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Abstract

Current operating systems date from over 40 years ago and were designed for very dif-
ferent computing requirements, making them ill-equipped to handle serverless work-
loads as well as modern challenges in scalability, heterogeneity, availability, and secu-
rity. Hence, we propose a radically new data-centric OS design for serverless comput-
ing. This database OS (DBOS) centralizes all cluster state in a uniform data model:
database tables stored in a high-performance, distributed, main-memory database
management system. Operations on this state will be performed via serverless, state-
less tasks.

This thesis presents work done to build a preliminary scheduler and to imple-
ment and evaluate various global scheduling algorithms. We also demonstrate the
performance of a modern DBMS in executing various scheduling operations.
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Chapter 1

Introduction

This thesis will elaborate on my contributions to a group effort in initial scheduling

experiments as well as individual work on implementing variations of priority-based

global scheduling algorithms in DBOS, a proposed DBMS-based operating system.

Chapter 1 goes over the motivation for DBOS, and Chapter 2 describes the envi-

ronment and experiment configurations for the scheduling studies presented in this

paper. Chapter 3 discusses the preliminary scheduling studies to explore the limits of

a modern DBMS in executing scheduling operations, and Chapter 4 details further ex-

periments in analyzing the overhead of implementations of priority-based scheduling

algorithms.

1.1 Motivation

Current operating system software, which are mainly comprised of UNIX/Linux-style

derivatives, date from over 40 years ago and were designed for a very different hard-

ware configuration, consisting of uniprocessors with limited main memory, minimal

disk space and poor connectivity. However, now with the ubiquitous use of cloud

computing, thousands of cores, massive parallelism, several levels of memory and

storage, and heterogeneous hardware, including CPUs, GPUs, and FPGAs, all need

to be managed. This growth is in particular driven by the popularity of machine

learning, IoT, and big data applications, which require more computing resources to

13



Distributed DBMS

Microkernel Services

File System Scheduler IPC Other OS 
Services

User Applications

Figure 1-1: Proposed DBOS stack.

support their performance requirements [9, 14]. For example, a large shared system

such as the MIT Supercloud [5, 15] has approximately 10,000 cores, a hundred ter-

abytes of main memory, and petabytes of storage. This level of complexity makes it

difficult for current-day operating systems to meet demands in scalability, hardware

heterogeneity, availability, and security [9].

1.2 System Design and Advantages

In order to address these challenges, we propose a new data-centric OS design for

serverless computing. This design centralizes all cluster state in a uniform data model:

database tables stored in a high-performance, distributed, main-memory DBMS. Op-

erations on this state will be performed via serverless, stateless tasks. From a high

level, the design consists of a high speed, multi-node, transactional DBMS embedded

into a kernel of an operating system, as shown in Figure 1-1 [16]. The OS services are

DBMS applications which are either written in SQL or are user defined functions.

This design yields several advantages. Building on top of a database means that

the guarantees that databases provide, such as high availability and atomic trans-

actions, are also included. Additionally, it can be easily scaled and evolved without

refactoring the entire system; the database table schemas can be easily changed, and

rather than reimplementing data structures to make them scalable on multicores, only

the implementations of common table operations need to be scaled.

14



These capabilities provided by the distributed DBMS also benefit OS services such

as task schedulers, distributed filesystems, and interprocess communication (IPC).

Since DBMS tables provide a consistent global view of the OS state, it is much easier

to support cross-cutting operations. For example, modern task schedulers usually

depend on various state data, e.g. historical performance and resource utilization, to

make optimal placement decisions. In cluster managers such as Kubernetes [4] and

YARN [19], this information resides on separate layers with no consistency guarantees

between them and is exposed by ad-hoc APIs [16].

Similarly, our programming model should facilitate the development of novel OS

services and applications. For example, since all data operations by a modern operat-

ing system, such as copying, mutating, and transmitting, can be more easily tracked

and stored with DBOS, a strong data provenance system can be built. This would

provide solutions to modern issues like data forging and data spills [9].

1.3 Initial Work

In order to demonstrate that reasonable performance can be offered, a prototype of

the scheduler, filesystem, and IPC OS services was built. This thesis presents work

done on the scheduling side: in particular, studies of the performance limitations of a

DBMS when carrying out scheduling operations, as well as a comparison and analysis

of different global scheduling algorithms.

1.4 Related Work

There are several applications that use declarative interfaces and DBMS concepts in

system software. For example, there are filesystem checkers based on a declarative

query language [10, 13] and instrumentation frameworks, like OSQuery [6], that

provide a declarative interface to OS data for intuitive and performant monitoring

and analytics. Cloudburst [17] and Anna [20], two distributed systems, also support

building on top of DBMS technology. None of these efforts, however, propose an OS

15



stack with a DBMS at the bottom, similar to DBOS [16].

On the scheduling side, in DCM [18], developers specify the cluster manager’s

behavior declaratively, using SQL queries over cluster state stored in a relational

database. The DCM compiler synthesizes a program from developer SQL specifica-

tion, and encodes cluster state as an optimization problem that can be solved using

off-the-shelf solvers, meaning that developers will not have to design ad-hoc heuris-

tics themselves. DCM, however, consists of a centralized database and scheduler as

opposed to a distributed DBMS; its primary goal is to efficiently schedule long-lived

jobs while satisfying complex constraints. DBOS on the other hand aims to quickly

schedule huge numbers of short-lived tasks, which have simpler constraints, and has

more emphasis on throughput.
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Chapter 2

Scheduling Studies

This chapter discusses the environment and baseline scheduling code that we de-

veloped in order to demonstrate the performance of a modern DBMS in executing

scheduling operations.

2.1 Experiment Environment

2.1.1 VoltDB

In order to support the architecture and intended goals of DBOS, we prioritized

the following traits when choosing our underlying DBMS. It should be a distributed

Online Transactional Processing (OLTP) DBMS in order to be powerful enough to

support most distributed systems operations, and should also support partitioning

tables across nodes in order to scale with cluster size. An ACID-compliant transac-

tional database would also allow for ease of development, and an in-memory database

would ensure minimal transaction latency due to fast read and write operations.

VoltDB was chosen because it aligns with the above properties as well as because

of the group’s association with the organization, allowing for technical support to be

easily acquired.

VoltDB is an in-memory database that implements SQL on top of tables which

are either hash-partitioned on a user-specified partitioning column across multiple

17



nodes of a computer system, or replicated across all nodes and sites of a VoltDB

database. Small tables which are almost never updated are a good candidate for the

latter option.

VoltDB promises serializable ACID consistency, and is optimized for OLTP trans-

actions, which move small amounts of data. In VoltDB, concurrency control is opti-

mized for transactions accessing a single partition. Additionally, performance can be

maximized by ensuring that a task will be on the same node as the partition being

accessed so as to avoid network traffic during a transaction. Transactions in VoltDB

are stored procedures [7] which are aggressively optimized to yield high performance.

2.1.2 MIT Supercloud

All of the experiments were run on MIT Supercloud [5], an HPC-style (High-Performance

Computing) shared cluster. The compute nodes in the cluster have 40-core dual-

socket Intel® Xeon® Gold 6248 2.5GHz CPUs, 378 GB of memory, and a Mellanox

ConnectX-4 25Gbps NIC.

2.2 Synthetic Scheduler

In order to measure the performance of VoltDB when executing scheduling operations,

a synthetic C++ scheduler was developed.

Several bash scripts were created in order to ensure consistency in the configu-

ration and initialization of the scheduler among all developers in the group. They

initialize an instance/cluster of the enterprise version of VoltDB setup on MIT Super-

cloud according to the same configuration, load SQL files into VoltDB to create tables,

and compile and load the Java stored procedures. VoltDB stored procedures are ways

to access the database using standard SQL syntax and perform other functions on the

return values while maintaining ACID transaction guarantees. Developers can spec-

ify that these procedures are partitioned on a specific column of a table; this ensures

that the procedure executes within that specified partition of the database [7].

The scheduler itself schedules tasks but does not execute them and assumes that

18



any worker can execute a fixed number of tasks simultaneously. The worker task ca-

pacity, as well as other system parameters are specified via command line arguments.

After each task has been scheduled, the scheduler uses the latency metrics built

into the VoltDB client interface to record the time required to process the operation.

These metrics are then aggregated for each measurement interval to yield the overall

latency and throughput.
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Chapter 3

Preliminary Experiments

This chapter covers initial studies conducted as a group to determine VoltDB’s perfor-

mance and identify limitations in executing scheduling operations. It also goes over

the implementation and evaluation of various FIFO (First-in, First-out) synthetic

scheduler designs.

3.1 Identifying Limitations

In order to explore VoltDB’s limits, we decided on a simple strawman design, con-

sisting of just the worker table in Figure 3-2. Workers are evenly distributed among

partitions when the scheduler is set up. Each worker is identified by a unique ID and

its partition key (Pkey), and has a task capacity as mentioned earlier in Section 2.2.

In this design, only a single table transaction occurs per task, meaning it ensures the

maximum single-threaded performance possible. While separate bookkeeping would

be necessary in order to maintain task information and handle scheduler failures, this

design shows the upper bound of VoltDB’s performance.

Figure 3-1 shows a stored procedure implementing the transaction used to select

a worker with a mix of SQL and imperative code. This procedure is used for the

following experiments, and is partitioned on the Pkey column of the Worker table.

21



SelectWorker(k, wID) {
SELECT WorkerID, Capacity FROM Worker WHERE PKey=k AND Capacity > 0 LIMIT 1;
UPDATE Worker SET Capacity=Capacity - 1 WHERE WorkerID=wID;

}

Figure 3-1: SelectWorker transaction.

CREATE TABLE Task (
TaskID INTEGER NOT NULL,
WorkerID INTEGER NOT NULL,
State INTEGER NOT NULL,
PKey INTEGER NOT NULL

);
PARTITION TABLE Task ON COLUMN PKey;

CREATE TABLE Worker (
WorkerID INTEGER NOT NULL,
Capacity INTEGER NOT NULL,
PKey INTEGER NOT NULL

);
PARTITION TABLE Worker ON COLUMN PKey;

Figure 3-2: Partitioned Task and Worker table schemas.

3.1.1 Scalability of Table Sizes

In order to measure the scalability of table sizes, an experiment was conducted on a

single VoltDB partition with 8 parallel scheduler threads. As the number of workers

was increased, resulting in more rows in the Worker table, the capacity of each worker

was decreased inversely. The total capacity of the system was fixed at 2 million

(2 × 106) tasks, which seemed like a reasonable upper-bound. This can be modeled

by the following simple equation: 𝑐 = 2×106

𝑛
for 𝑛 ≥ 1 where 𝑐 is the capacity of a

single worker and 𝑛 is the integer number of workers.
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Figure 3-3: Scalability of table sizes.
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The experiment was also run with and without indexing on the capacity column;

the results are as shown in Figure 3-3. While performance does decrease due to more

rows in the Worker table, indexing greatly improves scalability. There is, however,

a small overhead for maintaining the index; this is seen by the throughput of the

experiment run with the index on capacity being smaller than the throughput of the

experiment with no index when there are less than ten workers. Despite this, the

benefits of the overhead outweigh its cost once there are more than 12 workers.

3.1.2 Scalability of Multiple Partitions

In order to measure the scalability of multiple partitions, an experiment was con-

ducted in which the number of active partitions was varied from 1 to 240. The term

#Active Partitions
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Figure 3-4: Scalability of multiple partitions.
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active partitions is defined as 𝑚𝑖𝑛(#worker groups,#VoltDB partitions). This study

was run on 40 VoltDB partitions on an 80-core Supercloud server with 100 parallel

scheduler threads and 8000 workers. Each worker was configured such that they had

maximum task capacity.

As seen in Figure 3-4, a maximum throughput of 760k transactions/second is

reached when the number of worker groups match the number of partitions. The

figure also shows the P50 and P99 latencies. The P99 (99th percentile) graph shows

in how many microseconds 99% of the tasks will be scheduled. Likewise, the P50

(50th percentile) shows the median latency, or the time by which 50% of tasks will

be completed. When the maximum throughput is reached, the P50 and P99 latencies

are 116 and 356 sec, respectively.

3.1.3 Scalability of Parallel Schedulers

In order to measure the scalability of parallel schedulers, an experiment was conducted

in which the number of parallel scheduler threads was varied from 1 to 240. Similar to

the experiment setup in Section 3.1.2, the study was run on 40 VoltDB partitions on

an 80-core Supercloud server with 8000 workers. All 40 of the partitions were active

as this configuration yielded the maximum performance in Section 3.1.2.

From the results in Figure 3-5, VoltDB is shown to scale well from 1 to 40 parallel

schedulers; after that, the throughput flattens out and achieves a maximum of around

826k transactions/second at 200 threads.

3.2 Single-partitioned FIFO Scheduler

Next, a single-partitioned FIFO scheduler was implemented as a stored procedure.

This stored procedure accesses two tables: the Worker table and Task table shown

in Figure 3-2. The Worker table is the same as the one used in Section 3.1 while the

Task table maintains metadata about every task scheduled, including the workerID

to which the task is assigned to, the state of the task (unknown, pending, running,

completed), and in which partition in the table the task is. Both tables are parti-
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Figure 3-5: Scalability of parallel schedulers.

tioned on their respective partition key (Pkey) columns, and the stored procedure

is partitioned on the Pkey column of the Worker table. This ensures that that the

procedure executes within that particular partition of the database.

The synthetic scheduler initializes the Worker table in setup with the number

of specified entries, and then invokes the stored procedure, passing the taskID of

the task being scheduled and a randomly chosen partition key. The Worker table is

queried for an available worker in the same partition with a capacity greater than

zero. If a worker is found, the worker’s capacity is decremented by one, and the task

is updated. If there are no available workers, the scheduler executes the procedure

on another partition, iterating until it succeeds. This procedure touches at least two

partitioned tables per transaction.

The scheduler was benchmarked by varying the number of active VoltDB parti-
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Figure 3-6: Performance of the single-partitioned FIFO scheduler.

tions, and keeping the number of tasks (40), number of parallel scheduler threads

(100), and number of workers with maximum capacity (40) constant. The number of

partitions was varied from 1 to 40, given that in Section 3.1.2 the performance flat-

tened out after 40 partitions. The results can be seen in Figure 3-6. As the number

of active partitions increase, the throughput increases in a logarithmic fashion, and

starts to flatten out at 660k transactions/second at 24 partitions.

3.3 Partitioned FIFO Scheduler

In order to understand the effects that global locking has, another FIFO scheduler was

implemented, again as a stored procedure, and was compared to the scheduler in Sec-

tion 3.2. An experiment was conducted on this synthetic scheduler in which the frac-
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tion of global transactions (multi-partitioned procedures) executed was varied from

0 to 1.0. This was implemented by simulating the probability of choosing a single-

partitioned transaction according to the fraction passed in. The synthetic scheduler

initializes the Worker and Task tables in setup with entries and then, according to

the simulated probability, invokes either the single-partitioned stored procedure or

the multi-partitioned procedure for each task.

Similar to the FIFO scheduler in Section 3.2, the synthetic scheduler initializes the

Worker and Task tables in setup with entries according to the appropriate command-

line arguments, and then according to the simulated probability, invokes either the

single-partitioned stored procedure or the multi-partitioned procedure for each task.

If it invokes the single-partitioned stored procedure, a randomly chosen partition

key is passed in, and the Task table is queried for an unassigned task with that

particular partition key. If one is found, the Worker table is then queried for an

available worker in the same partition. If a worker is found, the worker’s capacity

is decremented by one, and the task is updated. All of these mentioned queries

are executed in the same transaction. The scheduler executes this procedure on a

randomly chosen partition, looping until it succeeds. The procedure touches at least

two partitioned tables per transaction and is partitioned on the Pkey column of the

Worker table.

If the scheduler invokes the multi-partitioned stored procedure, the Task table is

queried for an unassigned task with any partition key. If one is found, the Worker table

is then queried for an available worker in any partition. Like the single-partitioned

procedure, if a worker is found, the worker’s capacity is decremented by one, and

the task is updated. The scheduler executes this procedure on a randomly chosen

partition, looping until it succeeds.

This experiment was run on 40 VoltDB partitions, with 40 tasks (1 per partition),

100 parallel scheduler threads, and 40 workers with maximum capacity. As seen in

Figure 3-7, the two-table single-partitioned transaction performs well, with the P99

latency being 576 𝜇s, and the throughput being 619k transactions/second. However,

even a tiny fraction of global transaction greatly impacts the overall performance,
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especially the P99 latency and throughput. Without partitioned transactions, the

throughput decreases by a factor of over 1000 to 586 transactions/second. Therefore,

in order to maximize performance, it is crucial that transactions limit the number of

partitions they touch as much as possible.
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Figure 3-7: Performance of the partitioned FIFO scheduler.
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Chapter 4

Global Scheduling Experiments

While the preliminary experiments focused on FIFO schedulers, other scheduling

algorithms are often used, such as CFS in Linux [3], proportional deadline-driven

scheduling in Shinjuku [12], and delay scheduling in Spark [21].

In a distributed setting, global scheduling algorithms differ from local ones in that

global scheduling algorithms specify how exactly to assign tasks to worker machines

from a shared global queue, while local scheduling algorithms run on each worker and

specify which tasks to run first from its local queue.

In particular, this chapter will cover the TPC-H benchmark, then different im-

plementations of a synthetic scheduler that uses Shortest Job First (SJF), a priority-

based algorithm, and how their overhead compares to FIFO and each other.

4.1 TPC-H Dataset

TPC-H is an industry standard decision support benchmark developed by the Trans-

action Processing Performance Council (TPC). It consists of business-related ad-hoc

queries and concurrent data modifications, and is widely used to evaluate database

systems in both industry and academia. While TPC-C was considered, especially

because VoltDB itself uses a TPC-C like benchmark, it does not provide tools for

data and query generation and is also older than TPC-H.

TPC-H was also chosen over publicly available cluster traces like the Alibaba

29



Cluster Trace Program [1] and the Google Borg trace [2]. Both represent workloads

that include long-running tasks, and so these did not seem as representative of short-

running serverless jobs, the primary target of DBOS workloads. While TPC-H also

does not accurately represent the targeted workloads, it does allow users to scale the

size of the generated dataset by different factors. This allowed more flexibility in

generating tasks with different execution times.

Overall, TPC-H seemed like a good starter benchmark due to its ease of integra-

tion, and could easily be changed in the future if the need arose.

4.2 Data Generation and Integration

Since TPC-H doesn’t provide inbuilt support for VoltDB, several modifications had

to be made in order to integrate the TPC-H benchmark into the synthetic scheduler.

The benchmark consists of several tables, for each of which SQL schemas had to be

manually created with partitioning columns specified as in accordance to the bench-

mark guidelines. After running the database generator tool with a scale of 1, the files

containing the dataset needed to be parsed and modified so that the inbuilt VoltDB

CSV loader could load the data into the tables. Each of the 22 query templates were

modified in order to be compatible with the VoltDB SQL Data Definition Language

(DDL).

In order to acquire data for priority-based scheduling algorithms, the 22 queries

were run individually using VoltDB sqlcmd, a built-in interactive tool that allows

users to directly execute SQL statements. Their execution times were measured, the

results of which can be found in Table 4.1. Only a subset of them could be run due

to VoltDB not supporting certain SQL operations.

When implemented as stored procedures, many of the queries throw runtime ex-

Query Number Q1 Q2 Q3 Q4 Q6 Q10 Q12 Q14 Q16 Q18 Q21
Execution Time (s) 7.34 .41 1.88 .86 1.44 1.63 .72 .84 .81 4.85 5.66

Table 4.1: TPC-H query execution times.

30



CREATE TABLE Task (
TaskID INTEGER NOT NULL,
WorkerID INTEGER NOT NULL,
State INTEGER NOT NULL,
ExecutionTime INTEGER NOT NULL,
PKey INTEGER NOT NULL

);
PARTITION TABLE Task ON COLUMN PKey;

CREATE TABLE Worker (
WorkerID INTEGER NOT NULL,
Capacity INTEGER NOT NULL,
PKey INTEGER NOT NULL

);
PARTITION TABLE Worker ON COLUMN PKey;

Figure 4-1: Partitioned Task and Worker table schemas.

ceptions. The two primary causes of this was the query not being plannable given

VoltDB’s architecture, and subquery expressions in the query being only supported

for single-partitioned procedures [8]. Therefore, the scheduler was implemented such

that it synthetically schedules tasks by using the execution times to determine their

priority but does not execute the tasks themselves. While this method only allows for

the overhead of global scheduling algorithms to be measured, integrating these bench-

marks paves the way for future work in simulating worker execution and performing

a head-to-head comparison of these global scheduling algorithms.

4.3 Shortest Job First

Under the model that one TPC-H query equates to one job, algorithms that rely

on a preemptive model, such as fair scheduling, could not be chosen due to VoltDB

procedures being non-preemeptive in order to ensure atomicity. Therefore, the small-

est level of granularity in scheduling could only occur on a per-query basis, and so

a non-preemptive algorithm was chosen to meet the constraints in the dataset and

execution environment.

Shortest Job First is a popular non-preemptive, priority-based scheduling algo-

rithm in which the scheduler executes the waiting job with the smallest execution

time. The benefits of a priority-based scheduling algorithm like SJF is that it is gen-

erally efficient and work-conserving because no worker will idle while an unscheduled

available task exists [11].
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While the synthetic scheduler in Chapter 2 simply scheduled a task as soon as

it arrived, with a priority-based algorithm, the highest priority task is unknown at

task creation time and so an aggregation query must be performed in order to find

the right task to schedule. The synthetic scheduler framework from Section 2.2 was

augmented to support other algorithms than FIFO, and two SJF scheduler designs

were implemented and benchmarked in the same manner as the single-partitioned

FIFO scheduler in Section 3.2. The first design consists of one single-partitioned

and one multi-partitioned transaction; the second combines these two into a single

multi-partitioned transaction.

4.3.1 Multi-transactional Scheduler

The first SJF scheduler design partakes in two transactions per task at minimum.

The first stored procedure is single-partitioned, and is partitioned on Pkey column of

the TaskQueue table seen in Figure 4-2. A randomly chosen partition key is passed in

along with the taskID and its execution time, and the procedure inserts the incoming

task into the TaskQueue table.

The second stored procedure is multi-partitioned, and is partitioned on the Pkey

column of the Worker table in Figure 4-1. When this stored procedure is invoked,

it uses the same partition key as was passed in the first procedure. Similar to the

procedure in Section 3.2, first the Worker table is queried for an available worker

in the same partition. If a worker is found, then an aggregation query to select the

unassigned task with the shortest execution time is performed. If a task is selected, the

TaskQueue table is updated to mark the state of that task as assigned, the worker’s

CREATE TABLE TaskQueue (
TaskID INTEGER NOT NULL,
ExecutionTime INTEGER NOT NULL,
PKey INTEGER NOT NULL,
State INTEGER NOT NULL,

);
PARTITION TABLE TaskQueue ON COLUMN PKey;

Figure 4-2: Partitioned Task Queue schema.
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Figure 4-3: Performance of the multi-transactional SJF scheduler.

capacity is decremented by one, and then a record is created for that task in the

partitioned Task Table in Figure 4-1. If there are no available workers, the scheduler

executes the procedure on another partition, iterating until it succeeds.

The scheduler’s performance is shown in Figure 4-3. The throughput is quite

poor, reaching a maximum of 240k transactions/second at 40 active partitions—a

97% decrease from the single-partitioned FIFO scheduler. This is likely due to two

reasons: the aggregation query that touched all partitions of the TaskQueue table in

the second transaction, and the increased lock-contention from having a finer-grained

design that uses two procedures instead of one.

4.3.2 Single-transactional Scheduler

In order to understand the cost of the aggregation query, which is inevitable with a

scheduler that uses SJF, the second scheduler design is implemented as a stored pro-

cedure that combines the two transactions from Section 4.3.1. This coarser-grained

design allows us to study the effects of any lock-contention in the previous SJF sched-

uler. It also provides a better environment to determine the cost of an aggregation

query as this design is more comparable to the single-partitioned FIFO scheduler in

Section 3.2.

The stored procedure in this design is partitioned on Pkey column of the Worker

table in Figure 4-1. A randomly chosen partition key is passed in along with the
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Figure 4-4: Performance of the single-transactional SJF scheduler.

taskID and execution time of the incoming task, and the procedure queries the Worker

table for an available worker in the same partition. If a worker is found, then the

incoming task is inserted into the TaskQueue table, and then the unassigned task

with the shortest execution time is queried from the TaskQueue table. If a task is

found, similar to Section 4.3.1, the TaskQueue table is updated to mark the state of

that task as assigned, the worker’s capacity is decremented by one, and then a record

is created for that task in the partitioned Task Table in Figure 4-1. Again, if there

are no available workers, the scheduler executes the procedure on another partition,

looping until it succeeds.

In comparison to the multi-transactional scheduler, the single-transactional sched-

uler, as shown in Figure 4-4, yields a 55.8% increase in throughput. This increase

in performance is likely due to less lock-contention with this coarser-grained design
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which consists of only one transaction.

However, compared to the single-partitioned FIFO scheduler from Section 3.2, at

40 active partitions, the single-transactional SJF scheduler has a throughput of 543k

transactions/second and a P99 latency of 292 ms, compared to the single-partitioned

FIFO scheduler’s 677k transactions/second throughput and 252 ms latency. There-

fore, the overhead of SJF, in particular the aggregation query across all partitions of

the TaskQueue table, causes its throughput to be reduced by 19.8%.
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Chapter 5

Conclusion

In this thesis, I presented contributions to a group effort in building a preliminary

synthetic scheduler, as well as analyzing the limits of a modern DBMS when execut-

ing various scheduling operations. These results allowed us to quantify the effect of

various configuration parameters on the throughput and latency achieved by VoltDB.

Additionally, these were used to determine the optimal configuration for a sched-

uler, and were used in later experiments that assessed the performance of various

schedulers.

I also described individual work in developing and evaluating priority-based global

scheduling algorithms. The results from this allowed us to gain insights into road-

blocks that may occur if more complex schedulers are implemented in the future.

Because the priority-based global scheduling algorithms developed require an aggre-

gation query that touches multiple partitions of a table in order to find the job with

the highest priority, their performance was impacted. The overhead caused by this

expensive operation resulted in a 19.8% decrease in performance compared to a sim-

ple FIFO scheduler which does not need to manage this extra state. Additionally,

breaking up this transaction into one single-partitioned write-only procedure and one

multi-partitioned procedure that performs both reads and writes does not improve

this performance. In fact, it causes a 55.8% decrease in throughput in the case of the

multi-transactional and single-transactional SJF schedulers, likely due to increased

lock contention with this finer-grained scheme. Therefore, when implementing future
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scheduling algorithms, we should be mindful of:

1. The benefit of having more procedures that are executed within a single parti-

tion vs. the cost of increased lock contention.

2. The benefit of a more complex algorithm vs. the cost of multi-partitioned

transactions.

While this paper analyzes exclusively the overhead of various FIFO and SJF im-

plementations, it sets up the framework for further work on benchmarking different

scheduling algorithms given a TPC-H trace. While VoltDB does not permit many of

the queries to be executed as stored procedures, once workers are integrated with the

scheduler, each worker can either simulate execution by suspending its corresponding

thread for the amount of time specified in Table 4.1, or can execute the query as an

ad-hoc query.

In terms of future work for DBOS as a whole, the next stage will involve im-

plementing a serverless environment in user code. This will be built on top of the

existing service prototypes in IPC, filesystem, and scheduling. This will prove that

OS functions can be readily and compactly coded in SQL and that our filesystem,

scheduling and IPC implementations work well in a real system [16].
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