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Abstract

While the thesis is framed from the systems thinking perspective, however, the main focus is on the drug
discovery and application of machine learning approaches in profiling oncology drug candidates for a select
subset of validated targets in the oncogenesis pathways. In this study, we built in-silico predictive models to
predict prospective drug candidates from compound libraries. Robust predictive models help in saving
enormous experimental, and resource overheads and compress product cycle times. We used several machine
learning algorithms, in building models that include logistic regression (LR), support vector machines (SVMs),
Naive Bayes, Artificial neural nets (ANN), and Decision trees — classification and regression tree (CART) and
multi-tree majority voting ensemble techniques i.e., random forest and XGBoost.The feature sets for building
these models were extracted by computing chemical fingerprints and quantum chemical descriptors. We
generated both sparse and dense matrices for modeling. We cross-validated, parameter hypertuned, and
evaluated model performance on different statistical performance metrics, including Receiver-Operating
Characteristic (ROC) curves.

We investigated the full and reduced model through feature engineering for model stability with LR models.
We evaluated model regularization techniques, namely, LASSO, Ridge, Elastic Net, and Neural drop to
prevent model overfitting both for LR and ANN models. We evaluated SVM kernels and showed non-linear
radial basis function (RBF) performed better than others. We also showed that adding additional hidden
layers, beyond three, to the ANN model with ADAM optimizer did not improve performance. Besides, multi-
tree ensemble models were superior to single tree models (CART). Finally, we benchmarked the performance
metrics of each of these machine learning algorithms in a side-by-side comparison and conclude that the

ensemble random forest produced the lowest mean misclassification error.
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Prelude:

A general road map of the thesis. First, we define the problem statement, scope, solution, and value

proposition.

L. Problem: Modern drug discovery is an enormously complex and resource-intensive undertaking
involving several scientific and engineering disciplines, and multiple stakeholders. With the advent of
high-throughput screening, robotic liquid handling, automation and compute infrastructure, there is
an explosion of data. However, there is an unmet need to leverage the large volumes of data to extract

‘patterns’; ‘associations’, and ‘insights’ to drive innovation and accelerate drug development.

IL. Scope: Although we frame the problem from the systems thinking perspective, invoking the
interconnections among the entities - biological complexity, disease, and drug development. The scope
of this thesis is restricted to the development of predictive models for profiling oncology drug

candidates in the early phase of compound library screening in drug discovery.

III.  Solution: We explored a wide range of machine learning classification algorithms to build predictive
models by extracting feature sets by computing quantum chemical descriptors and chemical

fingerprints. The bioassay read-outs aided in assigning the class labels to the samples.

IV.  Value Proposition: Predictive models in drug development help in identifying potential drug
candidates by reducing resource and investment overheads, reducing drug attrition, and compressing

cycle times.
The following is an overview of the structure, organization, composition, and content of the thesis.

In Chapter 1: Introduction - Here we define, describe, and develop the background narrative on the
topics of systems thinking, biological complexity, network biology, polypharmacology, machine learning
models, cheminformatics, and chemical graph theory and its role in the development of chemical descriptors

and fingerprints.

In Chapter 2: Approaches - Here we discuss data sources, computing feature sets, modeling work-flow,

and evaluation metrics.

In Chapter 3: Evaluation of Algorithms - Here we give a detailed background to different machine

learning algorithms and describe the implementation, experiments, and results.

In Chapter 4: Discussion - Here we offer the interpretations and implications of our results in the

context of contributions from other researchers.

In Chapter 5: Conclusions — Here we summarize our findings, limitations, future direction, and conclude

with a vision statement.
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Chapter 1: Introduction

“The task is not so much to see what other’s have not yet seen; but to think what nobody has yet

thought, about which everybody sees.” - Erwin Schrodinger

1.1  Drug Discovery — A Systems Perspective

The fundamental scientific question we aim to address and tackle in this thesis is the role of the application
of machine learning algorithms in accelerating drug discovery. More specifically, evaluation of predictive
modeling in profiling oncology drug candidates. The pursuit of drug discovery is as ancient as mankind. Herbal
concoctions from botanical sources formed the earliest ideas of drugs. Consumption of oral concoctions,
applications of topical pastes, and poultice was routinely used to produced some relief, cure, and comfort from
some simple ailments to some complicated human diseases. This was a common practice before the advent of
modern pharmaceutical drug discovery. Systems thinking in understanding biological complexity is a more
recent development. Deeply rooted in this biological complexity is the state of normal and perturbed
physiological state. The perturbed physiological state is commonly referred to as disease. Modern drug
development seeks to provide therapeutic interventions to restore a normal physiological state. In the present
study, we frame our problem against the background of systems thinking and biological complezity to introduce
some state-of-the-art machine learning approaches, as a mechanism to advance, innovate, and accelerate the
drug discovery processes. More precisely, the focus of this thesis is on building, evaluating, and comparing

predictive models to nominate potential drug candidates for a select subset of oncology drug targets.

1.1.1 Systems Thinking — A Definition

The earliest ideas of systems thinking was pioneered in the early 1950s by Jay Forrester at MIT. Since then
many academics thinkers and industry researchers have contributed to refine the original idea. One of the
ideas advanced by Arnold and Wade (Arnold and Wade, 2015) states, “Systems thinking is a set of synergistic
analytic skills used to improve the capability of identifying and understanding systems, predicting their
behaviors, and devising modifications to them in order to produce desired effects. These skills work together

as a system.”

1.1.2 Systems Thinking — Understanding Biological Complexity

Reductionism and systems thinking have been competing ideas that have dominated scientific discourse over
the years. Here the reductionism and systems thinking is explicitly discussed in the narrow context of biological
systems and drug discovery. Reductionists believe that all phenomena can be reconciled into fundamental
physics and chemistry. Nobel prize-winning Francis Crick famously claimed in 1966 that the “The ultimate
aim of the modern movement in biology is to explain all complex biological systems in terms of physics and

chemistry.” Reductionists analyze a larger system by breaking it down into pieces and determining the
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connections between the parts. They assume that the isolated molecules and their structure have sufficient

explanatory power to provide an understanding of the whole system (Van Regenmortel, 2004).

Biological systems are complex and have emergent properties. Often, understanding or predicting their
behavior is a daunting task, that can not be accomplished by simply analyzing their constituents. The
constituents of a complex system interact in a myriad ways, including positive feed-back, negative feed-back,
feed-forward that leads to dynamic properties that cannot be predicted satisfactorily by linear mathematical
models that disregard cooperativity and non-additive effects (Aderem and Smith, 2004). Another important
property of complex systems is their robustness, and ability to adapt by compensatory mechanism and
redundancy built into the system. Another characteristic of such systems is the modular design that ensures
the partial failure modes are highly tolerated (Alm and Arkin, 2003). Complex biological systems are open,
they exchange matter and energy with their environment, therefore they are not in thermodynamic

equilibrium, leading to some radical ideas of systems approaches to biology and medicine.

Leroy Hood’s group (Ideker et al., 2001), provided the first practical framework for the advancing ‘systems
thinking’ to human diseases and drug discovery. Much of the field is shaped by numerous contributors who
have advanced key concepts in life’s complexity pyramid from individual molecules to interacting subsystems;
dynamical diseases and importance of biological rhythms, and multiple parallel control systems (van der Greef
and McBurney, 2005) as cited in (Glass and Mackey, 1988; Oltvai and Barabdsi, 2002). Biological interactions
at many different levels of detail, from atomic interactions in a folded protein structure to relationships of

organisms in a population or an ecosystem, can be modeled as networks.

1.1.3 Systems Biology — Perspectives on complex diseases

While the Mendelian genetics perspective of ‘one gene - one disease’ was foundational to our understanding
of human diseases, we have also seen its limitation. It is being increasingly recognized that to gain a system-
level understanding of disease at the molecular level, a systems view of the relevant physiological function is
imperative. Every physiological function is an elaborate process involving an underlying signaling network of
proteins, receptors, ligands, enzymes, metabolites, DNA/RNA modulators, transcription factors, genetic
determinants, mRNA transcription, protein translation, hormones, ions, and electrical signals. Any number of
these reactions have different reaction kinetics both at temporal and spatial levels. Therefore, each
physiological function and the associated phenotype is a representation of a complicated network of biological
signals. Network approaches — comprising of representational nodes and edges provide a broad framework of
the interactome, in proving some fundamental understanding about the etiology of the diseases (Boran and
Iyengar, 2010). Thus disease state may be defined as a perturbation of the network at a discrete node or many

disparate nodes in the network.
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1.1.4 Systems Pharmacology — At the intersection of Systems Biology, Disease and

Drug Discovery

Systems pharmacology is the extension of the systems biology approach that seeks to understand the
interaction of pathophysiology and drug action at the organ and organismal level. The application of
experimental system biology and machine learning approaches including network analysis will enable
investigation of the multiscale biological organization - molecular perturbations, therapeutic interventions,
and adverse effects of drugs, if any. Recent advances in high-throughput methods and “omics” technologies
(i.e., genomics, transcriptomics, metabolomics, and proteomics methods) have provided some glimpse of the
overall structure of molecular interaction networks in biological systems. Instead of being viewed as a collection
of the parts list, in complete isolation of connections, dependencies, chemical kinetics, and thermodynamics.
Systems pharmacology seeks to combine “omics” data, global network analysis, pharmacokinetics, and
pharmacodynamics models, and genome polymorphisms to develop polypharmacology of complex human
diseases to predict therapeutic efficacy and adverse event risks by connecting biomolecular perturbations to

the emergence of disease pathology phenotypes.

The concept of polypharmacology is an interesting attempt at treating polygenic complex diseases by targeting
multiple disease targets in a regulatory network with one or more drugs to reset the interaction circuit. Such
attempts at amelioration of the disease states also come with certain caveats of unintended consequences.
Combination drug therapy is still in the early stages of experimentation requiring co-development of
computational methodologies of calibrating dose-response curves of individual drugs within a regulatory
network. Drug discovery can be viewed as a search for agents that significantly restore near cellular
homeostasis to these pathological network perturbations (Alm and Arkin, 2003; Boran and Iyengar, 2010;
Zhao and Iyengar, 2012). These drug agents by binding to their target nodes, exert their influence, either by
attenuating aberrant signals or by modulation the signal. While target-driven drug discovery has been the
mainstay of pharmaceutical drug development campaigns for over the last three decades and continues to be
important. Network biology has added a rich repertoire to the molecular dynamics of the interactome that
enriched and richly complemented the target-driven drug discovery. The adoption of new platforms,
technologies and compute infrastructure in the pharmaceutical endeavor has led to the explosive growth of
data across the entire value chain. The adoption of Machine learning (ML)/Artificial Intelligence (Al) opens
up the limitless possibilities of delivering next-generation therapies for human diseases. Figure 1.1 gives an
overview of the current pharmaceutical drug discovery paradigm that can be recast in the systems thinking

perspective: inter-connected entities of functional sub-systems.
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Figure 1.1 Systems Perspective of Pharmaceutical R&D

The functional areas in a typical pharmaceutical workflow are represented as sub-systems of a large
complex system. The bulk of the present study is focused on the early discovery phase.

1.2 Machine Learning Models

Machine learning (ML) is the study of computer algorithms that improve automatically through experience
(Mitchell, 1997). It is seen as a subset of artificial intelligence. Machine learning algorithms build
a mathematical model based on sample data, known as training data to make predictions or decisions without

being explicitly programmed to do so.

Mitchell provided a formal definition of the Machine Learning Model, that is simple, concise, and elegant
(Mitchell, 1997)
A computer program is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Marshland (Marsland, 2014) expands upon Mitchell’s definition

One of the most interesting features of machine learning is that it lies on the boundary of several different
academic disciplines, principally computer science, statistics, mathematics, and engineering. Machine learning
is usually studied as part of artificial intelligence, which puts it firmly into computer science, understanding

why these algorithms work requires a certain amount of statistical and mathematical sophistication.
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1.2.1 Supervised Learning

Supervised learning entails learning a mapping between a set of input variables X and an output variable Y
and applying this mapping to predict the outputs for unseen data. In the supervised learning paradigm, the
goal is to infer a function f: X — Y | the classifier, from a sample data or training set A, composed of pairs

of (input, output) points, x; belonging to some feature set X, and y; € Y':

An = (xlyl)v ey (xnyn)) € (X * Y)n

Typically X € R? Rd, and y; € R for regression problems, and y; is discrete for classification problems

In the statistical learning framework of supervised learning, the first fundamental hypothesis is that the
training data is independently and identically generated from an unknown but fixed joint probability
distribution function P(x,y). The goal of the learning is to find a function P(x,y). The goal of the learning is
to find a function f attempting to model the dependency encoded in P(x,y) between the input x and the

output y. Let us denote H as a set of functions where the solution is sought: f € H.

The second fundamental concept is the notion of loss to measure the agreement between the prediction f(x)
and the desired out y. An error (or cost) function E : Y *Y — R* is introduced to evaluate this loss. Error
functions are classified according to their regularity or singularity properties and according to their ability to

produce convex or non-convex criteria for optimization. A general formulation of E is given by:

E= ) LOnfC)

(xnyn)ED

With D being the datasetand L is some distance function. The learning process is terminated when E is

sufficiently small or a failure criterion is met.

1.3 Motivation

The motivation for the present study: (1) To leverage the power of in-silico predictive modeling using machine
learning algorithms (ML/AI) to implement robust and resilient models in the early screening phase of drug
discovery. (2) To evaluate the performance and define the fit-for-purpose of these algorithms in drug discovery.
(3) To reduce research overheads (4) To reduce drug attrition rates. (5) To compress cycle times and bolster

productivity in drug discovery and development.

1.4 Building Predictive Models

First one builds prototype models for defined targets, evaluate model performance. Later, one scales the

prototype models into production-ready models and deploys such models into the drug discovery workflow.
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The compound collection from high-throughput bioassays provides the input for building the predictive

models.

1.4.1 Mapping Compounds to Oncology Drug Targets

A large collection of compounds both from public and private sources for selected oncology drug targets
derived by pooling multiple assays are assembled into discrete piles. Each pile is preprocessed for building

models (see Figure 1.2).

Compounds

-

Assays

Target

Figure 1.2 Mapping of Compounds to Oncology Drug Targets
For a given Oncology Drug Target, compounds from multiple sources and multiple bioassays are

combined.

1.5 Cheminformatics — Convergence of Chemistry, Biology & Computations

Cheminformatics combines scientific disciplines like chemistry, biology, computer science, and information
science to transform chemical and biological data into knowledge; knowledge into insights; insights into
decisions in drug lead generation, lead optimization, and drug candidate nomination. This includes storage,
indexing, and retrieval of structural information, datamining, predictive modeling, and model optimization
(Chen et al., 2018). Cheminformatics is a core discipline on its own that grew in the late 90s with the emergence
of technologies like combinatorial chemistry and high-throughput screening. One of the most significant early
concept development was the representation of complex chemical structures in computationally-compatible

‘string” structures — Simplified Molecular- Input Line Entry Systems (SMILES) (Weininger et al., 1989).
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Clagsical molecular dynamics (MD) simulations approach to biological molecules is integral to
cheminformatics, they play a crucial role in drug discovery. They help trace atomic motions that yield insights
into molecular mechanisms that typically occur in the time scales of microseconds or milliseconds, for example,
the “folding” of proteins into their native three-dimensional structure, the structural changes that underlie
protein function and interaction between a protein and a candidate drug molecule. Anton architecture of
massively-parallel, specialized supercomputers performs MD computations at astonishing time scales on the

order of millisecond — about two orders of magnitude beyond the previous state of the art (Shaw et al., 2015).

1.5.1 Combinatorial Chemistry

Combinatorial chemistry involves the generation of a large array of structurally diverse compounds, called
compound libraries, through systematic, repetitive, and covalent linkages of various chemical ‘building blocks’.
Once such compound collections are built, they can be screened for specific biological targets of interest by a
specific bioassay. Active compounds can be identified, either directly (in position-addressable libraries) or via

decoding (using genetic or chemical means) (Liu et al., 2017).

The concept of combinatorial chemistry was developed in the mid-1980s with Geysen’s multi-pin technology
(Geysen et al., 1984) and Houton’s teabag technology to synthesize hundreds of thousands of peptides on a
solid support in parallel (Houghten, 1985). One of the revolutionary developments came from the exploitation
of biological agents for the production of combinatorial libraries. Smith described the phage display peptide
library (Smith, 1985). Recent advances in DNA-encoded chemical libraries have allowed investigators to create

and decode a huge diversity of small-molecule organic, peptide, or macrocyclic libraries.

1.5.2 Chemical Library Design

The term “library design” is usually taken to mean the design process, which occurs before the chemical
synthesis, in which a set of structures are taken from a large chemical library. Usually, the chemical libraries
are created to explore the structure-activity relations of the ‘hit’ series but also improve the physio-chemical
properties — ADME (Absorption, Distribution, Metabolism, and Excretion). Diversity is an important factor
in the design of libraries. Around a common chemical core or a scaffold, multiple functional groups are
substituted. The compound structural diversity is measured, for example, by structural fingerprints or the
Tanimoto index. While this design ensures a diversity of substituents in the peripheral part of the molecule
while retaining the common core scaffold. Modern combinatorial libraries' strategies include the introduction
of multiple scaffolds and multiple peripheral functionalizations (Klein and Lindell, 2013). Other approaches
include multi-objective optimization methods capable of taking several chemical and biological criteria that
have been used in the design of compound collections. Besides, other active learning strategies have been
introduced, the core feature of these algorithms is their ability to adapt to the structure-activity landscapes
through feed-back. Many of these computational methods have greater success in the design of focussed

libraries of limited diversity(Liu et al., 2017).

19



1.5.3 Virtual Libraries and Chemical Space

By definition, virtual libraries are those virtual compounds that are generated by computational methods and
the libraries thus generated are evaluated by virtual screening, which refers to a range of in-silico techniques
used to search large compound databases to select a small fraction for biological testing. Notwithstanding
chemical or virtual libraries, the challenge remains in screening for druggable compounds, how large is the
chemical space? One of the earliest estimates of the size of chemical space came from Weininger (Weininger,
2002), who used a set of 150 substituents on hexane to estimate the size of the organic chemical space at 10%.
At the other extreme, Bohacek proposed 10° molecules by a build-up of a linear chain consisting of C, N, O,
or S atoms that consider the possibilities of 6 substitutions at every position on a 30 length chain to a total
of 6* (or ~2 x 10?*). The addition of ring closure led to an estimate of 10" molecules, and if you extend to 4
rings and 10 branch points, the combined estimate is 10% molecules (Bohacek et al., 1996). In more recent
times, data-driven approaches have gained greater traction to traditional methods. Chemical space projects
at the University of Berne have developed algorithms for exhaustively enumerating the molecular skeletons,
on bond orders, atom types, and excluding those with rules of valency or contain potentially unstable bonds
and built a database, namely, GDB (Generalized Database). GDB has been evaluated by numerous
researchers, using the distribution of compounds generated in the database, which enumerates all possible
atoms up to 17 atoms with the following equation. The most recent GDB-17 contains molecules up to 17

heavy atoms and has 166 billion molecules (Ruddigkeit et al., 2012).

Log M = 0.584N log(N) + 0.356

where M is the number of molecules and N is the number of atoms in a molecule. By using the above equation
to extrapolate to 36 atoms, the authors arrive at an estimate of 10* drug-like compounds. In another
interesting development, Chevillard and colleagues generated the reaction-oriented virtual libraries of 21
million products, by carrying out a virtual reaction on a pool of 8000 commercially available building blocks
(Chevillard and Kolb, 2015). While the promise of virtual libraries is appealing, in practical terms it has its
limitations because of the constraints imposed by the small number of validated synthetic chemical reactions

available for chemical synthesis (Walters, 2019).

1.5.4 Virtual Screening

Virtual screening can be classified into two broad categories, i.e., structure-based methods and ligand-based
methods. Structure-based methods are applicable where 3-D structural geometry coordinates of the target of
interest are available. Chemical libraries are searched for molecules that are compatible with a protein binding
site. These methods require an exploration of the ligand conformation as well as binding site compatibility.
Docking is the general term used for this process which calculates the score/energy associated with protein-
ligand interaction. Docking programs can screen several million compounds in a short time. The time required
to screen the compounds mainly depends on the size of the database, scoring function, and compute power.

The choice of the scoring function is critical in docking experiments, one of the approaches called linear
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interaction energy (LIE) approximation combines molecular mechanics (MM) calculations with experimentally
available data for the model scoring function (Kumar et al., 2015; Singh et al., 2005). The Adaptive Poisson-
Boltzmann solver calculates the electrostatic binding free energy, which accounts for the solvation energy of
the protein-ligand interactions (Baker et al., 2001; Kumar et al., 2015). One of the issues, that is still being
tackled is addressing the protein flexibility in the screening process. The soft docking methods allow a few
steric clashes by lowering the steepness of the repulsion term in the Lennard-Jones potential function (Kumar
et al., 2015). In ligand-based virtual screening, one starts with a known active molecule and searches a
chemical library (either real or virtual) to identify similar molecules. Searches can be performed for molecules
that are similar based on 2D topology, which is information on atom types and connectivity, or for molecules

with similar 3D characteristics such as shape or arrangement of pharmacophoric features (Walters, 2019).

1.5.5 High-throughput Screening

A screening procedure, typically adopts automation, microfluidics, sensitive detectors, robotics, and data
processing, at scale, for liquid handling and assay measurements. In a typical high-throughput screening
(HTS), the measurements are carried in micro-titer plates with several thousand compounds and
proteins/enzymes in micro incubator wells for specific assays. The automated systems shuffle plates from

station to station on the assembly for sample and reagent addition, mixing and incubation, and assay readouts.

The single over-arching goal in drug discovery is to find a lead compound that can be optimized to produce a
drug candidate. The acquisition, design, and screening of compound libraries are absolutely critical. The two
major strategies, which is evolved over the years in the industry, that are currently being employed are
diversity-based design and target-based design. Diversity-based design is a random collection of structurally
diverse molecules, that are selected on the basis of the cell-based phenotypic assay. On the other hand, target-
based libraries are specific to a particular therapeutic target or a family of related targets and are tailored to
modulate their function. For example, kinases, G-protein-coupled receptors, voltage-gated ion-channels, or
serine/cysteine proteases, to name a few. Fluorescence-based detection systems, which offered unrivaled
sensitivity and adaptability are being transitioned to key breakthroughs in the label-free and the development
of high-throughput mass spectrometry systems. High-throughput screening has been the mainstay of drug

discovery over decades and with these new technologies it is poised to rein in.

To more efficiently search the vastness of the chemical space, it is imperative we take advantage of the
advances in machine learning, which may help us navigate the chemical space. If we can develop a continuous
representation of chemical space, we can potentially exploit the gradients in that space to identify an optimal
region for exploration. Notwithstanding, building high-quality predictive models will dramatically improve

productivity (Walters, 2019).
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1.6 Chemical Graph Theory

Graph theory is a branch of discrete mathematics, related to combinatorics and topology. It deals with the
way the objects are connected and with all the consequences of connectivity. The connectivity in a system is
thus the fundamental quality of graph theory. Chemical graph theory is the adoption of the fundamental
principles of graph theory to chemical structures to understand their atomic properties and their biological
activities. A chemical graph, also known as ‘molecular graph’ or ‘structural graph’ is a mathematical construct
comprising an ordered pair G = (V, E), where V is a set of vertices (atoms) connected by a set of edges
(bonds) E. A graph invariant is a number, sequence of numbers, or a matrix computed from the graph
topology. There are multiple variations of representation of chemical structures as chemical graphs, depending
on the diversity of atom types, bond types, ring structures, and atom grouping that form functional groups.
Weighted chemical graph assign values to the edges to indicate the bond length and their atomic valency
Pseudographs or reduced graphs use multiple edges and self-loops to capture detailed bond valency information

(Lo et al., 2018). For any kind of a graph, we can define an adjacency matriz and a distance matriz.

The importance of graph theory for chemistry stems mainly from the phenomenon of isomerism, which is
rationalized by chemical structure theory, which accounts for all constitutional and steric isomers by using
purely graph-theoretical methods. Graph theory and theoretical chemistry are intimately related through the
molecular topology. Huckel’s MO theory and VB theory are topologically based, though steric considerations
are relevant. It is revealing to know, that HMO eigenvalues (in f units) are identical with the eigenvalues of
the adjacency matrix of the hydrogen-depleted graph (Balaban, 1985; Bonchev and Rouvray, 1991; Trinajstic,
1992). Comparing chemical graphs is a critical task in pattern recognition to map graph isomerism, subgraph
isomerism, maximum common subgraphs. Indeed, extensive studies have been done to develop practical
algorithms for this purpose. In computational complexity, polynomial-time algorithms are those, where the
computational time is proportional n (i.e., computation time is O(n?) for some constant d, where n denotes
the size of the input data. NP-hard problems are widely believed not to be solved in polynomial-time and are
often regarded normally as intractable. However, the number of vertices in a chemical graph is somewhat
limited, often below 100, they are close to NP-hard but remain reasonably tractable (Akutsu and Nagamochi,

2013).

Thus, computation of graph invariant topological indices or connectivity of molecules became important in
structure-activity modeling in drug design and drug discovery, where we seek to correlate chemical structures
to biological activity (Lo et al., 2018). There exist several types of such indices, especially those based on
distances and independent sets of vertices and edges. The Wiener and Hosoya index is arguably the best-
known global indices that describe the entire molecule. More recently, Ilic and Ilic (Ilic and Tlic, 2017) proposed
improved algorithms for computing such indices. Particularly, the design of simpler recursive procedures for
the Hosoya index of trees and acyclic graphs and better time complexity for computing other indices, for
instance, Wiener, Merrifield-Simmons, and Balban (Ilic and Ilic, 2017; Mihali¢ and Trinajsti¢, 1992). Chemical

graph theory is predicated on the premise, that chemical structures are fully specified by their graphs
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representation, as such, they contain the information necessary to model and provide insight into a wide range

of biological phenomena.

1.6.1 Associating Graphs with Matrices

A labeled (chemical) graph may be associated with several matrices, The two important graph-theoretical
matrics are the vertex-adjacency matrix and distance matrix. The vertex-adjacency matrix, A = A(G) of a
labeled connected graph G with V vertices, is a square symmetric matrix of the order of N. It is commonly

called adjacency matrix. It is defined below.

4= {1, if vertices i and j are adjacent
& 0, otherwise

The distance matrix, D = D(G), of a labeled connected graph G with V vertices is a square matrix of order

N, it is defined below.
Dy = {ll—j ifi #j

0, otherwise

Where [;; is the length of the shortest path (i.e., the distance) between the vertices i and j in G (Mihali¢ and

Trinajstié, 1992).

1.6.2 Graph-Based Molecular Descriptors

A graph-based molecular descriptor, commonly know as the topological index (TI), is a graph-theoretic

invariant characterizing numerically the topological structure of a molecule (Ernesto and Bonchev, 2014).

The Wiener index of a (molecular) graph is a TI is defined by

Where d;; is the shortest-path distance between vertices 7and j

The Hosoya index of a (molecular) graph is a TI is defined by

H = z PG, D)
i=0

Where P(G, i) is the number of selection of I mutually non-adjacent edges in the graph, By definition
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P(G,0) =1and P(G,1) =m

The Zagreb indez of a (molecular) graph is a TI is defined by

n
My= (&)
j=1
Mz = Z 6i,6j
ijEE

The Randi¢ index of a (molecular) graph is a TI is defined by

X= ) (567

ijEE

The Kier and Hall molecular connectivity index of a (molecular) graph is a TT is defined as

k, = Z (6:8;6,..)"1/?

Let k= 0.1.2.3,... is the number of adjacent vertices of degrees §; §; 4, ... in the graph G, where the summation
is taken over all subgraphs of the size k, and the null term is the sum of all the vertex degree (the total

adjacency of G).

The Balaban index of a (molecular) graph is a TI is defined as

m
=51 2, G0

ijE€E

where C'= m —n + 1 is the cyclomatic number of the graph

The atom-bond connectivity index of a (molecular) graph is a T is defined as
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1.6.3 Chemical Descriptors

Chemical descriptors are a discrete numerical representation of the molecular structure which provides feature
vectors for predictive modeling. Besides, predictive modeling can be useful for molecular data mining and
compound collection structural diversity analysis. Fundamentally it is a structural characterization that can
range from simple graph invariants like atom counts, atom types, bonds types, number of bonds, molecular
topology to quantum mechanical properties derived from molecular electron wave function (Todeschini and
Consonni, 2008), for example, molecular surface charge, polarizability, dipole moment and other
thermodynamic properties. Chemical descriptors can be broadly classified into 1-dimensional (1D), 2-
dimensional (2D) or 3-dimensional (3D) descriptors. One-dimensional descriptors capture the bulk properties,
i.e., molecular weight, molecular refractivity, logP (logarithm of the octanol/water partition coefficient); two-
dimensional descriptors describe the molecular topology, in these approaches the molecule is often regarded
as a graph annotated with complex properties, which allows several graph-based algorithms (Cook and Holder,
2007; Wilson, 1996) to compute graph invariant indices like the Wiener, Hosoya and Balaban and several
other descriptors (Fechner et al., 2010); three-dimensional descriptors inform the spatial disposition of different
biologically active and inactive conformations, that are not directly accessible by experimentation. At the
core, is the pharmacophore mapping, an ensemble of steric and electronic features that are optimal for
supramolecular interactions. Typically, hydrophobic regions, aromatic rings, lipophilic centers that participate
in hydrogen bond donor-acceptor network, and ionic interactions between chemical ligand and the biomolecule.
They have extracted chemical features from 3D coordinates representation, hence very sensitive to steric
variation. Well-known 3D descriptors include autocorrelation descriptors, substituent constants, surface
volume descriptors, and quantum-chemical descriptors (Guha and Willighagen, 2012; Lo et al., 2018; Oprea
et al., 2007). Although 3D descriptors allow more detailed analysis, the key limitations are that it is
computationally an expensive exercise for conformer generation and no absolute guarantee the predicted
conformer is biologically active. Fourches and Ash have demonstrated the utility of yet another class of
descriptors — the 4D descriptors, which is a formal extension of 3D descriptors. In a molecular dynamics (MD)
simulations experiment, they computed 3D descriptors over a grid box based on the 20 ns trajectory and
showed that 4D descriptors can effectively differentiate the most active ERK2 inhibitors from the inactive
ones, with superior enrichment rates (Ash and Fourches, 2017). However, the conformation-dependent
characteristics of flexible molecules and their dynamic interactions with the biological target(s) are not
encoded by these descriptors, leading to limited prediction performances and reduced interpretibility. It must
be clearly mentioned that here is renewed resurgence in this methodology, with the advent of GPU-driven
high performance computing environments (Fourches and Ash; 2019). Notwithstanding, 2D descriptors are
still the work-horse for drug discovery in the industry in the area of advanced predictive modeling for its

computational speed, reliability, consistency and scaling metrics.

1.6.4 Chemical Fingerprints

Chemical fingerprints are a common method to combine the presence or the absence of different substructures

in a molecule into one descriptor (Todeschini and Consonni, 2008). They were originally designed to assist in

25



chemical database substructure searching (Christie et al., 1993) but later used for analytical tasks, such as
similarity searching (Schulz, 1992) and, clustering (McGregor and Pallai, 1997) and classification problems
(Hastie et al., 2009), akin to what chemical descriptors are used for the latter two tasks (described in the
earlier section). They are usually represented as a vector of bits with a fixed length that denotes the presence
of a specific structural pattern. Many fingerprint implementations can be classified as non-hashed and hashed
fingerprints. The non-hashed fingerprints are also known as structural keys are mainly based on a predefined
dictionary of substructures, such that there is a unique mapping between a bit vector position and a specific
hydrogen-stripped substructure. If the molecule has a predefined feature, the bit position corresponding to
this feature is set to 1 (ON), otherwise, it is set to 0 (OFF). It is worth mentioning that structural keys cannot
encode a structural feature that is not present in its pre-defined dictionary. The two commonly used structural
keys are MACCS (Molecular ACCess System) and PubChem fingerprints. The MACCS was developed by
MDL information systems (now Dassault Systemes/Biovia). There are two sets of MACC keys, one with 960
keys and the other containing a subset of 166 keys, the shorter set is available to the public (Durant et al.,
2002; “MDL Keyset Technology,” n.d.). These 166 public keys are implemented in several open-source software
packages, including RDKit (Landrum, 2012), OpenBabel (“Open Babel,”), CDK (Steinbeck et al., 2006), etc.
On the other hand, the PubChem fingerprint is a publicly-funded effort (“The PubChem Project,” 2017),
which is an 881-bit-long structural key. The keys can be accessed either interactively on the PubChem

homepage or programmatically via PUG-REST web services.

Hashed Fingerprints are an alternative to the structural keys. Contrary to structural keys, hashed fingerprints
do not need a predefined fragment dictionary. Instead, they are generated by enumerating all the possible
subgraph fragments of topologically unique paths of different lengths of the molecule (composed of atoms and
bond symbols). Each of these fragments is converted into canonical SMILES string representation and is
passed to a “hash” function that generates unique fixed-length hash codes by standard hashing algorithms.
Following which the random generator integer values are used to set the position in the bit string, which is

set to 1 for a specific fragment pattern.

Hashed fingerprints may be further classified into topological or path-based fingerprints and circular
fingerprints, depending on the way the sub-graph patferns are enumerated. As the name implies, path-based
fingerprints count the topological structures of various unique bond lengths of atoms of unique composition.
Although, this may appear to be uniform randomly distributed throughout the length of the fingerprint
(“Daylight Theory: Fingerprints,”). It must be mentioned, that there are instances of ‘collision’ of assignment
of pattern to the same position, which may not be a trivial task. The circular fingerprints are generated by
considering the “circular” environment of each atom up to a given “radius”. For example, the circular
fingerprints are the extended-connectivity fingerprints (ECFPs) (Rogers and Hahn, 2010). ECFPs are recently
developed fingerprint methodology explicitly designed to capture molecular features relevant to molecular
activity. While not designed for substructure searching, they are well suited to the tasks related to predictive
modeling and gaining insights into the drug activity. ECFPs are generated by using a variant of Morgan’s
algorithm (Morgan, 1965), which a method for solving the molecular graph isomorphism problem (i.e., in

graph theory isomorphism is a bijection between the vertex sets of two graphs G and H
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FV(6G) = V(H)

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H. This

kind of bijection is commonly described as “edge-preserving bijection”).

There have been tremendous efforts made, both in commercial and open-source communities to implement a
variety of tool kits to encode the decomposition of chemical graphs into chemical fingerprints. Todeschini’s
group is one of the pioneers in the implementation of an exhaustive and comprehensive collection of both
chemical descriptors and chemical fingerprints in their Dragon software package (Mauri et al., 2006), the
commercial version of which, is referred to as Kode cheminformatics (“Kode - Chemoinformatics,” n.d.). Other
commercial packages include Daylight fingerprints (“Daylight Theory: Fingerprints,” n.d.) and ChemAxon
(“Chemical Fingerprints - ChemAxon Documentation,” n.d.). JCompound mapper is an open-source Jave
library and a command-line tool for a variety of fingerprints, which implemented popular fingerprinting
algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation
fingerprints (e.g., CATS2D), radial fingerprints (e.g., Molprint2D), geometric Molprint, atom pairs and
pharmacophore finger prints (Hinselmann et al., 2011). The Cinfony platform is an effort to combine several
open-source cheminformatics tool kits behind one common interface, while openBabel, CDK, and RDKit share
the same core functionality, they support a different set of formats and force fields (O’Boyle and Hutchison,
2008). The main goal of the Chemfp project led by Dalke is to promote the FPS format, as a de facto file
format for the text-based exchange format for dense binary cheminformatics fingerprints, which is very useful
in Tanimoto sub-structure searching, which has demonstrated some impressive benchmarking metrics (Dalke,
2019). ECFPs circular fingerprints have a number of useful qualities: 1) they are very rapidly calculated; 2)
they are not predefined by a dictionary of structural features, so essentially they generate an infinite number
of different molecular features (including stereochemical information); 3) their features represent the presence
of a particular substructure, allowing more straightforward interpretation of the analysis; and 4) the ECP
algorithm can be tailored to generate different types of circular fingerprints, optimized for various uses. Only

recently, it is beginning to be adopted and validated for more sophisticated machine learning approaches.
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Chapter 2: Approach
“I doubt, therefore I think, therefore I am.” — Rene Descartes

2.1 Data Requirements

By definition, data requirement is a prescriptive top-down approach that emphasizes, that solutions to a
problem, begin with a problem statement, then the scope, and the approach. In this specific instance, the
problem statement is how to accelerate drug development, which is a protracted and expensive undertaking
by the adoption of machine learning and predictive modeling in the early stages of drug discovery. Predictive
modeling is a learning problem, where a function learns the pattern in the data and maps the inputs to outputs.
The first and the foremost requirement is data per se, for the explicitly stated use case; candidate data sources;

data processing; data quality assessed using bonafide assessment procedures.

2.1.1 Data Sources

The primary source of the data used in the present study is ExCAPE-DB, which was built by Astra-Zeneca,
Sweden (Sun et al., 2017) and made available for the work undertaken. ExCAPE-DB is an integrated large-
scale dataset for facilitating big data analysis in chemogenomics for drug discovery. PubChem (Kim et al.,
2019) and ChEMBL (Gaulton et al., 2017) are examples of large public domain repositories for storing small
molecules and their biological activity data. Besides large pharmaceutical companies maintain their data

collection originating from their in-house HTS screening campaigns and drug discovery projects.

2.1.2 Data Preprocessing

While PubChem and ChEMBL are invaluable resources in the public domain, leveraging the combined
resources entailed an enormous amount of preprocessing of data and application of standardization routines.
ExCAPE DB helped in the mitigation of some of the inherent shortcomings in these databases.
Standardization of the PubChem and ChEMBL chemical structures was accomplished by using the AMBIT
cheminformatics platform (Jeliazkova and Jeliazkov, 2011) and the Chemistry Development Toolkit Library
(Steinbeck et al., 2006). It includes many structure preprocessing options like handling stereochemistry,
implicit hydrogens, SMILES, InChl (International Chemical Identifier) generation, and several other chemical
structural transformations. The bioactivity standardizations explicitly limited bioassays to a single target;
The assay target was limited to human, rat, and mouse species; data points missing a compound identifier
(CID) were removed; only active compounds whose dose-response value equal to or lower than 10 uM were
retained; compounds that were labeled as inactive in PubChem screening assays; assays run with single
concentration were also kept as inactive records; slightly relaxed Lipinski rule-of-five compounds were
included; and finally the chemical structural identifiers (SMILES, InChl, and InChiKey) generated after
standardization routines were joined for creating the curated dataset, which is representative of chemical space

relevant for predictive modeling in drug discovery (Sun et al., 2017).
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2.1.3 Processing Bioassay Data: Oncology Drug Targets

Since the emphasis is on profiling oncology drug candidates, the data was retrieved for each of the validated
lists of oncology-specific drug targets: their compound collection and the associated bioassays (see Figure 2.1).
These validated targets are implicated in human cancer cell-signaling, etiology, and pathology. To our
knowledge, this is for the first time, results from primary screens from multiple bioassays platforms, from
large-scale compound collections, being pooled for analysis. However, only a small subset of these drug targets,
which met the criteria of completeness of data, were pursued for the downstream processing. Each entry has
a unique compound ID, SMILES representation, original assay 1D, Inhibitory concentration (pXC50), and
activity flag (active vs. inactive). The bulk of the processing was done with R scripts written within the
RStudio Integrated Development Environment (IDE). R is an open-source statistical programming language.
Other software tools include JMP from SAS, ChemAxon, Data Warrior, and Dragon for computing molecular
fingerprints and descriptors. Data cleansing pipeline scripts are a series of data manipulation steps that include
— removal of highly correlated columns; duplicate records are removed; columns with zeros in all the rows are
removed; rows with missing values are removed; columns with constant values are removed; columns with
very low standard deviation (<0.001) are removed. This is is an overall framework for the present study
utilizing - Oncology target drug candidate datasets, features, and modeling algorithms (see Figure 2.1).
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Figure 2.1 The overall framework for the present study
This shows at a glance all the salient aspects of the study - oncology target drug candidate datasets, feature
extraction methods, matrix sparsity, and the algorithms for modeling.

2.2 Computing Features

The feature set for predictive modeling is built by computing chemical fingerprints and chemical descriptors
for each compound entry in the dataset. Initialization scripts remove duplicate records, strip irrelevant
columns, and retain only compound 1D, SMILES, and Activity flag (class) columns, which is converted into
a *.sd file (structure description) for ingestion by the Dragon engine to compute a feature set (Mauri et al.,

2006). (see Figure 2.2)
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2.2.1 Computing Chemical Fingerprints

In this study, we have calculated hashed molecular fingerprints and extended connectivity fingerprints (ECFP).
Path-based fingerprints are generated identifying all the linear paths of the molecule while ECFP is generated
exhaustively identifying circular fingerprints grown radially from each heavy atom of the molecule (Rogers

and Hahn, 2010).

Both fingerprints types are calculated by defining a set of options like fingerprint size, minimum and maximum
length of the identified fragment and an extensive list of atom properties to be considered to differentiate

fragments (e.g., atom type, aromaticity, formal charge, connectivity, and bond order)

2.2.2 Computing Chemical Descriptors

In this study, we have computed about 1600 molecular descriptors that are divided into 20 logical blocks. The
chemical behavior encoded within a symbolic representation of a molecule is extracted through computable
data structures as the physicochemical properties of the molecule, for example, atom type, functional group,
fragment count, hydrogen-bond acceptors and donors, number of rotatable bonds, charge, polarizability,
aromaticity, and topological surface area (TPSA. 3D descriptors are not included in the analysis. To elaborate
further, we can briefly describe a few of these blocks of chemical descriptors and what they encode (Dehmer

et al., 2013).

1. Constitutional descriptors. This block reflects the composition of the molecule without any
geometrical information, e.g., number of atoms, bond rings, specific atom types, rotatable bonds, etc.

2. Topological indices: These are structural graph measurements that take various structural features

into account, e.g., distances and eigenvalues. The first topological index has been coined by Hosoya

(Hosoya, 1988). The first and second Zagreb indices (Khalifeh et al., 2009).

Connectivity indices: These are calculated from the vertex-degree of a molecular graph, e.g., Randic

index (Randié¢, 2001).

4.  Edge adjacency indices: These indices are based on the edge adjacency matrix of a graph. The

w

resulting descriptor-value is the sum of all edge entries of an adjacency matrix of a graph. Balban
(Balaban, 1985) developed several indices by using graph-theoretical matrices.

5. Walk path counts: These indices are defined by counting paths or walks of a graph. The term walk
refers to random walks that are based on probability measures described by Todeschini and Consonni
(Todeschini and Consonni, 2008).

6.  Information indices: These measures are based on Shannon’s entropy. The assigned probability values
to a graph are based on partition methods by using several graph invariants such as vertices, edges,
vertex degree, and distances have been used. Bonchev-Trinajstic index (Ernesto and Bonchev, 2014)
is one such information index. Dehmer developed partition-independent information-theoretic

measures for graphs (Dehmer et al., 2013).
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7. 2D Matriz-based indices: These descriptors are calculated based on the elements of so-called graph-
theoretic matrics (Mihali¢ and Trinajsti¢, 1992)using several algebraic operations. The Balaban-like

indices inferred from the adjacency matrix are important examples of this category.

Extended Connectivity Fingerprints

E They are representation of
patterns in a molecule by a string of 0s
Face Detadiion and 1s, which correspond to presence
T i or absence of a specific molecular
feature — atom types or functional
groups

A sample of features (fingerprints)

.
L
(4249 X 10847)
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= -z
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- numerical representation of chemical z T 5 TS TR L
Feature Classification properties encoded within a symbolic ]
representation of a molecule —
quantum mechanics properties like
dipole moment, atomic charges,
polarizability, polarity, ionization
potential, electrostatic potentials,
molecular energy values, besides other
topological and geometric properties.

(4249 X 2011)

Figure 2.2 Computing Features|

The figure describes the two approaches in computing features of chemical compounds: 1. Extended
Connectivity Fingerprints (top) 2. Chemical Descriptors (bottom). On the left is an intuitive visual of how
facial features are used in facial recognition, in the middle is a sample of data with rows representing
records and columns representing features and on the right is the depiction of a binary representation of
fingerprints of presence or absence of a chemical group and numerical representation of theoretical
quantum mechanical description of chemical properties of a compound.

2.2.3 Feature Engineering — Full Model vs. Reduced Models

Features are the numeric or categorical representation of the raw data. Feature engineering is the process of
formulating the most appropriate features given the data, the task, and the model to make predictions. Feature
engineering alludes to the task of computing features as in graph-theoretic invariants representing chemical
structures and also extracting features from raw pixels, as in image processing. There are several aspects of
feature engineering that are relevant to modeling tasks. Understanding the feature distribution of the
individual features is critical in the detection of information redundancy, when features are highly correlated
and erroneous data such as outliers. Models with smooth function are sensitive to the scale of feature inputs,
for example, k-means clustering, nearest neighbor methods, radial basis function (RBF) kernels (Zheng and
Casari, 2018). The distribution of the input features matters in some models more than others. For instance,
the training process of a linear regression model assumes the prediction errors are distributed like Gaussian.
Feature transformation, which is also referred to as normalization is another aspect of feature engineering.
For example, log transforms is an example of a family of transformations know as power transform used for
variance stabilizing for correcting heavy-tailed distribution that places probability mass in the tail range
compared to Gaussian distribution. Standardizing features so that they are centered around 0 and a standard

deviation of 1 is important in many machine learning algorithms. Intuitively, one can make a connection
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between feature set to gradient descent (first-order optimization algorithm often used in logistic regression,
Support Vector Machines (SVM) and Neural nets) on weight updates, which would suffer latency, must the

values of the features x; be on different scales (Raschka, 2014a).
— 9] _ i DY, D
Awj = =5, = nXi(t' - 0M)x;

Such that w; := w; + Awj;, where 1 is the learning rate, t is the target class, and o the actual output. In fact,

the tree-based classifiers are the only ones that are not sensitive to feature scaling.

2.3 Modeling Work Flow

The overall modeling workflow begins with and involves the following steps: retrieval of data from the
databases, pre-processing, processing, exploratory data mining, data normalization, data partition for training
and testing, creating sparse matrices, building the model using different algorithms (Logistic Regression,
Support Vector Machine (SVMs), Naive Bayes, Decision Trees — CART, Random Forest, XGBoost), cross-
validation, testing model performance, Optimize model hyperparameter tuning, and evaluating model
performance on test data with various metrics. In a typical large-scale deployment, the prototype model is

scaled. (see Figure 2.3 for details)
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Predictive Modelling — A Work Flow
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Figure 2.3 The Complete Modeling Workflow
This is a schematic of the complete modeling workflow from preprocessing, through modeling and
evaluation of model performance.

2.4 Evaluation Methods

The first requirement for comparing performance between learning models is to ascertain methods or criteria
for evaluation or benchmarking. This section will present a number of common statistics for measuring the
performance of machine learners. The statistics will range from simple model accuracy, misclassification error,

to measures of specific characteristics of the model like cross-validation, and Receiver Operator Curves (ROC).

2.4.1 Confusion Matrix

In a typical binary classification problem, a confusion matrizis a 2 x 2 frequency table used to categorize
class predictions according to how they match with class assignments in the reference data. By convention,
the columns are the reference, and rows are the predictions. There are instances, where columns are rows are
flipped. The two classes that occupy the cells on the diagonal are labeled True positive and True Negative.
The off-diagonal cells are empty. Upon prediction, the numbers shuffle and they now occupy the off-diagonal
cells and they are labeled False Negative and False Positive. If the prediction was 100% accurate then the off-
diagonal cells will be empty, which rarely happens (Bishop, 2006; Hastie et al., 2009; Kuhn and Johnson,
2013).

True-positive (TP): The original class is positive and the prediction is positive.
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TP = ny; = [{x; 3, = ¥i = c1}]

True-negative (TN): The original class is negative and the prediction is negative.
TN = ny; = [{x; [ = yi = ¢z}

False-positive (FP): The original class is negative and the prediction is positive.
TP = ny; = [{x; %, = c1 and y; = ¢ }|

False-negative (FN): The original class is positive and the prediction is negative.

TN = ny1 = [{x; |, = c;and y; = ¢, }|

2.4.2 Accuracy vs. Error (Misclassification)

There are many measures of performance in machine learning that have been developed for specific purposes.
Accuracy is perhaps the simplest one, describing the success rate of a prediction. It is defined as the proportion

of correct classifications in relation to all classifications made

Accuracy = (TP + TN )/(TP + TN + FP + FN)
Error or Misclassification = (FN + FP)/(TP + TN + FP + FN)

The terms TP, TN, FP, and FN refer to the number of times the predictions fell into

each of these categories.

2.4.3 Sensitivity, Specificity, False Negative Rate, False Positive Rate, Precision

Sensitivity: True Positive Rate
The true positive rate, also called sensitivity or recall, is the fraction of correct predictions with respect to all

points in the positive class:

TP TP
TPR = recallp = TP+—F]V = n—
1

Where n, is the size of the positive class

Specificity: True Negative Rate
The true negative rate, also called specificity, is the fraction of correct predictions with respect to all points

in the negative class:
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TN TN
TNR = recallN = m = n—
2

Where n, is the size of the negative class

False Negative Rate

The false-negative rate, is the fraction of correct predictions with respect to all points in the positive class:

__FN__FN_., _
_FN+TP = n = sensitivity

FNR
False Positive Rate

The false-positive rate, is the fraction of correct predictions with respect to all points in the negative class:

_ _FP_ _
“FPYFTN " m, specificity

FPR
Precision

The precision is the fraction of correct predictions with respect to all points in the positive class:

TP _FP

P o s - _
recision TP + FP n

2.4.4 Cross-Validation (CV)

It is a standard technique in model validation in machine learning. This is accomplished by partitioning the
dataset D into K chunks called folds, the procedure is referred to as K-fold cross-validation. The training set
R, is formed by K — 1 chunks, and the last chunk serves as the validation set V. In cross-validation, we iterate
through all the combinations of assignment to R and the procedure is repeated for all the K partitions for the

validation set, and the performance of the model is averaged for K runs.

The performance of the predictor fafter training is assessed on the validation set V. We could elaborate this
as follows, for each partition k the training data R® produces a predictor f® | which is then applied to the
validation set V® to compute the empirical misclassification risk R(f®, V&) After cycling through all the
partitions, we compute the average generalization error of the predictor. Cross-validation approximates the

expected generalization error (Deisenroth et al., 2020).

K
BRG] = ) RO,V )
k=1
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Cross-validation can be computationally expensive, especially with very large datasets, however, given the

present compute scalability this may not be an issue.

2.4.5 ROC Curve — Vizualization of Model Performance

The Receiver Operator Characteristic (ROC) curve is by far, the most critical measure for assessing the
performance of classifiers when there are two classes. It is a graphical plot that illustrates the diagnostic ability
of a binary classifier, as its discrimination threshold is varied. Visualizations are often helpful for human

comprehension.

The ROC curves are created by plotting the false-positive rate (1-specificity) a-axis against the true positive
rate (sensitivity) y-axis. The fundamental basis for the ROC curve is the probability distribution of true
positives vs. true megatives in the sample at different thresholds i.e, cut-off values that separate samples into
two discrete classes. Under ideal conditions, when the classes are completely separated, the distributions do
not overlap, otherwise, they begin to overlap. These probability distributions change depending on the elected
thresholds that impose binning boundaries that result in spillage of true-positives into the megatives bin and
therefore acquire the label of a false-negative. Likewise, true-negatives spill into the positives bin and get the
label false-positive. It can also be thought of as a plot of the power as a function of the Type 1 Error of the
decision rule (when the performance is calculated from just a sample of the population, it can be thought of
as estimators of these quantities). ROC curves can be generated by plotting the cumulative distribution
function (area under the probability distribution from —oo to the discrimination threshold) of the detection
probability on the y-axis versus the cumulative distribution function false positive probability on the x-axis.
A ROC space is defined by FPR and TPR as r and y axes. Since TPR is equivalent to sensitivity and FPR
is equal to 1-specificity, each prediction is an instance of a confusion matrix and represents one point in the

ROC space.

The best possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the
ROC space, representing 100 sensitivity (no false negatives) and 100% specificity (no false positives). The
point(0,1) is also called a perfect classification. A random guess would give a point along the diagonal line,
the so-called line of no discrimination. An important feature of ROC curves is that they can naturally be
reduced to a single quantitative, index measure for assessing the performance of the model is the Area Under
the Curve (AUC) (Junge and Dettori, 2018).

2.5 Model Complexity and Generalization

Model complexity in machine learning models refers to the number of degrees of freedom in a learned model,
often measured as the number of adjustable weights or parameters in the architecture of doing the learning. A
very large number of trainable parameters with limited training samples leads to the ‘memorization’ of

patterns in the data in such exhaustive detail (including aberrant noise), specific to examples in the training
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set but not broadly representative of the larger population, from where samples are drawn. Consequently, this
leads to building complex models that perform well on the training set but do very poorly on out-of-sample

data. Thus, they suffer from not being readily adapted for generalization (Sejdinovic, 2015).

2.5.1 Bias Variance Tradeoff

In general, machine learning models display bias-variance tradeoff, a property where predictive models with
lower bias in parameter estimation have a higher variance of the parameters across the sample, and vice-versa.
The bias-variance problem is the tension of trying to simultaneously minimize these two sources of error that
often, interfere with the ability of the supervised learning algorithms from generalizations beyond the training
set (Bishop, 2006; Bruce and Bruce, 2017; Kohavi and Wolpert, 1996).

Intuitively, the bias of a classifier refers to the systematic deviation of its predicted decision boundary from
the true decision boundary. In other words, it measures how good is the predicted value to the actual value.
On the other hand, the wariance measures how different are the predictions of each of the bootstrapped
training sets from the actual values, which refers to the deviation among the learned decision boundaries over
different training sets (Bruce and Bruce, 2017).

Formally, given a training set, D = {x;,y;} ™,, comprising of n points x; € R %, with the corresponding class
y;, a trained model M predicts the class for a given test point x. A commonly used loss function for

classification, which assigns a value of 0 or 1.

0if M(x) =y
Ly, M(x)) = {1 if M(x) #y

If the prediction is correct, the value is zero and one otherwise. Another commonly used loss function is the

squared loss, defined as

Ly, M(x)) = (y — M(x))?
Minimizing the cost function is the goal of any optimum classifier. Formally, M depends on the training set,
given the test point x, we denote the predicted value as M(x, D), E, is the expectation loss of class y and

given as:
Ey[L(y'M(x))vaD] = Ey[(y - M(X,D))2|X, D]

To encapsulate the idea, an ideal classifier is one that balances the bias-variance trade off and can be

graphically represented as one with low bias and low variance.
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2.5.2 Regularization

Briefly, regularization is a technique for reducing the model complexity and expanding its ability for
generalizability. It does this by restricting the degrees of freedom in the model. To set the context, the original
goal in an unregularized model is to minimize the cost function i.e, we want to find feature weights that
correspond to the global minima of the first-order optimization of a differentiable function (using gradient
descent). In this context, we add a penalty term to the cost function (J). Intuitively, we can think of
regularization as a penalty against model complexity. Increasing the regularization strength penalizes large
weight coefficients. The main goal is to attenuate the noise while modeling the pattern in the data, which
translates to preventing overfitting the model. Overfitting leads to erosion of the generalization of the model.
We can also think of regularization, from bias-variance tradeoff, as adding (or increasing the) bias, if the
model suffers from high variance. On the other hand, high bias leads to model underfitting (Alex Smola and
S.V.N. Vishwanathan, 2008; Deisenroth et al., 2020; Kuhn and Johnson, 2013; Sejdinovic, 2015). A generic

cost function may be written as:

n
1 L
Costy,, = EZL(y(l),y(l))

i=1

Regularization is a loss function with an additional penalty term, it turns out this is the L2 norm.

n

1 S A
Costy,p, = EZL(y“),y(‘) )+ - w}

=1

The goal is the minimization of the loss function and the penalty term, by minimizing the combined expression
we are seeking solutions where w is closer to 0. The hyperparameter A, adjusts the tradeoff between low
training loss and having low weights. Regularization constrains the gradient descent by weight shrinking or

decreasing the value of the feature weights (Hastie et al., 2009; Raschka, 2019).

2.5.3 Ridge

This is by far the most common type of regularization, where the regularizer is a squared L2 norm ||w/||?, this
is called L2 or Ridge regularization (Hoerl and Kennard, 1970). The imposition of this constrain results in
decreasing the value of the coefficients and tend toward zero but does not become absolute zero, as the value
of lambda becomes larger. Shrinking the coefficients leads to a decrease in the variance. The net effect is
decreasing the model complexity. It is most commonly used in regression implementations like linear regression
and logistic regression. Logistic regression use L2 regression by default. It is also widely adopted to other

algorithms like the perceptron. The combined function is still a convex function.
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n
1 N A
Costy,, = - E L(y(l),fl(‘))+ - E W]-Z
i=1 I

2.5.4 LASSO

Unlike ridge regularization, LASSO, which stands for Least Absolute Shrinkage and Selection Operator is a
L1 norm regularizer (Tibshirani, 1996). Thus, this penalty term to the loss function is simply a summation of
the absolute weights of the features. Interestingly, this penalty term shrinks the value of some of the feature
coefficients to absolute zero. Consequently, this leads to the elimination of a few features. Thus LASSO is
useful for dimensional reduction. Enforcing sparsity constraints on weights can lead to simpler and more

interpretable models. LASSO which may be expressed as:

n
1 N g A
Costy,p, = T—lz,ll(y(‘),y(l))-i- " Z lwj|
i=1

J

2.5.5 Elastic Net

Elastic Net emerged as a regularizer that combines the attributes, both from ridge and LASSO regularization.
This was also an attempt to address some shortcomings of LASSO, whose feature selection was dependent on
the data and is often unstable (Zou and Hastie, 2005). Elastic Net outperforms the LASSO and has a similar
representation of sparsity. The other interesting feature in Elastic Net is that its highly correlated predictors

tend to be in or out of the model altogether. The Elastic Net may be written as:

n
1 S A A
Costy,p, = - E L(y®D,y®) + - E wi + - E |wi
i=1 j

J

2.5.6 Random Neuron Drop

Dropout is a regularization technique for reducing overfitting in neural networks by preventing complex co-
adaptations on the training data. Neural networks and deep neural nets with a large number of parameters
are very powerful machine learning systems (Hinton et al., 2012; Srivastava et al., 2014). However, these
implementations are highly susceptible to overfitting issues because of the access to a large pool of parameters.
In this technique, a single model can be used to simulate a large number of different network architectures by
randomly dropping out nodes during training. Dropout is a case of simulation a sparse activation from a given
layer, which forces the network to learn from sparse representation, which in effect, emulates model activity
regularization, conceptually akin to LASSO. The dropout method has been successfully used in multiple
classification tasks ranging from computer vision, speech recognition, and text classification (Srivastava et al.,

2014). In this thesis, we have applied this regularization to chemical representation data.
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Chapter 3: Evaluation of Algorithms

“All models are wrong, but some are useful.”— George E.P. Box

The core objective of this thesis is to evaluate some of the machine learning algorithms that can be applied in
drug discovery. The choice of algorithms must be based upon the problem at hand and algorithms that fulfill
the criterion of fitness-for-purpose. Many practical problems require an exhaustive search through the solution
space, which are represented as combinatorial structures such as permutations, combinations, set partitions,
integer partitions, discrete classes, and trees. The combinatorial algorithms and graph-theoretic models have
applications in chemistry, in the enumeration of isomorphic or equivalent objects in the computation of
molecular descriptors and fingerprints in predicting biological activity. The ability to predict a molecule’s
biological activity by computational means is central to drug discovery. Some of the more sophisticated
machine learning algorithms include Support Vector Machine (SVM), Naive Bayes, Artificial ~ Neural Nets
(ANN), and Ensemble Classifiers which are leveraged in addressing problems of set partitions or classification.
A case can be made, that theory and application are mutually dependent. The algorithmic community cannot
be detached from the reality of the applications, in by making theoretical assumptions, suitable for proving
theorems and designing new algorithms. As much, practitioners of ‘application’ must be sufficiently
sophisticated in math under the hood for critical interpretations. The bulk of the emphasis in the present
study, will be on the application of these algorithms in solving practical problems in cheminformatics of drug

discovery and much less on the algorithmic theory (Nayak and Stojmenovie, 2008).

3.1 Exploratory Visualizations

Exploratory visualizations are visual interrogations of initial data before embarking on the task of model
development, with the explicit mandate to uncover patterns, pick anomalies, check missing data, probability
distributions, collinearity diagnostics, and outliers among other things through aggregated summary statistics

and graphical representations.

3.1.1 Distributions and data normalization

Sample distributions give a quantitative characteristic of the variables in the data, such as sample mean,
sample variance, sample standard deviation, sample skewness, sample kurtosis, and sample outliers. Outliers
are sample data values that are outside the areas of the distribution and correspond to areas of probability
density function with low density. Box plots are useful in locating outliers in the data. Sample feature
distributions of representative sample features and the box plots are shown (Figure 3.1). In many datasets in
the study, the features are in the high dimensional space (ranging from 200 — 1600). Another common aspect
of the data is normalization, whose goal is to transform features to be on the same scale. Normalization helps
in improving the model performance and training stability of the model. Many machine learning algorithms

like logistic regression, support vector machine (SVM), and neural nets use first-order optimization techniques
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like gradient descent and stochastic gradient descent. Normalization of features in the data, usually help in
faster convergence of the optimization algorithms to the local minima. From the plots, we see that the data
more or less behaves like a typical normal distribution. We also explored different normalization techniques,
for example, range transform, Z-transform, Box-Cox transform (Box and Cox, 1964), and Yoe-Johnson
transform (Yeo and Johnson, 2000), and concluded that data normalized by range transform produced better
performing models. Thus, range transform was uniformly applied to all the datasets with continuous variables

in the present study.
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Figure 3.1 Feature Distributions and Box-plots
(A) Normal distributions of data normalized by range transform; (B) Box-plots of range transform; (C)

Normal distribution of data normalized by Z-transform; (D) Box-plots of Z-transform.

3.1.2 Collinearity Diagnostics

Multicollinearity is a statistical phenomenon in which the feature variables in a machine learning model are
highly correlated. The existence of high collinearity among the feature variables inflates the variances of the
parameter estimates of the model and consequently results in incorrect inferences about the relationship
between the explanatory variables and the response variable. The correlation matrix provides direct
visualization of the collinearity in the data. As a standard preprocessing practice, we remove highly correlated
columns in the data (drop one of them). To demonstrate, we selected a random sample of 100 features in a
sample dataset free of collinearity (r >= 0.67) as seen in the correlation matrix plot (see Figure 3.2 with

reduced intensity except along the diagonal which are correlations of a feature with itself).
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Figure 3.2 Feature Correlation Plot
Highly correlated features correlated (r >= 0.67) were removed. The correlations plots of (A) a sample of
10 random features and (B) a sample of 100 random features are shown. The positively correlated features
are color-coded blue and the negatively correlated features are red. From the intensity of the dots, it is
clear the highly correlated columns are removed. The diagonal represents the correlations of a feature with
itself, as expected, which are highly correlated. The plot is symmetric along the diagonal, only the upper

half is shown.

3.1.3 Missing Data and Statistical Imputations

Missing data (NA) is often a vexing problem in building machine learning models, real-world data often suffers
from these limitations. The inability to spot these anomalies in the early stage of exploratory data analysis
can lead to building unstable models. As a preprocessing routine, we have carefully removed these
inconsistencies in the datasets. There are many statistical imputations techniques (Little and Rubin, 2020)
and libraries available in R to remedy the situation, however, we did not have such issues with our datasets
that called for such remediation. Besides, we ensured that classes are approximately balanced in our datasets

before we built any classifiers.

3.1.4 Sparse Matrix speeds up Computations

The use of large sparse matrices is common in machine learning. Matrices that mostly contain zero elements
are called sparse matrices as opposed to dense matrices where most of the elements are non-zero. A scheme,
wherein zero elements are assumed to be unspecified, can perform faster operations and use less memory than
the corresponding dense matrix. Since we used both sparse and dense matrices in building models, we made
some performance measurements using these two data formats (see Figure 3.3). Sparse matrices speed up

computations.
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3.2 Logistic Regression - Background

Logistic Regression is a classical probabilistic linear method for binary classification problems. This class of
classifiers belongs to the larger family of Generalized Linear Models (GLM) (McCullagh and Nelder, 1983).
Logistic Regression has a lot in common with linear regression, which is used for the tasks of predicting
continuous numerical values. While Logistic regression is reserved for tackling classification problems. Both
techniques model the target variable with a line (or hyperplane), depending on the number of dimensions of
the input. Importantly, linear regression fits a line to the data, which we can use to directly predict the target

numerical value, while logistic regression fits a line that best separates two classes (Cramer, 2002).

For a typical machine learning model, for instance, a linear regression model, the input data is denoted by X
with n samples and the output is denoted by y with one output for each input. The prediction of the model

is denoted as y.

¥ = model (X)

The model is defined in term of parameters called coefficients (f;), one coefficient per input and an additional

coefficient (By) for the intercept or bias term.

Y =PBo + Bix1 + Baxz + . + PnXn (3.2.1)

Logistic Regression describes how a class labels of a binary (“0” or “17) response (dependent)variable is

associated with a set of input explanatory (independent) variables (categorical or continuous). At the core of
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logistic regression is the adoption of a sigmoidal function. It is an S-shaped curve that takes real numbers and

maps them into values between 0 and 1. This function has some attractive features

It bounds the values to the limits on the lower end to 0 and the upper end to 1. Therefore it does not violate
the principle of probability, this acts as a ‘link’ function. The derivative of a sigmoid curve is mathematically

convenient to determine the slope at any point on the curve.
1
= — 3.2.2
R p—— (3:2.2)

In regression analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model.
Mathematically, a binary logistic model has dependent variable/s with two possible outcomes, for instance,

pass/fail, success/failure, active/inactive, etc., and these two values are labeled “0” or “1”.

The logistic transformation can be explained as follows: p as the proportion of observations with an outcome
of 1, then 1-p is the probability of an outcome of 0. The ratio of p/(1-p) is called odds and logit is the logarithm
of the odds or just log odds. We can use the logit as a ‘link’ function and thus the logistic regression model

can be written as.
logit(p) =In(;2) = Bo + By + oXz + - + Pt (3.2.3)

In the logistic model, the log odds (the logarithm of the odds) for the labeled class “1” is a linear combination
of one or more independent variables (predictors). The logistic function converts log-odds to probabilities.
The goal of predictive models is to infer a rule to predict the response. The outcome y = {0,1} with the given
data X for example, the possibility that X belongs to a particular class: Pr(y = 1|x). Logistic Regression

model Pr(y = 1|x) using the logistic function.

exp(Bo + Bix1 + Baxz + .. + BnXn) (3.2.4)
1+exp(By + Bixg + Boxy + ... + Buxyn)

Pr(y = O|x; 0) =

exp(Bo + Bix1 + BaXxz + ... + BnXn) (3.2.5)

Prly=1lx; ) =1 —
Y 1+exp(By + Pix1 + Boxy + ... + Buxyn)

Where 0 represent model parameters: S, and fB; are two unknown coefficients of the regression model which

can be estimated by maximizing the likelihood function:

L(Bo. Byly) = p)t * 1—p{7¥ (3.2.6)
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We can get the joint probability by simply multiplying the individual distribution. Thus, the joint probability
of the data (the likelihood) is given by

n
' s (3.2.7)
L(ﬁo:ﬁub’) = npiy’ * 1_pi((1 yi)
i=1

Because the logarithm is a monotonically increasing function of its argument, the maximization of the log of
a function is equivalent to the maximization of the function itself. Taking the log not only simplifies the
subsequent mathematical analysis, but it also helps numerically because the product of a large number of
small probabilities can easily underflow the numerical precision of the computer, and this is resolved by

computing the log-likelihood.

L=log(L) = XiLi[yi * log)p; + (1 — ;) *log(1 — py)] (3.2.8)

Maximization of log-likelihood is often implemented using efficient derivative-based numerical optimization
algorithms techniques like gradient descent, Broyden-Fletcher-Goldfarb-Shano (BFGS) algorithm, conjugate
gradient method, and Newton-Raphson method (Nesterov, 2018).

3.3 Logistic Regression - Implementation & Experiments

Logistic Regression was implemented in the statistical programming language R. The generalized linear
models (GLMs) are a broad class of models that include linear regression, ANOVA, log-linear models, Logistic
Regression, etc. The generalized linear model (GLM) is a flexible generalization of ordinary linear regression
that allows for a response variable that has error distribution models other than the normal distribution. The
GLM generalizes linear regression by allowing the linear model to be related to the response variable via a
link function. Several R libraries were used in the implementation that includes glmnet for binomial models
(Friedman et al., 2010), SparseM (Koenker and Ng, 2003) for sparsity representation, ggplot2 (Wickham,
2009) for plotting besides using native R plotting utilities.

3.3.1 Logistic Regression (LR) Model Development and initial Validation

After the initial processing of the following datasets: JAK2, MMP2, STAT3, ESR1, and BRCA1 we have
developed several logistic regression models. However, for brevity, we will highlight the results of the JAK2
analysis. One of the key concepts in generalized linear models is deviance (McCullagh and Nelder, 1983;
Portugués, 2020). Intuitively, it measures the deviance of the fitted model w.r.t. a perfect model, which is also
called a saturated model that perfectly fits the data. To expand, the fitted response (¥;) are the same as

observed responses (Y;). In case of logistic regression the models can be described as:
?[c = 1|X = X1Xp, ...,xn] =Y, wherei =1,2,...n
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Formally, one could define deviance as the difference of the log-likelihoods between the fitted model 1(f), and
the saturated model ;. By invoking the canonical link function is used, this corresponds to setting 8; =

g(Y}). Thus deviance is then defined as:

D= —2[I(B) - L;] ¢.

While we try to maximize the log-likelihood 1(f), yet it is always smaller than l;. As a consequence, the
deviance is always larger or equal to zero. Being zero, if and only the fit of the model is perfect, which is

highly unlikely.

The fraction deviance is a measure of how much unexplained variation there is in the Logistic model — the

higher the fraction explained, the more accurate the model (See Figure 3.4). From these results, it is clear the
model has captured a greater than 90% proportion of variability in the response variable. In other words, the
model predictors have accounted for a large proportion of the explained variance. The plots are also illustrative
in informing that a large proportion of the explained variance is accomplished by a smaller subset of features
in the model, leading to the possibility that a reduced model (fewer features) might fit the data as well as the
full model (all the features in the high dimensional space included). We also examined the effects of the
regularization penalty on the model coefficient. It is clear from these plots that as the model is penalized that
there is a proportional shrinkage in the model coefficients (see figure 3.4). In one of the later sections, we will
describe in some detail the development of recursive logistic regression, which describes the full model and a

family of reduced models.
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Figure 3.4 LR Model Fraction Deviance Measurement and log lambda

The top panel shows the percent of the variance in the response variable is plotted on the z-azis and the
coefficient values are plotted on the y-azis. Each line represents a feature in the model and the number of
non-zero features are listed above. (A) Fraction deviance with Fingerprint data (B) Fraction deviance with
descriptor data. The bottom panel shows the effect of model regularization penalty lambda on the coefficient
values (C) Effects with fingerprint data (D) Effects with descriptor data. Each line represents a feature in

the model and the number of non-zero features are listed above.

3.3.2 Logistic Regression (LR) Model Cross-validation

We evaluated the LR models using external 10-fold cross-validation (Deisenroth et al., 2020). Each of the
training set records was randomly partitioned into 10 equal parts, with each record in a partition has the class
label (active vs. inactive). The model was built with 9 parts and tested on the “left-out” fraction. Likewise,
the model-building exercise is sequentially iterated ten times with different 9 parts and tested on the different
“left-out fractions”, for cross-validation schema (see Figure 3.5 inset). The plots (see Figure 3.5) show the
results of such cross-validation both with the fingerprint data and descriptor data. While performing the cross-
validation, we also invoke the model regularization penalty to inform the effect of the regularization on the
misclassification error. Here were are seeking the value of lambda that produces the most optimal model

among several models that were generated. Each data point is the representation of an average 10 fold cross-
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validation, and several such cross-validations are performed for a range of lambda values for tuning the model.

The plot also shows the number of non-zero features at a given lambda value.
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Figure 3.5 LR Misclassification error in a 10-fold cross-validation

Each point on the graph represents a mean classification error from 10 models iterated over ten-folds (see
inset). The plot also shows the effect of the penalty factor on the misclassification error. The numbers on
the top show the number of features in each model at various lambda values. (A) Fingerprint data (B)
Descriptor data.

3.3.3 LR Model Performance Evaluation - Confusion Matrix

The confusion matrix is a standard table of n x n matrix used to describe the performance of a classification
model on a set of test data for which the ground truth values are known. It allows for in performance evaluation
of a typical classifier. It allows the visualization of the performance of the classifier. The table in Figure 3.6
gives the performance metric of logistic regression using fingerprint and descriptor data. The performance of
the model was evaluated both on the training data and testing data. LR models performed exceedingly well
with accuracy (>90%), the LR model fitted with fingerprint data was slightly better on the accuracy metric
compared with LR models fitted with descriptor data on the testing data. As expected, accuracy with testing
data will be less than with training data, on which the models are built. However, when looking only at the
testing data, the results are somewhat mixed, where sensitivity scores are better with descriptor data, while
specificity score is superior with fingerprint data. In this study, model sensitivity is of interest, because we
have a vested interest in lowering false negatives while allowing a slight erosion in model specificity. Ideally,
we also want to control the increase in false positives. We invoke model regularization techniques to prevent
model overfitting i.e., models that perform exceeding well on the training data but fare very poorly on the

testing data.

48



True Negative False Negative

A B
Testing set Training set Testing set
Reference Reference Reference

[ =4 | ¥ c { =] c
2| Classes 0 1 2| Classes 0 0 2| Classes 0 1 21 Classes 0 i}
o o o =
° ° =] B
< 0 1491 13 2 0 617 61 2 0 1367 114 < 0 566 53
a [~ a. a.

1 4 7 1464 x 1 43 553 ik 104 1342 1 67 571
Accuracy S/e(nsitivity Specificity Accuracy | Sensitivity | Specificity Accuracy | Sensitivity | Specificity Accuracy | Sensitivity | Specificity
0.9932 0.9911 0.9953 \Q.9184 0.9006 0.9348 0.9255 0.9217 0.9293 0.9066 0.9150 0.8984

False Positive)

True Positive

Figure 3.6 LR Confusion Matrix

A typical confusion matrix shows the model performance — ground truth (reference) vs. prediction. The cells
along the diagonal in a binary classifier represent the true class (true positive and true negative) and the cells
in the off-diagonal represent the misclassification error (false negative and false positive). From the confusion
matrix, one can extract other model performance metrics, for instance, Accuracy, Sensitivity, Specificity, etc.
(A) Represents the training and testing set for models built with fingerprint data (B) Represent the training
and testing set for models built with descriptor data.

3.3.4 LR Model Performance Evaluation — ROC curves

The Receiver Operator Characteristic (ROC) curve is by far, the most critical measure for assessing the
performance of classifiers when there are two classes, as we discussed earlier. It is a graphical plot that
illustrates the diagnostic ability of a binary classifier, to discriminate true positives from false-positive as we
vary the threshold i.e., cut-off values to make the call if it belongs to the true positive class or the false positive
call. The first application of ROC curves in machine learning was introduced by Spackman who demonstrated
the value of ROC curves in comparing and evaluating different classification algorithms (Spackman, 1989).
Here we plot the ROC curves for the LR model with fingerprint data and descriptor data (see Figure 3.7).
These results demonstrate that LR models have fairly robust predictive power, as measured by AUC. In
general, ROC curves are generated by plotting the cumulative distribution function (area under the probability

distribution from —oo to the discriminating threshold).

The class prediction, for each instance, is often based on the continuous random variable z, which in the case
of logistic regression is the estimated probability. Given a threshold parameter T, the instance is classified as
“positive”, if x>T and “negative” otherwise, x follows a probability density fi, if the instance belongs to
class “positive” and fy(y) if otherwise. Therefore, the true positive rate is given by TPR(T) = fTw fi (x)dx and
the false positive rate is given by TPR(T) = fToo fo (x)dx. ROC curve plots parametrically TPR, versus FPR

with T as the varying parameter. The AUC for fingerprint and descriptor models on training and testing data
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are reported in Figure 3.7. this is in fair concordance with the model accuracy described earlier (see Figure

3.6).
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Figure 3.7 LR Model ROC Curves

The plot shows the probability distribution of true positives (x-axis) to false positives (y-axis) at different
thresholds i.e., cut-off values that separate samples into discrete classes. ROC curves close to the diagonal
indicate that the classifier is a poor performer. The area under the curve (AUC) is shown in the inset. The
colored lines indicate the model performance with training and testing data respectively. (A) Model built
with fingerprint data (B) Model built with descriptor data.

3.3.5 Full vs. Reduced LR Models

Given the high-dimensional space of the feature set with fingerprint data (>10,000 features), we explored the
possibility of feature engineering through dimensional reduction building a family of reduced models, and
evaluate model predictive power. We present the results of the experiment of implementing recursive logistic
regression in Figure 3.8. Staring with the dataset with all the features (>10,000), we developed a full model,
after cross-validation and determining the regularization penalty factor (1) that produced the highest
performing model with minimal misclassification errors. Following this, we iteratively built a family of reduced
models, each with fewer features than the earlier model, and evaluated its performance metrics. Each model
went through an elaborate series of cross-validations, as described earlier. From each of the highest performing
models, we extracted the most important features, ranked these features, and retained only these features, to
build the next model. In the end, we developed a full model and a small set of reduced models. From the
model evaluation based on the metrics of accuracy, sensitivity, and specificity, we can draw some broad
conclusions: the proportion of variability in the model can be explained by a few predictors. In other words,
only a small subset of features makes a large contribution to the model weight coefficients. Reduced models
perform as well as the full model, until a certain critical threshold of important features, beyond which the
performance degrades. Reduced models also have the advantage of reducing model complexity, preventing
overfitting. Besides, it also has the advantage of reducing computational costs in building the models, especially

with very large datasets.
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Figure 3.8 Recursive Logistic Regression

(A) Shows the graphical representation of a full model and a series of reduced models with a successive

reduction in the number of features (B) Show the iterative workflow in building reduced models (C) The

absolute values of the coefficients extracted from the penultimate reduced model (D) Shows the graph of

the full and the reduced models and its effect on model metrics.

Table 3.1 Metrics for Full vs. Reduced Logistic Regression Models

Model Accuracy Sensitivity Selectivity
Full Model (10847) 0.9399 0.9253 0.9453
Reduced Model (859) 0.9417 0.9287 0.9549
Reduced Model (250) 0.9279 0.9138 0.9418
Reduced Model (200) 0.9325 0.9077 0.9583
Reduced Model (100) 0.7316 0.4685 0.9802

3.3.6 Model Regularization — LASSO, Ridge and Elastic Net

Model regularization is motivated by the desire to reduce model complexity and expanding its ability for

generalizability. It does this by restricting the degrees of freedom in the model (Raschka, 2019). Empirical

learning of classifiers from a finite dataset is always an undetermined problem because it attempts to infer a

function of any x given only examples x;, X, ..., X,. A regularization term (or regulaizer) R(f) is added to the

loss/cost function
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min 3, V (f(x), y) + AR())

where V is the underlying loss/cost function that describes the cost of f(x) when the label isy and A4 is the
parameter that controls the importance of the penalty term. R(f) is typically chosen to impose a penalty on
the complexity of f. Concrete notions of complexity include bounds on the vector space norm (Bishop, 2006).
Early stopping can be viewed as regularization in time, intuitively, training procedures like gradient descent
tend to learn more and more complex functions as the number of iterations increases. Likewise, enforcing
sparsity constraints can lead to simpler and more interpretable models. Several approaches towards model

regularization have been described in some detail (see chapter 2: Approaches).

Both L1 and L2 penalized estimation methods shrink the estimates of the regression coefficients towards zero
relative to maximum likelihood estimates (Ng, 2004). The purpose of this shrinkage is to prevent overfitting
arising due to either collinearity of the covariates or high-dimensionality. Perhaps it will be instructive to see
Figure 3.4, here we clearly show in the plot, the path of shrinkage of the model coefficients as a function of
the penalty controlling factor 1. Here we have implemented the L1 absolute penalty — LASSO (Tibshirani,
1996), an L2 quadratic penalty — Ridge (Hoerl and Kennard, 1970), and a combination of L1 and L2 penalties
— Elastic Net (Zou and Hastie, 2005) on the JAK2 dataset (see Figure 3.9). Although both LI and L2 are
shrinkage methods, each of them, do it a bit differently. LI penalty tends to shrink a subset of coefficients
exactly to zero while modestly shrinking others. On the other hand, the L2 penalty shrinks all coefficients but
tends to remain non-zero values. The results demonstrate that regularizations led to LG model generalization,
i.e., they are free from the handicaps of overfitting. We developed LG models independently implementing all
the three regularization techniques, namely, LASSO, Ridge and Elastic Net. We followed it up with an external
10-fold cross-validation (Figure 3.9 top row), extracted the parameter A, which returned minimum
misclassification error. We hypertuned the models and established coefficient shrinkage at varying values of
the parameter 4 (see Figure 3.9 middle row). Finally hypertuned models were used for predictions on the
unseen testing data and ROC curves plotted (see Figure 3.9 bottom row). In each case, the regularized models

met the critical benchmarks on the testing data i.e., free from overfitting and with remarkable performance
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gains, as measured by AUC. The Elastic Net is slightly superior to other regularizers in reducing the model

complexity on this dataset.
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Figure 3.9 Logistic Regression Model Regularization
Cross-validation with different regularizers: top row (A) LASSO (B)Ridge (C) Elastic Net. Each point is the
average of 10 fold validation and it tested over a range of A for misclassification error; Coefficient shrinkage
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paths with different regularizers, each line represent a continuous trace of the coefficient values at different
values of the penalty parameter - 4 : middle row (A) LASSO (B) Ridge (C) Elastic Net; ROC curves on
testing data with different regularizers: bottom row (A) LASSO (B) Ridge (C) Elastic Net.
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3.4  Support Vector Machines - Background

Support Vector Machine (SVMs) is a classification algorithm based on the maximum margin linear
discriminants. SVM was first described by Vapnik in the early 70s (Vapnik, 1979). Some excellent books
followed Vapnik’s publication (Vapnik, 1998, 1995). Other excellent sources include tutorials and books on
pattern recognition by SVMs (Bishop, 2006; Burges, 1998; Kowalczyk, 2017; Theodoridis and Koutroumbas,
2009). The goal is to find the optimal hyperplane that maximized the gap or margin between the classes. The
kernel is a method to find the optimal nonlinear decision boundary between classes, which correspond to a

hyperplane in some high-dimensional “non-linear” space.

Zaki and Meira provided some conceptual framework to develop the background to Support Vector Machine
(SVM) (Zaki and Meira, Jr, 2014). For instance, for a dataset D that is being used to build an SVM
classification model with n points (records) in a d-dimensional space (feature variables), could be written as
D = {x;,y;}1-; and such a dataset, which explicitly carry two class labels, namely positive and negative class,
which could be represented i.e., y; € {+1,—1}. A set of all points x € RY, that satisfy the equation A(x) = 0

is formally referred to as hyperplane H, can be written as:
h(x) = wix+b (3.4.1)
= WiXx; +Wexy ++wyx, +b

Where w is the d dimensional weight vector and b is a scalar, often called the bias term. Expanding upon

which, we can simply write for all the points on the hyperplane as follows:

h(x) = wix+b =0 (3.4.2)

One could rearrange as wix = —b which is equivalent to defining all the points are on the hyperplane. It

turns out that b determines the offset and gives the distance from the origin.

S—_— —_ b
WiXq = — 0TX1—W—1

3.4.1 Separating Hyperplane

A canonical hyperplane by definition splits the original d-dimensional space into two half-spaces. We call a
dataset linearly separable if each half-space has points only from one exclusive class, where we can find the

separating hyperplane h(x) = 0 such that for all points labeled y; = +1, we have h(x;) > 0.
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A dataset is set to be linearly separable if each half-space has points only from a single class. If the input
dataset is linearly separable, then we can find a separating hyperplane h(x) = 0 such that for all points labeled
vy; = +1, we have h(x;) > 0. The hyperplane function h(x) serves as a linear classifier or a linear discriminant,

which predicts the class y for any given point x, thus the decision rule may be written in the following form.

_ (tlif wx; +b >0 (3.4.3)
hxy) = {—1 if w.x;+b <0

3.4.2 The distance of a Point to the Hyperplane

Let’s consider some point x, that is not present on the hyperplane and d a vector of minimum length

originating from the hyperplane H. Let x,, be the orthogonal projection of x on the 3. One could write

Xp =x—d and d is parallel to the normal vector w (3.4.4)
The implication of this expression is x, € # is wap +b =0
Therefore, the length of d is written as follows:

|wT x| (3.4.5)

3.4.3 Maximum Margin Classifier

One can recast the entire formulation of the maxim margin separating hyperplane as a constrained
optimization problem, where we choose values of the weight vector w and the bias b, that yields the maximum
margin among all possible separating hyperplanes. One can represent margin for hyperplane as m for the

hyperplane h(x) = 0, such that,

1
m = arg maxy —
g max{

Recollect our goal is to maximize the margin subject to the n constraints given w'x; +b =

1
[wl]’
1, for all points x; € D. Equivalently, we could minimize ||w|| and accomplish the same goal.

In which case, the new minimization formulation can is rewritten as:

JIwi|*

migl{ T} with the incorporated linear constraints i.e., y; (WIx; +b > 1, VX; € D

w
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At this stage one can invoke any standard optimization algorithms, to solve such a class of convex
minimization problems that are bound by linear constraints. The Lagrange multipliers come in handy in
providing the solution, this is accomplished by introducing a Lagrange multiplier @, for each constrain, which

satisfies the Karush-Kuhn-Tucker (KKT) conditions at the optimal solution.
a;(y;(w'x;+b)-1) =0and a; =0

This can be reduced to this expression by incorporating all the n constraints. Essentially, the objective function

becomes:

1 = (3.4.6)
minl = = [[wl]? - Z(ai(wa,- +b) —1)
i=1

Finally, one could summarize it, in this formulation that seeks to minimize L. w.r.t to w and b, and it should
be maximized with respect to a;. This obtained by taking the derivatives of L w.r.t to w and b, and setting

them to zero yields the solution to the optimal weight vector w.

3.4.4 Kernel SVM: Non-linear case

The linear SVM approach can be used for datasets with a nonlinear decision boundary kernel. Conceptually,
the idea is to map the original d-dimensional points X; in the input space to points @(x;) in a high dimensional
feature space via some nonlinear transformation @. Given, the extra flexibility, it is more likely the points
@(x;) might be linearly separable in the feature space. However, a linear decision surface in feature space
corresponds to a nonlinear decision surface in the input space. Further, the kernel trick allows us to carry out
all operations via kernel function computed in input space, rather than having to map the points into feature

space
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3.5 Support Vector Machines - Implementation & Experiments

Support Vector Machines (SVM) was implemented in the statistical programming language R. The principal
objective in SVM is to find the optimal hyperplane that maximized the gap or margin between the classes.
The kernel is a method to find the optimal nonlinear decision boundary between classes, which correspond to
a hyperplane in some high-dimensional “non-linear” space. SVM was implemented using the R library
LIBSVM (Chang and Lin, 2011). The library 1071 (Meyer, 2017; Meyer et al., 2019) provides an excellent
interface for file manipulations (csv to libsvm format). The other libraries include SparseM (Koenker and Ng,

2003) for sparsity representation, ggplot2 (Wickham, 2009) for plotting besides using native R plotting utilities.

3.5.1 Matrix Sparsity

The sparse matrix is especially useful in the evaluation of SVM kernels, The inner dot product of sparse
vectors on model training times is significantly lowered by several-fold compared to the dense matrix. As part
of exploratory data mining, the sparse and dense matrices were evaluated for performance metrics (see Figure
3.3). We developed both linear and non-linear SVM models with fingerprint data. Initially, we built the entire
end-to-end model building routine with one dataset namely MMP2, and subsequently extended it to other
datasets, namely, STAT3, ESR1, and JAK2.

3.5.2 Grid-search For SVM Model Hypertuning

First, we developed SVM models (untuned) with a smaller dataset MMP2 to evaluate model performance and
accomplish the exhaustive search task in minimal computational times. From the results, it was clear that
tuned models deliver higher performance compared to untuned models. The AUC for the tuned models is
5.85% larger than the untuned model, in the context of the absolute number of active compounds, the
percentage is significant (see Figure 3.10 ). Grid-search is a technique for model hypertuning for optimal
parameters to extract better model performance. We tested a range of parameters for C and gamma (y) by
grid-search. Intuitively, the C parameter controls the proportion of misclassification. It is a trade-off between
simple versus complex models. Larger values of C lead to higher model variance and lower bias. In other
words, increases model complexity. On the other hand, a smaller value of C leads to a simpler model with low
variance and high bias, which makes the cost of misclassification low (soft margin). The kernel parameter
gamma (y) also influences the model, a small gamma (y) implies the class of this support vector has a wider
influence in deciding the class of a sample training vector (hard margin). Technically, large gamma leads to
higher bias and low variance models, and vice versa. For each model, we performed a grid-search by choosing
a range of values of C and gamma (y) simultaneously, to find the optimal hyperparameters. The optimal
parameters of this dataset are C = 3 and gamma (y) = 0.0066 (see Figure 3.10) Similar optimization of SVM
kernel function were applied in QSAR studies in C-Aryls glucoside inhibitors in SGLT2 inhibitors (Prasoona
et al., 2013) and cholesterol ester transfer protein inhibitors (Riahi et al., 2009).
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Figure 3.10 Grid Search for SVM Model Hypertuning and Evaluation Metrics

(A) A range of values of the parameters gamma and C are tested, dark blue regions denote optimal values
for MMP2 dataset (B) A 3D plot of the grid search (C) ROC curve of the SVM model (untuned) (D) ROC
curve of the SVM model (tuned).

3.5.3 SVM Linear vs. Non-linear Kernels — Validation and Evaluation

We systematically implemented the kernel functions on a larger dataset JAK2 with fingerprint features, which
include linear kernel, polynomial kernel, Gaussian kernel (RBF), and Sigmoidal kernel. As a routine exercise,
we conducted an exhaustive grid search to find optimal parameters to test these kernel functions on each of
these datasets (See Figure 3.11 and Table 3.2).
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Figure 3.11 Grid Search for SVM Model Hypertuning
(A) A range of values of the parameters gamma and C are tested, dark blue regions denote optimal values
for JAK2 dataset (B) A 3D plot of the grid search.

Conceptually, the kernel turns a non-linear classification problem in the input space into an equivalent linear
classification problem. This is accomplished by projecting the input feature space into a linearly separable
higher dimensional space within the Lagrange multiplier dual constrain formulation while allowing the benefits
of maximum-margin. There is an implied suggestion that there is a functional transformation of the original
space into the higher dimensional space. In fact, the kernel trick provides a solution through a pairwise
similarity comparison between the original training data instances, instead of applying the transformation and

representing the data in the projected space.

k(x,y) replaces @(x)7 (y)
w= Z a;y; D(x;)
i=n

However, w can be infinite dimensional too. Hence, the predictions are performed through the kernel trick, as

fO)=wloCx) +b

n

= > @y 0600 + b

i=n
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n

= Z a;yik(x;, x)+Db

i=n

Assuming the complexity of x(x,y) is O(n), prediction of one example may take O(n‘) steps, where n is the
number of training examples and d is the number of dimensions in the projected space. However, in reality,
the intrinsic mathematical structure because of the kernel trick lowers the computational burden, where the
actual prediction cost is much lower than O(nf). If the training example x; is not a support vector, then its

Lagrange multiplier a; is 0. Thus only support vectors are stored in the SVM model (Wu, 2020).

The linear kernel is the simplest kernel function, therefore we first evaluated it and followed it up with other
kernels. Tt is given by the inner product (x,y) and an optional constant C. It may be simply described as
k(x,y) = xTy. Training a linear classifier is more efficient because we are not conducting any kernel operations.
We followed up with the Radial Basis Function (RBF): k(x,y) = exp(—y||x — ¥||?). RDF kernel gives access
to all the analytical functions since it is infinitely differentiable because of the exponential function. The
tunable parameters are C and gamma (y). Polynomial kernel: k(x,y) = exp(yxTy + ¢)P) of the order d will
give access to the functions whose (d + I) the order derivatives are constant and whose derivatives higher
than that are zero, can be tuned with polynomial d in addition to C and gamma (y). Sigmoidal kernel: x(x,y)

= tanh(yx"y + ¢), this similar to the sigmoidal function in logistic regression.

3.5.4 SVM Model Cross-validation and ROC

Different linear and non-linear SVM kernels and the appropriately chosen kernel parameters for each of these
kernels were cross-validated (see Figure 3.12). The JAK2 fingerprint training data was partitioned into 10
equal folds, SVM models were developed with pooled 9 folds and tested on the 10th fold, and subsequently
iterated over ten times, and the models evaluated for their performance. The results show that the linear
kernel returned a mean accuracy of 91.49%, while the implementation of a non-linear RBF kernel boosted
the mean accuracy to 93.47%. The non-linear polynomial kernel performed slightly better than the linear
kernel at 92.47% mean accuracy. However, the non-linear sigmoidal kernel fared poorly by comparison at
66.11% mean accuracy. Overall, RBF delivered the best performance in cross-validation. It is unclear, what
led to the numerical instability of the sigmoidal kernel. Further, each of these kernels was evaluated for their
accuracy and other evaluation metrics both on the training and testing datasets (see Table 3.2). By far,
Receiver Operator Characteristic ROC curves serve as the most credible measure of machine learning model
performance. We tested these models with different kernels both on the training and testing datasets (see
Figure 3.13). The pattern of model performance is somewhat similar to cross-validation results, which is

expected. It turns out, that the RBF kernel is superior in model performance compared to other kernel
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implementations. The sigmoidal kernel displayed failure mode with this dataset. It would be interesting to

test the behavior of the sigmoidal kernel on other datasets to gain some insight into the numerical instability.
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Figure 3.12 SVM Kernels Cross-validation

Different SVM kernels were evaluated for accuracy with the JAK2 dataset. (A) Linear kernel (B) Radial

@
e
.\ /
[
T T T T
2 4 6 8 10
n Fold
mean Accuracy = 92.4706 |
.
I \/ \
® .
\.
T T T T
2 4 6 8 10

Accuracy

Accuracy

95

94

93

92

91

75

70

65

60

55

50

mean Accuracy = 93.479

e |
A

T T

2 4 6 8 10
n Fold
mean Accuracy = 66.1176
oo
o—® \./
.
.
0/

T T T T T
2 4 6 8 10

n Fold

Basis Function (RBF) kernel (C) Polynomial kernel (D) Sigmoidal kernel.

61




Table 3.2 SVM Kernel Performance Metrics JAK2 Dataset

i JAK2: Linear .IAKQ:VRadial JAK2: Polynomial JAK2: Sigmoid
Training [Testing  [Training |Testing  [Training [Testing  [Training [Testing
Accuracy 0.9997 0.9316 0.9871 0.9315 0.9822 0.9275 0.5405 0.5411
Sensitivity 1.0000 0.92319 0.9808 0.9097 0.9658 0.9017 0.4856 0.4834
Specificity 0.9993 0.9393 0.9934 0.9533 0.9987 0.9533 0.5954 0.5988
Pos Pred Value 0.9993 0.9373 0.9931 0.9503 0.9936 0.9499 0.5363 0.5417
Neg Pred Value 1.0000 0.9264 0.9817 0.9149 0.9680 0.9081 0.5457 0.5415
Precision 0.9993 0.9373 0.9931 0.9503 0.9986 0.9499 0.5363 0.5417
Recall 1.0000 0.9239 0.9808 0.9097 0.9658 0.9017 0.4856 0.4834
F'l 0.9997 0.9306 0.9869 0.9296 0.9819 0.9252 0.5097 0.5109
Prevalence 0.4908 0.4953 0.4908 0.4953 0.4908 0.4953 0.4908 0.4953
Detection Rate 0.4908 0.4576 0.4813 0.4505 0.4739 0.4466 0.2383 0.2394
JDetecr,ion Prevalence [0.4911 0.4882 0.4847 8.4741 0.4746 0.4702 0.4444 0.4419
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Figure 3.13 Performance Metrics ROC curves
ROC curved for different SVM kernels are plotted (A) Linear kernel (B) Radial Basis Function (RBF)
kernel (C) Polynomial kernel (D) Sigmoidal kernel.
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3.5.5 Sigmoidal Kernel Failure Mode

The JAK2 dataset demonstrated failure mode with the sigmoidal kernel implementation. We presumed that
this was a unique situation with this particular dataset. So we investigated the kernel behavior with other
datasets, namely, MMP2, STAT3, ESR1, and BRCAL. In every single case, the sigmoidal kernel failed (see
Table 3.3). Tt is unclear what is the cause of this numerical instability. In general, stability is associated with
how the problem is defined, some problems may be inherently unstable, and how an algorithm is used to solve
the problem. Error propogation may be due to the unstable nature of the algorithm. In stable algorithms, the
error remains bounded and does not amplify. In some instances, the structural representation of data and
mathematical operations, which act on such structure can also be the source of numerical instability. In SVM,
the Lagrangian dual problem formulation the matrix is symmetric and positive semi-definite (PSD) with
kernel application. Vapnik pointed out that the sigmoidal kernel may not be positive semi-definite (PSD) for
certain values of the parameters a and r. When K is not PSD the expression of projection in the higher
dimensional space is not satisfied and the primal-dual relationship does not exist (Vapnik, 1995). Perhaps this

may be a valid rationale for the reconciliation of the sigmoidal kernel failure mode observed.
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Table 3.3 SVM Kernel Performance Metrics on other Oncology Target Datasets

MMP2: Linear MMP2: Radial MMP2: Polynomial MMP2: Sigmoid
Training  [Testing Training  [Testing  [Training  [Testing Training Testing
Accuracy 0.9960 0.9372 0.9763 0.9472 0.9916 0.9480 0.6799 0.6817
Sensitivity 0.9969 0.9532 0.9754 0.9532 0.9880 0.9448 0.8355 0.8391
Specificity 0.9952 0.9212 0.9772 0.9413 0.9952 0.9513 0.5243 0.5244
STATS: Linear STAT3: Radial STAT3: Polynomial STAT3: Sigmoid
Training  [Testing Training  |Testing Training  [Testing Training  [Testing
Accuracy 0.9797 0.6916 0.8728 0.7588 0.9952 0.7047 0.5000 0.5000
Sensitivity 0.9743 0.6480 0.8199 0.6720 0.9963 0.6080 0.0000 0.0000
Specificity 0.9852 0.7353 0.9258 0.8456 0.9941 0.8015 1.0000 1.0000
SR1: Linear ESR1: Radial ESR1: Polynomial ESR1: Sigmoid
Training  [Testing Training  [Testing Training  [Testing Training Testing
Accuracy 0.9879 0.7876 0.9136 0.8572 0.9282 0.8312 0.4999 0.5152
Sensitivity 0.9860 0.7804 0.8674 0.7982 0.8773 0.7656 0.6016 0.6098
Specificity 0.9808 0.7948 0.9599 0.9161 0.9790 0.8968 0.3982 0.4206
BRCAL: Lincar BRCA1: Radial BRCA1: Polynomial BRCAL: Sigmoid
Training  |Testing Training  [Testing Training  [Testing Training  [Testing
Accuracy 0.9050 0.5565 0.7730 0.6104 0.7544 0.5973 0.5132 0.5412
Sensitivity 0.9641 0.7288 0.8084 0.6656 0.8565 0.7265 0.8306 0.8549
Specificity 0.8459 0.3841 0.7376 0.5552 0.6523 0.4682 0.1957 0.2274

It was proposed by Lin (Lin and Lin, 2003) that the sigmoid kernel matrix is conditionally positive definite
(CPD) and thus are valid kernels and further suggest that the training of non-PSD kernels by SMO-type
methods. We also show that Radial Basis Function (RBF) slightly outperforms sigmoidal kernels in all the
datasets tested.
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3.6 Naive Bayes - Background

Naive Bayes classifiers are a family of probabilistic machine learning algorithms that are based on Baye’s
probability theorem. The naive assumption that is made in model building is, that the features that go in the
model are independent of each other. In practice, the independence assumption is rarely upheld. In other
words, this assumption is often violated but the naive Bayes classifier seems to perform extremely well in

most cases (Bruce and Bruce, 2017; Hastie et al., 2009; Raschka, 2014b).

Zaki and Meira's provided some conceptual framework to develop the background to Support Vector Machine
(Naive Bayes) (Zaki and Meira, Jr, 2014). At the core of the Naive Bayes classifier, is the estimation of the
posterior probability. The simplest interpretation one can offer in terms of a classification problem is as follow:
Given a certain feature set for an object, you ask to which class does one such object belongs. More formally,
predicting the membership of a new instance z is simply estimating the posterior probability P(c; |x) based

on the Bayes theorem, which can be written as follows:

P(xlc;) . P(ci) (3.6.1)

P(Ci,lx) = P(X)

The likelihood term in the numerator is expressed as P (X|Ci,), which tells that the probability of observing x
i.e. x4 X, x3,...,Xp under the assumption that it truly belongs to the class ¢;.The other term P(Ci‘) in the
numerator is the prior probability or simply priors which tells the proportion instances in that class. Finally,

the denominator P(x) is the probability x for all the K classes of ¢; in dataset D.

Now the denominator term remains constant for a given input data, we can conveniently eliminate it. This is

now expressed as a summation of x; X, X3, ..., X, times the prior probability:
n
P(cix) = ) P(xle) . P(ci)
j=1

The assumption of independence of attributes in naive Bayes permits us to recast the likelihood as a product

of dimension-wise probabilities.
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P(chi,) = P(x17 X2, ---;xnlci) = H?:lp(leci) (362)
y = argmax H;‘i=1 P(xj|cy). P(c;) (3.6.3)

In the case of categorical attributes, the class prediction essentially depends on the [likelihood and its prior

probability

In the case of continuous attributes, the likelihood term is expressed as follows for a single dimension like any

standard Gaussian distribution.

() — wij)?
P(xjle;) o f(x; |wij o) = J%JUGXP{— sz,,g,] }

For a multi-dimensional feature set, it becomes a joint probability.

(x — pij)? (3.6.4)

d
1 A
(5ler) = H( N TR

4
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3.7 Naive Bayes — Implementation & Experiments

Naive Bayes was implemented in the statistical programming language R. It belongs to a family of simple
probabilistic classifiers, which makes the naive assumption that variables are independent in predicting the
outcome. The bulk of the implementation is based on the library naive Bayes (Majka, 2020) other libraries
include caret (Kuhn et al., 2016), amelia (Honaker et al., 2011), ggplot2 (Wickham, 2009) for plotting besides

using native R plotting utilities.

3.7.1 Range Normalized Naive Bayes Models — Validation and ROC

The initial Naive Bayes models development and evaluation were done with AKT1 chemical descriptor
dataset. The data set after passing through the routine data preprocessing pipeline yielded a high dimensional
data matrix of the size (4535 X 531). Here we tested the suitability of different normalization techniques that
included range transform, Z-transform, Box-Cox transform (Box and Cox, 1964), and Yeo-Johnson transform
(Yeo and Johnson, 2000). From the results it clear, the model performance metric (see Table 3.4 ) was
comparable for all transforms, except for Z-transform, which was slightly eroded on accuracy. Range transform
performed better on the class metrics, namely, sensitivity (active compounds) and selectivity (inactive
compounds), which is of interest in the present binary classification problem. The models with each of the

normalizations were tested both on the independently partitioned training data and test data.

Table 3.4 Effect of Data Normalization on Naive Bayes Model Metrics

Normalizations Tuned Models
Range Transform 7Z-Transform Box-Cox Transform [Yei-Johnson Transform

Iraining  [Testing Training  |Testing Training  |Testing Iraining  [Testing
Accuracy 0.8863 0.8750 0.8044 0.7640 0.8743 0.8706 0.8797 0.8743
Sensitivity 0.8105 0.8024 0.9794 0.9572 0.7803 0.7847 0.7983 0.8009
Selectivity 0.9592 0.9472 0.6360 0.5718 0.9648 0.9560 0.9580 0.9472
Pos Pred Value  10.9503 ).9379 0.7214 0.6897 0.9552 0.9466 0.9481 0.9378
Neg Pred Value  0.8403 0.8282 0.9698 0.9308 0.8203 0.8170 0.8315 0.8271

We further validated the models through k-fold cross-validation and bootstrap resampling techniques (Kohavi,
1995) (see Figure 3.14). We have recorded the overall model mean accuracy both for k-fold cross-validation
(85.35%) and bootstrap resampling (82.04%). Besides, we also calculated the mean Cohen kappa metrics for
k-fold cross-validation (0.7058) and bootstrap resampling (0.6395). Accuracy as a measure of model assessment

can lead to erroneous results, especially in unbalanced datasets. Therefore, In general, Cohen kappa
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measurement is often suggested to be a desirable metric, because it directly measures probabilities of the

observed and the predicted class with no consideration to an arbitrary threshold for class assignments.

Boostrap resampling though computationally slightly expensive provides an approach for better quantification
of uncertainty around a point estimator and model assessment. In this case, sampling with replacements
provided an additional 100 surrogate models, while not affecting the probability of the samples being drawn.
Though, the bootstrap samples may contain duplicates and may well omit a few samples in the original dataset
during training. Nonetheless, it offers an opportunity to directly examine the Naive Bayes model’s
susceptibility to overfitting, as well. The variation in accuracy in different folds and bootstrap resamples
suggest that the risk of overfitting in this particular case is low. Therefore, Naive Bayes models are easily

generalizable to unseen data for forward validation.
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Figure 3.14 Naive Bayes Models k-Fold Cross-validation
AKT1 dataset is cross-validated the training set to find the optimal hypertuning parameters
(A) 10-fold cross-validation (B) Bootstrap resampling.

We used kernel density estimation to get a more realistic estimate of the class conditional densities of the two
classes, since the distribution of the class conditional densities is far from normal. Here we show class
conditional densities of four randomly chosen features, among several other features (530 variables) (see Figure
3.15). Although the class priors determine the decision region, there is somewhat significant overlap of the
gaussian-like distributions between the two classes. We applied Laplace smoothing to the Naive Bayes models
to avoid the pitfalls of zero probabilities, where the maximum likelihood solution could find values of zero or
one. Such values can lead to numerical instability, wherein the posterior probabilities of the class membership
can be either one or zero. This situation arises when some features are rare or very common across the data

(Lawerence, 2015).
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Figure 3.15 Class Conditional Probabilities
The figure shows the probability density distribution from two different classes (red dotted and black dotted
lines). A, B, C, and D represent four random features. The decision rule is the product of the individual
class probabilities and priors.

Finally, we validated the Naive Bayes model performance with ROC curves. Plots show the performance with
different normalization techniques. As seen earlier, in model accuracy measurements, there is no significant
difference in the effects of different normalization techniques on the model AUC measurements, excepts with

the Z-transform, which is slightly less (see Figure 3.16).
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Figure 3.16 Naive Bayes Models Performance Metrics ROC curves
ROC curves are plotted for different normalization techniques that were adopted for data preprocessing
(A) AUC with a training dataset (B) AUC with a testing dataset.

3.7.2 Naive Bayes Decision Boundary and RadViz Visualization

Visualization is the process of representing data, information, and knowledge in a visual form to support the
tasks of exploration, confirmation, presentation, and understanding. Grinstein and his colleagues did much of
the pioneering work in the area of interactive data visualization (Ward et al., 2010). Statistics is the study of
patterns using mathematics and mathematics is the foundation of algorithms. Machine learning is inherently
an iterative process of computations, model building, and model tuning with many parts of the process opaque
to visual interrogation. However, there are serious efforts now to incorporate visualizations into modeling
work-flow, to turn black-box data analysis into glass-box data analysis. The representation of high-dimensional
data features and drawing classifier decision boundaries is one such challenge, where you are limited, in most
situations, in representing high-dimensional feature space features on a 2D plane (Hahsler, 2017). Here we
show the naive Bayes decision boundary of two classes plotted using two features with AKT1 data to visually

access model misclassification errors (see Figure 3.17).

RadViz, short for Radial Coordinate Visualization was originally conceived by Hoffman and colleagues, as a
computational tool for visualization of high-dimensional data on a plane in 2D (Hoffman et al., 1997).
Conceptually, imagine a circle and a collection of points inside the circle. Also imagine springs, one end of
which is connected to the point inside the circle, and the other end is anchored on to the circumference of the
circle. The points inside the circle represent records x, the anchors on the circumference represent features m,
and the springs represent the data vectors. Finally, assume the stiffness constant (in term of Hooke’s law) of

the jth string is x;; for one of the data points i. When the point i is released and allowed to reach an equilibrium
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position. The coordinates of this position (u; v;) Tare the projection in two dimensional space of point
(Xi1, Xizs » Xiy)T in m-dimensional space. RadViz thus combines the class discrimination algorithm with high-
dimensional visualization (Hoffman et al., 1999). RadViz has been extensively applied in the area of biological
data mining in building classifiers in identifying quinone subtypes and scaffold effective against melanoma
and leukemia cell lines, and in profiling ovarian cancers using chemical descriptor, gene expression, and mass
spectral data (Marx et al., 2003; McCarthy et al., 2004; Ujwal et al., 2007). Here we demonstrate the successful
application of RadViz with the AKT1 dataset. The two classes are segregated (blue and yellow dots) with
some spillage of members of one class into another. The important features are anchored on the circumference
of the circle. One can also build full and reduced models and show the entire range of misclassification errors
(see Figure 3.17).
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Figure 3.17 2D Visualization of Class Separation
(A) Naive Bayes decision boundary of instances. The open red triangles and black circles represent two
classes (B) RadViz plot with records and features. The solid blue and yellow circles represent two classes
and dimensions/features are marked on the circumference of the circle.

3.7.3 Multiple Models Validation

The model development and evaluation were extended to other chemical descriptor datasets: BRCA1, IDHI,
MDM2, RARA, ESR1, STAT3, MMP2, and JAK2. Here we summarize these results on different performance

metrics (see Table 3.5).
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Table 3.5 Naive Bayes Model Metrics on other Oncology Target Datasets

Accuracy Sensitivity Specificity Pos. Pred. Value | Neg. Pred. Value
Targets [Iraining [Testing  |[Training |Testing [Training [lesting [Iraining [Testing [Training [Testing
AKT1 0.8849  |0.8748  [0.8105 0.8024  ]0.9592 10.9472 [0.9503 [0.9379  |0.8403  0.8282
BRCAT ]0.7051 0.7122  0.7145 [0.7234  [0.6957 |0.7010 [0.7013  [0.7075 [0.7090 [0.7171
IDHI 0.7001 0.6802  0.6824 10.6579 [0.7359  [0.7025 |0.7210 ]0.688G  0.6985  |0.6725
MDM2 [0.8668  [0.8203  [0.7337  |0.6585 1.0000 1.0000 1.0000 1.0000  10.7897  |0.7455
RARA [0.7583  [0.7868  0.5199 0.6047 10.9967 [0.9690 [0.9937 [0.9512 [0.6749  |0.7102
ESR1 0.5000  |0.5813  ]0.9938  10.9782  |0.1861 0.1843  10.5536_ [0.5630  0.9673  |0.8874
STAT3 0.6632  0.6885  [0.3885  [0.4215  [0.9379  [0.9556  |0.8438  [0.8947 ]0.639S8  |0.6482
MMP2 0.6432 [0.6178 [0.9973  [0.9863 10.2890  0.2493  [0.6208  [0.6057  [0.9893  |0.9396
JAK?2 0.8130 [0.8175  [0.6381 0.6430 |0.9878  10.9920 [0.9815 [0.9881 0.7294  |0.7286
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3.8 Artificial Neural Net (ANN) - Background

The Artificial ~ Neural Net (ANN) is yet another class of learning methods. The central idea in ANN is to
extract linear combinations of inputs as derived features and model the target as a nonlinear function of these
features. The biological metaphor of neural network as a mathematical representation of information
processing may provide some intuition in creating a computational model for neural networks based on neural
plasticity in Hebbian learning, by adjustment of weights to input signals to the ‘neuron’. The demonstration
by Rosenblatt on such a simple network of a model neuron was called ‘perceptron’ (Rosenblatt, 1958). Simple
‘perceptron’, while effective in solving linearly separable problems had its limitations, which led to the proposal
of a multilayer perceptron (MLP) (Hastie et al., 2009). The error back-propogation method was the next
major development to solve, not linearly separable problems (Rumelhart, et al., 1986). The core ideas central
to neural networks are the Neural Net Architecture; Forward Propogation and Backpropogation. Several
excellent resources include textbooks by leading researchers in the area of neural networks (Bishop, 2006;
Hastie et al., 2009; Mitchell, 1997; Zhang et al., 2020).

3.8.1 Neural Net Architecture

A typical neural net architecture consists of a set of interconnected nodes also referred to as neurons beginning
with an input layer, followed by one or more hidden layers and an output layer (see Figure 3.18). Neural
networks perform affine transformations to concatenate the input features with some random weights and
converge at a specific node in the network. The concatenated input is evaluated by the activation function
and output obtained. The prediction is evaluated against the observed class label and the model error is
calculated. Subsequently, the prediction is improved iteratively by updating the network parameters (weights

and biases) by the technique of back propogation.
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3.8.2 Forward Propogation

Forward propagation refers to the sequential steps involved in moving the inputs through the hidden layer/s
to the output in a neural network architecture. For example, we can represent this for illustrative purposes

for a single hidden layer as € R% as described by Zhang and others (Zhang et al., 2020).
z® = xWw® (3.8.1)

where z® is the intermediate variable that is produced by the concatenation of the x is the data matrix of

dimension n x d with the initial random weight parameter of the hidden layer, such that, w® € R™ The

l

standard notation for weights representation in a neural network: W;;, where the superscript [ is the Ilth

hidden layer, subscript i is the ith weight and subscript j is the jth neuron.

Now that we have the activities of the second layer, we apply the activation function (D(Z(Z)) to each entry of

the matrix z® which yields a matrix exactly as the same dimensions as z®, and this is referred to as a®

a® = f(z?) (3.8.2)
In the subsequent steps the output a® after passage through the activation function is concatenated with
the weight vector W® | one each for each neuron in the previously hidden layer and apply one more time the
activation function, This yields a vector, z® whose length is the same as the number of samples in the original
data x.

73) = @ W@ (3.8.3)
Finally, we apply the activation function again to estimate the prediction y, which is written as follows:

y=f=®) (3.8.4)

We can calculate the loss term for a single data example, as follows making the assumption the loss function

is [ and the class label is .
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L=1(yy) (3.8.5)

Since we have described already regularization in the earlier section, we can simply write the final objective

function J as follows, where L is the loss term, and s is the regularization term.

J =L+s (3.8.6)

3.8.3 Backpropogation

The backpropogation is a procedure that computes the gradient of the loss function with respect to the
weights, in fitting a neural network. It uses gradient methods for training a single layer or a multilayer
network, updating weights to minimize the loss function using gradient descent or variants of it like stochastic
gradient descent (Goodfellow et al., 2016). The term backpropogation and its general use in neural networks
was a seminal contribution in the field, and it was proposed by Rumelhart and collaborators (Rumelhart, et

al., 1986). Somewhat similar ideas, while not as compelling existed dating back to the early 1960s.

Zhang and others (Zhang et al., 2020) described that in the case of a simple network one hidden layer with
the parameters, namely, W™ and W® | The first step is to calculate the gradients of the objective function
J, with respect to the loss term L and regularization s which we described in the forward propogation
(incidentally the last step in the sequence). Here the order of operations is exactly in the reverse, as opposed

to the forward propogation.

g = land 9 =1 (3.8.6)
JL ds
Next, steps include calculation of a series of gradients (first-order differentiation) w.r.t. the weight parameters

W® the activation layer a® , and finally, the weight parameters W@

a] a] aJ (3.8.7)
ow@ ' 9a@’ ow @)

In summary, the first pass of the model training involves one sweep in the forward direction and a reverse

sweep in the backward direction along the compute graph. The subsequent steps in the model training involve
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several iterations, yielding the appropriate parameter values with the ultimate goal of lowering the cost

function.

3.9 Artificial Neural Net (ANN) — Implementation & Experiments

Artificial Neural Nets (ANN) was implemented in the statistical programming language R. The bulk of the
implementation is through keras (Falbel et al., 2020), an R interface to Keras (Chollet, 2015), a python deep
learning package, it is a high-level neural networks API, which is capable of running on top of TensorFlow™,
which is Google’s open-source software library for numerical computations using data flow graphs. Nodes in
the graph represent mathematical operations, while the graph edges represent the multidimensional data
arrays (tensors). The flexible architecture of which facilitates, both running the same code on both CPU and
GPU high-performance clusters. The other libraries include ggplot2 (Wickham, 2009) for plotting besides
using native R plotting utilities.

3.9.1 Effect of Number of Hidden Layers on ANN Model Performance

Here we have evaluated the effect of the number of the hidden layer on the model accuracy and loss function.
The schematic of the neural net architecture is shown, ranging in two to five layers, with a specific number

of neurons in each layer (see Figure 3.18).

Input Hidden Input Hidden input Hidden Input Hidden
Layer Layer Layer Layer Layer Layer Layer Layer
& © % ®
° e e | | @) T ||| e
° ° @ Py | <) °
@ @ ® o . e
® ® o ® ¢
e  ® @ o, v ¢
@ @ & ¢
2- Layer Neural Net 3- Layer Neural Net 4- Layer Neural Net 5- Layer Neural Net

Figure 3.18 Artificial Neural Net (ANN)

A schematic of ANN architecture of the number of hidden layers in neural nets.
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We set up sequential ANN models with the AKT1 dataset which has 530 dimensions and iteratively evaluated
the different number of layers. Formally, an n layers model represents n-1 hidden layers. At each epoch, we
recorded the model accuracy and loss function, where each epoch is one complete sweep of the data through
the hidden layers (forward propogation/backpropogation). The results show that the addition of new layers
slightly improves the model accuracy both in the training data and validation data but the addition of layers
beyond a certain number of layers degrades accuracy (see Figure 3.19). However, there is a marked oscillation
in accuracy measurements in all the models with the varying number of hidden layers in early epochs (between
1 and 20) that begin to stabilize later (after 20 epochs). Permutation or shuffling of the validation data or
varying the batch size did not smoothen the curves. Likewise, the loss function also behaves similarly, with
additional layers minimizing the loss function in the training data, while in the validation data, it minimizes
very early in the epochs and begins to spike, a little later suggesting overfitting. A single hidden layer in neural
networks, with a finite number of neurons, is capable of universal approximation, implying that neural nets
can approximate any continuous function when given appropriate weights (Csédji, 2001). One of the first

versions for the sigmoidal function was proposed by (Cybenko, 1989).
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Figure 3.19 Effect of Number of Hidden Layers on ANN Models

Different numbers of layers were evaluated for model performance with the AKT1 dataset. (A) Accuracy
on the training data (B) Accuracy on the validation data (C) Loss on the training data (D) Loss on the
validation data.

Hornick (Hornik, 1991) expanded upon the idea of universal approximation, not limited to any specific
activation function but rather to the multi-layer perceptron architecture, which is foundational to deep neural
networks. Hinton’s group provided some ground-breaking advances in deep learning for models to learn

complex representation through multiple hidden layers (Hinton et al., 2006).

3.9.2 Effect of Different Optimizers on ANN Model Performance

Here we have evaluated the effect of different optimizers on the model accuracy and loss function. Selecting
the right optimizer is critical in contemporary deep learning model development. Optimization algorithms are
typically defined by their update rule, which is controlled by hyperparameters that determine its behavior
(e.g., « the learning rate). Consider a differentiable loss function £: R* — R whose vector of the first partial
derivatives is given by V£(8). In this context, € represents the loss function computed over the entire dataset

by a neural net and 8 € R? represent a vector of model parameters. The optimization problem is to find a
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point that (at least locally) minimizes €. First-order iterative methods for this problem construct a sequence
6, of iterates converging to a local minimum 6, using the queries to £ and V€. The sequence 8, is constructed
by an update rule M, which determines the next iterate 8;,; from the history A, . Thus, given an initial
parameter value 8, € R%, the sequence of points visited by an optimizer with update rule M is given by, ;41
= M (h, 6,) (Choi et al., 2020; Nesterov, 2018). From the results (see Figure 3.20), the ANN model compiled
with ADAM optimizer (Kingma and Ba, 2017) consistently outperformed when compared with other
optimizers, both on accuracy and loss function metrics with training and validation data (see Figure 3.20).
By contrast, the Stochastic Gradient Descent (SGD) optimization (Bottou, 2012), was ranked the lowest in
the same experiments, which is rather surprising, considering its wide adoption. While there is no consensus
on the choice of an optimizer, empirical comparisons of various optimizers have been cited in the literature

using different types of data (Wilson et al., 2017). Therefore, ADAM seems to be fit-for-purpose for the present

experiments.
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Figure 3.20 Effect of Different Optimizers on ANN Models

Different optimizers were evaluated for model performance with the AKT1 dataset. (A) Accuracy on the
training data (B) Accuracy on the validation data (C) Loss on the training data (D) Loss on the validation
data.
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3.9.3 Effect of Different Learning Rates on ANN Model Performance

Learning rate («) is one of the key hyperparameters that controls the weights in training neural nets with
respect to the gradient descent. It scales the magnitude of the weights update in order to minimize the neural
networks loss function. For instance, if the learning rate is set to smaller values, it makes very small updates
to the weights, though this ensures that we are not missing any local minima but can run the risk of
inadvertently getting struck in one such situation. And this may take a longer time for convergence. On the
other, hand, larger values can risk the possibility of divergent behavior i.e., overshoot the minima and fail to
converge. Often, the best learning rates are associated with the steepest drop in the differentiable loss function.

In simple terms, we are seeking the values o, that help in converging to a local minimum 6,

2
041 = 0;— 30 £(6;).

In the following experiments, we tested a range of values for o« and evaluated its effect on the model
performance both on the training and testing data (see Figure 3.21). The choice of smaller values of (x =
0.001, 0.005) compared to larger values (¢ = 0.015,0.0172) seems to show better performance, when scored
on the metrics of model accuracy and model loss. As expected, the training accuracy is always higher than
the testing data, and training loss is always lower than the testing data. Besides, ANN models with the
smallest () values tested have shown the lowest loss and the loss curve remains reasonably stable across all
the epochs. Models with slightly larger learning rates begin to diverge around ten epochs. Other systematic
approaches to finding the optimal learning rates include techniques like cyclical learning rates which are bound
between two values and exhibit multiple modes of decay from fixed to exponential (Smith, 2017). Stochastic
Gradient Descent with warm Restarts (SGDR) is similar to the cyclical approach, where an aggressive
annealing schedule is combined with periodic restarts with the original learning rates (Loshchilov and Hutter,
2017).
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Figure 3.21 Effect of Different Learning Rates on ANN Models

Different learning rates were evaluated for model performance with the AKT1 dataset. (A) Accuracy on
the training data (B) Accuracy on the validation data (C) Loss on the training data (D) Loss on the
validation data.

3.9.4 Effect of Regularization on ANN Model Performance

Just to recollect, model regularization is motivated by the desire to reduce model complexity and expanding
its ability for generalizability. It does this by restricting the degrees of freedom in the model (Raschka, 2019).
In the earlier sections, we have written in some detail explaining the concept and different techniques for
model regularization (see sections Approach: 2.5.2 -2.5.5, Evaluation of Algorithms: 3.2.7). Here we just report
the findings of applying some of these techniques on ANN models (see Figure 3.22) — Random Neuron Drop
regularization (Srivastava et al., 2014), L1 (Tibshirani, 1996), and L2 regularization (Hoerl and Kennard,
1970). First, we applied Random Neuron Drop regularization. We observe that the model accuracy drops in
the training data as a greater percentage of neurons are randomly dropped from the hidden layers.
Interestingly, accuracy on the validation data improves slightly, under identical regularization regimens, albeit
with fluctuations. Evaluating the loss function under the same conditions, in training data the loss increases,
while in the validation data the loss decreases (epochs > 30). In effect, neuron drop regularization leads to

model performance improvement in the validation data, while resisting overfitting in the training data, which
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is the intended outcome. This augurs well for the model generalizability of unseen test data in forward

validation.
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Figure 3.22 ANN Model Random Drop Regularization

A range of regularization values was evaluated for model performance with the AKT1 dataset. (A) Accuracy
on the training data (B) Accuracy on the validation data (C) Loss on the training data (D) Loss on the
validation data.

Next, we tested L1 and L2 regularization (see Figure 3.23), here we demonstrate some interesting effects of
LI and L2 regularizations. Unlike neural drop regularization, we did not see any model performance
improvements but a case can be made that L1 and L2 regularizations help resist model overfitting. The effects
of L1 are more drastic compared to L2 on the accuracy measurement both for the training and validation
data (see Figure 3.23 (A) and (C) with double arrow bars). Each accuracy measurement in the training and
testing set has corresponding controls (no regularization). An almost similar pattern is observed in the loss
measurements, L1 shows greater resistance to overfitting compared to L2 both in training and testing data.

This also carries appropriate controls.
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A range of L1 and L2 regularization values were evaluated for model performance with the AKT1 dataset.
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(A) Accuracy on the training data ((B) Loss on the training data (C) Accuracy on the validation data (D)

Loss on the validation data.

3.9.5 ANN Model Hypertuning

Here we show ANN model performance after hypertuning the model parameters. The AUC curves
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Figure 3.24 ANN Models Performance Metrics ROC curves
ROC curves are plotted for AKT1 dataset (A) AUC with training and testing data (before model
hypertuning) (B) AUC with training and testing data (after model hypertuning).

were recorded both for the training and testing datasets before and after hypertuning (see Figure 3.24). The

results clearly demonstrate the performance gains. The ANN modeling was further expanded to other datasets

and the summary of the hypertuned performance metrics is recorded (see Table 3.6).

Table 3.6 ANN Hypertuned Model Metrics on other Oncology Target Datasets

Targets Accuracy Sensitivity Specificity Pos Pred Value Neg Pred Value

Training [Testing [Training [Testing [Training [Testing [Training [Testing [Training [Testing
AKT1  [0.9852  [0.9302 10.9846  10.9422 0.9858 10.9182 [0.9852 [0.9191 |0.9851 10.9416
BRCA1 [0.9532 [0.7946  |0.9538 [0.7961 0.9526  [0.7930  [0.9527 [0.7937 10.9537  |0.7955
IDH1 0.9333  0.7205  10.9382  |0.7499  [0.9283  [0.6912  |0.9290 ]0.7083  |0.9376  |0.7343
MAPK1 [0.8866 [0.6121  |0.8259 10.4248 10.9472  10.7994  |0.8799  [0.4979  10.9208  0.7480
MDM2 [0.9739 [0.8811 |0.9791 |0.8537 0.9687 0.9085 [0.9690 [0.9032 10.9789 |0.8613
RARA 09536 |0.8023  [0.9536  [0.7984 ]0.9536  |0.8062  10.9536  [0.8047  [0.9536  |0.8000
ESR1 0.9090  10.7806  10.9933  |0.8701  |0.8248 [0.6911 ]0.8536  0.7461 10.9917  0.8361
STAT3 |0.8670  [0.6703  10.9856  0.7851 10.7484 10.5556  [0.7718 10.6129 10.9837  10.7426
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3.10 Decision Trees - Background

Decision trees build classification models in the form of the canonical tree structure. The main goal of the
construction of the decision tree is finding the attributes that return the highest information gain (i.e., the
most homogeneous branches). The entropy of each branch is calculated. The result is information gain or a
decrease in entropy. Most algorithms that have been developed for learning decision trees are variations of
the core algorithm that employs a top-down, greedy search through the space of possible decision trees. This
approach is exemplified by the ID3 algorithm (Quinlan, 1986) and its successor C4.5 (Quinlan, 1993). The
later iteration of Quinlan C5.0 is covered by a patent and not available in the public domain. CART or
Classification and Regression Trees is often used as a generic acronym for the term Decision Tree, though it
has a more specific meaning. In sum, CART implementation is very similar to C4.5 (Breiman et al., 1993).
The one notable difference is that CART constructs the tree based on the numerical splitting criterion

recursively applied to the data, whereas the C4.5 includes the intermediate step of constructing rule sets.

Zaki and Meira (Zaki and Meira, Jr, 2014) elegantly described the conceptual framework, which forms the
basis of the background to decision trees. Briefly, given a training dataset D. Typically, R denote the data
space of n samples and d-dimensional feature space either as numeric or categorical attributes with a class
assignment where y; € {cy, ¢1,.., ¢ }. In other words, y; is one of the several classes. A decision tree recursively
partitions the tree model D = {x;,y; }1=,del that predicts the class J; for each point x;, via an axis-parallel
hyperplane, such that the partition so obtained is relatively homogenous of a given class ¢,. The decision tree
model is essentially a structural representation of the hierarchical split decisions. The class assignment of a

new sample occurs by traversal along the split branches to the terminal leaf node of the decision tree.

3.10.1 Entropy

Entropy is a concept in physics that refers to a measure of uncertainty or disorder in a system. In information
theory, the concept communicates the ‘informational value’ of an event, also called Shannon entropy
(Shannon, 1948). By extension, in classification, a relatively homogeneous partition has lower entropy
compared to a non-homogeneous population suggesting that most of the points in such a partition carry the
same class label. By contrast, a population of mixed labels has the higher entropy. Formally, one can define

the entropy of a set of labeled points D as following: (Zaki and Meira, Jr, 2014)

H(D) = X, p(ci| D) log, | p(ci|D)
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where p(c;|D) is the probability of class ¢; in D, and k is the number of classes. If p(c;|D) = 0.5, which means
that there are an equal number of points belonging to both the classes, and hence the entropy is the highest
value H(D) = log,k. On the other hand, if all the points are pure i.e., belonging to the same class, then the
entropy is zero. Intuitively, one can define the highest information gain as the largest difference in the entropy

of the class and the entropy of the weighted attribute.

When n = |D] is the number of points in D, and n, = |D,| and n,, = |D,| are the number of points in D, and
D,, which are attribute values extracted from a contingency table. Therefore, Information Gain can be

compactly expressed as:

Gain(D,D,,,) = H(D) — H(D,, D,).

3.10.2 Gini Index

Gini index is another measure to gauge the purity of a split point, which is defined as follows:

k
6(D)=1- ) p(cDY
i=1

Where p(c;|D) is the probability of class ¢; in D, and % is the number of classes For example, if the probability
of the majority class is 1, it suggests that the partition is homogeneous. In other words, there is less disorder,
implying that all members in the partition have the same class label. Lower values of the Gini index indicate

order, while higher values indicate a disorder.

3.10.3 Ensemble Methods: Bagging and Boosting

Ensemble learning is a framework for combining multiple weak learners' algorithms to produce a strong
learning algorithm. FEnsemble methods have become a major learning paradigm since the 1990s, with
promotion by two pieces of pioneering work. One is empirical, in which it was found that predictions made
by combinations of a set of classifiers are often more accurate than the prediction made by a best single
classifier. Ensemble methods create combined classifiers using the output of multiple base classifiers, which
are trained on different data subsets (Hansen and Salamon, 1990). The other is theoretical, in which it was

proved that weak learners can be boosted to strong learners (Schapire et al., 1998). Overall, ensemble classifiers

86



help reduce variance and bias, leading to better overall performance. Zhou has written an excellent textbook

bringing together multiple topics in ensemble learning (Zhou, 2012).

3.10.4 Bagging

The concept of bagging was proposed by Breiman, who made some significant contributions in the area of
ensemble learners (Breiman et al., 1993; Breiman, 1996a). Bagging, is short for Boostrap Aggregation, it is an
ensemble classification method that builds models by a sampling method called bootstrapping (sampling with
replacement), where random subsets of data D;, ¢ = 1, 2, ..,k are used as input for training. Several base
classifiers M; are built while being trained on D;. The assignment of the new test sample z, to one of the class
¢; using each of the K base classifiers, M;. This is accomplished by a system of majority voting. Bagging is
believed to help in reducing variance, especially if the base classifiers are unstable, due to the averaging effect

of majority voting, while its effect on the bias is almost minimal (Breiman, 1996b).

3.10.5 Random Forests

The Random forest algorithm is a special case of the bagging algorithm, which draws random bootstrap
samples from the training dataset. However, in addition to the bootstrap samples, it draws random subsets of
features for training the individual trees, then it builds a large collection of de-correlated treas and averages
over this collection of trees (Breiman, 2001, 1996a). It is suggested that its better predictive performance
comes because of its better bias-variance tradeoffs. The essential idea in bagging is to average many noisy
approximately unbiased models and hence reduce variance. Not all estimators can be improved by shaking up
the data as we see in random forest but highly nonlinear estimators, such as trees benefit the most When used
for classification, random forest obtains a class vote for each tree, and then classifies using the majority vote.
When used for regression, the predictions from each tree at a target point x are simply averaged. An important
feature of random forest is its use of out-of-bag (OOB) sample error estimate which is identical to that

obtained by cross-validation (Hastie et al., 2009).

3.10.6 Boosting

Boosting is yet another example of a multi-tree ensemble technique that trains the base classifiers on different
samples in a sequential order as opposed to the parallel building of decision trees, as in bagging. The core idea
in the boosting technique is to carefully select samples to boost the performance on hard-to-classify instances,
which were mislabeled. The technique works by selectively assigning higher weights to escape the trap of being

misclassified. Schapire proposed the original theoretical framework for a set of classification problems that
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turns weak learners into strong learners (Schapire et al., 1998). Freund and Schapire’s ARCing (Adaptive
Resampling and Combining) paradigm is the next significant development, as a general technique, which is

more or less synonymous with boosting (Breiman et al., 1993; Freund and Schapire, 1997).

Briefly, the process begins with a base classifier M;, which is built on the training sample D; and the
misclassification error is evaluated, internally the misclassified instances D, are selected at a higher probability
for the next round of model training M, and once again the misclassification error is evaluated. Likewise, in
the subsequent round Dj; the hard to classify instances by M; and M, are selected, again with a higher
probability, and these iterations proceed through K times, until such time when the misclassification fails to
be improved. Boosting is suggested to better at reducing bias, while bagging works better at reducing variance.
Thus, unlike bagging that uses independent random samples for the input dataset, boosting employs weighted
or biased samples to construct the different training sets, with the current sample depending on the previous
error evaluations. Finally, the combined classifier is obtained via weighted voting over the output of K base
classifiers My, M,,..., M.

3.10.7 XGBoost

XGBoost is a special case of a multi-tree-based ensemble algorithm that uses the gradient boosting framework.
Chen and Guestrin pioneered the development, implementation, and deployment of the framework (Chen and
Guestrin, 2016). XGBoost and Gradient Boosting Machines (GBM) both operate on the principle of boosting
weak learners. However, XGBoost improves upon the base GBM framework through system optimizations
and algorithmic enhancements (Chen and Guestrin, 2016). XGBoost approaches the process of sequential tree
building using parallelized implementation. It approaches tree pruning differently than the standard stopping
criterion as in a typical greedy search algorithm. The ‘depth-first’ approach significantly enhances
computational performance. The algorithm has been designed to efficiently leverage hardware resources by
the allocation of internal buffers in each tread to store gradient descent statistics, cache access patterns, utilize
data compression, and sharding to build a scalable boosting system. Algorithmic enhancement includes
regularization to prevent overfitting, sparsity awareness, and, weighted quantile sketch for optimal split points

among weighted data points (Morde, 2019).
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3.11 Decision Trees — Implementation & Experiments

Decision trees were implemented in the statistical programming language R. Bulk of the implementation was
accomplished using the libraries rPART (Therneau et al., 2019), randomForest (Liaw and Wiener, 2018)
based on the Fortran original Classification and Regression Trees (CART) (Breiman and Cutler, 2001),
randomForestExplainer (Paluszynska et al., 2020), XGBoost (Chen and Guestrin, 2016), and mlr frameworks
(Bischl et al., 2016). The other libraries include ggplot2 (Wickham, 2009) for plotting besides using native R
plotting utilities.

3.11.1 CART Models — Tree Structure, Validation, and Evaluation

Classification and Regression Trees (CART) is the decision tree learning models, the R implementation of the
CART algorithm is called rPART (Recursive Partitioning and Regression Trees). Here we implemented
rPART for JAK2 data with chemical descriptors feature set. It is a binary recursive partitioning that uses
one of the several measures of impurity — information index or Ginni index that returns the maximum
information gain or maximal impurity reduction. In other words, we are seeking to maximize the homogeneity
of a given class by lowering the entropy and every subsequent split uses similar criteria until it reaches the
terminal nodes for class prediction. First, we built a base model and evaluated its performance in k-fold cross-
validation, rART is a single tree unlike ensembles, and more easily interpretable (see Figure 3.25). At the root
node (C.027) we get an error value of 0.497, which is interpreted as having roughly 50% purity for the two
classes and this relative error progressively decreases with successive splits until limited by a certain parameter.
Next, we traced the cross-validation error by following the complexity parameter (cp) over an arbitrary range
of values. The complexity parameter (cp) controls the size of the decision tree and selects the optimal tree
size. If the cost of adding another variable is above the value of cp, the model tree building growth ceases.
We see a slightly high error rate (40%) at reasonably small values of ¢p. In this case, the tree structure is
rather sparse suggesting premature growth termination leading to poor performance. In general, tree pruning
is adopted for the reduction of variance. In our experience, pruning did not alter the tree structure (data not

shown).
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Figure 3.25 CART Tree Structure and k-fold Cross-validation
(A) JAK2 dataset tree structure (B) Model cross-validation error measurement.

3.11.2 CART Models - Hyppertuning

The results suggest that we can leverage the tunable parameters tree depth (max depth) and c¢p to extract
better performance from the model. Therefore, we set up a parameter tuning regimen for a computational grid
search to obtain optimal values of max depth in the range of (1 - 20 in the increments of 1) and cp in the
range of (0.001 — 10 in the increments of 10%). The search space is a cartesian joint of two tunable parameters.
Each tree model uses two-thirds of the records for the training set and one-third as a test set and the model
is cross-validated five-folds and the average error is computed. Here we report some gains in the model
performance metrics, both before and after hypertuning (see Figure 3.26). The models are tested both on the
training data and testing data, as expected the performance is slightly eroded in the testing data. Each of
these model metrics is scored at different probability thresholds, which often is useful in choosing the
appropriate threshold to remedy for class imbalance in data (Kuhn and Johnson, 2013). To concretely prove
the point, we carried out simulation experiments with synthetic data with different ratios of class imbalance
(i.e., ~1:1, ~1.5:1, and ~31:1 respectively). Next, we built single tree predictive models and showed how True
Positive Rate (Sensitivity) and True Negative Rate (Selectivity) are affected at different probability
thresholds. In balanced classes, sensitivity and specificity are approximately at the same level. In unbalanced
class sensitivity (increases) and specificity (decreases) depending on the class ratio (see Figure 3.27). We
further evaluated the model performance with ROC curves (see Figure 3.28). There is clear evidence for
performance gains as we integrate the area under the curve, both before and after hypertuning confirming the

improved performance both on the training data and the unseen test data. We also performed bootstrap
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resampling and cross-validation to provide multi-point measurement as opposed to a single-point AUC

measurement, and the confidence interval band was included in the measurement for robust validation.
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Figure 3.26 CART Model Hypertuning Performance Metrics
The upper panel shows base model metrics and the lower panel shows hypertuned model metrics at different
thresholds. (A) True positive rate (B) True negative rate (C) False positive rate (D) Accuracy (E)

Misclassification error.
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Figure 3.27 Class Imbalance Simulations

The figure shows model performance metrics with balanced classes (~1:1) (A) true positive rate (B) false-
positive rate; with partially balanced classes ( ~1.5:1) (C) true positive rate (D) false-positive rate; with
highly unbalanced classes (~31:1) (E) true positive rate (F) false-positive rate.
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Figure 3.28 CART Hypertuned Model ROC Curves

ROC curves are plotted for base models (upper panel) and hypertuned models (lower panel) (A)
Bootstrapped resampling and Cross-Validation (CV) (B) Testing vs. training data (C) Confidence Interval
plot. (D) Bootstrapped resampling and Cross-Validation (CV) (E)Testing vs. training data (F) Confidence
Interval plot.

3.11.3 Random Forest Models — OOB Error, Hypertuning, & ROC Curves

The random forest ensembles models are a collection of trees built by drawing random bootstrap resampling
(sampling with replacements) from the JAK2 chemical descriptors training dataset. Besides, it also draws
random sub-sampling of features to build the individual trees. As a general rule, roughly two-thirds of each
draw is used for building the model and the other one-third is set aside as Out-Of-Bag (OOB) testing data
until stable error estimates are reached. The class prediction for each of the testing samples is adjudicated by
polling the votes from each of the sequentially aggregated trees and the class membership is decided by the
majority vote. In these experiments, we have initially built 500 trees and followed the reduction in error, as
called by the majority vote in each of these sequentially aggregated trees. While OOB error is the combined
error of the two classes, the error of each class is also plotted. In the initial tree aggregates, the error is high
but errors begin to stabilize approximately between 300 and 500 trees. The estimated OOB error is 8.18%.
We also tested for the number of features (mtry) that is optimal in reducing the OOB errors and it turns out,

that on an average it is 24 features in a randomly selected bootstrap sample, which is roughly the equivalent
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to the square root of the total number of features. The OOB error as a function of mtry is in agreement with

the earlier estimate of 8.18% (see Figure 3.29).

After building the base models, we tried to improve the model performance by leveraging the tunable
parameters to build hypertuned models. Like in the earlier section, we set up a parameter tuning regimen for
a computational grid search to obtain optimal values of ntree' (300 - 500), mtry (30 — 35), and nodesize (10
— 50). The search space is a cartesian joint of three tunable parameters that we are seeking to minimizes the
mean misclassification error. Hypertuning experiments are computationally expensive and time-consuming.
Often, finding the optimal combination is a non-trivial task. We evaluated the model performance gains by
ROC curves, both on the training data and the unseen testing data. The AUC measurements yielded a value
of 98.03%, on the testing set (see Figure 3.30), which is a significant improvement when compared with single
tree rfPART models on the same testing data, with an AUC value of 90.68% (see Figure 3.28). Prior to
evaluating prediction performance on the unseen testing data, we validated the random forest model by
bootstrap resampling and 10-fold cross-validation on the training data and plotted ROC curves for multi-
point AUC estimates. We also developed sensitivity and selectivity curves with confidence interval bands for

the general assessment of the robustness of these models.
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Figure 3.29 OOB Error Estimation and Model Tuning

(A) The errors are plotted for each of the two classes independently (green and blue lines and the combined
class OOB (B) The plots show the optimal number of variables that are randomly selected in building the
trees that give the smallest error.
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Figure 3.30 Random Forest Hypertuned Model ROC Curves
ROC curves are plotted for hypertuned models (A)Bootstrapped resampling and Cross-Validation (CV)
(B) Testing vs. training data (C) Confidence Interval plot.

3.11.4 Random Forest Models — Variable Importance & Partial Dependence

Conceptually, in a binary decision tree, at each node a single predictor i; is used to partition the data into
two homogeneous groups. The chosen predictor is one that maximizes some measure of improvement i, more
precisely, the information gain. In the ensemble of individual decision trees, as in the random forest, the idea
is extended to identifying such predictors and the improvement score is averaged over all the trees in the
ensemble, which is called variable importance (VI). The index, Mean Decrease in Accuracy (MDA), utilizes
the Out-of-Bag (OOB) samples to compute variable importance. For each tree, the predicted error on the
OOB samples is recorded (misclassification error). And each predictor variable is permuted in the OOB
samples and the predicted error is recorded once again. The difference between the two is then averaged over

all the trees. The general equation is given as.

VI = n;ee YHNC EP — Epj where EP is the permuted error of the predictor j and E is the base

error

Thus, the Mean Decrease in Accuracy (MDA) measures the fraction of the misclassification errors in the
model, when that predictor variable is removed (see Figure 3.31). In other words, the removal of
P_VSA_LogP_5 can lead to a greater fraction of error compared to P_ VSA_LogP_ 6. The larger the MDA
value, the more important is the variable. On the other hand, the second measure Mean Decrease in Gini
(MDG) is the total decrease in node impurities, averaged over all the trees. The most important predictor
variable will have the largest Mean Decrease in Ginni (i.e., C.027) and conversely, lesser important predictors

will have a smaller Mean Decrease in Ginni values (see Figure 3.31). Coincidentally, C.027 is the root node in
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the single tree CART model (see Figure 3.25). Han and colleagues (Han et al., 2016) suggested a slight
variation in the selection of variables in the random forest that combines MDA and MDG in a two-step

procedure called the dichotomy method.
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Figure 3.31 Random Forest Important Variables
The importance of these variables was determined by (A) Entropy and (B) Gini index measurements.

The Partial Dependence Plots (PDP) depicts the marginal effect of one or two features on the predicted
outcome of the machine learning model (Friedman, 2001). In other words, the effect of an individual predictor
variable, in total isolation of other predictor variables in the feature set on the predicted outcome. The function

being plotted is defined as

k
1
f(x) = logpi() = ) logp; (x)
=1

Where K is the number of classes, k is which class, and p; is the proportion of votes for the class j.

In partial dependence plots, we show the relative logit contribution of the important variables derived earlier
on the class probability in the random forest model (see Figure 3.32). For a subset of important variables, for
example, the variable P_VSA_LogP_5 strongly predicts the Class ‘0’ (inactive compounds) membership
for values approximately below 0.75 and Class ‘1’ (active compounds) membership above 0.75. Interestingly,

there is a perfect mirror symmetry in the partial dependence curves for the two classes. This pattern of mirror
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symmetry is repeated in all the cases examined for each of the predictor values in this subset of important

variables.
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Figure 3.32 Partial Dependence Plots
The partial dependence plots for a subset of important variables for the two-class Random Forest classifier

are shown.

3.11.5 Random Forest Ensemble Models — Distribution of Nodes & Tree Depth

The tree complexity of individual decision trees in the random forest depends on several hyperparameters that

include minimum node size, maximum tree depth, the minimum number of samples to split
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Figure 3.33 Random Forest Tree Structure
Here we show one of the representative trees in the ensemble collection with the root node, internodes, and
terminal nodes leaf nodes.

on an internal node, the minimum number of samples at a leaf node, and decrease in node impurity among
other properties. We show a representative tree structure with limited nodes in the random forest ensemble
with a root node, internal nodes, and terminal nodes. (see Figure 3.33). From a collection of 500 trees, we
estimated the distribution of the nodes, it ranged from 228 to 308. On average there are about 263 nodes per
tree with +/- SD (12.76) and there are approximately 85 trees with 260-265 nodes per tree. On either extremes,
there is a single tree with less than 230 nodes per tree and just three trees with more than 300 nodes per tree.
We plotted the probability density function (PDF) over continuous node interval which gives a better insight
into the shape of the distribution (see Figure 3.34). We also calculated the mean minimal depth and its mean.
The smaller the value of the mean minimal depth of the tree it shows these nodes are higher up in the
hierarchical distribution of the canonical tree structure. In other words, it is either the root node or a node
closer to the root node (see Figure 3.34). The same subset of predictor variables listed in Figure 3.31 re-appear

in Figure 3.34 and Figure 3.35 with the suggested different depths in the hierarchy.
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Figure 3.34 Random Forest Distribution of Nodes and Node Depth

The figure shows (A) the distribution of the nodes in the forest (B) the probability density plot (C) the
distribution of the variables across the number of trees in the forest and at the depth they appear and their
mean.

The Figure 3.34 (C) offers an interesting insight into three aspects — (1) the appearance of a predictor variable
at the root node, (2) the appearance of predictor variable at different depths, (3) the appearance of predictor
variable in the number of trees in the forest. While nArNHR is ranked above others it appears in far fewer
trees (<275) in the forest. On the other hand, the predictor variable C.027 is ranked the next highest but
appears in more trees (>450). The bottom three predictor variables in Figure 3.34 (C) appear almost close to
500 trees in the forest. It is important to consider the participation of a predictor variable in multiple splits
within the growing tree, which is highlighted by inspecting the multi-way importance plot (see Figure 3.35).
Therefore, predictor variables C.027, P_VSA_ppp_D, SpMax_B.p., and P_VSA_LogP_5 are considered

significant.
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Figure 3.35 Multi-way Importance Plot

This is a plot of the most important variables that appear at the root node and their representation at
various depths in all the trees in the ensemble.

3.11.6 Random Forest - Variable Interactions

Breiman and colleagues (Breiman and Cutler, 2001) suggested that in the random forest the operating
definition of interaction used is that variables m and k interact if a split on one variable, say m, in a tree
makes a split on k either systematically less possible or more possible. The implementation used is based on
the Gini values g(m) for each tree in the forest. These are ranked for each tree and for each two variables,
then the absolute difference of their ranks is averaged over all trees.

This number is also computed under the hypothesis that the two variables are independent of each other and
the latter is subtracted from the former. A large positive number implies that a split on one variable inhibits
a split on the other and conversely. We plot such pair-wise variable interactions after enumerating the splits
in individual trees and across all the trees in the forest (see Figure 3.36) taking advantage of the library
functions (Paluszynska et al., 2020). The results suggest that a split on one of the predictor variables has
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systematically increased the splits of the cognate pair. Wright and collaborator (Wright et al., 2016) suggested,
using extensive simulation studies, that caution is warranted in over interpretations of variable interactions
because it is difficult to differentiate between the real interaction and marginal effects.
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Figure 3.36 Random Forest Model Feature Interactions
The plot shows the feature depth and feature interactions.

3.11.7 XGBoost Ensemble Models - Trees, Validation, and Evaluation,

The XGBoost ensembles models are the special case of boosting techniques where a collection of trees are
built iteratively by tracing the decrease in misclassification error on the training data, as an ensemble of weak
prediction models until the error values are stabilized after certain epochs (see Figure 3.37). We developed
XGBoost ensemble models using the JAK2 dataset. Initially, we began with a large ensemble of 1000 trees,
progressively reduced it to 50 trees, and recorded the errors. The misclassification error was found to stabilize

between 50 and 1000 trees, which guides model hypertuning.
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Figure 3.37 XGBoost Models Training Error

The figure shows the trace of the progressive lowering of training errors in ensembles of different epochs
(A) 50 trees (B) 150 trees (C) 1000 trees.

Prior to evaluating prediction performance on the unseen testing data, we validated the XGBoost models by
bootstrap resampling and 10-fold cross-validation on the training data and plotted ROC curves for multi-
point AUC estimates (see Figure 3.38) After building the XGBoost base models, we tried to improve the

model performance by leveraging the tunable parameters to build hypertuned models.
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Figure 3.38 XGBoost Hypertuned Model ROC Curves

ROC curves are plotted for (A)Bootstrapped resampling and Cross-Validation (B) Testing vs. training
data.

Like in the earlier sections pertaining to decision trees, we systematically set up a parameter tuning regimen

for a computational grid search to obtain optimal values of the number of epochs; it involved the following
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parameter ranges: nrounds (100, - 500), mtry (30 — 35), tree depth: max_ depth (1- 10), learning rate: eta (0.1
—0.5), and L2 regularization: A (-1 — 0). The search space is a cartesian joint of four tunable parameters that
we are seeking to minimizes the mean misclassification error. Besides, we computed standard model
performance metrics — accuracy, false-positive rate, false-negative rate, and misclassification error (data not
shown). Hypertuning experiments are computationally expensive and time-consuming. Often, finding the
optimal combination is a non-trivial task. We evaluated the model performance gains by ROC curves, both
on the training data and the unseen testing data, the AUC measurements yielded a value of 97.92%, which
is slightly less than random forest models 98.03%, on the testing set (see Figure 3.38, also Figure 3.30 for

comparison).

3.11.8 Benchmarking Different Machine Learning Models

In general, when evaluating different machine learning algorithms, it is imperative to provide empirical
evidence that illustrates the behavior of any given algorithm compared to other competing algorithms. In the
field of machine learning and statistics, such empirical studies are called benchmark experiments. In
benchmark experiments, different learning methods are applied in tandem to a dataset to compare and rank
an algorithm with respect to one or more performance measures. We conducted some benchmark experiments

using the mlr framework (Bischl et al., 2016).

-
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Figure 3.39 Comparison of Decision Tree Models
The plot shows the mean misclassification errors of the three models being compared — Single Tree
(rPART), Ensemble Random Forest, and XGBoost in two formats (A) Box plots (B) Violin plots.
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The framework offers a standardized structure, syntax, environment, and methods to accomplish such a task.
While there are other frameworks/toolkits, for example, caret (Kuhn et al., 2016), CORElearn (Robnik-Sikonja
and Savicky, 2020), rattle(Williams et al., 2020), ipred(Peters et al., 2019), and rminer (Cortez, 2020), all of
which in some form or other support classification and regression tasks but none provide the mlr’s generic
wrapper mechanism, which makes the task of comparison facile. In the following experiments, using a common
dataset, JAK2, we selected three machine learning algorithms from the decision tree family and evaluated a
single performance metric — mean misclassification error (see Figure 3.39). The random forest was ranked with
the lowest mean misclassification error, followed by XGBoost and CART models. Like-wise we extended the
benchmark experiments to include all algorithms that we implemented, models developed and evaluated in

the present study (see Figure 3.40).

105



=3

‘i \ learner.id
‘ ‘ Logistic Regression
h—] Naive Bayes
‘ Spem— ﬁ\ Neural Net
4 = carT
Random Forest
- xgboost

mmece

Figure 3.40 Benchmarking Machine Learning Models

The violin plot shows the mean misclassification errors of the Machine Learning Algorithms being compared
for the same dataset under identical conditions — Logistic Regression (LR), Support Vector Machines
(SVM), Naive Bayes (NB), Artificial Neural Nets (ANN), Classification and Regression Trees (CART),
Random Forest (RF), and XGBoost (XGB).

Interestingly, ensemble learning methods seem to outperform other learners. The rank order is as follows:
Random Forest was ranked the highest with the lowest mean misclassification error, and Naive Bayes was
ranked the lowest with the highest misclassification error, while the rest of them were stacked between them
in rank order. It must be mentioned that the entire dataset was included in the cross-validation resampling,
with no attempt to tune the individual models. Logistic regression is relatively robust (or insensitive) to
hyperparameter tuning while we have clearly demonstrated that hypertuning in the case of support vector

machines, artificial neural nets, and decision tree ensembles yielded better model performance.
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Chapter 4: Discussion

“You are your deepest desire; as is your desire, so is your intent; as is your intent, so is your will;

as is your will, so is your deed; as is your deed, so is your destiny.” - Upanishads

4.1 Systems Thinking in Disease and Drug Discovery

Although the present study is framed from a systems perspective in understanding biological complexity,
human diseases, and drug discovery. It must be emphasized that the critical focus of this study is on evaluating
machine learning algorithms in the early discovery phase of profiling oncology drug candidates. Looking
through the systems thinking lens offers a rich repertoire of possibilities for interrogating human diseases and

injecting innovations in modern drug development campaigns.

As we alluded earlier, reductionism and systems thinking have been competing ideas that have dominated
scientific discourse over the years. The biological systems are complex and have emergent properties. It must
be emphasized, the understanding or prediction of their behavior is not a trivial task, that it can not be
accomplished by simply analyzing their constituents. The constituents of a complex system interact in a
myriad ways, including positive feed-back, negative feed-back, feed-forward that leads to dynamic features
that cannot be predicted satisfactorily by linear mathematical models alone that disregard cooperativity and
non-additive effects (Aderem and Smith, 2004). At least in the area of cancer/oncology, there is an increasing
call for a ‘systems’ approach. Incorporating the concepts of ‘emergence’, ‘systems’, thermodynamics’, ‘chaos’,
and fractals into a single integrated framework for oncogenesis. On some fundamental principles, cancer is
recognized as a dynamic complex system, emerging at the level of a ‘functional tissue unit’ and is associated

with multiscale causality at different levels in the hierarchy concomitantly (Sigston and Williams, 2017).

We now know that most diseases are caused by defects not in a single gene, but by several genes and/or gene
products (Mitchell, 2012). Network biology offers a broad framework to orient towards systems thinking, as
the basis for human diseases. Its importance is emerging with the availability of data on protein-protein
interactions, DNA-protein interactions, and RNAi in disease etiology. For example, the prescription drugs,
tamoxifen, bicalutamide, and all-trans retonic acid target interactions between DNA and transcription factors
(estrogen, androgen, and retinoic acid receptors), Azacitine targets DNA methyltransferases, while vorinostat
and romidepsin target histone deacetylase. There are also descriptions of how cells are organized networks of
metabolic and signal transduction cascades. There are many— ‘omics’ foci, including genomics, epigenomics,

transcriptomics, proteomics, lipidomics, metabolome, and the glycome, as well as the exposome. They are a
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collection of all the genes, epigenetic modifications, transcription products, proteins, lipids, metabolites, and

glycans (carbohydrates) in a cell or an organism (Baker, 2013; Smith et al., 2015)

Network-based drug discovery has been proposed to identify all the nodes that affect a disease network and
display higher-order phenotypes (Schadt et al., 2009). While it may be tempting to undertake a large-scale
compound screening to identify drugs that restore hemostasis to such perturbed networks, the prospects for
success is somewhat limited. On the other hand, the approach of polypharmacology offers some advantages,
where a limited number of target nodes in a canonical signaling network in cancer/oncogenesis, are
simultaneously interrupted at multiple points to short-circuit receptor-mediated biological signals and
attenuate down-stream cellular processes to achieve the desired therapeutic outcomes (Boran and lyengar,
2010). Machine learning modeling will play a key role in this enablement. At a much broader level, the
synergies of combining systems thinking and machine learning offer some radical prescription for innovation
across the entire pharmaceutical value chain from R&D, clinical trials, and commercialization that will have

a significant impact on delivering next-generation medicines.

4.2  Machine Learning in Oncology Drug Discovery

In the present study, we demonstrate how different machine learning algorithms can be used to mine and
model large volumes of potentially druggable compounds in the early phase of compound screening for drug
discovery, with particular emphasis on oncology drug candidates. Although PubMed and ChEMBL are
extraordinary resources in the public domain, they suffer from some minor data quality issues. Therefore, we
accessed the resources funded and developed by AstraZeneca Sweden. The ExCAPE database, which provides
a more standardized form of chemical structures, activity annotations, and target identifiers, covering a large

chemical and target space harvesting both public domain resources and in-house repositories (Sun et al., 2017).

The standard small-molecule drug discovery campaign starts by screening large molecular libraries against
specific protein targets and assaying them for their potential binding, biochemical readouts, and setting up
phenotypic screens. Testing these large compound libraries with specific biological activities is very expensive
and time-consuming. Building predictive machine learning models for such large-scale screening activities can
potentially save resources, time, and financial overheads. The adoption of computational approaches in drug

discovery work-flow offers an attractive alternative (Lo et al., 2018).

Our focus and efforts were directed at prosecuting large-scale molecular libraries to identify potential oncology
drug candidates for a subset of experimentally validated oncology targets by machine learning approaches.

Multiple bioassays directed to a given target were pooled. To our knowledge, this is the first attempt at such
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a large-scale aggregation of bioassays. We extracted feature sets for each of these compound collections by

computing chemical descriptors and chemical fingerprints.

Standard data mining preliminaries for machine learning modeling included checking for data distributions,
missing values, balanced classes, removal of duplicates, removal of highly correlated predicted variables, data

normalizations, evaluating sparse matrices to speed computations.

Often one of the basic flaws in building machine learning models is overlooking the fundamental prerequisite,
i.e., data normalization and class imbalance. Normalization helps in scaling the data, for training stability,
and improving the model performance. Besides, several machine learning algorithms, for example, logistic
regression, support vector machines (SVM), and artificial neural nets use optimization techniques like gradient
descent and stochastic gradient descent for faster convergence to local minima. It's well known that decision
trees i.e., boosting (random forest models) or bagging (XGBoost models ) are less sensitive to normalizations
(Bishop, 2006; Borkin et al., 2019). In our experience range transform, Box-cox transform (Box and Cox,
1964), and Yoe-Johnson transform (Yeo and Johnson, 2000) more or less were alike in model performance,
while Z-transform was slightly inferior. On the contrary, a study involving testing different normalization
techniques with the Nearest Neighbor Classifier, reports that Z-transform and Pareto scaling performed better

compared to mean-centered, variable stability scaling and other techniques (Singh and Singh, 2019).

In a typical large-scale screening of molecular libraries, only a small fraction of the compounds being screened
turn out to be active binders. Naturally, such skewed class distribution leads to building some, if not all,
erroneous models. However, many of these concerns were addressed in ExCAPE data by rebalancing with
inactive molecules (Sun et al., 2017) and in the preprocessing phase, we corrected the situation, by applying
some routine resampling techniques to attain approximate class balance (Kuhn and Johnson, 2013). In
simulation experiments with Classification and Regression Tree (CART) models we developed, we provide
visual proof on how class imbalance affects sensitivity and specificity measures at different probability
thresholds. One of the most widely used techniques for correcting the class imbalance in data is the Synthetic
Minor Oversampling Technique (SMOTE) (Chawla et al., 2002). Zakharov’s paper examines several
approaches, in great detail, regarding correcting for class imbalance and makes an argument that probabilistic

models like Naive Bayes are more tolerant in dealing with unbalanced classes (Zakharov et al., 2014).

Extracting features sets, especially chemical fingerprints, can lead to producing very large matrices (> 10,000
columns), with zeros in several columns, because we are performing binary encoding of certain substructural

features (e.g., aromatic groups, carbonyl groups, hydrogen acceptors, and donors, etc) in a molecule. By
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contrast, chemical descriptor feature sets are typically dense matrices with predominantly populated with
non-zero values, which are usually continuous measurements derived from chemical graph invariants. Such
matrices with mostly zero values (i.e., no data), when performing numerical operations involving several zeros
lead to increased time complexity of matrix operations. Thus, there arose an interest in sparse matrices for
chemical fingerprints, because its exploitation can lead to enormous computational savings (Brownlee, 2018;
Press et al., 2007). We generated sparse matrices to build logistic regression and support vector machine
(SVM) models. While sparsity and robustness are closely related, the exact relationship and subsequent trade-
offs are not always transparent. For example, complex penalties like LASSO are often motivated by sparsity

considerations, yet the success of these methods is also driven by their robustness (Copenhaver, 2018).

The collinearity diagnostics of feature space is critical in evaluating the redundancy in the information content
of features. Pruning features, which are referred to as dimensionality reduction leads to the building and
evaluation of full and reduced models, especially when the feature space is vast, as in computing fingerprints.
We demonstrate that reduced logistic models are stable over a range of feature space via recursion in
evaluating model accuracy. Similar feature engineering approaches were used for building artificial neural
networks (ANN) chemisorption models for catalyst design in chemical synthesis (Li et al., 2017). Automated
methods of selection of features, for example, molecular descriptors using random forest over ad-hoc methods
have been suggested (Cano et al., 2017). Eklund and colleagues by evaluating different feature selection
methods (for example, wrapper, RelefF, MARS, and elastic nets) found no evidence that a particular feature

selection method was well-suited for a particular learner (Eklund et al., 2014).

We demonstrate how model regularization leads to its generalizability on test data, we show this phenomenon
in two cases we examined, namely, logistic regression and artificial — neural nets (ANN) models. After all,
regularization is a penalty against model complexity. In logistic regression Elastic net regularizer performs
slightly better than LASSO (L1) and ridge (L2) under AUC, we also trace the coefficient shrinkage paths as
we perform these regularizations. In artificial neural net models, neuron drop regularization stacked above LI
and L2 regularizations in preventing model overfitting. A combination of least absolute shrinkage and selection
operator (LASSO) with Bayesian Regularization feed-forward artificial ~ neural network (LASS-BR-ANN)
was used as a new approach to quantitative structure-activity relationship (QSAR) studies (Mozafari et al.,
2020). Altman’s group showed that shallow representation learning improves the accuracy of L1 regularized
logistic regression (LASSO) using curated drug screening data (Rensi and Altman, 2017). Using imaging
recognition data for classification, neural dropout regularizer was found to be more effective than L2-norm
for complex neural networks (Phaisangittisagul, 2016). This is particularly relevant to phenotypic screening

in drug discovery.
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SVM with non-linear Radial Basis Function (RBF) kernel produces superior model performance as evaluated
by ROC curves. Similar kernel behavior was reported for kernel evaluation of C-aryl glucoside SGLT2
inhibitors (Prasoona et al., 2013) and with the vibrational signal data (FElangovan et al., 2011), In a different
study in image recognition experiments SVM with exponential Laplacian kernels seem to outperform others
(Fadel et al., 2016). Unexpectedly, the sigmoidal kernel, in our experience consistently failed across all the
datasets tested. This was a bit of a conundrum because we were unable to provide a clear interpretation.
Providentially, this explanation was provided in one of Vapnik’s original publication, which we unwittingly
overlooked, that the sigmoidal kernel may not be positive semi-definite (PSD) for certain values of the
parameters a and r. When K is not PSD the expression of projection in the higher dimensional space is not
satisfied and the primal-dual relationship does not exist (Vapnik, 1995). Frohlich and others have shown that
the adoption of new kernel methods, which they developed, can achieve generalization performance compared
to a classical model with a few descriptors which are apriori known to be relevant to the problem (Frohlich

et al., 2006; Prasoona et al., 2013).

Naive Bayes is a simple robust classifier based on the naive assumption of predictor variable independence.
Though it produced reasonable models with our datasets, the presumption of predictor variable independence
is either violated or tolerated, because we clearly demonstrate predictor variable interaction with similar data
building non-parametric random forest models. Therefore, we cannot adequately resolve the issue without the
fallacy of equivocation. However. there are numerous computational procedures for probing such interactions
in low-dimensional data. For example, Friedman’s H-statistic deals with two basic cases, first, two-way
interactions which tell to what extent two features in a model interact with each other; second, a total
interaction measure that tells us, whether and to what extent a feature interacts in the model with all other
features (Friedman and Bogdan, 2008). Other approaches include a proposal by Hooker (Hooker, 2004),
wherein the method measures the loss associated with the projection of the prediction function into a space
of additive models, which closely corresponds with the functional ANOVA decomposition; a well-developed

construct in statistics.

Artificial Neural Networks (ANN) have generated valuable Quantitative Structure-Activity/Property
relationships (QSAR/QSPR) models for a wide variety of small molecules and material properties. However,
the debate about the choice between shallow (single hidden layer) and deep neural networks (multiple hidden
layers), with respect to QSAR predictions is still open to interpretation. Our results show that ANN models
with multiple hidden layers, to a point, scored better both on the accuracy and loss function measurements,

at least on this particular dataset. However, the performance eroded beyond a certain number of layers. This

111



is slightly inconsistent, if not a dramatic departure from the universal approximation theorem, which states
that a single layer with finite neurons is capable of universal approximation of any continuous function when
given appropriate weights (Csaji, 2001). On the contrary, multilayer neural networks explored in the earlier
QSAR studies found no advantage over single-layer ANN models (Nakama, 2011). The response surface
discontinuities correspond to so-called “activity cliffs”, an important issue observed in drug design and
optimization. Activity cliffs occur when small changes in the drug molecule result in large changes in biological
activity (Maggiora, 2006). While this is in part, attributed to the descriptor representation of a critical
substituent that participates in the chemistry that confers the biological activity, for instance, via a salt
bridge, as a proton donor, through electron delocalization, as the case may be. In general, non-linear mapping
algorithms like neural networks, random forest, and support vector machines perform better at ameliorating

such response surfaces (Winkler and Le, 2017).

The authoritative paper by LeCun, Bengio, and Hinton reviews the whole field of deep neural networks and
its application across disparate domains ranging from speech recognition, visual object recognition, genomics
to drug discovery (LeCun et al., 2015). The power of DNN is in its sophisticated representational learning
and adjusting the internal parameters in reducing the differentiable loss function compared to multilayer
neural networks. Using Kaggle drug-like molecule datasets, two groups make interesting claims. Ma (Ma et
al., 2015) showed that DNN routinely makes better prospective predictions than random forest RF scoring on
the root-mean-square error. Winkler (Winkler and Le, 2017) based upon the dispersion measure, standard
error of prediction (SEP) showed that shallow and deep neural networks performed differently on different

targets.

We found in our experiments that ANN models compiled with ADAM optimizer (Kingma and Ba, 2017)
delivered superior models compared to Stochastic Gradient Descent, which is the most recognizable first-order
optimizer in the learners space. Choi and colleagues in their paper on empirical comparison of optimizers for
deep learning suggest that hyperparameter search space is the single most important factor in optimizer
ranking (Choi et al., 2020). Interestingly, in an analysis of gradient descent-based optimization algorithms on
convoluted neural networks on image classification datasets, Nesterov-accelerated Adaptive Moment
Estimation (NADAM) performed the best in terms of convergence, accuracy, and loss function (Dogo et al.,
2018).

Tuning learning rates is critical in updating the weight parameter, our results with ANN models show that
small values of learning rates led to greater model stability. Smith (Smith, 2017) proposed autonomous
methods in optimal learning rates by bouncing values between shifting bounds that exhibit multiple modes of

decay from fixed to exponential. Stochastic Gradient Descent with warm Restarts (SGDR), is another
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approach that is predicated on an aggressive annealing schedule (i.e., where finding approximate global
optimum is more important than finding the precise local optimum) combined with periodic restarts with the

original learning rates (Loshchilov and Hutter, 2017).

We built both single tree classification and regression tree (CART) and multi-tree ensemble methods, namely,
random forest (RF) and XGBoost. In general, decision trees are more robust and less sensitive to feature
scaling, outliers, and high-dimensional data. The intuition is that the tree builds hyper rectangles in the data
space. For each dimension, an edge of a hyper rectangle is defined by a point. Since the point only depends
on the relative position, the tree will be the same regardless of whatever monotonic transformation is applied

to any feature.

To take full advantage of decision tree models, we set up hypertuning regimens for each of the models.
Hypertuning is a non-trivial task because we are setting up cartesian joints of each of the available parameters
which are computationally very expensive and then evaluate performance gains. When training models, often,
interventional bootstrap resampling cross-validations provide some insights into the trajectories of
performance gains, to guide us in tuning model parameters. Bootstrap is an alternative to asymptotic
approximation for carrying out inference. While delivering high performance continues to be the goal, model
interpretability is equally desirable. For example, knowing which features are most predictive of the outcome
in RF models. Therefore, feature importance becomes a useful interpretation tool. We show results using two
different approaches, namely, the Mean Decreases in Accuracy (MDA) and Mean Decrease in Ginni. The
former measures the model accuracy by random permutations of the variables on the Out-of-Bag (OOB)
samples, while the latter measures the decrease in impurity. We observed that there is an overlap (>70%) in
the features selected between the two procedures, as one would expect, however, the rank order is different.
Mean Decrease in Accuracy simply means the proportion of samples that will be incorrectly classified if that
feature was expunged from the model. On the other hand, the Mean Decrease in Ginni suggests the positive
reduction in impurity associated with that feature mapping. Likewise, there is an overlap between feature
importance between the RF models and XGBoost models (data not shown). Interestingly, mapping the
distribution of variables of trees in the forest and tree depth reveal that highly ranked variables are close to

the root, while not ruling out the possibility of they being reused, several times in the multiple tree splits.

Breiman and Cutler, who pioneered the statistical underpinnings of random forest agree the Gini decrease, is
often consistent with the permutation method (Breiman and Cutler, 2001). It is generally believed that the
Gini decrease is biased in favor of features with multiple splits. In a recent paper, Nembrini and colleagues

proposed a method that debiases the impurity-based variable importance measures, which is fast, flexible, and
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robust with minimal computational overheads (Nembrini et al., 2018). Co-dependent features tend to share
importance, at least when permutation importance is applied to RF models. Strobl and colleagues (Strobl et
al., 2008) proposed conditional permutation importance using the feature space created by node splitting
during tree construction. Parr and colleagues argue, that most practitioners conflate feature importance
measures with feature impact, an isolated effect of an explanatory variable on the response variable. In their
paper, they give a mathematical definition of feature impact and importance derived from partial dependence
curves, that operate directly on the data (Parr et al., 2020; Parr and Wilson, 2020). Model-agnostic versions
of feature importance are a bold new proposal, that can be applied to an entire class of prediction models
simultaneously (Fisher et al., 2019). Unlike RF models, generalized linear models (GLMs) rely on model

parameters i.e., model coefficients, which are poor proxies for feature importance.

On a related note, it is a perfectly reasonable argument to make that producing stable and immutable motifs
of feature sets, can be used effectively as signatures for application in diagnosis of disease or biomarker
discovery in drug development. Sparse hyperplane classifiers were suggested as a statistical methodology for
binary classification and relevant feature identification in a single pass, compared to the prevailing multistep
filter-wrapper strategy, to extract signatures in transcript profiling studies in biomarker identification and

toxicogenomics (Bhattacharyya et al., 2004; Natsoulis, 2005).

The random forest has been often claimed to uncover variable interaction effects. However, if and when such
interactions can be differentiated from marginal effects remains unclear (Wright et al., 2016). Although we
detect interactions in our experiments, it is unclear if these are direct interactions or merely marginal effects.
Besides, it is limited to pair-wise interaction. Basu and colleagues building on random forest (RFs) and random
intersection trees (RITs) have developed the iterative random forest algorithm (iRF) to detect stable, higher-

order interactions with the same order of computational cost as RF (Basu et al., 2018).

Finally, we performed benchmarking experiments with decision trees i.e., classification and regression trees
(CART) with multi-tree ensemble models. Further, we extended the benchmarking experiments to include
other algorithms, namely, support vector machines (SVMs), naive Bayes, artificial neural nets (ANN) for a
side-by-side comparison. Overall, we conclude that the random forest delivered the lowest misclassification
error. In other words, when rank-ordered, random forest models were adjudicated to the higher end and Naive

Bayes occupied the lower end of the stack.
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Chapter 5: Conclusion

“Do not follow the path may lead. Go instead where there is no path and leave a trail.” - Ralph

Waldo Emerson

5.1 Algorithms for Modeling in Drug Discovery

This study is focused on building robust predictive models for identifying drug candidates for a select subset
of validated protein targets in oncogenic pathways using pooled high-throughput bioassay datasets. For each
of these compound collections, we extracted feature sets by computing the chemical descriptors and chemical
fingerprints. Here we demonstrate the success of building such predictive models with different machine
learning algorithms and comparing their model performance. The algorithms range from logistic regression,
support vector machines, naive Bayes, to the more sophisticated Artificial Neural Nets (ANN), single-tree
classification and regression tree, and multi-tree ensemble models that include random forest (RF) and
XGBoost.

We systematically built the entire modeling work-flow pipeline, starting with the compound acquisition,
through multiple steps of preprocessing, developing base models, cross-validation, model regularization,
hypertuning models, and final validation. We find that normalization and class balance leads to building more
stable models. We find that feature that engineering and colinearity diagnostics help in reducing model
redundancy. We find that model regularization limits the risk of overfitting and allows greater generalizability.
We find model hypertuning to be one of the critical steps in building predictive models. Finally, we
benchmarked each of these machine learning algorithms and ranked their performance on the metric - their
mean misclassification error. The random forest models produced the lowest mean misclassification error. This
study shows the feasibility of developing prototype predictive models for large-scale deployment in the

production environment.

5.2 Limitations

While this study provides sufficient evidence of the power of in-silico predictive models in profiling compound
libraries in predicting their biological activity for the selection and nomination of potential drug candidates,
with the implied goal of bypassing expensive and often time-consuming experimental steps involved in lead
identification and lead optimization in drug discovery. However, caution must be warranted about the

limitations of this study. Firstly, the incredible vastness of the chemical space imposes challenges for screening
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druggable compounds. Theoretical studies have estimated the organic chemical space to lie anywhere between
10% to 10% molecules (Bohacek et al., 1996). Fven though every compound library is enriched with a rich
structural diversity of chemical scaffolds, it is unlikely to meet the requirements of the demands of the vastness
of chemical space of every molecular entity in terms of atoms, bonds, bond angles, rotatable bonds, ring

structures, functional groups, and stereochemistry considerations.

However, it is believed that the complementarity requirements of the molecular geometry of the protein active
site and the cognate ligand interaction will set theoretical limits on the chemical space, which will make it a
lot more amenable to modeling. Secondly, the bulk of the work was done with two-dimensional (2D) chemical
descriptors and Extended Connectivity FingerPrint (ECFP), this precludes us from accounting for the 3D
structural patterns and the range of conformations a molecule may adopt in solution or during protein binding.
Thirdly, even if a chemical library is structurally diverse, the constraints imposed by the small number of
validated synthetic chemical reactions available for chemical synthesis will be rate-limiting to produce
sufficient yields for scaling (Walters, 2019).

5.3 Future Work

Statistical and machine learning approaches to predict drug-to-target relationships would be vastly improved
with the development, incorporation, and adoption of small-molecule 3D information through better molecular
representation for the application of predictive modeling. Some of the early efforts in this direction are the
ideas around Extended Three-Dimensional FingerPrint (E3FP) which is expected to encode the 3D
representation of molecular conformations, which would be a logical extension of Extended Connectivity
FingerPrint (ECFP) which captures the small-molecule topology patterns (Axen et al., 2017). Ash and
Fourches (Ash and Fourches, 2017; Fourches and Ash, 2019) approached the problem of extracting 3D
information via molecular dynamics. For instance, using chemical descriptors computed from molecular
dynamics (MD) trajectories. The promise and prospects of next-generation ML-driven MD-QSAR predictive
modeling for drug discovery look particularly enticing. Besides, advances in algorithmic techniques and
exponential computing, hardware enhancements are accelerating the development of AutoML which promises
to deliver the end-to-end automated ML models that can be incorporated into drug discovery work-flow with

minimal human intervention (Dixon et al., 2016).

5.4 Future Vision

On a broader scale, the prospects of application of machine learning and artificial —intelligence across multiple

domains of pharmaceutical drug discovery are almost limitless, ranging from computational chemistry,
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molecular modeling (MD) simulations, phenotypic screening, digital pathology, proteomics profiling, digital
radiology, connected lab, connected health, digital clinical trials, predictive maintenance in drug

manufacturing, and drug supply chain logistics.

In conclusion, it must be emphasized that it is imperative to examine problems and seek solutions through
systems thinking framework to overcome the burden of cognitive dissonance in problem-solving, especially in
dealing with complex biological systems and sub-system interactions — in understanding the etiology,
progression, and burden of human diseases, to offer meaningful therapeutic interventions. We make no

pretense to offer all the solutions, we are merely raising awareness.
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