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Abstract

Air Force crew scheduling involves assigning pilots to flights to fulfill mission duties
and complete training requirements. Because of complex qualification requirements,
as well as crew rest and availability constraints, Air Force crew scheduling is a chal-
lenging combinatorial optimization problem. Further, last-minute disruptions and
uncertainties in factors like flight duration and pilot availability motivate the need
for more robust schedules. Traditionally, this has been a manual, tedious, and time-
consuming process. In this thesis, we leverage optimization techniques to improve
the crew scheduling process. We start with a baseline integer program formulation.
We develop objective functions based on two known scheduler priorities: maximiz-
ing training requirements completed, and minimizing overqualification (assigning the
lowest qualified pilot feasible for each pilot seat). Then, we present a formulation to
handle disruptions to an original schedule. We develop an intuitive schedule visual-
ization tool that we use for user studies, and discuss user feedback on our scheduling
algorithms. Finally, we identify key uncertainties in Air Force crew scheduling and
contrast them with commercial aviation. We adapt two concepts from commercial
aviation for robust crew scheduling: buffer times (slack time between two successive
flights operated by the same pilots) and move-up crews (back-up crews for substitu-
tion when pilots become unavailable). This work will contribute to the core of the
Puckboard scheduling software under development by the Air Force for crew schedul-
ing. 1

Thesis Supervisor: Hamsa Balakrishnan
Title: Professor, Aeronautics and Astronautics

1The views expressed are those of the author and do not reflect the official guidance or position
of the United States Government, the Department of Defense, or of the United States Air Force.
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Chapter 1

Introduction

1.1 Motivation

Air Force crew scheduling is a complex yet largely manual process. Several consider-

ations are taken into account when creating schedules. These considerations include

pilot availability, qualification levels required, training requirements to complete, and

likelihood of schedule disruption. Because of the need to consider so many factors, a

typical schedule can take 3 airmen working 9 hours/day for a total of 27 person-hours

to create. Thus, there is an opportunity to improve the scheduling process so that

airmen can focus on their other important duties.

Because the current scheduling process is so manual and ad-hoc, it is also likely

suboptimal. Air Force schedulers (hence referred to as “schedulers”) that we talked

to state that they frequently have to discard previously made schedules in the face

of disruptions. In the Air Force, schedule disruptions are very common, due to, for

example, pop-up missions, unexpected pilot unavailability, or maintenance issues. We

expect that optimization techniques can not only save schedulers time, but improve

the quality of schedules.
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1.2 Project Background

Because the Air Force recognizes the need to improve the scheduling process, it is

developing Puckboard, a web-based software application to assist schedulers. Puck-

board is currently deployed for C-17 squadrons but is expected to be rolled out to

other squadrons in the Air Force. One of the main successes of Puckboard so far has

been housing data from various databases in one centralized place. The name for

Puckboard stems from the fact that schedulers used to use pucks on whiteboards as

representation of pilot assignments when creating schedules. With Puckboard, sched-

ulers no longer have to cross-reference several whiteboards or Excel documents, which

has already led to efficiency gains.

The goal of Puckboard is not to replace schedulers, but assist them. Currently,

Puckboard is used primarily as a centralized data source and for manual deconfliction

of pilot assignments. It has an “autofill” button to automatically generate pilot as-

signments, but there is a desire for more realistic and practically acceptable schedules.

Puckboard accounts for pilot availability and general notions of required qualification

levels. However, schedulers note that it is often more time-consuming to clean up the

“autofill” output than to build a schedule manually. The work in this thesis will con-

tribute to the automated scheduling functionality of Puckboard, which should increase

the value-added to schedulers

Three general types of flights that schedulers need to assign pilots to are: sim-

ulation flights, local training flights, and missions. Simulation flights (“sims”) are

conducted with ground-based simulators. Sims and local training flights are primar-

ily for pilots to complete training requirements. Missions generally last longer and

can be given to schedulers with little advance notice. Schedulers manage several sub-

categories of flights, including, but not limited to, air-drop and air-refueling flights.

For each flight, schedulers are given the scheduled times, locations, and required qual-

ification levels. Schedulers do not have much leeway in adjusting flight times, so they

are primarily concerned with a crew assignment problem.

Each flight has a set of minimum required qualification levels that must be satis-
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fied by onboard personnel for the flight to be “flyable”. Puckboard currently incorpo-

rates three broad categories of qualification levels: loadmasters, pilots, and aircraft

commanders, but there are typically more than 30 unique qualification levels in a

squadron. In addition to ensuring that all flights are adequately staffed, pilots have

a syllabus of training requirements that need to be satisfied. Schedulers thus seek to

ensure that as many pilot assignments as possible can contribute toward completing

training requirements.

1.3 Prior Works

Although research focused solely on military crew scheduling is scarce, there are three

relevant theses from the US Naval Postgraduate School (NPS). These works are most

directly related to this thesis. In [6], the author constructs an integer program for joint

flight scheduling and crew scheduling. They generate crew assignments that maximize

the total “reward” across all pilots, where the reward is linked to completing training

requirements. This work includes three general qualification levels (instructors, leads,

and students), but Puckboard handles upwards of thirty qualification levels with more

specialized qualifications, such as night or air-drop qualifications. In addition, this

work does not explicitly consider crew rest, night flights, or robustness. Another

thesis from the NPS maximizes the number of scheduled flights within the Fallon

Range Training Complex, while considering airspace constraints, but does not provide

detailed departure and arrival times [9]. The third thesis from the NPS augments

[9] with detailed times and introduces the idea of persistence, wherein as disruptions

occur, changes to previous schedules are minimized [13]. The idea of persistence is

particularly relevant for Chapter 3.

In contrast to military crew scheduling, airline crew scheduling has received con-

siderable attention from industry and academia. Airline crew scheduling refers to

assigning pilots and flight attendants to flights. Typically, crew scheduling is the

last step of the overall airline schedule planning process (schedule generation, fleet

assignment, maintenance routing, crew scheduling) [2]. Recent work has looked at in-
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tegrated flight and crew scheduling, including shifting flights five minutes earlier/later

when creating crew schedules [10] and integrating aircraft routing and crew schedul-

ing in an iterative process [15]. However, the current practice in industry is for crew

scheduling to be performed after flight schedules have been fixed. This is also the

case with Air Force crew scheduling, as flight schedules are fixed and determined by

another department.

There are several other similarities between airline crew scheduling and military

scheduling. Both have to consider rest requirements, leave/vacation, pilot qualifica-

tions, and pilot training. With military crew scheduling, the latter two are perhaps

more involved, as there can be hundreds of different pilot qualifications and complex

training syllabi. The way airline crew schedules are structured is significantly dif-

ferent from the military. (In the following discussion, crews refer to pilots or flight

attendants.) Sequences of flights operated in the same day are grouped into duty

periods. Then, since duty periods can start and end in different locations, sequences

of duty periods are grouped into pairings [14]. Pairings typically last from one to five

days and start and end at the same crew base. Notably, crew members typically stay

together for the duration of a pairing. This is possible because the flights within each

pairing require similar type ratings (e.g., Boeing 777/787 rating). The notions of duty

periods and pairing are not as relevant in the military for a few reasons. First, the

flight type, not just the aircraft type, dictates what pilot qualifications are required

and consequentially which pilots are eligible to be assigned to it. For example, flights

involving in-flight refueling require pilots with special qualifications. In addition, mil-

itary pilots have detailed training requirements involving sequences of flights (with

certain characteristics) that must be completed. Airline pilot training requirements

are more general, like minimum flight hour requirements, making it easier to group

crew members together.

Another distinction is that airline crew scheduling is usually divided into two sub-

problems to reduce computational complexity [1]. The crew pairing problem (CPP)

combines flights and duties into valid crew pairings, taking into account duty con-

straints, and the crew rostering problem (CRP) assigns specific crew to these pairings.
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The CPP can be solved before the CRP because only high-level metrics of the crew

roster (e.g., number of crew at each crew base) are necessary to generate the pairings.

In the military, this process would not work as each pilot has unique qualifications

and training requirements that would need to be incorporated when solving the CPP.

This necessitates the consideration of each pilot individually. For example, given two

pilots A and B with the same qualification level, a flight may be useful for A because

it completes an outstanding training requirement, but useless for B because they have

already completed that requirement. Moreover, it is difficult to take crew preferences

into account in the CPP since it is undecided who will be assigned to each pairing. As

such, in this thesis, we do not follow the sequential crew pairing then crew rostering

process.

One major feature of crew schedules is connection times between successive events

operated by the same crew. Airlines have minimum connection times dictated by the

Federal Aviation Administration (FAA) and labor regulations, while the military has

similar regulations. In addition, there is a trade-off between efficiency and robustness

when setting connection times. With shorter connection times, the schedule is more

efficient since pilot and aircraft utilization are higher, but the schedule is less robust

as delays are more likely to propagate. For example, if a flight (𝑓 ′) is delayed and the

next flight (𝑓) that the crew is scheduled to operate is scheduled soon after, 𝑓 may also

be delayed. In [15], the authors introduce a non-robustness metric, which penalizes

crew connections times close to the minimum connection times. Other notions of

robustness include buffer times and expected delay propagation [16], and move-up

crews [12], which we will discuss in detail in Chapter 4.

More broadly, several prior works consider variations of scheduling problems. The

classical problem of job-shop scheduling involves assigning machines of varying capa-

bility to tasks of varying length with the objective of minimizing the total makespan

(length of the schedule) [8]. Scheduling problems are also studied in other disci-

plines. In healthcare, there is the doctor/nurse scheduling problem [17], where rest

requirements and qualifications are important. In the patient appointment schedul-

ing problem, just as pilots have preferences and a required set of events, patients
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prefer certain times and need to be matched with certain types of medical workers

across a set of required appointments [5]. Railroad agencies also generate schedules

and actively seek to mitigate disruptions. In [3], the authors formulate and solve a

recovery-robust optimization problem for train timetabling, which is better suited to

handle disruptions. In the trucking industry, collaborative scheduling across different

companies and terminals has been explored [11]. In addition, public transit agencies

undertake a multi-step scheduling process similar to airlines [4]. There are numerous

examples of scheduling problems across other industries as well, but the main point is

that military crew scheduling is relatively unexplored but can draw inspiration from

several prior works, particularly in commercial aviation.

1.4 Outline

In Chapter 2, we present the baseline integer program that includes the metrics of

overqualification and training requirements completed. In Chapter 3, we modify the

baseline formulation to handle disruptions while preserving the original schedule as

much as possible. We also discuss schedule visualizations and initial user feedback on

our scheduling formulations. In Chapter 4, we present formulations that incorporate

buffer time and move-up crews with the goal of creating more robust schedules. We

end with conclusions and future work in Chapter 5.
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Chapter 2

Baseline Integer Program

Air Force schedulers are given a slate of flights that must be filled by pilots. Each

flight has a scheduled departure and arrival time, as well as pre-mission briefing and

post-mission rest times. These scheduled times are typically determined beforehand

based on aircraft availability and rotation, so there is little flexibility in adjusting

these times. As such, the baseline integer program that we develop centers on crew

assignment. Each flight has a minimum and maximum number of pilots that can be

assigned to it based on aircraft size. In addition, each flight has a list of qualification

requirements that must be satisfied. These qualification requirements can be as sim-

ple as “two pilots and three loadmasters” or as complex as “one A-level instructor pilot

with special airdrop qualifications, two C-level pilots with right seat airdrop qualifica-

tions”. In addition, schedulers must account for pilot leave and temporary duty travel

(TDY). Schedulers have various priorities when creating pilot assignments, including,

but not limited to, completing pilot training requirements and assigning the lowest

qualified pilots to flights.

2.1 Notation

We define the following sets and subsets. We have sets for pilots, flights, time periods,

and qualification levels, and various subsets based on them. We choose hours as the
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units for the time periods, but other time intervals can easily be used instead.

𝑖 ∈ 𝐼 Set of Pilots

𝑓 ∈ 𝐹 Set of Flights

𝑡 ∈ 𝑇 Set of Time Periods

𝑞 ∈ 𝑄 Set of Qualification Levels

𝐹𝑖 ⊂ 𝐹 Flights that pilot 𝑖 is qualified for

𝑇𝑓 ⊂ 𝑇 Time periods in flight 𝑓

𝑈𝑓 ⊂ 𝐹 Flights that overlap with flight 𝑓

𝐼𝑓 ⊂ 𝐼 Pilots that are qualified for an assignment on flight 𝑓

𝑄𝑓 ⊂ 𝑄 Qualification level requirements of flight 𝑓

𝐼𝐸𝑃 ⊂ 𝐼 Pilots qualified to be evaluator pilots

𝐼𝐼𝑃 ⊂ 𝐼 Pilots qualified to be instructor pilots

We also define the following parameters for flight requirements, pilot availability,

and pilot qualifications.

𝐼𝑚𝑖𝑛
𝑓 Minimum number of pilots required for flight 𝑓

𝐼𝑚𝑎𝑥
𝑓 Maximum number of pilots allowed for flight 𝑓

𝑎𝑖𝑡 1 if pilot 𝑖 is available during period 𝑡; 0 otherwise

𝑧𝑖𝑞 1 if pilot 𝑖 satisfies qualification 𝑞; 0 otherwise

𝑁𝑓𝑞 Number of pilots with qualification 𝑞 or higher needed on flight 𝑓

2.2 Baseline Formulation

We denote the binary decision variable as 𝑋𝑖𝑓 which is 1 if pilot 𝑖 ∈ 𝐼 is assigned to

flight 𝑓 ∈ 𝐹 , and 0 if pilot 𝑖 is not assigned to 𝑓 . We start with the baseline formu-

lation where the objective function is to minimize the number of pilot assignments.
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min
∑︁
𝑖∈𝐼

∑︁
𝑓∈𝐹𝑖

𝑋𝑖𝑓 (2.1)

subject to:

∑︁
𝑖∈𝐼𝑓

𝑋𝑖𝑓 ≥ 𝐼𝑚𝑖𝑛
𝑓 ∀𝑓 ∈ 𝐹 (2.2)

∑︁
𝑖∈𝐼𝑓

𝑋𝑖𝑓 ≤ 𝐼𝑚𝑎𝑥
𝑓 ∀𝑓 ∈ 𝐹 (2.3)

∑︁
𝑖∈𝐼𝑓

𝑧𝑖𝑞𝑋𝑖𝑓 ≥ 𝑁𝑓𝑞 ∀𝑓 ∈ 𝐹, 𝑞 ∈ 𝑄 (2.4)

𝑋𝑖𝑓 +𝑋𝑖𝑓 ≤ 1 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹, 𝑓 ∈ 𝑈𝑓 (2.5)

𝑋𝑖𝑓 ≤ 𝑎𝑖𝑡 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇𝑓 (2.6)

𝑋𝑖𝑓 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 (2.7)

Constraints 2.2 and 2.3 ensure that the number of pilots assigned to each flight is

within the acceptable range. Constraint 2.4 ensures that each flight has enough

pilots with the appropriate qualification levels. Consider a flight that needs one each

of qualification levels (A,B,C) with A being the highest qualification level and C

being the lowest. Then, 𝑁𝑓𝐴 = 1, 𝑁𝑓𝐵 = 2, 𝑁𝑓𝐶 = 3. We require three pilots to

have qualification C or higher because if we required only one, then the pilot with

qualification level A or higher would satisfy this requirement. That is, if 𝑁𝑓𝐴 = 1,

𝑁𝑓𝐵 = 1, 𝑁𝑓𝐶 = 1, one pilot with qualification level A would satisfy all of these

constraints. Constraint 2.5 ensures that pilots are not assigned to overlapping flights,

while constraint 2.6 ensures that pilots are available (i.e., not on leave or TDY) during

flight assignments. Finally, constraint 2.7 sets 𝑋 as a binary variable.
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2.3 Overqualification

We now discuss two possible modifications to the objective function. Schedulers may

prefer to minimize the utilization of their highest qualified pilots to preserve schedule

flexibility, as higher-qualified pilots are eligible to be assigned to more flights. In

addition, lower-qualified pilots need more training and are often more eager to fly.

One simple way to encode this preference is to modify the objective function as

follows. Equation 2.8 minimizes the utilization of the two highest qualified classes of

pilots: instructor and evaluator pilots.

min
∑︁
𝑖∈𝐼𝐼𝑃

∑︁
𝑓∈𝐹

𝑋𝑖𝑓 +
∑︁
𝑖∈𝐼𝐸𝑃

∑︁
𝑓∈𝐹

𝑋𝑖𝑓 (2.8)

Schedulers may also want to use the lowest qualified feasible pilot for each assign-

ment. We define an overqualification penalty 𝑂𝑖𝑓 ∈ [−1, 0) for each feasible pilot 𝑖

and flight 𝑓 combination, as shown below.

𝑂𝑖𝑓 = −rank𝑖𝑓

𝑁𝑓

(2.9)

We define rank𝑖𝑓 as the rank of pilot 𝑖’s qualification level among all acceptable

qualification levels for flight 𝑓 (with higher ranks corresponding to higher-qualified

pilots). 𝑁𝑓 is the number of feasible qualification levels for flight 𝑓 . Thus, the highest

qualified pilot for a flight with three eligible qualification levels will have 𝑂𝑖𝑓 = −1,

and the lowest qualified pilot will have 𝑂𝑖𝑓 = −1/3. We switch to a maximization

objective function (to be consistent with subsequent objective functions). Equation

2.10 maximizes the sum-product of 𝑋𝑖𝑓 and 𝑂𝑖𝑓 . Since this product is negative,

it minimizes the overqualification across all assignments. Thus, whenever choosing

between two feasible pilots with different qualification levels, the model will prefer

the pilot with lower qualification level, or equivalently, a less negative 𝑂𝑖𝑓 .

max
∑︁
𝑖∈𝐼

∑︁
𝑓∈𝐹𝑖

𝑋𝑖𝑓𝑂𝑖𝑓 (2.10)
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We note that the specification of 𝑂𝑖𝑓 is amenable to different preferences. For exam-

ple, users may prefer overqualification values of different but very close qualification

levels to be the same. In addition, users may prefer overqualification values to depend

on the type of flight being assigned, in addition to the qualification level of the pilot.

2.4 Training Requirements

While some flights fulfill specific Air Force missions such as cargo flights, other flights

are for the purpose of completing training requirements. Each pilot has a set of

training requirements that they must complete within a certain time period or on a

rolling basis. Oftentimes, a pilot needs to complete a requirement multiple times in a

given time period. Note that we distinguish training requirements from qualification

requirements, as the latter describes the required qualification levels to adequately

crew a flight. We define the following sets and parameters to formulate training

requirements.

𝑆 Set of types of training requirements

𝐹𝑠 ⊂ 𝐹 Flights that complete training requirement 𝑠 ∈ 𝑆

𝑆𝑖 ⊂ 𝑆 Set of training requirements that pilot 𝑖 ∈ 𝐼 needs to satisfy

𝑅𝑖𝑠 Number of requirements of type 𝑠 ∈ 𝑆 that pilot 𝑖 ∈ 𝐼 needs

𝑇𝑖𝑠 Time until requirements of type 𝑠 ∈ 𝑆 are due for pilot 𝑖 ∈ 𝐼

We define an additional binary variable 𝑟𝑘𝑖𝑠 which is 1 if 𝑘 number of require-

ments of type 𝑠 are satisfied by pilot 𝑖, and 0 otherwise. The objective function for

maximizing training requirement completion is as follows.

max
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆𝑖

∑︁
𝑘∈1:𝑅𝑖𝑠

𝑟𝑘𝑖𝑠 (2.11)

We also introduce additional constraints to define 𝑟𝑘𝑖𝑠. The constraints in the baseline
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formulation still apply.

∑︁
𝑘=1:𝑅𝑖𝑠

𝑟𝑘𝑖𝑠 <=
∑︁
𝑓∈𝐹𝑠

𝑋𝑖𝑓 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖 (2.12)

𝑟𝑘𝑖𝑠 <= 𝑟𝑘−1,𝑖,𝑠 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖, 𝑘 ∈ 2 : 𝑅𝑖𝑠 (2.13)

𝑟𝑘𝑖𝑠 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆𝑖, 𝑘 ∈ 𝑅𝑖𝑠 (2.14)

Constraint 2.12 states that the number of type 𝑠 requirements completed (summation

of 𝑟 for a given pilot 𝑖 and requirement type 𝑠) is less than or equal to the number of

flights flown of type 𝑠 by pilot 𝑖. Constraint 2.13 defines the order in which 𝑟 variables

are set to 1: the binary variable representing one requirement satisfied of type 𝑠 (𝑟1𝑖𝑠)

must equal 1 before the binary variable representing two requirements satisfied (𝑟2𝑖𝑠)

can be set to 1. That is, if 𝑘 requirements of type 𝑠 are completed by pilot 𝑖, then

𝑘−1 requirements of type 𝑠 have also been completed. Finally, constraint 2.14 defines

𝑟𝑘𝑖𝑠 to be a binary variable.

Besides summing the number of requirements completed, there are several other

possible objective functions. Two are listed below.

max
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆𝑖

∑︁
𝑘∈1:𝑅𝑖𝑠

𝑟𝑘𝑖𝑠(𝑅𝑖𝑠 − 𝑘 + 1) (2.15)

max
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆𝑖

∑︁
𝑘∈1:𝑅𝑖𝑠

𝑟𝑘𝑖𝑠(𝑅𝑖𝑠 − 𝑘 + 1)(
1

𝑇𝑖𝑠

) (2.16)

Equation 2.15 does not reward each training requirement completed equally, whereas

equation 2.11 does. Instead, requirements completed have a higher reward if there are

more outstanding training requirements. For example, if pilot 𝑖 has three outstanding

requirements of type 𝑠 (𝑅𝑖𝑠 = 3), the first requirement completed will be rewarded

three (𝑅𝑖𝑠−𝑘+1 = 3, since 𝑘 = 1); the second requirement completed will be rewarded

two (𝑅𝑖𝑠−𝑘+1 = 2, since 𝑘 = 2); and the third will be rewarded one. This prioritizes

training requirements where pilots have several training requirements of a particularly

type outstanding. In the Air Force, training requirements can often be waived if the

number of outstanding requirements is sufficiently low, so it is important to reduce
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the higher number of outstanding requirements as quickly as possible. Equation 2.16

is similar to equation 2.15 but includes 𝑇𝑖𝑠 which represents the time remaining until

requirement 𝑠 is due for pilot 𝑖. Thus, requirements due sooner will be prioritized

over requirements due later.

2.5 Results

We tested our formulation on a sample, anonymized dataset. The dataset contained

87 pilots with 31 possible qualification levels. We also obtained a sample training

requirements schedule, which included a) semi-annual requirements to be completed

within the first or second-half of the calendar year and b) rolling requirements to be

completed, for example, every three months. The dataset also contained details on

flight types and minimum required qualifications levels of onboard personnel. We also

aggregated leave and TDY data to determine pilot availability.

Two main objectives we have discussed so far are minimizing overqualification

and maximizing training requirements. We expect that there is a trade-off between

overqualification and training requirements. Minimizing overqualification amounts to

assigning the lowest-qualified feasible pilot for each assignment. As such, the lower-

qualified pilots will be heavily utilized, while the higher-qualified pilots will be kept

in reserve. Since there are a finite number of training requirements for each pilot, re-

peatedly scheduling the lower-qualified pilots may lead to fewer training requirements

completed than if the schedule was more evenly distributed across qualification level.

Koch’s thesis provides a thorough breakdown of the trade-offs between overqualifica-

tion and training requirements [7]. Key results from joint work are shown below, but

the main results of this thesis are in Chapter 3 and 4 with disruption handling and

robustness.

We show results for 10 weeks wherein 1,134 pilot assignments were made. The

schedule is determined one week at a time, so the optimizer is run 10 times. In each

week, we schedule all of the flights that depart within that week. Note that some

longer flights will spillover into subsequent weeks. Thus, when determining pilot avail-
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ability, we account for pilot assignments that spill over from one week to the next. We

tested three objective functions: overqualification (2.10), training requirements with

a linear penalty (2.15), and an objective that maximizes the sum of overqualification

and training requirements (2.10 + 2.15). Recall that overqualification was defined as

a maximization objective in 2.10 because 𝑂𝑖𝑓 is negative. Figure 2-1 shows the total

overqualification each week for the three objectives. We do not use overqualification

score as in 2.9, but instead show overqualification as the 𝑟𝑎𝑛𝑘𝑖𝑓 of the assigned pilot

𝑖 minus the required qualification level for flight 𝑓 that pilot 𝑖 is satisfying. The

trends in the plot would be similar with overqualification shown either way, but this

difference method should be more intuitive. Note that because of constraint 2.4, this

difference will always be non-negative. Figure 2-2 is formatted similarly to Figure 2-

1, but shows the number of training requirements completed each week for the three

objectives.

Figure 2-1: Total overqualification across 10 weeks with three different objectives.

We first note that the overqualification values remain relatively similar across

weeks for each objective. However, the number of training requirements completed
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decreases as time increases, since there are fewer unsatisfied training requirements in

later weeks. We see that the training requirements objective has the highest overqual-

ification and highest number of training requirements completed. On the other hand,

the overqualification objective has the lowest overqualification and the lowest number

of training requirements completed. The objective that includes both of them is in

between these two objectives, for both overqualification and training requirements

completed. These results display the aforementioned trade-off between overqualifi-

cation and training requirements. With different weightings, the space between the

overqualification and training requirements objective can be spanned.

Figure 2-2: Number of training requirements completed across 10 weeks with three
different objectives.

As minimizing overqualification and completing training requirements are both

important, we expect that the most useful objective is a combination of the two.

The precise weighting between the two is a user choice, and Koch explores this issue

further. Optimizing for only overqualification could be useful if a scheduler, for ex-

ample, knows that several training requirements can be waived. On the other hand,
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if a scheduler is not expecting many pop-up flights, they may decide to optimize

for training requirements only since keeping higher-qualified pilots available is not as

important.
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Chapter 3

Disruption Handling

The baseline formulation in Chapter 2 provided a methodology for “clean-slate”

scheduling. Oftentimes, though, disruptions occur that make a previously planned

schedule infeasible. In this chapter, we discuss a formulation for handling disruptions

with minimal change to the original schedule. The constraints of the baseline integer

program still apply. We then discuss takeaways from the user studies we conducted.

3.1 Disruption Formulation

We define the following notation. We define the “original schedule” as the pre-

disruption schedule and the “new schedule” as the post-disruption schedule.

𝐷 set containing pairs (𝑖, 𝑓) where pilot 𝑖 is unavailable for flight 𝑓

𝑉 set containing pairs (𝑖, 𝑡) where pilot 𝑖 is unavailable during 𝑡

𝑋𝑖𝑓 1 if pilot 𝑖 is originally assigned to flight 𝑓

𝑌𝑖𝑓 1 if pilot 𝑖 is assigned to flight 𝑓 in new schedule

𝑍𝑖𝑓 1 if pilot 𝑖 assignment to flight 𝑓 changed in new schedule

𝑂* objective value of original schedule

𝑙 tolerated decrease in objective value with new schedule
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A pilot could be unavailable for a specific set of flights (𝐷) because of the location of

the flights, or a pilot could be unavailable for all flights within a specific set of time

periods (𝑉 ). The variable 𝑍 tracks changes between the original schedule (𝑋) and

the new schedule that will be generated (𝑌 ). The objective is to minimize the number

of changes between the old and new schedule. This is because schedule changes put

a burden on both the scheduler, who has to communicate these changes, and the

pilots, who may go from being off-duty to on-duty, or vice versa. The objective can

be represented as follows, with terms for overqualification and training requirements

with respective weights of 𝑐𝑜 and 𝑐𝑟.

max −
∑︁
𝑖∈𝐼

∑︁
𝑓∈𝐹

(𝑍𝑖𝑓 − 𝑐𝑜𝑋𝑖𝑓𝑂𝑖𝑓 ) +
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆𝑖

∑︁
𝑘∈1:𝑅𝑖𝑠

𝑐𝑟𝑟𝑘𝑖𝑠 (3.1)

The following constraints must hold.

𝑍𝑖𝑓 ≥ 𝑌𝑖𝑓 −𝑋𝑖𝑓 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 (3.2)

𝑍𝑖𝑓 ≥ −(𝑌𝑖𝑓 −𝑋𝑖𝑓 ) ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 (3.3)∑︁
𝑖∈𝐼

∑︁
𝑓∈𝐹𝑖

𝑐𝑜𝑋𝑖𝑓𝑂𝑖 +
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆𝑖

∑︁
𝑘∈1:𝑅𝑖𝑠

𝑐𝑟𝑟𝑘𝑖𝑠 ≥ 𝑂* − 𝑙 (3.4)

𝑌𝑖𝑓 = 0 ∀(𝑖, 𝑓) ∈ 𝐷 (3.5)

𝑎𝑖𝑡 = 0 ∀(𝑖, 𝑡) ∈ 𝑉 (3.6)

Constraints 3.2 and 3.3 define 𝑍𝑖𝑓 to be 1 whenever 𝑋𝑖𝑓 and 𝑌𝑖𝑓 differ, indicating a

new assignment for pilot 𝑖 on flight 𝑓 (𝑌𝑖𝑓 = 1, 𝑋𝑖𝑓 = 0) or a cancelled assignment

(𝑌𝑖𝑓 = 0, 𝑋𝑖𝑓 = 1) in the new schedule. We weight new assignments and cancelled

assignments the same, but this could be adjusted. Constraint 3.4 ensures that the

objective value does not decrease more than tolerance 𝑙 in the new schedule, relative

to the original schedule. Lastly, constraints 3.5 and 3.6 enforce the pilot unavail-

ability constraints imposed by the disruptions, specifying flights and time periods,

respectively, that pilots cannot be assigned to.
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3.2 User Studies

To evaluate whether our formulations up to this point made sense, we conducted as

set of user interviews with Air Force schedulers. We presented schedulers with several

disruption scenarios wherein pilot availability was reduced. We then gave schedulers

several new schedule options with different weightings between number of changes,

overqualification, and training requirements.

3.2.1 Schedule Visualization

The first step was to design a schedule visualization tool to present to schedulers. We

did not use the existing Puckboard user interface to display our schedules because we

wanted to focus on our scheduling algorithms rather than a specific user interface. We

also wanted to create a customized visualization that emphasized metrics of interest,

like overqualification and training requirements. Figure 3-1 shows an overview of the

Gantt Chart visualization that we presented in our user studies. Pilots were listed in

Figure 3-1: Gantt Chart layout, as presented during user studies.

increasing order of qualification level on the y-axis (with the highest qualified pilots

on top). Pilot names were anonymized and their qualification levels were provided.

Flight events (denoted by “F”) and simulation events (“S”) are shown for each pilot,

including leave/TDY assignments. We presented these plots using interactive HTML

31



files using plotly in Python. Hovering over pilot assignments revealed more infor-

mation, like the type of flight, required qualification levels, and the overqualification

score for an assignment. For the visualization, we used a simpler overqualification

score, which was simply the difference between pilot qualification level and required

qualification level of the role they were assigned, as in Figure 2-1.

Figure 3-2 shows an example of a Gantt Chart schedule option. The schedule

shows 1) the disruptions in pilot unavailability (red lines), 2) pilot leave/TDY (grey),

3) pilot assignments that remained the same between the old and new schedule (blue),

4) pilot assignments that were present in the original schedule but not in the new

schedule (red), and 5) pilot assignments that were not present in the original sched-

ule but present in the new schedule (green). In this example, three pilots become

Figure 3-2: Example of Gantt Chart with three pilot disruptions.

unavailable for the duration of the schedule window due to disruption, so they are

replaced by available pilots. For example, pilot “24:FPNC” is replaced by “20:FPQC”

on simulation flights 2 and 3. We also provided schedule metrics, including the num-

ber of changes, overqualification, and number of requirements completed. Finally,
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we included a change log that listed all of the differences between the old and new

schedule (not shown).

3.2.2 Preliminary User Feedback

Schedulers validated our metrics of number of changes, overqualification, and number

of requirements, and said they were useful. We list recurring items of feedback that

we heard, along with accompanying model augmentations to address their feedback.

While we have formulations to address most of the user feedback, explicit implemen-

tation of these is not shown in this thesis.

Reassignment Cost: Schedulers indicated that the time remaining until an

assignment was set to occur impacted their willingness to change an assignment.

Specifically, schedulers were more reluctant to change assignments that were occurring

sooner, as tracking down pilots and confirming the change can be a hassle with short

notice. Schedulers were also more willing to change simulation assignments rather

than mission assignments, which are considered more important. Schedulers were

also more reluctant to change the schedule of a higher-qualified, senior pilot than a

lower-qualified pilot. In addition, they preferred to modify assignments of shorter

flights before those of longer flights. To incorporate these factors, we can have a

reassignment cost attached to each pilot assignment in the original schedule that is a

function of time remaining, qualification of currently assigned pilot, duration of flight,

and flight type.

Training Requirements: Schedulers indicated that they prioritize training re-

quirements completion for higher-qualified pilots, as there is a trickle-down effect

wherein re-qualifying higher-qualified pilots sooner can enable them to train lower-

qualified pilots earlier. To account for this, we can further modify the requirement

completion reward (equation 2.16) to include the qualification level of the pilot. In

addition, while schedulers have little control of flight times, they can control the type

of simulator flight that is conducted. Different simulator types complete different

training requirements, so altering the simulator type can be useful for expediting

certain training requirements. To model this, we can include an additional decision
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variable for each sim to modify the simulator type.

Overqualification: Schedulers appreciated overqualification as a metric to en-

sure efficient assignments, and as a way to preserve higher-qualified pilots. They also

noted that they want to preserve scarce pilot groups (regardless of qualification level)

so that they have a diverse set of pilots off-duty at any point in time. We can intro-

duce a utilization metric for each pilot group and minimize the maximum utilization

in the objective. However, note that with a maximization objective, this turns into

max-min where the utilization metrics are negative and higher utilizations are more

negative.

Relative Importance: Schedulers generally preferred the solutions that came

from objectives which incorporated all three terms: number of changes, overquali-

fication, and training requirements. They emphasized that the relative importance

of these metrics is situation- and squadron-dependent. Naturally, if a squadron is

behind in training, completing training requirements will take precedence, whereas

if a squadron is expecting lots of unexpected pop-up missions, overqualification will

be most important. For the Puckboard implementation, they suggested a feature for

schedulers to input their desired weightings. In addition, they recommended that we

develop functionality for the optimization model to infer/suggest appropriate weight-

ings between the metrics.
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Chapter 4

Robustness

In Air Force crew scheduling, several degrees of uncertainty may disrupt the sched-

ule. In Chapter 3, we introduced a disruption handling formulation. This handles

disruptions as they arise. However, there is also a desire to develop schedules from

the start that are more robust to possible disruptions. In this chapter, we present

two notions of robustness, and formulations that incorporate them.

4.1 Degrees of Uncertainty

Schedulers contend with several possible underlying uncertainties. Below is a non-

exhaustive list of a few types of uncertainties. We comment on the similarities and

differences in the way these uncertainties manifest in commercial aviation and Air

Force scheduling.

1. Flight Duration: Each flight has a planned duration, defined as the difference

between the scheduled arrival and scheduled departure times. In commercial

aviation, the actual flight duration may exceed the planned flight duration due

to various factors like weather, crew/passenger connection delays, or mainte-

nance. In the Air Force, the actual flight duration can be extended for the

same reasons, but also for additional ones. For example, a VIP escort mission

may be extended by a day for operational reasons. In addition, training flights

may be extended if the intended training has not been completed yet due to,
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for example, weather conditions. These factors make the flight duration of Air

Force flights more uncertain than in commercial aviation.

2. Pilot Availability: The availability of pilots may also be uncertain. Personal

leave due to emergencies can make pilots unavailable at short notice. In ad-

dition, schedulers may not know the true pilot availability of their roster. In

commercial aviation, this is less of an issue, as the crew scheduling department

has direct insight into pilot availability, and large control over it. However, with

Air Force crew scheduling, schedulers are aggregating pilot availability across

different data sources and are less certain about true pilot availability. For ex-

ample, pilots have non-flying duties which schedulers may not be aware of that

could take precedence over a training flight. For these reasons, schedulers prefer

schedules where back-up pilots are available to cover for unavailable pilots.

3. Pop-up Flights: As the Air Force operates in a dynamic environment, last-

minute flights (“pop-up flights”) may need to be crewed. In commercial aviation,

this is far less common as flight schedules are published well in advance because

of the need to sell tickets to passengers. Schedulers thus have to be mindful of

the possibility that they will need to crew additional flights.

4.2 Buffers and Delay Propagation

We borrow two notions from commercial aviation, buffer and delay propagation, to

increase robustness to flight duration uncertainty. Pilots are often assigned to consec-

utive flights with a minimum rest requirement between them. If a flight is delayed,

subsequent flights operated by the same crew or same aircraft may also be delayed.

Buffer time refers to the ability to absorb flight delays such that subsequent flights are

not delayed, and delay propagation refers to when delay is propagated to subsequent

flights. Consider a case where a pilot is scheduled on flight 𝑓 ′ followed by flight 𝑓 . If

𝑓 ′ is delayed due to a longer than planned flight duration, 𝑓 may be delayed while it

waits for this pilot to complete 𝑓 ′ and satisfy minimum rest requirements. Alterna-
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tively, this crew member may need to be replaced, representing a schedule disruption.

The goal here is to develop schedules that are robust to flying time variability. We

define the following notation to formally describe the scenario.

𝑑𝑓 scheduled departure time of 𝑓

𝑎𝑓 scheduled arrival time of 𝑓

𝜇𝑓 mean duration of 𝑓

𝑒𝑓 actual duration of f

MINSIT𝑓 minimum rest time after flight 𝑓

𝑇buffer threshold below which buffer time is counted

BufferTime𝑖𝑓𝑓 ′ buffer time between flight 𝑓 ′ that precedes flight 𝑓 for pilot 𝑖

ℎ𝑖𝑓𝑓 ′ expected delay propagation from 𝑓 ′ to 𝑓 for pilot 𝑖

4.2.1 Buffers

To account for variability in flying time, we define 𝜇𝑓 as the mean duration of flight 𝑓 .

The scheduled times 𝑑𝑓 and 𝑎𝑓 are determined beforehand. In commercial aviation,

airlines oftentimes set 𝑎𝑓 such that 𝑎𝑓 > 𝑑𝑓 + 𝜇𝑓 to build “slack” into the schedule.

Since flight duration may be more uncertain in the Air Force, it is expected that

𝑑𝑓 + 𝜇𝑓 > 𝑎𝑓 is more common, meaning that the expected flight duration exceeds

the scheduled flight duration. Fig. 4-1 shows an example where a pilot is assigned to

flights 𝑓 ′ and 𝑓 where 𝑓 ′ precedes 𝑓 . In this example, 𝑎′𝑓 < 𝑑𝑓 ′ + 𝜇𝑓 ′ . However, note

that the notion of buffer time is still relevant even if this condition does not hold.

The expected arrival time plus the minimum sit time (𝑑𝑓 ′+𝜇𝑓 ′+MINSIT𝑓 ′) yields

the earliest time that a pilot assigned to 𝑓 ′ is ready for 𝑓 . We define the quantity

below as the buffer time between successive flights 𝑓 ′ and 𝑓 operated by pilot 𝑖. Note

that we include 𝑖 in the subscript to indicate that pilot 𝑖 is assigned to both 𝑓 ′ and

𝑓 .

BufferTime𝑖𝑓𝑓 ′ = 𝑑𝑓 − (𝑑𝑓 ′ + 𝜇𝑓 ′ + MINSIT𝑓 ′) (4.1)
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Figure 4-1: Example of buffer between flights 𝑓 ′ and 𝑓 .

The buffer time is equal to the maximum amount that 𝑒𝑓 (the actual flying time of

𝑓 ′) can exceed 𝜇𝑓 ′ such that flight 𝑓 will not be delayed because of the crew coming

from 𝑓 ′. To minimize the chance of disruptions, we would like to assign pilots to

pairings with high buffer times. Flight pairings with a higher buffer are less likely

to have delay propagate due to late arriving flights. On the other hand, with higher

buffer times, pilot utilization will decrease, as they will have more idle time. The set

𝑃𝑖𝑓 contains a list of flights that precede 𝑓 for which buffer time is relevant for pilot

𝑖. Three conditions must be satisfied for a flight 𝑓 ′ to be part of 𝑃𝑖𝑓 .

1. Pilot 𝑖 meets at least one qualification requirement for both 𝑓 ′ and 𝑓 . We do

not create buffer variables for a pilot that is not qualified for both 𝑓 ′ and 𝑓 .

2. 𝑑𝑓 ≥ 𝑑𝑓 ′ +𝜇𝑓 ′ +MINSIT𝑓 ′ . Flight 𝑓 departs at the same time or after the time

that pilot 𝑖 is ready for 𝑓 after flying on 𝑓 ′.

3. BufferTime𝑓𝑓 ′ ≤ 𝑇buffer. The buffer time between flights 𝑓 ′ and 𝑓 is less than or

equal to 𝑇buffer, the buffer threshold. We choose 5 hours as the threshold below

which we count buffer times, but this can be adjusted as desired. With a larger

threshold, computational complexity increases, but buffer time is tracked across

more flight pairings. The choice of 𝑇buffer depends on the magnitude of delays

expected.

When pilots are assigned to both flight 𝑓 ′ and flight 𝑓 in 𝑃𝑖𝑓 , we want to penalize

assignments where 𝑓 ′ and 𝑓 are “tight”. Recall that we have a maximization objective
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function. Thus, as buffer time decreases, the corresponding term in the objective

function should get more negative. For flight pairings where the buffer time exceeds

5 hours (the threshold that we chose), we do not apply any penalty in the objective.

This means that we are indifferent between having a buffer of 5 hours and 6 hours,

because while a larger buffer time is more robust to disruptions, it also means more

pilot downtime. More complex, non-monotonic buffer penalties and thresholds could

of course be incorporated. We define 𝑏𝑖𝑓𝑓 ′ ∀𝑓 ∈ 𝐹, 𝑓 ′ ∈ 𝑃𝑖𝑓 as the buffer penalty for

assignments of pilot 𝑖 to flight 𝑓 ′ followed by flight 𝑓 . Note that 𝑏𝑖𝑓𝑓 ′ is the buffer

penalty, which is dependent but not equal to buffer time, whereas BufferTime𝑖𝑓𝑓 ′ is

equal to the buffer time between 𝑓 ′ and 𝑓 .

𝑏𝑖𝑓𝑓 ′ = −𝑇buffer + 1− BufferTime𝑖𝑓𝑓 ′

𝑇buffer + 1
(4.2)

When BufferTime𝑖𝑓𝑓 ′ = 0, 𝑏𝑖𝑓𝑓 ′ = −1, and when BufferTime𝑖𝑓𝑓 ′ = 𝑇buffer, 𝑏𝑖𝑓𝑓 ′ =

− 1
𝑇buffer+1

. Thus, shorter buffer times have more negative penalties. We define a

binary indicator variable 𝐵𝑖𝑓𝑓 ′ which is 1 if pilot 𝑖 is assigned to both flight 𝑓 and

𝑓 ′, where 𝑓 ′ is the assignment for pilot 𝑖 directly preceding 𝑓 , and 0 otherwise. We

define the objective term for buffer penalty (BP) as the summation across all pilots

and their possible 𝑓 ′ and 𝑓 pairs, as shown below.

𝐵𝑃 =
∑︁
𝑖∈𝐼

∑︁
𝑓∈𝐹𝑖

∑︁
𝑓 ′∈𝑃𝑖𝑓

𝑏𝑖𝑓𝑓 ′𝐵𝑖𝑓𝑓 ′ (4.3)

In equation 4.3, parameter 𝑏 represents the buffer penalty, whereas indicator variable

𝐵 shows whether pilot 𝑖 was assigned to 𝑓 and 𝑓 ′. We now need to mathematically

define 𝐵. We cannot directly encode 𝐵 with 𝑋, like with 1) 𝐵𝑖𝑓𝑓 ′ ≤ 𝑋𝑖𝑓𝑞 and

2) 𝐵𝑖𝑓𝑓 ′ ≤ 𝑋𝑖𝑓 ′𝑞. Since we have negative buffer penalties (𝑏) and a maximization

objective, the solver would always set 𝐵 = 0. Instead, we apply the following Big-M
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constraints ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹𝑖, 𝑓
′ ∈ 𝑃𝑖𝑓 , where 𝑀 > 2 and 𝜖 = 0.01.

𝑋𝑖𝑓 +𝑋𝑖𝑓 ′ ≥ 2−𝑀(1−𝐵𝑖𝑓𝑓 ′) (4.4)

2− 𝜖 ≥ 𝑋𝑖𝑓 +𝑋𝑖𝑓 ′ −𝑀(𝐵𝑖𝑓𝑓 ′) (4.5)

These constraints ensure that if and only if 𝑋𝑖𝑓𝑞 + 𝑋𝑖𝑓 ′𝑞 ≥ 2, 𝐵𝑖𝑓𝑓 ′ = 1; otherwise,

𝐵𝑖𝑓𝑓 ′ = 0. When pilot 𝑖 is assigned to both 𝑓 and 𝑓 ′ where 𝑓 ′ precedes 𝑓 , buffer

penalties are included in the objective. We also need to make sure that we only

include buffers where flight 𝑓 ′ is the assignment of pilot 𝑖 that immediately precedes

their assignment to flight 𝑓 . For example, if pilot 𝑖 is assigned in order to flights (𝑒, 𝑓 ′,

𝑓), we only want to count the buffer between (𝑒 and 𝑓 ′) and (𝑓 ′ and 𝑓), not between

(𝑒 and 𝑓). The following constraint ensures that if flight 𝑓 ′ is scheduled to depart

after flight 𝑒 (i.e., it is feasible for pilot 𝑖 to be assigned to 𝑒, 𝑓 ′, 𝑓 in that order), we

count the buffer between 𝑓 ′ and 𝑓 , if applicable, before counting the buffer between

𝑒 and 𝑓 . If 𝐵𝑖𝑓𝑓 ′ = 1 because pilot 𝑖 is assigned to 𝑓 ′ and 𝑓 , then 𝐵𝑖𝑓𝑒 = 0, as the

buffer time between 𝑒 and 𝑓 is not relevant since 𝑓 ′ is scheduled between them.

𝐵𝑖𝑓𝑒 ≤ 1−𝐵𝑖𝑓𝑓 ′ ∀(𝑒, 𝑓 ′) ∈ 𝑃𝑖𝑓 | 𝑑′𝑓 > 𝑎𝑒 (4.6)

4.2.2 Delay Propagation

We record buffer times when the scheduled departure time of 𝑓 is later than the

earliest ready time of a pilot assigned to flight 𝑓 ′ preceding 𝑓 (i.e., 𝑑𝑓 ≥ 𝑑𝑓 ′ + 𝜇𝑓 ′ +

MINSIT𝑓 ′). However, it is possible for the scheduled departure time of 𝑓 to be before

the expected earliest ready time. In this case, delay will propagate from flight 𝑓 ′ to

𝑓 , assuming that 𝑒𝑓 = 𝜇𝑓 and no crew swaps are made. Figure 4-2 shows an example

of this.

We define the quantity of expected delay propagation below. Expected delay prop-

agation can be thought of as “negative buffer”.

DelayProp𝑓𝑓 ′ = (𝑑𝑓 ′ + 𝜇𝑓 ′ + MINSIT𝑓 ′)− 𝑑𝑓 (4.7)
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Figure 4-2: Example of expected delay propagation between flights 𝑓 ′ and 𝑓 .

Delay propagation is a common phenomenon in commercial aviation. Assigning pilots

to sequences of flights where delay propagation is likely to occur based on mean flight

durations is highly undesirable. In commercial crew scheduling, the crew pairing

generation step would likely filter out pairs of assignments where there is expected

delay propagation, so this explicit incorporation of delay propagation shown here may

not be necessary. However, in Air Force crew scheduling, as aforementioned, flight

duration is more variable and we expect that it may be desirable to directly encode

delay propagation into the formulation.

The set 𝑄𝑖𝑓 is analogous to 𝑃𝑖𝑓 and contains a list of flights that precede 𝑓 for

which delay propagation is possible. For each flight 𝑓 ′ in 𝑄𝑖𝑓 , 1) pilot 𝑖 is qualified

for 𝑓 ′, 2) 𝑑𝑓 < 𝑑𝑓 ′ +𝜇𝑓 ′ +MINSIT𝑓 ′ and 3) 0 ≤ 𝑑𝑓 − 𝑎𝑓 ′ ≤ 𝑇DelayProp, where 𝑇DelayProp

is a user chosen threshold (we set it to 24 h). These are flights whose scheduled

arrival times are sufficiently close to 𝑑𝑓 such that delay could propagate to 𝑓 and are

expected to given 𝜇𝑓 .

We define ℎ𝑖𝑓𝑓 ′ ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹, 𝑓 ′ ∈ 𝑄𝑖𝑓 as the penalty for expected propagated

delay from flight 𝑓 ′ to flight 𝑓 . We define ℎ𝑖𝑓𝑓 ′ = −DelayProp𝑓𝑓 ′ − 1, where the -1

constant is added to ensure that 1 hour of expected delay propagation has a more

negative penalty (ℎ𝑖𝑓𝑓 ′ = −2) than 0 hours of buffer (𝑏𝑖𝑓𝑓 ′ = −1). 𝐻𝑖𝑓𝑓 ′ is defined

identically to 𝐵𝑖𝑓𝑓 ′ except with 𝑄𝑖𝑓 rather than 𝑃𝑖𝑓 . The delay propagation penalty
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(DP) is shown below.

𝐷𝑃 =
∑︁
𝑖∈𝐼

∑︁
𝑓∈𝐹𝑖

∑︁
𝑓 ′∈𝑃𝑖𝑓

ℎ𝑖𝑓𝑓 ′𝐻𝑖𝑓𝑓 ′ (4.8)

4.3 Move-up Crews

The implicit assumption when counting delay propagation is that the original pilot

assignments are kept in the face of disruptions. However, in commercial aviation,

airlines often shuffle or swap pilot assignments. In this subsection, we describe the

concept of move-up crews and how to incorporate them in the formulation. Figure

4-3 shows an example of a move-up crew. Suppose that pilot 𝑖 (in blue) is assigned

to flight 𝑓1 then 𝑓2 and pilot 𝑗 (in orange) is assigned to 𝑔1 then 𝑔2. If flight 𝑓1 is

delayed, this delay could propagate to 𝑓2 since 𝑑𝑓2 is infeasible, given the minimum

sit time. Alternatively, it may be possible to move-up pilot 𝑗 to flight 𝑓2. Pilot 𝑗 is

called a move-up crew because they are moving to an earlier assignment. Note that

utilizing a move-up crew is generally preferable to calling up an off-duty crew. Ideally,

pilot 𝑖 can cover 𝑔2 and thus swap assignments with pilot 𝑗, but we do not require

this. Besides providing potential swapping opportunities, a move-up crew allows for

a choice of flights to cancel, if a cancellation is deemed necessary. For example, with

pilot 𝑗 as a move-up crew for flight 𝑓2, either 𝑔2 (if pilot 𝑗 moves-up to 𝑓2) or 𝑓2 can

be cancelled.

Figure 4-3: Example of option for pilot 𝑗 to move-up to pilot 𝑖’s assignment on 𝑓2.
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The goal is to count the number of move-up crew options for every pilot 𝑖 assigned

to 𝑓 . When counting move-up crew options, we only count pilots with equal or

greater qualification level as pilot 𝑖 because our decision variable 𝑋 does not track

the qualification required fulfilled by each pilot on each flight. For example, suppose

the qualification levels in decreasing order are (A, B, C), and pilot 𝑖 has qualification

level B. The move-up crew options for pilot 𝑖 will have the same qualification level

(B) or higher (A). This assumption neglects the fact that pilots with qualification

level C may be able to substitute for pilot 𝑖 on assignments where only qualification

level C is required. We tested a formulation where the decision variable includes the

qualification requirement being filled (i.e., 𝑋𝑖𝑓𝑞 = 1 if pilot 𝑖 fulfills qualification 𝑞

on flight 𝑓), but it was not computationally tractable. In addition, because of the

overqualification term in the objective, assigned pilots usually have qualification levels

similar to the required qualification level.

Consider the scenario shown in Figure 4-4 where pilot 𝑖 is assigned to flight

𝑓1, 𝑓2, 𝑓3 in order and pilot 𝑗 is assigned to 𝑔1, 𝑔2, 𝑔3 in order. If 𝑓1 is delayed, we

may be able to use pilot 𝑗 as a move-up option for flight 𝑓2. To ensure that pilot 𝑗 is

a move-up option for pilot 𝑖 on flight 𝑓2, we need to ensure the following conditions

are met:

1. Pilot 𝑗 has qualification level equal to or higher than pilot 𝑖.

2. Pilot 𝑗 is available for the duration of 𝑓2 (provided that they vacate their as-

signment on 𝑔2).

(a) Pilot 𝑗 is available at the start of 𝑓2. This means that they are not on

leave or assigned to any flights that start before 𝑓2 and overlap with 𝑓2.

(b) Pilot 𝑗 is available through the end of 𝑓2. To satisfy this, we require that

the end time of 𝑔2 is greater than or equal to the end time of 𝑓2. For a more

comprehensive formulation without this assumption, see Section 4.3.1.

We assume that Condition 1 is satisfied in Figure 4-4, so pilot 𝑗 has qualification

level greater than or equal to pilot 𝑖. Condition 2a) is satisfied because 𝑔1 does not
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Figure 4-4: Example of schedule for pilot 𝑖 and pilot 𝑗 where pilot 𝑗 could move-up
to flight 𝑓2.

overlap with 𝑓2 and pilot 𝑗 is not on leave at any point during 𝑓2. Finally, Condition

2b) is satisfied because 𝑔2 ends after 𝑓2. Together, 2a) and 2b) guarantee that pilot

𝑗 is available for the duration of 𝑓2.

We define the following notation to formally describe the scenario.

𝑆𝑓 set of valid flights that can source a move-up crew for flight 𝑓

𝑂𝑓 set of flights that start before 𝑓 but overlap with 𝑓

𝑇move maximum allowable move-up time for flights to be included in 𝑆𝑓

𝑆𝑓 contains flights that start after 𝑓 , but within 𝑇move = 5 hours of 𝑑𝑓 (i.e., 𝑑𝑔 >

𝑑𝑓 + 𝑇move ∀𝑔 ∈ 𝑆𝑓 ). We then define a binary variable 𝑚𝑖𝑓,𝑗𝑔 which is equal to 1 if

pilot 𝑗 assigned to flight 𝑔 can move up to replace pilot 𝑖 assigned to flight 𝑓 . The

following conditions must hold ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹, 𝑗 ∈ 𝐼 | 𝑄𝑗 ≥ 𝑄𝑖, 𝑔 ∈ 𝑆𝑓 .

𝑚𝑖𝑓,𝑗𝑔 ≤ 𝑥𝑖𝑓 (4.9)

𝑚𝑖𝑓,𝑗𝑔 ≤ 𝑥𝑗𝑔 (4.10)

𝑚𝑖𝑓,𝑗𝑔 ≤ 1−
∑︁
𝑜∈𝑂𝑓

𝑥𝑗𝑜 (4.11)

Constraints 4.9 and 4.10 ensure that pilots 𝑖 and 𝑗 are assigned to flights 𝑓 and

𝑔, respectively. Constraint 4.11 ensures pilot 𝑗 is available for the start of 𝑓2 and is

not assigned to any flights that start before 𝑓2 and overlap with 𝑓2 (Condition 2a).
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By construction, 𝑆𝑓 guarantees that Condition 2b) is satisfied, as it contains flights

with end times greater than or equal to 𝑓 .

4.3.1 Swapping Crews

Up to this point, when 𝑚𝑖𝑓,𝑗𝑔 = 1 we can only guarantee that pilot 𝑗 can move up to

pilot 𝑖’s assignment on flight 𝑓 . Ideally, pilot 𝑖 and 𝑗 would swap assignments such

that pilot 𝑖 is assigned to 𝑔 and pilot 𝑗 is assigned to 𝑓 . In order for this swap to be

possible, we need to more carefully consider downstream flights. We return to Figure

4-4. We want the following conditions to hold.

1. Pilot 𝑖 is still available for their next scheduled assignment, 𝑓3, if they are

assigned to 𝑔2

2. Pilot 𝑗 is still available for their next scheduled assignment, 𝑔3, if they are

assigned to 𝑓2

We define 𝐶𝑓 as the set of flights that start after 𝑓 and conflict with it. The

following set of big-M constraints take care of the aforementioned conditions and

must hold ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹, 𝑗 ∈ 𝐼 | 𝑄𝑗 ≥ 𝑄𝑖, 𝑔 ∈ 𝑆𝑓 . These constraints would replace

constraint 4.11.

∑︁
𝑏∈𝐶𝑓∖𝑔

𝑥𝑗𝑏 ≥ 1−𝑀𝑚𝑖𝑓,𝑗𝑔 (4.12)

1− 𝜖 ≥
∑︁

𝑏∈𝐶𝑓∖𝑔

𝑥𝑗𝑏 −𝑀(1−𝑚𝑖𝑓,𝑗𝑔) (4.13)

∑︁
𝑎∈𝐶𝑔∖𝑓

𝑥𝑓𝑎 ≥ 1−𝑀𝑚𝑖𝑓,𝑗𝑔 (4.14)

1− 𝜖 ≥
∑︁

𝑎∈𝐶𝑔∖𝑓

𝑥𝑓𝑎 −𝑀(1−𝑚𝑖𝑓,𝑗𝑔) (4.15)

Constraints 4.12 and 4.13 specify that if pilot 𝑗 is assigned to a flight 𝑏 (not

including flight 𝑔) that conflicts with 𝑓 , they cannot move-up to flight 𝑓 , as they

would not be able to make their next assignment. Similarly, constraints 4.14 and 4.15
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ensure the equivalent constraint for pilot 𝑖. Note that these constraints alone do not

guarantee that pilot 𝑖 and 𝑗 can swap assignments. First, we do not guarantee that

pilot 𝑖 is qualified for pilot 𝑗’s assignment on 𝑔2. However, this could be rectified

with a decision variable that accounts for the required qualification satisfied (𝑋𝑖𝑓𝑞).

Second, if 𝑓1 is delayed too much, then pilot 𝑖 may not be able to fly on 𝑔2 in Figure

4-4. But as long as 𝑎𝑓1 + MINSIT𝑓1 ≤ 𝑑𝑔2 , pilot 𝑖 should be available to swap with

pilot 𝑗 and fly on 𝑔2.

4.4 Results

We now want to show the benefits of incorporating buffer time, expected delay prop-

agation, and move-up crews. For move-up crews, we show results for the formulation

in Section 4.3, which does not include swapping crew constraints. We use the same

10-week dataset as Chapter 2 and randomly generate disruptions, in the form of

flight delays. Specifically, in each week, a proportion of flights get delayed by an hour

amount defined by a uniform distribution between 1 and 18 hours. While some of

these delay values would never appear in commercial aviation, they are possible in

the Air Force where flight duration is very uncertain. As before, we schedule one

week’s worth of departures at a time.

We consider two options for handling these flight delays. In Option 1, when

flight 𝑓 ′ is delayed, schedulers delay all affected flights 𝑓 until pilots from 𝑓 ′ are

ready to depart. Thus, delay propagates from 𝑓 ′ to 𝑓 . We do not consider cases

where schedulers delay flights 𝑓 more than strictly necessary because of 𝑓 ′, nor do

we consider cancellations. Option 1 could arise in practice when calling up pilots is

avoided, like during a weekend or in the middle of the night. In Option 2, schedulers

do not allow delay to propagate and instead utilize the disruption formulation in

Chapter 3 to modify the original schedule. When flight 𝑓 ′ is delayed, rather than

delay downstream flights 𝑓 as in Option 1, schedulers change assignments on 𝑓 that

are infeasible because of the delay to 𝑓 ′.
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4.4.1 Option 1: Propagate Delays with No Reassignments

We compare the performance of the overqualification and training requirements ob-

jective (“Baseline”) with the Baseline + buffer times and delay propagation objective

(“BDP”). The move-up formulation is not relevant, since with Option 1 we do not

consider reassignments. To see the effects of the number of delayed flights, we vary

the delay fraction (“DF”), which is the fraction of flights that have a random delay.

Table 4.4.1 displays summary statistics for the two objectives with four delay frac-

tion values. The “total buffer” is calculated in the original weekly schedule before any

flight are delayed. It sums the time between successive flight assignments of the same

pilot. If a pilot is only assigned one flight in the time period, the buffer time is the

end of the time period minus the arrival time of the flight that they are assigned to.

We also report the number of pairs of flights with a buffer time less than five hours,

as these are tight connections that BDP tries to avoid. The initial delay randomly

generated is shown in the “NPD”, or non-propagated delay, column. The resulting

propagated delay is shown in the “PD” column.

Table 4.1: Comparison of Baseline vs. BDP (model incorporating buffer and delay
propagation) with Option 1. NPD is initial non-propagated delay, PD is propagated
delay.

Delay
Frac.

Total
Buffer (h)

Buffer <
5 hours (flts.)

Total
Delay (h)

NPD
(h)

PD
(h)

Baseline 0.25 23,012 191 2,361 1,680 681
BDP 0.25 27,694 1 1,778 1,680 98

Baseline 0.50 22,633 190 5,907 3,552 2,355
BDP 0.50 26,256 0 3,835 3,552 283

Baseline 0.75 23,622 187 9,529 5,448 4,081
BDP 0.75 26,969 0 6,240 5,448 792

Baseline 1.0 24,380 185 13,255 7,224 6,031
BDP 1.0 27,024 1 8,221 7,224 997

We first consider the total buffer and number of flights with a tight buffer. Com-

pared to the baseline, the BDP consistently has higher total buffer than the baseline.

Moreover, the baseline has 185-191 flight pairs with a buffer less than five hours,

compared to one or fewer with the BDP. With more buffer in the schedule, we expect
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the BDP to perform better than the baseline when faced with flight delays. Note

that for a given delay fraction value, the baseline and BDP models encountered the

same set of pseudorandom flight delays (hence, their NPDs are the same). For all

delay fractions, the BDP experiences less propagated delay than the baseline. With

delay fraction of 1, the baseline has over 5,000 hours more propagated delay than

the baseline. The gap between baseline propagated delay and BDP propagated delay

widens as delay fraction increases.

We further explore the nature of the propagated delay experienced by considering

what we call the degrees of propagation. When the randomly generated delay of

Flight A propagates to Flight B, we consider this first-degree delay propagation. If

Flight B in turn delays Flight C as a result of the delay to Flight A, this is second-

degree delay propagation, and so on. Note that since the model is only aware of one

week’s worth of departures at a time, delay propagation does not span between flights

departing in different weeks. Figure 4-5 shows a histogram of degrees of propagation

for the baseline and BDP across the four delay fractions. As degrees of propagation

increases, the frequency of occurrence decreases. As expected, the maximum degree

of propagation seen with the BDP is lower than with the baseline. At delay fraction

of 0.5, the baseline experiences at most 10 degrees of delay propagation, whereas the

BDP sees at most 4. Overall, the BDP also sees fewer flights with propagated delay

than the baseline in each degree of propagation.

The difference between the baseline and BDP is even more pronounced when

looking at the magnitude of delay propagation. Figure 4-6 is similar to Figure 4-

5 but displays the total delay propagation for each degree of propagation. With

the BDP, the propagated delay for a given degree of propagation never exceeds 400

hours. In contrast, with delay fraction of 1, the baseline propagated delay is over

1400 hours for first-degree delay propagation. Such high delay propagation values

would significantly disrupt operations, as carefully planned flight schedules would

significantly change.
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Figure 4-5: Frequency of degrees of delay propagation. DF (delay fraction) indicates
the fraction of flights delayed.
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Figure 4-6: Total delay for different degrees of delay propagation. DF (delay fraction)
indicates the fraction of flights delayed.
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4.4.2 Option 2: Handle Disruption with Reassignments

With Option 2, schedulers utilize the disruption formulation presented in Chapter 3

to determine reassignments to handle disruptions. We continue to use late-arriving

flights as the disruption example. We evaluate three models on Option 2: baseline,

BDP, and BDP with move-up crews incorporated (“BDP+Move-up”). We expect that

the BDP formulation will lead to fewer reassignments being necessary, as we saw with

Option 1 that delay is less likely to propagate with the BDP formulation. Further,

we expect that the BDP+Move-up model will increase the frequency of move-up

reassignments and reduce the number of call-ups. We first define several counting

and time metrics that will be used to compare the models.

Counting Metrics

We first define three counting metrics. Figure 4-7 shows four subplots with a) being

the original schedule and b), c), and d) showing examples of call-ups, move-ups, and

swaps, respectively. In the original schedule, pilot 𝑖 is assigned to 𝑓1; pilot 𝑗 is assigned

to 𝑓2; and pilot 𝑘 is unassigned. Suppose that pilot 𝑖 can no longer be assigned to 𝑓1

because of a late arriving preceding flight. We consider three reassignment options

below.

1. Call-ups (Figure 4-7 b): With a call-up, we recruit a unassigned pilot to fill-in

for the disruption. Pilot 𝑘, who was previously unassigned, is assigned to 𝑓1.

Pilot 𝑖 is now unassigned for the given time period. Pilot 𝑗 is unaffected.

2. Move-ups (Figure 4-7 c): With a move-up, we choose a pilot currently assigned

to a flight later than 𝑓1 to replace pilot 𝑖. Here, pilot 𝑗 moves up to 𝑓1. Note

that in this example, pilot 𝑘 is then called up to substitute for pilot 𝑗. Move-ups

typically necessitate call-ups to fill in new vacancies; however, there could be

be a chain of several move-ups, followed by one call-up.

3. Swaps (Figure 4-7 d): Suppose that pilot 𝑖 is unavailable for 𝑓1, but is qualified

and available for 𝑓2. Then, we could perform a swap in assignments between
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Figure 4-7: Examples of call-ups, move-ups, and swaps with respect to original sched-
ule in a), given that pilot 𝑖 can no longer be on 𝑓1.
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pilot 𝑖 and 𝑗. This has the benefit of being the only reassignment option that

does not involve pilot 𝑘.

Time Metrics:

While the counting metrics are intuitive, they do not consider the extra time burden

placed on pilots. In particular, two different move-ups could have very different time

burdens. For most pilots, moving up to a one-hour simulator in lieu of a three day

mission that starts at the same time would not be an issue. On the other hand, the

reverse (moving up to a three day mission from a one-hour simulator) would be very

disruptive.

To this end, we introduce two time metrics that classify the hours of reassignment

into two categories: “switch assignment” hours and “new assignment” hours. Figure

4-8 shows an original schedule on the left and a new schedule with a swap on the

right.

Figure 4-8: Examples of switch assignment hours and new assignment hours for a
swap between pilot 𝑖 and 𝑗.
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1. Switch assignment hours: These are the hours in which pilots were assigned

to a flight in the original schedule, but are now assigned to a different flight.

In Section 4.3, we did not penalize switch assignment hours because we expect

that since they were going to be active anyway, pilots do not experience too

much disutility from this. In Figure 4-8, pilot 𝑖 and 𝑗 have switch assignment

hours between 𝑑𝑓2 (scheduled departure time of 𝑓2) and 𝑎𝑓1 (scheduled arrival

time of 𝑓1).

2. New active hours: These are the hours in which pilots are newly active, since

they were not assigned to any flights during this time period in the original

schedule. Pilot 𝑗 has new active hours between 𝑑𝑓1 and 𝑑𝑓2 , while pilot 𝑖 has

new active hours between 𝑎𝑓1 and 𝑎𝑓2 . These are burdensome for pilots as this

may disrupt their personal plans. However, note that since we account for pilot

leave and TDY, pilots should be available during these new active hours.

Table 4.4.2 presents the counting and time metrics across two delay fraction values

for the three objectives. We see that the baseline requires the most reassignment,

given that it has the highest number of call-ups, move-ups, new active hours, and

switch assignment hours. This is expected given that the baseline schedule does not

have as much slack as the BDP or BDP+Move-up, so it is forced to make more

reassignments to avoid delay propagation.

Table 4.2: Comparison of counting and time metrics with delay fraction of 0.25 or
0.50 with Option 2.

Delay
Frac. Call-ups Move-ups Swaps New Active

Hours
Switch
Hours

Baseline 0.25 148 25 1 3,280 2,323
BDP 0.25 8 2 0 412 280

BDP+Move-up 0.25 4 5 5 334 506
Baseline 0.50 238 36 1 4,968 2,823

BDP 0.50 12 4 1 654 379
BDP+Move-up 0.50 9 14 5 538 880

While baseline is clearly worse than the other two, there is a trade-off between

BDP and BDP+Move-up. BDP has fewer number of reassignments and time duration
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of schedule changes than BDP+Move-up. The BDP+Move-up requires more reas-

signments than BDP, but more of these reassignments are move-ups and swaps than

with the BDP. A scheduler who is most concerned with minimizing the summation

of the counting metrics or the time metrics may choose BDP. However, a scheduler

who is more concerned with minimizing call-ups and new active hours may prefer

BDP+Move-up. Both of these scenarios depend on the relative preference between

call-ups and move-ups/swaps. An additional consideration is computational complex-

ity. While the baseline and BDP solve within a matter of seconds, the BDP+Move-up

took an average of 15 minutes to solve a week’s schedule. This is due to the large

number of variables needed to track the possible permutations of move-up crews.
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Chapter 5

Conclusion

In this thesis, we analyzed disruptions and robustness in Air Force crew schedul-

ing. We first discussed the key similarities and differences between Air Force crew

scheduling and airline crew scheduling. We then presented the baseline integer pro-

gram and discussed trade-offs between two objectives: overqualification and training

requirements. While the baseline integer program is useful for “clean-slate” schedul-

ing, we developed a disruption formulation to modify previously generated schedules

in the face of disruptions. We developed schedule visualization tools for a set of user

interviews and discussed some main takeaways. Finally, we adapted two notions of

robustness from commercial aviation: 1) buffer time and expected delay propaga-

tion and 2) move-up crews. We showed how these formulations handle disruptions

better than the baseline formulation. We showed results with two alternative strate-

gies for handling disruptions: without reassignments (allows delay to propagate but

less disruptive to schedule) and with reassignments (avoids delay propagation but

potentially more disruptive). Without reassignment, incorporating buffer time and

expected delay propagation blunts the frequency and magnitude of delay propagation.

With reassignment, incorporating buffer time and move-up crews reduce propagated

delay with trade-offs in number of reassignments and type of reassignments. Cer-

tain reassignment types like call-ups are more disruptive than others like move-ups

or swaps.

There are several areas of potential future work. When handling disruptions,
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schedulers do not pick one strategy to use for the entire scheduling window. We

could develop a model that blends the two strategies in Sections 4.4.1 and 4.4.2

and considers the trade-off between the cost of delay propagation and the cost of

calling-up/reassigning crew. In the face of disruptions, it may also be desirable to

adjust the scheduled times of downstream flights. Thus, we could further enhance

the disruption-handling model by considering limited schedule adjustments. This is a

more tractable problem than the full-fledged joint flight and crew scheduling problem

discussed in Section 1.3. Finally, other members of our research team are exploring

reinforcement learning-based approaches for scheduling. These approaches may be

more scalable and adept at predicting patterns for more intelligent scheduling.

The Puckboard application has been deployed across over 125 squadrons. Users

are already benefiting from the centralized housing of data on pilot qualifications,

training requirements, and availability. The next step is to integrate our scheduling

formulations into Puckboard interface. Once this is done, schedulers will be able to

generate schedules more efficiently. Moreover, the schedules they generate will ideally

be more desirable in terms of overqualification, training requirements, and robustness.

This has the potential to streamline Air Force operations and improve pilot quality

of life.
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