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Abstract

This dissertation focuses on developing analytical methods for elliptic partial differential
equations with conditions imposed on internal boundaries. Internal boundaries are formed
where materials with different properties meet to form interfaces. These interfaces arise in
a variety of physical and engineering contexts such as in the evaporation of water droplets,
dielectric double-spheres, and soft-material Janus drops. The solutions to problems with
interfaces are often singular where the interfaces meet the boundaries, or two interfaces
meet. This causes difficulties when attempting to solve these problems solely with numerical
approaches. In contrast, analytical approaches (while limited to relatively simple geometries)
lend significant insight into the nature of the singularities, with full resolutions in some cases.
Potentially this knowledge can then be used to improve the quality of numerical solutions
for more generic situations.

We will focus here on four important elliptic PDE problems: Laplace, Poisson, bihar-
monic, and Stokes flow. Chapter 1 introduces our main analytic result known as the Parity
Split Method (PSM), developed in the context of the Laplace and the Poisson equation.
Chapter 2 takes the results from Chapter 1 and applies them to the problem of a thermally
driven evaporative liquid bridge in a long V-shaped channel. The problem involves solving
a coupled temperature-concentration system of Laplace equations. Complex analysis based
analytic solutions to the concentration equation are also developed along the way. Chapter 3
extends the PSM to the biharmonic equation and addresses several numerical issues related
to solving for the fluid flow near a soft-material Janus drop.
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Chapter 1

Introduction

1.1 The Parity Split Method for Poisson’s Equation

Many physical problems require solving elliptic partial differential equations with inter-

faces, such as the electric potential for electromagnetic double spheres [28, 41, 42], temper-

ature and concentration of vapor above a slowly evaporating sessile drop [59, 10, 3, 47], and

the concentration of soft materials under Laplacian growth [20, 2]. In all such problems, the

interfaces are modeled as infinitely thin surfaces. Then the quantities of interest, such as

temperature, material concentration, or potential, often must satisfy jump conditions across

the interfaces. Several numerical approaches have been developed to solve problems of this

type, such as, the Immersed Boundary Method (IBM) [39], the Immersed Interface Method

(IIM) [29, 30, 31], the Ghost Fluid Method [16, 15, 21, 17], and the Correction Function

Method (CFM) [34].

Additional difficulties arise when the internal interface meets the external boundary

at the “triple-line” points (See Figure B-1), and can trigger “triple-line singularities (TLS)”.

Elliptic problems are notorious for developing singular behavior at places where the boundary

or the boundary conditions lack smoothness. For corner singularities, the behavior of the

solutions is well understood [13, 12, 19, 18, 38]. We are not aware of similar studies for

the type of singularities that arise at triple line points. In this paper, we propose a new

analytical method, which we call the Parity Split Method (PSM), which allows us to solve

elliptic problems with TLS for certain restricted geometries. For those geometries, the PSM

eliminates the interface and replaces the original elliptic problem by sub-problems without

the interface. If the geometry is such that separation of variables provides a spectral basis

17



to express the solutions of the sub-problems with the interface removed, then our approach

provides a fast converging spectral basis for the original problem with the interface.

Suitable PDE which PSM can be applied for include Poisson’s equation, biharmonic

equation, and Stokes’ equation. In this chapter, we present the method in the context

of Laplace’s equation and later generalize to Poisson’s equation. Section 2.1 sets up the

problem of interest in the generic form. Section 2.2 introduces the Parity Split Method in

the context of Laplace’s equation. Section 2.3 works out explicit examples for Laplace’s in

various 2D and 3D domains. Section 2.4 extends the method to Poisson’s and relaxes several

conditions set in Section 2.1. Section 2.5 elucidates an important technicality in the PSM.

1.2 Evaporation of a Liquid Bridge in a V-Shaped Channel

We will demonstrate the power of the Parity Split Method via the problem of thermally

driven microfluidic evaporation. The evaporation of liquid on a substrate is of paramount

significance in a wide range of engineering applications, such as inkjet printing, micro-

fabrications, and DNA sequencing. A tremendous amount of theoretical and experimental

investigations have been done to advance the understanding of quasi-static evaporation.

Seminal works include those in [5, 7, 22, 24, 43, 23, 3, 10, 11, 37, 51, 47]. Throughout these

studies, topics of interests involve pattern formation during drying [6], material flux across

the liquid-vapor interface [11, 48], and lifetimes of evaporating liquid [51, 52, 47, 48]. We

are particularly interested in the study of material flux and lifetime of a thermally-driven

evaporating liquid in a V-shaped channel. The geometry of V-shaped channels appears in

numerous modern heat transfer microelectronic devices, such as micro heat pipes [54]. Such

devices often rely on the evaporation of liquid in the channels to achieve the desirable heat

transfer. As a result, material flux and evaporation lifetime can be appropriate metrics to

characterize the efficiency of the transfer mechanisms. Extensive theoretical, numerical, and

experimental studies have been conducted to understand the evaporation of a liquid in a

V-shaped channel, including [55, 40, 33, 32, 59].

Most of the aforementioned works use either experimental or purely numerical ap-

proaches. However, in a V-shaped channel, the length often vastly exceeds its width, which

should render the problem effectively two-dimensional – thus potentially amenable to ana-

lytic treatment using conformal mapping and other complex analysis tools. Unfortunately,
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a straight reduction of 3D elliptical problems in unbounded domains to 2D is often prob-

lematic. For example, while developing an analytical solution for Stokes flow inside an

evaporating drop, Masoud [35] noted that “...a solution does not exist for diffusive flux in

2D” because the 2D solution varies “logarithmically” at infinity [35]. Schofield, Wray, Pritch-

ward, and Wilson encounter the same issue when studying the lifetimes of two-dimensional

sessile droplets [48]. o get around this issue, in this work we do not do a straight reduction

to 2D. Instead we write a suitably modified 2D problem, which can be solved (analytically)

using the Parity Split Method and tools from complex analysis.

In this thesis we present an analytical solution to a 2D model problem involving the

thermally-driven evaporation of a liquid in an infinitely long V-shaped channel. We obtain

exact (analytical) expressions for the temperature distribution and vapor concentration, from

which we compute the vapor flux and the evaporating lifetime for the liquid. To formulate

the model we follow the spirit in [48], and transform the far-field conditions (which would

either invalidate or trivialize the 2D problem) into boundary conditions along a "mathemati-

cal" boundary. In Section 3.1, we present the governing equations, with boundary conditions

that render meaningful solutions. In Section 3.2, we present the solutions to temperature

and concentration. In particular, we use the Parity Split Method introduced in Chapter 2

to analytically implement the jump conditions in temperature at the liquid-vapor interface,

and introduce a (novel as far as we know) complex analysis technique to solve for the con-

centration. Finally, we use the obtained analytical expressions to compute the evaporative

lifetime in Section 3.3 and discuss their significance in Section 3.4.

1.3 Preliminary Results on Biharmonic Equation

Named after the ancient Roman double-faced god, Janus drops are liquid droplets formed

by two immiscible liquids. Famously referred by the Nobel Prize winner P. G. de Gennes

in 1991 [4], Janus drops have found their way into numerous applications, from material

self-assembly and smart sensing to drug deliveries and imaging [14, 26]. Upon immersed

in a solute, Janus drops are easily re-orientable by externally controlled variables such as

temperature, relative concentrations of the solute, and any surfactant applied on the surfaces

of the drops. Note that Janus drops occur within the context of micro-fluidics, and thus its

behavior is governed by the Stokes equations.
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Our work in Janus drops was initially motivated by experiments conducted at the Phys-

ical Mathematics Laboratory at the UNC Chapel-Hill Department of Mathematics [45],

showing how a Janus drop in a liquid may re-orient, and displace, in response to an applied

external thermal gradient — due to flows triggered by the Marangoni effect. Our objective

was to develop a simple (analytical) formula for the drop dynamics, which could then be

used (for example) as the building block to model the behavior of a large collection of drops.

Our intention was to use, as the starting point for our analysis, the work by Shklyaev,

et. al [49, 8, 50, 9]. In particular, Dynamics of a Janus Drop in an External Flow [49],

these authors present a semi-analytical technique (based on mode expansions) to calculate

the steady motion of a Janus drop under a uniform external flow. They approximate the

Janus drop as a perfect sphere with different material compositions in the upper and lower

hemispheres, with a flat interface across the equator. Next the authors write the governing

equations in each of the three regions (upper and lower hemisphere, and external region — see

Figure B-14), and write the appropriate jump conditions across the interfaces. Finally they

propose "mode" expansions for the solutions in each region, with constants to be determined

by a linear system that results upon imposing the jump conditions. The most interesting

feature of this method is that the proposed expansions satisfy the jump conditions across

the equatorial interface automatically, “term-by-term”.

Unfortunately, upon performing a detailed examination of the work in [49], we encoun-

tered significant "puzzles", that worried us, while trying to understand the proposed solu-

tion. Our attempts to fix these issues lead to the current work. The issues are: (i) The

"modes" satisfying the equatorial jump conditions are simply written. There is no attempt

at motivating, or explaining, why they should have the proposed form. Thus the obvious

question: is there a general principle behind them, or are these just smart guesses? (ii)

Since the proposed solutions involve an infinite series, one may again wonder: Is the set

of modes involved complete, and linearly independent? (iii) Assuming that the answer to

(ii) is yes, another problem arises: On the one hand, as explained earlier, the presence of

a triple-point (along the equator — see Figure B-14) causes a singularity in the solution

there, which implies that the proposed series must converge slowly. On the other hand, the

linear system that must be solved to find the coefficients is numerically poorly conditioned.

Thus it is very hard to accurately compute more than a few coefficients. This results in a

"visually" satisfactory solution, which (however) fails to satisfy the stress jump conditions
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across the Janus drop surface, exhibiting a rather massive case of the Gibbs phenomena.

The questions here are then: What is the source of the poor conditioning, and can it be

fixed? Alternatively: is there a way to extract the singular part of the series, so that the

rest converges reasonably fast?

The work in this thesis gives a positive answer to the questions in (i) and (ii) above

in various related settings, although the work for the specific case of the Stokes equations

is not yet complete. As for (iii) we do not have a complete answer, but we know that

it is not a phenomena restricted to Janus drops in 3D, as we have found the exact same

problem for a similar problem in 2-D, the "Janus cylinder". This research is presented in

Chapter 4, as follows: Section 4.1 introduces the 3D Janus problem in [49], and describes in

some detail the issues reported in the prior paragraph. In section 4.2 we examine the Stokes

equations in 2D, which can be reduced to the biharmonic equation, and present some results

that are needed to formulate the Parity Split Method (PSM) in this case. In Section 4.3

we introduce the 2D "Janus cylinder" problem, and show how to solve it using the PSM.

Section 4.4 proposes a way to fix the large condition number issue (for the linear system

arising in section 4.3) via the use of novel basis functions and numerical pre-conditioning.

Finally, Section 4.5 concludes the chapter and identifies potential future directions for this

line of work.
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Chapter 2

Parity Split Method for the Poisson

Equation; Triple-Line Singularities

2.1 Problem Formulation

In this chapter we consider Poisson’s problem over a domain Ω (in 2D or 3D, say), with

boundary 𝜕Ω, split in two sub-domains, Ω1 and Ω2, by an interface Γ — see Figure B-1.

The equations are as follows ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢 = ℎ, in Ω,

𝑢 = 𝑓, on 𝜕Ω,

[𝑢]|Γ = 𝑏,

[𝜈 �̂� · ∇𝑢]|Γ = 𝑤,

(2.1)

where the brackets indicate the jumps in the enclosed variables across the interface

[𝑢]Γ = 𝑢1(𝑥)− 𝑢2(𝑥), 𝑥 ∈ Γ, (2.2)

[𝜈 �̂� · ∇𝑢]Γ = (𝜈1 �̂� · ∇𝑢1) (𝑥)− (𝜈2 �̂� · ∇𝑢2) (𝑥), 𝑥 ∈ Γ, (2.3)

Here: ℎ, 𝑓 , 𝑏, and 𝑤, are given functions (defined in the appropriate domains), we use the

subscripts 1 and 2 to indicate quantities defined in each of the sub-domains (e.g.: 𝑢𝑖 is the

solution in Ω𝑖), �̂� is the unit normal to Γ (pointing towards Ω1), and the 𝜈𝑖 are positive

(generally not equal) constants.

Note 2.1. (Boundary conditions). Here we consider the case with Dirichlet boundary
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conditions. However, the approach we will introduce can be easily extended to other types of

boundary conditions, such as Neumann. ♣

Note 2.2. (The function 𝜈). 𝜈 is defined by 𝜈 = 𝜈1 for Ω1 and 𝜈 = 𝜈2 for Ω2. ♣

Note 2.3. (Physical motivation). This type of problem arises when, for example, seeking

the steady state temperature distribution in a domain with two different (constant) heat

diffusivities, 𝜈1 and 𝜈2. In this case 𝑓 is the temperature on the boundary, ℎ arises because

of heat sources in the domain, 𝑏 = 0, and 𝑤 corresponds to heat sources at the interface

(such as those caused by the latent heat in an evaporation process) — note that 𝜈𝑖 �̂� · ∇𝑢𝑖

are the heat fluxes on each side of the interface. A non-vanishing 𝑏 occurs when 𝑢 represents

the pressure, then 𝑏 arises because of surface tension at the interface. ♣

Note 2.4. (Notation). Throughout this thesis 𝑥 = (𝑥1, ..., 𝑥𝑑) ∈ R𝑑 denotes a Cartesian

vector, and Δ is the Laplace operator Δ =
𝑑∑︀

𝑗=1
𝜕2𝑥𝑗𝑥𝑗

. ♣

In Sections 2.2–2.3, we consider the problem with no sources — i.e.: ℎ, 𝑏, and 𝑤 vanish.

That is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢 = 0, in Ω

𝑢 = 𝑓, on 𝜕Ω

[𝑢]|Γ = 0

[𝜈 �̂� · ∇𝑢]|Γ = 0

(2.4)

The source terms are added in Section 2.4.

2.2 Parity Split Method for the Laplace Equation

The PSM transforms the problem in (2.4) into an equivalent set of two problems without

any interface. To do so it relies on the existence of a symmetry, relative to the interface, of

the domain Ω. That is: we assume (2.5)

that there exists a function 𝑔 with the following properties:

(1) 𝑔 maps Ω to Ω, and 𝑔2 is the identity.

(2) 𝑔(Ω1) = Ω2. Note that then (1) implies 𝑔(Ω2) = Ω1.

(3) 𝑔 is the identity on Γ.
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(4) 𝑔 is at least 𝐶2.

(5) 𝑔 preserves the Laplacian: Δ𝑢(𝑔(𝑥)) = 0 if Δ𝑢(𝑥) = 0.

Note that these are rather restrictive conditions, which severely limit the possible geometries

— for a more technical discussion of this issue, see Section 2.5.

Given (2.5), we use 𝑔 to write the solution in terms of an “odd” and an “even” component

(the “parity split”).1 We do the same for the boundary data 𝑓 . Then we show that each

of the components satisfies a Laplace problem with the interface Γ removed. We will also

show that any solution can be written in this way.

To proceed with the program described above, we first introduce the parity split decom-

positions. Any function defined on Ω, or on 𝜕Ω (in particular, the solution to (2.4), and the

boundary data) can be written in the form

𝑢 = 𝑢𝑒 +
1

𝜈
𝑢𝑜 and 𝑓 = 𝑓𝑒 +

1

𝜈
𝑓𝑜, (2.6)

where the subscript “e” (resp. “o”) indicates that the corresponding function is even (resp.

odd) with respect to 𝑔. This decomposition is unique: with 𝜅 = 1/𝜈1 + 1/𝜈2, it is easy to

see that (note 2.5)

𝑓𝑒(𝑥) =
1

𝜅

(︂
1

𝜈(𝑔(𝑥))
𝑓(𝑥) +

1

𝜈(𝑥)
𝑓(𝑔(𝑥))

)︂
, (2.7)

𝑓𝑜(𝑥) =
1

𝜅
(𝑓(𝑥)− 𝑓(𝑔(𝑥))) , (2.8)

with similar expressions for 𝑢. Clearly 𝑓𝑒, 𝑓𝑜, etc., have the required even/odd properties.

Theorem 2.1. If 𝑢 satisfies (2.4), then 𝑢𝑒 and 𝑢𝑜 satisfy

⎧⎪⎨⎪⎩
Δ𝑢𝑒 = 0, in Ω,

𝑢 = 𝑓𝑒, on 𝜕Ω,
and

⎧⎪⎨⎪⎩
Δ𝑢𝑜 = 0, in Ω,

𝑢 = 𝑓𝑜, on 𝜕Ω,
(2.9)

where neither of these PDE involves an internal boundary. Furthermore: if (2.9) is satisfied

(with 𝑓𝑒 even and 𝑓𝑜 odd), then 𝑢 (as defined by (2.6)) satisfies (2.4).

Proof. We begin with the proof of the second claim. This requires that we show that: (a) 𝑢

is harmonic in each of Ω1 and Ω2, (b) 𝑢 = 𝑓 on 𝜕Ω, and (c) 𝑢, and the flux 𝜈 �̂� ·∇𝑢, are both

continuous across the interface Γ. To prove (a) note that 𝑢𝑖 = 𝑢𝑒 +
1
𝜈𝑖
𝑢𝑜 in Ω𝑖 for 𝑖 = 1, 2.

1A function 𝑐 is even (odd) with respect to 𝑔 if 𝑐(𝑥) = 𝑐(𝑔(𝑥)) (resp. 𝑐(𝑥) = −𝑐(𝑔(𝑥))).
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Since 𝑢𝑒 and 𝑢𝑜 are harmonic throughout Ω, and 𝜈𝑖 is a constant, the result follows. Next:

(b) follows by construction. Finally, to prove (c) we first notice that 𝑢𝑒(𝑔(𝑥)) and −𝑢𝑜(𝑔(𝑥))

also solve (2.9). Thus, by uniqueness, 𝑢𝑒 and 𝑢𝑜 inherit the parity properties, that is:

𝑢𝑒(𝑔(𝑥)) = 𝑢𝑒(𝑥) and 𝑢𝑜(𝑔(𝑥)) = −𝑢𝑜(𝑥). (2.10)

In particular [𝑢]|Γ = [𝑢𝑒]|Γ + [(1/𝜈)𝑢𝑜]|Γ = 0, (2.11)

since 𝑢𝑜 = 0 on Γ.

Similarly, [𝜈 �̂� · ∇𝑢]|Γ = [𝜈 �̂� · ∇𝑢𝑒]|Γ + [�̂� · ∇𝑢𝑜]|Γ = 0. (2.12)

Here, just as for [𝑢𝑒]|Γ

in (2.11), [�̂� · ∇𝑢𝑜]|Γ vanishes because 𝑢𝑜 is smooth throughout Ω. On the hand, the first

term vanishes because �̂� · ∇𝑢𝑒 = 0 on Γ (which follows because 𝑢𝑒 is even, see note 2.6).

Note 2.5. Proof that (2.7–2.8) yield (2.6). We have:

𝑓𝑒(𝑥) +
1

𝜈(𝑥)
𝑓𝑜(𝑥) =

1

𝜅

(︂
1

𝜈(𝑔(𝑥))
𝑓(𝑥) +

1

𝜈(𝑥)
𝑓(𝑔(𝑥))

)︂
+

1

𝜈(𝑥)

1

𝜅
(𝑓(𝑥)− 𝑓(𝑔(𝑥)))

=
1

𝜅

(︂
1

𝜈(𝑔(𝑥))
+

1

𝜈(𝑥)

)︂
𝑓(𝑥) = 𝑓(𝑥),

(2.13)

where we use that 1
𝜈(𝑔(𝑥)) +

1
𝜈(𝑥) = 𝜅. The proof for 𝑢 is the same. ♣

Note 2.6. The normal derivative of 𝑢𝑒 is “odd”. Let 𝐴 = 𝐴(𝑥) be the Jacobian of 𝑔

— that is 𝐴𝑛𝑚 = 𝜕𝑥𝑚𝑔𝑛. Then ∇𝑢𝑒(𝑥) = 𝐴(𝑥)𝑇∇𝑢𝑒(𝑔(𝑥)). [a]

However, as we will show in (2.67), 𝐴 is proportional to an orthogonal matrix. Hence, since

𝑔 is the identity on Γ, it should be either of: 𝐴�̂� = ±�̂�. But 𝑔 “flips” sides across Γ, so that

𝐴�̂� = −�̂�. Thus, from [a], on Γ, �̂�(𝑥) · ∇𝑢𝑒(𝑥) = −�̂�(𝑥) · ∇𝑢𝑒(𝑥). [b]

It follows that �̂� · ∇𝑢𝑒 = 0 on Γ. ♣

2.3 Examples

2.3.1 Disk (2D example)

Here we consider the example where Ω is a disk. This geometry has been the subject of

extensive investigation in fluid dynamics and heat transfer theory, such as the study of drag

forces on a cylinder [36, 27, 57, 25, 1]. Thus let Ω be the unit disk centered at the origin, with

Ω1 the upper half-disk, Ω2 the lower half-disk, and interface the interval Γ = {|𝑥| < 1, 𝑦 = 0}

— see Figure B-2a. As usual, 𝜈1 and 𝜈2 denote the diffusivities in each of the half-disks.
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Then a suitable symmetry function 𝑔 is 𝑔(𝑥, 𝑦) = (𝑥, −𝑦), (2.14)

and the equation to be solved is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢 = 0, 𝑥2 + 𝑦2 < 1,

𝑢 = 𝑓, 𝑥2 + 𝑦2 = 1,

𝑢|𝑦=0+ = 𝑢|𝑦=0− ,

𝜈1
𝜕𝑢
𝜕𝑦 |𝑦=0+ = 𝜈2

𝜕𝑢
𝜕𝑦 |𝑦=0− ,

(2.15)

To write the problem as in (2.9), we split 𝑓 = 𝑓𝑒 +
1
𝜈 𝑓𝑜 following (2.7–2.8).Thus

𝑓𝑒(𝑥, 𝑦) =
1

𝜅

(︂
1

𝜈(𝑥,−𝑦)
𝑓(𝑥, 𝑦) +

1

𝜈(𝑥, 𝑦)
𝑓(𝑥,−𝑦)

)︂
, (2.16)

𝑓𝑜(𝑥, 𝑦) =
1

𝜅
(𝑓(𝑥, 𝑦)− 𝑓(𝑥,−𝑦)) , (2.17)

where 𝑔 is as in (2.14), 𝜈 = 1
𝜈1

for 𝑦 > 0, 𝜈 = 1
𝜈2

for 𝑦 < 0, and 𝜅 = 1
𝜈1

+ 1
𝜈2

. Note: in polar

coordinates, 𝑓(𝜃) = 𝑓𝑒(𝜃) +
1
𝜈 𝑓𝑜(𝜃) is not the “standard” split into even and odd parts.

We can now solve the problems in (2.9) using the standard modes for the Laplace equa-

tion in a disk, 𝑟𝑛 cos(𝑛 𝜃) for 𝑢𝑒 and 𝑟𝑛 sin(𝑛 𝜃) for 𝑢𝑜. Using then (2.6) we obtain:

𝑢 = 𝑢𝑒 +
1

𝜈
𝑢𝑜 =

∞∑︁
𝑛=0

𝑎𝑛𝑟
𝑛 cos(𝑛𝜃) +

∞∑︁
𝑛=1

𝑏𝑛
1

𝜈
𝑟𝑛 sin(𝑛𝜃) (2.18)

where

𝑎0 =
1

2𝜋

∫︁ 𝜋

−𝜋

𝑓𝑒(𝜃)𝑑𝜃, 𝑎𝑛 =
1

𝜋

∫︁ 𝜋

−𝜋

𝑓𝑒(𝜃) cos(𝑛𝜃)𝑑𝜃, and 𝑏𝑛 =
1

𝜋

∫︁ 𝜋

−𝜋

𝑓𝑒(𝜃) sin(𝑛𝜃)𝑑𝜃,

for 𝑛 = 1, 2, . . . . Note that this expresses the solution to (2.15) in the (somewhat) unusual

basis with modes {𝑟𝑛 cos(𝑛𝜃)}∞𝑛=0 and
{︀
1
𝜈 𝑟

𝑛 sin(𝑛𝜃)
}︀∞
𝑛=1

. See Figure B-4.

2.3.2 Sphere (3D example)

Many physical problems require solving a Laplace or Poisson problem in a sphere; for exam-

ple: find the electric potential of a dielectric double sphere [41, 42, 28], or the temperature

field for a Janus particle. In all these problems the equations are to be solved with an

interface placed at the equator (see Figure B-2a).

Using spherical coordinates Ω = {(𝑟, 𝜃, 𝜑) | 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 ≤ 2𝜋}. (2.19)

Furthermore, as in the 2D problem, Ω1 (resp. Ω2) is the upper (resp. lower) hemisphere, Γ
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is the unit disk on the plane 𝑧 = 0 (𝜃 = 𝜋/2), and 𝑔(𝑥 , 𝑦, 𝑧) = (𝑥 , 𝑦, −𝑧) (2.20)

(reflection across the 𝑧 = 0 plane). The equation to solve is then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢 = 0, 𝑥2 + 𝑦2 + 𝑧2 < 1,

𝑢 = 𝑓, 𝑥2 + 𝑦2 + 𝑧2 = 1,

𝑢|𝑧=0+ = 𝑢|𝑧=0− , and 𝜈1
𝜕𝑢
𝜕𝑧 |𝑧=0+ = 𝜈2

𝜕𝑢
𝜕𝑧 |𝑧=0−

(2.21)

Following (2.7–2.8) the parity split is

𝑓𝑒(𝑥 , 𝑦, 𝑧) =
1

𝜅

(︂
1

𝜈(𝑥 , 𝑦, −𝑧)
𝑓(𝑥 , 𝑦, 𝑧) +

1

𝜈(𝑥 , 𝑦, 𝑧)
𝑓(𝑥 , 𝑦, −𝑧)

)︂
, (2.22)

𝑓𝑜(𝑥 , 𝑦, 𝑧) =
1

𝜅
(𝑓(𝑥 , 𝑦, 𝑧)− 𝑓(𝑥 , 𝑦, −𝑧)) . (2.23)

Next we solve (2.9), using the basis of solutions {𝑟𝑛𝑌 𝑚
𝑛 (𝜃, 𝜑)}∞𝑛=0, where 𝑌 𝑚

𝑛 are the spherical

harmonics [58]. These have the appropriate (relative to 𝑧, i.e.: 𝜃) parity properties: 𝑌 𝑚
𝑛 is

even when (𝑛+𝑚) is even and 𝑌 𝑚
𝑛 is odd when (𝑛+𝑚) is odd. Putting it all together, this

yields

𝑢 = 𝑢𝑒 +
1

𝜈
𝑢𝑜 =

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛,

(𝑚+𝑛)=𝑒𝑣𝑒𝑛

𝑎𝑚𝑛 𝑟
𝑛𝑌 𝑚

𝑛 (𝜃, 𝜑) +

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛,

(𝑚+𝑛)=𝑜𝑑𝑑

𝑏𝑚𝑛
1

𝜈
𝑟𝑛𝑌 𝑚

𝑛 (𝜃, 𝜑), (2.24)

where, with 𝜁 = cos(𝜃),

𝑎𝑚𝑛 =
4𝜋 (𝑛+𝑚)!

(2𝑛+ 1) (𝑛−𝑚)!

∫︁ 2𝜋

0
𝑑𝜑

∫︁ 1

−1
𝑑𝜁 𝑓𝑒(𝜃, 𝜑)𝑌

𝑚
𝑛 (𝜃, 𝜑), (2.25)

𝑏𝑚𝑛 =
4𝜋 (𝑛+𝑚)!

(2𝑛+ 1) (𝑛−𝑚)!

∫︁ 2𝜋

0
𝑑𝜑

∫︁ 1

−1
𝑑𝜁 𝑓𝑜(𝜃, 𝜑)𝑌

𝑚
𝑛 (𝜃, 𝜑). (2.26)

The expression above is analog for this 3D case of (2.18) for the 2D case. Finally note that,

for an azimuthally symmetric 𝑓 , the spherical harmonics collapse to Legendre polynomials,

in which case

𝑢 =

∞∑︁
𝑛=0, 2, 4, ...

𝑎𝑛𝑟
𝑛𝑃𝑛(cos 𝜃) +

∞∑︁
𝑛=1, 3, 5, ...

𝑏𝑛
1

𝜈
𝑟𝑛𝑃𝑛(cos 𝜃), (2.27)

where 𝑃𝑛 is the Legendre polynomials of order 𝑛. Again, note the unusual basis with

the modes {𝑟𝑛𝑃𝑛}∞𝑛 even and
{︀
1
𝜈 𝑟

𝑛𝑃𝑛

}︀∞
𝑛 odd

— see Figure B-5 for plots of some of these

eigenmodes. We point out that a similar basis appears in equation (10) of [28], while solving

for the electric potential of dielectric hemispheres. However, the authors do not explained
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why such a basis is complete, nor how it was obtained (possibly through a clever and

judicious guess). This approach, unfortunately, is hard to generalize, and could easily lead

to intractable algebra in more complex geometries, such as in the following example.

2.3.3 2D Wedge (Continuous Basis)

The wedge geometry is often used in the design of microfluidic devices, such as microfluidic

pumps, actuators, and heat pipes [55, 40, 33, 32, 59, 54]. Most wedge-shaped microfluidic

devices have liquid sitting at the bottom of a wedge, forming a meniscus interface with

vapor above. One is often interested in the temperature of liquid and vapor, which satisfies

a Laplace equation with jump conditions imposed at the phase boundary. These conditions

typically involve temperature continuity, and a nonzero added heat flux arising from the

latent heat of vaporization [44]. With this motivation, we consider the Laplace equation

on an infinite 2D wedge, where the interface is placed at 𝑟 = 1 — see Figure B-2b. To be

precise, we take: Ω = {(𝑟, 𝜃) | 0 ≤ 𝜃 ≤ Φ, 0 < 𝑟 < ∞}, where Φ is the wedge angle, Γ is the

intersection of Ω with 𝑟 = 1, Ω1 = {𝑥 ∈ Ω | 𝑟 < 1}, Ω2 = {𝑥 ∈ Ω | 𝑟 > 1}, and we use polar

coordinates. The symmetry function is then 𝑔(𝑟, 𝜃) =

(︂
1

𝑟
, 𝜃

)︂
. (2.28)

The equation to be solved is 2⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢 = 0, in Ω,

𝑢 = 𝑓1(𝑟) at 𝜃 = 0, and 𝑢 = 𝑓2(𝑟) at 𝜃 = Φ,

𝑢|𝑟=1− = 𝑢|𝑟=1+ , and 𝜈1
𝜕𝑢
𝜕𝑟 |𝑟=1− = 𝜈2

𝜕𝑢
𝜕𝑟 |𝑟=1+ .

(2.29)

Note that, if 𝑢(𝑖) satisfies this equation with 𝑓𝑖 = 0, then 𝑢 = 𝑢(1) + 𝑢(2). Furthermore, the

problems satisfied by the 𝑢(𝑖) are equivalent via the transformation 𝜃 → Φ−𝜃. Thus, without

loss of generality, we assume 𝑓1 = 0. Dropping the subscript and superscript notations, we

then have: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢 = 0, in Ω,

𝑢 = 0 at 𝜃 = 0, and 𝑢 = 𝑓(𝑟) at 𝜃 = Φ,

𝑢|𝑟=1− = 𝑢|𝑟=1+ , and 𝜈1
𝜕𝑢
𝜕𝑟 |𝑟=1− = 𝜈2

𝜕𝑢
𝜕𝑟 |𝑟=1+ .

(2.30)

2Here there are no heat sources at the interface. In Section 2.4, we consider a case with a heat source
produced by the latent heat of vaporization.
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Next follow the procedure in (2.6–2.9), § 2.2. First a parity split on 𝑓 , using (2.28),

𝑓𝑒(𝑟) =
1

𝜅

(︂
1

𝜈(1/𝑟)
𝑓(𝑟) +

1

𝜈(𝑟)
𝑓(1/𝑟)

)︂
and 𝑓𝑜(𝑟) =

1

𝜅
(𝑓(𝑟)− 𝑓(1/𝑟)) . (2.31)

Then 𝑢 = 𝑢𝑒 +
1
𝜈𝑢𝑜, where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δ𝑢𝑒 = 0, in Ω,

𝑢𝑒 = 0, 𝜃 = 0,

𝑢𝑒 = 𝑓𝑒, 𝜃 = Φ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢𝑜 = 0, in Ω,

𝑢𝑜 = 0, 𝜃 = 0,

𝑢𝑜 = 𝑓𝑜, 𝜃 = Φ.

(2.32)

Separation of variables yields the elementary solutions 𝑟±�̃� sin(�̃�𝜃) and 𝑟±�̃� cos(�̃�𝜃), where

�̃� is an arbitrary complex constant. Since we will need to expand the boundary data along

the edge 𝜃 = Φ, with homogeneous boundary condition on the other edge, we select �̃� = 𝑖 𝛼

purely imaginary — see note 2.7. This leads to:3

(a) cos(𝛼 log(𝑟)) sinh(𝛼 𝜃) and (b) sin(𝛼 log(𝑟)) sinh(𝛼 𝜃). (2.33)

(c) cos(𝛼 log(𝑟)) cosh(𝛼 𝜃) and (d) sin(𝛼 log(𝑟)) cosh(𝛼 𝜃). (2.34)

The homogeneous boundary condition along 𝜃 = 0 then excludes (c) and (d). Furthermore:

the modes in (a) are even with respect to 𝑔, and the modes in (b) are odd. Hence we can

use the cosine Fourier Transform to solve for 𝑢𝑒, and the sine Fourier Transform for 𝑢𝑒. This

leads to the solution:

𝑢𝑒 =

∫︁ ∞

−∞
cos(𝛼 log(𝑟)) sinh(𝛼𝜃)𝑓𝑒(𝛼)𝑑𝛼, (2.35)

𝑢𝑜 =

∫︁ ∞

−∞
sin(𝛼 log(𝑟)) sinh(𝛼𝜃)𝑓𝑜(𝛼)𝑑𝛼, (2.36)

where

𝑓𝑒(𝛼) =
1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
cos(𝛼 log(𝑟))𝑓𝑒(𝑟)𝑑(log(𝑟)), (2.37)

𝑓𝑜(𝛼) =
1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
sin(𝛼 log(𝑟))𝑓𝑜(𝑟)𝑑(log(𝑟)). (2.38)

Of course, this only works if 𝑓𝑒 and 𝑓𝑜 are sufficiently “nice”. For example, integrable:∫︁ ∞

−∞
|𝑓𝑒(𝑟)|𝑑 log(𝑟) <∞ and

∫︁ ∞

−∞
|𝑓𝑜(𝑟)|𝑑 log(𝑟) <∞. (2.39)

3Here 𝛼 is real and we use that 𝑟±𝑖𝛼 = cos(𝛼 log(𝑟))± 𝑖 sin(𝛼 log(𝑟)).
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Unfortunately, if 𝑓 does not vanish for 𝑟 → 0 and 𝑟 → ∞ (something not unrealistic), this

fails.4 Below, in § 2.3.3.1, we show how to deal with a case where (2.39) fails.

Note 2.7. (Why �̃� real is a bad idea). One should resist the temptation to use �̃� real.

While this could lead to a discrete basis in 𝜃 (some type of Fourier Series), eigenfunction

expansions of 𝑓(𝑟) in real powers of 𝑟 lead to extremely ill-conditioned problems [56]. ♣

2.3.3.1 Renormalization, the case 𝑓 = 𝑟

Situations of interest where (2.39) fails abound. We will not attempt to deal with all of them.

Instead we will do an example that illustrates some of the available techniques. Specifically

we consider the example 𝑓 = 𝑟. The parity split in this case yields

𝑓𝑒 =
1

𝜅

(︂
1

𝜈(1/𝑟)
𝑟 +

1

𝜈(𝑟)

1

𝑟

)︂
and 𝑓𝑜 =

1

𝜅

(︂
𝑟 − 1

𝑟

)︂
(2.40)

The aim is now to solve (2.32) with the boundary conditions in (2.40). The problem for 𝑢𝑜

can be solved by inspection
𝑢𝑜 =

1

𝜅

(︂
𝑟 − 1

𝑟

)︂
sin 𝜃

sinΦ
(2.41)

Notice that this solution is unbounded near 𝑟 = 0. This singular behavior should be cancelled

by a corresponding singular behavior in 𝑢𝑒, to render a final solution that is bounded near

the origin. This suggests that we “renormalize” 𝑢𝑒 by removing the (now known) unbounded

term near the origin. Thus define:

�̃�𝑒 = 𝑢𝑒 −
1

𝜈1𝜅

sin 𝜃

𝑟 sinΦ
− 1

𝜈1𝜅

𝑟 sin 𝜃

sinΦ
, (2.42)

where the second subtracted term is to keep �̃�𝑒 even with respect to 𝑔 in (2.28). Then �̃�𝑒

satisfies the same problem as 𝑢𝑒, but with 𝑓𝑒 replaced by 𝑓𝑒, given by:

𝑓𝑒 =
1

𝜅

(︂
1

𝜈2
− 1

𝜈1

)︂
𝑟 for 𝑟 < 1, and 𝑓𝑒 =

1

𝜅

(︂
1

𝜈2
− 1

𝜈1

)︂
1

𝑟
for 𝑟 > 1. (2.43)

Note that 𝑓𝑒 satisfies (2.39). Thus we can write now �̃�𝑒 using (2.35) (2.37). Then 𝑢 follows

from 𝑢 = 𝑢𝑒 + (1/𝜈)𝑢𝑜; i.e.: (2.6). Since 𝑓 is fairly simple, explicit calculations are possible,
4Note that the case 𝑓 → 𝑐 as 𝑟 → 0 or 𝑟 → ∞ (same constant 𝑐) is not a problem, as then we can subtract

𝑢 = (𝑐/Φ)𝜃 from the solution, and reduce the problem to the 𝑓 → 0 situation.
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which yield the final answer:

𝑢(𝑟, 𝜃) =

⎧⎪⎪⎨⎪⎪⎩
𝑟 sin 𝜃
sinΦ + 2(𝜈1−𝜈2)

𝜈1+𝜈2

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
𝑛2𝜋2/Φ2−1

𝑟𝑛𝜋/Φ, 𝑟 < 1.

𝑟 sin 𝜃
sinΦ + 2(𝜈1−𝜈2)

𝜈1+𝜈2

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
𝑛2𝜋2/Φ2−1

𝑟−𝑛𝜋/Φ, 𝑟 > 1.

(2.44)

Figure B-6 shows the heat map from (2.44) for a particular choices of parameters. The

solution vanishes as 𝑟 → 0. For large 𝑟, the contribution from the infinite sum goes to zero,

so that 𝑢 grows linearly in 𝑟. Further: at the interface 𝑟 = 1, the infinite series satisfies

the continuity condition term-by-term. On the other hand, the fluxes at 𝑟 = 1 − 𝑑𝑟 and

𝑟 = 1 + 𝑑𝑟, formally given by

𝜈𝜕𝑟𝑢(𝑟, 𝜃)|𝑟=1 =

⎧⎪⎪⎨⎪⎪⎩
𝜈1 sin 𝜃
sinΦ + 2𝜈1(𝜈1−𝜈2)

𝜈1+𝜈2

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
𝑛2𝜋2/Φ2−1

(𝑛𝜋/Φ), 𝑟 = 1− 𝑑𝑟,

𝜈2 sin 𝜃
sinΦ + 2𝜈2(𝜈1−𝜈2)

𝜈1+𝜈2

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
𝑛2𝜋2/Φ2−1

(−𝑛𝜋/Φ), 𝑟 = 1 + 𝑑𝑟,

(2.45)

are not equal term-by-term. This is related to the fact that convergence is absolute for

(2.44), and conditional for (2.45). In fact (2.45) makes sense only in the 𝐿2 sense, as the

𝑟 → 1 limit of the corresponding expressions for 𝑟 ̸= 1 (which converge absolutely). In

§ 2.3.3.2 we will show how to take these limits properly.

In the rest of this subsection we sketch the steps leading to (2.44).

The first step is to calculate the Fourier Transform of 𝑓𝑒, using (2.37).

^̃
𝑓𝑒(𝛼) =

1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
cos(𝛼𝜉) 𝑓𝑒(𝑟)𝑑𝜉 =

1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
exp(𝑖𝛼𝜉)𝑓𝑒(𝑟)𝑑𝜉,

where 𝜉 = log(𝑟), and we use that
∫︀∞
−∞ sin(𝛼𝜉)𝑓𝑒(𝑟)𝑑𝜉 = 0 because 𝑓𝑒 is even with respect

to 𝜉. Hence

^̃
𝑓𝑒(𝛼) =

(1/𝜈2 − 1/𝜈1)

2𝜅𝜋 sinh(𝛼Φ)

∫︁ 0

−∞
exp(𝑖𝛼𝜉 + 𝜉)𝑑𝜉 +

(1/𝜈2 − 1/𝜈1)

2𝜅𝜋 sinh(𝛼Φ)

∫︁ ∞

0

exp(𝑖𝛼𝜉 − 𝜉)𝑑𝜉

=
(1/𝜈2 − 1/𝜈1)

2𝜅𝜋 sinh(𝛼Φ)

(︂
1

1 + 𝑖𝛼
+

1

1− 𝑖𝛼

)︂
=

(1/𝜈2 − 1/𝜈1)

𝜅𝜋 sinh(𝛼Φ)

(︂
1

1 + 𝛼2

)︂

Then, using (2.35),

�̃�𝑒 =
(1/𝜈2 − 1/𝜈1)

𝜅𝜋

∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)

cos(𝛼𝜉)

1 + 𝛼2
𝑑𝛼 =

(1/𝜈2 − 1/𝜈1)

𝜅𝜋

∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)

exp(𝑖𝛼𝜉)

1 + 𝛼2
𝑑𝛼,

where we once again the second equality exploits of the imaginary part of the integrand

in the last integrand. This last expression can be transformed into a series using standard
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residue calculations, which yield

�̃�𝑒 =

⎧⎪⎪⎨⎪⎪⎩
(1/𝜈2−1/𝜈1)

𝜅

(︂
sin 𝜃
𝑟 sinΦ + 2

Φ

∞∑︀
𝑛=1

sin(𝑛𝜋𝜃
Φ )𝑟−𝑛𝜋/Φ

𝑛2𝜋2

Φ2 −1
(−1)𝑛

)︂
, for 𝑟 < 1.

(1/𝜈2−1/𝜈1)
𝜅

(︂
𝑟 sin 𝜃
sinΦ + 2

Φ

∞∑︀
𝑛=1

sin(𝑛𝜋𝜃
Φ )𝑟𝑛𝜋/Φ

𝑛2𝜋2

Φ2 −1
(−1)𝑛

)︂
, for 𝑟 > 1.

(2.46)

Finally, using this expression, (2.42), (2.41), and (2.6), we obtain (2.44).

2.3.3.2 Series Acceleration and Singularity Extraction

For 𝑟 = 1 the infinite series in (2.44) converge (absolutely) like 𝑂(1/𝑛2), which is not too bad,

but not great either.5 However, the series for the fluxes in (2.45) converges conditionally,

with terms decaying like 1/𝑛. Attempting a direct summation of these series leads to a

Gibbs’ phenomena, with spurious oscillations and lack of convergence in the 𝐿∞ norm —

this is illustrated in Figure B-3, which also shows that the 𝐿2 convergence is sublinear. The

reason behind this bad behavior is the triple-line singularity in the solution at (𝑟, 𝜃) = (1,Φ).

Since quantities like the fluxes across the interface are often the ones of primary physical

interest, this situation is not very satisfactory, and we need to accelerate the convergence of

these series. As an added benefit this will also serve to elucidate the nature of the triple-line

singularity in the solution.

To accelerate the convergence we substitute

1

𝑛2𝜋2/Φ2 − 1
=

1

𝑛2𝜋2/Φ2
+

1

(𝑛2𝜋2/Φ2)(𝑛2𝜋2/Φ2 − 1)

into (2.44). After some cumbersome, but straightforward, manipulations this results in

𝑢(𝑟, 𝜃) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟 sin 𝜃
sinΦ + 2Φ2(𝜈1−𝜈2)

𝜋2(𝜈1+𝜈2)
𝐿𝑖2

(︀
−𝑟𝑒𝑖𝜋𝜃/Φ

)︀
+ 2(𝜈1−𝜈2)

𝜈1+𝜈2

(︂ ∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
(𝑛2𝜋2/Φ2)(𝑛2𝜋2/Φ2−1)

𝑟𝑛𝜋/Φ
)︂

for 𝑟 < 1,

𝑟 sin 𝜃
sinΦ + 2Φ2(𝜈1−𝜈2)

𝜋2(𝜈1+𝜈2)
𝐿𝑖2

(︀
−1

𝑟𝑒
𝑖𝜋𝜃/Φ

)︀
+ 2(𝜈1−𝜈2)

𝜈1+𝜈2

(︂ ∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
(𝑛2𝜋2/Φ2)(𝑛2𝜋2/Φ2−1)

𝑟−𝑛𝜋/Φ

)︂
for 𝑟 > 1,

(2.47)

5For 𝑟 ̸= 1 the convergence is geometrical, and much better.
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and

𝜈𝜕𝑟𝑢(𝑟, 𝜃)|𝑟=1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜈1 sin 𝜃
sinΦ + 2𝜈1Φ(𝜈1−𝜈2)

𝜋(𝜈1+𝜈2)
𝐿𝑖1

(︀
−𝑒𝑖𝜋𝜃/Φ

)︀
+ 2𝜈1(𝜈1−𝜈2)

𝜈1+𝜈2

(︂ ∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)𝑛
(𝑛𝜋/Φ)(𝑛2𝜋2/Φ2−1)

)︂
for 𝑟 < 1,

𝜈2 sin 𝜃
sinΦ + 2𝜈2Φ(𝜈1−𝜈2)

𝜋(𝜈1+𝜈2)
𝐿𝑖1

(︀
−𝑒𝑖𝜋𝜃/Φ

)︀
+ 2𝜈2(𝜈1−𝜈2)

𝜈1+𝜈2

(︂ ∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃/Φ)
(𝑛𝜋/Φ)(𝑛2𝜋2/Φ2−1)

)︂
for 𝑟 > 1.

(2.48)

Here we have introduced the polylogarithm functions of order 𝑠 = 1 and 𝑠 = 2, defined by:

𝐿𝑖𝑠(𝜁) :=
∞∑︁
𝑛=1

𝜁𝑠

𝑛𝑠
. (2.49)

The computation of polylogarithm functions is optimally implemented in standard software

packages, such as: MATLAB, Mathematica, and Python.

The series in (2.47–2.48) converge absolutely, even for 𝑟 = 1 — with n-th terms 𝑂(𝑛−4)

and 𝑂(𝑛−3). Figure B-3 (c-d) illustrates the point, showing no spurious oscillation. Even

with just 1 term, the overall accuracy increases to 3 digits, as shown in panel (c). Further-

more, now the 𝐿2 error is 𝑂(𝑁−3), while the 𝐿∞ error is 𝑂(𝑁−2).

2.4 The Poisson Equation with Nonzero Jumps at Interfaces

Here we show how to use the parity method, used to solve (2.4), to the Poisson equation with

a non-zero source. We also show how to solve problems with a nonzero jump in the solution

at the interface; and a nonzero added flux across the interface. As before, we assume the

existence of a symmetry function 𝑔 for the domain Ω with the interface Γ.
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2.4.1 Solving the Poisson Equation

Adding a source function, ℎ(𝑥), to (2.4), we would like to solve the following equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢 = ℎ, in Ω

𝑢 = 𝑓, on 𝜕Ω

[𝑢]|Γ = 0

[𝜈∇𝑢 · �̂�]|Γ = 0

(2.50)

We follow the procedure laid out in Section 2.2 by first performing the parity splits of

boundary data as in Equation (2.7) and (2.8). In addition, we also perform a parity split

on the source function, ℎ, as

ℎ𝑒(𝑥) =
1

𝜅

(︂
1

𝜈(𝑔(𝑥))
ℎ(𝑥) +

1

𝜈(𝑥)
ℎ(𝑔(𝑥))

)︂
(2.51)

ℎ𝑜(𝑥) =
1

𝜅
(ℎ(𝑥)− ℎ(𝑔(𝑥))) (2.52)

Following the arguments in (2.13), we can deduce that ℎ𝑒 + 1
𝜈ℎ𝑜 = ℎ. Then we end up with

two slightly modified sub-problems compared with (2.9):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢𝑒 = ℎ𝑒, in Ω

𝑢 = 𝑓𝑒, on 𝜕Ω

Δ𝑢𝑜 = ℎ𝑜, in Ω

𝑢 = 𝑓𝑜, on 𝜕Ω

(2.53)

As before, the solution to Equation (2.50) can be assembled as

𝑢 = 𝑢𝑒 +
1

𝜈
𝑢𝑜 (2.54)

A line of arguments similar to those in Section 2.2 can be pursued to show that (2.54) solves

(2.50). First, we show that Δ𝑢 = ℎ on Ω1 and Ω2: over Ω1, we have that Δ𝑢 = Δ𝑢𝑒 +

1
𝜈1
Δ𝑢𝑜 = ℎ𝑒+

1
𝜈1
ℎ𝑜 = ℎ; over Ω1, we have that Δ𝑢 = Δ𝑢𝑒+

1
𝜈2
Δ𝑢𝑜 = ℎ𝑒+

1
𝜈2
ℎ𝑜 = ℎ. Secondly,

we see that 𝑢 = 𝑓 on 𝜕Ω as per the arguments in (2.13). Thirdly, the same arguments in

Equation (2.10) - (2.12) would apply to render that [𝑢]|Γ = 0 and [𝜈∇𝑢 · �̂�]|Γ = 0.
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2.4.2 A Nonzero Jump in Solution at Interface

We are now interested in solving Equation (2.4) with a nonzero flux 𝑏 across the internal

interface Γ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢 = 0, in Ω

𝑢 = 𝑓, on 𝜕Ω

[𝑢]|Γ = 𝑏

[𝜈∇𝑢 · �̂�]|Γ = 0

(2.55)

To solve (2.55), we recall that the solution to a non-homogeneous problem can be de-

composed into the sum of the homogeneous solution and a particular solution. Hence, we

let 𝑢 = 𝑢ℎ + 𝑢𝑝, where 𝑢ℎ satisfies Equation (2.4) and 𝑢𝑝 satisfies the equation below⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢𝑝 = 0, in Ω

𝑢𝑝 = 0, on 𝜕Ω

[𝑢𝑝]|Γ = 𝑏

[𝜈∇𝑢𝑝 · �̂�]|Γ = 0

(2.56)

To solve Equation (2.56), we will once again transform the equation into two sub-problems.

From that, we will show that the solution to one sub-problem can be used to construct the

solution to the other sub-problem. We let 𝑢𝑝1 and 𝑢𝑝2 be the solution to Equation (2.56) in

Ω1 and Ω2, respectively. We let 𝜕Ω1 and 𝜕Ω2 be the exterior boundaries of the sub-domains

36



Ω1 and Ω2. Then 𝑢𝑝1 and 𝑢𝑝2 satisfy the following system of equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢𝑝1 = 0, in Ω1

𝑢𝑝1 = 0, on 𝜕Ω1

𝑢𝑝1 =
𝜈2

𝜈1+𝜈2
𝑏, on Γ

(2.57)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢𝑝2 = 0, in Ω2

𝑢𝑝2 = 0, on 𝜕Ω2

𝑢𝑝2 = − 𝜈1
𝜈1+𝜈2

𝑏, on Γ

(2.58)

[𝜈∇𝑢𝑝 · �̂�] = 0, on Γ (2.59)

Note that [𝑢𝑝] = 𝑢𝑝1 − 𝑢𝑝2 = 𝑏 on Γ, in agreement with the interface solution jump in

Equation (2.56). On the first glance, the conditions imposed by Equations (2.57)-(2.59) are

quite strict, as (2.59) over-determines the sub-problems in (2.57) and (2.58). However, we

show that the solutions can be constructed using the symmetry function.

First we proceed to solve Equation (2.57), which is a stand-alone Laplace equation with

Dirichlet boundary conditions, whose solution can be obtained using a standard method

(e.g.: an analytical method such as separation of variables). Having obtained 𝑢𝑝1, we claim

that

𝑢𝑝2(𝑥) = −𝜈1
𝜈2
𝑢𝑝1(𝑔(𝑥)) (2.60)

We shall demonstrate that Equation (2.60) satisfies (2.58) and (2.59). First since 𝑢𝑝1 is

harmonic and 𝑔 preserves the Laplace equation, 𝑢𝑝2 is also harmonic. Second, to show that

𝑢𝑝2 = 0 on 𝜕Ω2, we recall a key property of 𝑔: 𝑔(Ω2) = Ω1. Thus 𝑔(𝜕Ω2) = 𝜕Ω1. Hence, if

𝑥 ∈ 𝜕Ω2, then 𝑔(𝑥) ∈ 𝜕Ω1, and therefore 𝑢𝑝2(𝑥)|𝑥∈𝜕Ω2 = −𝜈1
𝜈2
𝑢𝑝1(𝑔(𝑥))|𝑔(𝑥)∈𝜕Ω1

= 0. Third,

to see that 𝑢𝑝2 = − 𝜈1
𝜈1+𝜈2

𝑏, we use another property of the symmetry function: 𝑔(𝑥) = 𝑥

for 𝑥 ∈ Γ. Hence if 𝑥 ∈ Γ, 𝑢𝑝1 = 𝜈2
𝜈1+𝜈2

𝑏, and hence 𝑢𝑝2(𝑥) = −𝜈1
𝜈2

𝜈2
𝜈1+𝜈2

𝑏 = − 𝜈1
𝜈1+𝜈2

𝑏, as

expected. Finally, to show that (2.59) holds, we compute that [𝜈∇𝑢𝑝 · �̂�]|Γ = 𝜈1∇𝑢𝑝1(𝑥) ·

�̂�Γ + 𝜈2
𝜈1
𝜈2
∇𝑢𝑝1(𝑔(𝑥)) · �̂�Γ = 0, where we use the fact that

∇𝑢𝑝1(𝑔(𝑥)) · �̂�|Γ = −∇𝑢𝑝1(𝑥) · �̂�|Γ (2.61)
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Here is the proof of Equation (2.61)

Proof. let 𝐴 be the Jacobian of 𝑔 and realize that it is sufficient to prove 𝐴�̂�|Γ = −�̂�. This

is because by the chain rule, ∇𝑢𝑝1(𝑔(𝑥)) = ∇𝑔𝑢1(𝑔)𝐴 (here gradient can be interpreted as

a row vector). To show that 𝐴�̂�|Γ = −�̂�, we pursue the following argument: first, because

𝑔 is conformal, the Jacobian 𝐴 would preserve angles, which means that if 𝑡 represents a

tangent unit vector at Γ, then 𝐴�̂� is orthogonal to 𝐴𝑡. Next we shall use two facts that

we will show later: (a) 𝐴𝑡 = 𝑡 and (b) over Γ, 𝐴2 =identity matrix. Because of (a), 𝐴�̂� is

also orthogonal to 𝑡, which implies that 𝐴�̂� is proportional to �̂�. Secondly, because of (b),

𝐴�̂�|Γ = ±�̂�. The fact that 𝑔 has to map the sub-domain from one side of Γ to the other

rules out the possibility that 𝐴�̂�|Γ = +�̂�, forcing 𝐴�̂�|Γ = −�̂�.

Lastly, to prove (a), let 𝑧(𝑠) be any arbitrary curve on Γ. Then 𝑔(𝑧(𝑠)) = 𝑧(𝑠). Hence
𝑑𝑔
𝑑𝑠 = 𝑧′(𝑠), which renders any tangent unit vector invariant under the Jacobian matrix

multiplication. To prove (b), we know for a fact that 𝐴(𝑔(𝑧))𝐴(𝑧) =identity matrix, for all

𝑧 ∈ Ω. Now choose 𝑧 ∈ Γ and we know that 𝑔(𝑧) = 𝑧. This complete the proof.

2.4.3 A Nonzero Flux at Interface

A nonzero flux at the interface can arise in a number of physical scenarios, such as latent

heat for evaporation. Mathematically, a nonzero term, 𝑤, will be added to the flux condition

in Equation (2.4) to render: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢 = 0, in Ω

𝑢 = 𝑓, on 𝜕Ω

[𝑢]|Γ = 0

[𝜈∇𝑢 · �̂�]|Γ = 𝑤

(2.62)
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As before, we let 𝑢 = 𝑢ℎ+𝑢𝑝, where 𝑢ℎ is the solution to (2.4) and the particular solution

𝑢𝑝 satisfies the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢𝑝 = 0, in Ω

𝑢𝑝 = 0, on 𝜕Ω

[𝑢𝑝]|Γ = 0

[𝜈∇𝑢𝑝 · �̂�]|Γ = 𝑤

(2.63)

Similar to the previous section, we let 𝑢𝑝1 and 𝑢𝑝2 be the solution to Equation (2.63) in Ω1 and

Ω2, respectively, with 𝜕Ω1 and 𝜕Ω2 as the exterior boundaries of the sub-domains. Then 𝑢𝑝1
and 𝑢𝑝2 can be decomposed into the following two coupled sub-problems:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢𝑝1 = 0, in Ω1

𝑢𝑝1 = 0, on 𝜕Ω1

∇𝑢𝑝1 · �̂� = 𝑤
𝜈1+𝜈2

, on Γ

(2.64)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑢𝑝2 = 0, in Ω2

𝑢𝑝2 = 0, on 𝜕Ω2

∇𝑢𝑝2 · �̂� = − 𝑤
𝜈1+𝜈2

, on Γ

(2.65)

𝑢𝑝1 = 𝑢𝑝2, on Γ (2.66)

To solve this over-determined coupled system of equations, we first solve Equation (2.64),

which on its own is a Laplace equation with a Robin boundary condition. Having obtained

𝑢𝑝1, we claim that 𝑢𝑝2(𝑥) = 𝑢𝑝1(𝑔(𝑥)). To see that this construction of 𝑢𝑝2(𝑥) satisfies (2.65)

and (2.66), we pursue a similar line of arguments as before. First since 𝑢𝑝1 is harmonic and 𝑔

is Laplace preserving, 𝑢𝑝2 is also harmonic. Second, to show that 𝑢𝑝2 = 0 on 𝜕Ω2, we note that

𝑔(𝜕Ω2) = 𝜕Ω1, thus if 𝑥 ∈ 𝜕Ω2, then 𝑔(𝑥) ∈ 𝜕Ω1, whence 𝑢𝑝2(𝑥)|𝑥∈𝜕Ω2 = 𝑢𝑝1(𝑔(𝑥))|𝑔(𝑥)∈𝜕Ω1
=

0. Third, to see that the normal derivative of 𝑢𝑝2 is − 𝑤
𝜈1+𝜈2

at the interface, we just have to

invoke Equation (2.61). Finally, to show Equation (2.66), we simply note that 𝑔(𝑥) = 𝑥 for

𝑥 ∈ Γ.
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2.5 On the Symmetry Function g

Recall from Section 2.2 that a symmetry function enables the use of the PSM in interfacial

problems by mapping the two sub-domains onto each other, while preserving a Laplace

equation. In this section, we shall give a mathematically more detailed framework for

symmetry functions. The key questions we would like to address in this section are: (1)

under what condition does a mapping preserve the Laplace equation? and (2) what are the

possible geometries for which a symmetry function exists, and thereby where the PSM can

be applied?

2.5.1 Laplace-Preserving Transformation

Question (1) can be first addressed in the generic setting. Mathematically (1) can be phrased

as the following: if we let �⃗�→ 𝜉 = 𝑔(𝑥) : 𝑋 → Ξ for 𝑋,Ξ ⊂ R𝑑 be given. If 𝑢(𝜉) is harmonic

in Ξ, what are the restrictions on 𝑔 such that 𝑣 = 𝑣(𝑥) = 𝑢(𝑔(𝑥)) is also harmonic?

We claim that the following conditions are necessary and sufficient (2.67)

1. Each of the Cartesian coordinate of 𝑔 = {𝑔𝑑} is harmonic

2. Let 𝐴 = 𝐴(𝑥) be the Jacobian of 𝑔. Then there exists a scalar function 𝑟 = 𝑟(𝑥) > 0

such that 𝐴 = 𝑟𝑂 where 𝑂 is an orthogonal matrix.

The proof of Claim (2.67) is the following

Proof. First Item 1 is necessary. For any constants {𝑢𝑛}, 𝑢 =
∑︀
𝑢𝑛𝜉𝑛 is harmonic. Hence,

𝑣 =
∑︀
𝑢𝑛𝑔𝑛 is harmonic.

Secondly Item 2 is necessary. Let 𝐻 = 𝐻𝑛𝑚 be a constant and arbitrary symmetric

matrix with zero trace. Then 𝑢 = 𝜉𝑇𝐻𝜉 is harmonic. Then 𝑣 = �⃗�𝑇𝐻�⃗� =
∑︀
𝑔𝑛𝐻𝑛𝑚𝑔𝑚 is

harmonic. Thus, using Item I, we get that 0 = Δ𝑣 = 𝑇𝑟
(︀
2𝐴𝑇𝐻𝐴

)︀
. But since 𝐻 is arbitrary,

we can take 𝐻𝑛𝑚 = 𝛿𝑛𝑝𝛿𝑚𝑞+𝛿𝑛𝑞𝛿𝑚𝑝, where 𝑝 ̸= 𝑞 and 𝛿𝑖𝑗 is the Kronecker delta. This yields

0 =
∑︀
𝑙

𝐴𝑝𝑙𝐴𝑞𝑙, that is the rows of 𝐴 are orthogonal. Next we take 𝐻𝑛𝑚 = 𝛿𝑛𝑝𝛿𝑚𝑝 − 𝛿𝑛𝑞𝛿𝑚𝑝,

where 𝑝 ̸= 𝑞. This then yields 0 =
∑︀
𝑙

𝐴𝑝𝑙𝐴𝑝𝑙 − 𝐴𝑞𝑙𝐴𝑞𝑙, that is the rows of 𝐴 all have the

same length. Let this length be 𝑟 = 𝑟 (�⃗�).

Thirdly, Item 1 and 2 are sufficient, which can be shown via direct computation:
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• 𝑣1;𝑚 = 𝑢1;𝑛𝑔𝑛;𝑚, where the index before the semicolon indicates a vector Cartesian

component and the indices after the semicolon indicate partial derivatives. Here we

also use the Einstein’s summation notation

• Δ𝑣 = 𝑣1;𝑛𝑚 = 𝑢1;𝑛𝑝𝑔𝑛;𝑚𝑔𝑝;𝑚 + 𝑢1;𝑛𝑔𝑛;𝑚𝑚 = 𝑢1;𝑛𝑝𝐴𝑛𝑚𝐴𝑝𝑚 = 𝑟𝑢1;𝑛𝑛 = 𝑟Δ𝑢

Here for the third equality we use Item 1 and the definition of 𝐴. For the fourth equality

we use Item 2

2.5.2 Symmetry Functions in 2D

We claim that (2.67) has several significant implications for the symmetry functions in 2𝐷.

In R2, we can use the language of complex analysis and write 𝑧 = 𝑥 + 𝑖𝑦 and 𝑔 = 𝑢 + 𝑖𝑣.

We denote the complex conjugate of 𝑧 as 𝑧 = 𝑥 − 𝑖𝑦. Then Item 1 of the Claim (2.67)

implies that 𝑢 and 𝑣 are harmonic, while Item 2 of the Claim implies that either ∇𝑣 = 𝑖∇𝑢

(Cauchy-Riemann condition) or ∇𝑣 = −𝑖∇𝑢. It follows that in 2𝐷, the functions that

preserve the Laplace equation take the form 𝑔(𝑧) = 𝑓(𝑧) or 𝑔(𝑧) = 𝑓(𝑧), where 𝑓 is analytic.

Note that the two forms of 𝑓(𝑧) and 𝑓(𝑧) cannot coexist in a connected set. Otherwise, it

would require the determinant of 𝐴 in Item 2 of Claim (2.67) to vanish across the boundary

between the regions of validity of each form. But an analytic function with a dense set of

vanishing derivatives is identically zero. Finally, recall that as mentioned in Section 2.2, a

symmetry function 𝑔 maps one side of the interface Γ to the other side and must satisfy

𝑔(𝑧) = 𝑧, for any 𝑧 ∈ Γ. Therefore, a symmetry function cannot take the analytic form

𝑔(𝑧) = 𝑓(𝑧), or else 𝑔 ≡ 𝑧 and it would not be able to map the sub-domains from one side

of Γ to the other. Hence, only the “anti-analytic” form of 𝑔 = 𝑓(𝑧) is allowed.

2.5.2.1 Admissible 2D Interfaces

Having found the general form of the Laplace preserving symmetry function, we would

like to leverage these functions to characterize the geometries of sub-domains and the shapes

of interfaces Γ. The first attempt is enabled by the Riemann mapping theorem, which

dictates that any open, connected subset of the complex plane and the unit disk can be

mapped onto each other. Therefore, the strategy is to trace the mapping of the real axis

from the unit disk to the open subset. Let Ω be an open and connected subset in C. Then

by the Riemann mapping theorem, there exists a bijective mapping ℎ that maps the unit
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disk in C to Ω. Let ℎ−1 denote the inverse transformation. Then an appropriate symmetry

function would be

𝑔(𝑧) = ℎ
(︁
ℎ−1(𝑧)

)︁
(2.68)

This symmetry function would trace an interface Γ given by ℎ(𝑠) in Ω, where −1 < 𝑠 < 1.

In doing so, we would be able to collapse any interfacial problem over Ω with the interface

Γ to the problem of a 2𝐷 sphere in Section 2.3.1.

A powerful theoretical statement nonetheless, the Riemann mapping theorem does not

give a recipe for finding the mapping function ℎ for a general domain Ω. To demonstrate the

family of internal boundaries Γ traced by Equation (2.68) , we shall work with the domain

of Ω = the unit disk in C where the mapping function ℎ between the unit disk and itself is

known to take the form of ([53])

ℎ(𝑧) = 𝑒𝑖𝜃
𝑧 − 𝛼

1− �̄�𝑧
(2.69)

where 𝜃 is a real number and |𝛼| < 1. The the family of Γ can be described as

the intersection with the unit disk of the family of circles with radius

𝑅 =
√︁
𝑦20 − 1 centered at − 𝑖𝑦0, 𝑤ℎ𝑒𝑟𝑒1 < 𝑦0 ≤ ∞

(2.70)

The proof of Claim (2.70) goes as follows

Proof. The prefactor 𝑒𝑖𝜃 in Equation (2.69) represents a rotation and can be reset to 𝜃 = 0.

In this way, we can write 𝑤 = 𝑥 + 𝑖𝑦 and 𝛼 = 𝑎 + 𝑖𝑏. Here we assume that 𝑏 ̸= 0 since

otherwise, ℎ(𝑠) = (𝑠− 𝑎)/(1− 𝑎𝑠), which makes Γ the diagonal [−1, 1].

Following the properties of bilinear mappings, we know that Γ is the intersection of

circles. To locate the exact traces of circles for the mapping, we first note that since Γ is

given by 𝑤 = 𝑥 + 𝑖𝑦 = 𝑠−𝛼
1−�̄�𝑠 , we can write 𝑠 = ℎ−1(𝑤) = 𝑤+𝛼

1+�̄�𝑤 , which enables us to write

𝑠 = ℎ−1(𝑥+ 𝑖𝑦) and so
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𝑠 =
𝑥+ 𝑖𝑦 + 𝛼

1 + �̄�(𝑥+ 𝑖𝑦)
(2.71)

=
𝛽 + 𝑖(𝑏+ 2𝑎𝑏𝑥+ (1 + 𝑏2 − 𝑎2)𝑦 + 𝑏(𝑥2 + 𝑦2)))

𝜌
(2.72)

where 𝜌 = |1 + �̄�(𝑥+ 𝑖𝑦)|2 and 𝛽 = (𝑥+ 𝑎)(1 + 𝑎𝑥+ 𝑏𝑦) + (𝑦 + 𝑏)(𝑎𝑦 − 𝑏𝑥). Since 𝑠 is real,

the equation of the circles must be

𝑏+ 2𝑎𝑏𝑥+ (1 + 𝑏2 − 𝑎2)𝑦 + 𝑏(𝑥2 + 𝑦2) = 0 (2.73)

(𝑥+ 𝑎)2 +

(︂
𝑦 +

1 + 𝑏2 − 𝑎2

2𝑏

)︂2

=
(1− 𝑎2 − 𝑏2)2

4𝑏2
(2.74)

This is a circle of radius 𝑅 = 1−𝑎2−𝑏2

2|𝑏| centered at �̃�0 = −𝑎 and 𝑦0 = −(1 + 𝑏2 − 𝑎)/(2𝑏). It

is now easy to check that 𝑅2 + 1 = �̃�20 + 𝑦20. hence, if we define 𝑦0 =
√︀
𝑥20 + 𝑦20 =

√
𝑅2 − 1,

the circle can be rotated into the form in Equation (2.70) by an appropriate choice of 𝜃

in Equation (2.69). The range of 1 < 𝑦0 ≤ ∞ follows because 0 < 𝑅 < ∞, with infinity

corresponding to 𝑏 = 0

Figure B-7 visualizes the family of the Γ−curves as controlled by the parameter 𝑦0.

2.5.2.2 Symmetry Functions in 3D

The conditions for functions that preserve the Laplace equations are known to be extremely

restrictive for 𝑑 > 2. There are not a lot of examples of maps that satisfy them, such as the

example in Section 2.3.2. Thus in its present form the parity transformation method is of

limited use in dimensions higher than 2.

2.6 Conclusion

In this chapter we introduced the Parity Split Method (PSM), an analytical method for

tackling elliptic PDE over domains with an internal interface, endowed with a symmetry

function 𝑔. In these situations the PSM replaces original problem by (simpler and less

singular) sub-problems with no interface, which can be solved using standard techniques. In

particular, for some geometries, separation of variables can be used.
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Note that: (i) In general, when an internal interface meets the boundary of a domain, the

solutions have singularities “triple-point singularities”. The PSM gives a road for (analyti-

cally) untangle the nature of these singularities. (ii) The solutions to the PMS sub-problems

are symmetric (odd and even) relative to the symmetry function. This is an automatic

consequence of the PSM. However, when separation of variables is possible, whether or not

the PMS gives rise to “eigenmodes” for the original problem depends on the eigenmodes for

the problems without an interface splitting into odd and even. This may not happen, but

the PMS still works.

The method was first illustrated using the Laplace equation, with homogeneous jump

conditions at the interface, over several domains: disk (2D), sphere (3D), and wedge (2D).

Analytical solutions and novel eigenmode expansions resulted in each case. Next the PSM

was used to solve the Poisson equation, including sources at the interface’s jump conditions.

Finally the conditions under which a symmetry function exists were explored, including

which types of sets admit them.

As a final point: the PSM can be applied to elliptic PDE other than Laplace or Poisson.

For example the biharmonic equation and the Stokes flow equations — see Chapter 4.
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Chapter 3

Evaporation in a V-shaped Channel

with Arbitrary Thermal Driving

3.1 Problem Statement and Mathematical Model

We consider a V-shaped channel of length �̃�𝑙, side depth �̃�𝑤, and opening angle Φ — see

Figure B-8a. Heat is applied to the channel through the sides, with the temperature on

the two sides prescribed and uniform along the channel length �̃�𝑙. The bottom V-tip of the

channel is at temperature 𝑇0, while the far-field temperature is a constant, 𝑇∞. A liquid of

density 𝜌1 and heat diffusivity 𝜈1 fills the channel up to a height �̃�. The liquid undergoes

quasi-static evaporation to the vapor region above with density 𝜌2, heat diffusivity 𝜈2, and

vapor diffusivity 𝐷. At the liquid-vapor interface, we assume that the vapor concentration

is at saturation, and approximate the saturation concentration as a linear function of the

temperature,1 𝐶𝑠𝑎𝑡 = 𝐶𝑠𝑎𝑡(𝑇 ). In the far field, we assume that the vapor concentration

reaches the value 𝐻𝐶∞, where 0 ≤ 𝐻 ≤ 1 is the relative ambient humidity and 𝐶∞ =

𝐶𝑠𝑎𝑡(𝑇∞). Furthermore, we assume that the contact angle for the liquid-vapor interface with

the wedge sides is 90𝑜 (half way between the hydrophobic and hydrophilic states). Then, in

the small scale limit, this last assumption and surface tension allows us to approximate the

interface as a cylindrical and centered at the tip of the wedge. Finally, we assume �̃�𝑙 ≫ �̃�𝑤,

which (together with the prescribed uniform temperature along the channel length) allows

us to reduce the problem to a two-dimensional wedge — see Figure B-8b.
1Assume temperature variations throughout the device small enough to justify this approximation.
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The objective is to compute the temperature, 𝑇 , throughout the device, as well as the

vapor concentration, 𝐶. With these functions we can then obtain other quantities of interest,

such as the vapor flux through the interface and the evaporative lifetime for the liquid.

3.1.1 Imposing Conditions at “Infinity” in 2𝐷

Far field conditions for the Laplace equation are reasonable for many 3𝐷 problems. However,

in 2𝐷 one needs to exercise care when imposing conditions at “infinity”, so as to avoid “Stokes

paradox” like situations. To this end, we extend the sides of the triangular domain beyond

the length �̃�𝑤, so as to obtain an infinite wedge. Then we convert the far-field conditions

for the temperature and concentration into boundary conditions along the extended edges

of the wedge.

3.1.2 Mathematical Model

We now formalize the problem mathematically. Let (�̃�, 𝑦) denote Cartesian coordinates,

with origin at the wedge tip, and the 𝑥-positive axis along the right edge of the wedge. Let

(𝑟, 𝜃) be the corresponding polar coordinates. Then the wedge is represented by the domain

Ω = {(𝑟 , 𝜃) | 0 ≤ 𝜃 ≤ Φ} — see Figure B-9a). The set Ω, in turn, is split by an interface at

𝑟 = �̃�, where 𝑟 < �̃� (resp. 𝑟 > �̃�) is the region occupied by the liquid (resp. vapor).

The temperature is given, 𝑇 = 𝑇𝑏(𝑟), along the boundaries, 𝜃 = 0, Φ. Throughout this

chapter we consider two types of temperature profiles along the sides: constant and linearly

decreasing. While the constant temperature takes the form of 𝑇𝑏(𝑟) = 𝑇∞, the linearly

decreasing profile, 𝑇𝑏 = 𝑇𝑑, is given by

𝑇𝑑(𝑟) = −𝑇0 − 𝑇∞

�̃�𝑤

𝑟 + 𝑇0 for 𝑟 ≤ �̃�𝑤 and 𝑇𝑑(𝑟) = 𝑇∞ for 𝑟 ≥ �̃�𝑤. (3.1)

This, effectively, translates the far-field conditions for the temperature, to conditions along

the boundary. Similarly, for the concentration 𝐶 we impose mixed boundary condition

along 𝜃 = 0, Φ. Specifically: for 𝑟 < �̃�𝑤, 𝐶 we impose a no-flux boundary condition,
𝜕𝐶
𝜕𝜃 = 0 (no penetration along the solid boundaries of the wedge). On the other hand, for

𝑟 > �̃�𝑤, we impose the Dirichlet condition 𝐶 = 𝐻𝐶∞ — the concentration reaches the

humidity-adjusted saturation level above the solid edge of the wedge.

At the interface 𝑟 = �̃�, we impose continuity in both the temperature and heat flux.2

2Heat flux continuity means: neglect the latent heat of evaporation; consistent with slow evaporation.

46



Furthermore, we assume that the concentration at the interface has the saturation level

corresponding to the temperature there. That is:

𝐶|𝑟=�̃�(𝑇 ) = 𝐶𝑠𝑎𝑡(𝑇 ) =
𝑑𝐶𝑠𝑎𝑡

𝑑𝑇
|𝑇∞(𝑇 − 𝑇∞) + 𝐶∞, (3.2)

where (as explained earlier) we linearize 𝐶𝑠𝑎𝑡.

Finally, we consider only (slow) quasi-static evaporation, so that both temperature and

concentration can be approximated as as satisfying the Laplace equation. Let Δ̃ denote the

(dimensional) Laplace operator in 2𝐷. Then the mathematical problem to be solved is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ̃𝑇 = 0 in Ω,

𝑇 = 𝑇𝑏(𝑟) on 𝜃 = 0, Φ,

𝑇 |𝑟=�̃�+ = 𝑇 |𝑟=�̃�− ,

𝜈1𝜕𝑟 𝑇 |𝑟=�̃�+ = 𝜈2𝜕𝑟 𝑇 |𝑟=�̃�− ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ̃𝐶 = 0 for 𝑟 > �̃�,

𝜕𝐶
𝜕𝜃 = 0 on 𝜃 = 0, Φ; 𝑟 < �̃�𝑤,

𝐶 = 𝐻𝐶𝑠𝑎𝑡(𝑇∞), on 𝜃 = 0, Φ; 𝑟 > �̃�𝑤,

𝐶 = 𝑑𝐶𝑠𝑎𝑡

𝑑𝑇
|𝑇∞(𝑇 − 𝑇∞) + 𝐶∞ on 𝑟 = �̃�.

(3.3)

3.1.3 Non-Dimensionalization

We non-dimensionalize as follows: lengths using 𝑎0, the initial radius of the liquid interface;

temperature using 𝜂𝑇 �̃�𝑤, where 𝜂𝑇 = (𝑇0 − 𝑇∞)/�̃�𝑤 is the thermal gradient parameter;3

concentration using the characteristic concentration 𝐶𝑐 = 𝐶𝑠𝑎𝑡(𝑇0)−𝐻𝐶∞; and time using a

characteristic lifetime for the droplet 𝑡𝑐 = 𝑎20 𝜌1/(𝐶∞𝐷).4 Thus we define the adimensional

quantities: droplet size 𝑎, wedge side length 𝐿𝑤, temperature 𝑇 , concentration 𝐶, lifetime

𝑡, cartesian coordinates (𝑥, 𝑦), and polar coordinates (𝑟, 𝜃), via the formulas:

�̃� = 𝑎 𝑎0, �̃�𝑤 = 𝐿𝑤 𝑎0, (�̃�, 𝑦) = (�̃�, 𝑦) 𝑎0, 𝑟 = 𝑟 𝑎0, (3.4)

𝑇 = 𝜂𝑇 �̃�𝑤 𝑇 + 𝑇∞, (3.5)

𝐶 = 𝐶𝑐𝐶 +𝐻 𝐶∞, (3.6)

𝑡 = 𝑡𝑐 𝑡. (3.7)

3Note that the thermal gradient is “easy” to control in an experiment: change 𝑇∞.
4Note that our 2D “droplet” is actually an elongated bead of liquid.
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Then the governing equations (3.3) take the dimensionless form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑇 = 0 in Ω,

𝑇 = 𝑇𝑏(𝑟) on 𝜃 = 0, Φ,

𝑇 |𝑟=𝑎+ = 𝑇 |𝑟=𝑎− ,

𝜕𝑟 𝑇 |𝑟=𝑎+ = 𝜈2
𝜈1
𝜕𝑟 𝑇 |𝑟=𝑎− ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐶 = 0 for 𝑟 > 𝑎,

𝜕𝐶
𝜕𝜃 = 0 on 𝜃 = 0, Φ; 𝑟 < 𝐿𝑤,

𝐶 = 0 on 𝜃 = 0, Φ; 𝑟 > 𝐿𝑤,

𝐶 = 𝛽 𝑇 + 𝛾 on 𝑟 = 𝑎,

(3.8)

where 𝛽 = 𝑑𝐶𝑠𝑎𝑡

𝑑𝑇
|𝑇∞

𝜂𝑇 �̃�𝑤

𝐶𝑐
and 𝛾 = 𝐶∞−𝐻 𝐶∞

𝐶𝑐
. For the constant temperature b.c. case,

𝑇𝑏(𝑟) = 0, while the linearly decreasing profile 𝑇𝑏 = 𝑇𝑑(𝑟) becomes

𝑇𝑑(𝑟) =

⎧⎪⎨⎪⎩
− 1

𝐿𝑤
𝑟 + 1 for 𝑟 < 𝐿𝑤.

0 for 𝑟 > 𝐿𝑤.

(3.9)

3.1.4 Justification of the Quasi-static Approximation

Equation (3.3), and its adimensional counterpart (3.8), result from a quasi-static approxima-

tion for the temperature and concentration problems. This approximation makes sense only

if the lifetime of the droplet is much larger than the typical relaxation time to equilibrium

for the temperature and concentration. Furthermore (to compute an accurate lifetime), it

must be that during the time it takes the mass diffusion to reach steady state, the mass loss

is small compared with the total mass of the liquid. Calculations showing when these two

conditions are satisfied can be found in Appendix D. Note that some of these calculations

borrow from the methods introduced in the later sections of this chapter.

3.2 Solution via the PSM and Complex Analysis

Our aim is to provide a completely analytical approach to solving (3.8). To do so we

first solve for the temperature, which does not depend on the concentration. We consider

two cases: constant and linearly decreasing temperature along the boundaries — see (3.9).

While the constant temperature case has the trivial solution 𝑇 ≡ 0,5 the linearly decreasing

b.c. requires using the Parity Split Method (PSM), introduced in Chapter 2. Once this is

done we can use the thus computed value of the temperature at the interface to solve for

the concentration — which requires the use of several complex variable arguments (one of
5Note that the concentration is not trivial in this case.
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which, as far as we know, is novel).

3.2.1 Temperature PROBLEM with Linearly Decreasing B.C.

The aim here is to solve the temperature problem in (3.8), with the b.c. in (3.9). Specifically:⎧⎪⎨⎪⎩
Δ𝑇 = 0 in Ω,

𝑇 = 𝑇𝑑(𝑟) on 𝜃 = 0, Φ,

⎧⎪⎨⎪⎩
𝑇 |𝑟=𝑎+ = 𝑇 |𝑟=𝑎− ,

𝜕𝑟𝑇 |𝑟=𝑎+ = 𝜈2
𝜈1
𝜕𝑟𝑇 |𝑟=𝑎− .

(3.10)

To solve this problem, we first solve the following auxiliary problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑣 = 0 in Ω,

𝑣 = 0 on 𝜃 = 0,

𝑣 = 𝑇𝑑(𝑟) on 𝜃 = Φ,

⎧⎪⎨⎪⎩
𝑣|𝑟=𝑎+ = 𝑣|𝑟=𝑎− ,

𝜕𝑟𝑣|𝑟=𝑎+ = 𝜈2
𝜈1
𝜕𝑟𝑣|𝑟=𝑎− .

(3.11)

Then
𝑇 (𝑟, 𝜃) = 𝑣(𝑟, 𝜃) + 𝑣(𝑟, Φ− 𝜃) (3.12)

Next we rescale lengths in (3.11), using 𝑎. This yields the modified problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑣𝑎 = 0 in Ω,

𝑣𝑎 = 0 on 𝜃 = 0,

𝑣𝑎 = 𝑇𝑑(𝑟) on 𝜃 = Φ,

⎧⎪⎨⎪⎩
𝑣𝑎|𝑟=1+ = 𝑣𝑎|𝑟=1− ,

𝜕𝑟𝑣𝑎|𝑟=1+ = 𝜈2
𝜈1
𝜕𝑟𝑣𝑎|𝑟=1− ,

(3.13)

where
𝑣(𝑟, 𝜃) = 𝑣𝑎(𝑟/𝑎, 𝜃). (3.14)

Below we solve (3.13) using the Parity Split Method developed in Chapter 2.

3.2.1.1 The Parity Split Method (PSM)

The PSM splits a problem like (3.13), with an internal boundary, into sub-problems with-

out it. Once the internal boundary is eliminated, standard analytical methods6 (such as

separation of variables) can be applied to obtain the solutions to the sub-problems. In this

section, we shall follow the PSM provided in Chapter 2 to solve (3.13).

First, using the symmetry function 𝑟 → 1
𝑟 , we perform the parity split of the boundary

6Here we concentrate on analytical solutions, but the sub-problems could also be solved numerically.
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data, 𝑇𝑑(𝑟), into even and odd functions

𝑇𝑑,𝑒 =
1

𝜅
(𝜇(1/𝑟)𝑇𝑑(𝑟) + 𝜇(𝑟)𝑇𝑑(1/𝑟)) (3.15)

𝑇𝑑,𝑜 =
1

𝜅
(𝑇𝑑(𝑟)− 𝑇𝑑(1/𝑟)) (3.16)

where 𝜅 and 𝜇(𝑟) are defined as

𝜅 = 1 +
𝜈1
𝜈2

(3.17)

𝜇(𝑟) =

⎧⎪⎨⎪⎩
1, 𝑟 < 1

𝜈1
𝜈2
, 𝑟 > 1

(3.18)

Note that 𝑇𝑑,𝑒 and 𝑇𝑑,𝑜 are even and odd, respectively, relative to the symmetry function.

Next we define the following sub-problems in 𝑣𝑎,𝑒 and 𝑣𝑎,𝑜⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑣𝑎,𝑒 = 0, in Ω

𝑣𝑎,𝑒 = 0, on 𝜃 = 0

𝑣𝑎,𝑒 = 𝑇𝑑,𝑒(𝑟), on 𝜃 = Φ

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ𝑣𝑎,𝑜 = 0, in Ω

𝑣𝑎,𝑜 = 0, on 𝜃 = 0

𝑣𝑎,𝑜 = 𝑇𝑑,𝑜(𝑟), on 𝜃 = Φ

(3.19)

Note that the sub-problems have no internal boundary conditions. From here, we can

write 𝑣𝑎 as

𝑣𝑎 = 𝑣𝑎,𝑒 + 𝜇(𝑟)𝑣𝑎,𝑜 (3.20)

The PSM claims that 𝑣𝑎 defined in Equation (3.20) satisfies exactly Equation (3.13),

including both the internal conditions at 𝑟 = 𝑎 and external boundary conditions at 𝜃 = 0,Φ.

To solve the sub-problems in Equation (3.19), we again refer to Section 2.3.3 of Chapter

2 and use the recommended spectral eigenfunctions: sinh(𝛼𝜃), sin(𝛼 log 𝑟), and cos(𝛼 log 𝑟),

where −∞ < 𝛼 < ∞. We observe only sinh(𝛼𝜃) is needed because of the zero boundary

condition at 𝜃 = 0. Also, note that sin(𝛼 log 𝑟) and cos(𝛼 log 𝑟) are odd and even, respec-

tively, relative to the symmetry function 𝑟 → 1
𝑟 . We shall use the two functions according to

the parity of the boundary conditions. We are now ready to write the solutions to Equation
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(3.19)

𝑣𝑎,𝑒 =

∫︁ ∞

−∞
cos(𝛼 log 𝑟) sinh(𝛼𝜃)𝑣𝑎,𝑒(𝛼)𝑑𝛼 (3.21)

𝑣𝑎,𝑜 =

∫︁ ∞

−∞
sin(𝛼 log 𝑟) sinh(𝛼𝜃)𝑣𝑎,𝑜(𝛼)𝑑𝛼 (3.22)

where 𝑣𝑎,𝑒 and 𝑣𝑎,𝑜 can be formally computed by the corresponding boundary data 𝑇𝑑,𝑒 and

𝑇𝑑,𝑜 using Fourier transform with respect to the variable log 𝑟

𝑣𝑎,𝑒 =
1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
cos(𝛼 log 𝑟)𝑇𝑑,𝑒(𝑟)𝑑(log 𝑟) (3.23)

𝑣𝑎,𝑜 =
1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
sin(𝛼 log 𝑟)𝑇𝑑,𝑜(𝑟)𝑑(log 𝑟) (3.24)

Notice that we say formally because Equation (3.23) and (3.24) would make sense if and

only if 𝑇𝑑,𝑒 and 𝑇𝑑,𝑜 are integrable with respect to log 𝑟. As a matter of fact, 𝑇𝑑,𝑒 and 𝑇𝑑,𝑜

defined in Equation (3.15) are not log 𝑟−integrable. Therefore, to make sense of Equation

(3.23) and (3.24), we would need to go back to the sub-problems (3.19) and massage the

boundary conditions in order to “renormalize” the integrals in (3.23) and (3.24). We shall

borrow the renormalization techniques in Section 2.3.3.1 for this problem.

First we solve for the odd sub-problem and begin by explicitly writing out 𝑇𝑑,𝑜(𝑟) using

the expression for 𝑇𝑑 in Equation (3.9)

𝑇𝑑,𝑜 =
1

𝜅
(𝑇𝑑(𝑟)− 𝑇𝑑(1/𝑟)) (3.25)

=
1

𝜅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

𝐿𝑤
𝑟 + 1, if 0 < 𝑟 < 𝐿−1

𝑤

− 1
𝐿𝑤
𝑟 + 1

𝐿𝑤

1
𝑟 if 𝐿−1

𝑤 < 𝑟 < 𝐿𝑤

1
𝐿𝑤

1
𝑟 − 1 if 𝑟 > 𝐿𝑤

(3.26)

=
1

𝜅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

𝐿𝑤
𝑒𝑠 + 1, if −∞ < 𝑠 < − log(𝐿𝑤)

− 1
𝐿𝑤
𝑒𝑠 + 1

𝐿𝑤
𝑒−𝑠 if − log𝐿 < 𝑠 < log(𝐿𝑤)

1
𝐿𝑤
𝑒−𝑠 − 1 if 𝑠 > log(𝐿𝑤)

(3.27)

where 𝑠 = log(𝑟). We notice that as |𝑠| → ∞, |𝑇𝑑,0| → 1. Hence, to remove this infinity, we
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define a new function 𝑤(𝑟, 𝜃) that satisfies

Δ𝑤 = 0 (3.28)

𝜃 = 0 : 𝑤 = 0 (3.29)

𝜃 = Φ : 𝑤 =
1

𝜅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, if 0 < 𝑟 < 𝐿−1

𝑤

0, if 𝐿−1
𝑤 < 𝑟 < 𝐿𝑤

1, if 𝑟 > 𝐿𝑤

(3.30)

Then 𝑣𝑎,𝑜 can be re-written as7

𝑣𝑎,𝑜 = 𝑣𝑎,𝑜 − 𝑤 (3.31)

where 𝑣𝑜 satisfies

Δ𝑣𝑎,𝑜 = 0 (3.32)

𝜃 = 0 : 𝑣𝑎,𝑜 = 0 (3.33)

𝜃 = Φ : 𝑣𝑎,𝑜 = 𝑇𝑑,𝑜 =
1

𝜅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

𝐿𝑤
𝑟, if 0 < 𝑟 < 𝐿−1

𝑤

− 1
𝐿𝑤
𝑟 + 1

𝐿𝑤

1
𝑟 if 𝐿−1

𝑤 < 𝑟 < 𝐿𝑤

1
𝐿𝑤

1
𝑟 if 𝑟 > 𝐿𝑤

(3.34)

=
1

𝜅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

𝐿𝑤
𝑒𝑠, if −∞ < 𝑠 < − log(𝐿𝑤)

− 1
𝐿𝑤
𝑒𝑠 + 1

𝐿𝑤
𝑒−𝑠 if − log𝐿𝑤 < 𝑠 < log(𝐿𝑤)

1
𝐿𝑤
𝑒−𝑠 if 𝑠 > log(𝐿𝑤)

(3.35)

which is integrable with respect to log(𝑟). Hence we proceed to first compute the Fourier

coefficient ^̃𝑣𝑎,𝑜 of 𝑣𝑎,𝑜 using Equation (3.24). Since sin(𝛼 log(𝑟))𝑇𝑎,𝑜 is an even function in
7Please note that here the tilde sign is simply a notation and does not mean that the quantity carries

any units as per an earlier notation. I’ve run out of symbols and letters a long time ago
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the variable 𝑠 = log(𝑟), we can write

^̃𝑣𝑎,𝑜 =
1

𝜋𝜅 sinh(𝛼Φ)

∫︁ ∞

0
sin(𝛼 log(𝑟))𝑇𝑜(𝑟)𝑑(log(𝑟)) (3.36)

=
1

𝜋𝜅 sinh(𝛼Φ)

(︂∫︁ log𝐿𝑤

0
sin(𝛼𝑠)

(︂
− 1

𝐿𝑤
𝑒𝑠 +

1

𝐿𝑤
𝑒−𝑠

)︂
𝑑𝑠+

∫︁ ∞

log𝐿𝑤

1

𝐿𝑤
𝑒−𝑠 sin(𝛼𝑠)

)︂
𝑑𝑠

(3.37)

=
1

𝜋𝜅 sinh(𝛼Φ)

(︂∫︁ log𝐿𝑤

0
sin(𝛼𝑠)

(︂
− 1

𝐿𝑤
𝑒𝑠
)︂
𝑑𝑠+

∫︁ ∞

0

1

𝐿𝑤
𝑒−𝑠 sin(𝛼𝑠)

)︂
𝑑𝑠 (3.38)

=
1

𝜋𝜅𝐿𝑤 sinh(𝛼Φ)

(︂
−
∫︁ log𝐿𝑤

0
sin(𝛼𝑠)𝑒𝑠𝑑𝑠+

∫︁ ∞

0
𝑒−𝑠 sin(𝛼𝑠)

)︂
𝑑𝑠 (3.39)

The integrals are easy to compute as

∫︁ ∞

0
𝑒−𝑠 sin(𝛼𝑠)𝑑𝑠 = 𝐼𝑚

(︂∫︁ ∞

0
exp((𝑖𝛼− 1)𝑠)𝑑𝑠

)︂
(3.40)

= 𝐼𝑚

(︂
1

1− 𝑖𝛼

)︂
(3.41)

= 𝐼𝑚

(︂
1 + 𝑖𝛼

1 + 𝛼2

)︂
(3.42)

=
𝛼

1 + 𝛼2
(3.43)

while

∫︁ log𝐿𝑤

0
sin(𝛼𝑠)𝑒𝑠𝑑𝑠 = 𝐼𝑚

(︂∫︁ log𝐿𝑤

0
exp((𝑖𝛼+ 1)𝑠)𝑑𝑠

)︂
(3.44)

= 𝐼𝑚

(︂
exp((𝑖𝛼+ 1) log𝐿𝑤)

𝑖𝛼+ 1
− 1

𝑖𝛼+ 1

)︂
(3.45)

= 𝐼𝑚

(︂
𝐿𝑤 exp((𝑖𝛼 log𝐿𝑤)

𝑖𝛼+ 1
+
𝑖𝛼− 1

𝛼2 + 1

)︂
(3.46)

=
−𝛼𝐿𝑤 cos(𝛼 log𝐿𝑤) + 𝐿𝑤 sin(𝛼 log𝐿𝑤)

1 + 𝛼2
+

𝛼

𝛼2 + 1
(3.47)

Hence incorporating integrals (3.43) and (3.47), we can write ^̃𝑣𝑎,𝑜 as

^̃𝑣𝑎,𝑜 =
1

𝜋𝜅𝐿𝑤 sinh(𝛼Φ)

(︂
−
∫︁ log𝐿

0
sin(𝛼𝑠)𝑒𝑠𝑑𝑠+

∫︁ ∞

0
𝑒−𝑠 sin(𝛼𝑠)

)︂
𝑑𝑠 (3.48)

=
1

𝜋𝜅𝐿𝑤 sinh(𝛼Φ)

(︂
𝛼𝐿𝑤 cos(𝛼 log𝐿)− 𝐿𝑤 sin(𝛼 log𝐿𝑤)

1 + 𝛼2

)︂
(3.49)

Having obtained the inverse Fourier transform ^̃𝑣𝑎,𝑜, we subsequently use (3.22) to compute
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𝑣𝑎,𝑜

𝑣𝑎,𝑜 =

∫︁ ∞

−∞
sin(𝛼 log(𝑟)) sinh(𝛼𝜃)^̃𝑣𝑎,𝑜(𝛼)𝑑𝛼 (3.50)

=
1

𝜋𝜅𝐿𝑤

∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)
sin(𝛼 log(𝑟))

(︂
𝛼𝐿𝑤 cos(𝛼 log𝐿𝑤)− 𝐿𝑤 sin(𝛼 log𝐿𝑤)

1 + 𝛼2

)︂
𝑑𝛼

(3.51)

= 𝑣1𝑎,𝑜 + 𝑣2𝑎,𝑜 (3.52)

where

𝑣1𝑎,𝑜 =
1

𝜋𝜅𝐿𝑤

∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)
sin(𝛼 log(𝑟))

𝛼𝐿𝑤 cos(𝛼 log𝐿𝑤)

1 + 𝛼2
𝑑𝛼 (3.53)

𝑣2𝑎,𝑜 = − 1

𝜋𝜅𝐿𝑤

∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)
sin(𝛼 log(𝑟))

𝐿𝑤 sin(𝛼 log𝐿𝑤)

1 + 𝛼2
𝑑𝛼 (3.54)

To compute 𝑣1𝑎,𝑜, we use the trigonometric identity sin 𝑎 cos 𝑏 = 1
2 (sin(𝑎+ 𝑏) + sin(𝑎− 𝑏))

to write

𝑣1𝑎,𝑜 =
1

2𝜋𝜅

(︂∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)

𝛼 sin(𝛼 log(𝑟𝐿𝑤))

1 + 𝛼2
𝑑𝛼+

∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)

𝛼 sin(𝛼 log( 𝑟
𝐿𝑤

))

1 + 𝛼2
𝑑𝛼

)︂
(3.55)

= 𝑣1,1𝑎,𝑜 + 𝑣1,2𝑎,𝑜 (3.56)

where

𝑣1,1𝑎,𝑜 =
1

2𝜋𝑖𝜅

(︂∫︁ ∞

−∞

sinh(𝛼𝜃)

sinh(𝛼Φ)

𝛼 exp(𝑖𝛼 log(𝑟𝐿𝑤))

1 + 𝛼2
𝑑𝛼

)︂
=

2𝜋𝑖

2𝜋𝑖𝜅⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅𝑒𝑠
(︁

sinh(𝛼𝜃)
sinh(𝛼Φ)

𝛼 exp(𝑖𝛼 log(𝑟𝐿𝑤))
1+𝛼2 , 𝑖

)︁
+

∞∑︀
𝑛=1

𝑅𝑒𝑠
(︁

sinh(𝛼𝜃)
sinh(𝛼Φ)

𝛼 exp(𝑖𝛼 log(𝑟𝐿𝑤))
1+𝛼2 , 𝑖𝑛𝜋

Φ

)︁
for 𝑟𝐿𝑤 > 1

−𝑅𝑒𝑠
(︁

sinh(𝛼𝜃)
sinh(𝛼Φ)

𝛼 exp(𝑖𝛼 log(𝑟𝐿𝑤))
1+𝛼2 , −𝑖

)︁
−

∞∑︀
𝑛=1

𝑅𝑒𝑠
(︁

sinh(𝛼𝜃)
sinh(𝛼Φ)

𝛼 exp(𝑖𝛼 log(𝑟𝐿𝑤))
1+𝛼2 , −𝑖𝑛𝜋

Φ

)︁
for 𝑟𝐿𝑤 < 1,

=
1

𝜅

⎧⎪⎪⎨⎪⎪⎩
1
2
sin(𝜃)
sin(Φ)(𝑟𝐿𝑤)

−1 +
∞∑︀
𝑛=1

(−𝐿𝑤)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ2
𝑛𝜋

𝑛2𝜋2

Φ2 −1
(𝑟𝐿𝑤)

−𝑛𝜋
Φ , 𝑟 > 1

𝐿𝑤

−1
2
sin(𝜃)
sin(Φ)𝑟𝐿𝑤 −

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
𝜃 )

Φ2
𝑛𝜋

𝑛2Φ2

Φ2 −1
(𝑟𝐿𝑤)

𝑛𝜋
Φ , 𝑟 < 1

𝐿𝑤

(3.57)
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Here we loop over the upper half plane complex domain for 𝑟𝐿𝑤 > 1 and lower for 𝑟𝐿𝑤 < 1,

taking into the account that clockwise contour gives a negative sign to the evaluation of

residues. Similarly, we can compute 𝑣1,2𝑎,𝑜 as

𝑣1,2𝑎,𝑜 =
1

𝜅

⎧⎪⎪⎨⎪⎪⎩
1
2
sin(𝜃)
sin(Φ)

(︁
𝑟
𝐿𝑤

)︁−1
+

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ2
𝑛𝜋

𝑛2𝜋2

Φ2 −1

(︁
𝑟
𝐿𝑤

)︁−𝑛𝜋
Φ
, 𝑟 > 𝐿𝑤

−1
2
sin(𝜃)
sin(Φ)

(︁
𝑟
𝐿𝑤

)︁
−

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
𝜃 )

Φ2
𝑛𝜋

𝑛2Φ2

Φ2 −1

(︁
𝑟
𝐿𝑤

)︁𝑛𝜋
Φ
, 𝑟 < 𝐿𝑤

(3.58)

Having computed 𝑣10 in Equation (3.53), we move on to compute 𝑣2𝑎,𝑜 in Equation (3.54)

following a quite similar series of steps. In the end, we get that

𝑣2𝑎,𝑜 = 𝑣2,1𝑎,𝑜 + 𝑣2,2𝑎,𝑜 (3.59)

where

𝑣2,1𝑎,𝑜 = −1

𝜅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(𝜃)
sin(Φ)

(︁
𝑟

𝐿𝑤

)︁−1

2 +
∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ

(︁
𝑟

𝐿𝑤

)︁−𝑛𝜋
Φ

𝑛2𝜋2

Φ2 −1
, 𝑟 > 𝐿𝑤

sin(𝜃)
sin(Φ)

𝑟
𝐿𝑤
2 +

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ

(︁
𝑟

𝐿𝑤

)︁𝑛𝜋
Φ

𝑛2𝜋2

Φ2 −1
𝑟 < 𝐿𝑤

(3.60)

𝑣2,2𝑎,𝑜 =
1

𝜅

⎧⎪⎪⎨⎪⎪⎩
sin(𝜃)
sin(Φ)

1
𝑟𝐿𝑤
2 +

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(𝑟𝐿𝑤)−

𝑛𝜋
Φ

𝑛2𝜋2

Φ2 −1
, 𝑟 > 1

𝐿𝑤

sin(𝜃)
sin(Φ)

𝑟𝐿𝑤
2 +

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(𝑟𝐿𝑤)

𝑛𝜋
Φ

𝑛2𝜋2

Φ2 −1
𝑟 < 1

𝐿𝑤

(3.61)

The last ingredients to compute 𝑣𝑎,𝑜 in the odd sub-problem is to solve for 𝑤 in Equation

(3.28). To do so, we first perform a change of variable from 𝜃 to Φ− 𝜃, so tat the equation

would look like

Δ𝑤 = 0 (3.62)

𝜃 = Φ : 𝑤 = 0 (3.63)

𝜃 = 0 : 𝑤 =
1

𝜅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, if 0 < 𝑟 < 𝐿−1

𝑤

0, if 𝐿−1
𝑤 < 𝑟 < 𝐿𝑤

1, if 𝑟 > 𝐿𝑤

(3.64)
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Next we apply the conformal transformation

𝜁 = 𝜁1 + 𝑖𝜁2 (3.65)

= exp
(︁𝜋
Φ
log
(︁
𝑟𝑒

𝑖𝜋𝜃
Φ

)︁)︁
(3.66)

so that the equation would satisfy

Δ𝑤 = 0 (3.67)

𝑤 =
1

𝜅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝜁1 < 0, 𝜁2 = 0

−1, if 0 < 𝜁1 < 𝐿
−𝜋/Φ
𝑤 , 𝜁2 = 0

0, if 𝐿−𝜋/Φ
𝑤 < 𝜁1 < 𝐿

𝜋/Φ
𝑤 , 𝜁2 = 0

1, if 𝜁1 > 𝐿
𝜋/Φ
𝑤 , 𝜁2 = 0

(3.68)

The solution is well known to be

𝑤(𝜁1, 𝜁2) =
1

𝜅
− 1

𝜅

arg(𝜁1 + 𝑖𝜁2 − 𝐿𝜋/Φ)

𝜋

− 1

𝜅

arg(𝜁1 + 𝑖𝜁2 − 𝐿−𝜋/Φ)

𝜋
+

1

𝜅

arg(𝜁1 + 𝑖𝜁2)

𝜋

(3.69)

where the arg is defined over the branch [−𝜋/2, 3𝜋/2]. But since 𝜃 would only range from 0

to Φ, the argument would lie within [0, 𝜋]. Hence, we could replace the argument function

with 𝐴𝑟𝑔 that uses the principal branch (−𝜋, 𝜋]. Upon changing the angle back 𝜃 → Φ− 𝜃,

we can simplify the expression into

𝑤(𝑟, 𝜃) = 2− 𝜃

Φ
−
𝐴𝑟𝑔

(︁
−𝑟

𝜋
Φ exp

(︀
− 𝑖𝜋𝜃

Φ

)︀
− 𝐿

𝜋
Φ
𝑤

)︁
−𝐴𝑟𝑔

(︁
−𝑟

𝜋
Φ exp

(︀
− 𝑖𝜋𝜃

Φ

)︀
− 𝐿

− 𝜋
Φ

𝑤

)︁
𝜅𝜋

(3.70)

With all the right ingredients for 𝑣𝑎,𝑜, we now work towards solving for 𝑣𝑎,𝑒 in the even
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problem in Equation (3.19). First we write down explicitly the boundary condition 𝑇𝑑,𝑒

𝑇𝑑,𝑒 =
1

𝜅
(𝜇(1/𝑟)𝑇𝑑(𝑟) + 𝜇(𝑟)𝑇𝑑(1/𝑟)) (3.71)

=
1

𝜅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜈1/𝜈2
𝐿𝑤

𝑒𝑠 + 𝜈1/𝜈2, 𝑠 < − log(𝐿𝑤)

−𝜈1/𝜈2
𝐿𝑤

𝑒𝑠 + 𝜈1/𝜈2 − 1
𝐿𝑤
𝑒−𝑠 + 1, − log(𝐿𝑤) < 𝑠 < 0

− 1
𝐿𝑤
𝑒𝑠 + 1− 𝜈1/𝜈2

𝐿𝑤
𝑒−𝑠 + 𝜈1/𝜈2, 0 < 𝑠 < log(𝐿𝑤)

−𝜈1/𝜈2
𝐿𝑤

𝑒−𝑠 + 𝜈1/𝜈2, 𝑠 > log(𝐿𝑤)

(3.72)

where 𝑠 = log 𝑟. The problem again occurs at log(𝑟) = ±∞. To counteract the issue, we

shall subtract out the constants from the boundary conditions of 𝑣𝑎,𝑒 via defining 𝑣𝑎,𝑒 that

𝑣𝑎,𝑒 = 𝑣𝑎,𝑒 −
𝜈1/𝜈2
𝜅

𝜃

Φ
(3.73)

Then 𝑣𝑎,𝑒 satisfies

Δ𝑣𝑒 = 0 (3.74)

𝜃 = 0 : 𝑣𝑒 = 0 (3.75)

𝜃 = Φ : 𝑣𝑒 = 𝑇𝑑,𝑒 =
1

𝜅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜈1/𝜈2
𝐿𝑤

𝑟, 𝑟 < 1
𝐿𝑤

−𝜈1/𝜈2
𝐿𝑤

𝑟 − 1
𝐿𝑤

1
𝑟 + 1, 1

𝐿𝑤
< 𝑟 < 1

− 1
𝐿𝑤
𝑟 + 1− 𝜈1/𝜈2

𝐿𝑤

1
𝑟 , 1 < 𝑟 < 𝐿𝑤

−𝜈1/𝜈2
𝐿𝑤

1
𝑟 , 𝑟 > 𝐿𝑤

(3.76)

=
1

𝜅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜈1/𝜈2
𝐿𝑤

𝑒𝑠, 𝑠 < − log(𝐿𝑤)

−𝜈1/𝜈2
𝐿𝑤

𝑒𝑠 − 1
𝐿𝑤
𝑒−𝑠 + 1, − log(𝐿𝑤) < 𝑠 < 0

− 1
𝐿𝑤
𝑒𝑠 − 𝜈1/𝜈2

𝐿𝑤
𝑒−𝑠 + 1, 0 < 𝑠 < log(𝐿𝑤)

−𝜈1/𝜈2
𝐿𝑤

𝑒−𝑠, 𝑠 > log(𝐿𝑤)

(3.77)

where 𝑠 = log 𝑟 as before. Using equation (3.21), we can write the Fourier coefficient of 𝑣𝑎,𝑒

as
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^̃𝑣𝑎,𝑒 =
1

2𝜋 sinh(𝛼Φ)

∫︁ ∞

−∞
cos(𝛼 log(𝑟))𝑇𝑑,𝑒(𝑟, 𝜃)𝑑(log(𝑟)) (3.78)

=
1

𝜅𝜋 sinh(𝛼Φ)

∫︁ log𝐿𝑤

0
cos(𝛼𝑠)

(︂
− 1

𝐿𝑤
𝑒𝑠 − 𝜈1/𝜈2

𝐿𝑤
𝑒−𝑠 + 1

)︂
𝑑𝑠

+
1

𝜅𝜋 sinh(𝛼Φ)

∫︁ ∞

log𝐿𝑤

cos(𝛼𝑠)

(︂
−𝜈1/𝜈2

𝐿𝑤
𝑒−𝑠

)︂
𝑑𝑠

(3.79)

=
1

𝜅𝜋 sinh(𝛼Φ)

∫︁ log𝐿𝑤

0
cos(𝛼𝑠)

(︂
− 1

𝐿𝑤
𝑒𝑠 + 1

)︂
𝑑𝑠

+
1

𝜅𝜋 sinh(𝛼Φ)

∫︁ ∞

0
cos(𝛼𝑠)

(︂
−𝜈1/𝜈2

𝐿𝑤
𝑒−𝑠

)︂
𝑑𝑠

(3.80)

=
−1

𝜅𝜋𝐿𝑤 sinh(𝛼Φ)

∫︁ log𝐿𝑤

0
cos(𝛼𝑠)𝑒𝑠𝑑𝑠+

1

𝜅𝜋 sinh(𝛼Φ)

∫︁ log𝐿𝑤

0
cos(𝛼𝑠)𝑑𝑠

− 1

𝜅𝜋 sinh(𝛼Φ)

𝜈1/𝜈2
𝐿𝑤

∫︁ ∞

0
cos(𝛼𝑠)𝑒−𝑠𝑑𝑠

(3.81)

We now compute the three integrals

∫︁ log𝐿𝑤

0
𝑒𝑠 cos(𝛼𝑠)𝑑𝑠 = 𝑅𝑒

(︂∫︁ log𝐿𝑤

0
exp((1 + 𝑖𝛼)𝑠)𝑑𝑠

)︂
(3.82)

= 𝑅𝑒

(︂
exp((1 + 𝑖𝛼) log𝐿𝑤)− 1

1 + 𝑖𝛼

)︂
(3.83)

=

(︂
𝐿𝑤 cos(𝛼 log𝐿𝑤) + 𝐿𝑤𝛼 sin(𝛼 log𝐿𝑤)

1 + 𝛼2
− 1

1 + 𝛼2

)︂
(3.84)∫︁ log𝐿𝑤

0
cos(𝛼𝑠)𝑑𝑠 =

sin(𝛼 log𝐿𝑤)

𝛼
(3.85)∫︁ ∞

0
cos(𝛼𝑠)𝑒−𝑠𝑑𝑠 = 𝑅𝑒

(︂∫︁ ∞

0
exp((𝑖𝛼− 1)𝑠)𝑑𝑠

)︂
(3.86)

= −𝑅𝑒
(︂

1

𝑖𝛼− 1

)︂
(3.87)

=
1

1 + 𝛼2
(3.88)
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^̃𝑣𝑎,𝑒 =
−1

𝜅𝜋 sinh(𝛼Φ)

(︂
cos(𝛼 log𝐿𝑤) + 𝛼 sin(𝛼 log𝐿𝑤)

1 + 𝛼2
− 1

1 + 𝛼2

)︂
+

1

𝜅𝜋 sinh(𝛼Φ)

sin(𝛼 log𝐿𝑤)

𝛼
− 𝜈1/𝜈2
𝜅𝜋𝐿𝑤 sinh(𝛼Φ)

1

1 + 𝛼2

(3.89)

=
−1

𝜅𝜋 sinh(𝛼Φ)

(︂
cos(𝛼 log𝐿𝑤) + 𝛼 sin(𝛼 log𝐿𝑤)

1 + 𝛼2

)︂
+

1

𝜅𝜋 sinh(𝛼Φ)

sin(𝛼 log𝐿𝑤)

𝛼
+

1− 𝜈1/𝜈2
𝜅𝜋𝐿𝑤 sinh(𝛼Φ)

1

1 + 𝛼2

(3.90)

Now, we can use equation (3.22) to write the solution 𝑣𝑎,𝑒 as

𝑣𝑎,𝑒 =

∫︁ ∞

−∞
cos(𝛼 log(𝑟)) sinh(𝛼𝜃)^̃𝑣𝑎,𝑒(𝛼)𝑑𝛼 (3.91)

= 𝑣1𝑎,𝑒 + 𝑣2𝑎,𝑒 + 𝑣3𝑎,𝑒 + 𝑣4𝑎,𝑒 (3.92)

where

𝑣1𝑎,𝑒 =
−1

𝜅𝜋

∫︁ ∞

−∞

𝛼 sin(𝛼 log𝐿𝑤) cos(𝛼 log 𝑟)

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.93)

𝑣2𝑎,𝑒 =
−1

𝜅𝜋

∫︁ ∞

−∞

cos(𝛼 log𝐿𝑤) cos(𝛼 log 𝑟)

(1 + 𝛼2)

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.94)

𝑣3𝑎,𝑒 =
1

𝜅𝜋

∫︁ ∞

−∞

sin(𝛼 log𝐿𝑤) cos(𝛼 log 𝑟)

𝛼

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.95)

𝑣4𝑎,𝑒 =
(1− 𝜈1/𝜈2)

𝜅𝜋𝐿𝑤

∫︁ ∞

−∞

cos(𝛼 log 𝑟)

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.96)

We shall compute these four integrals separately.

First, we use the trigonometric identity sin 𝑎 cos 𝑏 = 1
2(sin(𝑎+ 𝑏) + sin(𝑎− 𝑏)) to write

𝑣1𝑎,𝑒 =
−1

𝜅𝜋

∫︁ ∞

−∞

𝛼 sin(𝛼 log𝐿𝑤) cos(𝛼 log 𝑟)

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.97)

=
−1

2𝜅𝜋

∫︁ ∞

−∞

𝛼 sin(𝛼 log𝐿𝑤𝑟) + 𝛼 sin(𝛼 log(𝐿𝑤/𝑟))

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.98)

= 𝑣1,1𝑎,𝑒 + 𝑣1,1𝑎,𝑒 (3.99)

𝑣1,1𝑎,𝑒 =
−1

2𝜅𝜋

∫︁ ∞

−∞

𝛼 sin(𝛼 log 𝑟𝐿𝑤)

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.100)

𝑣1,2𝑎,𝑒 =
−1

2𝜅𝜋

∫︁ ∞

−∞

𝛼 sin(𝛼 log(𝐿𝑤/𝑟))

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.101)
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Using the complex integral techniques demonstrated in calculating 𝑣1,1𝑎,𝑜 in Equation

(3.57), we can compute 𝑣1,1𝑎,𝑒 and 𝑣1,2𝑎,𝑒 and obtain

𝑣1,1𝑎,𝑒 =
−1

𝜅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
sin(𝜃)
sin(Φ)(𝑟𝐿𝑤)

−1 +
∞∑︀
𝑛=1

(−1)𝑛𝑛𝜋(𝑟𝐿𝑤)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁ 𝑟 > 1/𝐿𝑤

−1
2
sin(𝜃)
sin(Φ)𝑟𝐿𝑤 −

∞∑︀
𝑛=1

(−1)𝑛𝑛𝜋(𝑟𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁ 𝑟 < 1/𝐿𝑤

(3.102)

𝑣1,2𝑎,𝑒 =
−1

𝜅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
sin(𝜃)
sin(Φ)(𝐿𝑤/𝑟)

−1 +
∞∑︀
𝑛=1

(−1)𝑛𝑛𝜋(𝐿𝑤/𝑟)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁ 𝑟 < 𝐿𝑤

−1
2
sin(𝜃)
sin(Φ)(𝐿𝑤/𝑟)−

∞∑︀
𝑛=1

(−1)𝑛𝑛𝜋(𝐿𝑤/𝑟)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁ 𝑟 > 𝐿𝑤

(3.103)

Secondly, we use the same line of calculation as for 𝑣1𝑎,𝑒 to calculate 𝑣2𝑎,𝑒 in Equation

(3.94) as

𝑣2𝑎,𝑒 = 𝑣2,1𝑎,𝑒 + 𝑣2,2𝑎,𝑒 (3.104)

where

𝑣2,1𝑎,𝑒 =
−1

𝜅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
sin 𝜃
sinΦ(𝐿𝑤/𝑟)

−1 +
∞∑︀
𝑛=1

(−1)𝑛(𝐿𝑤/𝑟)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ
(︁

𝑛2𝜋2

Φ
−1

)︁ , 𝑟 < 𝐿𝑤

1
2
sin 𝜃
sinΦ(𝐿𝑤/𝑟) +

∞∑︀
𝑛=1

(−1)𝑛(𝐿𝑤/𝑟)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ
(︁

𝑛2𝜋2

Φ
−1

)︁ , 𝑟 > 𝐿𝑤

(3.105)

𝑣2,2𝑎,𝑒 =
−1

𝜅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
sin 𝜃
sinΦ(𝑟𝐿𝑤)

−1 +
∞∑︀
𝑛=1

(−1)𝑛(𝑟𝐿𝑤)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ
(︁

𝑛2𝜋2

Φ
−1

)︁ , 𝑟 > 1/𝐿𝑤

1
2
sin 𝜃
sinΦ(𝑟𝐿𝑤) +

∞∑︀
𝑛=1

(−1)𝑛(𝑟𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ
(︁

𝑛2𝜋2

Φ
−1

)︁ , 𝑟 < 1/𝐿𝑤

(3.106)

Thirdly, we can simplify 𝑣3𝑎,𝑒 into

𝑣3𝑎,𝑒 = 𝑣3,1𝑎,𝑒 + 𝑣3,2𝑎,𝑒 (3.107)

where

𝑣3,1𝑎,𝑒 =
1

2𝜅𝜋𝑖

∫︁ ∞

−∞

exp(𝑖𝛼 log(𝐿𝑤𝑟))

𝛼

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.108)

𝑣3,2𝑎,𝑒 =
1

2𝜅𝜋𝑖

∫︁ ∞

−∞

exp(𝑖𝛼 log(𝐿𝑤/𝑟))

𝛼

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.109)
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Here, we shall use a contour integral with an 𝜖−size bump around the original before we

let 𝜖→ 0. We “loop up” in the complex domain if the argument of the complex exponential

is positive; otherwise we “loop down”. The results are

𝑣3,1𝑎,𝑒 =
1

2𝜅𝜋

⎧⎪⎪⎨⎪⎪⎩
𝜋 𝜃
Φ + 2𝜋

∞∑︀
𝑛=1

(−1)𝑛(𝐿𝑤𝑟)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛𝜋 , 𝑟 > 1/𝐿𝑤

−𝜋 𝜃
Φ − 2𝜋

∞∑︀
𝑛=1

(−1)𝑛(𝐿𝑤𝑟)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛𝜋 , 𝑟 < 1/𝐿𝑤

(3.110)

𝑣3,2𝑎,𝑒 =
1

2𝜅𝜋

⎧⎪⎪⎨⎪⎪⎩
𝜋 𝜃
Φ + 2𝜋

∞∑︀
𝑛=1

(−1)𝑛(𝐿𝑤/𝑟)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛𝜋 , 𝑟 < 𝐿𝑤

−𝜋 𝜃
Φ − 2𝜋

∞∑︀
𝑛=1

(−1)𝑛(𝐿𝑤/𝑟)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛𝜋 , 𝑟 > 𝐿𝑤

(3.111)

Lastly, we can compute 𝑣4𝑎,𝑒 using the same complex integral techniques as before

𝑣4𝑎,𝑒 =
(1− 𝜈1/𝜈2)

𝜅𝜋𝐿𝑤

∫︁ ∞

−∞

exp(𝑖𝛼 log 𝑟)

1 + 𝛼2

sinh(𝛼𝜃)

sinh(𝛼Φ)
𝑑𝛼 (3.112)

=
2(1− 𝜈1/𝜈2)

𝜅𝐿𝑤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
sin(𝜃)
sin(Φ)𝑟

−1 +
∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(︁

𝑛2𝜋2

Φ2 −1
)︁ 𝑟−

𝑛𝜋
Φ , 𝑟 > 1

1
2
sin(𝜃)
sin(Φ)𝑟 +

∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(︁

𝑛2𝜋2

Φ2 −1
)︁ 𝑟

𝑛𝜋
Φ , 𝑟 < 1

(3.113)

Finally, let us put all the puzzle pieces together. According Equation (3.20), 𝑣𝑎 =

𝑣𝑎,𝑒 + 𝜇(𝑟)𝑣𝑎,𝑜, which can be rewritten according to 𝑣𝑎,𝑜 in Equation (3.31) and 𝑣𝑎,𝑒 in

Equation (3.73) as

𝑣𝑎 = 𝑣𝑒(𝑟, 𝜃) +
𝜈1/𝜈2
𝜅

𝜃

Φ
+ 𝜇(𝑟)(𝑣𝑎,𝑜(𝑟, 𝜃)− 𝑤) (3.114)

which can be further broken down into

𝑣𝑎 = 𝑣1,1𝑎,𝑒 + 𝑣1,2𝑎,𝑒 + 𝑣2,1𝑎,𝑒 + 𝑣2,2𝑎,𝑒 + 𝑣3,1𝑎,𝑒 + 𝑣3,2𝑎,𝑒 + 𝑣4𝑎,𝑒

+ 𝜇(𝑣1,1𝑎,𝑜 + 𝑣1,2𝑎,𝑜 + 𝑣2,1𝑎,𝑜 + 𝑣2,2𝑎,𝑜 − 𝑤) +
𝜈1/𝜈2
𝜅

𝜃

Φ

(3.115)

for 𝑣1,1𝑎,𝑒 in Equation (3.102), 𝑣1,2𝑎,𝑒 in Equation (3.103), 𝑣2,1𝑎,𝑒 in Equation (3.105), 𝑣2,2𝑎,𝑒 in

Equation (3.106), 𝑣3,1𝑎,𝑒 in Equation (3.110), 𝑣3,2𝑎,𝑒 in Equation (3.111), 𝑣4𝑎,𝑒 in Equation (3.112),

𝑣1,1𝑎,𝑜 in Equation (3.57), 𝑣1,2𝑎,𝑜 in Equation (3.58), 𝑣2,1𝑎,𝑜 in Equation (3.60), 𝑣2,2𝑎,𝑜 in Equation
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(3.61), and 𝑤 in Equation (3.70)

Simplifying the terms for 𝑣𝑎 in Equation (3.115) requires some of the nastiest algebra

I’ve ever encountered in my life, so nasty that I want to take a shower. But after all of that,

we find that 𝑣𝑎 is given by:

𝑣𝑎(𝑟, 𝜃) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin(𝜃)
sin(Φ)

𝑟
𝐿𝑤

+ 𝜈1/𝜈2
𝜅

𝜃
Φ − 𝑤 + 2

𝜅

(︃
−

∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟/𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+ 1
𝜅𝜋

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝑟/𝐿𝑤)
𝑛𝜋
Φ −(𝑟𝐿)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛

)︂
+ 2(1−𝜈1/𝜈2)

𝜅𝐿𝑤

(︃
∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(︁

𝑛2𝜋2

Φ2 −1
)︁ 𝑟

𝑛𝜋
Φ

)︃
for

[︁
0, 1

𝐿𝑤

]︁
,

− sin 𝜃
sinΦ

𝑟
𝐿𝑤

+ 𝜃
Φ − 𝑤 + 2

𝜅

(︃
−

∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟/𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+ 1
𝜅

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝐿𝑤𝑟)−
𝑛𝜋
Φ +(𝑟/𝐿𝑤)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛𝜋

)︂
+ 2(1−𝜈1/𝜈2)

𝜅𝐿𝑤

(︃
∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(︁

𝑛2𝜋2

Φ2 −1
)︁ 𝑟

𝑛𝜋
Φ

)︃
for

[︁
1
𝐿𝑤
, 1
]︁
,

− sin(𝜃)
sin(Φ)

𝑟
𝐿𝑤

+ 𝜃
Φ − (𝜈1/𝜈2)𝑤 + 𝜈1/𝜈2−1

𝜅

(︃
∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟𝐿)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+

(︃
−

∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟/𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃
+ 1

𝜅

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝐿𝑤𝑟)−
𝑛𝜋
Φ +(𝑟/𝐿𝑤)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛𝜋

)︂
+2(1−𝜈1/𝜈2)

𝜅𝐿𝑤

(︃
∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(︁

𝑛2𝜋2

Φ2 −1
)︁ 𝑟−

𝑛𝜋
Φ

)︃
for [1, 𝐿𝑤],

+𝜈1/𝜈2
𝜅

𝜃
Φ − (𝜈1/𝜈2)𝑤 + (𝜈1/𝜈2−1)

𝜅

(︃
∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟𝐿𝑤)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+

(︃
∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋−Φ)(𝐿𝑤/𝑟)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃
+ 1

𝜅

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝐿𝑤𝑟)−
𝑛𝜋
Φ −(𝐿𝑤/𝑟)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛𝜋

)︂
+2(1−𝜈1/𝜈2)

𝜅𝐿𝑤

(︃
∞∑︀
𝑛=1

(−1)𝑛 sin(𝑛𝜋𝜃
Φ )

Φ
(︁

𝑛2𝜋2

Φ2 −1
)︁ 𝑟−

𝑛𝜋
Φ

)︃
for [𝐿𝑤,∞).

(3.116)

Note that most of the infinite series in the above equation converge geometrically in 𝑟, 𝑟/𝐿𝑤,

𝐿𝑤/𝑟, or 𝑟𝐿𝑤. The only caveats exist in the last terms of the solution over [1/𝐿𝑤, 1] and

[1, 𝐿𝑤], which contain the same singularities as the solution to the wedge problem, Equation

(2.44), in Section 2.3.3.1. The fix is detailed in Section 2.3.3.2, which, upon applied to 𝑣𝑎 in
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Equation (3.116), would yield the following answer: 𝑣𝑎 = 𝑣
(0)
𝑎 + 𝑣

(1)
𝑎 , where 𝑣(0)𝑎 contains the

dominating terms that give the ballpark value of 𝑣𝑎, while 𝑣(1)𝑎 contains all the rest of fast

converging series improves on its accuracy with additional terms. First, 𝑣(0)𝑎 can be written

as

𝑣(0)𝑎 (𝑟, 𝜃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin 𝜃
sin(Φ)

𝑟
𝐿𝑤

+ 𝜈1
𝜈2𝜅

𝜃
Φ − 𝑤(𝑟, 𝜃) + 2(1−𝜈1/𝜈2)Φ

𝜅𝐿𝑤𝜋2 𝐼𝑚
(︁
𝐿𝑖2

(︁
−𝑟

𝑛𝜋
Φ 𝑒

𝑖𝜋𝜃
Φ

)︁)︁
for 0 ≤ 𝑟 ≤ 1

𝐿𝑤
,

− sin 𝜃
sinΦ

𝑟
𝐿𝑤

+ 𝜃
Φ − 𝑤(𝑟, 𝜃) + 2(1−𝜈1/𝜈2)Φ

𝜅𝐿𝑤𝜋2 𝐼𝑚
(︁
𝐿𝑖2

(︁
−𝑟

𝑛𝜋
Φ 𝑒

𝑖𝜋𝜃
Φ

)︁)︁
for 1

𝐿𝑤
≤ 𝑟 ≤ 1,

− sin 𝜃
sinΦ

𝑟
𝐿𝑤

+ 𝜃
Φ − 𝜈1

𝜈2
𝑤(𝑟, 𝜃) + 2(1−𝜈1/𝜈2)Φ

𝜅𝐿𝑤𝜋2 𝐼𝑚
(︁
𝐿𝑖2

(︁
−𝑟−

𝑛𝜋
Φ 𝑒

𝑖𝜋𝜃
Φ

)︁)︁
for 1 ≤ 𝑟 ≤ 𝐿𝑤,

+ 𝜈1
𝜈2𝜅

𝜃
Φ − 𝜈1

𝜈2
𝑤(𝑟, 𝜃) + 2(1−𝜈1/𝜈2)Φ

𝜅𝐿𝑤𝜋2 𝐼𝑚
(︁
𝐿𝑖2

(︁
−𝑟−

𝑛𝜋
Φ 𝑒

𝑖𝜋𝜃
Φ

)︁)︁
for 𝐿𝑤 ≤ 𝑟 <∞,

(3.117)

where 𝜅 = 1 + 𝜈1
𝜈2

and 𝑤(𝑟, 𝜃) is defined as

𝑤(𝑟, 𝜃) = 2− 𝜃

Φ
−
𝐴𝑟𝑔

(︁
−𝑟

𝜋
Φ exp

(︀
− 𝑖𝜋𝜃

Φ

)︀
− 𝐿

𝜋
Φ
𝑤

)︁
−𝐴𝑟𝑔

(︁
−𝑟

𝜋
Φ exp

(︀
− 𝑖𝜋𝜃

Φ

)︀
− 𝐿

− 𝜋
Φ

𝑤

)︁
𝜅𝜋

(3.118)

Here 𝐿𝑖2 is the polylogarithm function of order 2 defined in Equation (2.49) of Chapter 2.

Secondly, the fast converging terms of 𝑣(1)𝑎 can be written as
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𝑣(1)𝑎 (𝑟, 𝜃) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ 2
𝜅

(︃
−

∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟/𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+ 1
𝜅𝜋

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝑟/𝐿𝑤)
𝑛𝜋
Φ −(𝑟𝐿)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛

)︂
+ 2(1−𝜈1/𝜈2)

𝜅𝐿𝑤Φ

(︃
∞∑︀
𝑛=1

(−1)𝑛𝑟
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛2𝜋2

Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁
)︃

for
[︁
0, 1

𝐿𝑤

]︁
,

+ 2
𝜅

(︃
−

∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟/𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+ 1
𝜅

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝐿𝑤𝑟)−
𝑛𝜋
Φ +(𝑟/𝐿𝑤)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛𝜋

)︂
+ 2(1−𝜈1/𝜈2)

𝜅𝐿𝑤Φ

(︃
∞∑︀
𝑛=1

(−1)𝑛𝑟
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛2𝜋2

Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁
)︃

for
[︁

1
𝐿𝑤
, 1
]︁
,

+𝜈1/𝜈2−1
𝜅

(︃
∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟𝐿)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+

(︃
−

∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟/𝐿𝑤)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃
+ 1

𝜅

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝐿𝑤𝑟)−
𝑛𝜋
Φ +(𝑟/𝐿𝑤)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛𝜋

)︂
+2(1−𝜈1/𝜈2)

𝜅𝐿𝑤Φ

(︃
∞∑︀
𝑛=1

(−1)𝑛𝑟−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛2𝜋2

Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁
)︃

for [1, 𝐿𝑤],

+ (𝜈1/𝜈2−1)
𝜅

(︃
∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋+Φ)(𝑟𝐿𝑤)−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃

+

(︃
∞∑︀
𝑛=1

(−1)𝑛(𝑛𝜋−Φ)(𝐿𝑤/𝑟)
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁

)︃
+ 1

𝜅

(︂ ∞∑︀
𝑛=1

(−1)𝑛((𝐿𝑤𝑟)−
𝑛𝜋
Φ −(𝐿𝑤/𝑟)

𝑛𝜋
Φ ) sin(𝑛𝜋𝜃

Φ )
𝑛𝜋

)︂
+2(1−𝜈1/𝜈2)

𝜅𝐿𝑤Φ

(︃
∞∑︀
𝑛=1

(−1)𝑛𝑟−
𝑛𝜋
Φ sin(𝑛𝜋𝜃

Φ )
𝑛2𝜋2

Φ2

(︁
𝑛2𝜋2

Φ2 −1
)︁
)︃

for [𝐿𝑤,∞).

(3.119)

Having obtained an expression for 𝑣𝑎, we can use in Equation (3.116) or its singularity-

extracted version in Equation (3.117) and (3.119) to construct the solution to the non-

dimensionalized steady-state temperature problem with a linearly decreasing boundary pro-

file on 𝜃 = 0,Φ in Equation (3.10) as

𝑇 (𝑟, 𝜃) = 𝑣𝑎(𝑟/𝑎, 𝜃) + 𝑣𝑎(𝑟/𝑎,Φ− 𝜃) (3.120)
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3.2.2 Concentration Solution

The concentration problem extracted from (3.8) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐶 = 0, 𝑟 > 𝑎

𝜕𝐶
𝜕𝜃 = 0, on 𝜃 = 0,Φ; 𝑟 < 𝐿𝑤

𝐶 = 0, on 𝜃 = 0,Φ; 𝑟 > 𝐿𝑤

𝐶 = 𝛽𝑇 + 𝛾, 𝑟 = 𝑎

(3.121)

Our goal is to solve (3.121) analytically, which will be presented in the following way:

first we approach it semi-analytically using series expansion, which we will not fully solve.

Rather the insight derived from the semi-analytical approach would guide us to formulate

and sanity check the analytical solution. Finally, the analytical solution would require

a two-step ansatz, using the known properties of the Dirichlet-to-Neumann mapping and

Riemann-Hilbert problems.

3.2.2.1 The Semi-Analytical Method (I): Driving Analytical Insight

The first step is to perform a conformal mapping on the region 𝑟 > 𝑎. We define

𝜉 + 𝑖𝜁 = 𝜋 + 𝑖
𝜋

Φ
log
(︁𝑟
𝑎
𝑒𝑖(Φ−𝜃)

)︁
(3.122)

where

𝜉 =
𝜋

Φ
𝜃 (3.123)

𝜁 =
𝜋

Φ
log
(︁𝑟
𝑎

)︁
(3.124)

Consequently, the equations can be solved in the domain Ω𝜉,𝜁 := {(𝜉, 𝜁)|0 ≤ 𝜉 ≤ 𝜋, 𝜁 > 0}

(see Figure B-9b). Define 𝜁𝐿 = 𝜋
Φ log

(︀
𝐿𝑤
𝑎

)︀
and let

𝑔(𝜉) = 𝛽𝑇 (𝑟 = 𝑎, 𝜃(𝜉)) + 𝛾 (3.125)
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where either 𝑇 ≡ 0 in the case of constant temperature or it can be evaluated using (3.120).

Hence the equation in the conformally transformed coordinate is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐶 = 0, (𝜉, 𝜁) ∈ Ω𝜉,𝜁

𝜕𝐶
𝜕𝜉 = 0, on 𝜉 = 0, 𝜋 ; 𝜁 < 𝜁𝐿

𝐶 = 0, on 𝜉 = 0, 𝜋 ; 𝜁 > 𝜁𝐿

𝐶 = 𝑔(𝜉), on 𝜁 = 0

(3.126)

On the first try, we can use the eigenfunction bases of the Laplace operator to write the

solution to Equation (3.126) as follows

⎧⎪⎪⎨⎪⎪⎩
𝐶(𝜉, 𝜁) = 𝑒0 − 𝑏𝜁 +

∞∑︀
𝑛=1

(𝑒𝑛 cosh(𝑛𝜁) + 𝑏𝑛 sinh(𝑛𝜁) cos(𝑛𝜉), 𝜁 < 𝜁𝐿

𝐶(𝜉, 𝜁) =
∞∑︀
𝑛=1

𝑑𝑛𝑒
−𝑛𝜁 sin(𝑛𝜉), 𝜁 > 𝜁𝐿

(3.127)

where {𝑏𝑛}∞𝑛=0, {𝑑𝑛}∞𝑛=0 are unknown coefficients and {𝑒𝑛}∞𝑛=0 are coefficients from the cosine

expansion of 𝑔(𝜉)

𝑔(𝜉) =

∞∑︁
𝑛=0

𝑒𝑛 cos(𝜉). (3.128)

To solve for the unknown coefficients, we need to impose the following “gluing conditions”

at 𝜁 = 𝜁𝐿

[𝐶] = [𝐶]𝜁 = 0 (3.129)

The process is algebraically involved and not our ultimate goal anyway. Therefore, we

will not solve it fully. Later in Section 3.2.2.8 we will specifically solve for 𝑏0 as a sanity check

for the analytical solution. For now, we make the observation that if we try to compute

the non-dimensional, total material flux F𝑇 across the interface 𝑟 = 𝑎 (or 𝜁 = 𝜁𝐿) using
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Equation (3.127) for 𝜁 < 𝜁𝐿, we obtain

F𝑇 ∝
∫︁ Φ

0

𝜕𝐶

𝜕𝑟
|𝑟=𝑎𝑑𝜃 ∝

∫︁ 𝜋

0

𝜕𝐶

𝜕𝜁
|𝜁=𝜁𝐿𝑑𝜁 (3.130)

= −𝑏𝜋 +
∞∑︁
𝑛=1

(𝑒𝑛𝑛 sinh(𝑛𝜁) + 𝑏𝑛𝑛 cosh(𝑛𝜁)

∫︁ 𝜋

0
cos(𝑛𝜉)𝑑𝜉 (3.131)

= −𝑏𝜋 (3.132)

where
∫︀∞
0 cos(𝑛𝜉)𝑑𝜉 ≡ 0 for all 𝑛. Later in Section 3.2.2.6, we will derive the precise

expression for F𝑇

Hence the only term that contributes to the material flux

across the interface in the solution to Equation (3.126) is − 𝑏𝜁,

which is logarithmic in 𝑟

(3.133)

The insight of (3.133) would aid our search of analytical solution in the sections to follow.

3.2.2.2 Searching for Analytical Solution: a Second Conformal Mapping

The main approach towards an analytical solution is via a series of arguments in complex

analysis. To do so, we perform yet another conformal transformation to a new complex

coordinate 𝑧 via the mapping8

𝑧 = �̂�+ 𝑖𝑦 = 𝑟𝑒𝑖𝜃 =
(︁𝑟
𝑎

)︁− 𝜋
Φ
exp

(︂
𝑖𝜋𝜃

Φ

)︂
(3.134)

so that 𝑟 =
(︀
𝑟
𝑎

)︀− 𝜋
Φ and 𝜃 = 𝜋𝜃

Φ . Note the following connection between the two conformal

transformations in Equation (3.122) and (3.134):

𝜃 = 𝜉 (3.135)

𝑟 = exp(−𝜁) (3.136)

In the coordinate of 𝑧, the domain {(𝑟, 𝜃)|𝑟 > 𝑎, 0 ≤ 𝜃 ≤ Φ} becomes an upper semi-circle,

{(𝑟, 𝜃)|𝑟 < 1, 0 ≤ 𝜃 ≤ 𝜋} (See Figure B-9c). The interface 𝑟 = 𝑎 becomes 𝑟 = 1, while
8Once again the hat notation has nothing to do with the Fourier transforms defined in the earlier sections.

Too bad we aren’t using Cyrillic, Arabic, or Hebrew letters. Even Chinese characters would help...
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the length of wedge 𝐿𝑤 becomes �̂�𝑤 =
(︀
𝐿𝑤
𝑎

)︀− 𝜋
Φ . Let Δ̂ be the Laplace operator in the

new coordinate and define 𝑔
(︁
𝜃
)︁

to be the value of 𝐶 at the interface 𝑟 = 1, so that

𝑔
(︁
𝜃
)︁
= 𝛽𝑇

(︁
𝑟 = 𝑎, 𝜃 = 𝜃Φ

𝜋

)︁
+ 𝛾 (same as Equation (3.125)). In this way, the equation of

concentration can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ̂𝐶 = 0, 𝑟 < 1, 𝑦 > 0

𝜕𝐶
𝜕𝜃

= 0, on 𝑦 = 0, �̂�𝑤 < 𝑟 < 1

𝐶 = 0, on 𝑦 = 0, 𝑟 < �̂�𝑤

𝐶 = 𝑔
(︁
𝜃
)︁
, 𝑟 = 1

(3.137)

In the coordinate of 𝑧, we seek a function 𝐹 (𝑧) such that9

𝐶 = 𝑅𝑒(𝐹 (𝑧)) (3.138)

Here 𝐹 is analytic in the upper unit disk and satisfies the following properties

1. 𝑅𝑒(𝐹 (𝑧)) = 𝑔
(︁
𝜃
)︁

for 𝑧 = 𝑒𝑖𝜃

2. The imaginary part of 𝐹 is constant on each of the intervals along the real axis: 𝑧 = �̂�

either −1 < �̂� < −�̂�𝑤 or �̂�𝑤 < �̂� < 1. Note that the constants on the two interval

pieces may not necessarily be identical.

Here is a short proof of Item 2 of the above list

Proof. The homogeneous Neumann boundary
(︁
𝜕𝐶
𝜕𝜃

= 0
)︁

condition on 𝑦 = 0, �̂�𝑤 < 𝑟 < 1

translates to a vanishing normal derivative of 𝐶 = 𝑅𝑒(𝐹 ) along the real axis on −1 < �̂� <

−�̂�𝑤 and �̂�𝑤 < �̂� < 1. By Cauchy-Riemann equation, this is equivalent to the vanishing of

the tangential derivative of the imaginary part of 𝐹 . Hence, along the real axis over those

two intervals, 𝐹 is separately constant.

Now because of the insight derived in (3.133), we are motivated to split 𝐹 into two parts:

𝐹 = 𝐹1+𝐹2, where 𝐹1 contributes to the overall material flux proportional to 𝑏0𝜋 as shown

in Equation (3.130) and 𝐹2 that does not contribute to the flux.

The next two sections detail the ansatzs for 𝐹1 and 𝐹2.
9Here 𝑅𝑒 stands for the real part of a function, not the notation for Reynolds number which will be used

in Chapter 4
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3.2.2.3 Forming Ansatz for 𝐹1 : Dirichlet-to-Neumann Map and Branch Cut

of Square Root

We present the ansatz on 𝐹1. First we realize that the switch from Neumann to Dirichlet

boundary condition at 𝑟 = �̂�𝑤, 𝑦 = 0 must trigger a singularity in the solution. We surmise

that the nature of the singularity is the branch point of a complex square root. This is

because the complex square root experiences a multiplicative factor of 𝑒𝑖𝜋/2 = 𝑖 when going

across a branch point. This factor would make what used to be real for 𝐹 imaginary and

what was imaginary real. It would also naturally explain the shift in the boundary from

constant imaginary to zero real as 𝑟 transitions from smaller larger than 1 to smaller than

1. This leads to the ansatz that part of the solution must contain
√︁
𝑧2 − �̂�2

𝑤. Secondly,

we leverage the insight derived from (3.133) that there must be a term that looks like the

log of a function of 𝑟 and equivalently in 𝑟, since such function would contribute to the

overall material flux across the interface. As a result, 𝐹1 must look like the log(𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔)

where the 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 involves
√︁
𝑧2 − �̂�2

𝑤. This 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 must also satisfy (i) being real

for 𝑧 > �̂�𝑤, (ii) |𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔| = 1 for −�̂�𝑤 < 𝑧 < �̂�𝑤, and (iii) has a constant argument for

𝑧 < �̂�𝑤. After many trials and errors, we reach the ansatz that 𝐹1 is

𝐹1 = 𝑏 log

⎛⎝𝑧 +
√︁
𝑧2 − �̂�2

𝑤

�̂�𝑤

⎞⎠ (3.139)

where 𝑏 is a real constant to be determined. Here we use the branch cut that the

logarithm is real and positive for 𝑧 > �̂�𝑤. We immediately observe the following properties

of 𝐹1.

• 𝐹1 is analytic in the upper unit disk

• 𝐹1 is real and positive for 𝑧 real and 𝑧 > �̂�𝑤. Hence 𝐼𝑚(𝐹1) = 0 (constant) on the

real interval �̂�𝑤 < 𝑧 < 1

• 𝐹1 = 𝑏𝜋 for 𝑧 < −�̂�𝑤 real due to the jump in the branch point. Thus 𝐼𝑚(𝐹1) is

constant on the real interval 𝑧 < −�̂�𝑤

Note that computationally, in order to have the right jump at the branch points, we should

evaluate
√︁
𝑧2 − �̂�2

𝑤 =
√︀
𝑧 − �̂�𝑤

√︀
𝑧 + �̂�𝑤 and use principal values for the square roots and

the logarithm.
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3.2.2.4 Forming Ansatz for 𝐹2: Double Singularities

We now present the ansatz on 𝐹2. As argued before, the switch from Neumann to

Dirichlet boundary conditions must trigger a singularity whose underlying nature is the

branch point of a complex square root. Hence 𝐹2 must contain
√︁
𝑧2 − �̂�2

𝑤. In addition, we

observe the semi-analytical expansion of 𝐶 in Equation (3.127): except for the term linear

in 𝜁 that contributes to the overall flux, the rest does not and therefore should correspond

to 𝐹2. The solution that satisfies the data at 𝜁 = 𝜁𝐿 and Neumann all the way to 𝜁 = 0

should not have any singularities. The solution that satisfies the data at 𝜁 = 𝜁𝐿 and

allow the transition to Dirichlet beyond 𝜁 = 𝜁𝐿 should demonstrate some singular behavior.

Since Equation (3.127) shows that this part of the solution consists of sine series, it should

correspond to a component in 𝐹2 of the form
∑︀

(some coefficients)(𝑧𝑛 − 𝑧−𝑛). Hence, 𝐹2

needs a singularity not only at 𝑧 = ±�̂�𝑤, but also 𝑧 = ±1/�̂�𝑤. This leads to the ansatz

that 𝐹2 ∝
√︁
𝑧2 − �̂�2

𝑤

√︁
𝑧−2 − �̂�2

𝑤. We let that proportionality quantity be 𝐺 (𝑧), whence

𝐹2 = 𝐺(𝑧)

√︂(︁
𝑧2 − �̂�2

𝑤

)︁(︁
𝑧−2 − �̂�2

𝑤

)︁
= 𝐺(𝑧)𝑆(𝑧) (3.140)

where 𝐺 is analytic in the upper unit disk 𝑆(𝑧) =
√︂(︁

𝑧2 − �̂�2
𝑤

)︁(︁
𝑧−2 − �̂�2

𝑤

)︁
. Moreover,

We impose the following conditions on 𝐺 and 𝑆 (3.141)

1. We place the branch cuts for 𝑆 in the lower half plane and select the branch so that,

for 𝑧 real, 𝑆(𝑧) > 0 for �̂�𝑤 < 𝑆(𝑧) < 1/�̂�𝑤. Then 𝑆 is purely positive imaginary

for 0 < 𝑧 < �̂�𝑤, purely negative imaginary for −�̂�𝑤 < 𝑧 < 0, and 𝑆(𝑧) > 0 for

−1/�̂�𝑤 < 𝑧 < −�̂�𝑤

2. 𝐺(𝑧) is real along the real axis;

3. 𝐺(0) = 0. This condition is necessary to cancel out the simple pole that 𝑆 has at the

origin.

3.2.2.5 Solving for 𝑏 and 𝐺(𝑧): a Riemann-Hilbert Problem

We are going to solve for 𝑏 in 𝐹1 of Equation (3.139) and 𝐺(𝑧) in Equation (3.140). For

note that if we define the values the real part of 𝐹1(𝑧) and 𝐹2(𝑧) on the perimeter of the
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upper semi-circle 𝑧 = 𝑒𝑖𝜃 as 𝑔1 and 𝑔2, respectively, such that

𝑔1

(︁
𝜃
)︁
= 𝑅𝑒

(︁
𝐹1

(︁
𝑒𝑖𝜃
)︁)︁

= 𝑏 log

⃒⃒⃒⃒
⃒⃒𝑒𝑖𝜃 +

√︁
𝑒2𝑖𝜃 − �̂�2

𝑤

�̂�𝑤

⃒⃒⃒⃒
⃒⃒ (3.142)

𝑔2

(︁
𝜃
)︁
= 𝑅𝑒 (𝐺(𝑧)) 𝑠(𝜃) (3.143)

where 𝑠(𝜃) =
√︂
1− 2�̂�2

𝑤 cos
(︁
2𝜃
)︁
+ �̂�4

𝑤. We note that since 𝐶 = 𝑅𝑒(𝐹1 + 𝐹2), it must be

that

𝑔 = 𝑔1 + 𝑔2 (3.144)

for 𝑔 is the boundary condition of 𝐶 at 𝑟 = 1.

Now if we extend 𝑔2 to the entire circle, even in 𝜃, Equation (3.143) yields a classical

Riemann-Hilbert problem on the unit circle for 𝐺. As a result, the expression for 𝐺 becomes

𝐺 (𝑧) =
1

2𝜋𝑖

∮︁
𝜂 + 𝑧

𝜂 − 𝑧

𝑔2(𝜑)

𝑠(𝜑)
𝑑𝜑+ 𝑖𝛼 (3.145)

where 𝜂 = 𝑒𝑖𝜑, 𝑧 = 𝑟𝑒𝑖𝜑 and 𝛼 is some real constant. To prove Equation (3.145), we use the

following calculation

Proof. Let 𝑔2(𝜃)/𝑠(𝜃) have the following Fourier expansion: 𝑔2(𝜃)/𝑠(𝜃) =
∞∑︀

𝑛=−∞
𝑓2,𝑛𝑒

𝑖𝑛𝜃,

where

𝑓2,𝑛 =
1

2𝜋

∫︁ 2𝜋

0

𝑔2(𝜂)

𝑠(𝜂)
𝑒−𝑖𝑛𝜂𝑑𝜂 (3.146)

However, since 𝑔2 is real, the complex conjugate of 𝑔2,𝑛 must be 𝑔2,−𝑛, whence

𝑔2(𝜃)/𝑠(𝜃) = 𝑓2,0 + 2𝑅𝑒

(︃ ∞∑︁
𝑛=1

𝑓2,𝑛𝑒
𝑖𝑛𝜃

)︃
(3.147)

where 𝑓2,0 = 1
2𝜋

∫︀ 2𝜋
0

𝑔2(𝜂)
𝑠(𝜂) 𝑑𝜂 is real. Hence, by inspection we can write define 𝐺(𝑧) as

𝐺(𝑧) = 𝑓2,0 + 2

∞∑︁
𝑛=1

𝑓2,𝑛𝑧
𝑛 + 𝑖𝛼 (3.148)
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for any 𝛼 ∈ R. In this way, 𝑅𝑒(𝐺(𝑧))|
𝑧=𝑒𝑖𝜃

= 𝑔2(𝜃)/𝑠(𝜃) defined in Equation (3.147). Finally,

we clean up the expression of 𝐺 by plugging Equation (3.146) into Equation (3.148)

𝐺(𝑧) = 𝑓2,0 + 2

∞∑︁
𝑛=1

𝑧𝑛
1

2𝜋

∫︁ 2𝜋

0

𝑔2(𝜂)

𝑠(𝜂)
𝑒−𝑖𝑛𝜂𝑑𝜂 + 𝑖𝛼 (3.149)

=
1

𝜋

∫︁ 2𝜋

0

𝑔2(𝜂)

𝑠(𝜂)

(︃ ∞∑︁
𝑛=1

𝑧𝑛𝑒−𝑖𝑛𝜂 +
1

2

)︃
𝑑𝜂 + 𝑖𝛼 (3.150)

=
1

𝜋

∫︁ 2𝜋

0

𝑔2(𝜂)

𝑠(𝜂)

(︂
1

1− 𝑧𝑒−𝑖𝑛𝜂
+

1

2

)︂
𝑑𝜂 + 𝑖𝛼 (3.151)

=
1

2𝜋

∫︁ 2𝜋

0

𝑔2(𝜂)

𝑠(𝜂)

𝑒𝑖𝑛𝜂 + 𝑧

𝑒𝑖𝑛𝜂 − 𝑧
𝑑𝜂 + 𝑖𝛼 (3.152)

which completes the proof

Now because of Item 3 of Condition (3.141), 𝐺(0) = 0, which means that (i) 𝛼 = 0 and

(ii)

∫︁ 𝜋

−𝜋

𝑔2(𝜑)

𝑠(𝜑)
𝑑𝜑 = 0 (3.153)

Substituting 𝑔2 = 𝑔 − 𝑔1 as in Equation (3.144), we have that

∫︁ 𝜋

−𝜋

𝑔(𝜑)− 𝑔1(𝜑)

𝑠(𝜑)
𝑑𝜑 = 0 (3.154)

from which we can finally find an expression for 𝑏 by plugging in Equation (3.142)

0 =

∫︁ 𝜋

−𝜋

𝑔(𝜑)− 𝑏 log

⃒⃒⃒⃒
𝑒𝑖𝜑+

√
𝑒2𝑖𝜑−�̂�2

𝑤

�̂�𝑤

⃒⃒⃒⃒
𝑠(𝜑)

𝑑𝜑 (3.155)

𝑏 =

∫︀ 𝜋
−𝜋

𝑔(𝜑)
𝑠(𝜑)𝑑𝜑∫︀ 𝜋

−𝜋
1

𝑠(𝜑) log

⃒⃒⃒⃒
𝑒𝑖𝜑+

√
𝑒2𝑖𝜑−�̂�2

𝑤

�̂�𝑤

⃒⃒⃒⃒
𝑑𝜑

(3.156)

Equation (3.156) and (3.145) complete the expressions for 𝐹1 and 𝐹2 in Equation (3.139) and

(3.140), which solves completely analytically the main non-dimensionalized concentration

equation in (3.121) and its conformally transformed equivalent (3.137).

In the next two sections, we will leverage these exact solutions to calculate the normal

flux along the interface and total integrated flux throughout the interface. The radial flux
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determines the amount of liquid vaporized per unit of time at every point along the liquid-

vapor interface, while the total flux is the total amount of vaporized liquid along the entire

interface. These two quantities are of high interest for various engineering applications, and

will aid our calculation of lifetime later in Section 3.3.

3.2.2.6 Calculation of Total Flux Across the Interface: a Simple Exercise in

Complex Analysis

In this section we show how to compute the total material flux, which happens to be

easier than calculating the normal flux at each point along the interface. Let 𝐹𝑇 be the

dimensional total material flux across the interface10 located at 𝑟 = �̃�. Then 𝐹𝑇 can be

written as

F̃𝑇 =

∫︁ Φ

0

𝜕𝐶

𝜕𝑟
|𝑟=�̃��̃�𝑑𝜃 (3.157)

Using the nondimensionalization of 𝐶, 𝑟, and �̃� in Equation (3.4)-(3.7), we can write

down the non-dimensional total flux, F𝑇 , such that

F̃𝑇 = 𝐷𝐶𝑐F𝑇 (3.158)

and

F𝑇 =

∫︁ Φ

0

𝜕𝐶

𝜕𝑟
|𝑟=𝑎𝑎𝑑𝜃 (3.159)

We are interested in computing both F𝑇 and 𝜕𝐶
𝜕𝑟 .

First, we note that computing F𝑇 is much easier than 𝜕𝐶
𝜕𝑟 . This is because we can use

the property of function 𝐹 in Equation (3.138) to simplify the integral as

F𝑇 =

∫︁ Φ

0

𝜕𝐶

𝜕𝑟
|𝑟=𝑎𝑎𝑑𝜃 (3.160)

=

∫︁ 𝜋

0

𝜕

𝜕𝑟
𝑅𝑒 (𝐹 ) |𝑟=1𝑎𝑑𝜃 (3.161)

where the hat notations indicate the conformally transformed coordinate introduced in Equa-
10Recall that variables with tildes carry physical units
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tion (3.134). But once again, by the Cauchy-Riemann condition, 𝜕𝑅𝑒(𝐹 )
𝜕𝑟 = 𝜕𝐼𝑚(𝐹 )

𝜕𝜃
. Hence,

F𝑇 = −
∫︁ 𝜋

0

𝜕𝐼𝑚(𝐹 )

𝜕𝜃
|𝑟=1𝑑𝜃 (3.162)

= −
(︁
𝐼𝑚(𝐹 )|𝜃=𝜋,𝑟=1 − 𝐼𝑚(𝐹 )|𝜃=0,𝑟=1

)︁
(3.163)

= −𝑏𝜋 (3.164)

which agrees with the semi-analytical solution in Equation (3.132). Here 𝑏 is defined in

Equation (3.156)

3.2.2.7 Calculation of Normal Flux: Computational Shortcut of 𝐺 and 𝐺′ via

Fourier Series

The dimensionless normal flux along the interface is defined as the radial derivative of

concentration, 𝜕𝐶
𝜕𝑟 . This computation requires the differentiation of 𝐹1 and 𝐹2, which, in

particular, would require the evaluation of 𝐺(𝑧) and 𝐺′(𝑧). Equation (3.145) provides an

explicit but computationally inconvenient formula for 𝐺. Instead we leverage the Fourier

series of 𝐺(𝑧), first shown in Equation (3.148) in the presentation of the Riemann-Hilbert

problem solution:

𝐺(𝑧) = 𝑓2,0 + 2

∞∑︁
𝑛=1

𝑓2,𝑛𝑧
𝑛 (3.165)

where we recall that 𝛼 = 0 and 𝑓2,𝑛 are the Fourier coefficients of 𝑔2/𝑠2 defined in Equation

(3.146). Hence, we can compute 𝐺′ as

𝐺(𝑧) = 2

∞∑︁
𝑛=1

𝑛𝑓2,𝑛𝑧
𝑛−1 (3.166)

Now to compute 𝜕𝐶
𝜕𝑟 , we just have to crank through some nasty but straightforward

algebra based on the analytical expression of 𝐶. In the end, we get

𝜕𝐶(𝑟, 𝜃)

𝜕𝑟
=

−𝜋
𝑎Φ

(︁𝑟
𝑎

)︁− 𝜋
Φ
−1
𝑅𝑒

(︂
𝜕𝐹1

𝜕𝑟
+
𝜕𝐹2

𝜕𝑟

)︂
(3.167)
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where using the formula for 𝐹1 in Equation (3.139), we obtain

𝜕𝐹1

𝜕𝑟
= 𝑏

1 + (𝑧2 − �̂�2
𝑤)

−1/2𝑧

𝑧 +

√︁
𝑧2 − �̂�2

𝑤

(3.168)

and where we use the formula for 𝐹2 in Equation (3.140) to obtain

𝜕𝐹2

𝜕𝑟
= 𝐺(𝑧)𝑆′(𝑧) +𝐺′(𝑧)𝑆(𝑧) (3.169)

Now the final piece is to properly compute 𝑆 and 𝑆′ that respect the choice of branch cuts

made in Item 1 of (3.141). Some calculations show that using the principal values of the

complex square root would render the following formula compliant to the branch choice

𝑆(𝑧) =

√︁
𝑧 − �̂�𝑤

√︁
𝑧 + �̂�𝑤

√︁
𝑧−1 + �̂�𝑤

√︁
𝑧−1 − �̂�𝑤 (3.170)

Hence, if we define ℎ(𝜂) :=
√
𝜂 as the complex square root using the principal value and

ℎ′(𝜂) = 1
2𝜂

−1/2 as its derivative, we can compute 𝑆 as

𝑆′(𝑧) = ℎ′
(︁
𝑧 − �̂�𝑤

)︁
ℎ
(︁
𝑧 + �̂�𝑤

)︁
ℎ
(︁
𝑧−1 − �̂�𝑤

)︁
ℎ
(︁
𝑧−1 + �̂�𝑤

)︁
+ ℎ

(︁
𝑧 − �̂�𝑤

)︁
ℎ′
(︁
𝑧 + �̂�𝑤

)︁
ℎ
(︁
𝑧−1 − �̂�𝑤

)︁
ℎ
(︁
𝑧−1 + �̂�𝑤

)︁
+

−1

𝑧2
ℎ
(︁
𝑧 − �̂�𝑤

)︁
ℎ
(︁
𝑧 + �̂�𝑤

)︁
ℎ′
(︁
𝑧−1 − �̂�𝑤

)︁
ℎ
(︁
𝑧−1 + �̂�𝑤

)︁
+

−1

𝑧2
ℎ
(︁
𝑧 − �̂�𝑤

)︁
ℎ
(︁
𝑧 + �̂�𝑤

)︁
ℎ
(︁
𝑧−1 − �̂�𝑤

)︁
ℎ′
(︁
𝑧−1 + �̂�𝑤

)︁
(3.171)

3.2.2.8 Sanity Check Using a Semi-Analytical Method

Here we perform a quick sanity check on the analytical solution by comparing the ana-

lytically computed 𝑏 in Equation (3.156) with the one in the semi-analytical infinite series

solution in Equation (3.127). To do that, we first set up a framework for computing 𝑏

semi-analytically.

On the first try, we are tempted to work directly with Equation (3.129). The cal-

culation is way too involved. To simplify the calculation, we introduce 𝐶(𝑛)(𝜉, 𝜁), where

𝑛 = 0, 1, 2, 3..., which is almost identical to Equation (3.126) except that at 𝜁 = 0, it sat-

isfies cos(𝑛𝜉). In other words, we are solving Equation (3.126) for each harmonic of 𝑔(𝜉).

Then 𝑏 should be a linear combination of the corresponding coefficient in the solution of
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each harmonic. Specifically, we define 𝐶(𝑛), where 𝑛 = 0, 1, 2, ..., as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐶(𝑛) = 0, 0 ≤ 𝜉 ≤ 𝜋, 𝜁 > 0

𝜕𝐶(𝑛)

𝜕𝜉 = 0, on 𝜉 = 0, 𝜋 ; 𝜁 < 𝜁𝐿

𝐶(𝑛) = 0, on 𝜉 = 0, 𝜋 ; 𝜁 > 𝜁𝐿

𝐶(𝑛) = cos(𝑛𝜉), on 𝜁 = 0

(3.172)

where we impose the condition on 𝐶(𝑛) at 𝜁 = 0 with cos(𝑛𝜉), where 𝑛 = 0, 1, 2, 3. Then by

the same token, we can write down the solution to Equation (3.172) as

⎧⎪⎪⎨⎪⎪⎩
𝐶(𝑛)(𝜉, 𝜁) = cosh(𝑛𝜁) cos(𝑛𝜉)− 𝑏(𝑛)𝜁 +

∞∑︀
𝑚=1

𝑏
(𝑛)
𝑚 sinh(𝑚𝜁) cos(𝑚𝜉), 𝜁 < 𝜁𝐿

𝐶(𝑛)(𝜉, 𝜁) =
∞∑︀

𝑚=1
𝑑
(𝑛)
𝑚 𝑒−𝑚𝜁 sin(𝑚𝜉), 𝜁 > 𝜁𝐿

(3.173)

Then 𝑏 can be computed as

𝑏 =

∞∑︁
𝑛=0

𝑒𝑛𝑏
(𝑛) (3.174)

where 𝑒𝑛 is the Fourier cosine coefficients of 𝑔 defined in Equation (3.128).

Secondly, we are now tempted to apply the gluing condition
[︀
𝐶(𝑛)

]︀
=
[︀
𝐶(𝑛)

]︀
𝜁
= 0 on

Equation (3.173) to solve for 𝑏(𝑛). However, doing so would render the problem numerically

ill-conditioned. This is because the terms cos(𝑛𝑥) sinh(𝑛𝑦) grow exponentially from 𝜁 = 0

to 𝜁 = 𝜁𝐿 and therefore a very small change in 𝑏𝑛 would cause huge changes in the product

for 𝑚 large. To fix the issue, we need to encode into the system the fact that 𝑏𝑛 decays

faster than sinh(𝑛𝜁) grows. This leads us to the following modified solution

𝐶(𝑛)(𝜉, 𝜁) =

⎧⎪⎪⎨⎪⎪⎩
− 1

𝜁𝐿
𝐵

(𝑛)
0 𝑒−𝑛𝜁𝐿𝜁 + 𝑒−𝑛𝜁 cos(𝑛𝜉) +

∞∑︀
𝑚=1

𝐴
(𝑛)
𝑚

sinh(𝑚𝜁)
sinh(𝑚𝜁𝐿)

cos(𝑚𝜉)𝑒−𝑛𝜁𝐿 , 𝜁 < 𝜁𝐿

∞∑︀
𝑘=1

𝐷
(𝑛)
𝑘 sin(𝑘𝜉)𝑒−𝑘(𝜁−𝜁𝐿)−𝑛𝜁𝐿 , 𝜁 > 𝜁𝐿

(3.175)
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and so once we solve for 𝐵0, we can write as 𝑏(𝑛)

𝑏(𝑛) =
1

𝜁𝐿
𝐵0𝑒

−𝑛𝜁𝐿 (3.176)

One last step before we can apply the gluing condition to Equation (3.175) is to change

basis of the sine series. We let

sin(𝑘𝜉) =
2

𝜋

∞∑︁
𝑚=0

𝜒𝑘𝑚 cos(𝑚𝜉) (3.177)

where 𝜒𝑘𝑚 = 𝜋
2

∫︀ 𝜋
0 sin(𝑘𝜉) cos(𝑚𝜉). Some straightforward calculation can show that

𝜒𝑘𝑚 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, 𝑘 +𝑚 is even

1/𝑘, 𝑘 is odd and 𝑚 = 0

2𝑚/(𝑘2 −𝑚2), 𝑘 +𝑚 is odd and 𝑚 ̸= 0

(3.178)

Hence, if we now apply [𝐶(𝑛)]𝜁=𝜁𝐿 = 0 and [𝐶
(𝑛)
𝜁 ]𝜁=𝜁𝐿 = 0, we obtain

−𝐵(𝑛)
0 + cos(𝑛𝜉) +

∞∑︁
𝑚=1

𝐴(𝑛)
𝑚 cos(𝑚𝜉) =

∞∑︁
𝑚=0

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
𝜒𝑘𝑚 cos(𝑚𝜉)

(3.179)

− 1

𝜁𝐿
𝐵

(𝑛)
0 − 𝑛 cos(𝑛𝜉) +

∞∑︁
𝑚=1

𝐴(𝑛)
𝑚 𝑚 coth(𝑚𝜁𝐿) cos(𝑚𝜉) =

∞∑︁
𝑚=0

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
(−𝑘)𝜒𝑘𝑚 cos(𝑚𝜉)

(3.180)

Matching the same order of 𝑚, we have that for 𝑚 = 0,

−𝐵(𝑛)
0 + 𝛿𝑛0 =

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
𝜒𝑘0 (3.181)

− 1

𝜁𝐿
𝐵

(𝑛)
0 =

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
(−𝑘)𝜒𝑘0 (3.182)

(3.183)

where 𝛿𝑛𝑚 represents the Kronecker delta. If we multiply the first equation by −1/𝜁𝐿 before
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adding to the second equation, we get that

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋

(︂
−𝑘 − 1

𝜁𝐿

)︂
𝜒𝑘0 = − 1

𝜁𝐿
𝛿𝑛0 (3.184)

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋

(︂
𝑘 +

1

𝜁𝐿

)︂
𝜒𝑘0 =

1

𝜁𝐿
𝛿𝑛0 (3.185)

and for 𝑚 > 0, we have that

𝐴(𝑛)
𝑚 + 𝛿𝑛𝑚 =

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
𝜒𝑘𝑚 (3.186)

𝐴(𝑛)
𝑚 𝑚 coth(𝑚𝜁𝐿)− 𝑛𝛿𝑛𝑚 =

∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
𝜒𝑘𝑚(−𝑘) (3.187)

If we multiply the first equation by −𝑚 coth(𝑚𝜁𝐿) before adding to the second equation, we

get that

𝛿𝑛𝑚(𝑛+𝑚 coth(𝑚𝜁𝐿)) =
∞∑︁
𝑘=1

𝐷
(𝑛)
𝑘

2

𝜋
𝜒𝑘𝑚(𝑘 +𝑚 coth(𝑚𝜁𝐿)) (3.188)

So here we shall define the matrix 𝐴(𝑛), vector �⃗�(𝑛), and vector �⃗�(𝑛) such that

𝐴
(𝑛)
𝑚𝑘 =

⎧⎪⎨⎪⎩
2
𝜋

(︁
𝑘 + 1

𝜁𝐿

)︁
𝜒𝑘0, 𝑚 = 0

2
𝜋𝜒𝑘𝑚(𝑘 +𝑚 coth(𝑚𝜁𝐿)), 𝑚 > 0

(3.189)

�⃗�(𝑛) =

⎧⎪⎨⎪⎩
1
𝜁𝐿
𝛿𝑛0, 𝑚 = 0

𝛿𝑛𝑚(𝑛+𝑚 coth(𝑚𝜁𝐿)), 𝑚 > 0

(3.190)

�⃗�(𝑛) = (𝐷
(𝑛)
1 , 𝐷

(𝑛)
2 , ..., 𝐷

(𝑛)
𝑘 , ...)𝑇 (3.191)

Hence, the matrix �⃗�(𝑛) can be expressed as

�⃗�(𝑛) =
(︁
𝐴(𝑛)

)︁−1
�⃗�(𝑛) (3.192)

Using the above expression for 𝐷(𝑛), we can leverage Equation (3.181) to write 𝐵(𝑛)
0 as

𝐵
(𝑛)
0 = 𝛿𝑛0 −

∞∑︁
𝑘=1

�⃗�
(𝑛)
𝑘

2

𝜋
𝜒𝑘0 (3.193)
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and so according to Equation (3.176), we can write 𝑏(𝑛)

𝑏(𝑛) =
𝛿𝑛0𝑒

−𝑛𝜁𝐿

𝜁𝐿
− 𝑒−𝑛𝜁𝐿

𝜁𝐿

∞∑︁
𝑘=1

�⃗�
(𝑛)
𝑘

2

𝜋
𝜒𝑘0 (3.194)

which, coupled with Equation (3.174), enables us to write an infinite series expression for 𝑏

𝑏 =

∞∑︁
𝑛=0

𝑒𝑛
𝑒−𝑛𝜁𝐿

𝜁𝐿

(︃
𝛿𝑛0 −

∞∑︁
𝑘=1

�⃗�
(𝑛)
𝑘

2

𝜋
𝜒𝑘0

)︃
(3.195)

≈
𝑁∑︁

𝑛=0

𝑒𝑛
𝑒−𝑛𝜁𝐿

𝜁𝐿

(︃
𝛿𝑛0 −

∞∑︁
𝑘=1

�⃗�
(𝑛)
𝑘

2

𝜋
𝜒𝑘0

)︃
:= 𝑏𝑁 (3.196)

for some integer cutoff 𝑁 . We compare the semi-analytical form of 𝑏𝑁 in Equation (3.196)

with the analytical form of 𝑏 in Equation (3.156) for each 𝑁 via the following error norm

𝑒𝑟𝑟𝑏(𝑁) = |𝑏𝑁 − 𝑏| (3.197)

3.3 Lifetime of Evaporating Liquid

With the analytical form of vapor concentration, we can derivative the evaporation time

analytically as well. To do so, we first write down the relation between flux and loss of mass

over an increment of time 𝑑𝑡11:

∫︁ Φ

0
𝐷
𝑑𝐶

𝑑𝑟
|𝑟=�̃��̃�𝑑𝜃𝑑𝑡 = 𝜌1�̃�Φ𝑑�̃� (3.198)

from which we can derive the expression for the lifetime of the liquid channel:

𝑡 = 𝜌1Φ𝑎0

∫︁ 1

0

𝑑𝑎

𝐷
∫︀ Φ
0

𝜕𝐶
𝜕𝑟 |𝑟=�̃�𝑑𝜃

(3.199)

Finally, recalling the rescaling of evaporation time in (3.7), we can write down the evapora-

tion of time in terms of its dimensionless quantity 𝑡 as

𝑡 =
𝜌1𝑎

2
0

𝐷𝐶∞
𝑡 (3.200)

11Recall that all variables with tildes (∼) carry physical units
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where

𝑡 =
Φ𝐶∞

𝜋(𝐶𝑠𝑎𝑡(𝑇0)−𝐻𝐶∞)

∫︁ 1

0

𝑎

𝑏
𝑑𝑎 (3.201)

Here 𝑏 is the analytically derived expression in Equation (3.156).

3.3.1 Parameter Choice

Unless explicitly stated or varied, all parameters are chosen from Table A.1. We use

water as the liquid to fill the channel with air above.

3.4 Discussion

3.4.1 Temperature Profiles

We present the solution (3.12) to the temperature problem of a linearly decreasing bound-

ary in Equation (3.10) in Figure B-10. Here we take the height of the liquid to be 𝑎 = 1

and 𝜈2/𝜈1 = 1000. The ratio represents an extreme and unphysical limit only to exacerbate

the singularity at 𝑟 = 𝑎 and demonstrate the power of the PSM. Figure B-10a shows the

heat map. Temperature decreases as 𝑟 gets large, which is consistent with the imposed, lin-

early decreasing boundary condition. Also, for a fixed radius, temperature is higher closer

to the boundary walls than towards the center. This contributes to the higher material

flux near the boundary, which we will discuss later. On the other hand, Figure B-10b

plots temperature against radius for various values of Φ’s. Despite that the temperature

expressions in Equation (3.116) and equivalently the singularity-extracted form in Equation

(3.117) are piece-wise defined in between 𝑟 = 1/𝐿𝑤, 𝑟 = 1, 𝑟 = 𝐿𝑤, there is no discontinuity

at 𝑟 = 1/𝐿𝑤 or 𝑟 = 𝐿𝑤. The only discontinuity, as expected, occurs at the liquid-vapor

interface 𝑟 = 𝑎 = 1 where materials of two different properties intersect.

3.4.2 Convergence of the Analytical and Semi-Analytical Concentration

Solutions

As a sanity check on the analytical solution, we leverage the semi-analytical computation

of the parameter 𝑏 in Equation(3.196) with an integer cutoff 𝑁 and study its deviation from

the analytical form in Equation (3.156) via the error norm defined in Equation (3.197). Fig-
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ure B-11 plots 𝑒𝑟𝑟𝑏(𝑁) vs 𝑁 on a log-log scale for both the constant and varied temperature

scenarios. As one can see, the semi-analytical solution converges to the analytical solution,

though the rate is slow and sub-linear. Since the semi-analytical solution is obtained via a

completely different process, the fact that it converges to the analytical one reassures us of

the correctness of the analytical solution.

3.4.3 Radial Fluxes and Total Fluxes

Figure B-12a shows the radial flux, 𝜕𝐶
𝜕𝑟 , which is defined in Equation (3.167). In partic-

ular, we see that there is higher amount of flux around the edges of the interface than the

center. This is consistent with the profile of higher temperature closer to the wedge sides.

In Figure B-12b and B-12c, we plot the total flux, defined in Equation (3.162) as a function

of the interface height for different humidity levels and wedge angles. Overall, the total flux

increases as the interface height increases due to the growing surface area exposed to the

vapor region. In particular, Figure B-12b shows that as the air gets more humid, the amount

of vaporizing liquid reduces and does so sharply as 𝐻 gets close to 1. Similarly, in Figure

B-12c, we see that as the angle increases, the surface area of the liquid grows, leading to a

greater flux. This explains the upward shift of the curves as the angle gets larger. However,

a bigger angle that results in more flux does not necessarily lead to a shorter lifetime. This

will be elaborated in the next section.

3.4.4 Evaporation Times

Figure B-13a and Figure B-13b show the plots of dimensionless evaporation times in

Equation (3.201) against the variations of the temperature gradient, humidity, wedge size,

and wedge angle. Here we non-dimensionalize the measure of temperature gradient as the

maximum temperature difference in the system relative to 𝑇∞, namely Δ𝑇𝑚𝑎𝑥/𝑇∞, where

Δ𝑇𝑚𝑎𝑥 = 𝑇0 − 𝑇∞.

We see that in Figure B-13a, evaporation time increases as humidity increases across all

levels of thermal gradients. This agrees with the physical intuition that the more humid the

air, the harder it is to “dry out”. Note that for constant temperature (Δ𝑇𝑚𝑎𝑥/𝑇∞ = 0), as

𝐻 gets close to 1, lifetime approaches infinity. Indeed, examining the analytical expression

(3.200) for lifetime, when 𝑇0 = 𝑇∞ and 𝐻 = 1, 𝑡 = ∞. In the absence of external thermal

drive, when vapor gets saturated in the air, the evaporation process stops. On a different
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note, we plot lifetime against the thermal gradient for different humidity levels in Figure

B-13b. We observe that the liquid takes less time to evaporate as temperature gradient

increases, which also agrees with the physical intuition that heat accelerates evaporation.

It is interesting to note that the impact of an increasing thermal gradient on lifetime is

enhanced as humidity increases. As the air becomes more humid, thermal driving plays a

bigger role in accelerating the evaporation of liquid. If we take the percentage change in

lifetime between Δ𝑇𝑚𝑎𝑥/𝑇∞ = 0 and Δ𝑇𝑚𝑎𝑥/𝑇∞ = 0.01 in Figure B-13b) for each humidity

level and plot the percentage against 𝐻, we uncover Figure B-13c: for a completely dry

air (𝐻 = 0), an increase in Δ𝑇𝑚𝑎𝑥/𝑇∞ from 0 to 0.01 results in only a 10% reduction in

lifetime, whereas for 𝐻 = 0.95, turning up the knob of Δ𝑇𝑚𝑎𝑥/𝑇∞ by the same amount

reduces the liquid’s lifetime by more than 70%.

On the other hand, Figure B-13d and B-13e show how the geometry of the wedge affects

lifetime. In B-13d, lifetime increases as the size of the wedge increase. Other things being

equal, a larger wedge implies a higher temperature at the V-tip, which leads to a greater

flux at the interface that reduces the lifetime. On the other hand, an larger wedge also

moves the ambient atmosphere saturated with vapor away from the liquid, which elongates

the lifetime. From the simulation, the effect of elongation dominates that of reduction on

the evaporation of the liquid. Similarly, in B-13e, we note that lifetime increases as the

wedge angle gets wider. A larger angle implies a greater material flux that consequently

accelerates the evaporation. At the same time, for the same interface height, a bigger angle

means more liquid mass, which increases linearly as the angle gets large. The fact that

lifetime is positively linearly growing with the angle means that the effect of mass increase

dominates that of flux increase as a result of widening the angle.

3.5 Conclusion

We analytically study the problem of 2D evaporation of a liquid bridge within a long V-

shaped channel. The liquid bridge forms a 90𝑜 contact angle with the wedge sides. Slow

quasi-static evaporation is assumed after thermal equilibrium is reached, so that the tem-

perature is not affected by the latent heat released. To accommodate the 2𝐷 nature of the

problem, we use an infinite wedge as our domain and transform what would be far-field

conditions in 3D, to boundary conditions along the wedge sides. This series of assumptions
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renders the concentration-temperature coupled equations in (3.3), which can be rescaled into

the system (3.8). The solution for the temperature is found using a new analytical method,

the Parity Split Method (PSM). The PSM explores the symmetry of the wedge geometry

and splits the problem into sub-problems that do not contain the internal boundary condi-

tions at the liquid-vapor interface. The temperature solution is then used as an input into

the equation satisfied by the vapor concentration, and the resulting problem is solved using

complex variable techniques.

After obtaining the solutions for the temperature and concentration analytically, we

compute two quantities that are of significant interest in applications: the vapor flux at the

interface, and the evaporation lifetime for the liquid. In particular, we study the behavior

of the lifetime versus both: environmental variables (applied thermal gradient and ambient

humidity), and wedge-geometric variables (wedge angle and wedge depth). A higher hu-

midity increases lifetime, while a higher temperature lowers lifetime. Moreover, the lifetime

reduction by the thermal effect increases as humidity gets larger. At the same time, the

lifetime grows with both wedge angle and size.

Quite clearly, the model used here has several limitations. First, the artificial boundary

conditions on both the temperature and concentration beyond the wedge sides (𝑟 > �̃�𝑤) add

some non-physical effects when the interface is too close to the end of the wedge. This can be

seen in the temperature heat map in Figure B-10a, where the contour lines for 𝑟 > 𝐿𝑤 := 2

bend around the artificial extension of the wedge sides. This bending of the temperature

contour lines inevitably causes a larger evaporative flux when the liquid-vapor interface gets

too close to the top of the wedge. To avoid this problem, we keep the ratio 𝑎/𝐿𝑤 below

0.7. The second limitation arises because the contact angle must be 90𝑜 for the Parity Split

Method to be applicable. Small corrections to this value would seem possible by the use of

perturbation techniques. We are keen on exploring such perturbations.
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Chapter 4

Preliminary Results on the

Biharmonic Equation

4.1 Stokes Equations with Internal Boundary Boundary Con-

ditions: Challenges and Opportunities

4.1.1 The Stokes Equation

The Stokes equations govern fluid flow when inertial forces can be neglected, so that the

motion occurs as the balance between pressure, viscous, and body forces. Small-scale devices

almost always operate in the Stokes flow regime, which is characterized by a small Reynolds

number, 𝑅𝑒 ≪ 1, where: 𝑅𝑒 = 𝜌0 𝑈 𝐿/𝜈0, 𝜌0 is a typical density, 𝑈 is a typical flow speed, 𝐿

is a typical length scale, and 𝜈0 is a typical dynamic viscosity. The (dimensionless, constant

density) Stokes flow equations, in the absence of body forces, are

∇𝑝 = 𝜈Δ�⃗� and ∇ · �⃗� = 0, (4.1)

where 𝜈 = 𝜈/𝜈0 is the dynamic viscosity, 𝑝 is the pressure, and �⃗� is the flow velocity —

all adimensional quantities. Note: because we will consider more than one fluid, we cannot

use “the density” or “the viscosity” to produce adimensional quantities. Thus the equations

above are valid in each fluid, with appropriate jump conditions across the interfaces — e.g.:

continuity of the normal velocity and matching of stresses.
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4.1.2 Axi-symmetric and 2D Stokes: Stream function Formulation

The Stokes equations allow 3D axi-symmetric solutions, which can written in terms of a

stream function that satisfies a 2𝐷 problem. Using spherical coordinates † (𝑟, 𝜃, 𝜑), these

solutions (on any simply connected domain) can be written in the form

�⃗� = ∇×
(︁
Ψ(𝑟, 𝜃)𝜑

)︁
, (4.2)

where 𝜑 denotes † the azimuthal unit vector, Ψ satisfies 𝐸2Ψ(𝑟, 𝜃) = 0, (4.3)

and 𝐸 is the operator 𝐸 𝑓 = Δ𝑓 − 1
𝑟2 sin2 𝜃

𝑓 . Here Δ is

the Laplacian restricted to functions of (𝑟, 𝜃), that is: Δ 𝑓 = 1
𝑟2
(𝑟2𝑓𝑟)𝑟 +

1
𝑟2 sin 𝜃

(sin 𝜃 𝑓𝜃)𝜃.

Note: (4.3) is equivalent to stating that Φ = Ψ cos(𝜑+ 𝜑0)

satisfies the 3D biharmonic equation Δ2Φ = 0, (4.4)

for any constant 𝜑0.

†Note: in spherical coordinates: 0 ≤ 𝑟 is the radial distance, 0 ≤ 𝜃 ≤ 𝜋 is the polar angle,

and 0 ≤ 𝜑 ≤ 2𝜋 is the azimuthal angle. In cartesian coordinates: 𝜑 = (− sin𝜑, cos𝜑, 0).

Similarly, the equations allow 2𝐷 solutions, where (in cartesian coordinates (𝑥, 𝑦, 𝑧))

the solution depends only on (𝑥, 𝑦), and 𝑢 · 𝑧 = 0 (𝑧 is the

unit vector along 𝑧-axis). Then 𝑢 = ∇× (Ψ(𝑥, 𝑦)𝑧), where Δ2𝜓 = 0, (4.5)

and Δ = 𝜕2𝑥 + 𝜕2𝑦 is the Laplacian in 2D. That is: 𝜓 satisfies

the biharmonic equation. Again: a simply connected domain is needed, so that the pressure

can be recovered by solving the first equation in (4.1), once the flow velocity is known.

4.1.3 Motivation: Dynamics of a Janus drop in an External Flow

As stated in section 1.3, the initial motivation for the work in this thesis was to produce

“simple” analytical solutions for the response of a Janus drop to an applied thermal gradient.

And our intention was to use, as the starting point for the analysis, the work by Shklyaev,

et. al [49, 8, 50, 9]. In particular, Dynamics of a Janus Drop in an External Flow [49].

Thus we studied this last paper with the aim of extending its approach to suit our purposes.

Unfortunately, we run into difficulties when trying to understand the method proposed in

[49]. The attempt to resolve these difficulties lead to the PSM.

For the purpose of completeness, next we summarize the results in [49], and document the

issues that worried us — some of which we have not yet managed to fully resolve/understand.
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In this paper, the authors consider a fixed shape spherical1 Janus drop in an external uniform

flow (𝑢 → 𝑢∞ = constant as 𝑟 → ∞); see Figure B-14. In adimensional variables: (i) the

drop has unit radius and it is centered at the origin; (ii) the dynamic viscosity is 𝜈1 in

the upper hemisphere (region Ω1), 𝜈2 in the lower hemisphere (region Ω2), and 𝜈0 = 1

in the surrounding liquid (region Ω0). Furthermore: at the interfaces the flow velocity is

continuous, with zero normal component, and the normal stresses match as well.

Here we summarize the axi-symmetric case only, when the drop’s axis is aligned with

the external flow: 𝑢∞ = −𝑈𝑧 (𝛽 = 0 in Figure B-14). Roughly the first half of [49] is

dedicated to this situation. Then the governing equations, which can be written using a

stream function formulation (4.2–4.3), are2

𝐸2Ψ = 0, in each region Ω𝑗 (𝑗 = 0, 1, 2), with b.c.: (4.6)

Ψ = 0, [𝜕𝑟Ψ] = [𝜈𝜕2𝑟Ψ] = 0, for 𝑟 = 1. (4.7)

Ψ = 0, [𝜕𝜃Ψ] = [𝜈𝜕2𝜃Ψ] = 0, for 𝜃 = 𝜋/2. (4.8)

Ψ ∼ −𝑟
2
sin 𝜃, for 𝑟 ≫ 1. (4.9)

Here, as usual, the brackets indicate the jumps in the enclosed quantities across an interface,

thus: [𝑓 ]|𝑟=1 = 𝑓𝑟=1+ − 𝑓𝑟=1− and [𝑓 ]|𝜃=𝜋/2 = 𝑓𝜃=(𝜋/2)+ − 𝑓𝜃=(𝜋/2)− .

Note 4.8. (Notation) Ψ is continuous, but not smooth, at the interfaces. Thus denote by

Ψ(𝑗) the solution in Ω𝑗 (then Ψ(𝑗) is smooth inside Ω𝑗). Further, define piece-wise constant

functions for 𝑟 ≤ 1 (𝜈, 𝜈#, and 𝜎) by: 𝜈 = 𝜈𝑝, 𝜈# = 𝜈3−𝑝, and 𝜎 = (−1)𝑝+1 in Ω𝑝 (𝑝 = 1, 2).

We can think of these as (step-functions) that depend on 𝜉 = cos 𝜃 only: 𝜎(𝜉) = sign(𝜉),

𝜈(𝜉) = 𝜈2 + (𝜈1 − 𝜈2)𝐻(𝜉) (𝐻 = Heaviside function), and 𝜈#(𝜉) = 𝜈(−𝜉). ♣

The authors in [49] propose that the solution to (4.6–4.9) can be written in the form

Ψ(0) =
∞∑︁
𝑛=1

𝐴𝑛𝑃
1
𝑛(𝜉)

𝑟𝑛+1
(1− 𝑟2) +

1

4

(︂
3− 1

𝑟2
− 2𝑟

)︂
sin 𝜃, (4.10)

Ψ(𝑝) = 𝜈#
∞∑︁
𝑛=1

(𝐵𝑛𝑇𝑛(𝜉) + 𝜎 𝐶𝑛𝑟𝑅𝑛(𝜉))𝑟
2𝑛+1 +

∞∑︁
𝑛=1

𝐷𝑛𝑃
1
2𝑛(𝜉)𝑟

2𝑛(1− 𝑟2). (4.11)

Here: 𝑝 = 1 or 𝑝 = 2, the (𝐴𝑛, 𝐵𝑛, 𝐷𝑛) are constants to be found, 𝑃 1
𝑛 is the 𝑛𝑡ℎ degree first

1Surface tension is large enough that deformations of the interfaces can be ignored.
2These correspond to Equations (9a–9d) in [49].
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order associated Legendre polynomial, 𝑄𝑛 = 𝜉𝑃 ′
𝑛 − 𝑛(𝑛+ 1)𝑃𝑛,

𝑇𝑛 =
𝑃 1
2𝑛+1(𝜉)

𝑃 1
2𝑛+1(0)

−
𝑃 1
2𝑛−1(𝜉)

𝑃 1
2𝑛−1(0)

, and 𝑅𝑛 =
𝑃 1
2𝑛+2(𝜉)

𝑄2𝑛+2(0)
− 𝑃 1

2𝑛(𝜉)

𝑄2𝑛(0)
. (4.12)

These expressions, substituted into (4.7), yield a system of infinite linear equations that

should determine the (𝐴𝑛, 𝐵𝑛, 𝐷𝑛). By construction

(4.10) satisfies (4.9). In addition: (4.11) satisfies, term-by-term, (4.8). (4.13)

Note 4.9. At this point we stop to ask a few questions.

Q1 While the modes used to expand the solution for 𝑟 > 1 (i.e.: Ψ(0)) are standard for the

Stokes equations, the modes in the expansion for 𝑟 < 1 are not. Clearly they satisfy

the problem for 𝑟 < 1, but: is this the result of some clever manipulation/trick that

works for this problem only, or is there some general principle at work here from which

these non-smooth modes follow?

Q2 Follow up on Q1: Are the modes in (4.11) linearly independent, and form a complete

set? Else, how can we be sure that the solution can be expanded as in (4.11)?

Q3 If the series defining Ψ(1) and Ψ(2) converge, then they converge everywhere for 𝑟 < 1.

This means that both Ψ(1) and Ψ(2) can be extended as smooth solutions to (4.3) over

the whole sphere 𝑟 < 1, beyond the boundary at 𝜃 = 𝜋/2. This is rather unusual for

elliptic problems. If true, there must be a reason for it, what is this reason?

Q4 We expect the solution to (4.6–4.9) to be singular at the triple point 𝑟 = 1, 𝜃 = 𝜋/2.

Thus, for 𝑟 = 1, the convergence rate for (4.10–4.11) must be quite poor. Hence

the calculation of important quantities is likely almost impossible to do accurately —

specially those requiring high order derivatives, like the drag.3 Hence, series conver-

gence acceleration is a “must”, but: is this possible without a-priori knowledge of the

coefficients (𝐴𝑛, 𝐵𝑛, 𝐷𝑛)?

Q5 Finally, we observe that the factor 𝜈# in (4.11) can also be written in the form 𝜈1 𝜈2

𝜈
.

This is significant to connect (4.11) with the theoretical development in §4.3.

We have been able to get answers to Q1-Q3, but (unfortunately) not for Q4. ♣

Note 4.10. Below we require the scalar products
⟨︀
𝑃 1
𝑘 , 𝑃

1
ℓ

⟩︀
𝐼
=
∫︀
𝐼 𝑃

1
𝑘 (𝜉)𝑃

1
ℓ (𝜉)𝑑𝜉,

where 𝐼 = [−1, 1], [−1, 0], or [0, 1]; and 𝑘, ℓ are
3Note that, a very important motivation for a calculation like this is to get quantities such as the drop

velocity when a force (e.g.: gravity) is applied. This requires computing the drag.
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natural numbers. For 𝐼 = [−1, 1]
⟨︀
𝑃 1
𝑘 , 𝑃

1
ℓ

⟩︀
[−1,1]

= 2(𝑙+1)𝑙
2𝑙+1 𝛿𝑘, ℓ,

by orthogonality of the associated Legendre polynomials.

For analytic expressions when 𝐼 = [0, 1] see Appendix C.

The case 𝐼 = [−1, 0] follows by symmetry. ♣

Next we substitute (4.10–4.11) into (4.7), to obtain equations for the (𝐴𝑛, 𝐵𝑛, 𝐷𝑛).

First. The condition Ψ(𝑝) ≡ 0 (𝑝 = 1, 2), at 𝑟 = 1 yields

0 = 𝜈#
∞∑︁
𝑛=1

(𝐵𝑛𝑇𝑛 + 𝜎 𝐶𝑛𝑅𝑛) for − 1 < 𝜉 < 1. (4.14)

We transform this functional equation into an equivalent discrete system system by project-

ing it on the orthogonal basis {𝑃 1
𝑘 }∞𝑘=1. This yields the equations:

0 =
𝑛∑︁

𝑛=1

𝐵𝑛

⟨
𝜈# 𝑇𝑛, 𝑃

1
𝑘

⟩
+ 𝐶𝑛

⟨
𝜈# 𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩
, for 𝑘 = 1, 2, 3, . . . , (4.15)

where ⟨𝑓, 𝑔⟩ =
∫︀ 1
−1 𝑓(𝜉) 𝑔(𝜉) 𝑑𝜉 is the standard inner product in [−1, 1].

Note 4.11. We have
⟨︀
𝜈# 𝑇𝑛, 𝑃

1
𝑘

⟩︀
= 𝜈1

⟨︀
𝑇𝑛, 𝑃

1
𝑘

⟩︀
[−1, 0]

+ 𝜈2
⟨︀
𝑇𝑛, 𝑃

1
𝑘

⟩︀
[0, 1]

,

and
⟨︀
𝜈# 𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩︀
= −𝜈1

⟨︀
𝑅𝑛, 𝑃

1
𝑘

⟩︀
[−1, 0]

+ 𝜈2
⟨︀
𝑅𝑛, 𝑃

1
𝑘

⟩︀
[0, 1]

.

Thus, using (4.12) and note 4.10, the coefficients in (4.15) can be computed explicitly. ♣

Finally, we write (4.15) in matrix form
[︁
Π(1) Π(2)

]︁⎡⎣�⃗�
�⃗�

⎤⎦ = 0, (4.16)

where: (i) �⃗� and �⃗� are the infinite vectors

with components 𝐵𝑛 and 𝐶𝑛, respectively; and (ii) Π(1) and Π(2) are the infinite matrices

with entries

{Π(1)}𝑘 𝑛 =
⟨
𝜈# 𝑇𝑛, 𝑃

1
𝑘

⟩
and {Π(2)}𝑘 𝑛 =

⟨
𝜈# 𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩
(4.17)

Second. To implement [𝜕𝑟Ψ]𝑟=1 = 0 follow the same procedure: (4.10–4.11) yield

− 2

∞∑︁
𝑛=1

𝐴𝑛 𝑃
1
𝑛 = 𝜈#

∞∑︁
𝑛=1

((2𝑛+ 1)𝐵𝑛 𝑇𝑛 + (2𝑛+ 2)𝐶𝑛 𝜎 𝑅𝑛)− 2

∞∑︁
𝑛=1

𝐷𝑛 𝑃
1
2𝑛, (4.18)

for −1 < 𝜉 < 1. Next project this equality onto the basis {𝑃 1
𝑘 }∞𝑘=1, and obtain:

−4 (𝑘 + 1) 𝑘

2 𝑘 + 1
𝐴𝑘 =

∞∑︁
𝑛=1

(︂
(2𝑛+ 1)

⟨︀
𝜈# 𝑇𝑛, 𝑃

1
𝑘

⟩︀
𝐵𝑛 + (2𝑛+ 2)

⟨︀
𝜈# 𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩︀
𝐶𝑛

− 4(𝑘 + 1) 𝑘

2 𝑘 + 1
𝛿𝑘, 2𝑛𝐷𝑛

)︂
, for 𝑘 = 1, 2, 3, . . .
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In matrix form this is (4.19), where:

(i) �⃗� = {𝐷𝑛} and �⃗� = {𝐴𝑛} are infinite

vectors; and (ii) Λ(1) through Λ(4) are

[︁
Λ(1) Λ(2) Λ(3) Λ(4)

]︁
⎡⎢⎢⎢⎢⎢⎢⎣
�⃗�

�⃗�

�⃗�

�⃗�

⎤⎥⎥⎥⎥⎥⎥⎦ = 0,
(4.19)

the infinite matrices with entries

Λ
(1)
𝑘 𝑛 = (2𝑛+ 1)

⟨︀
𝜈# 𝑇𝑛, 𝑃

1
𝑘

⟩︀
, Λ

(2)
𝑘 𝑛 = (2𝑛+ 2)

⟨︀
𝜈# 𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩︀
,

Λ
(3)
𝑘 𝑛 = −4(𝑘+1) 𝑘

2 𝑘+1 𝛿𝑘, 2𝑛, and Λ
(4)
𝑘 𝑛 = +4(𝑘+1) 𝑘

2 𝑘+1 𝛿𝑘, 𝑛.

⎫⎬⎭ (4.20)

Third. Next we implement the condition [𝜈 𝜕2𝑟Ψ]𝑟=1 = 0. From (4.10–4.11) we obtain:

−3

2
sin 𝜃 +

∞∑︁
𝑛=1

𝐴𝑛 (4𝑛+ 2)𝑃 1
𝑛 = 𝜈1 𝜈2

∞∑︁
𝑛=1

(︁
(4𝑛2 + 2𝑛)𝐵𝑛 𝑇𝑛 + (4𝑛2 + 6𝑛+ 2)𝐶𝑛 𝜎 𝑅𝑛)

)︁
−𝜈

∞∑︁
𝑛=1

(8𝑛+ 2)𝐷𝑛 𝑃
1
2𝑛.

(4.21)

Again, we project this equality onto the basis {𝑃 1
𝑘 }∞𝑘=1, and obtain:

−3

2

⟨√︀
1− 𝜉2, 𝑃 1

𝑘

⟩
+ 4 (𝑘 + 1) 𝑘 𝐴𝑘 = 𝜈1𝜈2

∞∑︁
𝑛=1

(4𝑛2 + 2𝑛)
⟨︀
𝑇𝑛, 𝑃

1
𝑘

⟩︀
𝐵𝑛 +

𝜈1𝜈2

∞∑︁
𝑛=1

(4𝑛2 + 6𝑛+ 2)
⟨︀
𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩︀
𝐶𝑛 −

∞∑︁
𝑛=1

(8𝑛+ 2)
⟨︀
𝜈 𝑃 1

2𝑛, 𝑃
1
𝑘

⟩︀
𝐷𝑛,

(4.22)

for 𝑘 = 1, 2, 3, . . . In matrix form this is

(4.23), where: Γ(𝑗) are the matrices with [︁
Γ(1) Γ(2) Γ(3) Γ(4)

]︁
⎡⎢⎢⎢⎢⎢⎢⎣
�⃗�

�⃗�

�⃗�

�⃗�

⎤⎥⎥⎥⎥⎥⎥⎦ = �⃗� , (4.23)

the entries in (4.24), and �⃗� is the vector

with entries 𝑉𝑘 = −3
2

⟨√︀
1− 𝜉2, 𝑃𝑘

⟩
.

Γ
(1)
𝑘 𝑛 = 𝜈1 𝜈2 (4𝑛

2 + 2𝑛)
⟨︀
𝑇𝑛, 𝑃

1
𝑘

⟩︀
, Γ

(2)
𝑘 𝑛 = 𝜈1 𝜈2 (4𝑛

2 + 6𝑛+ 2)
⟨︀
𝜎 𝑅𝑛, 𝑃

1
𝑘

⟩︀
,

Γ
(3)
𝑘 𝑛 = −(8𝑛+ 2)

⟨︀
𝜈 𝑃 1

2𝑛, 𝑃
1
𝑘

⟩︀
, Γ

(4)
𝑘 𝑛 = −4 (𝑘 + 1) 𝑘 𝛿𝑘, 𝑛.

⎫⎬⎭ (4.24)

Fourth. Finally, combine (4.16), (4.19), and (4.23), to obtain 𝑀�⃗� = �⃗�. (4.25)

Here 𝑀 =

⎡⎣Π(1) Π(2) 0

Θ(1) Θ(2) Θ(3)

⎤⎦ , �⃗� =

⎡⎢⎢⎢⎣
�⃗�

�⃗�

�⃗�

⎤⎥⎥⎥⎦ , �⃗� =

⎡⎣ 0

𝒟 �⃗�

⎤⎦ , Θ(𝑗) = 𝒟 Γ(𝑗) + Λ(𝑗), (4.26)

and 𝒟 = diag
(︁

1
2 𝑘+1

)︁
— a diagonal matrix. Note: Λ(4) and Γ(4) are diagonal, and Θ(4) = 0.

Thus �⃗� drops out from these equations. Once �⃗�, �⃗�, and �⃗� are obtained from (4.25–4.26),

�⃗� follows from (4.19).
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Specifically, from Λ(4)�⃗� = −Λ(1)�⃗� − Λ(2)�⃗� − Λ(3)�⃗�. (4.27)

Easy to solve because Λ(4) is diagonal.

4.1.4 Solving the equations: reduction to a finite system

The system of equations in (4.25–4.27) is linear, discrete, and infinite. In order to actually

compute the solution (or a suitable approximation) we need to reduce it (by truncation or

other means) to a finite system. The crucial step is to reduce the infinite matrix 𝑀 in (4.26)

to finite size. The authors in [49] report that they reduced the matrix, for their calculations,

to one of size 5𝑁 × 5𝑁 — where 𝑁 is some (large) integer. But they do not explain how,

nor do they exhibit the reduced matrix. Hence we had to develop our own reduction, which

produced a matrix of size 4𝑁 ×3𝑁 . We have no way of knowing if our reduction is better or

worse than theirs — e.g.: in terms of the conditioning.4 However, note that our reduction is

over-determined (so we solve it in the least squares sense), while the reduction in [49] yields

a square matrix. Our reduction is explained below.

First: intuitive explanation. Let us go back to (4.10–4.11), and truncate the infinite series so

the resulting sums all have the same level of approximation (for 𝑟 = 1, since there is where

the jump conditions apply). This means that each of the sums must involve the same range

of 𝑃 1
𝑛 — or as close as possible: an exact match cannot be done. Thus keep: (i) the first 𝑁

for 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛; and (ii) the first 2𝑁 for 𝐴𝑛. Thus each of the truncated sums involves

𝑃 1
𝑛 with 𝑛 up to either 2𝑁 +1 or 2𝑁 . However, the jump conditions involve linear relations

between 𝑟 = 1−𝑑𝑟 (inside) and 𝑟 = 1+𝑑𝑟 (outside), and the inside “vectors” (�⃗�, �⃗�, �⃗�) are

now length 𝑁 , while the outside vector �⃗� is length 2𝑁 . Hence the jump conditions must

be written in terms of 2𝑁 ×𝑁 matrices. This leads to two sets of size 2𝑁 × 3𝑁 problems

when �⃗� is eliminated from the equations. That is, 𝑀 size 4𝑁 × 3𝑁 .

A more precise description relies on the scalar products
⟨︀
𝑃 1
𝑛 , 𝑃

1
𝑚

⟩︀
that appear in the con-

struction of (4.25–4.27). The idea is to truncate the various matrices by keeping only terms

where 𝑛 and 𝑚 are below some threshold. It is then easy to see that this produces reduced

sub-matrices Π(𝑗), Θ(𝑗), and Λ(𝑗) of size 2𝑁 ×𝑁 (for some positive integer cutoff 𝑁). This

then reduces the matrix 𝑀 to size 4𝑁 × 3𝑁 matrix.

Unfortunately, the condition number for the reduced matrix 𝑀 grows like ∼ 𝑁3 — see
4We wrote to the authors in [49], to request the details of the reduction, but they were not provided. We

also asked if their reduction exhibited too fast a growth of the condition number with 𝑁 (like ours does),
and we did not get an answer to this either.
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Figure B-15. This, coupled with the slow convergence of the series defining the solution (see

item Q4 in note 4.9), creates a serious problem: a fairly large 𝑁 is needed for accuracy,

which is hard to obtain because of the large condition number.5 The solutions also exhibit

a fairly strong Gibbs’ phenomenon, which makes the situation worse. For example: Figure

B-16 shows various aspects of the solution for 𝑁 = 200 (note that then the condition number

exceeds 107). In this figure: Panel (a) shows the streamlines in and near the drop; the picture

is visually similar to FIG. 4 of [49]. Panel (b) is intended to check how well the condition

Ψ1, 2 = 0 for 𝑟 = 1 is satisfied. While oscillations are clearly visible, their amplitude is small

𝑂(10−3). Panel (c) checks the condition [𝜕𝑟Ψ] = 0 for 𝑟 = 1 in (4.7). The errors here are

size ∼ 1.5, with fairly large oscillations everywhere. Finally, Panel (d) checks the condition

[𝜈 𝜕2𝑟Ψ] = 0 in (4.7). The situation is similar to that in panel (c) but the errors are 25 times

bigger.

The errors sizes mentioned above are in the 𝐿∞ norm, but it is easy to see from the

plots that the 𝐿1 and 𝐿2 errors are not small either. So, if this solution converges, it may

not be close to its actual value for 𝑁 ∼ 200. It also means that attempting to compute the

drag using it is pointless. This is a very unsatisfactory situation, which points to a general

lack of understanding of the Stokes equation with internal boundary conditions. We neither

understand how the internal solution in Equation (4.10) is obtained nor know how to deal

with the intractable growth of the condition number of the 𝑀 matrix in Equation (4.26).

In order to resolve these difficulties (as well as the other ones mentioned in note 4.9) in

the next few sections we examine a similar, but simpler, problem: a Stokes problem in 2𝐷,

involving a circle with an internal boundary.

4.2 General Results for the Biharmonic Equation

In this section, we present general properties of biharmonic functions, to lay the theoretical

framework needed for the construction of solutions to biharmonic problems with internal

interfaces in §4.3. We begin with a general description of the solutions to the 2D biharmonic

equation, using complex analysis, in §4.2.1. Then we introduce some properties of the

solutions near a hyper-plane in § 4.2.2 and 4.2.3.
5Not to mention the fact that the whole point of an analytic solution is, mostly, to obtain “simple” and

compact expressions that yield either intuition, or can be used as building blocks for more complicated
problems. Without this a full numerical simulation is likely preferable.
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4.2.1 Representation via Complex Analysis (2D)

As shown in §4.1.2, the 2D Stokes equation collapses into the biharmonic equation for the

stream function Ψ = Ψ(𝑥, 𝑦), Δ2Ψ = 0, where Δ = 𝜕2𝑥 + 𝜕2𝑦 is the Laplace operator — in

polar coordinates: Ψ = Ψ(𝑟, 𝜃) and Δ = 𝜕2𝑟 + 1
𝑟𝜕𝑟 +

1
𝑟2
𝜕2𝜃 . Below we use complex analysis

to represent biharmonic functions (solutions of the biharmonic equation) in 2D.

Theorem 4.2. Let Ψ be a biharmonic function

defined in a simply connected open set. Then Ψ = 𝑟2Ψ1 +Ψ2. (4.28)

where Ψ1 and Ψ2 are harmonic. Further, Ψ1 and

Ψ2 are unique up to transformations of the form † Ψ1 → Ψ1 +
1
𝑟2
𝐿 and Ψ2 → Ψ2 − 𝐿,

where 𝐿 is a linear function: 𝐿 = 𝑐1 𝑥+ 𝑐2 𝑦.

Equivalently, in terms of the complex variable

𝜁 = 𝑥+ 𝑖 𝑦 (and its conjugate 𝜁 = 𝑥− 𝑖 𝑦), Ψ = Real
(︀
𝜁 𝑓1(𝜁) + 𝑓2(𝜁)

)︀
. (4.29)

Here 𝑓1 and 𝑓2 are analytic functions, unique

up to transformations of the form † 𝑓1 → 𝑓1 + 𝑖 𝑎 𝜁 + 𝑐 and 𝑓2 → 𝑓2 − 𝑐 𝜁 + 𝑖 𝑏,

with constants: 𝑎 and 𝑏 real and 𝑐 = 𝑐1 + 𝑖 𝑐2

complex (𝑐1 and 𝑐2 are as above). Then Ψ1 = Real(𝑓1/𝜁) and Ψ2 = Real(𝑓2).

Note that if 𝜁 = 0 is in the domain, then the

complex constant 𝑐 is uniquely determined by the requirement 𝑓1(0) = 0.

† Transformation invariance. ♣

Proof. ΔΨ is harmonic. Thus ΔΨ = Real(ℎ(𝜁)), where ℎ is analytic (see #1). Let 𝑓1(𝜁)

be the analytic function defined by 𝑓 ′1 = ℎ (see #2). Then Ψ − Real(𝜁 𝑓1(𝜁)) is harmonic.

Hence Ψ− Real(𝜁 𝑓1(𝜁)) = Real(𝑓2(𝜁)), where 𝑓2 is analytic (see #3). This proves (4.29).

#1 Note that ℎ is unique up to the transformations: ℎ→ ℎ+ 𝑖 𝑎, with 𝑎 a real constant.

#2 Clearly 𝑓1 is unique up to the transformations: 𝑓1 → 𝑓1 + 𝑖 𝑎 𝜁 + 𝑐, with 𝑐 a complex constant.

#3 Clearly 𝑓2 is unique up to the transformations: 𝑓2 → 𝑓2 − 𝑐 𝜁 + 𝑖 𝑏, with 𝑏 a real constant.

Finally, (4.28) follows from Ψ1 = Real(𝑓1/𝜁) and Ψ2 = Real(𝑓2).

What happens if the domain in theorem 4.2 is not simply connected? (4.30)

In this case the Ψ𝑗 (and 𝑓𝑗) can be multiple valued: following them along a closed

loop may return them not to the original value, but one that differs by a transformation

invariance, as the following example shows:

Take 𝑓1 = (𝑎1 𝜁 + 𝑎2) log 𝜁 and 𝑓2 = 𝑎2 𝜁 log 𝜁, with the 𝑎𝑗 real constants. This leads to
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the (single valued) biharmonic function (on 𝑟 > 1) Ψ = 𝑎1 𝑟
2 ln 𝑟 + 2 𝑎2 𝑥 ln 𝑟. However,

Ψ1 = 𝑎1 ln 𝑟 + 𝑎2 𝑟
−2(𝑥 ln 𝑟 + 𝑦 𝜃) and Ψ2 = 𝑎2 (𝑥 ln 𝑟 − 𝑦 𝜃) are multiple valued. ♣

Expansions for biharmonic functions in the unit disk. (4.31)

Let Ψ be a biharmonic function defined on the unit disk 𝑟 < 1. Then we can use (4.28–4.29)

to write
Ψ = 𝑟2

∞∑︁
𝑛=−∞

𝜓1,𝑛 𝑟
|𝑛| 𝑒𝑖 𝑛 𝜃 +

∞∑︁
𝑛=−∞

𝜓2,𝑛 𝑟
|𝑛|𝑒𝑖 𝑛 𝜃, (4.32)

for some expansion coefficients 𝜓1,𝑛 and 𝜓2,𝑛, with the series radius of convergency being at

least 1. In terms of sines and cosines this is

Ψ = 𝑎0 + 𝑟 (𝑎1 cos 𝜃 + 𝑏1 sin 𝜃) + 𝑟2 (𝑎2 cos(2𝜃) + 𝑏2 sin(2𝜃) + 𝑐2) +
∞∑︁
𝑛=3

𝑟𝑛
(︁
𝑎𝑛 cos(𝑛𝜃) + 𝑏𝑛 sin(𝑛𝜃) + 𝑐𝑛 cos((𝑛− 2)𝜃) + 𝑑𝑛 sin((𝑛− 2)𝜃)

)︁
, (4.33)

for constants 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, and 𝑑𝑛. Alternatively:

Ψ =

∞∑︁
𝑛=0

(︁
�̃�𝑛 + �̃�𝑛 𝑟

2
)︁
𝑟𝑛 cos(𝑛𝜃) +

∞∑︁
𝑛=0

(︁
𝑐𝑛 + 𝑑𝑛 𝑟

2
)︁
𝑟𝑛 sin(𝑛𝜃). (4.34)

for constants �̃�𝑛, �̃�𝑛, 𝑐𝑛, and 𝑑𝑛.

What happens in dimension 𝑑 > 2? (4.35)

It is easy to see, through direct calculation, that Ψ as defined by (4.28), is biharmonic if the

Ψ𝑗 are harmonic. This is true in any dimension.

We do not know if the the converse (biharmonic functions in simply connected open sets

can be written as in (4.28)) is true for 𝑑 > 2. However it can be shown that the converse is

valid on “radial sets”. The proof employs a variation of the technique used in §4.2.2.

Note. We define a radial set as the portion of a solid angle characterized by 𝑅1 < 𝑟 < 𝑅2,

where the 𝑅𝑗 are functions of the angle variables suc that 0 < 𝑅1 < 𝑟0 < 𝑅2, where 𝑟0 is a

constant. Thus every point in the set is connected, by a radial line, to a single point in the

sphere of radius 𝑟0.

4.2.2 Hyperplane based representation

Here we will prove a result analogous to that in theorem 4.2, but for a plane geometry

(instead of spherical).6 Here we no longer assume 2D.
6Note that, while the result in theorem 4.2 is well known, the one in theorem 4.3 is less known.
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Theorem 4.3. Let Ψ be a biharmonic function defined on

a region Ω with the properties listed below. Then Ψ = 𝑢+ 𝑧 𝑣, (4.36)

where 𝑢 and 𝑣 are harmonic functions. Conversely: any

function of the form in (4.3) is biharmonic. The properties of Ω are:

p1 Ω is associated with a hyperplane 𝒫. Without loss of generality label the Cartesian

coordinates as (𝑥1, ..., 𝑥𝑛, 𝑧) = (�⃗�, 𝑧), and assume that 𝒫 is the hyperplane 𝑧 = 0.

p2 Let ℛ be a region within 𝒫. Assume that the Poisson problem: Δ⊥𝑤 = 𝑓 in ℛ, has

solutions.7 Here Δ⊥ is the Laplace operator in terms of �⃗�, and 𝑓 = Δ(Ψ)𝑧|𝑧=0.

p3 Ω is the set of points such that �⃗� ∈ ℛ and 𝑍𝑑(�⃗�) < 𝑧 < 𝑍𝑢(�⃗�), where 𝑍𝑑 and 𝑍𝑢 are

“nice” functions such that 𝑍𝑑 ≤ 0 ≤ 𝑍𝑢 and 𝑍𝑑 < 𝑍𝑢. ♣

Figure B-20 shows an example region Ω.

Proof. If Ψ = 𝑢 + 𝑧 𝑣 then ΔΨ = Δ𝑢 + 𝑧Δ𝑣 + 2 𝑣𝑧. Hence, if 𝑢 and 𝑣 are harmonic, Ψ is

biharmonic (as then 𝑣𝑧 is also harmonic). Viceversa, let Ψ be biharmonic and suppose there

is a 𝑣 harmonic such that 2 𝑣𝑧 = ΔΨ. Then 𝑢 = Ψ− 𝑧 𝑣 is harmonic. Thus, to complete the

proof we need only show that 2 𝑣𝑧 = ΔΨ has an harmonic solution, given a biharmonic Ψ.

However, 2 𝑣𝑧 = ΔΨ is an ode along each line �⃗� = constant, and completely determines 𝑣

in Ω given 𝑣0 = 𝑣0(�⃗�) = 𝑣|𝑧=0 for �⃗� ∈ ℛ. Furthermore: 2 (Δ𝑣)𝑧 = 0. Thus 𝑣 is harmonic if

Δ𝑣 = 0 for 𝑧 = 0. But Δ𝑣 = 𝑣𝑧𝑧 +Δ⊥𝑣 = 1
2(ΔΨ)𝑧 +Δ⊥𝑣. Hence 𝑣 is harmonic if we select

𝑣0 to be a solution to the Poisson equation Δ⊥𝑣0 = −
(︀
1
2(ΔΨ)𝑧

)︀
|𝑧=0.

4.2.3 Continuation Across a Hyperplane

In §4.3, to solve a biharmonic problem with an internal interface, the solutions on each side

of the interface are extended to the other side. This must be justified: in general extending

elliptic functions outside their domain of definition is an ill-posed problem [46]. The results

below provide this justification.

Note: In both theorems below 𝑍𝑑 = 0. Hence the assumption in p2 of theorem 4.3 applies.

Theorem 4.4. Let Ψ be a biharmonic function defined

in Ω (Ω is as in theorem 4.3, with 𝑍𝑑 ≡ 0). Further Ψ|𝑧=0 = 𝜕𝑧Ψ|𝑧=0 = 0. (4.37)

Then Ψ can be extended as a biharmonic function to the

symmetrized region −𝑍𝑢(�⃗�) < 𝑧 < 𝑍𝑢(�⃗�). ♣
7This is only needed for the converse part of the theorem. An issue when (in p3) either 𝑍𝑑 = 0 or 𝑍𝑢 = 0,

because the boundary values of harmonic functions need not be nice.
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Theorem 4.5. Let Ψ be a biharmonic function defined

in Ω (Ω is as in theorem 4.3, with 𝑍𝑑 ≡ 0). Further Ψ|𝑧=0 = 𝜕2𝑧Ψ|𝑧=0 = 0. (4.38)

Then Ψ can be extended as an odd biharmonic function

to the symmetrized region −𝑍𝑢(�⃗�) < 𝑧 < 𝑍𝑢(�⃗�). ♣

Proof. From theorem 4.3 we can write Ψ = 𝑢+ 𝑧 𝑣.

Then, when (4.37) applies it follows that: 𝑢|𝑧=0 = 0 and (𝑢𝑧+𝑣)|𝑧=0 = 0. Now, since both 𝑢

and 𝑤1 = 𝑢𝑧+𝑣 are harmonic functions, they can be extended as odd harmonic functions to

|𝑧| < 𝑍𝑢(�⃗�). Thus Ψ = 𝑢+ 𝑧 (𝑤1 − 𝑢𝑧) is extended as a biharmonic function to |𝑧| < 𝑍𝑢(�⃗�).

Note also that Ψ𝑜 = 𝑢− 𝑧 𝑢𝑧 is odd part of the extension, while Ψ𝑒 = 𝑧 𝑤1 is even part.

On the other hand, when (4.38) applies 𝑢|𝑧=0 = 0 and (𝑢𝑧𝑧 +2 𝑣𝑧)|𝑧=0 = 0. Now, since both

𝑢 and 𝑤2 = 𝑢𝑧 +2 𝑣 are harmonic functions, they can be extended as harmonic functions to

|𝑧| < 𝑍𝑢(�⃗�) — with 𝑢 odd and 𝑤2 even. Thus Ψ = 𝑢+ 1
2 𝑧 (𝑤2 − 𝑢𝑧) is extended as an odd

biharmonic function to |𝑧| < 𝑍𝑢(�⃗�).

4.3 Biharmonic Equation with an Internal Interface: PSM

In this section we present an extension of the Parity Split Method (PSM) for the biharmonic

equation with an internal interface. Specifically we will consider a 2D “Janus cylinder”

problem, and show how the PSM developed earlier for the Laplace equation can be extended

to this problem. We point out that the extension has some drawbacks relative to the Laplace

case. For example: the boundary conditions cannot be split a-priori. Thus an explicit

solution is not possible, and we must resort to a semi-analytical approach involving the

solution of an infinite matrix system, with a condition number that grows too rapidly. On

the other hand, the approach resolves questions Q1-Q3 in note 4.9. Further work is needed

to resolve question Q4.

Important note: While the presentation here is for the 2D case, the results in §4.3.1 have

a straightforward generalization to a sphere in any number of dimensions.

4.3.1 The mathematical problem to be solved, and main results

We consider the biharmonic equation in the unit circle, with interface along a diameter.

Thus, in cartesian 8 (𝑥, 𝑧) and polar coordinates (𝑥 = 𝑟 cos 𝜃 and 𝑧 = 𝑟 sin 𝜃, the main
8We use (𝑥, 𝑧), instead of (𝑥, 𝑦), to be consistent with the notation in §4.2.
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domain is: Ω = disk 𝑟 < 1. The subdomains are: Ω1 = upper half disk (𝑟 < 1 and 𝑧 > 0)

and Ω2 = lower half disk (𝑟 < 1 and 𝑧 < 0), with interface along 𝑧 = 0. The problem to be

solved is then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ2Ψ = 0 for 𝑟 < 1 and 𝑧 ̸= 0,

Ψ = [𝜕𝑧Ψ] = [𝜈𝜕2𝑧Ψ] = 0 on 𝑧 = 0,

Ψ = 𝑓 and Ψ𝑟 = 𝑔 on 𝑟 = 1,

(4.39)

where: (i) As usual [𝑤] = 𝑤|𝑧=0+ − 𝑤|𝑧=0− indicates the jump across the interface of the

enclosed quantity; (ii) 𝜈 = 𝜈(𝑥, 𝑧) is defined by 𝜈 = 𝜈𝑗 in Ω𝑗 , where the 𝜈𝑗 are positive

constants. (iii) 𝑓 = 𝑓(𝜃) and 𝑔 = 𝑔(𝜃) are given functions. This problem is a 2D version

(the “Janus cylinder”) of the one in (4.8), were we eliminate the “outside” region, and replace

it by boundary conditions at 𝑟 = 1 (prescribing the flow velocity there). This allows us to

concentrate exclusively on how to deal with the internal interface.

Note 4.12. Our aim is that of methods to obtain explicit solutions. Thus, to avoid being

embroiled in mathematical subtleties, we assume that: 𝑓 and 𝑔 in (4.39) are such that:

(a) The solutions exist and are unique.

(b) The limits at the interface, from each side, of the solution and its derivatives (up to

third order) are nice and well defined9 for |𝑥| < 1. ♣

The main results of this section are the following two theorems

Theorem 4.6. (First parity split).

The solution to (4.39) can be written in the form Ψ = Ψ1 +
1

𝜈
Ψ2, (4.40)

where:

(1) Ψ1 is odd and Ψ2 is even (relative to 𝑧).

(2) Ψ1 is the solution to Δ2Ψ1 = 0, (4.41)

with Ψ1 = 𝑓1 and 𝜕𝑟Ψ1 = 𝑔1 at 𝑟 = 1.

(3) Ψ2 is the solution to Δ2Ψ2 = 0, (4.42)

with Ψ2 = 𝑓2 and 𝜕𝑟Ψ2 = 𝑔2 at 𝑟 = 1,

and interface conditions at 𝑧 = 0 Ψ2 = 𝜕𝑧Ψ2 = [𝜕2𝑧Ψ2] = 0.

(4) 𝑓1 = 𝒪 𝑓 , 𝑔1 = 𝒪 𝑔, 𝑓2 = ℰ 𝑓 , and 𝑔2 = ℰ 𝑔, (4.43)

where 𝒪 and ℰ are defined below.
9 In general we expect singularities at 𝑥 = ±1.
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(5) The transformation (Ψ1 odd, Ψ2 even) −→ Ψ = Ψ1 +
1
𝜈 Ψ2 in (4.40) is a bijection, with

inverse

Ψ1 =
1

𝜅

(︂
1

𝜈#
Ψ− 1

𝜈
Ψ#

)︂
= 𝒪Ψ and Ψ2 =

1

𝜅

(︁
Ψ+Ψ#

)︁
= ℰΨ (4.44)

where 𝜅 = 1/𝜈1 + 1/𝜈2, and we use # to indicate the reflection across 𝑧 = 0 of a

function: 𝐺#(𝑥, 𝑧) = 𝐺(𝑥, −𝑧). This is consistent with 𝜈# defined in note 4.8. ♣

The key point to notice here is that there is no interface in the problem for Ψ1. Hence it

can be solved by “standard” methods, e.g.: using (4.31). The interface conditions for Ψ2 have

been simplified, but not removed (this is done in the next theorem). In addition:

(a) 𝑓1 and 𝑔1 are odd (guarantees odd solution to (4.41)),

(b) 𝑓2 and 𝑔2 are even (guarantees even solution to (4.42)),

(c) The PSM here is similar to that in §2.2, with the even and odd roles reversed.

The proof for this theorem follows after the statement of the next theorem.

Note that the jump conditions for Ψ2 guarantee that Ψ2 is 𝐶2 across the interface, but 𝜕3𝑧Ψ2

may not be continuous. Hence a further split is needed:

Theorem 4.7. (Second parity split). The even biharmonic, Ψ2, in the first parity split

of theorem 4.6, can be written in the form

Ψ2 = Ψ2,𝑒 + 𝜎Ψ2,𝑜, (4.45)

where: (i) 𝜎 = sign(𝑧); (ii) Ψ2,𝑒 and Ψ2,𝑜 are biharmonic functions in Ω (no interface);

(iii) Ψ2,𝑒 is even (relative to 𝑧) and Ψ2,𝑒|𝑧=0 = 0; (iv) Ψ2,𝑜 is odd (relative to 𝑧) and

𝜕𝑧Ψ2,𝑜|𝑧=0 = 0; (v) Ψ2,𝑒 and Ψ2,𝑜 are uniquely determined by Ψ2. (vi) Any function of the

form (4.45) satisfies the interface jump conditions for Ψ2 in (4.42). ♣

This second split finally removes, completely, the interface from the solution of (4.39), and

expresses the solution as a linear combination of four biharmonic functions defined in the

whole domain Ω — this addresses the “puzzle” in Q3 of note 4.9.

Important point. (4.46)

Unfortunately, the proof of the existence of (4.45) is not constructive. In particular, it does

not provide boundary values that can be used to solve for Ψ2,𝑒 and Ψ2,𝑜. It seems that the

boundary values for Ψ2,𝑒 and Ψ2,𝑜 depend “globaly” on 𝑓2 and 𝑔2 (there is no analogue to

(4.43)), and cannot be obtained independently of, essentially, solving the whole problem.

The proof of this second theorem is after the proof of the first theorem right below.
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Proof of the first parity split.

First we show that if Ψ1 and Ψ2 satisfy (4.40–4.41), then Ψ in (4.40) satisfies (4.39):

(i) Statement (5) is trivial. Thus 𝑓 = 𝑓1 +
1

𝜈
𝑓2 and 𝑔 = 𝑔1 +

1

𝜈
𝑔2, (4.47)

from which the boundary conditions at

𝑟 = 1 for (4.39) follow. (ii) Because Ψ1 is odd (and smooth) it trivially satisfies the interface

jump conditions for (4.39). (iii) The interface jump conditions for Ψ2 are such that 1
𝜈Ψ2

satisfies the interface jump conditions for (4.39). (iv) Finally, because 𝜈 is constant in each

Ω𝑗 , and the Ψ𝑗 are biharmonic there, Ψ is biharmonic in each Ω𝑗 . QED

Next we show that, if Ψ satisfies (4.39), then it can be written as in (4.40).

(v) The Ψ𝑗 are given by (4.44). Thus they satisfy the boundary data in (4.43). Further:

they are also bi-harmonic because 𝜈 and 𝜈# are constant on the Ω𝑗 . (vi) Using (4.44) and

the interface jump conditions in (4.39), a direct check shows that (on 𝑧 = 0) Ψ1 = 𝜕2𝑧Ψ1 = 0

and Ψ2 = 𝜕𝑧Ψ2 = [𝜕2𝑧Ψ2] = 0. (vii) Finally, theorem 4.5 shows that Ψ1 (as defined in Ω1)

can be extended to an odd biharmonic function in Ω (no interface). But Ψ1 is odd, so it

must be its own extension. QED

Proof of the second parity split.

We begin by introducing a bit of notation, to emphasize the fact that Ψ2 is actually two

biharmonic functions (one for each subdomain, Ω1 and Ω2) linked through the interface

jump conditions
Ψ2 = Ψ+

2 for 𝑧 > 0 and Ψ2 = Ψ−
2 for 𝑧 < 0. (4.48)

Because of the interface jump conditions for Ψ2 in (4.42), Ψ±
2 = 𝜕𝑧Ψ

±
2 = 0 on 𝑧 = 0. Thus

theorem 4.4 allows us to extend these functions to the whole of Ω, as biharmonic functions.

Further, because Ψ2 is even, Ψ+
2 (𝑥, 𝑧) = Ψ2(𝑥, 𝑧) = Ψ2(𝑥, −𝑧) = Ψ−

2 (𝑥, −𝑧) for 𝑧 > 0, and

the extensions satisfy Ψ+
2 (𝑥, 𝑧) = Ψ−

2 (𝑥, −𝑧), (4.49)

for all 𝑧. Further

Ψ2 =

⎧⎪⎨⎪⎩
1
2

(︀
Ψ+

2 +Ψ−
2

)︀
+ 1

2

(︀
Ψ+

2 −Ψ−
2

)︀
= Ψ2,𝑒 +Ψ2,𝑜 for 𝑧 > 0,

1
2

(︀
Ψ+

2 +Ψ−
2

)︀
− 1

2

(︀
Ψ+

2 −Ψ−
2

)︀
= Ψ2,𝑒 −Ψ2,𝑜 for 𝑧 < 0,

(4.50)

where Ψ2,𝑒 and Ψ2,𝑜 are defined by the formulas. However, from (4.49), Ψ−
2 = (Ψ+

2 )
#.

Hence Ψ2,𝑒 and Ψ2,𝑜 are even and odd, respectively. It is also easy to check that Ψ2,𝑒|𝑧=0 =

𝜕𝑧Ψ2,𝑜|𝑧=0 = 0. Thus (4.50) is (4.45).

Uniqueness: Assume now that Ψ2 = Ψ̃2,𝑒 + 𝜎Ψ̃2,𝑜 for some other even-odd pair Ψ̃2,𝑒 and
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Ψ̃2,𝑜. Then, for 𝑧 > 0, Ψ+
2 = Ψ̃2,𝑒 + Ψ̃2,𝑜, from which it follows that Ψ+

2 = Ψ̃2,𝑒 + Ψ̃2,𝑜

everywhere. Similarly Ψ−
2 = Ψ̃2,𝑒 − Ψ̃2,𝑜. Thus (4.50) yields Ψ2,𝑒 = Ψ̃2,𝑒 and Ψ2,𝑜 = Ψ̃2,𝑜

Finally, a straightforward calculation shows that if Ψ2 can be written as in (4.45), then

Ψ2 = 𝜕𝑧Ψ2 = [𝜕2𝑧Ψ2] = 0. QED

4.3.2 Solving the Odd Subproblem: a Well Conditioned Problem

First we can write Ψ1 using the odd basis functions of the form in Equation (4.34). Since

the sines are odd, we will set �̃�𝑛 = �̃�𝑛 = 0

Ψ1 =

∞∑︁
𝑛=1

(︁
𝑐𝑛 + 𝑑𝑛𝑟

2
)︁
𝑟𝑛 sin(𝑛𝜃) (4.51)

Note that Equation (4.51) already satisfies all conditions at 𝑧 = 0 of Equation (4.41).

Satisfying the conditions at 𝑟 = 1 would result in the following

𝑓1 =

∞∑︁
𝑛=1

(︁
𝑐𝑛 + 𝑑𝑛

)︁
sin(𝑛𝜃) (4.52)

𝑔1 =
∞∑︁
𝑛=1

(︁
𝑛𝑐𝑛 + (𝑛+ 2)𝑑𝑛

)︁
sin(𝑛𝜃) (4.53)

which, upon taking the inner product with respect to sin(𝑘𝜃) over [0, 2𝜋], for 𝑘 = 1, 2, 3, ...,

result in the standard Fourier series problem

⟨𝑓1, sin 𝑘𝜃⟩[0,2𝜋] =
∞∑︁
𝑛=1

(︁
𝑐𝑛 + 𝑑𝑛

)︁
⟨sin(𝑛𝜃), sin(𝑘𝜃)⟩[0,2𝜋] (4.54)

⟨𝑔1, sin 𝑘𝜃⟩[0,2𝜋] =
∞∑︁
𝑛=1

(︁
𝑛𝑐𝑛 + (𝑛+ 2)𝑑𝑛

)︁
⟨sin(𝑘𝜃), sin(𝑛𝜃)⟩[0,2𝜋] (4.55)

where 𝑓1 and 𝑔1 are defined in (4.43). But since ⟨sin(𝑘𝜃), sin(𝑛𝜃)⟩[0,2𝜋] = 𝜋𝛿𝑘𝑛, we can

conclude that

𝑐𝑘 + 𝑑𝑘 =
1

𝜋
⟨𝑓1, sin 𝑘𝜃⟩[0,2𝜋] (4.56)

𝑘𝑐𝑘 + (𝑘 + 2)𝑑𝑘 =
1

𝜋
⟨𝑔1, sin 𝑘𝜃⟩[0,2𝜋] (4.57)
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which means that

𝑑𝑘 =
1

2𝜋

(︁
⟨𝑔1, sin 𝑘𝜃⟩[0,2𝜋] − 𝑘 ⟨𝑓1, sin 𝑘𝜃⟩[0,2𝜋]

)︁
(4.58)

𝑐𝑘 =
1

𝜋
⟨𝑓1, sin 𝑘𝜃⟩[0,2𝜋] − 𝑑𝑘 (4.59)

4.3.3 Solving the Even Subproblem: an Ill Conditioned Problem

We now write down the expressions of Ψ2 in terms of Ψ2,𝑒 and Ψ2,𝑜 using the corre-

sponding basis functions in Equation (4.33):

Ψ2,𝑒 =
∞∑︁
𝑛=1

𝑎𝑛𝑟
𝑛+1(cos((𝑛+ 1)𝜃)− cos((𝑛− 1)𝜃)) (4.60)

Ψ2,𝑜 =
∞∑︁
𝑛=2

𝑏𝑛𝑟
𝑛+1((𝑛− 1) sin((𝑛+ 1)𝜃)− (𝑛+ 1) sin((𝑛− 1)𝜃)) (4.61)

so that

Ψ2 = Ψ2,𝑒 + 𝜎Ψ2,𝑜 (4.62)

Note that in the second equation, the index starts at 𝑛 = 2 since the basis function is 0 for

𝑛 = 1. Also note that Ψ2 defined as such automatically satisfies the boundary conditions at

𝑧 = 0 of Equation (4.42).

Now to satisfy the boundary conditions at 𝑟 = 1, we again use the inner product and

the definitions of 𝑓2 and 𝑔2 in (4.43) to write

⟨Ψ2, cos 𝑘𝜃⟩[0,2𝜋] = ⟨𝑓2, cos 𝑘𝜃⟩[0,2𝜋] (4.63)

⟨Ψ2,𝑟, cos 𝑘𝜃⟩[0,2𝜋] = ⟨𝑔2, cos 𝑘𝜃⟩[0,2𝜋] (4.64)
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Which becomes

⟨𝑓2, cos 𝑘𝜃⟩[0,2𝜋] =
∞∑︁
𝑛=1

𝑎𝑛

(︁
⟨cos((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋] − ⟨cos((𝑛− 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

)︁
+

∞∑︁
𝑛=2

𝑏𝑛

(︁
(𝑛− 1) ⟨𝜎(𝑧) sin((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

)︁
+

∞∑︁
𝑛=2

𝑏𝑛

(︁
−(𝑛+ 1) ⟨𝜎(𝑧) sin((𝑛− 1)𝜃)), cos(𝑘𝜃)⟩[0,2𝜋]

)︁
=

∞∑︁
𝑛=1

𝑎𝑛𝐴
(1)
𝑘𝑛 +

∞∑︁
𝑛=2

𝑏𝑛𝐵
(1)
𝑘𝑛

(4.65)

and

⟨𝑔2, cos(𝑘𝜃)⟩ =
∞∑︁
𝑛=1

𝑎𝑛

(︁
(𝑛+ 1)(⟨cos((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋] − ⟨cos((𝑛− 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

)︁
+

∞∑︁
𝑛=2

𝑏𝑛

(︁
(𝑛+ 1)((𝑛− 1) ⟨𝜎(𝑧) sin((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

)︁
+

∞∑︁
𝑛=2

𝑏𝑛

(︁
−(𝑛+ 1) ⟨𝜎(𝑧) sin((𝑛− 1)𝜃)), cos(𝑘𝜃)⟩[0,2𝜋]

)︁
=

∞∑︁
𝑛=1

𝑎𝑛𝐴
(2)
𝑘𝑛 +

∞∑︁
𝑛=2

𝑏𝑛𝐵
(2)
𝑘𝑛

(4.66)

Here 𝐴(1)
𝑘𝑛 , 𝐵

(1)
𝑘𝑛 , 𝐴

(2)
𝑘𝑛 , 𝐵

(2)
𝑘𝑛 are infinite matrices defined as

𝐴
(1)
𝑘𝑛 = ⟨cos((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋] − ⟨cos((𝑛− 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋] (4.67)

𝐵
(1)
𝑘𝑛 = (𝑛− 1) ⟨𝜎(𝑧) sin((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

− (𝑛+ 1) ⟨𝜎(𝑧) sin((𝑛− 1)𝜃)), cos(𝑘𝜃)⟩[0,2𝜋]
(4.68)

𝐴
(2)
𝑘𝑛 = (𝑛+ 1)(⟨cos((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

− (𝑛+ 1) ⟨cos((𝑛− 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]
(4.69)

𝐵
(2)
𝑘𝑛 = (𝑛+ 1)((𝑛− 1) ⟨𝜎(𝑧) sin((𝑛+ 1)𝜃), cos(𝑘𝜃)⟩[0,2𝜋]

− (𝑛+ 1) ⟨𝜎(𝑧) sin((𝑛− 1)𝜃)), cos(𝑘𝜃)⟩[0,2𝜋]
(4.70)

Here we remark that for any integer 𝑘, ⟨𝜎(𝑧) sin(𝑚𝜃)), cos(𝑘𝜃)⟩[0,2𝜋] can be evaluated as
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follows.

⟨𝜎(𝑧) sin(𝑚𝜃)), cos(𝑘𝜃)⟩[0,2𝜋] =
∫︁ 𝜋

0
sin(𝑚𝜃) cos(𝑘𝜃)𝑑𝜃 −

∫︁ 2𝜋

𝜋
sin(𝑚𝜃) cos(𝑘𝜃)𝑑𝜃 (4.71)

= 2

∫︁ 𝜋

0
sin(𝑚𝜃) cos(𝑘𝜃)𝑑𝜃 (4.72)

= 𝜋𝜒𝑚𝑘 (4.73)

where 𝜒𝑚𝑘 = 2
𝜋

∫︀ 𝜋
0 sin(𝑚𝜃) cos(𝑘𝜃)𝑑𝜃 was first defined in Equation (3.178) and is now rewrit-

ten here as

𝜒𝑚𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, 𝑘 +𝑚 is even

1/𝑚, 𝑚 is odd and 𝑘 = 0

2𝑚/(𝑚2 − 𝑘2), 𝑘 +𝑚 is odd and 𝑚 ̸= 0

(4.74)

Lastly, we decide on the cutoff as by presetting a natural number 𝑁 such that

⟨𝑓2, cos 𝑘𝜃⟩[0,2𝜋] =
𝑁∑︁

𝑛=1

𝑎𝑛𝐴
(1)
𝑘𝑛 +

𝑁+1∑︁
𝑛=2

𝑏𝑛𝐵
(1)
𝑘𝑛 (4.75)

⟨𝑔2, cos(𝑘𝜃)⟩[0,2𝜋] =
𝑁∑︁

𝑛=1

𝑎𝑛𝐴
(2)
𝑘𝑛 +

𝑁+1∑︁
𝑛=2

𝑏𝑛𝐵
(2)
𝑘𝑛 (4.76)

and that 0 ≤ 𝑘 ≤ 𝑁 − 1. We form the following three matrices

𝐴 =

⎡⎣𝐴(1)

𝐴(2)

⎤⎦ , 𝐵 =

⎡⎣𝐵(1)

𝐵(2)

⎤⎦ , 𝐶 =
[︁
𝐴 𝐵

]︁
(4.77)

Note that

𝐴 ∈ R𝑁×𝑁 , 𝐵 ∈ R𝑁×𝑁 , 𝐶 ∈ R2𝑁×2𝑁 (4.78)

In this way, we can obtain the coefficients 𝑎𝑛 and 𝑏𝑛 via the following linear system

𝐶�⃗� = 𝐹 (4.79)
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where

�⃗� = [𝑎1, 𝑎2, ...𝑎𝑁 , 𝑏2, 𝑏3, ..., 𝑏𝑁+1]
𝑇 (4.80)

𝐹 =

[︂{︁
⟨𝑓2, cos 𝑘𝜃⟩[0,2𝜋]

}︁𝑁

𝑘=1
,
{︁
⟨𝑔2, cos 𝑘𝜃⟩[0,2𝜋]

}︁𝑁+1

𝑘=2

]︂𝑇
(4.81)

Now we check the condition number of 𝐶. We plot the condition number of the matrix

𝐶 vs. 𝑁 on a log-log scale in Figure B-17. As one can see, the condition number grows like

𝑂(𝑁4), rendering the system ill-conditioned. The reason for this seems to elude us.

4.4 Fixing the Condition Number: In Search of a “Natural

Basis”

Figure B-17 points to the fact that the ill-conditioned nature of the Stokes problem with

internal boundary exists not only in 3𝐷 but also in 2𝐷. We surmise that this is because

we are not using the most “natural” basis. As an analogy we know that
∑︀
𝑎𝑛𝑥

𝑛 is not the

most natural way to express 𝑓(𝑥), for |𝑥| < 1, due to the resulting ill-conditioned Hilbert

matrix. Instead, we must use 𝑃𝑛(𝑥), Legendre polynomials of order 𝑛, to expand 𝑓(𝑥) to

be well-conditioned. Similarly, the basis functions cos(𝑛𝜃) and ± sin(𝑛𝜃) may also not be

natural to the system. We must search for the equivalent of Legendre polynomials for the

even subproblem in Equation (4.42).

4.4.1 A Simplification: Biharmonic on Upper Unit Disk with Zero on

𝑧 = 0

Because of the reflection symmetry in the second parity split resulted from Theorem 4.4,

we can simplify the problem by just considering Ψ2 biharmonic in the upper unit disk with

Ψ2 = 𝜕𝑧Ψ2 = 0 along 𝑧 = 0. As before, the solution would be Ψ2 = Ψ2,𝑒 +Ψ2,𝑜, where Ψ2,𝑒

and Ψ2,𝑜 are shown in Equation (4.60), and upon reindexing, can be written as

Ψ2,𝑒 =
∞∑︁
𝑛=1

𝑎𝑛𝑟
𝑛+1(cos((𝑛+ 1)𝜃)− cos((𝑛− 1)𝜃) (4.82)

Ψ2,𝑜 =

∞∑︁
𝑛=1

𝑏𝑛𝑟
𝑛+1((𝑛− 1) sin((𝑛+ 1)𝜃)− (𝑛+ 1) sin((𝑛− 1)𝜃)) (4.83)
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4.4.2 The Candidate Basis: 𝐶𝑛 and 𝑆𝑛

We now introduce two new basis functions {𝐶𝑛}∞𝑛=1 and {𝑆𝑛}∞𝑛=1 over the upper half unit

circle.

𝐶𝑛(𝜃) = cos((𝑛+ 1)𝜃)− cos((𝑛− 1)𝜃) (4.84)

𝑆𝑛(𝜃) = (𝑛− 1) sin((𝑛+ 1)𝜃)− (𝑛+ 1) sin((𝑛− 1)𝜃) (4.85)

Then Ψ2 can be written as

Ψ2 =
∞∑︁
𝑛=1

𝑟𝑛+1 (𝛼𝑛𝐶𝑛(𝜃) + 𝛽𝑛𝑆𝑛(𝜃)) (4.86)

We hypothesize 𝐶𝑛 and 𝑆𝑛 are the candidate natural basis functions for the system. But

first, we must prove that 𝐶𝑛 and 𝑆𝑛 are complete, orthogonal (with respect to 1/ sin2 𝜃)

basis functions in the vector space 𝐿2([0, 𝜋]) with vanishing value and first derivative value

at the end points 𝜃 = 0, 𝜋.

To see that 𝐶𝑛 is complete in the same 𝐿2 space, we let 𝑓 be a function with Fourier

cosine series such that

𝑓 =

∞∑︁
𝑛=0

𝑎𝑛 cos(𝑛𝜃) (4.87)

with
∑︀

|𝑎𝑛| < ∞ and
∑︀

𝑛 odd 𝑎𝑛 =
∑︀

𝑛 even 𝑎𝑛 = 0. This ensures that 𝑓(𝜃) = 𝑓 ′(𝜃) = 0 for

𝜃 = 0, 𝜋. Now we define coefficients 𝛼𝑛 such that

𝛼𝑛 = −
(𝑛−1)/2∑︁

𝑙=0

𝑎𝑛−2𝑙−1 (4.88)

This ensures that 𝑎𝑛 = 𝛼𝑛−1 − 𝛼𝑛+1 and that

𝑓 =
∞∑︁
𝑛=1

𝛼𝑛𝐶𝑛(𝜃) =
∞∑︁
𝑛=0

𝑎𝑛 cos(𝑛𝜃) (4.89)

In this way, 𝛼𝑛 → 0 as 𝑛→ ∞. Moreover, we observe that

𝑁∑︁
𝑛=1

𝛼𝑛𝐶𝑛 =
𝑁−1∑︁
𝑛=0

𝑎𝑛 cos(𝑛𝜃) + 𝛼𝑁−1 cos(𝑁𝜃) + 𝛼𝑁 cos((𝑁 + 1)𝜃) (4.90)
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As 𝑁 → ∞,
𝑁∑︀

𝑛=1
𝛼𝑛𝐶𝑛 → 𝑓 , uniformly.

Now to see that 𝐶𝑛 are orthogonal, we first observe that through the trig identity,

sin(𝑎) sin(𝑏) = 1
2(cos(𝑎− 𝑏)− cos(𝑎+ 𝑏)), we can rewrite 𝐶𝑛 as

𝐶𝑛(𝜃) = −2 sin 𝜃 sin(𝑛𝜃) (4.91)

and hence we can compute that for some integers 𝑘, 𝑛 > 1

∫︁ 𝜋

0
𝐶𝑛𝐶𝑘

𝑑𝜃

sin2 𝜃
= 2𝜋𝛿𝑘𝑛 (4.92)

whence we conclude that 𝐶𝑛 are orthogonal with respect to the weight factor 1
sin2 𝜃

.

Next we prove that 𝑆𝑛 form a complete orthogonal basis for the same 𝐿2 space. To do

that, we write formally that

∞∑︁
𝑛=1

𝑏𝑛 sin(𝑛𝜃) =

∞∑︁
𝑛=2

𝛽𝑛𝑆𝑛(𝜃) (4.93)

where we establish the connections between 𝑏𝑛 and 𝛽𝑛 as

𝑏𝑛 = (𝑛− 2)𝛽𝑛−1 − (𝑛+ 2)𝛽𝑛+1 (4.94)

𝛽𝑛 = −
(𝑛−2)/2∑︁

𝑙=0

𝑛− 2𝑙

𝑛2 − 1
𝑏𝑛−2𝑙−1 (4.95)

Then following the arguments as before, we can establish the uniform convergence of the

𝑆𝑛 series towards 𝑓 .

Now to see that 𝑆𝑛 are orthogonal with respect to the weight factor 1/ sin2 𝜃, we compute

∫︁ 𝜋

0
𝑆𝑛(𝜃)𝑆𝑘(𝜃)

𝑑𝜃

sin2 𝜃
(4.96)

To do so, we note that
(︁
sin(𝑛𝜃)
sin 𝜃

)︁′
= 𝑆𝑛(𝜃)

2 sin2 𝜃
and that 𝑆′

𝑛(𝜃) = (𝑛2 − 1)𝐶𝑛(𝜃). Hence we
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perform an integration by parts

∫︁ 𝜋

0
𝑆𝑛(𝜃)𝑆𝑘(𝜃)

𝑑𝜃

sin2 𝜃
=

∫︁ 𝜋

0

(︂
sin𝑛𝜃

sin 𝜃

)︂′
(2𝑆𝑘(𝜃))𝑑𝜃 (4.97)

=

∫︁ 𝜋

0

(︂
sin𝑛𝜃

sin 𝜃

)︂′
(2𝑆𝑘(𝜃))𝑑𝜃 (4.98)

=

(︂
sin𝑛𝜃

sin 𝜃

)︂
|𝜋𝜃=0 − 2

∫︁ 𝜋

0

sin𝑛𝜃

sin 𝜃

(︀
(𝑘2 − 1)𝐶𝑛(𝜃)

)︀
𝑑𝜃 (4.99)

The first term can be evaluated using L’Hopital’s rule to be zero, while the second term

can be calculated using Equation (4.91)

∫︁ 𝜋

0
𝑆𝑛(𝜃)𝑆𝑘(𝜃)

𝑑𝜃

sin2 𝜃
= 4

∫︁ 𝜋

0
sin(𝑛𝜃) sin(𝑘𝜃)(𝑘2 − 1) (4.100)

= 2𝜋(𝑘2 − 1)𝛿𝑛𝑘 (4.101)

Hence, we can take the inner product with respect to 1/ sin2 𝜃 to find the coefficients 𝛼𝑛

and 𝛽𝑛 in Equation (4.86) at 𝑟 = 1, which would look like

𝑓2(𝜃) =
∞∑︁
𝑛=1

(𝛼𝑛𝐶𝑛(𝜃) + 𝛽𝑛𝑆𝑛(𝜃)) (4.102)

𝑔2(𝜃) =

∞∑︁
𝑛=1

(𝑛+ 1) (𝛼𝑛𝐶𝑛(𝜃) + 𝛽𝑛𝑆𝑛(𝜃)) (4.103)

which, upon taking the inner product, becomes

∫︁ 𝜋

0
𝑓2(𝜃)𝐶𝑘(𝜃)

𝑑𝜃

sin2 𝜃
=

∞∑︁
𝑛=1

(︂
𝛼𝑛

∫︁ 𝜋

0
𝐶𝑛(𝜃)

𝑑𝜃

sin2 𝜃
+ 𝛽𝑛

∫︁ 𝜋

0
𝑆𝑛(𝜃)

𝑑𝜃

sin2 𝜃

)︂
(4.104)

∫︁ 𝜋

0
𝑔2(𝜃)𝐶𝑛(𝜃)

𝑑𝜃

sin2 𝜃
=

∞∑︁
𝑛=1

(𝑛+ 1)

(︂
𝛼𝑛

∫︁ 𝜋

0
𝐶𝑛(𝜃)

𝑑𝜃

sin2 𝜃
+ 𝛽𝑛

∫︁ 𝜋

0
𝑆𝑛(𝜃)

𝑑𝜃

sin2 𝜃

)︂
(4.105)
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Hence we now define infinite matrices 𝐶(1), 𝐷(1), 𝐶(2), 𝐷(2), 𝐸, such that

𝐶
(1)
𝑘𝑛 =

∫︁ 𝜋

0
𝐶𝑛𝐶𝑘

𝑑𝜃

sin2 𝜃
(4.106)

𝐷
(1)
𝑘𝑛 =

∫︁ 𝜋

0
𝑆𝑛𝐶𝑘

𝑑𝜃

sin2 𝜃
(4.107)

𝐶
(2)
𝑘𝑛 = (𝑛+ 1)

∫︁ 𝜋

0
𝐶𝑛𝐶𝑘

𝑑𝜃

sin2 𝜃
(4.108)

𝐷
(2)
𝑘𝑛 = (𝑛+ 1)

∫︁ 𝜋

0
𝑆𝑛𝐶𝑘

𝑑𝜃

sin2 𝜃
(4.109)

𝐸 =

⎡⎣𝐶(1) 𝐷(1)

𝐶(2) 𝐷(2)

⎤⎦ (4.110)

We will make each of the 𝐶(1), 𝐶(2), 𝐷(1), 𝐷(2) an 2𝑁 ×𝑁 matrix, rendering 𝐸 an 𝑁 × 2𝑁

matrix. Hence, we can recast Equation (4.102) and (4.103) into a matrix-vector equation

𝐸�⃗� = �⃗� (4.111)

where

�⃗� = [�⃗�, 𝛽]𝑇 = [𝛼1, ..., 𝛼𝑁 , 𝛽1, ..., 𝛽𝑁 ]𝑇 (4.112)

�⃗� =
[︁
�⃗�1, �⃗�2

]︁𝑇
(4.113)

=

[︂{︂∫︁ 𝜋

0
𝑓2(𝜃)𝐶𝑘(𝜃)

𝑑𝜃

sin2 𝜃

}︂
|𝑁𝑘=1,

{︂∫︁ 𝜋

0
𝑔2(𝜃)𝐶𝑛(𝜃)

𝑑𝜃

sin2 𝜃

}︂
|𝑁𝑘=1

]︂𝑇
(4.114)

4.4.3 Schur-Banachiewicz Blockwise Inversion: Condition Number Re-

duction

We will solve the matrix equation in (4.111) using the Schur-Banachiewicz blockwise in-

version, which effectively reduces the condition number of 𝐸 to its block matrices. Given the

expression of 𝐸 in Equation (4.110) and the matrix equation (4.111), the Schur-Banachiewicz

Blockwise inversion claims that the unknown coefficients �⃗� satisfies

𝐸𝑚𝑜𝑑�⃗� = �⃗�𝑚𝑜𝑑 (4.115)
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where

𝐸𝑚𝑜𝑑 =

⎡⎣(︁𝐼𝑁 −
(︀
𝐶(1)

)︀−1
𝐷(1)

(︀
𝐷(2)

)︀−1
𝐶(1)

)︁
(︁
𝐼𝑁 −

(︀
𝐷(2)

)︀−1
𝐶(2)

(︀
𝐶(1)

)︀−1
𝐷(1)

)︁
⎤⎦ (4.116)

�⃗�𝑚𝑜𝑑 =

⎡⎣(︀𝐶(1)
)︀−1

�⃗�1 −
(︀
𝐶(1)

)︀−1
𝐷(1)

(︀
𝐷(2)

)︀−1
�⃗�2(︀

𝐷(2)
)︀−1

�⃗�2 −
(︀
𝐷(2)

)︀−1
𝐶(2)

(︀
𝐶(1)

)︀−1
�⃗�1

⎤⎦ (4.117)

Here 𝐼𝑁 is the identity matrix of dimension 𝑁 . To prove the Schur-Banachiewicz Block-

wise inversion formula, we first multiple out the matrix-vector form in Equation (4.111)

𝐶(1)�⃗�+𝐷(1)𝛽 = �⃗�1 (4.118)

𝐶(2)�⃗�+𝐷(2)𝛽 = �⃗�2 (4.119)

We multiply Equation (4.118) by
(︀
𝐶(1)

)︀−1 and Equation (4.119) by
(︀
𝐷(2)

)︀−1

�⃗�+
(︁
𝐶(1)

)︁−1
𝐷(1)𝛽 =

(︁
𝐶(1)

)︁−1
�⃗�1 (4.120)(︁

𝐷(2)
)︁−1

𝐶(2)�⃗�+ 𝛽 =
(︁
𝐷(2)

)︁−1
�⃗�2 (4.121)

We then multiply Equation (4.120) by
(︀
𝐷(2)

)︀−1
𝐶(2) before subtracting Equation (4.121)

from it to obtain

(︂
𝐼𝑁 −

(︁
𝐷(2)

)︁−1
𝐶(2)

(︁
𝐶(1)

)︁−1
𝐷(1)

)︂
�⃗� =

(︁
𝐷(2)

)︁−1
�⃗�2 −

(︁
𝐷(2)

)︁−1
𝐶(2)

(︁
𝐶(1)

)︁−1
�⃗�1

(4.122)

Using the similar Gaussian elimination process, we can compute that

(︂
𝐼𝑁 −

(︁
𝐶(1)

)︁−1
𝐷(1)

(︁
𝐷(2)

)︁−1
𝐶(1)

)︂
�⃗� =

(︁
𝐶(1)

)︁−1
�⃗�1 −

(︁
𝐶(1)

)︁−1
𝐷(1)

(︁
𝐷(2)

)︁−1
�⃗�2

(4.123)

Equation (4.122) and (4.123) for the entries in the Schur-Banachiewicz Blockwise inver-

sion formula in Equation (4.116).

As shown in Figure B-18, the 𝐶𝑛 and 𝑆𝑛 basis functions and the Schur-Banachiewicz

Blockwise inversion formula stifle the growth of the condition number to 𝑂(𝑁2).
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4.5 Conclusion and Future Directions

In this chapter of the dissertation we summarized the results in [49], as well as the various

puzzles and issues that this work uncovers, such as: (i) Is there some underlying general

principle behind the solution form proposed in [49]? (ii) Is the proposed form a valid

representation for solutions (i.e.: are the “modes” complete and independent)? (iii) Is it

true that the solutions in each subdomain have extensions to the other subdomain (a rather

uncommon phenomena for elliptic equations)? (iv) Can the growth of the condition number

for the linear system that needs to be solved be ameliorated? (v) What is the nature of the

singularity, and can it be extracted so as to improve the convergence rate?

These questions motivated us to study a simpler analog of the problem, designed so

that the same issues arise: the biharmonic equation in 2𝐷, over a domain that includes a

circle with an internal boundary. We then extend the Parity Split Method (PSM) of prior

chapters to this second problem; which then allows us to resolve the issues in items (i–iii)

above. As in the case of Laplace’s, the PSM splits the biharmonic problem into even and

odd problems. While the odd problem is easy to solve, the even problem exhibits the type

of problem in item (iv) above. However, in this case we find a way to reduce the growth

rathe of the condition number via a combination of functional analysis and linear algebra.

The issue in item (v) above remains open.

We believe that the 2𝐷 results reported above can be extended to the 3𝐷 Janus drop

case. In particular, an improved convergence rate might allow then an accurate computation

of important physical quantities such as the drag. However, the key issue that remains to

be solved is item (v) above. This is the main roadblock that prevents simple and compact

approximations to the solution of problems of this type; such approximations are the key to

being able to, say, model large arrays of Janus drops. They would also provide intuition as

to, for example, how to best control the behavior of Janus drops.
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Appendix A

Tables

Table A.1: Unless otherwise explicitly specified, the parameters used to perform the calcula-
tions in Section 3.4 are as in this table. The starred quantities are from [11]. The wedge size
and angle are typical dimensions for a micro heat pipe [54]. The thermal gradient is such
that the maximum temperature and the far-field temperature differ by ∼ 1𝐾 over 500𝜇𝑚.

Parameter Description Values
𝑇∞

*far-field temperature 295𝐾

𝜌1 Density of liquid (water) 1000𝑘𝑔/𝑚3

𝜌2 Density of Gas (air) 1𝑘𝑔/𝑚3

𝑑𝐶𝑠𝑎𝑡
𝑑𝑇 |𝑇=𝑇∞

*an empirical constant 1.11 * 10−3𝑘𝑔/(𝑚3𝐾)

𝐶𝑠𝑎𝑡(𝑇∞) *saturation concentration at 𝑇∞ 1.94 * 10−2𝑘𝑔/𝑚3

𝐷 *mass diffusivity 2.46 * 10−5𝑚2/𝑠

𝜈1 conductivity of liquid (water) 0.5918𝐽/(𝑚𝑠𝐾)

𝜈2 conductivity of gas (air) 0.0260𝐽/(𝑚𝑠𝐾)

𝑎0 initial height of the interface 250𝜇𝑚

�̃�𝑤 wedge size 500𝜇𝑚

Φ wedge angle 20𝑜

𝜂𝑇 thermal gradient 2000𝐾/𝑚

𝑐𝑣,1 the specific heat capacity of water at 𝑇∞ 4200𝐽/(𝑘𝑔 *𝐾)

𝑐𝑣,2 the specific heat capacity of air at 𝑇∞ 710𝐽/(𝑘𝑔 *𝐾)
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Appendix B

Figures
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Figure B-1: Example of the type of domain to be considered. Triple-line singularities typ-
ically arise at the points where materials of three different properties meet. Plot author:
Daniel Bergen, Master in Molecular Biotechnology at Bielefeld University (Bielefeld, Ger-
man) and PhD in Systems Biology at ETH Zurich (Zurich, Switzerland).

(a) (b)

Figure B-2: Example geometries: (a) Sketch for a 2𝐷 Janus cylinder or a 3𝐷 Janus drop.
The upper and lower hemispheres have different material properties, e.g.: viscosties 𝜈1 and
𝜈2, respectively. (b) Infinite wedge, with an interface placed at 𝑟 = 1, and different material
properties for 𝑟 < 1 and 𝑟 > 1.
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(a) (b)

(c) (d)

Figure B-3: Comparison of how well the solution, with and without series acceleration,
satisfies the boundary condition [𝜕𝑟𝑢]|𝑟=1 = 0 — see §2.3.3.2. Panels (a) and (b) display
results without series acceleration, while panels (c) and (d) correspond to the accelerated
series. The difference is dramatic.
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Figure B-4: Eigenmodes in (2.18). 2𝐷 Janus cylinder with 𝜈1 = 1 and 𝜈2 = 10.

Figure B-5: Eigenmodes in (2.27). 3𝐷 Janus drop with 𝜈1 = 1 and 𝜈2 = 10.
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Figure B-6: Heat map for the solution in (2.44), with 𝜈1 = 1 and 𝜈2 = 10. The boundary
conditions are: 𝑢 = 0 for 𝜃 = 0 and 𝑢 = 𝑟 for 𝜃 = Φ.

Figure B-7: Acceptable PSM interfaces (in red) for the unit disk — see (2.69). The interfaces
are circles of radius

√︀
𝑦20 − 1 centered at some −𝑦0 < 1, in any Cartesian coordinate system

sharing the origin with the disk. As 𝑦0 → ∞, the interface approaches a flat line at 𝑦 = 0.
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(a) (b)

Figure B-8: Schematics for the V-shaped liquid wedge. (a) shows a 3𝐷 rendition. When
�̃�𝑙 >> �̃�𝑤, the long dimension can be ignored, to yield a 2𝐷 problem — shown in (b).
These figures are the product of the generosity and craftsmanship of Daniel Bergen, Master
in Molecular Biotechnology at Bielefeld University (Bielefeld, German) and PhD in Systems
Biology at ETH Zurich (Zurich, Switzerland).

(a)

(b) (c)

Figure B-9: The coordinates used to solve the Laplace problem. (a) original coordinates, (b)
and (c) conformally mapped coordinates in (3.122) and (3.134), respectively. Here curves of
the same color map onto each other.
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(a) (b)

Figure B-10: Solution to the temperature problem with a linearly decreasing boundary
temperature (here 𝜈2/𝜈1 = 1000 and 𝐿𝑤 = 2). (a) heat map of the temperature — in red
the liquid-vapor interface, the green line is at the top of the wedge. (b) temperature vs.
radius — the doted lines correspond to 𝑟 = 𝐿𝑤 and 1/𝐿𝑤.

(a) (b)

Figure B-11: 𝑒𝑟𝑟𝑏(𝑁) vs. N plotted on a log-log scale for two temperature wedge-boundary
conditions: (a) constant, and (b) piece-wise linear. These plots gauge the convergence of
the series solution in (3.127) through the error in the total flux across the interface, as
characterized by 𝑏 in (3.162). This is given by 𝑒𝑟𝑟𝑏(𝑁) in (3.196–3.197), the absolute value
of the difference between the exact value for 𝑏 in (3.156), and the first 𝑁 terms in the series in
(3.174). In both cases, the series solution converges (slowly) at a sub-linear rate 𝑂(𝑁−0.95).
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(a)

(b) (c)

Figure B-12: Plots of the radial flux: (a) Normalized radial flux with the mean subtracted.
The flux is larger near the wedge sides (𝜃 = 0,Φ), as expected. (b) and (c) Total normalized
evaporation flux for different: heights of the liquid vapor interface, humidity levels, and
angle sizes. As expected, the flux is smaller for higher humidity or a larger angle.
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(a) (b)

(c)

(d) (e)

Figure B-13: Plots of the normalized lifetime versus temperature, relative humidity, wedge
size, and wedge angle. The lifetime increases with the humidity (a), and it decreases with
the thermal gradient (b). Note in (c) the enhancement of the thermal gradient by the
humidity: the same temperature increment reduces the lifetime by a larger fraction as
humidity increases. We further note an increasing trend in lifetime with both wedge size
and wedge angle, (d) and (e).
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Figure B-14: (From FIG 1 in [49]) Janus drop in an external flow −𝑈𝑧. The angle 𝛽 indicates
the drop orientation with respect to the flow: 𝛽 = 0 corresponds to the internal interface
normal to the external flow (axis-symmetric problem). Note that the authors use 𝜂, while
we use 𝜈, to denote viscosities.

Figure B-15: Condition number for the matrix 𝑀 in (4.26), truncated to size 4𝑁 × 3𝑁 ,
versus 𝑁 , on a log-log scale. Here 𝜈1 = 1 and 𝜈2 = 0.5. The condition number grows too
rapidly: 𝑂(𝑁3).
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(a) (b)

(c) (d)

Figure B-16: Solution in (4.10)-(4.11), for 𝜈1 = 1 and 𝜈2 = 0.5, with 𝑁 = 200. a) shows the
streamlines for the Janus drop under the external flow. This agrees visually with the result
in FIG. 4 of [49]. However, the boundary conditions at 𝑟 = 1 are poorly satisfied. While (b)
shows acceptable accuracy for Ψ1,2 = 0 at 𝑟 = 1 (error 𝑂(10−3), (c) and (d) indicate lack
of convergence for the boundary conditions at 𝑟− 1 involving first and second derivatives of
the stream-function. Note the large spurious oscillations
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Figure B-17: Condition Number for the matrix 𝐶 in (4.77), truncated to size 2𝑁 × 2𝑁 ,
versus 𝑁 , on a log-log scale. The condition number grows too rapidly, 𝑂(𝑁4). This is
the same issue that arises with the matrix 𝑀 in (4.26), for the 3𝐷 axisymmetric Stokes
equation.

Figure B-18: Condition Number for the matrix 𝐸𝑚𝑜𝑑 in (4.116), obtained with the Schur-
Banachiewicz Blockwise Inversion, truncated to size of 2𝑁×2𝑁 , versus 𝑁 on a log-log scale.
The condition number here grows slower, 𝑂(𝑁2), than the case shown in Figure B-17.
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Figure B-19: Heat map for the quasi-static parameter 𝜆 in (D.17), with 𝑎/𝐿𝑤 on the 𝑥-axis
and the wedge angle on the 𝑦-axis. The quasi-static assumption is valid for a “not too large”
wedge angle, and a “not too filled with liquid” wedge.

Figure B-20: Example of the region Ω in Section 4.2.2.
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Appendix C

Integration of the Associated

Legendre Polynomials over a Half

Interval

This section concerns the efficient computation of the inner products of associated Legendre

polynomials over the half interval [0, 1]. For two integers 𝑘, 𝑙, we would like to compute

𝑈𝑘𝑙 =

∫︁ 1

0
𝑃 1
𝑘 (𝜉)𝑃

1
𝑙 (𝜉)𝑑𝜉 (C.1)

The analytical answer of 𝑈𝑘𝑙 is known to be

𝑈𝑘𝑙 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑙(𝑙+1)
2𝑙+1 , 𝑙 = 𝑘

0, 𝑙 ̸= 𝑘

𝑓𝑘𝑙, otherwise

(C.2)

Here 𝑓𝑘𝑙 is

𝑓𝑘𝑙 =
2

𝜋

(︃
𝑙(𝑙 + 1)

sin
(︀
𝜋
2𝑘
)︀
cos
(︀
𝜋
2 𝑙
)︀
𝐴𝑘𝑙

𝑘(𝑘 + 1) + 𝑙(𝑙 + 1)
− 𝑘(𝑘 + 1)

sin
(︀
𝜋
2 𝑙
)︀
cos
(︀
𝜋
2𝑘
)︀
𝐴𝑙𝑘

𝑘(𝑘 + 1) + 𝑙(𝑙 + 1)

)︃
(C.3)

where 𝐴𝑙𝑘 is defined as
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𝐴𝑙𝑘 =
Γ
(︀
𝑙
2 + 1

)︀
Γ
(︀
𝑘
2 + 1

2

)︀
Γ
(︀
𝑙
2 + 1

2

)︀
Γ
(︀
𝑘
2 + 1

)︀ (C.4)

Here Γ denotes the gamma function. If we directly compute 𝐴𝑙𝑘, we would run into the

issue of numerical overflows. Therefore, we must massage Equation (C.4). More specifically,

we will consider two cases: (i) 𝑙 even and 𝑘 odd; (ii) 𝑙 odd and 𝑘 even.

For 𝑙 even and 𝑘 odd, 𝑙/2 and 𝑘
2 + 1

2 are integers, whence we can simplify that

• Γ
(︀
𝑙
2 + 1

)︀
= Γ(𝑖𝑛𝑡𝑒𝑔𝑒𝑟) =

(︀
𝑙
2

)︀
!

• Γ
(︀
𝑙
2 + 1

)︀
=

√
𝜋 (𝑙−1)!!

2𝑙/2
=

√
𝜋 𝑙!
4𝑙/2( 𝑙

2)!

• Γ
(︀
𝑘
2 + 1

2

)︀
=
(︀
𝑘
2 + 1

2 − 1
)︀
! =

(︀
𝑘
2 − 1

2

)︀
! =

(︀
𝑘−1
2

)︀
!

• Γ
(︀
𝑘
2 + 1

)︀
= Γ

(︀
𝑘
2 + 1

2 + 1
2

)︀
=

√
𝜋 (𝑘)!!

2(𝑘+1)/2 =
√
𝜋 (𝑘+1)!

4(𝑘+1)/2( 𝑘+1
2 )!

=
√
𝜋 𝑘!!
2(𝑘+1)/2

Putting everything together, we can simplify 𝐴𝑙𝑘 as

𝐴𝑙𝑘 =

(︀
𝑙
2

)︀
!
(︀
𝑘−1
2

)︀
!

√
𝜋 (𝑙−1)!!

2𝑙/2

√
𝜋 𝑘!!
2(𝑘+1)/2

(C.5)

=
1

𝜋
4

𝑙+𝑘+1
2

(𝑙/2)!!(𝑙/2)!

𝑙!

(︀
𝑘−1
2

)︀
!
(︀
𝑘+1
2

)︀
!

(𝑘 + 1)!
(C.6)

Hence if we now define the following vectors of size 𝑙,

𝑣1 = [1, 2, ..., 𝑙/2, (4)(1), (4)(2), ..., (4)(𝑙/2)]𝑇 (C.7)

𝑤1 = [1, 2, ..., 𝑙]𝑇 (C.8)

(C.9)

Then we can simplify some terms in Equation (C.5)

𝑙∏︁
𝑗=1

(︂
𝑣1,𝑗
𝑤1,𝑗

)︂
= 4𝑙/2

(𝑙/2)!(𝑙/2)!

𝑙!
(C.10)
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Similarly, if we define the following vectors of size 𝑘,

𝑣2 = [1, 2, ..., (𝑘 − 1)/2, 4(1), 4(2), ..., (4)((𝑘 + 1)/2)]𝑇 (C.11)

𝑤2 = [1, 2, ...,𝐾]𝑇 (C.12)

then we can write

1

𝑘 + 1

𝑙∏︁
𝑗=1

(︂
𝑣2,𝑗
𝑤2,𝑗

)︂
= 4(𝑘+1)/2

(︀
𝑘−1
2

)︀
!
(︀
𝑘+1
2

)︀
!

(𝑘 + 1)!
(C.13)

As a result, we can rewrite 𝐴𝑙𝑘 as

𝐴𝑙𝑘 =
1

𝜋

1

𝑘 + 1

𝑙∏︁
𝑗=1

(︂
𝑣1,𝑗
𝑤1,𝑗

)︂ 𝑙∏︁
𝑗=1

(︂
𝑣2,𝑗
𝑤2,𝑗

)︂
(C.14)

For 𝑙 odd and 𝑘 even, we can follow an almost identical calculation. In the end, we can

define the following vectors

𝑣3 = [1, 2, ..., 𝑙]𝑇 (C.15)

𝑤3 = [1, 2, ..., (𝑙 − 1)/2, (4)(1), (4)(2), ..., (4)((𝑙 + 1)/2)]𝑇 (C.16)

𝑣4 = [1, 2, ..., 𝑘]𝑇 (C.17)

𝑤4 = [1, 2, ..., 𝑘/2, (4)(1), (4)(2), ..., (4)(𝑘/2)]𝑇 (C.18)

so that 𝐴𝑙𝑘 can be written as

𝐴𝑙𝑘 = 𝜋(𝑙 + 1)
𝑙∏︁

𝑗=1

(︂
𝑣3,𝑗
𝑤3,𝑗

)︂ 𝑙∏︁
𝑗=1

(︂
𝑣4,𝑗
𝑤4,𝑗

)︂
(C.19)

In this way, we avoid having to compute the large gamma functions that breaks the

computational limit of a standard computer.

129



130



Appendix D

Justification for Quasi-Staticity

The quasi-static assumptions of concentration and temperature in Equation (3.3) and

(3.8) will be justified in this section. We first study the characteristic time scales associated

with the full time-driven heat and concentration equations. We would simplify the physical

and just consider homogeneous boundary conditions over the wedge. Quasi-staticity would

be justified if the largest characteristic times is dominated by the lifetime of the liquid

bridge. This would ensure that the equations reach equilibrium much sooner than the

droplet completely evaporates. Secondly, we calculate the incremental mass loss during the

initial transience of the time-dependent concentration evolution. We would want to be sure

that the mass loss is small compared with the total remaining mass.

D.1 Comparing Characteristic Times with Lifetime of Liquid

Bridge

To estimate the time scale needed by the temperature and the concentration to reach steady

state, we solve the time dependent equations with homogeneous boundary conditions, in the

domains

Ω1 = {(𝑟, 𝜃) : 0 ≤ 𝑟 < 𝑎, 0 ≤ 𝜃 ≤ Φ} and Ω2 = {(𝑟, 𝜃) : 𝑎 ≤ 𝑟 <∞, 0 ≤ 𝜃 ≤ Φ}.

There are then three characteristic time scales: (i) 𝑡𝑇,1, the characteristic time for tempera-

ture in Ω1; (ii) 𝑡𝑇,2, the characteristic time for temperature in Ω2; (iii) 𝑡𝐶,2, the characteristic

time for concentration in Ω2. To calculate these time scales, we let 𝑇 (1) denote temperature

in Ω1, 𝑇 (2), 𝐶 denote the temperature and concentration in Ω2, and solve the PDE below.
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Over Ω1, solve ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑇
(1)
𝑡 = 𝜈1

𝜌1𝑐𝑣,1
Δ𝑇 (1)

𝑇 (1) = 0, 𝜃 = 0,Φ

𝑇
(1)
𝑟 = 0, 𝑟 = 𝑎

(D.1)

and over Ω2, we want to solve⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑇
(2)
𝑡 = 𝜈2

𝜌2𝑐𝑣,2
Δ𝑇 (2)

𝑇 (2) = 0, 𝜃 = 0,Φ

𝑇
(2)
𝑟 = 0, 𝑟 = 𝑎

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶𝑡 = 𝐷Δ𝐶

𝐶𝜃 = 0, 𝜃 = 0,Φ

𝐶 = 0, 𝑟 = 𝑎

(D.2)

Here 𝑐𝑣 denotes the specific heat capacity. Using separation of variables, we can express the

solutions as infinite series

𝑇 (1) =
∞∑︁

𝑚=1

∞∑︁
𝑛=1

𝐴(1)
𝑚𝑛 sin

(︂
𝑛𝜋𝜃

Φ

)︂
𝐽𝑛

(︁𝜂𝑚,𝑛𝑟

𝑎

)︁
𝑒
−

𝜂2𝑚,𝑛𝜈1

𝜌1𝑐𝑣,1𝑎
2 𝑡 (D.3)

where 𝐽𝑛 are the Bessel’s functions of the first kind and order 𝑛, and 𝜂𝑚,𝑛 denotes the

𝑚𝑡ℎ root of the first derivative of 𝐽𝑛. Of all the terms in the infinite series, the most slowly

decaying term is for 𝑛 = 𝑚 = 1. Hence, we can take 𝑡𝑇,1 to be the largest characteristic

time of 𝑛 = 𝑚 = 1

𝑡𝑇,1 =
𝜌1𝑐𝑣,1𝑎

2

𝜂21,1𝜈1
(D.4)

Here 𝜂1,1 ≈ 2. Similarly, we can write down the solutions 𝑇 (2)

𝑇 (2)(𝑟, 𝜃, 𝑡) =

∞∑︁
𝑚=1

∞∑︁
𝑛=1

𝐴(2)
𝑚𝑛 sin

(︂
𝑛𝜋𝜃

Φ

)︂
𝐽𝑛

(︁𝜂𝑚,𝑛𝑟

𝑎

)︁
𝑒
−

𝜂2𝑚,𝑛𝜈2

𝜌2𝑐𝑣,2𝑎
2 𝑡 (D.5)

𝑡𝑇,2 =
𝜌2𝑐𝑣,2𝑎

2

𝜂21,1𝜈2
(D.6)
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Finally, we write down the solution to the concentration as

𝐶(𝑟, 𝜃, 𝑡) =
∞∑︁

𝑚=1

∞∑︁
𝑛=0

𝐴𝑚𝑛 cos

(︂
𝑛𝜋𝜃

Φ

)︂
𝐽𝑛

(︁𝛾𝑚,𝑛

𝑎
𝑟
)︁
𝑒−

𝛾2𝑚,𝑛𝐷

𝑎2
𝑡 (D.7)

where 𝛾𝑚,𝑛 is the 𝑚𝑡ℎ zero of 𝐽𝑛. Here then, the slowest decaying process would be for

𝑛 = 0,𝑚 = 1, which makes the characteristic time of concentration

𝑡𝐶,2 =
𝑎2

𝛾21,0𝐷
(D.8)

Here 𝛾1,0 ≈ 2.25. The characteristic time 𝑡𝑐 chosen to compare with the lifetime would then

be

𝑡𝐶 = max {𝑡𝑇,1, 𝑡𝑇,2, 𝑡𝐶,2} (D.9)

= max

{︃
𝑎2

𝛾21,0𝐷
,
𝜌2𝑐𝑣,2𝑎

2

𝜂21,1𝜈2
,
𝜌1𝑐𝑣,1𝑎

2

𝜂21,1𝜈1

}︃
(D.10)

Next we compute the lifetime of the liquid bridge. As guided by Equation (3.198), we

can set up the following relation of mass loss during a period of time 𝑑𝑡 at radius 𝑟

∫︁ Φ

0
𝐷
𝑑𝐶

𝑑𝑟
𝑟𝑑𝜃𝑑𝑡 = 𝜌1𝑟Φ𝑑𝑟 (D.11)

𝑡 =
𝜌1Φ

𝐷

∫︁ 𝑎

0

𝑑𝑟∫︀ Φ
0

𝑑𝐶
𝑑𝑟 𝑑𝜃

(D.12)

To estimate 𝑑𝐶
𝑑𝑟 , we will shall use the mass flux from the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝐶 = 0, 𝑎 ≤ 𝑟 ≤ 𝑎2, 0 ≤ 𝜃 ≤ Φ

𝐶 = 𝐶𝑠𝑎𝑡, 𝑟 = 𝑎

𝐶 = 0, 𝑟 = 𝐿𝑤

𝜕𝐶
𝜕𝜃 = 0, 𝜃 = 0,Φ

(D.13)

𝑑𝐶

𝑑𝑟
= 𝐶𝑠𝑎𝑡

1

𝑟 log
(︁

𝑎
𝐿𝑤

)︁ (D.14)
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which, upon plugging in to Equation (D.12), renders the quantity of 𝑡𝑒, the evaporative

lifetime of the liquid

𝑡𝑒 =
𝜌1Φ𝑎

2 log
(︀
𝐿𝑤
𝑎

)︀
𝐷𝐶𝑠𝑎𝑡

(D.15)

The hope is that 𝑡𝑒 >> 𝑡𝐶 in Equation (D.9). Therefore, we define the dimensionless,

quasi-static parameter 𝜆, as

𝜆 =
𝑡𝑒
𝑡𝐶

(D.16)

so that the quasi-static assumptions would hold if 𝜆 >> 1. We plug in the parameters

in Table A.1, which we use to perform the calculations in Chapter 3, and simplify it to

𝜆 ≈ −1197Φ log

(︂
𝑎

𝐿𝑤

)︂
(D.17)

We plot the heat map of 𝜆 with 𝑎/𝐿𝑤 on the 𝑥-axis and the wedge angle on the 𝑦-axis in

Figure (B-19). As demonstrated, the quasi-static assumption is valid for a “not too large”

wedge angles and “not too full” of a filled volume. For our case, with a wedge angle of 20𝑜,

the system is quasi-static as long as the height of the liquid stays around 80%-85% of the

wedge size.

D.1.1 Estimate of the Mass Loss During the Initial Transience

We would like to estimate the amount of mass loss during the initial transience to steady

state, characterized by the time scale 𝑡𝐶,2 in Equation(ref). In other words, we would like

to compute

Δ𝑚

𝑚
=

1

𝜌𝑎2

2 sinΦ

∫︁ 𝑡𝐶

0

∫︁ Φ

0
𝐷
𝑑𝐶

𝑑𝑟
|𝑟=𝑎𝑎𝑑𝜃𝑑𝑡 (D.18)
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where 𝐶 satisfies the PDE below⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶𝑡 = 𝐷Δ𝐶, 𝑟 > 𝑎

𝐶 = 𝐶𝑠𝑎𝑡, 𝑟 = 𝑎

𝜕𝐶
𝜕𝜃 = 0, 𝜃 = 0,Φ

𝐶 = 0, 𝑡 = 0

(D.19)

Here 𝐶𝑠𝑎𝑡 is the saturation concentration that has a temperature dependence. The solution

to the differential equation above is

𝐶(𝑟, 𝜃; 𝑡) = 𝐶𝑠𝑎𝑡 +

∞∑︁
𝑚=1

∞∑︁
𝑛=0

𝐴𝑚𝑛 cos

(︂
𝑛𝜋𝜃

Φ

)︂
𝐽𝑛

(︁𝛾𝑚,𝑛

𝑎
𝑟
)︁
𝑒−

𝛾2𝑚,𝑛𝐷

𝑎2
𝑡 (D.20)

where 𝐴𝑚𝑛 is to be determined by the initial condition. Plugging in 𝑡 = 0, we get that

0 = 𝐶𝑠𝑎𝑡 +

∞∑︁
𝑚=1

∞∑︁
𝑛=0

𝐴𝑚𝑛 cos

(︂
𝑛𝜋𝜃

Φ

)︂
𝐽𝑛

(︁𝛾𝑚,𝑛

𝑎
𝑟
)︁

(D.21)

−𝐶𝑠𝑎𝑡 =

∞∑︁
𝑚=1

∞∑︁
𝑛=0

𝐴𝑚𝑛 cos

(︂
𝑛𝜋𝜃

Φ

)︂
𝐽𝑛

(︁𝛾𝑚,𝑛

𝑎
𝑟
)︁

(D.22)

Upon taking the inner product with respect to the cosine terms for each 𝑛, we realize that

𝐴𝑚𝑛 = 0 for all 𝑛 ̸= 0, whence,

−𝐶𝑠𝑎𝑡 =
∞∑︁

𝑚=1

𝐴𝑚0𝐽0

(︁𝛾𝑚,0

𝑎
𝑟
)︁

(D.23)

Now we use the orthogonality relation that

∫︁ 𝑎

0
𝑟𝐽0

(︁𝛾𝑚,0

𝑎
𝑟
)︁
𝐽0

(︁𝛾𝑘,0
𝑎
𝑟
)︁
=
𝑎2

2
(𝐽1(𝛾𝑚,0))

2𝛿𝑚,𝑘 (D.24)

and the integration property of Bessel function

∫︁ 𝑎

0
𝑟𝐽0(𝑟)𝑑𝑟 = 𝑎𝐽1(𝑎) (D.25)
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to get that

−𝐶𝑠𝑎𝑡

∫︁ 𝑎

0
𝑟𝐽0

(︁𝛾𝑚,0

𝑎
𝑟
)︁
𝑑𝑟 = 𝐴𝑚0

𝑎2

2
(𝐽1(𝛾𝑚,0))

2 (D.26)

−𝐶𝑠𝑎𝑡

(︂
𝑎

𝛾𝑚,0

)︂2 ∫︁ 𝛾𝑚,0

0
𝑟𝐽0(𝑟)𝑑𝑟 = 𝐴𝑚0

𝑎2

2
(𝐽1(𝛾𝑚,0))

2 (D.27)

𝐴𝑚0 = − 2𝐶𝑠𝑎𝑡

𝛾𝑚,0𝐽1(𝛾𝑚,0)
(D.28)

There, the solution of 𝐶(𝑟, 𝜃; 𝑡) can be written as

𝐶(𝑟, 𝜃; 𝑡) = 𝐶𝑠𝑎𝑡 − 2𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝛾𝑚,0𝐽1(𝛾𝑚,0)
𝐽0

(︁𝛾𝑚,0

𝑎
𝑟
)︁
𝑒−

𝛾2𝑚,0𝐷

𝑎2
𝑡 (D.29)

Therefore, 𝜕𝐶
𝜕𝑟 can be written as

𝜕𝐶

𝜕𝑟
= −𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝑎𝐽1(𝛾𝑚,0)

(︁
𝐽−1

(︁𝛾𝑚,0

𝑎
𝑟
)︁
− 𝐽1

(︁𝛾𝑚,0

𝑎
𝑟
)︁)︁

𝑒−
𝛾2𝑚,0𝐷

𝑎2
𝑡 (D.30)

where we use the fact that

𝑑𝐽0(𝑟)

𝑑𝑟
=
𝐽−1(𝑟)− 𝐽1(𝑟)

2
(D.31)

Continuing on with the calculation, since 𝑑𝐶
𝑑𝑟 has no angular dependence,

∫︀ Φ
0

𝑑𝐶
𝑑𝑟 𝑑𝜃 = Φ𝑑𝐶

𝑑𝑟 ,

whence

Δ𝑚

𝑚
=

1

𝜌𝑎2

2 sinΦ

∫︁ 𝑡𝐶

0

∫︁ Φ

0
𝐷
𝑑𝐶

𝑑𝑟
𝑎𝑑𝜃𝑑𝑡 (D.32)

= − 2Φ𝐷

𝜌𝑎2 sinΦ
𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝐽1(𝛾𝑚,0)
(𝐽−1 (𝛾𝑚,0)− 𝐽1 (𝛾𝑚,0)) |𝑟=𝑎

∫︁ 𝑡𝐶

0
𝑒−

𝛾2𝑚,0𝐷

𝑎2
𝑡𝑑𝑡 (D.33)

=
2Φ

𝜌 sinΦ
𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝐽1(𝛾𝑚,0)𝛾2𝑚,0

(𝐽−1 (𝛾𝑚,0)− 𝐽1 (𝛾𝑚,0))

⎛⎝𝑒− 𝛾2𝑚,0

𝛾21,0
𝑡
− 1

⎞⎠ (D.34)

≤ 2Φ

𝜌 sinΦ
𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝐽1(𝛾𝑚,0)𝛾2𝑚,0

(𝐽−1 (𝛾𝑚,0)− 𝐽1 (𝛾𝑚,0)) (D.35)

(D.36)

Using the property of Bessel functions that 𝐽−1(𝑟) = −𝐽1(𝑟) and that 𝛾𝑚,0 ≥ 2𝑚, we
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conclude with the estimate that

Δ𝑚

𝑚
≤ 4Φ

𝜌 sinΦ
𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝛾2𝑚,0

(D.37)

≤ Φ

𝜌 sinΦ
𝐶𝑠𝑎𝑡

∞∑︁
𝑚=1

1

𝑚2
(D.38)

=
Φ𝜋2

6𝜌 sinΦ
𝐶𝑠𝑎𝑡 (D.39)

Assuming the wedge is smaller than 𝜋/2, the function Φ
sinΦ achieves its max value of 𝜋/2 at

𝜃 = 𝜋/2, whence

Δ𝑚

𝑚
≤ 𝜋3

12𝜌
𝐶𝑠𝑎𝑡 (D.40)

Taking the value of 𝐶𝑠𝑎𝑡 from Table A.1 at a temperature of 295𝐾, we plug in the density

and the saturation concentration of water and conclude that

Δ𝑚

𝑚
≤ 𝜋3

12𝜌
𝐶𝑠𝑎𝑡 (D.41)

= 5 * 10−5 (D.42)

Less than 0.005% of the total volume of the drop is evaporated as the concentration

transitions towards steady state, which completely justifies our quasi-static assumptions.
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