psl(𝑊 ) to be the cokernel of the map 𝑐𝑜𝑒𝑣 : 1 → sl(𝑊 ). In case of

the category 𝑉 𝑒𝑐𝑡 this algebra is simple.

d) For an object𝑊 of a symmetric tensor category equipped with a (skew-)symmetric

non-degenerate bilinear form (an isomorphism 𝜓 : 𝑊 → 𝑊 *), define so(𝑊 )(sp(𝑊 ))

to be the Lie subalgebra in gl(𝑊 ) given by the kernel of 𝜎 ∘ 𝜓 ⊗ 𝜓−1 + 𝐼𝑑. In the

case of the category 𝑉 𝑒𝑐𝑡 this algebra is simple.

Lemma 4.1.2.6. Suppose 𝑉 is an object of Rep(𝑆𝜈) given by the ultraproduct of

𝑉𝑛 ∈ Rep𝑝𝑛(𝑆𝜈𝑛), almost all of which are isomorphic to End(𝑊𝑛) (or sl(𝑊𝑛), psl(𝑊𝑛),

so(𝑊𝑛), sp(𝑊𝑛) if these objects are defined), for some 𝑊𝑛 ∈ Rep(𝑆𝜈𝑛). Then there

exist 𝑊 ′
𝑛 ∈ Rep(𝑆𝜈𝑛) such that End(𝑊𝑛) ≃ End(𝑊 ′

𝑛)(or the corresponding Lie alge-

bras are defined and isomorphic) and 𝑊 =
∏︀

ℱ 𝑊
′
𝑛 is an object of Rep(𝑆𝜈). Hence

𝑉 = 𝑊 ⊗𝑊 *, sl(𝑊 ), psl(𝑊 ), so(𝑊 ), sp(𝑊 ).

Proof. Suppose 𝑉 =
∑︀𝑀

𝑖=1𝒳 (𝜆𝑖), where all 𝒳 (𝜆𝑖) lie in [𝑘] for 𝑘 ≤ 𝐿. Then for

almost all 𝑛 (𝑛 > 3)

dim𝑊𝑛 ≤ dim𝑉𝑛 ≤𝑀(𝜈𝑛)
𝐿,

so by Lemma 4.1.2.4 there is a number 𝑁(𝑀,𝐿) such that for any 𝑛 > 𝑁(𝑀,𝐿) any

irreducible representation 𝑋(𝜇) appearing in 𝑊𝑛 is such that either the first row or

the first column of 𝜇 has length 𝜈𝑛 − 𝐿.

Hence for almost all 𝑛 we have 𝑊𝑛 = ⊕𝑋(𝜇
(𝑛)
𝑗 )⊗ℰ (𝑛)𝑗 , with each 𝜇(𝑛)

𝑗 having the

first row of length at least 𝜈𝑛 − 𝐿, and ℰ (𝑛)𝑗 being either a one-dimensional trivial or

a sign representation. Let’s denote by 𝑊 ′
𝑛 a representation equal to 𝑊 ′

𝑛 = ⊕𝑋(𝜇
(𝑛)
𝑗 ).

We need to check several cases.

∙ 𝑉𝑛 = End(𝑊𝑛)

Since the number of summands in 𝑉𝑛 = 𝑊𝑛 ⊗𝑊𝑛 is bounded and is bigger or equal

than the number of summands in 𝑊𝑛 it follows that the number of summands in
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the latter representation is bounded. Hence, since there is a finite number of ways

to put 𝐿 boxes into the rows of a Young diagram, it follows that for almost all

𝑛 we have 𝑊𝑛 = ⊕𝑋(𝜇𝑗|𝑛) ⊗ ℰ (𝑛)𝑗 , for some partitions 𝜇𝑗 of weight at most 𝐿.

But now since there are also a finite number of ways to assign to each 𝑗 either a

trivial or a sign representation it follows that for almost all 𝑛 the same assigment

is used and so we can write 𝑊𝑛 = ⊕𝑋(𝜇𝑗|𝑛) ⊗ ℰ𝑗. Now, if one of ℰ𝑗 is the sign

representation and another ℰ𝑖 is the trivial representation then the ultraproduct of

𝑋(𝜇𝑗|𝑛)⊗𝑋(𝜇𝑖|𝑛)⊗ℰ𝑗⊗ℰ𝑖 = (⊕𝑋(𝜂𝑗|𝑛))⊗𝑠𝑔𝑛 is not an object of Rep(𝑆𝜈) since the

number of rows is unbounded. But this contradicts 𝑉 being the object of Rep(𝑆𝜈),

hence ℰ𝑗 are all trivial or all sign representations. In the latter case taking 𝑊 ′
𝑛 instead

of 𝑊𝑛 does not change 𝑊𝑛 ⊗𝑊𝑛 = 𝑊 ′
𝑛 ⊗𝑊 ′

𝑛 (since 𝑊 ′
𝑛 ⊗𝑊 ′

𝑛 = 𝑊𝑛 ⊗𝑊𝑛 ⊗ 𝑠𝑔𝑛⊗2).

But hence 𝑊 =
∏︀

ℱ 𝑊
′
𝑛 = ⊕𝒳 (𝜇𝑗) is well defined.

∙ sl or psl

In the first case we subtract one trivial representation of 𝑆𝜈𝑛 and in the second case

two trivial representations, so it follows that the number of summands in 𝑊𝑛 is still

bounded. Using the same reasoning as above it also follows that ℰ𝑗 are all trivial or

are all sign representations since subtracting trivial representations from 𝑊𝑛 ⊗𝑊𝑛

cannot delete a representation with a big number of rows. So it follows that we again

can take 𝑊 ′
𝑛 and get the same End(𝑊𝑛) = End(𝑊 ′

𝑛) and hence the same Lie algebra.

∙ so

Let’s write 𝑊𝑛 as 𝑊𝑛 = ⊕𝑋(𝜆
(𝑛)
𝑗 )⊗𝑈𝑗. There all 𝜆(𝑛)𝑗 are different for different 𝑗 and

𝑈𝑗 are trivial (but not necessarily one-dimensional) representations of 𝑆𝜈𝑛 . Now, an

invariant symmetric bilinear form on 𝑊𝑛 is given by an isomorphism 𝜑 : 𝑊𝑛 → 𝑊 *
𝑛 .

Since all irreducible representations of 𝑆𝑛 are real and self-dual, by Schur’s lemma it

follows that an isomorphism 𝜑 : 𝑊𝑛 → 𝑊 *
𝑛 decomposes to the sum of isomorphisms

𝜑𝑗 : 𝑋(𝜆
(𝑛)
𝑗 )⊗ 𝑈𝑗 → 𝑋*(𝜆

(𝑛)
𝑗 )⊗ 𝑈*

𝑗 given by the tensor product of the isomorphism
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𝑋(𝜆
(𝑛)
𝑗 )→ 𝑋*(𝜆

(𝑛)
𝑗 ) and an isomorphism 𝜓𝑗 : 𝑈𝑗 → 𝑈*

𝑗 . So our symmetric invariant

bilinear form is the sum of products of the symmetric invariant forms on 𝑋(𝜆
(𝑛)
𝑗 )

and invariant forms on 𝑈𝑗. Thus the forms on 𝑈𝑗 also should be symmetric. But

then up to change of basis we can assume that the invariant bilinear form pairs

⊕𝑋(𝜇
(𝑛)
𝑗 )⊗ℰ (𝑛)𝑗 to itself in the decomposition 𝑊𝑛 = ⊕𝑋(𝜇

(𝑛)
𝑗 )⊗ℰ (𝑛)𝑗 . Hence so(𝑊𝑛)

contains copies of all tensor products of ⊕𝑋(𝜇
(𝑛)
𝑗 )⊗ℰ (𝑛)𝑗 ⊗⊕𝑋(𝜇

(𝑛)
𝑖 )⊗ℰ (𝑛)𝑖 for 𝑖 ̸= 𝑗.

This means first that the number of summands in 𝑊𝑛 is bounded. And that the

previous argument can be again used to prove that all ℰ𝑗 are either trivial or sign.

So we can again take 𝑊 ′
𝑛 instead of 𝑊𝑛 to obtain the same Lie algebra.

∙ sp

Here the discussion in the previous paragraph can be repeated, but the invariant

bilinear form on 𝑈𝑗 should be skew-symmetric. Hence all 𝑈𝑗 are even-dimensional.

Again up to the change of basis in 𝑈𝑗, we can write down 𝑊𝑛 as ⊕𝑋(𝜇
(𝑛)
𝑗 )⊗ℰ (𝑛)𝑗 ⊗F

2

𝑝𝑛

where invariant form is given by sum of products of invariant forms on⊕𝑋(𝜇
(𝑛)
𝑗 )⊗ℰ (𝑛)𝑗

with standard skew-symmetric form on F2

𝑝𝑛 . Thus again it follows that sp(𝑊𝑛)

contains copies of ⊕𝑋(𝜇
(𝑛)
𝑗 ) ⊗ ℰ (𝑛)𝑗 ⊗ ⊕𝑋(𝜇

(𝑛)
𝑖 ) ⊗ ℰ (𝑛)𝑖 for 𝑖 ̸= 𝑗. So all the previous

arguments can be repeated.

4.2 Classification of simple associative algebras in

Rep(𝑆𝜈) and functors between Deligne categories.

Now we have everything we need to classify simple associative algebras in Rep(𝑆𝜈).

This will in fact lead us to also prove a result concerning existence of symmetric

monoidal functor between Rep(𝑆𝜈) and Rep(𝑆 ′
𝜈) for 𝜈, 𝜈 ′ ∈ C.
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4.2.1 Classification.

To classify simple associative algebras in Rep(𝑆𝜈) let us first remind ourselves of the

classification of such algebras in Rep𝑝(𝑆𝑁). There is the following way of construct-

ing such algebras. Fix 𝐺 ⊂ 𝑆𝑁 and a simple associative algebra Mat𝑚(F𝑝) with an

action of𝐺. From this information we can construct the algebra Fun𝐺(𝑆𝑁 ,Mat𝑚(F𝑝))

in the category Rep𝑝(𝑆𝑁), which is equal to Ind𝑆𝑁
𝐺 (Mat𝑚(F𝑝)) as a representation.

We have the following theorem (see for example [15], where it is formulated for any

group):

Theorem 4.2.1.1. Fix an algebraically closed field k. Any simple associative algebra

in Rep(𝑆𝑁 , k) is isomorphic to Fun𝐺(𝑆𝑁 ,Mat𝑚(k)) and all such algebras are simple.

Moreover 𝐺 is defined up to conjugation in 𝑆𝑁 and the action of 𝐺 on Mat𝑚(k) up

to conjugation in Aut(Mat𝑚(k)).

Now by Łoś’s theorem simple associative algebras in Rep(𝑆𝜈) are given by ultra-

products of simple associative algebras in Rep𝑝𝑛(𝑆𝜈𝑛) = 𝒞𝑛 such that their ultra-

product as objects of 𝒞𝑛 lies in Rep(𝑆𝜈).

So suppose 𝐴 ∈ Rep(𝑆𝜈) is a simple associative algebra in Rep(𝑆𝜈), which is

equal to the ultraproduct of Ind𝑆𝜈𝑛
𝐺𝑛

(𝐵𝑛), where 𝐵𝑛 are matrix algebras. Then we

can apply Lemma 4.1.2.1 to conclude that for almost all 𝑛 we have 𝐺𝑛 = 𝑆𝜈𝑛−𝑗 ×𝐻,

𝐵 =
∏︀

ℱ 𝐵𝑛 is an object of Rep(𝑆𝜈−𝑗)� Rep(𝐻;C) and 𝐴 = Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(𝐵).

For the next step, we need to understand which sequences of 𝐵𝑛 are admissible

and wat can we obtain as the result of taking their ultraproduct. We know that

𝐵𝑛 = Mat𝑚𝑛(F𝑝𝑛) with a structure of a representation of 𝑆𝜈𝑛−𝑗 × 𝐻. Let’s slightly

change the notation and denote 𝐵𝑛 = End(𝑉𝑛), where 𝑉𝑛 are some finite-dimensional

spaces over F𝑝𝑛 . Since 𝑆𝜈𝑛−𝑗 × 𝐻 acts by algebra automorphisms on 𝐵𝑛, we have

a homomorphism 𝑆𝜈𝑛−𝑗 × 𝐻 → Aut(𝐵𝑛) = 𝑃𝐺𝐿(𝑉𝑛). So we have a structure of a
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projective representation of 𝑆𝜈𝑛−𝑗 ×𝐻 on 𝑉𝑛. But note that dim𝑉𝑛 ≤ dim𝐵𝑛 which

is bounded by some𝑀(𝜈𝑛−𝑗)𝐿 since 𝐵 =
∏︀

ℱ 𝐵𝑛 is an object of the Deligne category.

So Lemma 4.1.2.3 can be applied, and hence we conclude that the structure of the

representation of 𝑆𝜈𝑛−𝑗 is linear and not projective.

Thus each 𝑉𝑛 is a representation of 𝑆𝜈𝑛−𝑗 together with a projective action of 𝐻.

Now we want to prove that
∏︀

ℱ 𝑉𝑛 as a representation of 𝑆𝜈𝑛−𝑗 is a well-defined object

of Rep(𝑆𝜈−𝑗). But this follows from Lemma 4.1.2.6. So indeed we have 𝑉 =
∏︀

ℱ 𝑉𝑛

an object of Rep(𝑆𝜈−𝑗).

Now we are ready to state the classification theorem:

Theorem 4.2.1.2. Suppose 𝐴 is a simple associative algebra in Rep(𝑆𝜈), then it is

isomorphic to 𝐼𝑛𝑑𝑆𝜈
𝑆𝜈−𝑗×𝐻(𝐵), where 𝑗 ∈ Z+, 𝐻 ⊂ 𝑆𝑗 and 𝐵 equals to 𝑉 ⊗ 𝑉 *, where

𝑉 is an object of Rep(𝑆𝜈−𝑗), together with an action of 𝐻 on 𝑉 ⊗ 𝑉 * by algebra

automorphisms. Any algebra obtained in this way is a simple associative algebra in

Rep(𝑆𝜈).

Moreover, 𝐻 is defined uniquely up to conjugation in 𝑆𝑗, and the structure of a

𝐻-representation on 𝑉 ⊗ 𝑉 * is defined uniquely up to conjugation inside the auto-

morphism space Aut𝐴𝑠𝑠−𝑎𝑙𝑔(𝑉 ⊗ 𝑉 *).

Proof. From the above discussion it follows that 𝐴 = 𝐼𝑛𝑑𝑆𝜈
𝑆𝜈−𝑗×𝐻(𝐵), for 𝐵 =

∏︀
ℱ 𝐵𝑛

and that 𝐵𝑛 = 𝑉𝑛 ⊗ 𝑉 *
𝑛 for 𝑉𝑛 with a projective action of 𝐻 and linear action of

𝑆𝜈𝑛−𝑗 which commute with each other. Moreover
∏︀

ℱ 𝑉𝑛 = 𝑉 is a well-defined object

of Rep(𝑆𝜈−𝑗).

Suppose 𝑉 =
⨁︀
𝒳 (𝜆𝑗) ⊗ C𝑘𝑗 with 𝜆𝑖 ̸= 𝜆𝑗 for 𝑖 ̸= 𝑗, then a projective action of

𝐻 on each 𝑉𝑛 is given by the map 𝜌𝑛 : 𝐻 →
(︀⨁︀

𝐺𝐿(C𝑘𝑗)
)︀
/({𝑐 · 𝐼𝑑}). But there is

a finite number of such maps up to conjugacy, hence for almost all 𝑛 they are the

same and we get the projective action of 𝐻 on 𝑉 itself. Which is the same as the
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action of 𝐻 on 𝑉 ⊗ 𝑉 * by algebra automorphisms.

Also any such algebra is simple by Łoś’s theorem .

Now we only need to check the uniqueness statement. Suppose we have two

algebras Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(𝑉 ⊗𝑉

*) and Ind𝑆𝜈

𝑆𝜈−𝑗′×𝐻′(𝑊⊗𝑊 *). These algebras are isomorphic

iff almost all algebras in the corresponding ultraproducts are isomorphic. But by

Theorem 4.2.1.1 it follows that this is only possible iff 𝑆𝜈𝑛−𝑗×𝐻 and 𝑆𝜈𝑛−𝑗′ ×𝐻 ′ are

conjugate in 𝑆𝜈𝑛 for almost all 𝑛, End(𝑉𝑛) = End(𝑊𝑛) and the actions of 𝑆𝜈𝑛−𝑗 ×𝐻

and 𝑆𝜈𝑛−𝑗′ × 𝐻 ′ are conjugate in Aut(End(𝑉𝑛)). So it follows that 𝑗 = 𝑗′ (for

𝜈𝑛 > 2max(𝑗, 𝑗′)) for almost all 𝑛 and hence 𝐻 is conjugate to 𝐻 ′ inside 𝑆𝑗 (since

the conjugation should leave 𝑆𝜈𝑛−𝑗 invariant). Also it follows that 𝑉𝑛 and 𝑊𝑛 must

have the same dimension, and since the action of 𝑆𝜈𝑛 on them is the same up to

conjugation, we can assume that 𝑉𝑛 = 𝑊𝑛 and they lead to the same object of

Rep(𝑆𝜈). Hence the last requirement is that the actions of 𝐻 and 𝐻 ′ on End(𝑉𝑛) are

conjugate. Hence by Łoś’s theorem the statement of our Theorem follows.

Remark 4.2.1.3. This gives us a classification of simple commutative algebras in

Rep(𝑆𝜈) given in [49], [30] as a special case, where we restrict ourselves to 𝐵 being

1-dimensional.

4.2.2 Symmetric monoidal functors between Deligne categories

In this section we will show how our result about the classification of commutative

algebras can help us classify symmetric tensor functors Rep(𝑆𝜈)→ Rep(𝑆𝜈′) and also

their generalization Rep(𝑆𝜈)→ Rep(𝑆𝜈′1)� · · ·� Rep(𝑆𝜈′𝑘).

We will start with functors Rep(𝑆𝜈)→ Rep(𝑆𝜈′), for 𝜈, 𝜈 ′ /∈ Z≥0. From Proposi-

tion 2.2.0.7 we know that all such functors are classified by commutative Frobenius
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algebras of dimension 𝜈 in Rep(𝑆𝜈′). We will start with the following lemma.

Lemma 4.2.2.1. Any commutative Frobenius algebra 𝐴 ∈ Rep(𝑆𝜈) is isomorphic to

the direct sum of simple commutative algebras.

Proof. Using previous notation, we know from Łoś’s theorem that 𝐴 corresponds to

a sequence of objects 𝐴𝑛 ∈ 𝒞𝑛, with almost all of them being commutative Frobenius

algebras. Now note that such an algebra cannot have a non-trivial radical. Indeed

since
√
0 lies in every maximal ideal, it also lies in the kernel of Tr. But then for

any element 𝑁 ∈
√
0, we have Tr(𝑎 · 𝑁) = 0, hence the form is degenerate, which

is a contradiction. So almost all 𝐴𝑛 are semisimple as commutative algebras in the

category of vector spaces. Also all of them are finite-dimensional, since they are

objects of 𝒞𝑖.

Thus it follows that the action of 𝑆𝜈𝑛 on such an 𝐴𝑛 arises from the action of

𝑆𝜈𝑛 on mspec(𝐴𝑛). And now if the action of 𝑆𝜈𝑛 on mspec(𝐴𝑛) has 𝑙𝑛 orbits with

stabilizers 𝐻1, . . . , 𝐻𝑙𝑛 , it follows that 𝐴𝑛 =
⨁︀

Fun𝐻𝑗
(𝑆𝜈𝑛 ,F𝑝𝑛).

So almost all 𝐴𝑛 are semisimple commutative algebras as objects of 𝒞𝑖, so by

Łoś’s theorem the same holds for 𝐴.

We also need another lemma.

Lemma 4.2.2.2. Any semisimple commutative algebra 𝐴 ∈ Rep(𝑆𝜈) is a Frobenius

algebra.

Proof. We know that 𝐴 =
⨁︀𝑁

𝑖=1𝐴𝑖, where 𝐴𝑖 are simple algebras. Note that Tr𝐴 is

equal to (Tr𝐴1 , . . . ,Tr𝐴𝑁
), so if we prove that each 𝐴𝑖 is a Frobenius algebra it will

follow that 𝐴 is too.

So consider 𝐴 = Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(1). We want to prove that Tr ∘ 𝜇 is a non-degenerate

form on 𝐴. To do that it is enough to prove that for 𝑛 such that 𝜈𝑛 > 𝑗 the
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corresponding form on 𝐴𝑛 = Ind𝑆𝜈𝑛
𝑆𝜈𝑛−𝑗×𝐻(1) = Fun𝑆𝜈𝑛−𝑗×𝐻(𝑆𝜈𝑛 ,1) is non-degenerate.

Consider functions ℎ𝑖 which are zero everywhere except one conjugacy class of

𝑆𝜈𝑛−𝑗 × 𝐻, where they are equal to 1. Such functions give us a basis of 𝐴𝑛. Now

obviously ℎ𝑖ℎ𝑗 = 𝛿𝑖𝑗ℎ𝑖. Hence Tr(ℎ𝑖) = 1, and Tr(ℎ𝑖ℎ𝑗) = 𝛿𝑖𝑗. So the form is indeed

non-degenerate, and we are done.

From these two lemmas and Proposition 2.2.0.7 it follows:

Proposition 4.2.2.3. All C-linear symmetric tensor functors between the Deligne

categories Rep(𝑆𝜈) → Rep(𝑆𝜈′) for 𝜈, 𝜈 ′ /∈ Z≥0 are in 1-1 correspondence with

semisimple commutative algebras in Rep(𝑆𝜈′) of dimension 𝜈.

Proof. From Proposition 2.2.0.7 we know that such functors are in 1-1 correspon-

dence with commutative Frobenius algebras of dimension 𝑡, but from Lemmas 4.2.2.1

and 4.2.2.1 we know that any commutative Frobenius algebra is a semisimple com-

mutative algebra and vice versa.

Now since the dimension of Ind𝑆𝜈𝑛
𝑆𝜈𝑛−𝑘×𝐻(C) is

(︀
𝜈𝑛
𝑘

)︀
𝑘!
|𝐻| , it follows that dimensions of

simple commutative algebras in Rep(𝑆𝜈) are multiples of
(︀
𝜈
𝑘

)︀
for some integer 𝑘, and

thus all possible dimensions of commutative Frobenius algebras are positive integer

linear combinations of
(︀
𝜈
𝑘

)︀
. Let us define a corresponding algebraic structure:

Definition 4.2.2.4. For 𝜈 ∈ C denote by 𝑅+(𝜈) a set of all non-negative integer

linear combinations of binomial coefficients in 𝜈.

With this definition we can formulate the following Corollary:

Corollary 4.2.2.5. Symmetric monoidal functors between the Deligne categories

Rep(𝑆 ′
𝜈)→ Rep(𝑆𝜈) with 𝜈, 𝜈 ′ /∈ Z≥0 exist iff 𝜈 ′ ∈ 𝑅+(𝜈).
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Remark 4.2.2.6. One can obtain a similar description for C-linear symmetric tensor

functors Rep(𝑆𝜈)→ Rep(𝑆𝜈′1)� · · ·� Rep(𝑆𝜈′𝑘). Such functors are in 1-1 correspon-

dence with finite sums of external tensor products of simple commutative algebras

in Rep(𝑆𝜈′𝑖). And such a functor exists iff 𝜈 is the positive integer linear combination

of products of binomial coefficients in 𝜈 ′1, . . . , 𝜈 ′𝑘. I.e. if 𝜈 ∈ 𝑅+(𝜈
′
1) · · · · ·𝑅+(𝜈

′
𝑘)

It turns out that for algebraic 𝜈 it is possible to describe 𝑅+(𝜈) with a good degree

of exactness, which makes it easier to apply Corollary 4.2.2.5 in concrete examples.

This was done in [35] by Andrei Mandelshtam and the author of the present thesis.

The result is as follows:

Theorem 4.2.2.7. For an algebraic number 𝜈 ∈ C∖Z≥0 and each prime integer

𝑝 define a set 𝒫𝑝 that consists of prime ideals p of 𝒪Q(𝜈) over (𝑝) such that the

ramification index of p is 1, |𝒪Q(𝜈)/p| = 𝑝, and 𝑣p(𝜈) ≥ 0. Then 𝑅+(𝜈) is a subring

of 𝒪Q(𝜈) consisting of 𝑥 ∈ Q(𝜈) such that 𝑣p(𝑥) ≥ 0 for all p ∈ 𝒫𝑝 for all primes 𝑝.

For 𝜈 ∈ Z≥0, we have 𝑅+(𝜈) = Z≥0.

4.3 Classification of simple Lie algebras in Rep(𝑆𝜈)

In this section we will provide the classification of simple Lie algebras in Rep(𝑆𝜈).

The steps of the proof are similar to that for the case of associative algebras. However

we need a bit more preliminary lemmas in order to understand what kind of simple

algebras in the finite rank can appear in the ultraproduct sequence.

First let us state the classification theorem for Lie algebras in characteristic 𝑝.

See chapter 4 of [52].

Theorem 4.3.0.1. Suppose g is a simple finite-dimensional Lie algebra over an

algebraically closed field of characteristic 𝑝 > 5. Then it is either of classical or
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Cartan type.

Now we need to explain what classical and Cartan type means. First, classical

type Lie algebras can be obtained in the following way. Take any Dynkin diagram

𝐶 and define a Lie algebra g𝐶 as a vector space spanned by Chevalley basis corre-

sponding to 𝐶 with the ordinary Chevalley relations taken modulo 𝑝. It turns out

that this algebra is simple for any 𝐶 except 𝐴𝑘𝑝−1 for a positive integer 𝑘. In this

case we also need to take quotient by 1-dimensional center of sl𝑘𝑝 spanned by scalar

matrices and we get a simple algebra psl𝑘𝑝.

Algebras of Cartan type form four series of simple Lie algebras, namely 𝑊 (𝑚,𝑛),

𝑆(𝑚,𝑛), 𝐻(𝑚,𝑛) and 𝐾(𝑚,𝑛), where 𝑚 ∈ Z>0 and 𝑛 ∈ Z𝑚>0 (in the last case 𝑚 is

odd, in the second to last case it is even). We will discuss some of their properties

in the next subsection.

The result analogous to Theorem 4.2.1.1 also holds in the case of Lie algebras, we

only need to exchange word “associative" to “Lie" in the statement of the Theorem

([15]).

Theorem 4.3.0.2. Fix an algebraicallly closed field k. Any simple Lie algebra in

Rep(𝑆𝑁 ,k) is isomorphic to Fun𝐺(𝑆𝑁 , h), for a Lie algebra h simple in the category of

vector spaces. All such algebras are simple. Moreover 𝐺 is defined up to conjugation

in 𝑆𝑁 and the action of 𝐺 on h up to conjugation in Aut(Mat𝑚(k)).

We can now state the following Proposition:

Proposition 4.3.0.3. Any simple Lie algebra g ∈ Rep(𝑆𝜈) is equal to 𝐼𝑛𝑑𝑆𝜈
𝑆𝜈−𝑗×𝐻𝑗

h,

for some 𝑗 ∈ Z>0 and 𝐻 ⊂ 𝑆𝑗, where h is a simple Lie algebra given by the ultraprod-

uct of simple Lie algebras h𝑛 ∈ 𝒞𝑛 which remain simple under the forgetful functor

𝑅𝑒𝑠 : 𝒞𝑛 → 𝑉 𝑒𝑐.
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Proof. Since we know that g =
∏︀

ℱ g𝑛 and g𝑛 = Ind𝑆𝜈𝑛
𝐺𝑛

(h𝑛), where h𝑛 is a simple Lie

algebra as an object of the category of vector spaces, the result follows from Lemma

4.1.2.1 and Łoś’s theorem .

4.3.1 Ultraproducts of Lie algebras of Cartan type

Now, first, we would like to rule out the possibility of almost all h𝑛 being of Cartan

type.

To do this let us first explain what 𝑊 (𝑚,𝑛) actually is (see chapter 4.2 in [52]

for details). First, we need to define 𝒪(𝑚) and 𝒪(𝑚,𝑛).

Definition 4.3.1.1. By 𝒪(𝑚) denote a commutative algebra over F𝑞 with a basis

𝑥
(𝑎1)
1 . . . 𝑥

(𝑎𝑚)
𝑚 , for 𝑎𝑖 ∈ Z≥0 with multiplication defined by:

𝑥
(𝑎1)
1 . . . 𝑥(𝑎𝑚)

𝑚 · 𝑥(𝑏1)1 . . . 𝑥(𝑏𝑚)
𝑚 =

(︂
𝑎1 + 𝑏1
𝑎1

)︂
. . .

(︂
𝑎𝑚 + 𝑏𝑚
𝑎𝑚

)︂
𝑥
(𝑎1+𝑏1)
1 . . . 𝑥(𝑎𝑚+𝑏𝑚)

𝑚 .

By 𝒪(𝑚,𝑛) denote a subalgebra of 𝒪(𝑚) spanned by 𝑥(𝑎1)1 . . . 𝑥
(𝑎𝑚)
𝑚 with 0 ≤ 𝑎𝑖 < 𝑝𝑛𝑖 .

Using this, the Witt algebra 𝑊 (𝑚,𝑛) can be obtained in the following way.

Definition 4.3.1.2. By 𝑊 (𝑚,𝑛) denote a simple Lie algebra given as follows:

𝑊 (𝑚,𝑛) =
𝑚∑︁
𝑖=1

𝒪(𝑚,𝑛)𝜕𝑖 .

All other simple algebras 𝑆(𝑚,𝑛), 𝐻(𝑚,𝑛) and 𝐾(𝑚,𝑛) can be realized as subal-

gebras in 𝑊 (𝑚,𝑛). We will need an important proposition about the automorphism

groups of such algebras, see chapter 7.3 of [52].
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Proposition 4.3.1.3. There is an isomorphism 𝜑 : Aut𝒞(𝒪(𝑚,𝑛))→ Aut(𝑊 (𝑚,𝑛))

from a certain subgroup Aut𝒞(𝒪(𝑚,𝑛)) ⊂ Aut(𝒪(𝑚,𝑛)), to the group of automor-

phisms of Witt algebra given by:

𝜎 → (𝐷 ↦→ 𝜎 ∘𝐷 ∘ 𝜎−1) ,

where 𝐷 is an arbitary element of 𝑊 (𝑚,𝑛). Moreover it restricts to give an isomor-

phism between 𝑆(𝑚,𝑛), 𝐻(𝑚,𝑛) and 𝐾(𝑚,𝑛) and certain subgroups of Aut𝒞(𝒪(𝑚,𝑛)).

So from this proposition it follows what we need to understand the structure of

the group Aut𝒞(𝒪(𝑚,𝑛)). This is done in [57]. See Corollary 1 and Theorem 2.

Proposition 4.3.1.4. Take any isomorphism 𝜎 ∈ Aut𝒞(𝒪(𝑚,𝑛)), denote by 𝑦𝑖 the

images of 𝑥𝑖 = 𝑥
(1)
𝑖 under this morphism. By 𝑦𝑖 denote the linear part of 𝑦𝑖. It

follows that the map 𝑥𝑖 ↦→ 𝑦𝑖 defines an element of 𝐺𝐿(𝑚,F𝑝). Also there is an exact

sequence:

0→ ℬ → Aut𝒞(𝒪(𝑚,𝑛))→ 𝐺𝐿(𝑚,F𝑝) ,

where ℬ is solvable and the last morphism is as described above.

Since the automorphism groups of all Cartan type Lie algebras are subgroups in

Aut𝒞(𝒪(𝑚,𝑛))1 it follows that such an exact sequence holds for any Aut(𝑋(𝑚,𝑛))

with 𝑋 = 𝑊,𝑆,𝐻,𝐾. Namely we have:

0→ ℬ𝑋 → Aut(𝑋(𝑚,𝑛))→ 𝐺𝐿(𝑚,F𝑝) , (4.2)

for different ℬ𝑋 .

1Theorem 7.3.2 [52].
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Also we will need to know the dimension formulas for Cartan type Lie algebras,

they are summarized in the following proposition (see [52] section 4.2).

Proposition 4.3.1.5. The dimension of Cartan type algebras are given by the for-

mulas

dim(𝑊 (𝑚,𝑛)) = 𝑚𝑝
∑︀
𝑛𝑖 ,

dim(𝑆(𝑚,𝑛)) = (𝑚− 1)(𝑝
∑︀
𝑛𝑖 − 1) , dim(𝐻(𝑚,𝑛)) = 𝑝

∑︀
𝑛𝑖 − 2 ,

and dim(𝐾(𝑚,𝑛)) = 𝑝
∑︀
𝑛𝑖 or 𝑝

∑︀
𝑛𝑖 − 1 depending on 𝑚 𝑚𝑜𝑑 𝑝 .

Now we have everything we need to move on. So let us prove the following

proposition.

Proposition 4.3.1.6. In Proposition 4.3.0.3 almost all h𝑛 are of classical type.

Proof. Suppose that almost all h𝑛 in Proposition 4.3.0.3 are of Cartan type. Let’s de-

note h𝑛 = 𝑋𝑛(𝑚𝑛, 𝑁𝑛) (𝑋𝑛 = 𝑊,𝑆,𝐻,𝐾), then we have a homomorphism

𝑆𝜈𝑛−𝑗 → Aut(h𝑛). Hence, because of (2), we have 𝑆𝜈𝑛−𝑗 → 𝐺𝐿(𝑚,F𝑝𝑛). There

are two possibilities here. Either for almost all 𝑛 this homomorphism is trivial or

not.

First suppose it is trivial for almost all 𝑛. Then for almost all 𝑛, 𝑆𝜈𝑛−𝑗 → ℬ𝑛, but

since the latter group is solvable, it follows that for almost all 𝑛 the kernel of this

morphism contains 𝒜𝑛. But then h𝑛 contains only one-dimensional representations

of 𝑆𝜈𝑛−𝑗. But since the dimension of h𝑛 is bigger than 𝑝𝑛 − 3 it follows that the

length of h𝑛 as a representation of 𝑆𝜈𝑛−𝑗 is unbounded, hence its ultraproduct does

not define an object of the Deligne category.

The only other option is that this morphism is non-trivial for almost all 𝑛. Note

that this morphism cannot have 𝒜𝑛 as its kernel or the previous argument can be
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repeated. Hence, since the lowest dimension of a 𝑆𝜈𝑛−𝑗-representation which is not

trivial or sign is 𝜈𝑛−𝑗−1, it follows that𝑚𝑛 ≥ 𝜈𝑛−𝑗−1, and thus the dimension of h𝑛

is at least 𝑝𝜈𝑛−𝑗−1
𝑛 − 3. So it grows exponentially. But the dimension of any sequence

of representations defining an element of the Deligne category grows polynomially.

So again ultraproduct of h𝑛 does not belong to Rep(𝑆𝜈−𝑗).

Thus the result follows.

4.3.2 Ultraproducts of classical Lie algebras

Now we can move on with our classification assuming that for almost all 𝑛, the

algebras h𝑛 are of classical type. Here we again have two possibilities. Either the

size of the Dynkin diagram coresponding to h𝑛 is bounded for almost all 𝑛 or it is

not. Let’s start with the first case.

Proposition 4.3.2.1. If the size of the Dynkin diagram corresponding to h𝑛 is

bounded, then h has trivial action of 𝑆𝜈−𝑗.

Proof. Since there is a finite number of Dynkin diagrams of bounded size, it follows

that for almost all 𝑛 the corresponding Dynkin diagram is the same, so as a Lie

algebra in the category of vector spaces, h𝑛 is of the same type (again see Lemma

2.3.1.4). But then its automorphism group is a subgroup in some 𝐺𝐿𝑁(F𝑝𝑛). So

since the lowest dimension of an irreducible 𝑆𝜈𝑛−𝑗-representation which is not triv-

ial or sign is 𝜈𝑛 − 𝑗 − 1 it follows that almost all h𝑛 are sums of one-dimensional

representations of 𝑆𝜈𝑛−𝑗. But it cannot contain the sign representations for almost

all 𝑛, or the ultraproduct wouldn’t lie in Rep(𝑆𝜈−𝑗). Hence for almost all 𝑛, h𝑛 is

a trivial representation of 𝑆𝜈𝑛−𝑗. Thus the corresponding ultra-product is the same

classical Lie algebra corresponding to the Dynkin diagram with a trivial action of

𝑆𝜈 , i.e. equal to the sum of the copies of the unit object in Rep(𝑆𝜈−𝑗).
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In the second case the size of the Dynkin diagram is unbounded. But the number

of infinite series of Dynkin diagrams is finite, so we may assume that for almost all

𝑛 the type of the Dynkin diagram is the same, and it is either 𝐴,𝐵,𝐶 or 𝐷. To

proceed further we need to know something about the automorphism groups of these

algebras. This information can be found in [50], it is summarized in the following

Proposition.

Proposition 4.3.2.2. The group of automorphisms of the Lie algebra of type 𝐴𝑛−1

(both in the case 𝑝|𝑛 and 𝑝 - 𝑛) is the semi-direct product of 𝑃𝑆𝐿(𝑛) by Z/2Z, where

the second group acts by 𝑋 ↦→ −𝑋 𝑡. We will denote the generator of this group by 𝜏 .

The group of automorphisms of the Lie algebra of type 𝐵𝑛 is 𝑃𝑆𝑝(𝑛).

The group of automorphisms of the Lie algebra of type 𝐶𝑛 is 𝑃𝑆𝑂(2𝑛+ 1).

The group of automorphisms of the Lie algebra of type 𝐷𝑛 is 𝑃𝑂(2𝑛), for 𝑛 > 4.

We have an additional complication in the 𝐴𝑛−1 case, so let us deal with this case

first.

Proposition 4.3.2.3. If h𝑛 is a simple Lie algebra of type 𝐴 for almost all 𝑛, then,

for almost all 𝑛, 𝑆𝜈𝑛−𝑗 maps into the subgroup 𝑃𝑆𝐿(𝑛) of automorphisms of h𝑛.

Proof. Suppose that the map 𝑆𝜈𝑛−𝑗 → Z/2Z, which is obtained as a composition

of maps 𝑆𝜈𝑛−𝑗 → Aut(h𝑛) and Aut(h𝑛) → Z/2Z, is non-trivial for almost all 𝑛.

Note that the map 𝒜𝜈𝑛−𝑗 → Z/2Z obtained by restriction of this map is trivial,

so 𝒜𝜈𝑛−𝑗 maps into 𝑃𝑆𝐿(𝑁𝑛). Suppose this map is non-trivial. By Lemma 4.1.2.3

it follows that this map gives us a linear representation of 𝒜𝜈𝑛−𝑗 on 𝑉 = F𝑝𝑛
𝑁𝑛 .

By choosing a bilinear 𝒜𝜈𝑛−𝑗-invariant form on 𝑉 , we can suppose that 𝑉 * ≃ 𝑉

as a representation of 𝒜𝜈𝑛−𝑗. But then since 𝜏 acts on an element of 𝑉 ⊗ 𝑉 * as

𝜏(𝑣 ⊗ 𝑤) = −𝑤 ⊗ 𝑣, it follows that 𝜏 commutes with the action of 𝒜𝜈𝑛−𝑗. So the
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action of 𝜏 on the isomorphic image of 𝒜𝜈𝑛−𝑗 is actually trivial, and hence the image

of 𝑆𝜈𝑛−𝑗 is actually a direct product of 𝒜𝜈𝑛−𝑗 and Z/2Z, which is absurd. So 𝒜𝜈𝑛−𝑗
is in the kernel of the map 𝑆𝜈𝑛−𝑗 → Aut(h𝑛). So for almost all 𝑛, h𝑛 decomposes as

the sum of one-dimensional representations of 𝑆𝜈𝑛−𝑗, but their ultraproduct lies in

the Deligne category, so almost all of them can not contain any sign representations.

Hence the action of 𝑆𝜈𝑛−𝑗 on h𝑛 is actually trivial. So we get a contradiction.

From this Proposition it follows that in each case 𝑆𝜈𝑛−𝑗 maps into a projective

group of the corresponding group of linear transformations of a vector space. But

from Lemma 4.1.2.3 it follows that in each case we have an honest map from 𝑆𝜈𝑛−𝑗

to the corresponding group of linear transformations, i.e. a representation of 𝑆𝜈𝑛−𝑗

on the corresponding vector space.

We have the following Proposition:

Proposition 4.3.2.4. If the size of the Dynkin diagram corresponding to h𝑛 is un-

bounded, then for almost all 𝑛, h𝑛 = x(𝑉𝑛) for the same x (x = sl, psl, sp, so). Also

there exist 𝑉 ′
𝑛 such that x(𝑉𝑛) = x(𝑉 ′

𝑛) and such that 𝑉 =
∏︀

ℱ 𝑉
′
𝑛 is an object of

Rep(𝑆𝜈−𝑗), hence h = x(𝑉 ).

Proof. We have established the first part of the proposition. Also from the discussion

above it follows that we have an action of 𝑆𝜈𝑛−𝑗 on 𝑉𝑛, which leaves the corresponding

bilinear form invariant. Now using Lemma 4.1.2.6 we conclude that such 𝑉 ′
𝑛 indeed

exist.

Now we can formulate the following classification theorem.

Theorem 4.3.2.5. Every simple Lie algebra in the category Rep(𝑆𝜈) is isomorphic

to the one given by Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(h), where 𝑗 > 0 is an integer, 𝐻 a subgroup of 𝑆𝑗
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which acts on a Lie algebra h in Rep(𝑆𝜈−𝑗) by Lie algebra automorphisms, and h is

of one of the following kinds:

· An exceptional Lie algebra which is equal to the sum of copies of the unit object

of Rep(𝑆𝜈−𝑗).

· sl(𝑉 ) for any 𝑉 of non-zero dimension, or psl(𝑉 ) for any 𝑉 of dimension zero.

· so(𝑉 ) or sp(𝑉 ) for any 𝑉 with a (skew)-symmetric non-degenerate bilinear

form.

Finally, such a simple Lie algebra is determined uniquely by the above data up to

conjugation of 𝐻 inside 𝑆𝑗 and conjugation of the action of 𝐻 inside of Aut(h).

Proof. We have already checked that Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(h) defined using the data described

above gives us a simple Lie algebra, since the resulting algebra g is an ultraproduct

of the Lie algebras which are simple due to Theorem 4.3.0.2.

Now from Propositions 4.3.0.3, 4.3.1.6, 4.3.2.1 and 4.3.2.4 we conclude that any

simple Lie algebra can be obtained in this way. Indeed from these propositions we

know that such h exists and is either a trivial representation of 𝑆𝜈−𝑗 or it is given by

x(𝑉 ). Now note that if h = sl(𝑉 ), the dimension of almost all 𝑉𝑛 are not divisible by

𝑝𝑛, or the algebra sl(𝑉𝑛) would not be simple for almost all 𝑛, hence the dimension

of 𝑉 , which can be obtained through the isomorphism
∏︀

ℱ F𝑝𝑛 = C is non-zero. In

the case of psl(𝑉 ) on the other hand it is divisible by 𝑝𝑛 for almost all 𝑛 and hence

the dimension of 𝑉 is zero. In the case x = so, sp the 𝑆𝜈𝑛−𝑗-module 𝑉𝑛 has an

𝑆𝜈𝑛−𝑗-invariant (skew)-symmetric bilinear form for almost all 𝑛, hence it gives us a

(skew)-symmetric bilinear form on 𝑉 in Rep(𝑆𝜈). So indeed every simple Lie algebra

can be obtained in the specified way.

The proof of the uniqueness is the same as in Theorem 4.2.1.2.
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4.4 A conjecture concerning the classification of sim-

ple Lie superalgebras in Rep(𝑆𝜈)

In this section we will state a conjectural extension of the above classifications to

the setting of Lie superalgebras, and outline a possible approach to generalize their

proofs. The textbook reference about the theory of Lie superalgebras is [43], it

contains the classification of simple Lie superalgebras over C and their construction

(Chapters 1-2 and 4). See the original paper of Kac [32] for the classification.2 How

these results generalize to the modular case with big enough 𝑝 can be found in [2]

Section 2.3, [39] and [40] Section 10.

4.4.1 Lie superalgebras in tensor categories and their simplic-

ity in 𝑉 𝑒𝑐𝑡

First let us describe the classification results regarding simple Lie superalgebras in

the category of vector spaces.

Below we assume that for every Lie superalgebra g = g0 ⊕ g1, the g1 component

is non-zero. If g1 is zero, then g is a regular Lie algebra and the result of the previous

section applies.

First we will need some definitions.

Definition 4.4.1.1. Fix 𝑉,𝑊 to be non-zero objects of a symmetric rigid tensor

category.

a) Define the Lie superalgebra gl(𝑉 |𝑊 ) to be the object (𝑉 ⊕𝑊 )⊗ (𝑉 *⊕𝑊 *) with

2The classification problem of finite dimensional simple Lie superalgebras in zero and positive
characteristic has a long history, which we in no way attempt to review; thus many important
references are not given here.
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the Z/2Z-grading given by

gl(𝑉 |𝑊 )0 = 𝑉 ⊗ 𝑉 * ⊕𝑊 ⊗𝑊 * and gl(𝑉 |𝑊 )1 = 𝑉 ⊗𝑊 * ⊕𝑊 ⊗ 𝑉 * .

The superbracket [ , ]𝑖,𝑗 : gl(𝑉 |𝑊 )𝑖 ⊗ gl(𝑉 |𝑊 )𝑗 → gl(𝑉 |𝑊 )𝑖+𝑗 is given by the map

[ , ]𝑖,𝑗 = 𝜇− (−1)𝑖𝑗𝜇 ∘ 𝜎 ,

where 𝜇 is the associative algebra multiplication and 𝜎 = 𝜎gl(𝑉 |𝑊 ) (see Def. 2.1.0.9).

b) Define the Lie superalgebra sl(𝑉 |𝑊 ) to be the subalgebra in gl(𝑉 |𝑊 ) given by

the kernel of the map

𝑠𝑡𝑟 : gl(𝑉 |𝑊 )→ gl(𝑉 |𝑊 )0
(𝑒𝑣𝑉 , −𝑒𝑣𝑊 )−−−−−−−−→ 1 .

c) Consider the map

𝑙 : 1
𝑐𝑜𝑒𝑣𝑉 ⊕𝑐𝑜𝑒𝑣𝑊−−−−−−−−→ gl(𝑉 |𝑊 )0 .

The image of this map lies in sl(𝑉 |𝑊 ) iff dim𝑉 = dim𝑊 . In this case define the

Lie superalgebra psl(𝑉 |𝑊 ) to be the cokernel of 𝑙 : 1→ sl(𝑉 |𝑊 ).

d) Fix a bilinear form on 𝑉 ⊕ 𝑉 * specified by the identity map

𝜓 : 𝑉 ⊕ 𝑉 * → (𝑉 ⊕ 𝑉 *)* = 𝑉 * ⊕ 𝑉 .

Define the Lie superalgebra p(𝑉 ) to be the subalgebra in sl(𝑉 |𝑉 *) preserving this

form, i.e. the kernel of the map

gl(𝑉 |𝑉 *)
1+𝜎∘(𝜓⊗𝜓−1)−−−−−−−−→ gl(𝑉 |𝑉 *) .
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e) Consider a morphism 𝑐 : 𝑉 ⊕ 𝑉 → 𝑉 ⊕ 𝑉 , given by the matrix

⎛⎝ 0 𝐼𝑑

−𝐼𝑑 0

⎞⎠ .

This morphism can also be considered as an element (i.e. a map 1 → gl(𝑉 |𝑉 ))

of gl(𝑉 |𝑉 ) using evaluation and coevaluation maps. The Lie superalgebra q̂(𝑉 ) is

defined as the centralizer of this element, i.e. as the kernel of the map

gl(𝑉 |𝑉 )→ gl(𝑉 |𝑉 )⊗ 1
𝐼𝑑⊗𝑐−−−→ gl(𝑉 |𝑉 )⊗ gl(𝑉 |𝑉 )

[ , ]−−→ gl(𝑉 |𝑉 ) .

Next we define the Lie superalgebra q̃(𝑉 ) as the kernel of the map q̂(𝑉 ) → 1 given

by the restriction of the map gl(𝑉 |𝑉 )1
(𝑒𝑣𝑉 , 𝑒𝑣𝑉 )−−−−−−−→ 1. Then there is a non-zero map

𝑙 : 1
𝑐𝑜𝑒𝑣⊕𝑐𝑜𝑒𝑣−−−−−−→ q̃(𝑉 )0. The cokernel of this map it the Lie superalgebra q(𝑉 ).

f) Suppose there is a symmetric non-degenerate bilinear form on 𝑉 and a skew-

symmetric non-degenerate bilinear form on 𝑊 . Denote the corresponding maps

𝜓𝑉 : 𝑉 → 𝑉 * and 𝜓𝑊 : 𝑊 → 𝑊 *. Then osp(𝑉 |𝑊 ) is the following subalgebra in

gl(𝑉 |𝑊 ). We define osp(𝑉 |𝑊 )0 to be equal to the kernel of the map

gl(𝑉 |𝑊 )0
(𝐼𝑑+𝜎∘(𝜓𝑉 ⊗𝜓−1

𝑉 ))⊕(𝐼𝑑+𝜎∘(𝜓𝑊⊗𝜓−1
𝑊 ))

−−−−−−−−−−−−−−−−−−−−−−−→ gl(𝑉 |𝑊 )0 ,

and osp(𝑉 |𝑊 )1 to be equal to the kernel of the map

gl(𝑉 |𝑊 )1 = 𝑉 ⊗𝑊 * ⊕𝑊 ⊗ 𝑉 * (𝜎∘(𝜓𝑉 ⊗1) , 1⊗𝜓𝑊 )−−−−−−−−−−−−→ 𝑊 * ⊗ 𝑉 * .

Remark 4.4.1.2. These definitions mimic the standard definitions of the above Lie
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superalgebras in an element-free fashion. It is straightforward to check that this

definition agrees with the usual definitions for the category of supervector spaces,

and that the superbracket descends onto the various kernels and cokernels used in

the definition.

Now we want to know when exactly these superalgebras are simple for the cat-

egories 𝑉 𝑒𝑐𝑡k0 and 𝑉 𝑒𝑐𝑡k𝑝 . This is explained by the various classification results.

Here k0 stands for an algebraically closed field of characteristic 0 and k𝑝 stands for

an algebraically closed field of characteristic 𝑝.

Proposition 4.4.1.3. (Theorem 1.3.1 in [43]) Suppose 𝑉,𝑊 are non-zero objects of

𝑉 𝑒𝑐𝑡k0.

a) The Lie superalgebra sl(𝑉 |𝑊 ) is simple in 𝑉 𝑒𝑐𝑡k0 iff dim(𝑉 ) ̸= dim(𝑊 ).

b) In 𝑉 𝑒𝑐𝑡k0 if dim(𝑉 ) = dim(𝑊 ) > 1 the Lie superalgebra psl(𝑉 |𝑊 ) is defined and

is simple.

c) The Lie superalgebra osp(𝑉 |𝑊 ) is simple in 𝑉 𝑒𝑐𝑡k0.

d) The Lie superalgebra q(𝑉 ) is simple in 𝑉 𝑒𝑐𝑡k0 iff dim(𝑉 ) ≥ 2.

e) The Lie superalgebra p(𝑉 ) is simple in 𝑉 𝑒𝑐𝑡k0 iff dim(𝑉 ) ≥ 2.

Proposition 4.4.1.4. (Section 10 in [40], Section 6 in [3], Section 4.1 in [1]) Sup-

pose 𝑉,𝑊 are non-zero objects of 𝑉 𝑒𝑐𝑡k𝑝.

a) The Lie superalgebra sl(𝑉 |𝑊 ) is simple in 𝑉 𝑒𝑐𝑡k𝑝 iff dim(𝑉 ) ̸= dim(𝑊 ) 𝑚𝑜𝑑 𝑝

(See Section 10 in [40]).

b) In 𝑉 𝑒𝑐𝑡k𝑝 if dim(𝑉 ) = dim(𝑊 ) 𝑚𝑜𝑑 𝑝 and dim(𝑉 ), dim(𝑊 ) > 1, the Lie super-

algebra psl(𝑉 |𝑊 ) is defined and is simple (See Section 10 in [40]).

c) The Lie superalgebra osp(𝑉 |𝑊 ) is simple in 𝑉 𝑒𝑐𝑡k𝑝. (See Section 10 in [40]).

d) The Lie superalgebra q(𝑉 ) is simple in 𝑉 𝑒𝑐𝑡k𝑝 iff dim(𝑉 ) ≥ 2.

e) The Lie superalgebra p(𝑉 ) is simple in 𝑉 𝑒𝑐𝑡k𝑝 iff dim(𝑉 ) ≥ 2.
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We have some results about the classification of all such superalgebras.

Theorem 4.4.1.5. (Theorem 1.3.1 in [43], Section 4.2 in [32]) Let g be a finite

dimensional simple Lie superalgebra over k0. Then it is either given by one of the

examples of Proposition 5.1.2 or by one of the exceptional Lie superalgebras d(2, 1;𝛼)

for 𝛼 ∈ k0, 𝛼 ̸= 0, 1, f(4) or g(3) or by one of the Cartan type superalgebras 𝑊 (𝑛) ,

𝑆(𝑛), 𝑆(𝑛) and 𝐻(𝑛).

Remark 4.4.1.6. The Lie superalgebras d(2, 1;𝛼) form a one-parametric series of

superalgebras of the same dimension.

Conjecture 4.4.1.7. (Conjecture 1 in [39]) Let g be a finite dimensional simple

Lie superalgebra over k𝑝 with 𝑝 ≥ 7. Then it is either given by one of the examples

of Proposition 4.4.1.4 or by one of the exceptional Lie superalgebras or by a certain

algebra of Cartan type.

4.4.2 Lie superalgebras in Rep(𝑆𝜈)

Now we can explain how these results can lead to a classification of simple Lies

superalgebras in Deligne category Rep(𝑆𝜈).

Using Definition 4.4.1.1 we can construct the Lie superalgebras in the category

Rep(𝑆𝜈) as follows. Fix an integer 𝑗 > 0, a subgroup 𝐻 ⊂ 𝑆𝑗 and a Lie superalgebra

h in Rep(𝑆𝜈−𝑗) of one of the following kinds:

·An exceptional or a Cartan type Lie superalgebra which as an object of Rep(𝑆𝜈−𝑗)

is equal to the sum of the copies of the unit object.

· sl(𝑉 |𝑊 ) for 𝑉,𝑊 such that dim(𝑉 ) ̸= dim(𝑊 ) and 𝑉,𝑊 ̸= 0.

· psl(𝑉 |𝑊 ) for 𝑉,𝑊 such that dim(𝑉 ) = dim(𝑊 ) and both objects are not trivial

or isomorphic to 1.
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· osp(𝑉 |𝑊 ) for any pair of non-zero objects 𝑉,𝑊 with a non-degenerate billinear

form, which is symmetric and skew-symmetric respectively.

· q(𝑉 ) for 𝑉 not 0 or 1.

· p(𝑉 ) for 𝑉 not 0 or 1.

Also fix an action of 𝐻 on h by Lie superalgebra automorphisms. Then we can

denote g in Rep(𝑆𝜈) as Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(h). This is obviously a Lie superagbera since

it can be presented as an ultraproduct of Lie superalgebras. The fact that this is

simple follows from the statement simmilar to Theorem 4.3.0.2 for the case of Lie

superalgebras, which also follows from the general statement for operads given in

[15].

Now using this we can state a conjecture similar to Theorem 4.3.2.5.

Conjecture 4.4.2.1. Any simple Lie superalgebra in Rep(𝑆𝜈) is isomorphic to the

one obtained as Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(h) from the data 𝑗,𝐻, h as described above.

Such a simple Lie superalgebra is determined uniquely by the above data up to

conjugation of 𝐻 inside 𝑆𝑗 and conjugation of the action of 𝐻 inside of Aut(h).

Sketch of Proof. Below is a rough sketch of the proof for transcendental 𝜈. In the

case of algebraic 𝜈 the proof might be similar but relies on Conjecture 4.4.1.7.

The steps of the proof are the same as in Theorem 4.3.2.5.

First using the analogue of Proposition 4.3.0.3 it is easy to see that, indeed, we

have g = Ind𝑆𝜈
𝑆𝜈−𝑗×𝐻(h) for some simple Lie superalgebra h which is given by the

ultraproduct of simple Lie superalgebras h𝑛 which remain simple when considered as

an object of 𝑉 𝑒𝑐𝑡.

The next step is a little bit more vague, since we need to rule out the possibility

of almost all h𝑛 being of Cartan type with a non-trivial action of 𝑆𝜈𝑛−𝑗(analogue

of Proposition 4.3.1.6). This requires some work in the case of algebraic 𝑡, but is
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straightforward for transcendental 𝜈. Indeed in this case all h𝑛 are Lie superalgebras

over a field of characteristic 0 and the dimension of Cartan type superalgebras grows

exponentially with 𝑛 (hence their rank is bounded, hence almost all actions of 𝑆𝜈𝑛−𝑗

are trivial).

Next as an analogue of Proposition 4.3.2.1 it is easy to show that if the dimensions

of h𝑛 are bounded, then the action of 𝑆𝜈𝑛−𝑗 will be trivial for almost all 𝑛.

Another step is to show that 𝑆𝜈𝑛−𝑗 × 𝐻 acts by inner automorphisms of h𝑛 for

almost all 𝑛. This is done in a way similar to Proposition 4.3.2.3 since the groups of

outer automorphisms of these superalgebras are some small groups.

The last step is the analogue of Proposition 4.3.2.4 which is based on the Lemma

4.1.2.6. To prove this one needs to extend Lemma 4.1.2.6 to cover some more exam-

ples relevant for the superalgebras case, which can be done in a similar way.

After all this is done the claim will follow in the same way as in Theorem 4.3.2.5.
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Chapter 5

Construction of Deformed Double

Current Algebras in Rep(𝑆𝜈)

In this chapter we will present the construction of the deformed double current

algebras (DDCA) of type A as an algebra of endomorphisms of a certain ind-object

of Rep(𝑆𝜈). We will also show that this algebra of endomorphisms can be obtained

as an ultraproduct of spherical subalgebras of an extended Cherednik algebra. This

will allow us to prove that starting with rank 4 our DDCA is isomorphic to the one

constructed by Guay in [25].

In the last section of this chapter we will study the case of rank 1 in more detail.

Namely we will give the presentation of this DDCA by generators and relations. We

will conclude by showing how these results can be extended to other DDCAs of rank

1, especially the one of type 𝐵.
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5.1 Symplectic reflection algebras and extended

Cherednik algebras

Our construction of DDCA will make use of the notions of extended Cherednik

algebras (type A, higher rank DDCA) and symplectic reflection algebras (other types,

rank 1 DDCAs). For this reason we will provide the definitions and basic properties

of this algebras in the present section. However, since both classes of algebras are the

generalization of the rational Cherednik algebra of type 𝐴 (which we will just call

Cherednik algebra in the present thesis), we will start with recalling its definition

and properties.

5.1.1 The Cherednik algebra

Below we give a definition of the rational Cherednik algebras of type A. For the

definition and theory of general rational Cherednik algebras, see [20].

Definition 5.1.1.1. The rational Cherednik algebra of type 𝐴 and rank 𝑛 over a field

k, denoted by 𝐻𝑡,𝑘(𝑛,k) = 𝐻𝑡,𝑘(𝑛), where 𝑡, 𝑘 ∈ k, is defined as follows. Consider the

standard representation of 𝑆𝑛 acting by permutations on h = k𝑛 with the basis given

by 𝑦𝑖 ∈ h, and the dual basis 𝑥𝑖 ∈ h*. Then 𝐻𝑡,𝑘(𝑛) is the quotient of k[𝑆𝑛]n𝑇 (h⊕h*)

by the following relations:

[𝑥𝑖, 𝑥𝑗] = 0, [𝑦𝑖, 𝑦𝑗] = 0, [𝑦𝑖, 𝑥𝑗] = 𝛿𝑖𝑗(𝑡− 𝑘
∑︁
𝑚 ̸=𝑖

𝑠𝑖𝑚) + (1− 𝛿𝑖𝑗)𝑘𝑠𝑖𝑗,

where 𝑠𝑖𝑗 denotes the transposition of 𝑖 and 𝑗.

In other words, this is the rational Cherednik algebra corresponding to the root

system 𝐴𝑛−1.
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This algebra has a filtration determined by deg(𝑥𝑖) = deg(𝑦𝑖) = 1 and deg(𝑔) = 0

for any group element 𝑔. The associated graded algebra is:

gr(𝐻𝑡,𝑘(𝑛)) = k[𝑆𝑛]n 𝑆(h⊕ h*).

This follows from the fact that the analog of the PBW theorem holds for this algebra:

Proposition 5.1.1.2. The natural map 𝐻0,0(𝑛) → gr(𝐻𝑡,𝑘(𝑛)) is a vector space

isomorphism.

Another important object is the spherical subalgebra of the rational Cherednik

algebra.

Definition 5.1.1.3. If char(k) = 𝑝 > 𝑛 or 𝑝 = 0, denote by 𝐵𝑡,𝑘(𝑛) the subalgebra

e𝐻𝑡,𝑘(𝑛)e of 𝐻𝑡,𝑘(𝑛), where e ∈ k[𝑆𝑛] is the averaging idempotemt.

Note that:

gr(𝐵𝑡,𝑘(𝑛)) = 𝑆(h⊕ h*)𝑆𝑛 = k[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛]𝑆𝑛 .

Remark 5.1.1.4. One can construct the spherical subalgebra in another way. In-

deed, regard k as the trivial representation of 𝑆𝑛 and apply to it the induction functor

Ind𝐻𝑡,𝑘(𝑛)
𝑆𝑛

(k). It’s easy to see that this representation is in fact 𝐻𝑡,𝑘(𝑛)e. Now the

spherical subalgebra is given as follows:

𝐵𝑡,𝑘(𝑛) = e𝐻𝑡,𝑘(𝑛)e = Hom𝑆𝑛(k, 𝐻𝑡,𝑘(𝑛)e) = End𝐻𝑡,𝑘(𝑛)(Ind𝐻𝑡,𝑘(𝑛)
𝑆𝑛

(k)).

Now we can introduce the corresponding categories of representations.
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Definition 5.1.1.5. By Rep(𝐻𝑡,𝑘(𝑛);k) denote the category of (possibly infinite

dimensional) representations of the rational Cherednik algebra 𝐻𝑡,𝑘(𝑛) = 𝐻𝑡,𝑘(𝑛,k).

Also set Rep𝑝(𝐻𝑡,𝑘(𝑛)) = Rep(𝐻𝑡,𝑘(𝑛),F𝑝).

5.1.2 Symplectic reflection algebras

Now let us define the notion of symplectic reflection algebras that in a certain way

generalizes that of the Cherednik algebra given above. We are going to use it to con-

struct DDCA with non-trivial Γ in rank 1. Below we will give some basic definitions,

needed for our purposes. For more on this topic see [17].

The symplectic reflection algebra is defined as follows:

Definition 5.1.2.1. Fix a finite subgroup Γ ⊂ SL(2;k). Fix numbers 𝑡, 𝑘 ∈ k. Fix

numbers 𝑐𝐶 ∈ k for every conjugacy class 𝐶 ⊂ Γ; we will denote the collection of

these numbers by 𝑐. For every conjugacy class 𝐶, set 𝑇𝐶 := 1
2
Tr|k2𝛾, where 𝛾 ∈ 𝐶

is an element of the conjugacy class and we take the trace over the tautological

representation. Consider 𝑉 = (k2)𝑛, the tautological representation of the wreath

product 𝑆𝑛 n Γ𝑛. Note that this space has a natural symplectic structure, which

we will denote by 𝜔. Let Σ stand for the set of elements of 𝑆𝑛 n Γ𝑛 conjugate to

a transposition. For a conjugacy class 𝐶 ⊂ Γ, let Σ𝐶 be the set of all elements

conjugate to (1, 1, . . . , 1, 𝛾) for 𝛾 ∈ 𝐶.

The symplectic reflection algebra 𝐻𝑡,𝑘,𝑐(𝑛,Γ) is the quotient of k[𝑆𝑛nΓ𝑛]n𝑇 (𝑉 )

by the relations:

[𝑦, 𝑥] = 𝑡𝜔(𝑦, 𝑥)−𝑘
∑︁
𝑠∈Σ

𝜔(𝑦, (1−𝑠)𝑥)𝑠−
∑︁
𝐶

𝑐𝐶
1− 𝑇𝐶

∑︁
𝑠∈Σ𝐶

𝜔((1−𝑠)𝑦, (1−𝑠)𝑥)𝑠, 𝑥, 𝑦 ∈ 𝑉.

We can also define the spherical subalgebra of this algebra:
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Definition 5.1.2.2. The spherical subalgebra of the symplectic reflection algebra

𝐻𝑡,𝑘,𝑐(𝑛,Γ) is denoted by 𝐵𝑡,𝑘,𝑐(𝑛,Γ) and is given by:

𝐵𝑡,𝑘,𝑐(𝑛,Γ) = e𝐻𝑡,𝑘,𝑐(𝑛,Γ)e,

where e is the symmetrizer for 𝑆𝑛 n Γ𝑛.

Remark 5.1.2.3. As before we have:

𝐵𝑡,𝑘,𝑐(𝑛,Γ) = Hom𝑆𝑛nΓ𝑛(k, Ind𝐻𝑡,𝑘,𝑐(𝑛,Γ)
𝑆𝑛nΓ𝑛 (k)).

We will use the same notation for the categories of representations:

Definition 5.1.2.4. By Rep(𝐻𝑡,𝑘,𝑐(Γ, 𝑛);k) denote the category of representations

of the symplectic reflection algebra 𝐻𝑡,𝑘,𝑐(Γ, 𝑛) over k. Also for 𝑝 ≥ 0 denote

Rep𝑝(𝐻𝑡,𝑘,𝑐(Γ, 𝑛)) = Rep(𝐻𝑡,𝑘,𝑐(Γ, 𝑛);F𝑝) .

Remark 5.1.2.5. Notice that when Γ = 1 we get back the case of rational Cherednik

algebra of type A, i.e., 𝐻𝑡,𝑘,∅(𝑛, 1) = 𝐻𝑡,𝑘(𝑛). Also, in the case Γ = Z/2Z we get the

rational Cherednik algebra of type B.

5.1.3 Extended Cherednik algebra

In this section we will introduce the notion of the extended Cherednik algebra that

in yet another way generalizes the notion of the Cherednik algebra and will discuss

its basic properties. This algebra is going to be used by us to construct DDCA of

type 𝐴 in higher rank. This algebra was introduced in [19], see this paper for more

information regarding it. Everywhere we suppose that char(k) > 𝑛.
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Definition 5.1.3.1 (Definition 2.4 in [19]). For 𝑡, 𝑘 ∈ k and 𝑛, 𝑟 ∈ Z>0 define the

extended Cherednik algebra 𝐻𝑡,𝑘(𝑛, 𝑟) to be a quotient of the semi-direct product:

k[𝑆𝑛]n [k⟨𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛⟩ ⊗ (End(k𝑟))⊗𝑛] ,

where 𝑆𝑛 acts by permuting 𝑥𝑖, 𝑦𝑖 and the copies of End(k𝑟). The quotient is taken

by the ideal generated by the following relations:

[𝑥𝑖, 𝑥𝑗] = 0 , [𝑦𝑖, 𝑦𝑗] = 0 ,

[𝑦𝑖, 𝑥𝑗] = 𝛿𝑖𝑗(𝑡− 𝑘
∑︁
𝑚̸=𝑖

𝑠𝑖𝑚𝜎𝑖𝑚) + (1− 𝛿𝑖𝑗)𝑘𝑠𝑖𝑗𝜎𝑖𝑗 ,

where 𝑠𝑖𝑗 are the transpositions from 𝑆𝑛 viewed as elements of k[𝑆𝑛] and 𝜎𝑖𝑗 is the

following element of End(k𝑟)⊗𝑛:

𝜎𝑖𝑗 =
∑︁
𝛼,𝛽

(𝐸𝛼𝛽)𝑖(𝐸𝛽𝛼)𝑗 .

Here by (𝑔)𝑖 for 𝑔 ∈ End(k𝑟) we denote an element of End(k𝑟)⊗𝑛 which is equal to

1⊗ · · · ⊗ 𝑔 ⊗ · · · ⊗ 1 with 𝑔 on the 𝑖-th place1. Notice that 𝜎𝑖𝑗 as an operator acting

on (k𝑟)⊗𝑛 is exactly the operator which transposes the 𝑖-th and 𝑗-th spaces.

Remark 5.1.3.2. Obviously for 𝑟 = 1 the algebra𝐻𝑡,𝑘(𝑛, 1) is just the usual rational

Cherednik algebra of type 𝐴𝑛−1. I.e 𝐻𝑡,𝑘(𝑛, 1) = 𝐻𝑡,𝑘(𝑛).

Now there is also an analogue of the polynomial representation for 𝐻𝑡,𝑘(𝑛, 𝑟).

Proposition 5.1.3.3 (Proposition 2.7 in [19]). Consider the vector space given by

𝑉 (𝑛, 𝑟) = k[𝑥1, . . . , 𝑥𝑛] ⊗ (k𝑟)⊗𝑛. It has a natural action of 𝐻𝑡,𝑘(𝑛, 𝑟) given by the
1We use the extra brackets around 𝑔 here, since in what follows we will consider the cases where

the elements of End(k𝑟) we are going to use are equal to elementary matrices.
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following formulas:

𝑥𝑖 ↦→ 𝑥𝑖 · ⊗1 , 𝑠𝑖𝑗 ↦→ 𝑠𝑥𝑖𝑗 ⊗ 𝜎𝑖𝑗 , (𝑔)𝑖 ↦→ 1⊗ (𝑔)𝑖

𝑦𝑖 ↦→ 𝜕𝑖 ⊗ 1− 𝑘
∑︁
𝑗 ̸=𝑖

𝑠𝑥𝑖𝑗 ⊗ 1

𝑥𝑖 − 𝑥𝑗
,

where 𝑠𝑥𝑖𝑗 is the transposition acting on k[𝑥1, . . . , 𝑥𝑛].

Proof. Notice that 𝑠𝑥𝑖𝑗 = 𝑠𝑖𝑗𝜎𝑖𝑗 in this representation. Using this it is easy to see that

all the operators satisfy the required relations.

Corollary 5.1.3.4 (Proposition 2.8 in [19]). The algebra 𝐻𝑡,𝑘(𝑛, 𝑟) enjoys the PBW-

property in the sense that the multiplication map

k[𝑥1, . . . , 𝑥𝑛]⊗ [k[𝑆𝑛]⊗ (End(k𝑟))⊗𝑛]⊗ k[𝑦1, . . . , 𝑦𝑛]→ 𝐻𝑡,𝑘(𝑛, 𝑟)

is an isomorphism. Moreover the multiplication maps for any other ordering of tensor

multiples are also isomorphisms.

Proof. This follows from the fact that the polynomial representation introduced

above is faithful and the image of 𝐻𝑡,𝑘(𝑛, 𝑟) in End(𝑉 (𝑛, 𝑟)) is the subalgebra of

k[𝑆𝑛]n (𝒟𝑟𝑒𝑔(A𝑛)⊗End(k𝑟)⊗𝑛), where 𝒟𝑟𝑒𝑔(A𝑛) is the algebra of differential opera-

tors on the regular locus of A𝑛.

We can also define the spherical subalgebra of 𝐻𝑡,𝑘(𝑛, 𝑟).

Definition 5.1.3.5. For 𝑡, 𝑘 ∈ k and 𝑛, 𝑟 ∈ Z>0 define the spherical subalgebra of the

extended Cherednik algebra to be 𝐵𝑡,𝑘(𝑛, 𝑟) = e𝐻𝑡,𝑐(𝑛, 𝑟)e, where e is a symmetrizing

element e = 1
𝑛!

∑︀
𝑠∈𝑆𝑛

𝑠.

There is a natural vector space bifiltration on 𝐻𝑡,𝑘(𝑛, 𝑟).
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Definition 5.1.3.6. Assign to an element
∏︀

𝑖 𝑥
𝑛𝑖
𝑖 𝑠
⨂︀

𝑖(𝑔𝑖)𝑖
∏︀

𝑖 𝑦
𝑚𝑖
𝑖 ∈ 𝐻𝑡,𝑘(𝑛, 𝑟) the

following bidegree. Denote by 𝐻 = |{𝑖 ∈ {1, . . . , 𝑛} | 𝑛𝑖 = 0, 𝑔𝑖 /∈ k · Idk𝑟 , 𝑚𝑖 = 0}|,

and by 𝑉 =
∑︀

𝑖(𝑛𝑖 +𝑚𝑖). Then deg(
∏︀

𝑖 𝑥
𝑛𝑖
𝑖 𝑠
⨂︀

𝑖(𝑔𝑖)𝑖
∏︀

𝑖 𝑦
𝑚𝑖
𝑖 ) = (𝑛 − 𝐻,𝑉 ). Define

the bifiltration on 𝐻𝑡,𝑘(𝑛, 𝑟) using this formula.

I.e. the horizontal degree tells us how many indices actually appear in the mono-

mial, and the vertical degree is the total polynomial degree of the monomial. Note

that this is not an algebra bifiltration. The same vector space bifiltration restricts

to the spherical subalgebra.

However note that the associated graded of 𝐻𝑡,𝑘(𝑛, 𝑟) with respect to the vertical

filtration is simply gr𝑣(𝐻𝑡,𝑘(𝑛, 𝑟)) ≃ k[𝑆𝑛] n (k[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛] ⊗ End(k𝑟)⊗𝑛).

Now the vector space bifiltration of 𝐻𝑡,𝑘(𝑛, 𝑟) restricts to gr𝑣(𝐻𝑡,𝑘(𝑛, 𝑟)) and makes

it a bifiltered algebra.

Moreover, the associated graded of the spherical subalgebra 𝐵𝑡,𝑘(𝑛, 𝑟) is given by

a similar formula gr𝑣(𝐵𝑡,𝑘(𝑛, 𝑟)) ≃ (k[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛] ⊗ (End(k𝑟))⊗𝑛)𝑆𝑛 . And

again this associated graded is a bifiltered algebra.

But now this is simply gr𝑣(𝐵𝑡,𝑘(𝑛, 𝑟)) ≃ 𝑆𝑛(End(k𝑟)[𝑥, 𝑦]). And the bifiltration

on gr𝑣(𝐵𝑡,𝑘(𝑛, 𝑟)) coincides exactly with the standard bifiltration of 𝑆𝑛(End(k𝑟)[𝑥, 𝑦])

arising from the fact that End(k𝑟)[𝑥, 𝑦] is a filtered unital algebra with the filtration

given by the total degree of the polynomial. I.e. we are now in the setting of Section

3.2.2 with 𝐴 = End(k𝑟)[𝑥, 𝑦]. We will use the results of that Section below to

construct a generating set of 𝐵𝑡,𝑘(𝑛, 𝑟) and then later, when we take the ultraproduct

of 𝐵𝑡,𝑘(𝑛, 𝑟) to obtain the DDCA.

Remark 5.1.3.7. As the final remark of this section note that we can also construct
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the spherical subalgebra using the induction functor in the following way:

𝐵𝑡,𝑘(𝑛, 𝑟) = Hom𝑆𝑛(k, 𝐻𝑡,𝑘(𝑛, 𝑟)e) =

= End𝐻𝑡,𝑘(𝑛,𝑟)(𝐻𝑡,𝑘(𝑛, 𝑟)e) = End𝐻𝑡,𝑘(𝑛,𝑟)(Ind𝐻𝑡,𝑘(𝑛,𝑟)
𝑆𝑘

(k)) .

Generating set of 𝐵𝑡,𝑘(𝑛, 𝑟)

Here we would like to present a way to construct a generating set for 𝐵𝑡,𝑘(𝑛, 𝑟). It

will later turn out that this generating set can be used to construct a basis of the

corresponding DDCA.

Pick a basis in End(k𝑟), which contains Idk𝑟 as an element. Let us denote this

basis by 𝛼𝑖 ∈ End(k𝑟) with 𝑖 going from 1 to 𝑟2 and 𝛼1 = Idk𝑟 . Now we can define

the following elements in 𝐵𝑡,𝑘(𝑛, 𝑟).

Definition 5.1.3.8. Define the elements 𝑇𝑟,𝑞,𝑛(𝑔), for 𝑔 ∈ End(k𝑟) by the following

formula (here 𝐿 = 𝑟 + 𝑞):

∑︁
𝑟,𝑞≥0,𝑟+𝑞=𝐿

𝑇𝑟,𝑞,𝑛(𝑔)
𝑢𝑟

𝑟!

𝑣𝑞

𝑞!
=

𝑛∑︁
𝑖=1

(𝑔)𝑖
(𝑢𝑥𝑖 + 𝑣𝑦𝑖)

𝐿

𝐿!
e,

where 𝑢, 𝑣 are formal variables.

They are defined for char(k) > 𝑟 + 𝑞 or zero characteristic.

More explicitly, 𝑇𝑟,𝑞,𝑛(𝑔) is proportional to the sum of all shuffles of 𝑟 copies of 𝑥𝑖

and 𝑞 copies of 𝑦𝑖 multiplied by (𝑔)𝑖 and summed over all 𝑖 from 1 to 𝑛.

Note that the highest term of 𝑇𝑟,𝑞,𝑛 with respect to the vertical filtration is:

𝑇𝑟,𝑞,𝑛(𝑔) =
∑︁
𝑖

(𝑔)𝑖𝑥
𝑟
𝑖𝑦
𝑞
𝑖 + lower order terms .
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Suppose that char(k) = 0. Now note that we have established that we have an

isomorphism gr𝑣(𝐵𝑡,𝑘(𝑛, 𝑟)) ≃ 𝑆𝑛(End(k𝑟)[𝑥, 𝑦]). From Proposition 3.2.2.8 we know

that there is a map 𝛿𝑛 : End(k𝑟)[𝑥, 𝑦] → 𝑆𝑛(End(k𝑟)[𝑥, 𝑦]). Note that under this

map 𝛿𝑛(𝑔 · 𝑥𝑟𝑦𝑞) =
∑︀

𝑖(𝑔)𝑖𝑥
𝑟
𝑖𝑦
𝑞
𝑖 . I.e. the images of 𝑇𝑟,𝑞,𝑛(𝑔) in the associated graded

span exactly the image of the map 𝛿𝑛. More precisely it is enough to consider all

𝑇𝑟,𝑞,𝑛(𝛼𝑙) for 𝑟, 𝑞 ∈ Z≥0 and 𝛼𝑙 ∈ {1, . . . , 𝑟2} to span this image, since 𝛼𝑙 · 𝑥𝑟𝑦𝑞 for all

such 𝑟, 𝑞, 𝑙 are the basis of End(k𝑟)[𝑥, 𝑦].

Now we can define something like the shuffled products of the above elements.

Definition 5.1.3.9. Denote by m the collection of integers 𝑚𝑟,𝑞,𝑙, for 𝑟, 𝑞 ∈ Z≥0 and

𝑙 ∈ {1, . . . , 𝑟2}. Denote |m| =
∑︀

𝑟,𝑞,𝑙𝑚𝑟,𝑞,𝑙 and 𝑤(m) =
∑︀

𝑟,𝑞,𝑙(𝑟 + 𝑞)𝑚𝑟,𝑞,𝑙. We define

𝑇𝑛(m) with 𝑀 = |m|, by the following formula:

∑︁
m,|m|=𝑀

𝑇𝑛(m)
∏︁
𝑟,𝑞,𝑙

𝑧
𝑚𝑟,𝑞,𝑙

𝑟,𝑞,𝑙

𝑚𝑟,𝑞,𝑙!
=

(
∑︀

𝑟,𝑞,𝑙 𝑧𝑟,𝑞,𝑙𝑇𝑟,𝑞,𝑛(𝛼𝑙))
𝑀

𝑀 !
,

here 𝑧𝑟,𝑞,𝑙 are formal variables.

Note that these elements are defined for 𝑤(m) < char(k) or zero characteristic.

Note that with respect to the total filtration

𝑇𝑛(m) =
∏︁
𝑟,𝑞,𝑙

𝑇𝑟,𝑞,𝑛(𝛼𝑙))
𝑚𝑟,𝑞,𝑙 + lower order terms .

Suppose we are in the case char(k) = 0.

Since 𝑇𝑟,𝑞,𝑛(𝛼𝑙) span the image of 𝛿𝑛 in the associated graded algebra with respect

to the vertical filtration, it follows that 𝑇𝑛(m) span everything which is generated by

𝛿𝑛 inside gr𝑣(𝐵𝑡,𝑘(𝑛, 𝑟)). If we use the notation of Definition 3.2.2.9, we can state this

by saying that the images of 𝑇𝑛(m) in the associated graded span the image of Δ𝑛.
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But from Proposition 3.2.2.11 we know that this image covers the whole algebra. So

the following Proposition follows.

Proposition 5.1.3.10. Suppose char(k) = 0. The elements 𝑇𝑛(m) for all choices

of m form a generating set of 𝐵𝑡,𝑘(𝑛, 𝑟).

It’s a bit trickier to show that these elements give us a generating set in positive

characteristic for big enough char(k). Luckily, we will not need this fact to prove

that these elements give us a basis of the corresponding DDCA. However, the proof

of this fact for 𝑟 = 1 can be found in Section 4.1.2 of [18].

5.2 Extended Cherednik algebras and symplectic re-

flection algebras in complex rank

In this section we will explain how one can extend the notion of the algebras intro-

duced in the last section from the finite rank to the Deligne category Rep(𝑆𝜈). We

will also show how these constructions are related to each other through ultraprod-

ucts.

5.2.1 Extended Cherednik algebras in complex rank

In this section we will explain how to work with the extended Cherednik algebras in

the complex rank. First we will define a category of representations of 𝐻𝑡,𝑘(𝜈, 𝑟).

In order to do this we need to explain a few things about the central elements in

Rep(𝑆𝜈). This will build on the discussion around Definition 2.1.0.5.

Construction 5.2.1.1. Let us define the action of the central element Ω on objects

of Rep(𝑆𝜈). Consider 𝐸2 ⊂ k[𝑆𝜈 ] as defined in [13]. This is the interpolation of
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the subspaces spanned by transpositions in the group algebra. Then we have a map

Δ𝐸2 : 𝐸2 → 𝐸2 ⊗ 𝐸2 that interpolates the usual coproduct map Δ(𝑠𝑖𝑗) = 𝑠𝑖𝑗 ⊗ 𝑠𝑖𝑗.

Also we have a map 𝜔 : k → 𝐸2 interpolating the central element inclusion map

1 ↦→
∑︀
𝑠𝑖𝑗 = Ω. We also automatically have an action map 𝑎𝐸2 : 𝐸2 ⊗ 𝑉 → 𝑉

for any object 𝑉 ∈ Rep(𝑆𝜈). Thus we get the alternative way to define the map

Ω : 𝑉 → 𝑉 given by the identity functor endomorphism. More precisely, this map is

given by 𝑎𝐸2 ∘ (𝜔 ⊗ 1).

For our purposes we need to slightly upgrade this central element.

Construction 5.2.1.2. Note that there is a map 𝑖𝐸2 : 𝐸2 → h⊗h, which interpolates

the map 𝑠𝑖𝑗 ↦→ 𝑥𝑖⊗𝑥𝑗+𝑥𝑗⊗𝑥𝑖
2

. Also consider a map 𝑐𝑜𝑒𝑣End(k𝑟) : k→ End(k𝑟)⊗End(k𝑟)

(i.e. we have 1 ↦→
∑︀

𝑖,𝑗 𝐸𝑖𝑗 ⊗ 𝐸𝑗𝑖). Now we can construct 𝜔End(k𝑟) as follows:

𝜔End(k𝑟) = (1⊗ 𝜎End(k𝑟),h ⊗ 1) ∘ (1⊗ 𝑖𝐸2 ⊗ 1) ∘ (1⊗Δ𝐸2) ∘ (1⊗ 𝜔) ∘ 𝑡𝑤End(k𝑟) ,

which takes k→ End(k𝑟)⊗ h⊗ End(k𝑟)⊗ h⊗ 𝐸2.

Now suppose 𝑉 is an object of Rep(𝑆𝜈), with a fixed map 𝛼 : End(k𝑟)⊗h⊗𝑉 → 𝑉 .

Then we can define ΩEnd(k𝑟) : 𝑉 → 𝑉 as

ΩEnd(k𝑟) = 𝛼 ∘ (1⊗ 𝛼) ∘ (1⊗ 𝑎𝐸2) ∘ (𝜔End(k𝑟) ⊗ 1) .

So we have another "central element" for special objects of Rep(𝑆𝜈).

Definition 5.2.1.3. The category Rep(𝐻𝑡,𝑘(𝜈, 𝑟)) is defined as follows. The ob-

jects are given by triples (𝑀,𝑥, 𝑦, 𝛼), where 𝑀 is an ind-object of Rep(𝑆𝜈), 𝑥 is a

map 𝑥 : h* ⊗ 𝑀 → 𝑀 , 𝑦 a map 𝑦 : h ⊗ 𝑀 → 𝑀 and 𝛼 is a yet another map

𝛼 : (End(k𝑟) ⊗ h) ⊗𝑀 → 𝑀 , all of which are morphisms in IND(Rep(𝑆𝜈)). They
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are required to satisfy the following conditions:

𝑥 ∘ (1⊗ 𝑥)− 𝑥 ∘ (1⊗ 𝑥) ∘ (𝜎 ⊗ 1) = 0,

as a map from h* ⊗ h* ⊗𝑀 to 𝑀 ;

𝑦 ∘ (1⊗ 𝑦)− 𝑦 ∘ (1⊗ 𝑦) ∘ (𝜎 ⊗ 1) = 0,

as a map from h⊗ h⊗𝑀 to 𝑀 ;

𝛼 ∘ (1⊗ 𝛼)− 𝛼 ∘ (1⊗ 𝛼) ∘ (𝜎End(k𝑟)⊗h ⊗ 1) =

= 𝛼 ∘ (𝜇End(k𝑟) ⊗ 1− [𝜇End(k𝑟) ⊗ 1] ∘ [𝜎End(k𝑟) ⊗ 1]) ∘ (1⊗ 𝜋diag ⊗ 1) ∘ (1⊗ 𝜎h,End(k𝑟) ⊗ 1),

as a map from End(k𝑟)⊗h⊗End(k𝑟)⊗h⊗𝑀 →𝑀 , where 𝜇End(k𝑟) is multiplication

in End(k𝑟) and 𝜋diag : h⊗h→ h is the interpolation of the projection 𝑥𝑖⊗𝑥𝑗 ↦→ 𝛿𝑖𝑗𝑥𝑖;

𝛼 ∘ (𝜄End(k𝑟) ⊗ 1)− 1⊗ Trh ⊗ 1 = 0,

as a map k⊗h⊗𝑀 →𝑀 , where 𝜄End(k𝑟) is the unit map of End(k𝑟) and Trh : h→ k

is the trace, the interpolation of the map 𝑥𝑖 ↦→ 1;

𝑦 ∘ (1⊗ 𝑥)− 𝑥 ∘ (1⊗ 𝑦) ∘ (𝜎 ⊗ 1) = 𝑡 · evh ⊗ 1− 𝑘 · (evh ⊗ 1) ∘ (Ω3
End(k𝑟) − Ω1,3

End(k𝑟)),

as a map h ⊗ h* ⊗𝑀 to 𝑀 , where ΩEnd(k𝑟) is a central element from Construction

5.2.1.2, and indices indicate the spaces on which ΩEnd(k𝑟) acts in the tensor product

h⊗ h* ⊗𝑀 .

The morphisms of Rep(𝐻𝑡,𝑘(𝜈)) are the morphisms of IND(Rep(𝑆𝜈)) which com-
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mute with the action-maps 𝑥,𝑦 and 𝛼.

Remark 5.2.1.4. Some comments are in order to explain why this is indeed the

correct generalization of Definition 5.1.3.1. To see that one needs to understand

that Definition 5.2.1.3 above, if used in the finite rank, gives us the usual category of

representations of the extended Cherednik algebra 𝐻𝑡,𝑘(𝑛, 𝑟). Indeed, note that since

𝑀 is already an object of the category of representations of symmetric group, we do

not need to define its action. Now maps 𝑥 and 𝑦 determines the action of elements

𝑥𝑖 and 𝑦𝑖. The map 𝛼 determines the action of elements (𝑔)𝑖. The first two formulas

tell us that 𝑥𝑖 commute with each other and so also 𝑦𝑖. The third formula gives us

the commutation relation between (𝑔)𝑖 and (ℎ)𝑗 (i.e. [(𝑔)𝑖, (ℎ)𝑗] = 𝛿𝑖𝑗([𝑔, ℎ])𝑖). The

fourth tells us that all (1)𝑖 act trivially. And, finally, the fifth formula, if expanded,

gives us the correct commutation relation between 𝑥𝑖 and 𝑦𝑗.

Now we would like to show how we can construct some of the objects of the

category Rep(𝐻𝑡,𝑘(𝜈, 𝑟)) as ultraproducts.

Remark 5.2.1.5. Below we will denote by 𝑡𝑛, 𝑘𝑛 the elements of F𝑝𝑛 such that∏︀
ℱ 𝑡𝑛 = 𝑡 and

∏︀
ℱ𝑘𝑛 = 𝑘 under the fixed isomorphism of

∏︀
ℱF𝑝𝑛 ≃ C. We will use

a similar notation for all other parameters of algebras used in the thesis.

Lemma 5.2.1.6. Suppose 𝑀𝑛 is a sequence of objects of Rep𝑝𝑛(𝐻𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟)) such

that their (restricted) ultraproduct as objects of Rep𝑝𝑛(𝑆𝜈𝑛) lies in IND(Rep(𝑆𝜈)).

Suppose 𝑥𝑛, 𝑦𝑛 and 𝛼𝑛 are the maps which define the action of generators of the cor-

responding Cherednik algebra on 𝑀𝑛. Then (
∏︀𝐶,𝑟

ℱ 𝑀𝑛,
∏︀

ℱ𝑥𝑛,
∏︀

ℱ𝑦𝑛,
∏︀

ℱ𝛼𝑛) defines

an object of Rep(𝐻𝑡,𝑘(𝜈, 𝑟)).

Proof. It’s easy to see that the data (
∏︀𝐶,𝑟

ℱ 𝑀𝑛,
∏︀

ℱ𝑥𝑛,
∏︀

ℱ𝑦𝑛,
∏︀

ℱ𝛼𝑛) is well defined.

Since 𝑥𝑛, 𝑦𝑛 and 𝛼𝑛 satisfy the same conditions in finite rank and complex rank it

follows that by Łoś’s theorem this is indeed an object of Rep(𝐻𝑡,𝑘(𝜈, 𝑟)).
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Now we would like to construct an interpolation of the functors Ind𝐻𝑡𝑛,𝑘𝑛 (𝜈𝑛,𝑟)
𝑆𝜈𝑛

. It

is possible to construct the full functor as an ultraproduct, but this functor would

a priori have
∏︀

ℱRep𝑝𝑛(𝐻𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟)) as its target category, so we would need to

explain why the functor really gives us objects of Rep(𝐻𝑡,𝑘(𝜈, 𝑟)). Instead we will

construct this functor explicitly, which will also show that it agrees with the ultra-

product functor when applied to objects of Rep(𝑆𝜈).

The idea is, following the PBW theorem, to think about “𝐻𝑡,𝑘(𝜈, 𝑟)" as “the direct

sum
⨁︀

𝑖,𝑗≥0 𝑆
𝑖(h*)⊗ 𝑆𝑗(h)⊗ (End(k𝑟))⊗𝜈 ⊗C[𝑆𝜈 ]" and take the tensor product with

𝑉 ∈ Rep(𝑆𝜈) “over C[𝑆𝜈 ]".

Before the actual construction we need to note several things.

Construction 5.2.1.7. Denote 𝐴 = End(k𝑟). First, since 𝐴 is a unital algebra

with the standard filtration 𝐹 0𝐴 = k · 1 and 𝐹 1𝐴 = 𝐴, we have an induced filtration

on 𝐴⊗𝜈 . Note that 𝐴⊗𝜈 as an algebra is generated by its first filtration component

𝐹 1𝐴⊗𝜈 . This component itself is actually a subobject of h ⊗ 𝐴, more precisely

to obtain it we need to throw out a subobject 𝒳 ((1)) ⊗ 𝐹 0𝐴 from h ⊗ 𝐴 (note

h = 𝒳 ((1)) ⊕ k). It follows that there are maps 𝑖𝑙,𝐴 : 𝐹 𝑙𝐴⊗𝜈 → (h ⊗ 𝐴)⊗𝑙 and

𝜋𝑙,𝐴 : (h⊗ 𝐴)⊗𝑙 → 𝐹 𝑙𝐴⊗𝜈 . Let us denote the multiplication map

𝜋𝑙+1,𝐴 ∘ 1⊗ 𝑖𝑙,𝐴 : (h⊗ 𝐴)⊗ 𝐹 𝑙𝐴⊗𝜈 → 𝐹 𝑙+1𝐴⊗𝜈

by 𝜇𝑙,𝐴.

Also note that 𝑆𝑖+1(h) is isomorphic to a direct summand of h⊗𝑆𝑖(h), let’s denote

the corresponding inclusion and projection as 𝜄𝑖+1,𝑦 and 𝜋𝑖+1,𝑦 respectively. The same

is true for h*, the corresponding morphisms are 𝜄𝑖+1,𝑥 and 𝜋𝑖+1,𝑥.

With this we can proceed to construct the induction functor.
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Construction 5.2.1.8. For an object 𝑉 ∈ Rep(𝑆𝜈), consider an ind-object given by

𝐼𝑉 = ⊕𝑖,𝑗≥0𝐼𝑖,𝑗, where 𝐼𝑖,𝑗 = 𝑆𝑖(h*)⊗𝑆𝑗(h)⊗𝐴⊗𝜈 ⊗ 𝑉 , and maps 𝑥𝑉 : h*⊗ 𝐼𝑉 → 𝐼𝑉 ,

𝑦𝑉 : h⊗ 𝐼𝑉 → 𝐼𝑉 and 𝛼𝑉 : (h⊗ 𝐴)⊗ 𝐼𝑉 → 𝐼𝑉 , which are defined as follows.

First let us define 𝛼𝑉 |𝐼𝑖,𝑗 : (h⊗𝐴)⊗ 𝐼𝑖,𝑗 → 𝐼𝑖,𝑗. We will do so by considering the

action of this map on each filtration component 𝐹 𝑙𝐼𝑖,𝑗 = 𝑆𝑖(h*)⊗𝑆𝑗(h)⊗𝐹 𝑙𝐴⊗𝜈⊗𝑉 .

Now we can define the action of 𝛼𝑉 |𝐹 𝑙𝐼𝑖,𝑗 : (h⊗𝐴)⊗ 𝐹 𝑙𝐼𝑖,𝑗 → 𝐹 𝑙+1𝐼𝑖,𝑗 to be equal to

𝛼𝑉 |𝐹 𝑙𝐼𝑖,𝑗 = (1⊗ 𝜇𝑙,𝐴 ⊗ 1) ∘ (𝜎h⊗𝐴,𝑆𝑖(h*)⊗𝑆𝑗(h) ⊗ 1) .

Now define 𝑥𝑉 |𝐼𝑖,𝑗 : h* ⊗ 𝐼𝑖,𝑗 → 𝐼𝑖+1,𝑗 to be equal to 𝜋𝑖+1,𝑥 ⊗ 1 for all 𝑖, 𝑗. Also

define 𝑦𝑉 |𝐼0,𝑗 : h ⊗ 𝐼0,𝑗 → 𝐼0,𝑗+1 as 𝜋𝑗+1,𝑦 ⊗ 1. And lastly we also define the map

𝑦𝑉 |𝐼𝑖,𝑗 : h⊗ 𝐼𝑖,𝑗 → 𝐼𝑖,𝑗+1 ⊕ 𝐼𝑖−1,𝑗 by induction in 𝑖 as:

[︁
(𝑥⊗ 1) ∘ (1⊗ 𝑦 ⊗ 1) ∘ (𝜎h,h* ⊗ 1) + 𝑡 · evh ⊗ 1− 𝑘 · (evh ⊗ 1) ∘ (Ω𝐼𝑖−1,𝑗

𝐴 − Ω
h,𝐼𝑖−1,𝑗

𝐴 )
]︁
∘ (1⊗ 𝜄𝑖,𝑥⊗1).

Now we would like to show that this defines an object of Rep(𝐻𝑡,𝑘(𝜈, 𝑟)). Indeed:

Lemma 5.2.1.9. In the notations of Construction 5.2.1.8, the tuple (𝐼𝑉 , 𝑥𝑉 , 𝑦𝑉 , 𝛼𝑉 )

defines an object of Rep(𝐻𝑡,𝑘(𝜈, 𝑟)).

Proof. Indeed, the first two formulas of Definition 5.2.1.3 are satisfied by the prop-

erties of symmetric powers, and we defined the action of 𝑦𝑉 by induction in such a

way that the last equation is also satisfied. The equations for 𝛼𝑉 are satisfied in a

straightforward way.

Another way to see that is to note that in the finite rank case this construction

amounts to 𝐻𝑡𝑛,𝑘𝑛(𝜈𝑛)⊗𝑆𝜈𝑛
𝑉𝑛, and so by Łoś’s theorem , we do get a correct structure

of an “𝐻𝑡,𝑘(𝜈)-module".
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Now we need to construct the action of the induction functor on morphisms.

Construction 5.2.1.10. In the notation of Construction 5.2.1.8, given a morphism

𝜑 : 𝑉 → 𝑈 , define a morphism 𝐼𝜑 : 𝐼𝑉 → 𝐼𝑈 in the following way:

(𝐼𝜑)|𝑆𝑖(h*)⊗𝑆𝑗(h)⊗𝐴⊗𝜈⊗𝑉 := 1⊗ 𝜑 .

Lemma 5.2.1.11. In the notation of Constructions 5.2.1.8 and 5.2.1.10, 𝐼𝜑 is a

morphism in Rep(𝐻𝑡,𝑘(𝜈, 𝑟)).

Proof. This is easy to see both straight from the definition, or by the ultraproduct

argument, since in finite rank this defines an actual 𝐻𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟)-module morphism.

Now we can define the actual functor:

Definition 5.2.1.12. Define a functor Ind𝐻𝑡,𝑘(𝜈,𝑟)
𝑆𝜈

: Rep(𝑆𝜈)→ Rep(𝐻𝑡,𝑘(𝜈, 𝑟)) in the

following way. On objects it takes 𝑉 to the triple (𝐼𝑉 , 𝑥𝑉 , 𝑦𝑉 , 𝛼𝑉 ) from Construction

5.2.1.8. And on morphisms it takes 𝜑 : 𝑉 → 𝑈 to 𝐼𝜑 from Construction 5.2.1.10.

This is a well defined functor by Lemmas 5.2.1.9 and 5.2.1.11.

The next Corollary follows by construction and the above lemmas:

Corollary 5.2.1.13. For any object 𝑉 ∈ Rep(𝑆𝜈) such that 𝑉 =
∏︀

ℱ𝑉𝑛 we have:

Ind
𝐻𝑡,𝑘(𝜈,𝑟)
𝑆𝜈

𝑉 =
∏︁𝐶,𝑟

ℱ
Ind

𝐻𝑡𝑛,𝑘𝑛 (𝜈𝑛,𝑟)
𝑆𝜈𝑛

𝑉𝑛,

where the filtration on Ind
𝐻𝑡𝑛,𝑘𝑛 (𝜈𝑛,𝑟)
𝑆𝜈𝑛

𝑉𝑛 is obtained from the vector space bifiltration

of 𝐻𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟) (which can be seen to be 𝑆𝜈𝑛-invariant).
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Note that the elements of the above definition and constructions in the case of

𝑟 = 1, i.e. in the case of the regular Cherednik algebra, can be found in the paper [10]

by Inna Entova-Aizenbud. A very similar exposition for rank 1 can also be found in

[18], a later paper by Pavel Etingof, Eric Rains and the author of the present thesis.

5.2.2 Symplectic reflection algebras in complex rank

In this section we will briefly restate some of the results of the previous section

in the context of symplectic reflection algebras. As in Section 3.2.3, we will work

for transcendental 𝜈 for simplicity. Also as in that section, we fix a finite group

Γ ⊂ SL(2,Q).

Below we will define the category Rep(𝐻𝑡,𝑘,𝑐(𝜈,Γ)) following the lines of Definition

5.2.1.3. To do this, we need to find the analog of 𝑉 in Definition 5.1.2.1.

Proposition 5.2.2.1. The ultraproduct
∏︀𝐶

ℱ(Q
2
)𝑛 as 𝑆𝑛 n Γ𝑛-modules defines an

object of Rep(𝑆𝜈 n Γ𝜈).

Proof. Indeed as 𝑆𝑛-modules, each (Q2
)𝑛 = h𝑛⊕h𝑛, hence their ultraproduct is given

by h⊕2 as an object of Rep(𝑆𝜈). Thus by Proposition 3.2.3.3 it follows that it is also

an object of Rep(𝑆𝜈 n Γ𝜈). The symplectic pairing is given by the ultraproduct of

symplectic pairings.

We will denote this object by 𝑉 and call the fundamental representation of

“𝑆𝜈 n Γ𝜈”. Also 𝑉 carries a natural symplectic pairing 𝜔. Now we are ready to

define the category itself.

Definition 5.2.2.2. Consider 𝑡, 𝑘, 𝑐𝐶 , 𝑇𝐶 as in Definition 5.1.2.1 with k = C. Let

𝜈 ∈ C be a transcendental number. The objects of the category Rep(𝐻𝑡,𝑘,𝑐(𝜈,Γ)) are
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given by pairs (𝑀, 𝑦), where 𝑀 is an object of Rep(𝑆𝜈 n Γ𝜈) and 𝑦 is a map:

𝑦 : 𝑉 ⊗𝑀 →𝑀,

such that the following holds:

𝑦∘(1⊗𝑦)∘((1−𝜎)⊗1) = (𝜔⊗1)∘

(︃
𝑡− 𝑘(Ω3 − Ω1,3)−

∑︁
𝐶

𝑐𝐶
1− 𝑇𝐶

(Ω3
𝐶 − Ω13

𝐶 − Ω23
𝐶 +Ω123

𝐶 )

)︃
,

as a map from 𝑉 ⊗ 𝑉 ⊗𝑀 to 𝑀 , where Ω is an endomorphism from Definition

3.1.0.8 and Ω𝐶 is the endomorphism obtained in a similar way as the ultraproduct of

endomorphisms of the identity functor arising from the sum of elements of the group

belonging to the conjugacy class 𝐶.

The morphisms are given by morphisms in Rep(𝑆𝜈 nΓ𝜈) which commute with 𝑦.

In a fashion similar to the discussion after Definition 5.2.1.3 one can see that this

definition is the same as in finite rank, written in an element free way. Thus for

the same reasons one obtains the following statement, which generalizes Proposition

3.2.3.3 and Lemma 5.2.1.6.

Proposition 5.2.2.3. Suppose 𝑀𝑛 are 𝐻𝑡𝑛,𝑘𝑛,𝑐𝑛(𝑛,Γ)-modules whose ultraproduct∏︀𝐶,𝑟
ℱ 𝑀𝑛 is a well defined object of IND(Rep(𝑆𝜈)). Suppose 𝑦𝑛 denotes the corre-

sponding map 𝑦𝑛 : (Q2
)𝑛 ⊗ 𝑀𝑛 → 𝑀𝑛. Then (

∏︀𝐶,𝑟
ℱ 𝑀𝑛,

∏︀
ℱ𝑦𝑛) is an object of

Rep(𝐻𝑡,𝑘,𝑐(𝜈,Γ)).

Also repeating the steps of Section 5.2.1 we can construct the induction functor.

Since the construction is almost literally the same, we just state the result.

Proposition 5.2.2.4. There is a functor

Ind
𝐻𝑡,𝑘,𝑐(𝜈,Γ)
𝑆𝜈nΓ𝑛 : Rep(𝑆𝜈 n Γ𝜈)→ Rep(𝐻𝑡,𝑘,𝑐(𝜈,Γ)) ,
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such that, if 𝑀 ∈ Rep(𝑆𝜈nΓ𝜈) is an object given by ultraproduct of 𝑆𝑛nΓ𝑛-modules,

i.e., 𝑀 =
∏︀𝐶

ℱ𝑀𝑛, then:

Ind
𝐻𝑡,𝑘,𝑐(𝜈,Γ)
𝑆𝜈nΓ𝑛 (𝑀) =

∏︁𝐶,𝑟

ℱ
Ind

𝐻𝑡𝑛,𝑘𝑛,𝑐𝑛 (𝑛,Γ)
𝑆𝑛nΓ𝑛 (𝑀𝑛).

5.3 DDCA in Deligne Categories

In this section we will define and study the Deformed Double Current Algebra of

rank 𝑟 and type A as an algebra of endomorphisms of an ind-object of Rep(𝑆𝜈). We

will also provided a basis of this algebra. In the last part of this section we will say

a few extra words about the case of rank 1 that we will treat in more detail later on.

5.3.1 Definition

First let us define the Deformed Double Current algebra of rank 𝑟. We will construct

it as an algebra of endomorphisms in Rep(𝐻𝑡,𝑘(𝜈, 𝑟)).

Definition 5.3.1.1. For 𝑟 ∈ Z>0, 𝜈 ∈ C∖Z≥0 and 𝑡, 𝑘 ∈ C, define the DDCA of rank

𝑟, denoted ̃︀𝒟𝑡,𝑘,𝜈(𝑟), as:

̃︀𝒟𝑡,𝑘,𝜈(𝑟) = EndRep(𝐻𝑡,𝑘(𝜈,𝑟))(Ind𝐻𝑡,𝑘(𝜈,𝑟)
𝑆𝜈

(C)) .

This is obviously an interpolation of Remark 5.1.3.7. This can be made precise

using Corollary 5.2.1.13:

Proposition 5.3.1.2. The algebra ̃︀𝒟𝑡,𝑘,𝜈(𝑟) is equal to a restricted ultraproduct of

𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟) with respect to the total filtration.
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Proof. Indeed since

̃︀𝒟𝑡,𝑘,𝜈(𝑟) = EndRep(𝐻𝑡,𝑘(𝜈,𝑟))(Ind𝐻𝑡,𝑘(𝜈,𝑟)
𝑆𝜈

(C)) = HomRep(𝑆𝜈)(C, Ind𝐻𝑡,𝑘(𝜈,𝑟)
𝑆𝜈

(C))

by Corollary 5.2.1.13, it follows that:

̃︀𝒟𝑡,𝑘,𝜈(𝑟) =∏︁𝑟

ℱ
HomRep𝑝𝑛

(F𝑝𝑛 , Ind𝐻𝑡𝑛,𝑘𝑛 (𝜈𝑛,𝑟)
𝑆𝜈𝑛

(F𝑝𝑛)) =
∏︁𝑟

ℱ
𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟) .

Remark 5.3.1.3. Note that ̃︀𝒟𝑡,𝑘,𝜈(𝑟) has a vector space bifiltration which it inherits

through the ultraproduct construction from the similar filtrations on 𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟).

Remark 5.3.1.4. Also note that all of the above can be repeated verbatim for the

case of Repext(𝑆𝜈) from Definition 2.2.0.9. In this case we obtain the algebra ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟)

over C(𝜈).

5.3.2 Basis of DDCA

Now we would also like to generalize the elements from the Section 5.1.3 to the

DDCA. And in this way construct a basis of this algebra.

Construction 5.3.2.1. Consider elements 𝑇𝜈𝑛(m) of 𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟) as maps belonging

to HomRep𝑝𝑛
(𝑆𝜈𝑛 )(F𝑝𝑛 , 𝐻𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟)e). Since these elements are defined for big enough

characteristic, they are defined for almost all 𝑛. And since their degree as maps

is bounded, it follows that the ultraproduct 𝑇 (m) =
∏︀

ℱ𝑇𝜈𝑛(m) is a well-defined

element of ̃︀𝒟𝑡,𝑘,𝜈(𝑟). And the same hold for ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟).

Now let us consider the associated graded of ̃︀𝒟𝑡,𝑘,𝜈(𝑟) with respect to the vertical

filtration.
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Proposition 5.3.2.2. The associated graded algebra gr𝑣( ̃︀𝒟𝑡,𝑘,𝜈(𝑟)) is isomorphic to

𝑆𝜈(End(k𝑟)[𝑥, 𝑦]) as a bifiltered algebra.

Proof. We have gr𝑣( ̃︀𝒟𝑡,𝑘,𝜈(𝑟)) = ∏︀𝑟
ℱgr𝑣(𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟)). But since we know what the

associated graded of the spherical subalgebra is, it follows that:

gr𝑣( ̃︀𝒟𝑡,𝑘,𝜈(𝑟)) =∏︁𝑟

ℱ
𝑆𝜈𝑛(End(F𝑟𝑝𝑛)[𝑥, 𝑦]) = 𝑆𝜈(End(k𝑟)[𝑥, 𝑦]) .

By Remark 3.2.2.13 it follows that there is an isomorphism:

̃︀Δ : 𝑈(End(k𝑟)[𝑥, 𝑦])/(1End(k𝑟) − 𝜈) ≃ gr𝑣( ̃︀𝒟𝑡,𝑘,𝜈(𝑟)) .
From this we can derive the following statement about the basis of ̃︀𝒟𝑡,𝑘,𝜈(𝑟).

Proposition 5.3.2.3. The set {𝑇 (m)} for all m such that for all (𝑟, 𝑞, 𝑙) ̸= (0, 0, 1)

we have 𝑚𝑟,𝑞,𝑙 ∈ Z≥0 and 𝑚0,0,1 = 0, forms a basis of ̃︀𝒟𝑡,𝑘,𝜈(𝑟) (and of ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟)).

Proof. Indeed, since ̃︀Δ is an isomorphism, it follows that the images of the basis of

𝑈(End(k𝑟)[𝑥, 𝑦])/(1End(k𝑟) − 𝜈) form a basis of the DDCA.

Now let us pass to the associated graded with respect to the horizontal filtration.

We know that grℎ(𝑈(End(k𝑟)[𝑥, 𝑦])/(1End(k𝑟) − 𝜈)) = 𝑆∙(End(k𝑟)[𝑥, 𝑦]/k · 1End(k𝑟)).

Hence the basis of this vector space is given by
∏︀

𝑟,𝑞,𝑙(𝛼𝑙𝑥
𝑟𝑦𝑞)𝑚𝑟,𝑞,𝑙 for all m specified

in the statement of the problem. But now under grℎ(̃︀Δ) these elements map exactly

into the images of 𝑇 (m) in the associated graded grℎ(gr𝑣( ̃︀𝒟𝑡,𝑘,𝜈(𝑟))).
Hence 𝑇 (m) form a basis of ̃︀𝒟𝑡,𝑘,𝜈(𝑟).
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5.3.3 DDCA extended by a central element

In the previous section we have seen that ̃︀𝒟𝑡,𝑘,𝜈(𝑟) has a certain basis which arises

from the fact that this DDCA is a deformation of 𝑈(End(k𝑟)[𝑥, 𝑦])/(1End(k𝑟) − 𝜈).

Here we would like to extend this construction to the case of 𝑈(End(k𝑟)[𝑥, 𝑦]). We

can do this if we turn 𝜈 into a central element instead of a scalar.

In order to do this let us start with ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟) which is an algebra over C(𝜈). If

we can find a certain C[𝜈]-lattice in ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟) which is closed under multiplication,

this would allow us to consider this lattice as an algebra over C, making 𝜈 a new

central element. It turns out that such a lattice can be found, and it is actually

given precisely by the 𝑇 (m)-basis of ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟) . So in the following Proposition we

will show that the structure constants of ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟) in this basis are polynomial in 𝜈.

Proposition 5.3.3.1. The product of 𝑇 (m1) and 𝑇 (m2) in ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟) can be expressed

as a linear combination of 𝑇 (m) with coefficients in C[𝜈] for m such that 𝑚0,0,1 = 0.2

Proof. Since 𝑇 (m𝑖) =
∏︀

ℱ𝑇𝜈𝑛(m𝑖) we can instead prove that for 𝑛 big enough

𝑇𝑛(m1) ·𝑇𝑛(m2) can be expressed as a linear combination of 𝑇𝑛(m′) with coefficients

which depend polynomially on 𝑛. Recall that 𝑇𝑛(m) are the elements of 𝐵𝑡,𝑘(𝜈, 𝑟).

In order to do so we will first introduce a notion of an admissible sum:

Definition 5.3.3.2. For a collection of functions 𝑎 : [𝜆]→ {𝑥, 𝑦}, 𝑢 : [𝜆]→ [𝑘] and

𝛾 : [𝑘]→ [𝑟2], construct an element:

𝑛∑︁
𝑖1,...,𝑖𝑘=1

(𝛼𝛾(1))𝑖1(𝛼𝛾(2))𝑖2 . . . (𝛼𝛾(𝑘))𝑖𝑘𝑎(1)𝑖𝑢(1)𝑎(2)𝑖𝑢(2) . . . 𝑎(𝑙)𝑖𝑢(𝑙)e .

We will call all such elements admissible sums. Call |𝑘| the width and |𝜆| the weight

of the admissible sum.
2The proof of this fact in the case of 𝑟 = 1 is due to T. Schedler.
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Note that the product of admissible sums is an admissible sum. Indeed if we

have two admissible sums with the data (𝑎1, 𝑢1, 𝛾1) and (𝑎2, 𝑢2, 𝛾2), their product

is an admissible sum with the function 𝑎 given by concatenation of 𝑎1 and 𝑎2, i.e.

𝑎 : [𝜆1 + 𝜆2] → {𝑥, 𝑦} such that 𝑎(𝑖) = 𝑎1(𝑖) for 𝑖 ≤ 𝜆1 and 𝑎(𝑖) = 𝑎2(𝑖 − 𝜆1)

for 𝑖 > 𝜆1; with the function 𝑢 given by concatenation of 𝑢1 and 𝑢2 in the sense

that 𝑢 : [𝜆1 + 𝜆2] → [𝑘1 + 𝑘2] maps 𝑖 ≤ 𝜆1 to 𝑢(𝑖) = 𝑢1(𝑖) and maps 𝑖 > 𝜆1 to

𝑢(𝑖) = 𝑢2(𝑖− 𝜆1) + 𝑘1; with the function 𝛾 given by concatenation of 𝛾1 and 𝛾2, i.e.

𝛾 : [𝑘1 + 𝑘2]→ [𝑟2], i.e. 𝛾(𝑖) = 𝛾1(𝑖) for 𝑖 ≤ 𝑘1 and 𝛾(𝑖) = 𝛾2(𝑖− 𝑘1) for 𝑖 > 𝑘1. This

follows easily from the fact that (𝑔)𝑖 commutes with both 𝑥𝑗 and 𝑦𝑗. Note that we

see that the weights and widths of the admissible sums add up when we take their

product.

Now also note that we have:

𝑇𝑟,𝑞,𝑛(𝛼𝑙) =
(𝑟)!(𝑞)!

(𝑟 + 𝑞)!

∑︁
𝑎:[𝑟+𝑞]→{𝑥,𝑦},

|𝑎−1(𝑥)|=𝑟

𝑛∑︁
𝑖=1

(𝛼𝑙)𝑖𝑎(1)𝑖𝑎(2)𝑖 . . . 𝑎(𝑟 + 𝑞)𝑖e .

I.e., we see that 𝑇𝑟,𝑞,𝑛(𝛼𝑙) is equal to the linear combination of admissible sums with

width 1 and weight 𝑟 + 𝑞 with 𝑛-independent coefficients.

Since 𝑇𝑛(m) is the linear combination of the products of 𝑇𝑟,𝑞,𝑛(𝛼𝑙) with 𝑛-independent

coefficients it follows that 𝑇𝑛(m) itself is a linear combination of admissible sums with

𝑛-independent coefficients. Hence 𝑇𝑛(m1)𝑇𝑛(m2) is also such a linear combination.

Now if we prove that any admissible sum can written down as a linear combination

of 𝑇𝑛(m) with coefficients depending polynomially on 𝑛 for m such that 𝑚0,0,1 = 0,

we would prove our Proposition.

Let us prove this result by inducting on the sum of the weight and the width of

the admissible sum.
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As the base of our induction suppose we have an admissible sum of weight 0 and

width 0. Then the sum is just 1, so we are done, since 𝑇 (m) with 𝑚𝑟,𝑞,𝑙 = 0 for all

𝑟, 𝑞, 𝑙 is equal to 1.

Now for the induction step suppose we have proven our hypothesis for all admis-

sible sums with the sum of weight and width less than 𝑁 .

Suppose we have an admissible sum 𝑆 of weight 𝜆 and width 𝑘 given by functions

𝑎, 𝑢, 𝛾, such that 𝜆+𝑘 = 𝑁 . First suppose that Im(𝑢) does not cover the set 𝛾−1(1).

It follows that there is 𝑗 ∈ [𝑘] such that 𝑖𝑗 does not appear as a subscript of 𝑥 or

𝑦 and only appears as a subscript of (𝛼𝛾(𝑗))𝑖𝑗 = (1)𝑖𝑗 , but (1)𝑖𝑗 = 1, so we can take

this sum, gaining a multiple of 𝑛 and reducing our problem to the admissible sum

with smaller width, for which the problem is already solved. Hence in this case we

are done.3

So we can suppose that there are no 𝑗 ∈ [𝑘] such that 𝛾(𝑗) = 1 and 𝑗 /∈ ℑ(𝑢).

Now let us define m in the following way. Set

𝑚𝑟,𝑞,𝑙 = |{𝑗 ∈ [𝑘]| 𝛾(𝑗) = 𝑙, 𝑅𝑗 = 𝑟, 𝑄𝑗 = 𝑞}| ,

where

𝑅𝑗 = |{𝑖 ∈ [𝜆]| 𝑢(𝑖) = 𝑗, 𝑎(𝑖) = 𝑥}| and 𝑄𝑗 = |{𝑖 ∈ [𝜆]| 𝑢(𝑖) = 𝑗, 𝑎(𝑖) = 𝑦}| .

Notice that we have 𝑚0,0,1 = 0 by our requirement.

Now note that 𝑇𝑛(m) is proportional with an 𝑛-independent coefficient to the

linear combination of admissible sums which differ from 𝑆 only by the permutation

of [𝜆] and [𝑘]. If we prove that when we permute elements in the admissible sum the

3Note that this is precisely where the polynomial dependence on 𝑛 comes from.
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only extra terms we get are admissible sums with smaller sum of width and weight

with 𝑛-independent coefficients, we are done. Indeed, then it would follow that for

some 𝑛-independent constant 𝑆−𝑇𝑛(m) is the linear combination of admissible sums

with the sum of weight and width < 𝑁 for which the hypothesis is known.

So let us prove this assertion. Since (𝑔)𝑖 commutes with both 𝑥𝑗 and 𝑦𝑗, 𝑥𝑖

commute among themselves and 𝑦𝑖 commute too, we need to consider three cases:

1)what happens when we commute (𝛼𝑙)𝑖𝑗 and (𝛼𝑙′)𝑖𝑗′ in the sum; 2)what happens

when we commute 𝑥𝑖𝑗 and 𝑦𝑖𝑗′ in the sum; 3) what happens when we commute 𝑥𝑖𝑗
and 𝑦𝑖𝑗 in the sum.

In the first case we use the fact that [(𝑔)𝑖𝑗 , (ℎ)𝑖𝑗′ ] = 𝛿𝑖𝑗 ,𝑖𝑗′ ([𝑔, ℎ])𝑖𝑗 . So it follows

that the extra term in the sum we get is as follows:

𝑛∑︁
...,𝑖𝑗 ,...,𝑖𝑗′ ,···=1

. . . 𝛿𝑖𝑗 ,𝑖𝑗′ ([𝛼𝑙, 𝛼𝑙′ ])𝑖𝑗 · · · =
𝑛∑︁

...,𝑖𝑗 ,...,∩𝑖𝑗′ ,···=1

. . . ([𝛼𝑙, 𝛼𝑙′ ])𝑖𝑗 . . . .

So in this case, since [𝛼𝑙, 𝛼𝑙′ ] can be written as a linear combination of 𝛼𝑖 with 𝑛-

independent coefficients, it follows that we get admissible sums with smaller width,

as required.

In the second case we know that [𝑥𝑖, 𝑦𝑗] = 𝛿𝑖𝑗(𝑡− 𝑘
∑︀

𝑚 ̸=𝑖 𝑠𝑖𝑚𝜎𝑖𝑚 − 𝑘) + (𝑘𝑠𝑖𝑗𝜎𝑖𝑗),

when we insert this into our sum somewhere, first of all the weight drops by two.

Then in the first term, which is proportional to 𝛿𝑖𝑗 ,𝑖𝑗′ (𝑡− 𝑘
∑︀

𝑚̸=𝑖𝑗
𝑠𝑖𝑗 ,𝑚𝜎𝑖𝑗 ,𝑚 − 𝑘), we

delete the sum over 𝑖𝑗′ (this forces us to take the product of two 𝛼𝑙 in the End(k𝑟)

part of the admissible sum after some commutation, but this by the above remarks

doesn’t cause a problem). Then we also are required to commute all 𝑆𝑛 elements to

the right to be absorbed into e, which only changes the function 𝑢 in the admissible

sum, and to move all 𝜎’s to the left, where by acting they permute (𝛼𝑙)𝑖, changing

the function 𝛾. The second term is proportional to (𝑘𝑠𝑖𝑗 ,𝑖𝑗′𝜎𝑖𝑗 ,𝑖𝑗′ ). And here again
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we just commute 𝑆𝑛 elements to the right and 𝜎’s to the left.

Now the final case is when we commute 𝑥𝑖𝑗 with 𝑦𝑖𝑗 . Since it holds that

[𝑥𝑖, 𝑦𝑖] = 𝑡 − 𝑘
∑︀

𝑚̸=𝑖 𝑠𝑖𝑚𝜎𝑖𝑚, we again see that the weight drops by 2 and all of

the preceding remarks apply to make all extra terms into the linear combinations of

admissible sums with lower width plus weight with 𝑛-independent coefficients.

Thus we have proven the induction step and the proposition follows.

From this proposition it follows that the C[𝜈]-lattice given by the direct sum⨁︀
m,𝑚0,0,1 ̸=0C[𝜈] · 𝑇 (𝜇) forms a subalgebra in ̃︀𝒟ext

𝑡,𝑘,𝜈(𝑟). So we can define:

Definition 5.3.3.3. Define the DDC algebra 𝒟𝑡,𝑘(𝑟) over C to be equal to the

C[𝜈]-lattice
⨁︀

m,𝑚0,0,1 ̸=0 C[𝜈] · 𝑇 (𝜇) ⊂ ̃︀𝒟ext
𝑡,𝑘,𝜈(𝑟).

Now in this algebra 𝜈 becomes a central element which we will call 𝐾. Note that

before we had
∏︀

ℱ𝑇0,0,𝜈𝑛(1) =
∏︀

ℱ𝜈𝑛 = 𝜈. Now in this algebra it becomes 𝐾 – an

independent element, so it makes sense to also denote 𝑇0,0(1) = 𝐾 ∈ 𝒟𝑡,𝑘(𝑟).

We can also see that this extends the isomorphism

̃︀Δ : 𝑈(End(k𝑟)[𝑥, 𝑦])/(1End(k𝑟) − 𝜈) ≃ gr𝑣( ̃︀𝒟𝑡,𝑘,𝜈(𝑟))
to the isomorphism:

̃︀Δ : 𝑈(End(k𝑟)[𝑥, 𝑦]) ≃ gr𝑣(𝒟𝑡,𝑘(𝑟)) ,

which fully explains the name "deformed double current algebra".

Thus we can conclude that:

Corollary 5.3.3.4. The set {𝑇 (m)} for all m forms a basis of 𝒟𝑡,𝑘(𝑟).
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Notice that we also have the following important Corollary which connects the

DDC algebra 𝒟𝑡,𝑘(𝑟) with ̃︀𝒟𝑡,𝑘,𝜈(𝑟).
Corollary 5.3.3.5. The DDC algebra ̃︀𝒟𝑡,𝑘,𝜈(𝑟) is isomorphic to 𝒟𝑡,𝑘(𝑟)/(𝐾 − 𝜈).

5.3.4 DDCA of rank 1

In this section we will say a few words about how the above results translate to the

case 𝑟 = 1. This will be helpful for the discussions in Section 5.5 and 5.6.

First let us introduce a simplified notation for these DDCAs.

Definition 5.3.4.1. For 𝑡, 𝑘, 𝜈 ∈ C denote ̃︀𝒟𝑡,𝑘,𝜈 = ̃︀𝒟𝑡,𝑘,𝜈(1), ̃︀𝒟ext
𝑡,𝑘,𝜈 = ̃︀𝒟ext

𝑡,𝑘,𝜈(1) and

𝒟𝑡,𝑘 = 𝒟𝑡,𝑘(1).

We will denote the elements 𝑇 (m) constructed for 𝑟 = 1 in the same way, since

it will be obvious to which algebra these elements belong from the context. However

note that since 𝑟 = 1 the only value 𝑙 (in 𝑚𝑟,𝑞,𝑙) can take is 1.

Similarly if we consider the corresponding Cherednik algebra 𝐻𝑡,𝑘(𝑛), we don’t

have to speak about bifiltration anymore, since the horizontal filtration turns out

to be trivial. Hence, instead of using the bifiltration from Definition 5.1.3.6 we can

define:

Definition 5.3.4.2. Define the filtration on𝐻𝑡,𝑘(𝑛) by assigning the following weight

to the generators deg(𝑥𝑖) = deg(𝑦𝑖) = 1 and deg(𝑠𝑖) = 0.

Remark 5.3.4.3. This filtration restricts to the filtration of𝐻𝑡,𝑘(𝑛)e by 𝑆𝑛-modules.

Under taking the ultraproducts it corresponds to the filtration of 𝐻𝑡,𝑘(𝜈)e by objects

of Rep(𝑆𝜈) given by:

𝐹𝑚𝐻𝑡,𝑘(𝜈)e =
𝑚∑︁
𝑙=0

𝑙∑︁
𝑖=0

𝑆𝑖(h*)⊗ 𝑆𝑙−𝑖(h)⊗ C ,
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in the language of Construction 5.2.1.8 for 𝑟 = 1 (hence 𝐴 = C).

Now Corollary 5.3.3.4 can also be strengthened a bit in this case. We have:

Proposition 5.3.4.4. For 𝐿 ≤ 𝑛 and char(k) = 0 or large compared to 𝑛, the vector

space 𝐹𝐿𝐵𝑡,𝑘(𝑛)/𝐹
𝐿−1𝐵𝑡,𝑘(𝑛) has a basis {𝑇𝑛(m)| 𝑤(m) = 𝐿}.

Proof. This in fact follows directly from theory of invariants, since this quotient space

is isomorphic to k[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛]𝑆𝑛
𝐿 , and 𝑇𝑛(m), as elements of the quotient,

transform into the products of symmetric polynomials 𝑃𝑟,𝑞,𝑛 =
∑︀𝑛

𝑖=1 𝑥
𝑟
𝑖𝑦
𝑞
𝑖 . See [18]

for details.

5.4 Isomorphism with Guay’s construction.

The DDC algebras were constructed by Guay and co-authors first for type A in [25]

and then for any simple Lie algebra in [28]. In this section we will explain how our

algebra is connected with the one constructed by Guay. Note that in this section we

always have 𝑟 ≥ 4, since Guay’s DDC algebras are not defined for smaller rank (the

paper by Guay and Yang on the construction of DDCA for 𝑟 = 2 and 3 is however

in preparation).

5.4.1 Guay’s DDCA of type A.

First, let us recall one of the main definitions of Guay’s DDCA.

Definition 5.4.1.1. The Guay’s DDC algebra D𝜆,𝛽(𝑟) for 𝜆, 𝛽 ∈ C is an algebra

generated by elements 𝑧,𝐾(𝑧), 𝑄(𝑧), 𝑃 (𝑧), where 𝑧 ∈ sl𝑟, which satisfy the following

relations. The subalgebra generated by 𝑧 and 𝐾(𝑧) is isomorphic to 𝑈(sl𝑟[𝑢]), i.e.

there is a map 𝑈(sl𝑟[𝑢]) → D𝜆,𝛽(𝑟). Similarly the subalgebra generated by 𝑧 and
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𝑄(𝑧) is isomorphic to 𝑈(sl𝑟[𝑣]). Also, 𝑃 (𝑧) is linear in 𝑧 and [𝑦, 𝑃 (𝑧)] = 𝑃 ([𝑦, 𝑧]).

And if we consider 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑟 such that (𝑎, 𝑏) ̸= (𝑑, 𝑐) and 𝑎 ̸= 𝑏, 𝑐 ̸= 𝑑 we

have:

[𝐾(𝐸𝑎𝑏), 𝑄(𝐸𝑐𝑑)] = 𝑃 ([𝐸𝑎𝑏, 𝐸𝑐𝑑])+(𝛽− 𝜆
2
)(𝛿𝑏𝑐𝐸𝑎𝑑+𝛿𝑎𝑑𝐸𝑏𝑐)+

𝜆

4
(𝛿𝑎𝑑+𝛿𝑐𝑏)𝑆(𝐸𝑎𝑏, 𝐸𝑐𝑑)+

+
𝜆

4

∑︁
1≤𝑖 ̸=𝑗<𝑛

𝑆([𝐸𝑎𝑏, 𝐸𝑖𝑗], [𝐸𝑗𝑖, 𝐸𝑐𝑑]) ,

where 𝑆(𝑧, 𝑦) = 𝑧𝑦 + 𝑦𝑧.

Remark 5.4.1.2. Note that if [𝐸𝑎𝑏, 𝐸𝑐𝑑] = 0 (i.e. 𝑏 ̸= 𝑐 and 𝑎 ̸= 𝑑) the last relation

simplifies to:

[𝐾(𝐸𝑎𝑏), 𝑄(𝐸𝑐𝑑)] = −𝜆𝐸𝑎𝑑𝐸𝑐𝑏 ,

since only the last term for (𝑖, 𝑗) = (𝑏, 𝑑) or (𝑖, 𝑗) = (𝑐, 𝑎) survives.

5.4.2 Construction of the homomorphism D𝜆,𝛽(𝑟)→ 𝒟𝑡,𝑘(𝑟)

In this section we will construct a map from Guay’s DDCA to our DDCA, i.e. we

will construct the elements in 𝒟𝑡,𝑘(𝑟) that satisfy the relations of Definition 5.4.1.1.

First we need to establish a convenient way to perform calculations in 𝒟𝑡,𝑘(𝑟).

Since this algebra is defined as an ultraproduct of a family of other algebras, we will

use that for our calculations.

Definition 5.4.2.1. Suppose 𝑋 ∈ ̃︀𝒟𝑡,𝑘,𝜈(𝑟) is an element of DDCA. We have

𝑋 =
∏︀

ℱ𝑋𝑛, where 𝑋𝑛 ∈ 𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟). We will denote this correspondence by

𝑋 ∼ 𝑋𝑛.

A similar correspondence exists for 𝒟𝑡,𝑘(𝑟). The only difference is that here

𝜈𝑛 ∼ 𝐾 instead of 𝜈𝑛 ∼ 𝜈.
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Note also that all the elements of 𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟) actually have a multiple of e on

the right. We will omit this for brevity.

Now we can construct a map between the DDC algebras.

Proposition 5.4.2.2. There is a map 𝜓 : D
𝑘,− 𝑡

2
− 𝑘(𝑟−2)

4

(𝑟)→ 𝒟𝑡,𝑘(𝑟) given by:

𝜓(𝑧) = 𝑇0,0(𝑧) , 𝜓(𝐾(𝑧)) = 𝑇1,0(𝑧) , 𝜓(𝑄(𝑧)) = 𝑇0,1(𝑧) , 𝜓(𝑃 (𝑧)) = 𝑇1,1(𝑧) ,

where 𝑧 ∈ sl𝑟.

Proof. The above expressions can be rewritten as

𝜓(𝑧) ∼
𝜈𝑛∑︁
𝑖=1

(𝑧)𝑖 , 𝜓(𝐾(𝑧)) ∼
𝜈𝑛∑︁
𝑖=1

(𝑧)𝑖 · 𝑥𝑖 , 𝜓(𝑄(𝑧)) ∼
𝜈𝑛∑︁
𝑖=1

(𝑧)𝑖 · 𝑦𝑖 and

𝜓(𝑃 (𝑧)) ∼
𝜈𝑛∑︁
𝑖=1

(𝑧)𝑖 ·
𝑥𝑖𝑦𝑖 + 𝑦𝑖𝑥𝑖

2
.

We only need to check that the images of 𝑧,𝐾(𝑧), 𝑄(𝑧) and 𝑃 (𝑧) satisfy the

required relations.

We will start with relations between 𝑧 and 𝐾(𝑧). Note that their image in 𝒟𝑡,𝑘(𝑟)

is contained in the ultraproduct of subalgebras of 𝐵𝑡𝑛,𝑘𝑛(𝜈𝑛, 𝑟) generated by 𝑥𝑖 and

𝑔. Since 𝑥𝑖 commute with each other, these subalgebras are equal to

(End(k𝑟)⊗𝜈𝑛 ⊗ k[𝑥1, . . . , 𝑥𝜈𝑛 ])𝑆𝜈𝑛 = ((End(k𝑟)[𝑥])⊗𝜈𝑛)𝑆𝜈𝑛 = 𝑆𝜈𝑛(End(k𝑟)[𝑥]) .

But by Proposition 3.2.2.12 we know that

∏︁
ℱ
𝑆𝜈𝑛(End(k𝑟)[𝑥]) ≃ 𝑈(End(k𝑟)[𝑥])/(1End(k𝑟)[𝑥] − 𝜈) .
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And the construction of this isomorphism also shows that under it 𝜓(𝑧) ↦→ 𝑧 and

𝜓(𝐾(𝑧)) ↦→ 𝑧 · 𝑥. Also note that:

[𝜓(𝐾(𝑧1)), 𝜓(𝐾(𝑧2))] ∼
∑︁
𝑖,𝑗

[(𝑧1)𝑖 · 𝑥𝑖, (𝑧2)𝑗 · 𝑥𝑗] ↦→
∑︁
𝑖

([𝑧1, 𝑧2])𝑖(𝑥𝑖)
2 ∼ [𝑧1, 𝑧2] · 𝑥2

under the above isomorphism. Thus these elements generate

𝑈(sl𝑟[𝑥]) ⊂ 𝑈(End(k𝑟)[𝑥])/(1End(k𝑟)[𝑥] − 𝜈).

The same holds for 𝑧 and 𝑄(𝑧).

Now, since 𝜓(𝑃 (𝑧)) ∼
∑︀𝜈𝑛

𝑖=1(𝑧)𝑖 ·
𝑥𝑖𝑦𝑖+𝑦𝑖𝑥𝑖

2
it follows that it is linear in 𝑧 and

[𝜓(𝑦), 𝜓(𝑃 (𝑧))] = 𝜓(𝑃 [𝑦, 𝑧]) ,

since [(𝑦)𝑗, (𝑧)𝑖] = 𝛿𝑖𝑗([𝑦, 𝑧])𝑖.

We need to check the last relation of Definition 5.4.1.1.

So let us first calculate [𝜓(𝐾(𝐸𝑎𝑏)), 𝜓(𝑄(𝐸𝑐𝑑))]. We have:

[𝜓(𝐾(𝐸𝑎𝑏)), 𝜓(𝑄(𝐸𝑐𝑑))] ∼

∼ [
𝜈𝑛∑︁
𝑖=1

(𝐸𝑎𝑏)𝑖 ·𝑥𝑖,
𝜈𝑛∑︁
𝑗=1

(𝐸𝑐𝑑)𝑗 ·𝑦𝑗] =
𝜈𝑛∑︁
𝑖,𝑗=1

[(𝐸𝑎𝑏)𝑖, (𝐸𝑐𝑑)𝑗] ·𝑥𝑖𝑦𝑗+
𝜈𝑛∑︁
𝑖,𝑗=1

(𝐸𝑐𝑑)𝑗(𝐸𝑎𝑏)𝑖 · [𝑥𝑖, 𝑦𝑗] =

=
𝜈𝑛∑︁
𝑖=1

([𝐸𝑎𝑏, 𝐸𝑐𝑑])𝑖 ·
(︂
𝑥𝑖𝑦𝑖 + 𝑦𝑖𝑥𝑖 + [𝑥𝑖, 𝑦𝑖]

2

)︂
+

+
𝜈𝑛∑︁
𝑖,𝑗=1

(︂
(𝐸𝑐𝑑)𝑗(𝐸𝑎𝑏)𝑖 + (𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗 − [(𝐸𝑎𝑏)𝑖, (𝐸𝑐𝑑)𝑗]

2

)︂
· [𝑥𝑖, 𝑦𝑗] =
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= 𝜓(𝑃 ([𝐸𝑎𝑏, 𝐸𝑐𝑑])) +
𝜈𝑛∑︁
𝑖,𝑗=1

(𝐸𝑐𝑑)𝑗(𝐸𝑎𝑏)𝑖 + (𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗
2

· [𝑥𝑖, 𝑦𝑗] .

Now we need to work with the last term. We will expand it using the commutator re-

lation in the extended Cherednik algebra and we note that elements of 𝑆𝜈𝑛 disappear

into the assumed e term in the formula:

𝜈𝑛∑︁
𝑖,𝑗=1

(𝐸𝑐𝑑)𝑗(𝐸𝑎𝑏)𝑖 + (𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗
2

· [𝑥𝑖, 𝑦𝑗 ] =

= −
∑︁
𝑖 ̸=𝑗

(𝐸𝑐𝑑)𝑗(𝐸𝑎𝑏)𝑖 − (𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗
2

𝑘𝑛𝜎𝑖𝑗+
∑︁
𝑖

(𝐸𝑐𝑑)𝑖(𝐸𝑎𝑏)𝑖 + (𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑖
2

(𝑡𝑛−𝑘𝑛
∑︁
𝑚 ̸=𝑖

𝜎𝑖𝑚) .

Notice that (𝐸𝛼𝛽)𝑖(𝐸𝛾𝛿)𝑗𝜎𝑖𝑗 = (𝐸𝛼𝛿)𝑖(𝐸𝛾𝛽)𝑗, so the above expression becomes:

−𝑘𝑛
∑︁
𝑖 ̸=𝑗

(𝐸𝑎𝑑)𝑖(𝐸𝑐𝑏)𝑗−
𝑡𝑛
2

∑︁
𝑖

(𝛿𝑎𝑑(𝐸𝑐𝑏)𝑖+𝛿𝑏𝑐(𝐸𝑎𝑑)𝑖)+
𝑘𝑛
2

∑︁
𝑖 ̸=𝑚

(𝛿𝑎𝑑(𝐸𝑐𝑏)𝑖𝜎𝑖𝑚+𝛿𝑏𝑐(𝐸𝑎𝑑)𝑖𝜎𝑖𝑚) .

Now we need to calculate what
∑︀

𝑖 ̸=𝑚(𝐸𝛼𝛽)𝑖𝜎𝑖𝑚 is equal to. We have:

∑︁
𝑖 ̸=𝑚

(𝐸𝛼𝛽)𝑖𝜎𝑖𝑚 =
∑︁
𝑖 ̸=𝑚

∑︁
𝛾,𝛿

(𝐸𝛼𝛽)𝑖(𝐸𝛾𝛿)𝑖(𝐸𝛿𝛾)𝑚 =
∑︁
𝑖 ̸=𝑚

∑︁
𝛿

(𝐸𝛼𝛿)𝑖(𝐸𝛿𝛽)𝑚 .

So the answer is:

[𝜓(𝐾(𝐸𝑎𝑏)), 𝜓(𝑄(𝐸𝑐𝑑))] ∼

∼ 𝜓(𝑃 ([𝐸𝑎𝑏, 𝐸𝑐𝑑]))− 𝑘𝑛
𝜈𝑛∑︁

𝑖,𝑗=1,𝑖 ̸=𝑗

(𝐸𝑎𝑑)𝑖(𝐸𝑐𝑏)𝑗 −
𝑡𝑛
2

𝜈𝑛∑︁
𝑖

(𝛿𝑎𝑑(𝐸𝑐𝑏)𝑖 + 𝛿𝑏𝑐(𝐸𝑎𝑑)𝑖)−

+
𝑘𝑛
2

𝜈𝑛∑︁
𝑚,𝑖=1,𝑚 ̸=𝑖

𝑟∑︁
𝑒=1

(𝛿𝑎𝑑(𝐸𝑐𝑒)𝑖(𝐸𝑒𝑏)𝑚 + 𝛿𝑏𝑐(𝐸𝑎𝑒)𝑖(𝐸𝑒𝑑)𝑚) .

Now we need to calculate the image of the r.h.s. of the same relation. The first

term is clear. The second term contains elements like 𝜓(𝐸𝛼𝛽) ∼
∑︀

𝑖(𝐸𝛼𝛽)𝑖. The third
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term is more complex. We have:

𝜓(𝑆(𝐸𝑎𝑏, 𝐸𝑐𝑑)) ∼
∑︁
𝑖,𝑗

((𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗 + (𝐸𝑐𝑑)𝑗(𝐸𝑎𝑏)𝑖) =

= 2
∑︁
𝑖 ̸=𝑗

(𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗 +
∑︁
𝑖

(𝛿𝑏𝑐(𝐸𝑎𝑑)𝑖 + 𝛿𝑎𝑑(𝐸𝑐𝑏)𝑖) .

Now we want to transform the last term:

∑︁
𝛼 ̸=𝛽

𝑆([𝐸𝑎𝑏, 𝐸𝛼𝛽], [𝐸𝛽𝛼, 𝐸𝑐𝑑]) .

Before we calculate its image we can rewrite it as follows:

−2𝑆(𝐸𝑎𝑑, 𝐸𝑐𝑏) + 𝛿𝑎𝑑
∑︁
𝛼 ̸=𝑎

𝑆(𝐸𝛼𝑏, 𝐸𝑐𝛼) + 𝛿𝑏𝑐
∑︁
𝛼 ̸=𝑏

𝑆(𝐸𝑎𝛼, 𝐸𝛼𝑑) .

Now, since 𝑐 ̸= 𝑑 and 𝑎 ̸= 𝑏, it follows that:

𝜓(𝑆(𝐸𝑎𝑑, 𝐸𝑐𝑏)) ∼ 2
∑︁
𝑖 ̸=𝑗

(𝐸𝑎𝑑)𝑖(𝐸𝑐𝑏)𝑗 .

And since 𝛿𝑎𝑑𝛿𝑏𝑐 = 0 in our situation, it follows:

𝜓(𝛿𝑎𝑑
∑︁
𝛼 ̸=𝑎

𝑆(𝐸𝛼𝑏, 𝐸𝑐𝛼)) ∼ 2𝛿𝑎𝑑
∑︁
𝑖 ̸=𝑗

∑︁
𝛼 ̸=𝑎

(𝐸𝛼𝑏)𝑖(𝐸𝑐𝛼)𝑗 + (𝑟 − 1)𝛿𝑎𝑑
∑︁
𝑖

(𝐸𝑐𝑏)𝑖 ,

and similarly:

𝜓(𝛿𝑏𝑐
∑︁
𝛼 ̸=𝑏

𝑆(𝐸𝑎𝛼, 𝐸𝛼𝑑)) ∼ 2𝛿𝑏𝑐
∑︁
𝑖 ̸=𝑗

∑︁
𝛼 ̸=𝑏

(𝐸𝑎𝛼)𝑖(𝐸𝛼𝑑)𝑗 + (𝑟 − 1)𝛿𝑏𝑐
∑︁
𝑖

(𝐸𝑎𝑑)𝑖 .

Now we can assemble all the formulas to obtain that the r.h.s. of the relation
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equals to:

𝜓(𝑃 ([𝐸𝑎𝑏, 𝐸𝑐𝑑]))+

+

[︂
𝛽 − 𝜆

2

]︂(︃
𝛿𝑎𝑑
∑︁
𝑖

(𝐸𝑎𝑑)𝑖 + 𝛿𝑎𝑑
∑︁
𝑖

(𝐸𝑐𝑏)𝑖

)︃
+
𝜆

2
(𝛿𝑎𝑑 + 𝛿𝑏𝑐)

∑︁
𝑖 ̸=𝑗

(𝐸𝑎𝑏)𝑖(𝐸𝑐𝑑)𝑗+

+
𝜆

4

(︃∑︁
𝑖

𝛿𝑏𝑐(𝐸𝑎𝑑)𝑖 +
∑︁
𝑖

𝛿𝑎𝑑(𝐸𝑐𝑏)𝑖

)︃
− 𝜆

∑︁
𝑖 ̸=𝑗

(𝐸𝑎𝑑)𝑖(𝐸𝑐𝑏)𝑗+

+
𝜆

2

(︃
𝛿𝑎𝑑
∑︁
𝑖 ̸=𝑗

∑︁
𝛼 ̸=𝑎

(𝐸𝛼𝑏)𝑖(𝐸𝑐𝛼)𝑗 + 𝛿𝑏𝑐
∑︁
𝑖 ̸=𝑗

∑︁
𝛼 ̸=𝑏

(𝐸𝑎𝛼)𝑖(𝐸𝛼𝑑)𝑗

)︃
+

+
𝜆(𝑟 − 1)

4

(︃
𝛿𝑎𝑑
∑︁
𝑖

(𝐸𝑐𝑏)𝑖 + 𝛿𝑏𝑐
∑︁
𝑖

(𝐸𝑎𝑑)𝑖

)︃
=

= 𝜓(𝑃 ([𝐸𝑎𝑏, 𝐸𝑐𝑑])) +

[︂
𝛽 − 𝜆

2
+
𝜆

4
+
𝜆(𝑟 − 1)

4

]︂(︃
𝛿𝑎𝑑
∑︁
𝑖

(𝐸𝑎𝑑)𝑖 + 𝛿𝑎𝑑
∑︁
𝑖

(𝐸𝑐𝑏)𝑖

)︃
−

−𝜆
∑︁
𝑖 ̸=𝑗

(𝐸𝑎𝑑)𝑖(𝐸𝑐𝑏)𝑗 +
𝜆

2

(︃
𝛿𝑎𝑑
∑︁
𝑖 ̸=𝑗

∑︁
𝛼

(𝐸𝛼𝑏)𝑖(𝐸𝑐𝛼)𝑗 + 𝛿𝑏𝑐
∑︁
𝑖 ̸=𝑗

∑︁
𝛼

(𝐸𝑎𝛼)𝑖(𝐸𝛼𝑑)𝑗

)︃
.

We can see that these two formulas are the same if 𝜆 = 𝑘 and 𝛽 = − 𝑡
2
− 𝑘

4
(𝑟−2).

From now on fix 𝜆 = 𝑘 and 𝛽 = − 𝑡
2
− 𝑘

4
(𝑟 − 2).

5.4.3 Surjectivity of 𝜓

We have successfully constructed a morphism between Guay’s DDCA and our DDCA.

Now we would like to prove that this is in fact an isomorphism. In this section we

would like to start by proving that 𝜓 is a surjective map.

Proposition 5.4.3.1. For 𝑡 + 𝑟𝑘 ̸= 0, the map 𝜓 defined in Proposition 5.4.2.2 is

surjective.
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Proof. Since 𝑇 (m) form a basis of 𝒟𝑡,𝑘(𝑟) and they themselves are given by the linear

combinations of the products of 𝑇𝑟,𝑞(𝑧) for all 𝑧 ∈ End(k𝑟) it follows that it is enough

to prove that 𝑇𝑟,𝑞(𝑧) lie in the image of 𝜓. More precisely to prove that 𝜓 surjects

onto 𝐹𝑁
𝑣 𝒟𝑡,𝑘(𝑟) it is enough to prove that all 𝑇𝑟,𝑞(𝑧) for 𝑟 + 𝑞 ≤ 𝑁 are in the image

of 𝜓.

We would like to prove the last statement by inducting on 𝑁 . But our induction

will be slightly more involved than one could hope for.

Nevertheless we would like to start with proving the base case. Namely that all

𝑇0,0(𝑧) are in the image of 𝜓. Indeed we know that for all 𝑧 ∈ sl𝑟 𝜓(𝑧) = 𝑇0,0(𝑧), so

we only need to show that 𝐾 = 𝑇0,0(Id) is in the image. Denote 𝐻 = 𝐸11 −𝐸22 and

consider [𝜓(𝐾(𝐻)), 𝜓(𝑄(𝐻))]:

[𝜓(𝐾(𝐻)), 𝜓(𝑄(𝐻))] ∼
∑︁
𝑖,𝑗

(𝐻)𝑖(𝐻)𝑗[𝑥𝑖, 𝑦𝑗] .

Now we will calculate this modulo the image of 𝜓 (we will denote this by ∼
𝜓
). So

after we apply the same operations to the last term as in Proposition 5.4.2.2 and

then note that 𝐻2 = 𝐸11 + 𝐸22, we have:

[𝜓(𝐾(𝐻)), 𝜓(𝑄(𝐻))] ∼ −𝑘𝑛
∑︁
𝑖 ̸=𝑗

(𝐻)𝑖(𝐻)𝑗𝜎𝑖𝑗−𝑡𝑛
∑︁
𝑖

(𝐸11+𝐸22)𝑖+𝑘𝑛
∑︁
𝑖 ̸=𝑗

(𝐸11+𝐸22)𝑖𝜎𝑖𝑗 .

This time we will calculate the last terms by inserting the identity 1 = (𝐸11+. . . 𝐸𝑟𝑟)𝑘.

We get: ∑︁
𝑖 ̸=𝑗

(𝐸11 + 𝐸22)𝑖𝜎𝑖𝑗 =

=
∑︁
𝑖 ̸=𝑗

(𝐸11)𝑖(𝐸11)𝑗 +
∑︁
𝑖 ̸=𝑗

(𝐸22)𝑖(𝐸22)𝑗 +
∑︁
𝛼 ̸=1

∑︁
𝑖 ̸=𝑗

(𝐸1𝛼)𝑖(𝐸𝛼1)𝑗 +
∑︁
𝛼 ̸=2

∑︁
𝑖 ̸=𝑗

(𝐸2𝛼)𝑖(𝐸𝛼2)𝑗 .

128



Putting this into original formula we get:

[𝜓(𝐾(𝐻)), 𝜓(𝑄(𝐻))] =

= −𝑘𝑛
∑︁
𝑖 ̸=𝑗

((𝐸11)𝑖(𝐸11)𝑗 + (𝐸22)𝑖(𝐸22)𝑗 − (𝐸12)𝑖(𝐸21)𝑗 − (𝐸21)𝑖(𝐸12)𝑗)−𝑡𝑛
∑︁
𝑖

(𝐸11+𝐸22)𝑖−

+𝑘𝑛
∑︁
𝑖 ̸=𝑗

((𝐸11)𝑖(𝐸11)𝑗 + (𝐸22)𝑖(𝐸22)𝑗) + 𝑘𝑛
∑︁
𝛼 ̸=1

∑︁
𝑖 ̸=𝑗

(𝐸1𝛼)𝑖(𝐸𝛼1)𝑗 + 𝑘𝑛
∑︁
𝛼̸=2

∑︁
𝑖 ̸=𝑗

(𝐸2𝛼)𝑖(𝐸𝛼2)𝑗 .

Now notice that 𝜓(𝑧1)𝜓(𝑧2) =
∑︀

𝑖 ̸=𝑗(𝑧1)𝑖(𝑧2)𝑗 +
∑︀

𝑖(𝑧1 · 𝑧2)𝑖, so it follows that:

[𝜓(𝐾(𝐻)), 𝜓(𝑄(𝐻))] ∼
𝜓

∼
𝜓
−(𝑡𝑛 + 𝑟𝑘𝑛)

∑︁
𝑖

(𝐸11 + 𝐸22)𝑖 = −(𝑡𝑛 + 𝑟𝑘𝑛)
∑︁
𝑖

(2 + 𝑧)𝑖 ∼
𝜓
−2(𝑡+ 𝑟𝑘)𝐾 ,

for some 𝑧 ∈ sl𝑟. Hence we know that 𝐾 is in the image of 𝜓.

Now we will prove the surjectivity in general by induction. For each 𝑚 we will be

proving that all 𝑇𝑟,𝑞(𝑧) with 𝑟+ 𝑞 ≤ 𝑚+1 and 𝑧 ∈ sl𝑟 are in the image of 𝜓 and that

all 𝑇𝑟,𝑞(1) with 𝑟+ 𝑞 ≤ 𝑚 are in the image of 𝜓 (so that 𝜓 surjects onto 𝐹𝑚
𝑣 𝒟𝑡,𝑘(𝑟)).

From this statement it will follow that 𝜓 is surjective.

Now the base for 𝑚 = 0 holds since we have just proved that 𝑇0,0(1) = 𝐾 is in

the image of 𝜓 and also we know that 𝑇0,1(𝑧) and 𝑇1,0(𝑧) are in the image.

So we are ready to prove the induction step. Suppose the statement holds for 𝑚

and we want to prove it for 𝑚 + 1. We need to prove that all 𝑇𝑟,𝑞(𝑧) with 𝑧 ∈ sl𝑟

and 𝑟 + 𝑞 = 𝑚 + 2 lie in the image of 𝜓 and also that all 𝑇𝑟,𝑞(1) for 𝑟 + 𝑞 = 𝑚 + 1

lie there.

We will start with the first statement. Note that we already know that 𝑇𝑚+2,0(𝑧)

and 𝑇0,𝑚+2(𝑧) are in the image, since 𝜓(𝑧) and 𝜓(𝐾(𝑧)) generate 𝑈(sl𝑟[𝑥]) ⊂ 𝒟𝑡,𝑘(𝑟)
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and the analogous statement holds for 𝜓(𝑧) and 𝜓(𝑄(𝑧)). It is enough to prove that,
for example 𝑇𝑚+2−𝑘,𝑘(𝐸13) is in the image for each 𝑘 from 1 to 𝑚 + 1, since then
by taking commutators with 𝑇0,0(𝑧) we can obtain any other 𝑇𝑚+2−𝑘,𝑘(𝑧

′). Let’s
calculate the commutator of 𝑇𝑚+2−𝑘,𝑘−1(𝐸12) and 𝑇0,1(𝐻), both of which are in the
image. To do that, we will denote by 𝑓𝑟,𝑞(𝑖) the polynomial in 𝑥𝑖 and 𝑦𝑖 which appears
in 𝑇𝑟,𝑞(𝐸12) ∼

∑︀
𝑖(𝐸12)𝑖𝑓𝑟,𝑞(𝑖). We have:

[𝑇𝑚+2−𝑘,𝑘−1(𝐸12), 𝑇0,1(𝐻)] ∼

∼ −2
∑︁
𝑖

(𝐸12)𝑖
𝑓𝑚+2−𝑘,𝑘−1(𝑖)𝑦𝑖 + 𝑦𝑖𝑓𝑚+2−𝑘,𝑘−1(𝑖)

2
+
∑︁
𝑖,𝑗

(𝐸12)𝑖(𝐻)𝑗 + (𝐻)𝑗(𝐸12)𝑖
2

[𝑓𝑚+2−𝑘,𝑘−1(𝑖), 𝑦𝑗 ] .

Now since we know that 𝜓 surjects onto 𝐹𝑚
𝑣 𝒟𝑡,𝑘(𝑟) we would like to calculate the

above commutator modulo degree 𝑚. The last term is zero modulo degree 𝑚 since it

contains at least one commutator of 𝑥 and 𝑦 which decreases the degree by 2. Now

also modulo degree 𝑚 the monomials in the first term commute. So, we have:

[𝑇𝑚+2−𝑘,𝑘−1(𝐸12), 𝑇0,1(𝐸23)] ∼
𝜓
−2
∑︁
𝑖

(𝐸12)𝑖𝑥
𝑚+2−𝑘
𝑖 𝑦𝑘𝑖 ∼

𝜓
−2𝑇𝑚+2−𝑘,𝑘(𝐸13) .

Now we only need to prove that 𝑇𝑟,𝑞(1) for 𝑟 + 𝑞 = 𝑚 + 1 are in the image. To

do that let us calculate the commutator of 𝑇𝑟,𝑞+1(𝐻) and 𝑇1,0(𝐻). We have:

[𝑇1,0(𝐻), 𝑇𝑟,𝑞+1(𝐻)] ∼
𝜓

∑︁
𝑖,𝑗

(𝐻)𝑖(𝐻)𝑗[𝑥𝑖, 𝑓𝑟,𝑞+1(𝑗)] .

We need to calculate this term modulo degree 𝑚. Hence we can commute the terms

in 𝑓𝑟,𝑞+1(𝑗) under the commutator. I.e. we have:

[𝑇1,0(𝐻), 𝑇𝑟,𝑞+1(𝐻)] ∼
𝜓

∑︁
𝑖,𝑗

(𝐻)𝑖(𝐻)𝑗 [𝑥𝑖, 𝑥
𝑟
𝑗𝑦
𝑞+1
𝑗 ] ∼

𝜓

∑︁
𝑖,𝑗

(𝐻)𝑖(𝐻)𝑗𝑥
𝑟
𝑗 [𝑥𝑖, 𝑦

𝑞+1
𝑗 ] ∼

𝜓
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∼
𝜓

∑︁
𝑖,𝑗

𝑞∑︁
𝑙=0

(𝐻)𝑖(𝐻)𝑗𝑥
𝑟
𝑗𝑦
𝑙
𝑗 [𝑥𝑖, 𝑦𝑗 ]𝑦

𝑞−𝑙
𝑗 ∼

𝜓

∼
𝜓
−𝑘𝑛

∑︁
𝑖 ̸=𝑗

𝑞∑︁
𝑙=0

(𝐻)𝑖(𝐻)𝑗𝜎𝑖𝑗𝑥
𝑟
𝑗𝑦
𝑙
𝑗𝑦
𝑞−𝑙
𝑖 −𝑡𝑛(𝑞+1)

∑︁
𝑖

(𝐻2)𝑖𝑥
𝑟
𝑖 𝑦
𝑞
𝑖 +𝑘𝑛

∑︁
𝑖 ̸=𝑗

𝑞∑︁
𝑙=0

(𝐻2)𝑗𝜎𝑖𝑗𝑥
𝑟
𝑗𝑦
𝑙
𝑗𝑦
𝑞−𝑙
𝑖 ∼

𝜓

∼
𝜓
−𝑘𝑛

𝑞∑︁
𝑙=0

∑︁
𝑖 ̸=𝑗

[(𝐸11)𝑖(𝐸11)𝑗 + (𝐸22)𝑖(𝐸22)𝑗 − (𝐸12)𝑗(𝐸21)𝑖 − (𝐸21)𝑗(𝐸12)𝑖]𝑥
𝑟
𝑗𝑦
𝑙
𝑗𝑦
𝑞−𝑙
𝑖 −

−𝑡𝑛(𝑞 + 1)
∑︁
𝑖

(𝐻2)𝑖𝑥
𝑟
𝑖 𝑦
𝑞
𝑖+

+𝑘𝑛

𝑞∑︁
𝑙=0

∑︁
𝑖 ̸=𝑗

⎛⎝(𝐸11)𝑖(𝐸11)𝑗 + (𝐸22)𝑖(𝐸22)𝑗 +
∑︁
𝛼 ̸=1

(𝐸1𝛼)𝑗(𝐸𝛼1)𝑖 +
∑︁
𝛼 ̸=2

(𝐸2𝛼)𝑗(𝐸𝛼2)𝑖

⎞⎠𝑥𝑟𝑗𝑦
𝑙
𝑗𝑦
𝑞−𝑙
𝑖 ∼

𝜓

∼
𝜓
−𝑡𝑛(𝑞 + 1)

∑︁
𝑖

(𝐻2)𝑖𝑥
𝑟
𝑖 𝑦
𝑞
𝑖+

+𝑘𝑛

𝑞∑︁
𝑙=0

∑︁
𝑖 ̸=𝑗

⎛⎝(𝐸12)𝑗(𝐸21)𝑖 + (𝐸21)𝑗(𝐸12)𝑗 +
∑︁
𝛼 ̸=1

(𝐸1𝛼)𝑗(𝐸𝛼1)𝑖 +
∑︁
𝛼̸=2

(𝐸2𝛼)𝑗(𝐸𝛼2)𝑖

⎞⎠𝑥𝑟𝑗𝑦
𝑙
𝑗𝑦
𝑞−𝑙
𝑖 .

Now note the following formula:

∑︁
𝑖 ̸=𝑗

(𝑧1)𝑗(𝑧1)𝑖𝑥
𝑟1
𝑗 𝑦

𝑞1
𝑗 𝑥

𝑟2
𝑖 𝑦

𝑞2
𝑖 ∼

∼ 𝑇𝑟1,𝑞1(𝑧1)𝑇𝑟2,𝑞2(𝑧2)−
∑︁
𝑖

(𝑧1 · 𝑧2)𝑥𝑟1+𝑟2𝑖 𝑦𝑞1+𝑞2𝑖 modulo 𝐹 𝑟1+𝑞1+𝑟2+𝑞2−1
𝑣 𝒟𝑡,𝑘(𝑟) .

In our case 𝑟1+𝑞1+𝑟2+𝑞2 = 𝑟+𝑞 = 𝑚+1. Since we know that 𝐹𝑚
𝑣 𝒟𝑡,𝑘(𝑟) ⊂ Im(𝜓),

it follows that we can use this formula. Also notice that since everywhere there we can

use the above formula 𝑧1, 𝑧2 ∈ sl𝑟 and 𝑟𝑖+𝑞𝑖 < 𝑚+1, it follows that 𝑇𝑟𝑖,𝑞𝑖(𝑧𝑖) ∈ Im(𝜓).

Thus it follows that:

[𝑇1,0(𝐻), 𝑇𝑟,𝑞+1(𝐻)] ∼
𝜓
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∼
𝜓
−𝑡𝑛(𝑞+1)

∑︁
𝑖

(𝐻2)𝑖𝑥
𝑟
𝑖 𝑦
𝑞
𝑖 −𝑘𝑛(𝑞+1)

∑︁
𝑖

[(𝐸11)𝑖 + (𝐸22)𝑖 + (𝑟 − 1)(𝐸11)𝑖 + (𝑟 − 1)(𝐸22)𝑖]𝑥
𝑟
𝑖 𝑦
𝑞
𝑖 ∼
𝜓
.

∼
𝜓
−(𝑞+1)(𝑡𝑛+𝑟𝑘𝑛)

∑︁
𝑖

(𝐸11+𝐸22)𝑖𝑥
𝑟
𝑖 𝑦
𝑞
𝑖 ∼
𝜓
−2(𝑞+1)(𝑡𝑛+𝑟𝑘𝑛)

∑︁
𝑖

𝑥𝑟𝑖 𝑦
𝑞
𝑖 ∼
𝜓
−2(𝑞+1)(𝑡𝑛+𝑟𝑘𝑛)𝑇𝑟,𝑞(1) .

So we have proven the inductive step and hence it follows that 𝜓 is surjective.

5.4.4 Injectivity of 𝜓

In this subsection we are going to show that, if 𝑡+ 𝑟𝑘 ̸= 0, 𝜓 is injective and, hence,

it is an isomorphism. In order to do that we will show that D𝜆,𝛽(𝑟) has a faithful

representation D𝜆,𝛽(𝑟) → End(𝑀), such that 𝑀 is also a 𝒟𝑡,𝑘(𝑟)-module and the

action map for D𝜆,𝛽(𝑟) factors through 𝜓.

Here, we will extensively use the results of [25]. First of all we need to define

an alternative presentation of Guay’s DDCA – 𝐷𝜆,𝛽(𝑟), which will be isomorphic to

D𝜆,𝛽(𝑟). This presentation is quite involved and its exact form isn’t important for

us, so we will state an abbreviated version of it.

Definition 5.4.4.1 (Definition 8.1 in [25]). The algebra 𝐷𝜆,𝛽(𝑟) is generated by

elements 𝑋±
𝑖,0, 𝑋

±
𝑖,1, 𝐻𝑖,0, 𝐻𝑖,1 for 𝑖 ∈ {1, . . . , 𝑟 − 1} and 𝑋+

0,0, 𝑋
+,±
0,1 , which satisfy a

number of relations.

Also there are two specific elements in this algebra, denoted by 𝜔+,±
0 (see Section

9 of [25]).

Another result which is important to us is the explicit structure of the isomor-

phism between 𝐷𝜆,𝛽(𝑟) and D𝜆,𝛽(𝑟).

Theorem 5.4.4.2 (Theorem 15.1 in [25]). Define a map 𝜁 : 𝐷𝜆,𝛽(𝑟)→ D𝜆,𝛽(𝑟) to be
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equal to:

𝜁(𝑋±
𝑖,0) = 𝐸±

𝑖 , 𝜁(𝐻𝑖,0) = 𝐻𝑖, 𝜁(𝑋
±
𝑖,1) = 𝑄(𝐸±

𝑖 ), 𝜁(𝐻𝑖,1) = 𝑄(𝐻𝑖),

𝜁(𝑋+
0,0) = 𝐾(𝐸−𝜃), 𝑋

+,±
0,1 = 𝑃 (𝐸−𝜃)− 𝜆𝜔+,±

0 ,

where 𝐸+
𝑖 = 𝐸𝑖,𝑖+1, 𝐸−

𝑖 = 𝐸𝑖+1,𝑖, 𝐸𝜃 = 𝐸1,𝑟, 𝐸−𝜃 = 𝐸𝑟,1 and 𝐻𝑖 = 𝐸𝑖,𝑖 − 𝐸𝑖+1,𝑖+1.

This map is an isomorphism.

Another set of results that Guay proved in [25] are concerned with constructing

a family of 𝐷𝜆,𝛽(𝑟)-modules.

Proposition 5.4.4.3 (Section 9 of [25]). For any 𝑙 ∈ Z≥0 the vector space V𝑙 =

𝐻−𝑡,−𝑘(𝑙, 1) ⊗C[𝑆𝑙] (C𝑟)⊗𝑙 has a structure of 𝐷𝜆,𝛽(𝑟)-module given by the following

formulas. For 𝑚 ∈ v ∈ 𝐻−𝑡,−𝑘(𝑙, 1)⊗C[𝑆𝑙] (C𝑟)𝑙 we have

𝑋±
𝑖,𝑟(𝑚⊗ v) =

𝑙∑︁
𝑗=1

𝑚𝑦𝑟𝑗 ⊗ (𝐸±
𝑖 )𝑗v, 𝐻𝑖,𝑟(𝑚⊗ v) =

𝑙∑︁
𝑗=1

𝑚𝑦𝑟𝑗 ⊗ (𝐻𝑖)𝑗v,

𝑋+
0,0(𝑚⊗ v) =

𝑙∑︁
𝑗=1

𝑚𝑥𝑗 ⊗ (𝐸−𝜃)𝑗v,

𝑋+,±
0,1 (𝑚⊗ v) =

𝑙∑︁
𝑗=1

𝑚
𝑥𝑗𝑦𝑗 + 𝑦𝑗𝑥𝑗

2
⊗ (𝐸−𝜃)𝑓𝑗v − 𝜆𝜔+,±

0 (𝑚⊗ v) .

Remark 5.4.4.4. Note that in our case the parameters of the Cherednik algebra

has to be −𝑡,−𝑘 as opposed to Guay’s 𝑡, 𝑘. This discrepancy arises from us using

a different sign in one of the commutators which define the Cherednik algebra, and

also because of the different signs in the formulas which connect 𝑡, 𝑘 and 𝜆, 𝛽 in our

expositions. We will also see that these signs arise naturally because in the definition

above we are using a right action on the Cherednik algebra side of the tensor product.
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Guay also proved a PBW property for his DDCA in [25]. As a by-product of his

proof he arrived at the following result.

Proposition 5.4.4.5. For 𝛽 ̸= 𝑟𝜆
4
+ 𝜆

2
(equivalently 𝑡+ 𝑟𝑘 ̸= 0) and for any element

𝑥 ∈ 𝐷𝜆,𝛽(𝑟), there exists 𝑙 ∈ Z>0 such that the map 𝜌𝑙 : 𝐷𝜆,𝛽(𝑟)→ End(V𝑙) specified

above sends 𝑥 to a non-zero operator, i.e. 𝜌𝑙(𝑥) ̸= 0.

In other words it follows that
⨁︀

𝑙>0V𝑙 gives us a faithful representation of𝐷𝜆,𝛽(𝑟).

Now to prove that 𝜓 is injective we will construct a 𝒟𝑡,𝑘(𝑟)-module structure on

V𝑙. In order to do that we first want to show that for any 𝑙 there is a surjective map

from 𝒟𝑡,𝑘(𝑟) to 𝐵𝑡,𝑘(𝑙, 𝑟).

Proposition 5.4.4.6. There is a surjective map 𝜋𝑙 : 𝒟𝑡,𝑘(𝑟)→ 𝐵𝑡,𝑘(𝑙, 𝑟) that sends

𝑇 (m) ↦→ 𝑇𝑙(m)

including 𝐾 ↦→ 𝑙.

Proof. Since 𝑇 (m) form a basis, these formulas define a vector space map from𝒟𝑡,𝑘(𝑟)

to 𝐵𝑡,𝑘(𝑙, 𝑟). Now from Section 5.3.3 we know that a product of 𝑇𝑙(m1) and 𝑇𝑙(m2) is

a linear combination of 𝑇𝑙(m) with coefficients being polynomial in 𝑙. And the same

statement holds for 𝑇 (m) but we need to substitute 𝐾 for 𝑙 in these polynomials.

Hence this map is a map of algebras. It is surjective since 𝑇𝑙(m) form a generating

set of 𝐵𝑡,𝑘(𝑙, 𝑟).

Now let us first construct a representation of 𝐻𝑡,𝑘(𝑙, 𝑟) on 𝐻−𝑡,−𝑘(𝑙, 1)⊗ (C𝑟)𝑙. To

do this we use the same ideas as in Proposition 5.1.3.3.
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Proposition 5.4.4.7. For any 𝑙 ∈ Z>0, there is a structure of representation of

𝐻𝑡,𝑘(𝑙, 𝑟) on 𝐻−𝑡,−𝑘(𝑙, 1)⊗ (C𝑟)𝑙 given by:

𝑥𝑖(𝑚⊗ v) = 𝑚𝑥𝑖 ⊗ v, 𝑦𝑖(𝑚⊗ v) = 𝑚𝑦𝑖 ⊗ v, (𝑔)𝑖(𝑚⊗ v) = 𝑚⊗ (𝑔)𝑖v,

𝑠𝑖𝑗(𝑚⊗ 𝑣) = 𝑚𝑠𝑖𝑗 ⊗ 𝜎𝑖𝑗v .

Proof. We just need to check that these formulas define a representation. This is

easy to do. Indeed for example:

[𝑦𝑖, 𝑥𝑖](𝑚⊗ v) = 𝑚[𝑥𝑖, 𝑦𝑖]⊗ v = 𝑚(𝑡− 𝑘
∑︁
𝑗 ̸=𝑖

𝑠𝑖𝑗)⊗ v =

= 𝑡 ·𝑚⊗ v − 𝑘
∑︁
𝑗 ̸=𝑖

𝑚𝑠𝑖𝑗 ⊗ 𝜎2
𝑖𝑗v = (𝑡− 𝑘

∑︁
𝑗 ̸=𝑖

𝑠𝑖𝑗𝜎𝑖𝑗)(𝑚⊗ v) .

There we can see that the opposite signs for 𝑡 and 𝑘 come from the use of the right

action. The other commutators can be checked in the similar fashion.

Note that we can derive the following Corollary from this result:

Corollary 5.4.4.8. For any 𝑙 ∈ Z>0, there is a structure of a representation of

𝐵𝑡,𝑘(𝑙, 𝑟) on V𝑙 = 𝐻−𝑡,−𝑘(𝑙, 1)⊗C[𝑆𝑙] (C𝑟)𝑙 obtained by restriction of the representation

of 𝐻𝑡,𝑘(𝑙, 𝑟) on 𝐻−𝑡,−𝑘(𝑙, 1)⊗ (C𝑟)𝑙.

We will denote the corresponding map by 𝜏𝑙 : 𝐵𝑡,𝑘(𝑙, 𝑟)→ End(V𝑙).

Proof. Indeed this follows from the fact that 𝐵𝑡,𝑘(𝑙, 𝑟) = e𝐻𝑡,𝑘(𝑙, 𝑟)e and the fact

that the action of C[𝑆𝑙] ⊂ 𝐻𝑡,𝑘(𝑙, 𝑟) on 𝐻−𝑡,−𝑘(𝑙, 1)⊗ (C𝑟)𝑙 is right on 𝐻−𝑡,−𝑘(𝑙, 1) and

left on (C𝑟)𝑙. Hence the averaging operator e ensures that we stay within V𝑙.

It follows that we have the following diagram:
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We want to show that this diagram is commutative:

Proposition 5.4.4.9. For any 𝑙 ∈ Z>0 it holds that 𝜌𝑙 = 𝜏𝑙 ∘ 𝜋𝑙 ∘ 𝜓 ∘ 𝜁.

Proof. It is enough to check this identity on the generators of 𝐷𝜆,𝛽(𝑟). This is easy

to do. We have

(𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋±
0,𝑟) = (𝜋𝑙 ∘ 𝜓)(𝐸±

𝑖 ) = 𝜋𝑙(𝑇0,0(𝐸
𝑝𝑚
𝑖 )) = 𝑇0,0,𝑙(𝐸

𝑝𝑚
𝑖 ),

and hence:

(𝜏𝑙 ∘ 𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋±
0,𝑟)(𝑚⊗ v) =

∑︁
𝑗

𝑚⊗ (𝐸±
𝑖 )𝑗v = 𝜌𝑙(𝑋

±
0,𝑟)(𝑚⊗ v) .

And the same holds for 𝐻𝑖,0.

Now (𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋±
1,𝑟) = 𝑇0,1,𝑙(𝐸

±
𝑖 ), hence

(𝜏𝑙 ∘ 𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋±
1,𝑟)(𝑚⊗ v) =

∑︁
𝑗

𝑚𝑦𝑗 ⊗ (𝐸±
𝑖 )𝑗v = 𝜌𝑙(𝑋

±
1,𝑟)(𝑚⊗ v) .

And again the same holds for 𝐻𝑖,1.

For 𝑋+
0,0 we have (𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋+

0,0) = 𝑇1,0,𝑙(𝐸−𝜃) and so:

(𝜏𝑙 ∘ 𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋+
0,0)(𝑚⊗ v) =

∑︁
𝑗

𝑚𝑥𝑗 ⊗ (𝐸−𝜃)𝑗v = 𝜌𝑙(𝑋
+
0,0)(𝑚⊗ v) .
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Lastly

(𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋+,±
0,1 ) = 𝑇1,1,𝑙(𝐸−𝜃)− 𝜆(𝜋𝑙 ∘ 𝜓 ∘ 𝜁)𝜔+,±

0 .

Now since 𝜔+,±
0 lies in the subspace generated by 𝑋±

𝑖,0 and 𝐻𝑖,0 it follows that

(𝜏𝑙 ∘ 𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝜔+,±
0 ) = 𝜌𝑙(𝜔

+,±
0 )

holds as proved by the previous formulas. Hence we have:

(𝜏𝑙 ∘ 𝜋𝑙 ∘ 𝜓 ∘ 𝜁)(𝑋+,±
0,1 )(𝑚⊗ v) =

=
∑︁
𝑗

𝑚
𝑥𝑗𝑦𝑗 + 𝑦𝑗𝑥𝑗

2
⊗ (𝐸−𝜃)𝑗v − 𝜆𝜔+,±

0 (𝑚⊗ v) = 𝜌𝑙(𝑋
+,±
0,1 )(𝑚⊗ v) .

And so the result follows.

And so we can formulate the result which we wanted to prove in this section.

Theorem 5.4.4.10. For 𝑡 + 𝑘𝑟 ̸= 0, the map 𝜓 : D𝜆,𝛽(𝑟) → 𝒟𝑡,𝑘(𝑟) constructed in

Proposition 5.4.2.2 is an isomorphism.

Proof. We know surjectivity from Proposition 5.4.3.1. Now take any non-zero ele-

ment 𝑥 ∈ D𝜆,𝛽(𝑟). Since 𝜁 is an isomorphism there is 𝑦 ∈ 𝐷𝜆,𝛽(𝑟) such that 𝜁(𝑦) = 𝑥.

Now by Proposition 5.4.4.5 there exists 𝑙 such that 𝜌𝑙(𝑦) ̸= 0. Hence by Proposition

5.4.4.9 it follows that (𝜏𝑙 ∘ 𝜋𝑙 ∘𝜓 ∘ 𝜁)(𝑦) = (𝜏𝑙 ∘ 𝜋𝑙)(𝜓(𝑥)) ̸= 0. Hence 𝜓(𝑥) ̸= 0. Thus

𝜓 is injective and so it is an isomorphism.

5.5 DDCA of rank 1 type 𝐴

In this section we will study the DDC algebra 𝒟1,𝑘 of rank 1 and type A in more

detail. Namely we will present a presentation of this algebra by generators and
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relations.

This will be done by studying the flat filtered deformation of the universal en-

veloping algebra of a Lie algebra of polynomials on symplectic plane with a Poisson

bracket. Hence we will begin this section by defining and exlporing that algebra.

5.5.1 The Lie algebra po

Let us start by giving a definition of po, the Lie algebra of polynomials on symplectic

plane:

Definition 5.5.1.1. By po denote the Lie algebra over k which, as a vector space,

is given by k[𝑝, 𝑞] and the structure of Lie algebra of which is determined by the

following bracket:

[𝑞𝑘𝑝𝑙, 𝑞𝑚𝑝𝑛] = (𝑙𝑚− 𝑛𝑘)𝑞𝑘+𝑚−1𝑝𝑙+𝑛−1.

We will denote the element 1 ∈ k[𝑝, 𝑞] by 𝐾.

In other words, this Lie algebra is given by the standard Poisson bracket on k[𝑝, 𝑞]

determined by {𝑝, 𝑞} = 1.

This algebra admits the following grading:

Definition 5.5.1.2. Endow the Lie algebra po with a grading given by the formula

deg(𝑞𝑘𝑝𝑙) = 𝑘 + 𝑙 − 2. In this grading the bracket has degree 0.

Note that (− 𝑞2

2
, 𝑝𝑞, 𝑝

2

2
) constitutes an sl2-triple. Hence we conclude that po0 ≃ sl2.

This endows po with a structure of an sl2-module. It is easy to see that po𝑖 is

isomorphic to the simple highest weight module 𝑉𝑖+2 of highest weight 𝑖+ 2.

Definition 5.5.1.3. Denote by n the Lie subalgebra of po given by n =
⨁︀

𝑖>0 po𝑖.
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As an sl2-module we have:

n = 𝑉3 ⊕ 𝑉4 ⊕ 𝑉5 ⊕ . . . .

5.5.2 A presentation of po by generators and relations.

In order to find presentation of 𝒟1,𝑘, we first need to find that of po and 𝑈(po). Now,

in order to find this presentation of po by generators and relations, it is enough to

find the corresponding presentation of n. The rest will follow easily. This was done in

[56] using a computer calculation of the cohomology spaces of n to obtain a minimal

set of generators and relations. We will reproduce this result below. We will also

present a direct proof of this result in Appendix A.

First, it’s easy to find the generators:

Definition 5.5.2.1. The Lie algbera n is generated by n1.

Proof. Indeed, this easily follows by induction from the formulas 𝑝𝑘𝑞𝑙 = [𝑝
𝑘+1𝑞𝑙−2

𝑘+1
, 𝑞

3

3
]

for 𝑙 ≥ 2, 𝑝𝑘𝑞 = [𝑝
𝑘

𝑘
, 𝑝𝑞

2

2
] and 𝑝𝑘 = [𝑝

𝑘−1

𝑘−1
, 𝑝2𝑞].

So it follows that the algebra n is a quotient of the free Lie algebra 𝐿(n1), where

n1 ≃ 𝑉3. The Lie algebra 𝐿(n1) has a grading determined by deg(n1) = 1.

To describe the relations in a language of sl2-modules we will first have to intro-

duce a few definitions.

Definition 5.5.2.2. Fix an isomorpism of n1 with 𝑉3 with the highest weight vector

specified as 𝑐1 = 𝑞3

6
.

Consider Λ2n1 = 𝐿(n1)2. As sl2-modules we have Λ2n1 ≃ 𝑉4 ⊕ 𝑉0. Denote the

submodule of Λ2n1 isomorophic to 𝑉0 by 𝜑1 and the submodule isomorphic to 𝑉4 by

𝜑2. Fix an isomorphism of 𝜑1 with 𝑉0 with the highest weight vector specified as
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𝑐1∧𝑐4−𝑐2∧𝑐3, where 𝑐𝑖 = 𝑓 𝑖−1𝑐1. Fix an isomorphism of 𝜑2 with 𝑉4 with the highest

weight vector specified as 𝑑1 = 𝑐2 ∧ 𝑐1.

Consider 𝜑2 ⊗ n1 ⊂ 𝐿(n1)3. We have 𝜑2 ⊗ n1 ≃ 𝑉7 ⊕ 𝑉5 ⊕ 𝑉3 ⊕ 𝑉1. Denote

the submodule isomorphic to 𝑉1 by 𝜓1, the submodule isomorphic to 𝑉3 by 𝜓2,

the submodule isomorphic to 𝑉5 by 𝜓3 and submodule isomorphic to 𝑉7 by 𝜓4.

Also fix an isomorphism of 𝜓1 with 𝑉1 with the highest weight vector specified as

−4𝑑1 ⊗ 𝑐4 + 3𝑑2 ⊗ 𝑐3 − 2𝑑3 ⊗ 𝑐2 + 𝑑4 ⊗ 𝑐1, where 𝑑𝑖 = 𝑓 𝑖−1𝑑1.

Consider ∧2𝜑2 ⊂ 𝐿(n1)4. We have ∧2𝜑2 = 𝑉6 ⊕ 𝑉2. Denote the submodule

isomorphic to 𝑉2 by 𝜒1. Fix an isomorphism of 𝜒1 with 𝑉2 with the highest weight

vector specified as 3𝑑3 ∧ 𝑑2 − 2𝑑4 ∧ 𝑑1.

We have the following proposition.

Proposition 5.5.2.3. The Lie algebra n is isomorphic to the quotient of the free Lie

algebra 𝐿(n1) by the ideal generated by the sl2-modules 𝜑1, 𝜓4, 𝜓1 and 𝜒1. This is a

minimal set of relations.

Proof. As stated in the beginning of this section, one can find a proof of this result

by a computer computation in [56]. See Appendix B for a more direct proof.

Now we can move to the description of the whole algebra. First let us introduce

the notation for the remaining part of po:

Definition 5.5.2.4. Denote by b the Lie subalgebra of po given by po−2⊕po−1⊕po0.

We have po = b⊕ n.

We will also need a little more notation:

Definition 5.5.2.5. Fix an isomorphism of b0 with sl2 given by 𝑒 ↦→ 𝑏1 = − 𝑞2

2
and

𝑓 ↦→ 𝑏3 = 𝑝2

2
. Fix an isomorphism of b−1 with 𝑉1 with the highest weight vector
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specified as 𝑎1 = 𝑞. Fix an isomorphism of b−2 with 𝑉0 with the highest weight

vector specified as 𝐾.

Consider the free Lie algebra 𝐿(b ⊕ n1). Consider Λ2b−1 ⊂ 𝐿(b ⊕ n1)2, we have

Λ2b−1 ≃ 𝑉0. Fix an isomorphism of Λ2b−1 with 𝑉0 with the highest weight vector

specified as 𝑎1 ∧ 𝑎2.

Consider n1 ⊗ b−1 ⊂ 𝐿(b ⊕ n1)2. We have n1 ⊗ po−1 ≃ 𝑉4 ⊕ 𝑉2. Denote the

submodule isomorphic to 𝑉2 by 𝛼1 and the submodule isomorphic to 𝑉4 by 𝛼2. Fix an

isomorphism of 𝛼1 with 𝑉2 with the highest weight vector specified as 𝑐2⊗𝑎1−2𝑐1⊗𝑎2.

Proposition 5.5.2.6. The Lie algebra po is generated by b ⊕ n1 with the following

set of relations:

b−2 ≃ 𝑉0 is central, b0 ≃ sl2, b−1 ≃ 𝑉1 as an sl2-module, Λ2b−1 = b−2,

n1 ≃ 𝑉3 as an sl2-module, 𝛼2 = 0, 𝛼1 = b0,

𝜑1 = 0, 𝜓4 = 0, 𝜓1 = 0, 𝜒1 = 0,

where we use the isomorphisms from Definition 5.5.2.2 and Definition 5.5.2.5. And

by 𝜆𝑋 ≃ 𝜇𝑌 for two sl2-submodules of 𝐿(b ⊕ n1) with two fixed isomorphisms with

𝑉𝑗 and two numbers 𝜆, 𝜇 we mean that we take the quotient by the image of the map

𝑉𝑗
(𝜆,−𝜇)−−−−→ 𝑉𝑗 ⊕ 𝑉𝑗 ≃ 𝑋 ⊕ 𝑌 ⊂ 𝐿(b⊕ n1).

Proof. This easily follows from Proposition 5.5.2.3. Indeed, the first line of relations

ensures that the subalgebra generated by b is indeed b, the third line ensures that

the subalgebra generated by n1 is isomorphic to n. The second line fixes the adjoint

action of b on n1 making sure that nothing more is generated.
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One can also give a more explicit presentation, without using the language of

sl2-modules.

Proposition 5.5.2.7. The Lie algebra po is generated by elements 𝐾 of degree −2,

𝑞 = 𝑎1 and 𝑝 = 𝑎2 of degree −1, 𝑒 := 𝑏1 = − 𝑞2

2
and 𝑓 := 𝑏3 = 𝑝2

2
of degree 0, and

𝑟 := 𝑐1 =
𝑞3

6
of degree 1, with defining relations:

[𝐾,𝑋] = 0 for any 𝑋, [𝑝, 𝑞] = 𝐾, [𝑓, 𝑞] = 𝑝, [𝑝, 𝑓 ] = 0, [𝑒, 𝑝] = 𝑞,

[[𝑓, 𝑒], 𝑓 ] = 2𝑓,

[𝑟, 𝑝] = 𝑒, [𝑒, 𝑟] = 0, ad4
𝑓 (𝑟) = 0, [𝑒, [𝑓, 𝑟]] = 3𝑟,

[𝑟, ad3
𝑓 (𝑟)]− [ad𝑓 (𝑟), ad

2
𝑓 (𝑟)] = 0, (5.1)

ad3
𝑟(𝑓) = 0,

4[ad3
𝑓 (𝑟), ad

2
𝑟(𝑓)]− 3[ad2

𝑓 (𝑟), ad𝑓ad
2
𝑟(𝑓)] + 2[ad𝑓 (𝑟), ad

2
𝑓ad

2
𝑟(𝑓)]− [𝑟, ad3

𝑓ad
2
𝑟(𝑓)] = 0,

3[ad2
𝑓ad

2
𝑟(𝑓), ad𝑓ad

2
𝑟(𝑓)]− 2[ad3

𝑓ad
2
𝑟(𝑓), ad

2
𝑟(𝑓)] = 0.

Proof. In order to get this presentation from the one given in Proposition 5.5.2.6, to

start with, we need to throw out some of the generators. Indeed, in the formulation

we threw out the generator corresponding to ℎ in the sl2-triple of b0 and we have

only taken one generator from the whole of n1 – the highest-weight vector 𝑟. This

is obviously enough, since we can generate the whole of sl2 using 𝑒 and 𝑓 , and then

generate the rest of n1 by the action of b0 on 𝑟.

Now, it’s easy to see that the first line of the relations in Proposition 5.5.2.6

transforms into the first two lines of relations (5.5.2.7) and the second line of the

relations in Proposition 5.5.2.6 transforms into the third line of the relations (5.5.2.7).

We only need to keep the highest-weight vectors of the third line of the relations in

Proposition 5.5.2.6, since the rest of the relations can be generated by the action of
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b0. These four highest-weight vectors are given in the last lines of relations (5.5.2.7)

in the same order as the corresponding sl2-modules in Proposition 5.5.2.6.

For the details of these calculations see Appendix A.

Remark 5.5.2.8. Using this we can also write down a presentation of po with just

three generators. Indeed, the Lie algebra po is generated by elements 𝑝, 𝑓 and 𝑟 of

degrees −1, 0, 1 respectively, with defining relations:

[ad3
𝑝(𝑟), 𝑋] = 0 for any 𝑋,

[[[𝑝, 𝑟], 𝑓 ], 𝑝] = 𝑝, [𝑝, 𝑓 ] = 0, (degree -1)

[[[𝑝, 𝑟], 𝑓 ], 𝑓 ] = 2𝑓, (degree 0)

ad2
𝑟(𝑝) = 0, ad4

𝑓 (𝑟) = 0, [[[𝑝, 𝑟], 𝑓 ], 𝑟] = 3𝑟, (degree 1)

[𝑟, ad3
𝑓 (𝑟)]− [ad𝑓 (𝑟), ad

2
𝑓 (𝑟)] = 0, (degree 2)

ad3
𝑟(𝑓) = 0, (degree 3)

4[ad3
𝑓 (𝑟), ad

2
𝑟(𝑓)]− 3[ad2

𝑓 (𝑟), ad𝑓ad
2
𝑟(𝑓)] + 2[ad𝑓 (𝑟), ad

2
𝑓ad

2
𝑟(𝑓)]− [𝑟, ad3

𝑓ad
2
𝑟(𝑓)] = 0,

3[ad2
𝑓ad

2
𝑟(𝑓), ad𝑓ad

2
𝑟(𝑓)]− 2[ad3

𝑓ad
2
𝑟(𝑓), ad

2
𝑟(𝑓)] = 0 (degree 4).

5.5.3 Flat filtered deformations of 𝑈(po)

In the beginning of Section 5.5.1 we’ve mentioned that 𝒟1,𝑘 is going to be isomorphic

to a flat filtered deformation of 𝑈(po). For this reason in this section we will formulate

a result on flat filtered deformations of 𝑈(po) obtained via computer calculations and

then present a known flat filtered deformation of 𝑈(po).

Using computer calculation one can arrive at the following proposition about the

deformations of 𝑈(po). Again, before we can formulate the relations in terms of

sl2-modules we need to introduce some notations:
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Definition 5.5.3.1. Consider a free associative algebra 𝑇 (b⊕ n1). Denote the sub-

space 𝑆2b−1 ⊂ 𝑇 (b⊕n1)2 isomorphic to 𝑉2 as sl2-module by 𝛽1. Fix an isomorphism

of 𝑆2b−1 with 𝑉2 with the highest weight vector specified by 𝑎21.

Also for any sl2-submodule 𝛾 ⊂ 𝑇 (b⊕n1), denote by 𝐾𝑖𝛾 the submodule 𝛾⊗b⊗𝑖−2.

If 𝛾 had a fixed isomorphism with 𝑉𝑗 with the highest weight vector specified by 𝑣𝛾,

fix an isomorphism of 𝛾 ⊗ b⊗𝑖−2 with 𝑉𝑗 with the highest weight vector specified by

𝑣𝛾 ⊗𝐾⊗𝑖.

We are ready to state the main result of the section.

Proposition 5.5.3.2. Suppose 𝑈 is a flat filtered deformation of 𝑈(po) as an asso-

ciative algebra (up to an automorphism), such that 𝑈(b) is still a subalgebra of 𝑈 ,

and the action of 𝑈(b) on b ⊕ n1 is not deformed. Then 𝑈 is isomorphic to 𝐴𝑠1,𝑠2

defined below for some values of 𝑠1 and 𝑠2. The algebra 𝐴𝑠1,𝑠2 is generated by b⊕ n1

with the set of relations given by the first two lines of Proposition 5.5.2.6 and the

following relations, which substitute the last line in Proposition 5.5.2.6:

𝜑1 = −
𝑠1𝐾

2
, 𝜓4 = 0, 𝜓1 ≃ 15𝑠1b−1, 𝜒1 ≃ 3((30𝑠1 + 14𝑠2𝐾)b0 + 7𝑠2𝛽1),

where 𝑠1, 𝑠2 ∈ C[𝐾], ”≃" means the same thing as in Proposition 5.5.2.6, and all the

submodules of 𝐿(b ⊕ n−1) are interpreted as submodules of 𝑇 (b ⊕ n−1) via the map

𝐿(b ⊕ n−1) → 𝑇 (b ⊕ n−1) which sends the elements of the free Lie algebra into the

corresponding commutators in the free associative algebra.

Proof. Note that our requirement on the type of deformation effectively means that

we consider such deformations of relations in Proposition 5.5.2.6 which change only

the last four relations, augmenting them by some lower order terms.

The computer calculation that classified all possible deformations of this type was
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preformed by Eric Rains. An outline of this calculation can be found in Proposition

4.2.13 of [18].

Remark 5.5.3.3. Note that we can specialize the central element 𝐾 to a number,

which will give a 3-parameter flat family of algebras 𝐴𝑠1,𝑠2,𝐾 , with 𝑠1, 𝑠2, 𝐾 ∈ C.

These parameters have degrees 4, 6,−2, respectively; alternatively, we may view this

deformation as one with four deformation parameters 𝑠1, 𝑠2, 𝑠′1 = 𝑠1𝐾, 𝑠
′
2 = 𝑠2𝐾 of

degrees 4, 6, 2, 4, respectively, which are constrained by the relation 𝑠1𝑠′2 = 𝑠2𝑠
′
1; i.e.,

deformations are parametrized by a quadratic cone in C4. Also, we see that up to

rescaling there are only two essential parameters, 𝑠*1 = 𝑠1𝐾
2 and 𝑠*2 = 𝑠2𝐾

3.

As before, this presentation can be formulated more explicitly as follows:

Proposition 5.5.3.4. The algebra 𝐴𝑠1,𝑠2 is generated by the same generators as po

and the same set of relations as in Proposition 5.5.2.7, with the last four relations

deformed as follows:

[𝑟, ad3𝑓 (𝑟)]− [ad𝑓 (𝑟), ad
2
𝑓 (𝑟)] = −

𝑠1𝐾

2
,

ad3𝑟(𝑓) = 0, (5.2)

4[ad3𝑓 (𝑟), ad
2
𝑟(𝑓)]− 3[ad2𝑓 (𝑟), ad𝑓ad

2
𝑟(𝑓)] + 2[ad𝑓 (𝑟), ad

2
𝑓ad

2
𝑟(𝑓)]− [𝑟, ad3𝑓ad

2
𝑟(𝑓)] = 15𝑠1𝑞,

3[ad2𝑓ad
2
𝑟(𝑓), ad𝑓ad

2
𝑟(𝑓)]− 2[ad3𝑓ad

2
𝑟(𝑓), ad

2
𝑟(𝑓)] = 3((30𝑠1 + 14𝑠2𝐾)𝑒+ 7𝑠2𝑞

2),

where 𝑠1, 𝑠2 ∈ C[𝐾].

Proof. This is easy to see following the proof of Proposition 5.5.2.7.

Remark 5.5.3.5. We can also rewrite the above relations (Proposition 5.5.3.4) using

the set of generators of Remark 5.5.2.8. Indeed, the algebra 𝐴𝑠1,𝑠2 is generated by

the same set of generators as po in Remark 5.5.2.8 (i.e., 𝑝, 𝑓, 𝑟) and the same set of
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relations as in Remark 5.5.2.8, with the last four (degrees 2, 3, 4) deformed as follows:

[𝑟, ad3𝑓 (𝑟)]− [ad𝑓 (𝑟), ad
2
𝑓 (𝑟)] = −

𝑠1𝐾

2
, (5.3)

ad3𝑟(𝑓) = 0,

4[ad3𝑓 (𝑟), ad
2
𝑟(𝑓)]− 3[ad2𝑓 (𝑟), ad𝑓ad

2
𝑟(𝑓)] + 2[ad𝑓 (𝑟), ad

2
𝑓ad

2
𝑟(𝑓)]− [𝑟, ad3𝑓ad

2
𝑟(𝑓)] = 15𝑠1ad

2
𝑝(𝑟),

3[ad2𝑓ad
2
𝑟(𝑓), ad𝑓ad

2
𝑟(𝑓)]− 2[ad3𝑓ad

2
𝑟(𝑓), ad

2
𝑟(𝑓)] = 3(7𝑠2ad

2
𝑝(𝑟)

2 − (30𝑠1 + 14𝑠2𝐾)ad𝑝(𝑟)),

where 𝐾 = ad3
𝑝(𝑟) and 𝑠1, 𝑠2 ∈ C[𝐾].

Below we will show that the universal enveloping algebra of the Lie algebra C[𝑥, 𝜕]

gives us an example of such a deformation. This result is well-known, see [21].

Definition 5.5.3.6. Denote by C[𝑥, 𝜕] the Lie algebra of polynomial differential

operators, with a Lie bracket given by the commutator.

Consider a grading on C[𝑥, 𝜕] given by deg(𝑥𝑘𝜕𝑙) = 𝑘 + 𝑙 − 2. We have a de-

composition C[𝑥, 𝜕] =
⨁︀

𝑖=−2C[𝑥, 𝜕]𝑖. It’s easy to see that with this grading the Lie

bracket decreases filtration degree at least by 2 and preserves degree modulo 2:

[, ] : C[𝑥, 𝜕]𝑖 ⊗ C[𝑥, 𝜕]𝑗 → C[𝑥, 𝜕]𝑖+𝑗 ⊕ C[𝑥, 𝜕]𝑖+𝑗−2 ⊕ . . . .

Indeed, when we compute the commutator we use the identity [𝜕, 𝑥] = 1 at least

once, and each time it decreases the grading by 2.

Lemma 5.5.3.7. The associated graded Lie algebra of C[𝑥, 𝜕] is isomorphic to po.

Proof. Writing down the commutator of basis elements, we have:

[𝑥𝑘𝜕𝑙, 𝑥𝑚𝜕𝑛] = (𝑙𝑚− 𝑛𝑘)𝑥𝑘+𝑚−1𝜕𝑙+𝑛−1 + . . . .
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So by taking the associated graded of C[𝑥, 𝜕] and denoting the image of 𝑥 by 𝑞 and

the image of 𝜕 by 𝑝, we end up with po.

And we have the following corollary:

Corollary 5.5.3.8. C[𝑥, 𝜕] is a non-trivial flat filtered deformation of po as a Lie

algebra.

Proof. The flatness follows from Lemma 5.5.3.7 and the fact that the graded dimen-

sions of the two Lie algebras are the same.

The fact that this deformation is non-trivial (which is not hard to check directly)

is known as the van Hove-Groenewold’s theorem in quantum mechanics, which says

that classical infinitesimal symmetries deform nontrivially under quantization. See

Theorem 13.13 in [29].

Now from Proposition 5.5.3.2 it follows that 𝑈(C[𝑥, 𝜕]) must be isomorphic to

𝐴𝑠1,𝑠2 for some choice of 𝑠1 and 𝑠2. Let us now compute these parameters.

Proposition 5.5.3.9. The algebra 𝑈(C[𝑥, 𝜕]) is isomorphic to 𝐴1,0.

Proof. From Proposition 5.5.3.2 we know that 𝑈(C[𝑥, 𝜕]) ≃ 𝐴𝑠1,𝑠2 . Since this defor-

mation actually comes from the Lie algebra deformation, we can conclude that 𝑠2

must be equal to zero. Now we can consider the Lie algebra a𝑠1 given by the genera-

tors and relations of Proposition 5.5.3.4 with 𝑠2 = 0. So we know that C[𝑥, 𝜕] ≃ a𝑠1 .

Let’s denote this isomorphism by 𝜀 : a𝑠1 → C[𝑥, 𝜕]. Since 𝜀 is determined up to a

constant, we can set the image of 𝐾 under 𝜀 to be 𝜀(𝐾) = 1. Now since a𝑠1 is a defor-

mation of gr(C[𝑥, 𝜕]), we know that 𝜀(𝑞) = 𝑥+ . . . , 𝜀(𝑝) = 𝜕+ . . . , 𝜀(𝑒) = −𝑥2

2
+ . . . ,

𝜀(𝑓) = 𝜕2

2
+ . . . and 𝜀(𝑟) = 𝑥3

6
+ . . . , where “. . . " stand for the lower order terms.

Also note that since the commutator is deformed in degrees starting with −2, it
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follows that the lower order terms also can appear only starting with degrees −2.

Hence 𝜀(𝑞) = 𝑥 and 𝜀(𝑝) = 𝜕. Suppose 𝜀(𝑒) = −𝑥2

2
+ 𝑐1 and 𝜀(𝑓) = 𝜕2

2
+ 𝑐2, it follows

that [𝜀(𝑒), 𝜀(𝑓)] = 𝑥𝜕 + 1
2
. Now by calculating [[𝜀(𝑒), 𝜀(𝑓)], 𝜀(𝑒)] = [𝑥𝜕,−𝑥2

2
] = −𝑥2,

we conclude that 𝑐1 must be equal to 0. The same holds true for 𝑐2. Now suppose

𝜀(𝑟) = 𝑥3

6
+𝑑1𝑥+𝑑2𝜕. Now [𝜀(𝑞), 𝜀(𝑟)] = −𝑑2, hence 𝑑2 = 0. And [𝜀(𝑝), 𝜀(𝑟)] = 𝑥2

2
+𝑑1,

hence 𝑑1 = 0. So we know the images of the commutators. Now it’s enough to cal-

culate one of the relations.

We compute ad𝑓 (𝑟) = [𝜕
2

2
, 𝑥

3

6
] = 𝑥2𝜕+𝑥

2
, ad2

𝑓 (𝑟) = [𝜕
2

2
, 𝑥

2𝜕+𝑥
2

] = 𝑥𝜕2 + 𝜕 and

ad3
𝑓 (𝑟) = [𝜕

2

2
, 𝑥𝜕2] = 𝜕3. So it follows that:

[
𝑥3

6
, 𝜕3]− [

𝑥2𝜕 + 𝑥

2
, 𝑥𝜕2 + 𝜕] = −3

2
𝑥2𝜕2 − 3𝑥𝜕 − 1 +

3

2
𝑥2𝜕2 + 3𝑥𝜕 +

1

2
= −1

2
.

Thus we conclude that 𝑠1 = 1.

We also have a corollary:

Corollary 5.5.3.10. The deformation 𝐴1,0 is flat.

Remark 5.5.3.11. Of course we could have proved that C[𝑥, 𝜕] is isomorphic to

a1 without using computer computation and Proposition 5.5.3.2. Indeed, one just

needs to check that 1, 𝑥, 𝜕, −𝑥2

2
, 𝜕2

2
and 𝑥3

6
satisfy the required relations, which is

easy to do.

5.5.4 The deformed double current algebra of type A as a flat

filtered deformation of 𝑈(po)

Now, in this section we would like to show that the generic choice of parameters 𝑠1

and 𝑠2 for the deformation of 𝑈(po) gives us the DDC algebra 𝒟1,𝑘.
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Below we will need to compute things in 𝒟1,𝑘. To do so we will make use of the

same method as in Definition 5.4.2.1. I.e. we will use ∼ to denote the transition

from an element of 𝒟1,𝑘 to a corresponding sequence of elements of 𝐵1,𝑘(𝑛).

With this tool we are ready to continue:

Proposition 5.5.4.1. The algebra 𝒟1,𝑘 is a flat filtered deformation of 𝑈(po).

Proof. Indeed, we know that the basis in this algebra is given by 𝑇 (m)𝐾𝑖. Also

recall the natural filtration we considered in the previous section (so that the ele-

ment 𝑇 (m)𝐾𝑖 belongs to (𝒟1,𝑘)𝑤(m)). Since by Proposition 5.3.4.4 we know that

gr𝐵1,𝑘𝑛(𝜈𝑛) = Q[𝑃𝑟,𝑞,𝜈𝑛 ]𝑟,𝑞≥0,0<𝑟+𝑞 in sufficiently low degrees (where 𝑃𝑟,𝑞,𝜈𝑛 are the

symmetric polynomials mentioned in the proof of that Proposition), where the asso-

ciated graded is taken with respect to the filtration from Definition 5.3.4.2, it follows

that

gr𝒟1,𝑘 = (
∏︁

ℱ
Q[𝑃𝑟,𝑞,𝜈𝑛 ]𝑟,𝑞≥0,0<𝑟+𝑞≤𝜈𝑛)|𝜈=𝐾 = C[𝑃𝑟,𝑞]𝑟,𝑞≥0,

where 𝑃𝑟,𝑞 = gr𝑟+𝑞(𝑇𝑟,𝑞) and 𝑃0,0 = gr0(𝐾).

Now the bracket [, ] acts as follows:

[, ] : (𝒟1,𝑘)𝑛 ⊗ (𝒟1,𝑘)𝑚 → (𝒟1,𝑘)𝑚+𝑛−2 ⊕ (𝒟1,𝑘)𝑚+𝑛−4 ⊕ . . . ,

where we consider the grading of the algebra as a vector space. Indeed, this follows

from the fact that [𝑇 (m), 𝑇 (n)] ∼ [𝑇𝜈𝑛(m), 𝑇𝜈𝑛(n)], and to calculate the latter ex-

pression we need to use the commutator [𝑥𝑖, 𝑦𝑗] at least once, which, each time we

use it, lowers the degree by 2. We would like to calculate the leading term of the

commutator. To calculate gr𝑤(m)+𝑤(n)−2([𝑇 (m), 𝑇 (n)]) it is enough to compute it

via ∼, commuting freely elements within 𝑇𝜈𝑛(m) and leaving only the highest term
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in the commutator of [𝑥𝑖, 𝑦𝑗] = 𝛿𝑖𝑗 + . . . . So:

gr𝑤(m)+𝑤(n)−2([𝑇 (m), 𝑇 (n)]) ∼

[︃ ∏︁
𝑟,𝑞≥0,𝑟+𝑞>0

𝑃𝑚𝑟,𝑞
𝑟,𝑞,𝜈𝑛 ,

∏︁
𝑟,𝑞≥0,𝑟+𝑞>0

𝑃 𝑛𝑟,𝑞
𝑟,𝑞,𝜈𝑛

]︃
=

=
∏︁

𝑟,𝑞≥0,𝑟+𝑞>0

𝑃𝑚𝑟,𝑞+𝑛𝑟,𝑞
𝑟,𝑞,𝜈𝑛

∑︁
𝑟1,𝑟2,𝑞1,𝑞2

𝑚𝑟1,𝑞1𝑛𝑟2,𝑞2
𝑃𝑟1,𝑞1,𝜈𝑛𝑃𝑟2,𝑞2,𝜈𝑛

[𝑃𝑟1,𝑞1,𝜈𝑛 , 𝑃𝑟2,𝑞2,𝜈𝑛 ].

But now:

[𝑃𝑟1,𝑞1,𝜈𝑛 , 𝑃𝑟2,𝑞2,𝜈𝑛 ] =
𝜈𝑛∑︁
𝑖,𝑗=1

[𝑥𝑟1𝑖 𝑦
𝑞1
𝑖 , 𝑥

𝑟2
𝑗 𝑦

𝑞2
𝑗 ] =

= (𝑞1𝑟2 − 𝑞2𝑟1)𝑃𝑟1+𝑟2−1,𝑞1+𝑞2−1,𝜈𝑛 ,

where we use 𝑃0,0,𝜈𝑛 to denote 𝜈𝑛.

These formulas show us that gr𝒟1,𝑘 is isomorphic to a deformation of 𝑈(po)

after identification of 𝑇𝑖,𝑗 with 𝑝𝑖𝑞𝑗. So it follows that 𝒟1,𝑘 is a deformation of 𝑈(po).

Moreover it is a flat filtered deformation, by virtue of the fact that 𝑇 (m)𝐾𝑖 constitute

a basis of 𝒟1,𝑘.

Since we know all possible flat filtered deformations of 𝑈(po), it follows that 𝒟1,𝑘

is isomorphic to 𝐴𝑠1,𝑠2 for some choice of constants. We would also like to calculate

the exact correspondence.

Proposition 5.5.4.2. The DDC-algebra 𝒟1,𝑘 is isomorphic to 𝐴𝑠1,𝑠2 with

𝑠1 = 1 + 𝑘(𝑘 + 1)(1−𝐾) and 𝑠2 = 𝑘(𝑘 + 1).

Proof. We know that 𝒟1,𝑘 ≃ 𝐴𝑠1,𝑠2 for some 𝑠1, 𝑠2 ∈ C[𝐾]. Denote this isomorphism

by 𝛽 : 𝐴𝑠1,𝑠2 → 𝒟1,𝑘. It is enough to calculate 𝑠1, 𝑠2 via evaluating one of the

commutators. We will largely follow the steps of the proof of Proposition 5.5.3.9.
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First, we will define another shorthand notation for our calculations:

Definition 5.5.4.3. Recall the notation of Definition 5.4.2.1. Consider 𝑋 ∈ 𝒟1,𝑘

which is represented by a sequence 𝑋 ∼ 𝑋𝑛. Also suppose that 𝑋 = 𝛽(𝑌 ) for an

element 𝑌 ∈ 𝐴𝑠1,𝑠2 . Consider the faithful polynomial representation:

𝜋𝑛 : 𝐵1,𝑘𝑛(𝜈𝑛)→ Q(𝑥1, . . . , 𝑥𝜈𝑛)[𝜕1, . . . , 𝜕𝜈𝑛 ]
𝑆𝜈𝑛 .

Denote 𝑌 ∼ 𝜋𝑛(𝑋𝑛).

I.e. with the help of this notation we will be able to preform calculation in the

algebras of polynomial operators.

Note that the highest orders of generators are as follows. We have4 gr0(𝐾) = 𝐾,

gr1(𝑇1,0) = 𝑞, gr1(𝑇0,1) = 𝑝, gr2(𝑇2,0) = 𝑞2, gr2(𝑇1,1) = 𝑝𝑞, gr2(𝑇0,2) = 𝑝2 and

gr3(𝑇3,0) = 𝑞3. Thus it follows that

𝛽(𝐾) = 𝐾 + . . . , 𝛽(𝑞) = 𝑇1,0 + . . . , 𝛽(𝑝) = 𝑇0,1 + . . . , 𝛽(𝑒) = −𝑇2,0
2

+ . . . ,

𝛽(𝑓) =
𝑇0,2
2

+ . . . and 𝛽(𝑟) =
𝑇3,0
6

+ . . . ,

where “ . . . " stand for lower order terms. Note that since commutator has additional

terms only 2 degrees lower, it follows that additional terms in 𝛽 also can only be 2𝑘

degrees lower for a positive integer 𝑘.

Thus it follows that there are no additional terms in the action of 𝛽 on 𝐾, 𝑞 and

𝑝. Suppose 𝛽(𝑒) = −𝑇2,0
2

+ 𝛾1 and 𝛽(𝑓) = 𝑇0,2
2

+ 𝛾2 for some 𝛾𝑖 ∈ C[𝐾]. First let’s

4Here we slightly abuse the notation and denoting by 𝑝, 𝑞 both the elements 𝑞, 𝑝 in po and the
generators of 𝐴𝑠1,𝑠2 . Since these elements lie in different spaces this shouldn’t cause any confusion.
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calculate [𝛽(𝑒), 𝛽(𝑓)]:

[𝑒, 𝑓 ] ∼𝛽
1

4
[
∑︁
𝑖

𝐷2
𝑖 ,
∑︁
𝑗

𝑥2𝑗 ] =
1

4
[
∑︁
𝑖

𝜕2𝑖 − 𝑐(𝑐+ 1)
∑︁
𝑖 ̸=𝑘

1

(𝑥𝑖 − 𝑥𝑘)2
,
∑︁
𝑗

𝑥2𝑗 ] =

=
1

4

∑︁
𝑖,𝑗

[𝜕2𝑖 , 𝑥
2
𝑗 ] =

1

4

∑︁
𝑖

(4𝑥𝑖𝜕𝑖 + 2) ∼𝛽 𝛽−1(𝑇1,1),

so we conclude that [𝛽(𝑒), 𝛽(𝑓)] = 𝑇1,1. Now we want [[𝛽(𝑒), 𝛽(𝑓)], 𝛽(𝑒)] = −1
2
[𝑇1,1, 𝑇2,0]

to be equal to 2𝛽(𝑒). We calculate:

[[𝑒, 𝑓 ], 𝑒] ∼𝛽
1

2
[
∑︁
𝑖

𝑥𝑖𝜕𝑖,
∑︁
𝑗

𝑥2𝑗 ] ∼𝛽 𝛽−1

(︂
1

2
𝑇2,0

)︂
.

Thus we conclude 𝛾1 = 0. A similar calculation results in 𝛾2 = 0.

Now we can write 𝛽(𝑟) = 𝑇3,0
6

+ 𝛿1𝑇1,0+ 𝛿2𝑇0,1 for 𝛿𝑖 ∈ C[𝐾] (we only need to add

elements of the lower degrees which have the same parity). Let’s calculate [𝛽(𝑟), 𝛽(𝑞)]

and [𝛽(𝑟), 𝛽(𝑝)]. To do this, we need to calculate [𝑇3,0, 𝑇1,0] and [𝑇0,3, 𝑇0,1]. The first

one is obviously zero. So we have [𝛽(𝑟), 𝛽(𝑎1)] = 𝛿2[𝑇0,1, 𝑇1,0] = 𝛿2𝐾. But this

commutator should be zero. Hence 𝛿2 = 0. Now for the other one:

[𝑇0,1,𝑛, 𝑇3,0,𝑛] =
∑︁
𝑖,𝑗

[𝜕𝑖, 𝑥
3
𝑗 ] = 3𝑇2,0,𝑛,

Thus [𝛽(𝑟), 𝛽(𝑝)] = [𝑇3,0
6

+𝛿1𝑇1,0, 𝑇0,1] =
𝑇2,0
2
−𝛿1𝐾 = −𝛽(𝑒)−𝛿1𝐾. Hence 𝛿1 = 0.

Thus we have successfully calculated the images of all the generators.

Now we need to calculate the image of 3[ad2
𝑓ad

2
𝑟(𝑓), ad𝑓ad

2
𝑟(𝑓)]−2[ad3

𝑓ad
2
𝑟(𝑓), ad

2
𝑟(𝑓)].
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Indeed, this is the only relation where both 𝑠1 and 𝑠2 are present. We calculate:

ad𝑟(𝑓) = −[𝑓, 𝑟] ∼𝛽 −
1

12
[
∑︁
𝑖

𝜕2𝑖 ,
∑︁
𝑗

𝑥3𝑗 ] = −
1

2

∑︁
𝑖

(𝑥2𝑖𝜕 + 𝑥𝑖),

and

ad2
𝑟(𝑓) ∼𝛽

1

12
[
∑︁
𝑖

𝑥2𝑖𝜕𝑖,
∑︁
𝑗

𝑥3𝑗 ] =
1

4

∑︁
𝑖

𝑥4𝑖 .

Similarly we can compute the results of the action of powers of ad𝑓 . The differen-

tial operator part is quite straightforward, but we will write down the part depending

on 𝑐 in more detail. Denoting 𝑋 = ad2
𝑟(𝑓) and 𝜅 = 𝑘(𝑘 + 1), we have:

ad𝑓 (𝑋) ∼𝛽
1

8
[
∑︁
𝑖

𝜕2𝑖 ,
∑︁
𝑗

𝑥4𝑗 ] =
∑︁
𝑖

(︂
𝑥3𝑖𝜕𝑖 +

3

2
𝑥2𝑖

)︂
,

ad2
𝑓 (𝑋) ∼𝛽

1

4
[
∑︁
𝑖

𝜕2𝑖 ,
∑︁
𝑗

(2𝑥3𝑗𝜕𝑗 + 3𝑥2𝑗)]−
𝜅

2
[
∑︁
𝑖 ̸=𝑗

1

(𝑥𝑖 − 𝑥𝑗)2
,
∑︁
𝑚

𝑥3𝑚𝜕𝑚] =

=
∑︁
𝑖

(︂
3𝑥2𝑖𝜕

2
𝑖 + 6𝑥𝑖𝜕𝑖 +

3

2

)︂
− 𝜅

2

(︃∑︁
𝑖 ̸=𝑗

2𝑥3𝑖 − 2𝑥3𝑗
(𝑥𝑖 − 𝑥𝑗)3

)︃
.

Now, transforming the last sum, we have:

∑︁
𝑖 ̸=𝑗

2𝑥3𝑖 − 2𝑥3𝑗
(𝑥𝑖 − 𝑥𝑗)3

=
∑︁
𝑖 ̸=𝑗

2𝑥𝑖𝑥𝑗 − 𝑥2𝑖 − 𝑥2𝑗 + 3𝑥2𝑖 + 3𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)2

= 3
∑︁
𝑖 ̸=𝑗

𝑥2𝑖 + 𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)2

− 𝑛(𝑛− 1).

So in total we have:

ad2
𝑓 (𝑋) ∼𝛽

∑︁
𝑖

(3𝑥2𝑖𝜕
2
𝑖 + 6𝑥𝑖𝜕𝑖)−

3

2
𝜅
∑︁
𝑖 ̸=𝑗

𝑥2𝑖 + 𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)2

+
3

2
𝑛+

𝜅𝑛(𝑛− 1)

2
.
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The next one is

ad3
𝑓 (𝑋) ∼𝛽

1

2
[
∑︁
𝑖

𝜕2𝑖 ,
∑︁
𝑗

(3𝑥2𝑗𝜕
2
𝑗 + 6𝑥𝑗𝜕𝑗)]−

3

4
𝜅[
∑︁
𝑚

𝜕2𝑚,
∑︁
𝑖 ̸=𝑗

𝑥2𝑖 + 𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)2

]−

−𝜅
2
[
∑︁
𝑖 ̸=𝑗

1

(𝑥𝑖 − 𝑥𝑗)2
,
∑︁
𝑚

(3𝑥2𝑚𝜕
2
𝑚 + 6𝑥𝑚𝜕𝑚)].

The second commutator in this formula amounts to:

∑︁
𝑘,𝑖̸=𝑗

[𝜕2𝑘,
𝑥2𝑖 + 𝑥2𝑗

(𝑥𝑖 − 𝑥𝑗)2
] =

=
∑︁
𝑖 ̸=𝑗

(︂
2
2𝑥𝑖𝜕𝑖 + 2𝑥𝑗𝜕𝑗
(𝑥𝑖 − 𝑥𝑗)2

+ 2
(𝑥2𝑖 + 𝑥2𝑗)(−2𝜕𝑖 + 2𝜕𝑗)

(𝑥𝑖 − 𝑥𝑗)3
+

2 + 2

(𝑥𝑖 − 𝑥𝑗)2
+

+2
−4𝑥𝑖 + 4𝑥𝑗
(𝑥𝑖 − 𝑥𝑗)3

+
(𝑥2𝑖 + 𝑥2𝑗)(6 + 6)

(𝑥𝑖 − 𝑥𝑗)4

)︂
=

= 4
∑︁
𝑖 ̸=𝑗

(︂
(𝑥𝑖 + 𝑥𝑗)(𝑥𝑖𝜕𝑗 − 𝑥𝑗𝜕𝑖)

(𝑥𝑖 − 𝑥𝑗)3
− 1

(𝑥𝑖 − 𝑥𝑗)2
+ 3

(𝑥2𝑖 + 𝑥2𝑗)

(𝑥𝑖 − 𝑥𝑗)4

)︂
,

and the third one:

[
∑︁
𝑖 ̸=𝑗

1

(𝑥𝑖 − 𝑥𝑗)2
,
∑︁
𝑚

(3𝑥2𝑚𝜕
2
𝑚 + 6𝑥𝑚𝜕𝑚)] =

= −3
∑︁
𝑖 ̸=𝑗

(︂
2
−2𝑥2𝑖𝜕𝑖 + 2𝑥2𝑗𝜕𝑗

(𝑥𝑖 − 𝑥𝑗)3
+

6𝑥2𝑖 + 6𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)4

+ 2
−2𝑥𝑖 + 2𝑥𝑗
(𝑥𝑖 − 𝑥𝑗)3

)︂
.

So the original expression amounts to:

ad3
𝑓 (𝑋) ∼𝛽
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∼𝛽 3
∑︁
𝑖

(2𝑥𝑖𝜕
3
𝑖 +3𝜕2𝑖 )+ 3𝜅

∑︁
𝑖 ̸=𝑗

(︃
2𝑥2𝑗𝜕𝑗 − 2𝑥2𝑖 𝜕𝑖 − (𝑥𝑖 + 𝑥𝑗)(𝑥𝑖𝜕𝑗 − 𝑥𝑗𝜕𝑖)

(𝑥𝑖 − 𝑥𝑗)3
− 3

1

(𝑥𝑖 − 𝑥𝑗)2

)︃
=

= 3
∑︁
𝑖

(2𝑥𝑖𝜕
3
𝑖 + 3𝜕2𝑖 )− 3𝜅

∑︁
𝑖 ̸=𝑗

(︂
𝑥𝑖𝜕𝑗 + 𝑥𝑗𝜕𝑖 + 2𝑥𝑗𝜕𝑗 + 2𝑥𝑖𝜕𝑖

(𝑥𝑖 − 𝑥𝑗)2
+ 3

1

(𝑥𝑖 − 𝑥𝑗)2

)︂
.

So, now we can finally compute the image of the relation:

3[ad2
𝑓 (𝑋), ad𝑓 (𝑋)]− 2[ad3

𝑓 (𝑋), 𝑋] ∼𝛽

∼𝛽 3[3
∑︁
𝑖

(𝑥2𝑖𝜕
2
𝑖 + 2𝑥𝑖𝜕𝑖),

∑︁
𝑗

(𝑥3𝑗𝜕𝑗 +
3

2
𝑥2𝑗)]− 2[3

∑︁
𝑖

(2𝑥𝑖𝜕
3
𝑖 + 3𝜕2𝑖 ),

1

4

∑︁
𝑗

𝑥4𝑗 ]−

−9

2
𝜅[
∑︁
𝑖 ̸=𝑗

𝑥2𝑖 + 𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)2

,
∑︁
𝑚

𝑥3𝑚𝜕𝑚] + 6𝜅[
∑︁
𝑖 ̸=𝑗

𝑥𝑖𝜕𝑗 + 𝑥𝑗𝜕𝑖 + 2𝑥𝑖𝜕𝑖 + 2𝑥𝑗𝜕𝑗
(𝑥𝑖 − 𝑥𝑗)2

,
1

4

∑︁
𝑚

𝑥4𝑚].

The part coming from the first two commutators is just the r.h.s. of the relation

when 𝑘 = 0. It is equal to:

−15 · 3
∑︁
𝑖

𝑥2𝑖 ∼ 3 · 2 · 15𝑏1,

as we would expect since in this case 𝑠1 = 1, 𝑠2 = 0.

The third commutator gives:

[
∑︁
𝑖 ̸=𝑗

𝑥2𝑖 + 𝑥2𝑗
(𝑥𝑖 − 𝑥𝑗)2

,
∑︁
𝑚

𝑥3𝑚𝜕𝑚] = −
∑︁
𝑖 ̸=𝑗

2𝑥4𝑖 + 2𝑥4𝑗
(𝑥𝑖 − 𝑥𝑗)2

+
∑︁
𝑖 ̸=𝑗

2(𝑥2𝑖 + 𝑥2𝑗)(𝑥
3
𝑖 − 𝑥3𝑗)

(𝑥𝑖 − 𝑥𝑗)3
=

= 2
∑︁
𝑖 ̸=𝑗

(𝑥2𝑖 + 𝑥2𝑗)(𝑥
2
𝑖 + 𝑥𝑖𝑥𝑗 + 𝑥2𝑗)− 𝑥4𝑖 − 𝑥4𝑗
(𝑥𝑖 − 𝑥𝑗)2

,
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and the forth one:

[
∑︁
𝑖 ̸=𝑗

𝑥𝑖𝜕𝑗 + 𝑥𝑗𝜕𝑖 + 2𝑥𝑖𝜕𝑖 + 2𝑥𝑗𝜕𝑗
(𝑥𝑖 − 𝑥𝑗)2

,
∑︁
𝑚

𝑥4𝑚] = 4
∑︁
𝑖 ̸=𝑗

𝑥𝑖𝑥
3
𝑗 + 𝑥𝑗𝑥

3
𝑖 + 2𝑥4𝑖 + 2𝑥4𝑗

(𝑥𝑖 − 𝑥𝑗)2
.

If we put together the formulas for the third and forth commutators in the original

expression, we get:

3[ad2
𝑓 (𝑋), ad𝑓 (𝑋)]− 2[ad3

𝑓 (𝑋), 𝑋]− 3 · 15 · 2𝑏1 ∼𝛽

∼𝛽 3𝜅
∑︁
𝑖 ̸=𝑗

−3(2𝑥2𝑖𝑥2𝑗 + 𝑥3𝑖𝑥𝑗 + 𝑥3𝑗𝑥𝑖) + 2(𝑥𝑖𝑥
3
𝑗 + 𝑥𝑗𝑥

3
𝑖 + 2𝑥4𝑖 + 2𝑥4𝑗)

(𝑥𝑖 − 𝑥𝑗)2
=

= 3𝜅
∑︁
𝑖 ̸=𝑗

4𝑥4𝑖 + 4𝑥4𝑗 − 6𝑥2𝑖𝑥
2
𝑗 − 𝑥𝑖𝑥3𝑗 − 𝑥𝑗𝑥3𝑖

(𝑥𝑖 − 𝑥𝑗)2
=

= 3𝜅
∑︁
𝑖 ̸=𝑗

4(𝑥2𝑖 + 𝑥2𝑗)(𝑥𝑖 − 𝑥𝑗)2 + 7𝑥𝑖𝑥𝑗(𝑥𝑖 − 𝑥𝑗)2

(𝑥𝑖 − 𝑥𝑗)2
=

= 3𝜅
∑︁
𝑖 ̸=𝑗

(8𝑥2𝑖 + 7𝑥𝑖𝑥𝑗) = 3(8𝜅(𝑛− 1)
∑︁
𝑖

𝑥2𝑖 + 7(
∑︁
𝑖

𝑥𝑖)
2 − 7

∑︁
𝑖

𝑥2𝑖 ) ∼𝛽

∼𝛽 3𝜅(−16𝑏1(𝐾 − 1) + 7(𝑎21 + 2𝑏1)).

Thus we see that:

3[ad2
𝑓 (𝑋), ad𝑓 (𝑋)]− 2[ad3

𝑓 (𝑋), 𝑋] ∼𝛽 3(2(15− 𝜅(8𝐾 − 15))𝑏1 + 7𝜅𝑎21) =

= 3((30(1 + 𝜅(1−𝐾)) + 14𝜅𝐾)𝑏1 + 7𝜅𝑎21).

And we can conclude that 𝑠1 = 1 + 𝑘(𝑘 + 1)(1−𝐾) and 𝑠2 = 𝑘(𝑘 + 1).

Remark 5.5.4.4. Note that instead of using the computer calculation from Propo-
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sition 5.5.3.2, we could have defined the map on generators by the same formula as

𝛽 and checked that it satisfies the remaining relations. This is easy to do, in fact the

relation we have checked is the most complicated one.

Remark 5.5.4.5. One can think about the isomorphism of Proposition 5.5.4.2 in

the following way. For the Lie algebra C[𝑥, 𝜕] there exists a standard map:

𝑈(C[𝑥, 𝜕])→ 𝑆𝑛C[𝑥, 𝜕] = Diff(C𝑛)𝑆𝑛 .

One can deform this map to arrive at the map:

𝐴𝑠1,𝑠2 →

(︃
Diff(C𝑛)

[︃
1∏︀

1≤𝑖<𝑗≤𝑛(𝑥𝑖 − 𝑥𝑗)

]︃)︃𝑆𝑛

,

with 𝑠1 = 1 + 𝑘(𝑘 + 1)(1 − 𝑛) and 𝑠2 = 𝑘(𝑘 + 1). These maps are given by the

formulas in the polynomial representation of the Cherednik algebra, which we used

in the proof of Proposition 5.5.4.2. The isomorphism 𝛽 can be thought of as a certain

ultraproduct of these maps.

We have another corollary:

Corollary 5.5.4.6. The algebra 𝐴1+𝑘(𝑘+1)(1−𝐾),𝑘(𝑘+1) is a flat filtered deformation of

𝑈(po).

Remark 5.5.4.7. Note that via Corollary 5.3.3.5 we can also easily obtain the

presentation by generators and relations of DDC-algebras 𝒟1,𝑘,𝜈 .

Remark 5.5.4.8. Also see Section 4.3 of [18], where the group of transformation of

parameters 𝑘, 𝜈 under which the algebra 𝒟1,𝑘,𝜈 is invariant up to an isomorphism is

discussed by P. Etingof.
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5.6 Deformed double current algebras for other Γ

In this section we will give an outline of the extensions of the results of the previous

section from the DDCA of rank 1 and type A to the rank 1 DDCA of other types,

especially type 𝐵.

5.6.1 The case of general Γ

In this section we will repeat the construction of Section 5.3 for the DDCA corre-

sponding to arbitrary Γ. Here again for brevity we consider only the case of tran-

scendental 𝜈. Since the construction is literally the same upon changing Rep(𝑆𝜈) to

Rep(𝑆𝜈 n Γ𝜈), we will go over it rather quickly.

First we start with a definition.

Definition 5.6.1.1. The object 𝐻𝑡,𝑘,𝑐(𝜈,Γ)e ∈ Rep(𝐻𝑡,𝑘,𝑐(𝜈,Γ)) is defined to be

equal to Ind𝐻𝑡,𝑘,𝑐(𝜈,Γ)
𝑆𝜈nΓ𝜈 (k). It follows that 𝐻𝑡,𝑘,𝑐(𝜈,Γ)e =

∏︀𝐶,𝑟
ℱ 𝐻𝑡𝑛,𝑘𝑛,𝑐𝑛(𝑛,Γ)e.

Note that assigning deg(𝑉 ) = 1 gives us the filtration on 𝐻𝑡,𝑘,𝑐(𝜈,Γ)e in the same

fashion as in the Definition 5.3.4.2 and the remark after it. The same filtration works

in finite rank.

Now we can define the DDCA itself:

Definition 5.6.1.2. The DDC algebra ̃︀𝒟𝑡,𝑘,𝑐,𝜈(Γ) is given by:

̃︀𝒟𝑡,𝑘,𝑐,𝜈(Γ) := EndRep(𝐻𝑡,𝑘,𝑐(𝜈,Γ))(𝐻𝑡,𝑘,𝑐(𝜈,Γ)e) = HomRep(𝑆𝜈nΓ𝜈)(C, 𝐻𝑡,𝑘,𝑐(𝜈,Γ)e).

Similarly to Proposition 5.3.1.2, we have:

Proposition 5.6.1.3. The algebra ̃︀𝒟𝑡,𝑘,𝑐,𝜈(Γ) can be constructed as the restricted

ultraproduct of spherical subalgebras
∏︀𝑟

ℱ𝐵𝑡𝑛,𝑘𝑛,𝑐𝑛(𝑛,Γ) with respect to the filtrations
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mentioned after Definition 5.6.1.1.

Remark 5.6.1.4. We can also do the same thing in the Deligne categories over C(𝜈)

and obtain the algebra ̃︀𝒟ext
𝑡,𝑘,𝑐,𝜈(Γ) over C(𝜈).

Remark 5.6.1.5. The analogs of the results of Section 4.1.3 still hold and we can

also construct the algebra 𝒟𝑡,𝑘,𝑐(Γ) over C, where 𝜈 becomes a central element.

Remark 5.6.1.6. Note that we obtain the case of type A if we set Γ = 1, the trivial

group. i.e., we have ̃︀𝒟𝑡,𝑘,∅,𝜈(1) = ̃︀𝒟𝑡,𝑘,𝜈 .
5.6.2 The deformed double current algebra of type B

In this section we would like to sketch some results on the presentation of the DDCA

in type B by generators and relations akin to the discussion for type A in Section 5.5.

Most of the results of this section were obtained through a computer computation.

First of all note that we can obtain the DDCA of type B by taking Γ = Z/2.

Definition 5.6.2.1. Denote ̃︀𝒟𝑡,𝑘,𝑐,𝜈 := ̃︀𝒟𝑡,𝑘,𝑐,𝜈(Z/2). Here 𝑐 is just a single number,

since Z/2 has a single non-trivial conjugacy class. Define ̃︀𝒟ext
𝑡,𝑘,𝑐,𝜈 and 𝒟𝑡,𝑘,𝑐 in the

same way.

We saw that 𝒟1,𝑘 was a deformation of 𝑈(po). It turns out that a similar state-

ment holds for type B.

Definition 5.6.2.2. By po+ denote the Lie subaglebra of po given by the linear

combinations of even degree monomials. I.e., po+ = poZ/2, where Z/2 acts on po

by 𝑝 ↦→ −𝑝 and 𝑞 ↦→ −𝑞. This Lie algebra has an even grading restricted from the

grading of po, and this grading is also a grading by sl2-modules under the adjoint

action of po0.

159



It’s now easy to see, by similar arguments, that whereas the ultraproduct of type

A algebras e𝐻𝑡,𝑘(𝑛)e which are isomorphic to Q[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛]
𝑆𝑛 as vector

spaces is a deformation of 𝑈(po), the ultraproduct of type 𝐵 algebras e𝐻𝑡,𝑘,𝑐(𝑛)e

which are isomorphic as vector spaces to Q[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛]
𝑆𝑛n(𝑍/2Z)𝑛 is a defor-

mation of 𝑈(po+).

Now one can also provide a presentation of po+ similar to Proposition 5.5.2.6. To

state such a result we need to give a few definitions.

Definition 5.6.2.3. Denote by b the Lie subalgebra of po+ given by po+−2 ⊕ po+0 .

The Lie subalgebra n is given by po+2 ⊕ po+4 ⊕ . . . . So po+ = b⊕ n.5

We will need a little more notation:

Definition 5.6.2.4. Fix an isomorpism of b0 with sl2 given by 𝑒 → 𝑏1 = − 𝑞2

2
and

𝑓 → 𝑏3 = 𝑝2

2
. Fix an isomorphism of b−2 with 𝑉0 with the highest weight vector

specified as 𝐾.

Fix an isomorphism of n2 with 𝑉4 with the highest weight vector specified as

𝑑1 =
𝑞4

8
.

Consider the free Lie algebra 𝐿(n2). Consider Λ2n2 ⊂ 𝐿(n2)4. As sl2-modules we

have Λ2n2 ≃ 𝑉6 ⊕ 𝑉2. Denote the submodule of Λ2n2 isomorphic to 𝑉0 by 𝜑′
1 and

the submodule isomorphic to 𝑉6 by 𝜑′
2. Fix an isomorphism of 𝜑′

1 with 𝑉2 with the

highest weight vector specified as 3𝑑2 ∧ 𝑑3− 2𝑑1 ∧ 𝑑4. Fix an isomorphism of 𝜑′
2 with

𝑉6 with the highest weight vector specified as 𝑔1 = 𝑑2 ∧ 𝑑1. Here 𝑑𝑖 = 𝑓 𝑖−1𝑑1.

Consider 𝜑′
2 ⊗ n2 ⊂ 𝐿(n2)6. We have 𝜑′

2 ⊗ n2 ≃ 𝑉10 ⊕ 𝑉8 ⊕ 𝑉6 ⊕ 𝑉4 ⊕ 𝑉2 as

sl2-modules. Denote the submodule isomorphic to 𝑉10 by 𝜓′
5 and the submodule

isomorphic to 𝑉4 by 𝜓′
2. Fix an isomorphism of 𝜓′

2 with 𝑉4 with the highest weight

vector specified as 𝑔4 ⊗ 𝑑1 − 3𝑔3 ⊗ 𝑑2 + 5𝑔2 ⊗ 𝑑3 − 5𝑔1 ⊗ 𝑑4, where 𝑔𝑖 = 𝑓 𝑖−1𝑔1.
5The algebras b and n should not be confused with their analogs from Section 4.
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Now we can state how the presentation of po+ looks like:

Proposition 5.6.2.5. (see [23], Table 3.1, relations 2.1, 3.2, 3.3) The Lie algebra

po+ is generated by b⊕ n2 with the following set of relations:

b0 ≃ sl2, b−2 ≃ 𝑉0 is central, n2 ≃ 𝑉4 as an sl2-module,

𝜑′
1 = 0, 𝜓′

5 = 0, 𝜓′
2 = 0,

where we use fixed isomorphisms from Definition 5.6.2.4.

Via a computer calculation similar to Proposition 5.5.3.2 one can obtain a result

about a certain class of flat filtered deformations of 𝑈(po+). To state that result we

will need one more definition:

Definition 5.6.2.6. Consider the free associative algebra 𝑇 (b⊕ n2). Note that the

subspace 𝑆2b0 ⊂ 𝑇 (b ⊕ n2) is isomorphic to 𝑉4 ⊕ 𝑉0 as a sl2-module. Denote the

submodule isomorphic to 𝑉4 as 𝛼′. Fix an isomorphism of 𝛼′ with 𝑉4 with the highest

weight vector specified by 𝑒2.

Proposition 5.6.2.7. Suppose 𝑈 is a flat filtered deformation of 𝑈(po+) as an

associative algebra (up to an automorphism), such that 𝑈(b) is still a subalgebra of

𝑈 , and the action of 𝑈(b) on n2 is not deformed. Then 𝑈 is isomorphic to the

algebra 𝐴𝑠1,𝑠2,𝑠3 defined below for some values of 𝑠1, 𝑠2 and 𝑠3. The algebra 𝐴𝑠1,𝑠2,𝑠3 is

generated by b⊕n2 with the set of relations given by the first line of Proposition 5.6.2.5

and the following relations, which substitute the last line in Proposition 5.6.2.5:

𝜑′
1 ≃ 6𝑠1b0, 𝜓

′
5 = 0,

𝜓′
2 ≃ 24(𝑠3𝛼

′ + 12𝑠2n2),
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where the notation used is understood in the same way as in Proposition 5.5.3.2.

Now we can state the result about the DDC-algebra of type 𝐵.

Proposition 5.6.2.8. The DDC-algebra 𝒟1,𝑘,𝑐 is a flat filtered deformation of 𝑈(po+).

It is isomorphic to 𝐴𝑠1,𝑠2,𝑠3 with

𝑠1 = 4𝑘(𝑘+1)𝐾+𝜆2−4(𝑘2+𝑘+1), 𝑠2 = 4𝑘(𝑘+1)𝐾+𝜆2−9(𝑘2+𝑘+1), 𝑠3 = 𝑘(𝑘+1),

where 𝜆 := 𝑐+ 1
2
.

Remark 5.6.2.9. Notice that in the same way as C[𝑥, 𝜕] is a flat filtered deformation

of po, Feigin’s Lie algebra gl(𝜆) := 𝑈(sl2)/(𝐶 = 𝜆2−1
2

) (where 𝐶 := 𝑒𝑓+𝑓𝑒+ ℎ2

2
is the

Casimir) introduced in [22] is a flat filtered deformation of po+. More precisely we

have 𝑈(gl(𝜆)) ≃ ̃︀𝒟1,0,𝜆− 1
2
,𝜈 (for any 𝜈, as this algebra does not depend of 𝜈); indeed,

it is easy to see looking at the relations that the deformation ̃︀𝒟1,0,𝜆− 1
2
,𝜈 arises from

the most general deformation of po+ as a (filtered) Lie algebra. These relations are

given in [23], at the beginning of Table 3.1. For more information about deformations

of po+ and gl(𝜆) see [44].

Note that the parameters 𝑠1, 𝑠2, 𝑠3 in Proposition 5.6.2.8 are not independent: we

have

𝑠1 − 𝑠2 = 5(𝑠3 + 1). (5.4)

This is, however, the most general deformation because the parameters 𝑠1, 𝑠2, 𝑠3 are

homogeneous of degrees 4, 4, 6, hence can be rescaled by 𝑠1 ↦→ 𝑧2𝑠1, 𝑠2 ↦→ 𝑧2𝑠2,

𝑠3 ↦→ 𝑧3𝑠3 without changing the algebra. This implies

Corollary 5.6.2.10. The deformation 𝐴𝑠1,𝑠2,𝑠3 is flat for all 𝑠1, 𝑠2, 𝑠3.
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Remark 5.6.2.11. For the discussion of the the group of transformation of param-

eters of ̃︀𝒟1,𝑘,𝜈 under which the algebra is invariant up to an isomorphism see Section

5.2 of [18], where it is explored by P. Etingof. There the fact that through the in-

terpolation of spherical Cherednik algebras of type B one parameter is lost is also

explained.
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Appendix A

Appendix: Direct calculation of

generators and relations for po

Here we would like to give a direct proof of Proposition 5.5.2.3. As we mentioned

in the main text, we have a surjective map 𝜋 : 𝐿(n1) → n. Let us denote the ideal

generated by 𝜑1, 𝜓4, 𝜓1 and 𝜒1 as 𝐼 ⊂ 𝐿(n1). It’s easy to see that this ideal is in

the kernel of 𝜋. Indeed, to conclude that we only need to know that the generators

of n1 satisfy the four last relations of Proposition 5.5.2.7, which is a straightforward

calculation. Let us denote the quotient 𝐿(n1)/𝐼 by l. So we have a surjective map

𝜋′ : l→ n. We only need to prove that 𝜋′ is injective.

Proposition A.0.0.1. The map 𝜋′ just described is an isomorphism.

Proof. Both algebras have a natural grading given by assigning n1 to have degree 1.

We will prove that 𝜋′ is an isomorphism by induction.

It will be easier for us to begin with the induction step. I.e., we will prove that if

𝜋′ is an isomorphism for all degrees up to 𝑙−2 (with 𝑙 ≥ 6), then it is an isomorphism

for 𝑙−1. We will prove the base of induction (i.e., the fact that 𝜋′ is an isomorphism
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for degrees 2, 3 and 4) later, using the general formulas we derived.

So, suppose we know that up to 𝑙 − 2 we have l𝑗 ≃ n𝑗 ≃ 𝑉𝑗+2. It means that

if we want to show that a certain element of 𝐿(n1) is in 𝐼, we can freely commute

elements with total degree ≤ 𝑗 as though they were the elements of po. Indeed, this

will only add to our elements something which is already contained in 𝐼. Let us

denote the highest weight vector of l𝑗 by 𝑣𝑗+2
1 , which corresponds to 𝑞𝑗+2 under the

above isomorphism (i.e. l𝑗 ≃ n𝑗 ≃ 𝑉𝑗+2). We set 𝑣𝑗𝑖 = 𝑓 𝑖−1𝑣𝑗1.

Now we know that l𝑙−1 is a quotient of l𝑙−2 ⊗ n1 ≃ 𝑉𝑙+3 ⊕ 𝑉𝑙+1 ⊕ 𝑉𝑙−1 ⊕ 𝑉𝑙−3, i.e.,

we have a surjective map 𝜉𝑙−1 : 𝑉𝑙+3 ⊕ 𝑉𝑙+1 ⊕ 𝑉𝑙−1 ⊕ 𝑉𝑙−3 → l𝑙−1. We only need to

prove that 𝜉𝑙−1(𝑉𝑙+3 ⊕ 𝑉𝑙−1 ⊕ 𝑉𝑙−3) = 0.

We would like to describe the highest weight vectors of the simple sl2-modules in

the decomposition of l𝑙−2⊗ n1 explicitly. To do so, it is enough to find the vectors of

the required weight which are annihilated by the action of 𝑒. It is easy to see that

the highest weight vector of 𝑉𝑙+3 is proportional to 𝑣𝑙1⊗ 𝑐1; the highest weight vector

of 𝑉𝑙+1 to 3𝑣𝑙2 ⊗ 𝑐1 − 𝑙𝑣𝑙1 ⊗ 𝑐2; the highest weight vector of 𝑉𝑙−1 to

6𝑣𝑙3 ⊗ 𝑐1 − 4(𝑙 − 1)𝑣𝑙2 ⊗ 𝑐2 + 𝑙(𝑙 − 1)𝑣𝑙1 ⊗ 𝑐3;

the highest weight vector of 𝑉𝑙−3 to

6𝑣𝑙4 ⊗ 𝑐1 − 6(𝑙 − 2)𝑣𝑙3 ⊗ 𝑐2 + 3(𝑙 − 2)(𝑙 − 1)𝑣𝑙2 ⊗ 𝑐3 − 𝑙(𝑙 − 1)(𝑙 − 2)𝑣𝑙1 ⊗ 𝑐4.

Writing the highest weight vectors in this way allows us to write the action of 𝜉𝑙−1

in a straightforward way, i.e., 𝑦 ⊗ 𝑥 ∈ l𝑙−2 ⊗ n1 is mapped into 𝜉𝑙−1(𝑦 ⊗ 𝑥)→ [𝑦, 𝑥].

Now we need to prove that each of the highest weight vectors corresponding to

𝑉𝑙+3, 𝑉𝑙−1 and 𝑉𝑙−3 belongs to 𝐼, i.e., maps to zero under 𝜉𝑙−1. Let us start with 𝑉𝑙+3.

166



Now we know that [𝑣𝑙−2
2 , [𝑑1, 𝑐1]] is in 𝐼. If we transform this expression using the

commutator formulas in po for elements of degree less or equal than 𝑙 − 2, we will

stay in 𝐼 by the induction assumption. So, in l𝑙−1 we have:

0 = [𝑣𝑙−2
2 , [𝑑1, 𝑐1]] = [[𝑣𝑙−2

2 , 𝑑1], 𝑐1]− [[𝑣𝑙−2
2 , 𝑐1], 𝑑1] = (𝑙 − 2)[𝑣𝑙1, 𝑐1]−

1

2
(𝑙 − 2)[𝑣𝑙−1

1 , 𝑑1],

where we have calculated [𝑣𝑙−2
2 , 𝑑1] and [𝑣𝑙−2

2 , 𝑐1] in po as we’ve discussed before the

formula. Now we also express 𝑑1 = [𝑐2, 𝑐1] and get:

[𝑣𝑙−1
1 , 𝑑1] = [[𝑣𝑙−1

1 , 𝑐2], 𝑐1]− [[𝑣𝑙−1
1 , 𝑐1], 𝑐2] = −

1

2
(𝑙 − 1)[𝑣𝑙1, 𝑐1].

So we conclude that:

0 = (𝑙 − 2)(𝑙 + 3)[𝑣𝑙1, 𝑐1] = (𝑙 − 2)(𝑙 + 3)𝜉𝑙−1(𝑣
𝑙
1 ⊗ 𝑐1),

which is proportional to the image of the highest weight vector of 𝑉𝑙+3, and since

𝑙 ≥ 6, it follows that it is indeed zero.

We use a similar method for two other highest weight vectors. Starting with:

0 = [𝑣𝑙−1
1 , [𝑐1, 𝑐4]− [𝑐2, 𝑐3]],

we get:

0 = 6[𝑣𝑙3, 𝑐1]−4(𝑙−1)[𝑣𝑙2, 𝑐2]+(𝑙−1)𝑙[𝑣𝑙1; 𝑐3] = 𝜉𝑙−1(6𝑣
𝑙
3⊗𝑐1−4(𝑙−1)𝑣𝑙2⊗𝑐2+𝑙(𝑙−1)𝑣𝑙1⊗𝑐3),

which is the highest weight vector of 𝑉𝑙−1.
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To deal with the highest weight vector of 𝑉𝑙−3 we start with:

0 = [𝑣𝑙−2
2 , [𝑑4, 𝑐1]− 2[𝑑3, 𝑐2] + 3[𝑑2, 𝑐3]− 4[𝑑1, 𝑐4]].

After a similar calculation we get:

0 = 𝜉𝑙−1(12(44− 16𝑙)𝑣𝑙4 ⊗ 𝑐1 + 12(𝑙 − 2)(11𝑙 − 35)𝑣𝑙3 ⊗ 𝑐2+ (A.1)

+12(𝑙 − 2)(𝑙 − 1)(13− 3𝑙)𝑣𝑙2 ⊗ 𝑐3 + 𝑙(𝑙 − 1)(𝑙 − 2)(2𝑙 − 34)𝑣𝑙1 ⊗ 𝑐4),

denote this element of l𝑙−2 ⊗ n1 in brackets by 𝛼1. We know that 𝛼1 is of sl2-weight

𝑙 − 3, and we know that it belongs to the kernel of 𝜋′ ∘ 𝜉𝑙−1. Hence it is the element

of the submodule isomorphic to 𝑉𝑙+3 ⊕ 𝑉𝑙−1 ⊕ 𝑉𝑙−3. Denote by 𝛼2 the result of the

action by 𝑒3 on the highest weight vector of 𝑉𝑙+3 and by 𝛼3 the result of the action

of 𝑒 on the highest weight vector of 𝑉𝑙+1. We have:

𝛼2 = 𝑣𝑙4 ⊗ 𝑐1 + 3𝑣𝑙3 ⊗ 𝑐2 + 3𝑣𝑙2 ⊗ 𝑐3 + 𝑣𝑙1 ⊗ 𝑐4,

and:

𝛼3 = 6𝑣𝑙4 ⊗ 𝑐1 + (10− 4𝑙)𝑣𝑙3 ⊗ 𝑐2 + (𝑙 − 1)(𝑙 − 4)𝑣𝑙2 ⊗ 𝑐3 + 𝑙(𝑙 − 1)𝑣𝑙1 ⊗ 𝑐4.

Now if 𝛼1 is linearly independent of 𝛼2 and 𝛼3, then the highest weight vector of

𝑉𝑙−3 lies in the linear span of 𝛼𝑖, and since 𝜉𝑙−1(𝛼𝑖) = 0 it follows that 𝜉𝑙−1 acts on

the highest weight vector by zero.

But calculating the roots of the minors of the matrix given by the coordinates of

𝛼𝑖, we see that the common roots are only 𝑙 = −1,−2, 5. So, since in our case 𝑙 ≥ 6,

we are done, and 𝜋′ is an isomorphism in the degree 𝑙 − 1.
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Now we can prove the base of induction, i.e., the degrees 2, 3, 4.

Let us begin with l2. We have 𝐿(n1) = Λ2n1 = 𝜑2 ⊕ 𝜑1 (𝑉0 ⊕ 𝑉4 as sl2-modules)

and 𝐼2 = 𝜑1. So we see that l2 = 𝜑2 ≃ 𝑉4, which has the same dimension as n2. So

𝜋′ must be an isomorphism in degree 2. Note that it also follows that the minimal

set of relations must contain 𝜑1.

Now we deal with l3. We have a surjective map

𝜉3 : l2 ⊗ n1 ≃ 𝑉7 ⊕ 𝑉5 ⊕ 𝑉3 ⊕ 𝑉1 → l3.

Here we have a part of 𝐼3 generated by 𝐼2, i.e., we have 𝜑1 ⊗ n1 ≃ 𝑉3 → 𝐼3. But

the consequence of this relation was exactly calculated by us in the general case,

when we used that 0 = [𝑣𝑙−1
1 , [𝑐1, 𝑐4]− [𝑐2, 𝑐3]]. As was shown there, this leads to the

conclusion that 𝑉3 is in the kernel of 𝜉3. However, we cannot kill anything else using

only the relation 𝜑1. But 𝑉7⊕ 𝑉0 are precisely 𝜓4 and 𝜓1, hence they lie in 𝐼3 and in

the kernel of 𝜉3. So l3 has the same dimension as n3 and 𝜋′ is an isomorphism. Note

that this also shows that the minimal set of relations must contain 𝜓1, 𝜓4.

To finish we need to consider l4. As before, we have a surjective map

𝜉4 : l3 ⊗ n1 ≃ 𝑉8 ⊕ 𝑉6 ⊕ 𝑉4 ⊕ 𝑉2 → l4.

The general formulas from the induction step allow us to conclude that

𝜉4(𝑉8 ⊕ 𝑉4) = 0. Now we need to deal with 𝑉2. However, as we can see from

the general formulas, 𝛼1 defined in Equation A.1 becomes linearly dependent with

𝛼2 and 𝛼3 in degree 4. Indeed, it turns out that 𝑉2 does not belong to the ideal

generated by 𝜓1, 𝜓4 and 𝜑0.

We see that all we can generate by 𝜑0 in degree 4 is given by 𝜑0⊗Λ2n1 ≃ 𝑉0⊕𝑉4,
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so it does not contain anything isomorphic to 𝑉2. All we can generate by 𝜓4 is

𝜓4 ⊗ n1 ≃ 𝑉10 ⊕ 𝑉8 ⊕ 𝑉6 ⊕ 𝑉4, so it does not contain anything isomorphic to 𝑉2. So

the only chance to kill 𝑉2 is 𝜓1⊗n1 = 𝑉4⊕𝑉2. But using our calculation (and similar

ones) it follows that this doesn’t kill 𝑉2 in l3 ⊗ n1.

But the relation 𝜒1 takes care of it. So it follows both that l4 is isomorphic to n4

under 𝜋′ and that the minimal set of relations must contain 𝜒1.
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