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Abstract

Transparency has become a key desideratum of machine learning. Properties such
as interpretability or robustness are indispensable when model predictions are fed
into mission critical applications or those dealing with sensitive/controversial topics
(e.g., social, legal, financial, medical, or security tasks). While the desired notion
of transparency can vary widely across different scenarios, modern predictors (like
deep neural networks) often lack any semblance of this concept, primarily due to
their inherent complexity. In this thesis, we focus on a set of formal properties of
transparency and design a series of algorithms to build models with these specified
properties. In particular, these properties include:

• the model class (of oblique decision trees), effectively represented and trained
via a new family of neural models,

• local model classes (e.g., locally linear models), induced from and estimated
jointly with a black-box predictor, possibly over structured objects, and

• local certificates of robustness, derived for ensembles of any black-box predictors
in continuous or discrete spaces.

The contributions of this thesis are mainly methodological and theoretical. We
also emphasize scalability in large-scale settings. Compared to a human-centric ap-
proach to interpretability, our methods are particularly suited for scenarios that re-
quire factual verification or cases that are challenging to subjectively judge explana-
tions by humans (e.g., for superhuman models).

Thesis Supervisor: Tommi S. Jaakkola
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 From Interpretability to Transparency

Modern machine learning tasks are increasingly complex, requiring flexible models

with large numbers of parameters, such as deep networks. Such modeling gains often

come at the cost of interpretability—these deep models, effectively black-boxes, pro-

vide no insight on their inner workings beyond the final prediction. This is a serious

issue when the predictions are relied on in subsequent mission-critical applications

such as social, legal, security, financial, or medical problems, where the ability to

justify why and/or how the predictions are made is nearly as important as the raw

predictive power. Indeed, explaining model predictions and/or factually verifying

properties of the model (e.g., robustness) is becoming a key part of any data-driven

decision making. For example, in order to reduce the risk of potentially catastrophic

outcomes, an automatic medical diagnosis system should operate in an explainable

and reliable fashion. Interpretability challenges become more pronounced in interac-

tive settings, and include intricate issues such as fairness or privacy. Explainable AI

has received much attention in society; for instance, European Parliament passed a

law that establishes a “right to explanation” on algorithmic decisions [112]. Thus, the

development of interpretable machines is a critical and pressing demand from society.

The challenge is that interpretability is hard to define in the first place. It in-

volves humans’ perception and understanding of explanations. Even in the psychol-
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ogy literature, fundamental questions of interpretability such as what constitutes an

explanation to us are barely answered [92]. Moreover, interpretability is notoriously

subjective: whether an explanation is interpretable or not can depend on the back-

ground and/or preference of the user with respect to the application scenario. For

example, a novel Go strategy can be totally unintelligible to novice players, or it can

be underappreciated for stubborn players who only learn from well-established results

or their own experience, but it can be valuable for professional players who are excited

about new explorations. Similar scenarios appear when it comes to explanations of

complex models.

One way to circumvent the ill-specified definition of interpretability is to include

humans in the loop [148]. For instance, we may ask a user to judge interpretability

(e.g., whether an explanation of a model is interpretable). For instance, we may ask

a user to select amongst a set of alternatives the model that is the most interpretable

to her [78]. The problem is similar to, e.g., metric elicitation in fairness [61]. How-

ever, the subjectivity remains and the calibrated interpretability may not transfer to

other users easily. Furthermore, assessing interpretability based on human feedback

can be misleading. Indeed, an explanation (e.g., visualization) can be considered

interpretable without bearing any relevance to the actual model.

Another major direction in literature is to first define certain explanations that

are deemed intelligible, and then develop a method that distills the model into the

specified form of explanations. Popular examples include exploiting input gradients to

identify salient features [139, 132] and utilizing influence functions to find influential

training examples [75]. The apparent advantage in this direction is its unrestricted

nature: one can apply the method to almost every (potentially black-box) model.

However, since the approximations taken during the distillation can easily distort the

behavior of the model, it is not guaranteed that the explanation would preserve model

behavior. Indeed, it has been observed that these kinds of post-hoc interpretability

methods often lead to unstable explanations [4, 48].

Yet another direction is to embed the explanation mechanism directly into the

model such that the model is self-explaining. This includes classic methods such
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as linear models, decision trees, and k-nearest neighbors. However, these methods

are known to be limited in capacity, so there are a few recent efforts aiming to

equip modern complex predictors with similar capability, typically via a customized

architectural design [88, 141, 76] or as a regularization problem [5, 157]. For example,

one can re-organize a neural network into a tree structure [76, 141] and interpret the

resulting model as a decision tree.

In this thesis, we emphasize theoretical guarantees: the model must exhibit a

stated interpretability property. For example, a property may ensure the model can

be approximated (and thus explained) by a decision tree with a small, bounded error.

This direction could be classified under a more general notion of transparency, which

refers to properties that are revealed or imposed on the model. Transparency also

encompasses other desirable properties. For instance, we need robustness of a security

system (e.g. face identification) to protect the users from potential threats. Likewise,

to prevent a judicial system from making biased actions towards an underrepresented

group, fairness must be ensured. Finally, to prevent a medical diagnosis system from

leaking sensitive information, privacy should be taken into account in the system.

There are many other similar properties, such as calibration and causality. With

transparency, stakeholders will have some guarantees about the models, and are thus

able to make safe and appropriate interactions with them.

While many properties may be deemed beneficial, one may favor different proper-

ties depending on the uses or needs in the application. In interpretability, explaining

prediction errors in terms of training examples [75, 161] is helpful when training data

are noisy, while investigating model internals [71] is more important if the data are

already carefully curated. Similarly, one might care about robustness to adversarial

manipulation of input features [16, 140], which would fool the classifier, in security ap-

plications. In other cases, being robust to (training) data poisoning [10, 111] is more

valuable, particularly if the test environment is properly controlled but the training

data are provided by untrusted users. Likewise, common users accept systems where

sensitive information is simply hidden, but diligent users would require that sensitive

information cannot be inferred [65]. It is possible to exhibit multiple properties at the
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same time, but some of the properties can be potentially conflicting. For example,

is has been shown that some existing fairness criteria (equalized odds [56], statistical

parity, and predictive parity [25]) cannot be satisfied simultaneously, except for some

highly constrained cases [74].

As interpretability and transparency are related, we discuss a few distinctions for

clarity. Interpretability requires explainable presentation of the model, while trans-

parency refers to stated properties that we wish to expose about the models. A model

can be transparent about properties (e.g., robustness) without being interpretable.

Of course, it is desirable to have a model that is both human interpretable and trans-

parent, so we can understand both its interpretability and general properties. The

co-existence typically relies on a simple architecture (e.g., linear models or decision

trees) that makes the model easy to understand and immediate in terms of properties.

Generalizing the setting towards more complex models is a key goal.

In this thesis, we propose several strategies towards this challenge.

• Existing interpretable and transparent models like decision trees and linear

models work well for simple tasks but not complex problems due to their limited

capacity. To enable their usage in these complex problems, we propose a divide-

and-conquer strategy: we can first decompose the data into smaller groups and

then use a local transparent model for each group. For example, while a shallow

decision tree is not powerful enough for predicting chemical properties for all

the molecules, it may be sufficient if it only handles a group of molecules with

similar structural characteristics. However, a straightforward implementation

suffers from a serious cold-start problem: it has zero generalization ability for

groups with no training data. As an alternative, we propose to induce these

local models from a powerful predictor, with a joint training procedure ensuring

coherence among the locals models, the powerful predictor, and the data.

• Alternatively, we may also try to make these simple models more powerful

while maintaining some facets of transparency or interpretability. For example,

Alvarez-Melis and Jaakkola proposed to generalize linear models 𝜃⊤𝑥 to deep
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linear models 𝜃(𝑥)⊤𝑥 [5], where the linear coefficients 𝜃(𝑥) are data-dependent

and generated by a deep network. The authors also utilized a regularization

term to ensure the local stability of data-dependent linear weights, leading to a

model that is approximately locally linear, similar to the aforementioned locally

transparent models. In this approach, the model always exercises a linear model

when making the prediction for every single input 𝑥, thus readily interpretable;

the model is still powerful since it is allowed to use different linear weights 𝜃(𝑥)

for distinct input values 𝑥. In this thesis, as a different direction, we focus on

generalizing decision trees with more expressive yet interpretable decisions.

• We also investigate the broader transparency problem to reveal and/or ensure

a chosen property in a given model. There are many plausible properties, in-

cluding robustness, fairness, privacy, causality, and calibration. We focus on

robustness to adversarial examples [16, 140], which are crafted examples that

manipulate model predictions with slight, potentially unnoticeable perturba-

tions from actual examples. Their existence makes a machine learning system

particularly vulnerable since it is challenging to judge whether an error should

be attributed to an inherent generalization error or an adversarial attack. Here

the property can be naturally verified via certificates, guarantees that ensure

no adversarial example exists. Although the exact (i.e., the best possible) cer-

tification of adversarial robustness is generally NP-complete [70], we can trade

off efficiency with tightness. Our goal is to make certification efficient for a va-

riety of models and scenarios (continuous and discrete data) while maintaining

tightness with respect to the chosen family of models.

Technically, we accomplish these strategies in a perhaps quite counterintuitive

way; we leverage complex models such as deep networks as a backbone tool for the

above strategies, despite the fact that these models are recognized as un-interpretable

or non-transparent. For example, we leverage a black-box neural network to induce

locally transparent models. Besides, our method also inherits several benefits of these

models, such as simple yet effective training procedures, compatibility with structured
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data, flexible architectural choices, the capability of learning representations, and,

most notably, state-of-the-art performance. A more in-depth overview of our technical

solution is provided in the next section.

1.2 Overview of this Thesis

This thesis addresses the emerging problem of understanding machine learning mod-

els. This problem is strongly motivated by the need of ensuring the models work

properly in mission critical applications. The form of understanding also has mul-

tiple facets. It can be as simple as highlighting prediction rationales or providing

explanations (i.e., interpretability), or more subtle, as revealing high-level properties

that describe the way in which the model operates (i.e., transparency). Simple models

like linear models or decision trees are both interpretable and transparent but limited

in expressiveness. The majority of this thesis is dedicated to generalizing these simple

models in a way that still preserves the interpretability and transparency. We also

touch upon the more general transparency problem, and focus on the certification of

adversarial robustness.

1.2.1 A Game-Theoretic Approach to Local Transparency

Chapter 2 provides a novel approach to training local transparent models that gen-

eralize to local regions outside the training data. Our approach naturally operates

over structured data and functionally tailors the local models towards powerful pre-

dictors (cf. the raw data). The estimation problem is set up as a co-operative game

between an unrestricted predictor such as a neural network, and a witness chosen

from the desired transparent family. The goal of the witness is to mimic the pre-

dictor, locally, with the chosen family of functions, while the predictor is trained

to fit the data while maintaining local approximability with respect to the witness.

We emphasize that the witness remains globally powerful as it is only restricted to

exercise transparent behaviors locally. We analyze the effect of the proposed game,

provide example formulations in the context of graph and sequence networks ver-
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sus decision trees and linear models, and empirically illustrate the idea in chemical

property prediction, temporal modeling, and molecule representation learning.

This chapter is based on the publication [85]:

G.-H. Lee, W. Jin, D. Alvarez-Melis, and T. S. Jaakkola. Functional Transparency

for Structured Data: a Game-Theoretic Approach. In International Conference on

Machine Learning (ICML), 2019.

1.2.2 Towards Robust, Locally Linear Models

Although the method in Chapter 2 is compatible with general transparent model

classes, the method is not efficient for representing locally linear models. Indeed,

Ω(𝐷3) time is generally required to find a local linear model in 𝐷 dimensional space.

Instead, we observe that neural networks with piecewise linear activation functions

naturally realize locally linear models, and a gradient evaluation immediately provides

the associated local linear model. However, one key challenge is that such derivatives

(and thus the resulting linear models) are themselves inherently unstable.

In Chapter 3, we propose a new learning problem to encourage these neural

networks to have stable derivatives over larger regions. At the heart of our learning

algorithm are an inference step that identifies a region around a point where linear

approximation is provably stable, and an optimization step to expand such regions.

We propose a novel relaxation to scale the learning method to large-scale models,

and a new perturbation algorithm to speed-up the computation. We illustrate our

method with residual and recurrent networks on image and sequence datasets.

This chapter is based on the publication [83]:

G.-H. Lee, D. Alvarez-Melis, and T. S. Jaakkola. Towards Robust, Locally Linear

Deep Networks. In International Conference on Learning Representations (ICLR),

2019.
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1.2.3 Oblique Decision Trees from Neural Networks

A natural generalization of decision trees via linear models is known as oblique deci-

sion trees, which extend the original coordinate cuts in the decision nodes to linear

classifications. However, the slight generalization leads to a much challenging opti-

mization problem, where even the greedy induction algorithm becomes intractable.

Chapter 4 presents a novel neural architecture, which we call locally constant

networks, that is representationally equivalent to the family of oblique decision trees.

Moreover, we highlight several advantageous properties of locally constant networks,

including how they realize decision trees with parameter sharing across branching

or leaves. Indeed, only 𝑀̃ neurons suffice to implicitly model an oblique decision

tree with 2𝑀̃ leaf nodes. The neural representation also enables us to adopt many

tools developed for deep networks (e.g., DropConnect [149]) while implicitly training

decision trees. We demonstrate that our method outperforms alternative techniques

for training oblique decision trees in the context of molecular property classification

and regression tasks.

This chapter is based on the publication [84]:

G.-H. Lee and T. S. Jaakkola. Oblique Decision Trees from Derivatives of ReLU

Networks. In International Conference on Learning Representations (ICLR), 2020.

1.2.4 Tight Certificates of Adversarial Robustness

It has been discovered that strong theoretical guarantees of adversarial robustness can

be given for ensembles of (possibly black-box) classifiers generated by input random-

ization. Specifically, an ℓ2 bounded adversary cannot alter the ensemble prediction

generated by an additive isotropic Gaussian noise [29], where the radius for the adver-

sary depends on both the variance of the distribution as well as the ensemble margin

at the point of interest.

In Chapter 5, we build on and considerably expand this work across broad

families of distributions (e.g. uniform). In particular, we offer adversarial robustness

guarantees and associated algorithms for the discrete case where the adversary is ℓ0
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bounded. Moreover, we exemplify how the guarantees can be tightened with specific

assumptions about the function class of the classifier such as a decision tree. We

empirically illustrate these results with deep networks and decision trees across image

and molecule datasets, respectively.

This chapter is based on the publication [86]:

G.-H. Lee, Y. Yuan, S. Chang, and T. S. Jaakkola. Tight Certificates of Adversarial

Robustness for Randomly Smoothed Classifiers. In Neural Information Processing

Systems (NeurIPS), 2019.

1.3 Other Previously Published Work

This thesis includes a coherent line of the author’s work during his PhD. The au-

thor has also investigated other research areas pertaining to intelligent wireless sens-

ing [142, 63], generative models [57], and self-supervised learning [64], which are not

included in this thesis, but the details can be found in the bibliography.
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Chapter 2

Local Transparency for Structured

Data: a Game-Theoretic Approach

2.1 Introduction

It is possible to realize a well-understood (i.e., transparent) yet flexible model. For

instance, the 1-Lipschitz discriminator used to realize the Wasserstein-1 distance [6]

can be as complex as a neural network. Adherence to a complex, global functional

class is not the only way to achieve transparency. For example, linearity is a desirable

characteristic for transparency but is sensible to enforce only locally. We offer there-

fore a new notion of transparency—local transparency—where the goal is to restrict

models to adopt a desirable local behavior while guiding them to be more flexible

globally.

Previous approaches to interpretability have mainly focused on models that oper-

ate on fixed-size data, such as scalar-features [79] or images [125, 96]. The emphasis

has been on feature relevance or selection [121]. Recent methods do address some of

the challenges in sequential data [88, 8, 3], primarily in natural language processing

tasks where the input sequence is discrete. Interpretability for continuous temporal

data [2, 157] or graph structures remains largely unexplored.

We develop a novel approach to transparency that is naturally suited for struc-

tured data. At the core of our approach is a game-theoretic definition of transparency.
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Figure 2.1.1: During testing, we fit decision trees to our predictor (i.e., finding the
witness) and an unregularized model on molecule property prediction at the same
local neighborhood such that the functional approximations are comparable in AUC
(because the scale is not crucial). The split criterion on each node is based on the
existence of a complete chemical substructure in Morgan fingerprints [122]. The color
of each Morgan fingerprint simply reflects the radius of the fingerprint.

This is set up as a two-player co-operative game between a witness and a predictor.

The witness is chosen from a simple transparent family whereas the predictor is un-

restricted. Transparency arises from the fact that the witness always exercises simple

behavior in each local region, while the co-operative game ensures consistency be-

tween the witness and the expressive predictor so as to make the witness powerful

globally. Rather than directly fitting the data, exploiting the predictor as a reference

allows the witness to generalize to local regions containing no training data. Alter-

natively, if transparency is only required approximately, our method also produces

the predictor with such guarantees. The approach differs from global regularization

of models towards interpretability [157], models that are constructed a priori to be

interpretable in terms of the global function class [18], or from post-hoc explanations

of black-box methods via local perturbations [121, 3].

To illustrate, we contrast our approach with methods that seek to obtain inter-

pretable explanations after the fact (e.g., Ribeiro et al. [121]). Derived explanation

after training can be misleading in some cases if the explanation does not match the

functional behavior of the model. For example, Figure 2.1.1 shows our local decision

tree witness (a, left) versus the local decision tree approximation to an unregularized
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model (b, right). The tree for the unregularized model only filters one sample in each

split, lacking generality to explain the (local) behavior. This phenomenon is related

to unstable explanations that arise with already trained models [4, 48].

The game-theoretic approach is very flexible in terms of models and scenarios.

We therefore illustrate the approach across a few novel scenarios: exemplifying graph

predictors via decision trees, revealing temporal variation of an autoregressive gen-

erative model, and instantiating the encoder in unsupervised graph representation

learning using simple decision rules. Our main contributions are:

• A novel game-theoretic approach to transparency, applicable to a wide range of

models, architectures, and local transparency classes, without requiring differ-

entiability.

• Analysis on the effective size of the local regions and establishing equilibria

pertaining to different game formulations.

• Illustration of transparent models across several tasks, from chemical property

prediction, physical component modeling, to molecule representation learning.

2.2 Related Work

Our goal is to realize a model that is expressive yet exhibiting a desired local behavior.

The approach confers an operational guarantee rather than directly interpretability.

In contrast, examples of archetypal interpretable models include linear classifiers, de-

cision trees [115], and decision sets [79]; recent approaches also guide complex models

towards highlighting pieces of input used for prediction [88], learning representations

that can be decomposed among training examples [161], generalizing linear models

while maintaining interpretability [5], or finding interpretable partial substitutes for

complex models [150]. A model conforming to a known functional behavior, at least

locally, as in our approach, is not necessarily itself human-interpretable. The guar-

antee we offer is that the complex model indeed follows such a behavior.

Previous work on approximating a functional class (via neural networks) can

31



be roughly divided into two types: parametrization-based and regularization-based

methods. Works in the first category seek self-evident adherence to a functional

class, which include maintaining Lipschitz continuity via weight clipping [6], orthogo-

nal transformation via scaled Cayley transform of skew-symmetric matrices [60], and

“stable” recurrent networks via spectral norm projection on the transition matrix [98].

A softer approach is to introduce a regularization problem that encourages neural

networks to match properties of the functional class. Such regularization problem

might come in the form of a gradient penalty as used in several variants of generative

adversarial networks [55, 11, 102] under the framework of integral probability met-

rics [103], layer-wise regularization of transformation matrices [27] towards parseval

tightness [77], and recent adversarial approaches to learning representations for cer-

tain independence statements [47, 164]. Typically, a tailored regularization problem

is introduced for each functional class.

Our work provides a unique combination of the two directions. On one hand, the

witness strictly adheres to the functional class locally. On the other hand, we cast

the overall problem as a regularization problem. However, we focus on transparency

and our approach—a general co-operative game—is quite different. Our methodol-

ogy is applicable to any choice of (local) functional class without any architectural

restrictions on the deep model whose behavior is used to guide the witness. The

optimization of functional deviation in the game must remain tractable, of course.

2.3 Methodology

In this work, given a dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ 𝒳 × 𝒴 , we learn a (supplemen-

tary) predictive function 𝑓 ∈ ℱ : 𝒳 → 𝒴 together with a transparent—and usually

simpler—function 𝑔 ∈ 𝒢 : 𝒳 → 𝒴 defined over a functional class 𝒢. We refer to func-

tions 𝑓 and 𝑔 as the predictor and the witness, respectively, throughout the chapter.

Note that we need not make any assumptions on the functional class ℱ , instead al-

lowing a flexible class of predictors. In contrast, the family of witnesses 𝒢 is strictly

constrained to be a transparent functional set, such as the set of linear functions
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or decision trees. We assume to have a deviation function 𝑑 : 𝒴 × 𝒴 → R≥0 such

that 𝑑(𝑦, 𝑦′) = 0 ⇐⇒ 𝑦 = 𝑦′, which measures discrepancy between two elements

in 𝒴 and can be used to optimize 𝑓 and 𝑔. To simplify the notation, we define

𝒟𝑥 , {𝑥𝑖 : (𝑥𝑖, 𝑦𝑖) ∈ 𝒟}. We introduce our game-theoretic framework in this section,

analyze it in §2.4, and instantiate the framework with concrete models in §2.5.

2.3.1 Game-Theoretic Consistency

There are many ways to distill a witness function 𝑔 ∈ 𝒢 from the predictor 𝑓 by

means of discrepancy measures. However, since the witness function can be weak

such as a linear function, we cannot expect that a reasonable predictor would agree

to it globally. Instead, we make a slight generalization to enforce this criterion only

locally, over different sets of neighborhoods. To this end, we define local consistency by

measuring how close 𝑓 is to the family 𝒢 over a local neighborhood ℬ(𝑥𝑖) ⊂ 𝒳 around

an observed point 𝑥𝑖. One straightforward instantiation of such a neighborhood ℬ(𝑥𝑖)

in temporal domain will be simply a local window of points {𝑥𝑖−𝜖, . . . , 𝑥𝑖+𝜖}. Our

resulting local discrepancy measure is

min
𝑔∈𝒢

1

|ℬ(𝑥𝑖)|
∑︁

𝑥𝑗∈ℬ(𝑥𝑖)

𝑑(𝑓(𝑥𝑗), 𝑔(𝑥𝑗)). (2.1)

The summation can be replaced by an integral when a continuous neighborhood is

used. The minimizing witness function, 𝑔𝑥𝑖
, is indexed by the point 𝑥𝑖 around which it

is estimated; depending on the function 𝑓 , the minimizing witness can change from one

neighborhood to another. If we view the minimization problem game-theoretically,

𝑔𝑥𝑖
is the best response strategy of the local witness around 𝑥𝑖.

The local discrepancy measure can be incorporated into an overall estimation

criterion in many ways so as to guide the predictor towards the desired functional

form, thus accurately inducing witnesses. The guidance can be offered as a uniform

constraint with a permissible 𝛿-margin, as an additive symmetric penalty, or defined

asymmetrically as a game-theoretic penalty where the information sets for the pre-

dictor and the witness are no longer identical. We consider each of these in turn.
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2.3.2 Uniform Criterion

A straightforward formulation is to confine 𝑓 to remain within a margin 𝛿 of the best

fitting witness for every local neighborhood. Assume that a primal loss ℒ(·, ·) is given

for a learning task. The criterion imposes the 𝛿-margin constraint uniformly as

∑︁
(𝑥𝑖,𝑦𝑖)∈𝒟

ℒ(𝑓(𝑥𝑖), 𝑦𝑖), 𝑠.𝑡.min
𝑔∈𝒢

1

|ℬ(𝑥𝑖)|
∑︁

𝑥𝑗∈ℬ(𝑥𝑖)

𝑑(𝑓(𝑥𝑗), 𝑔(𝑥𝑗)) ≤ 𝛿, ∀𝑥𝑖 ∈ 𝒟𝑥. (2.2)

We assume that the optimal 𝑔 with respect to each constraint may be efficiently found

due to the simplicity of 𝒢 and the regularity of 𝑑(·, ·). We also assume that the partial

derivatives with respect to 𝑓 , for fixed witnesses, can be computed straightforwardly

under sufficiently regular ℒ(·, ·) in a Lagrangian form. In this case, we can solve for 𝑓 ,

local witnesses, and the Lagrange multipliers using the mirror-prox algorithm [107].

The hard constraints in the uniform criterion will lead to strict consistency be-

tween the witness and the predictor. However, the effect may be undesirable in some

cases where the observed data (thus the predictor) do not agree with the witness in all

places; the resulting loss of performance may be too severe. Instead, we can enforce

the agreement with local witnesses to be small in aggregate across neighborhoods.

2.3.3 Symmetric Game

We define an additive, unconstrained, symmetric criterion to smoothly trade off be-

tween performance and consistency. The resulting objective is

∑︁
(𝑥𝑖,𝑦𝑖)∈𝒟

[︂
ℒ(𝑓(𝑥𝑖), 𝑦𝑖) + min

𝑔∈𝒢

𝜆

|ℬ(𝑥𝑖)|
∑︁

𝑥𝑗∈ℬ(𝑥𝑖)

𝑑(𝑓(𝑥𝑗), 𝑔(𝑥𝑗))

]︂
(2.3)

To illustrate the above idea, we generate a synthetic dataset to show a neigh-

borhood in Figure 2.3.1a with a piecewise linear predictor 𝑓 ∈ ℱpiecewise linear in Fig-

ure 2.3.1b. Clearly, 𝑓 does not agree with a linear witness within this neighborhood.

However, when we solve for 𝑓 together with a linear witness 𝑔𝑥𝑖
∈ 𝒢linear as in Fig-

ure 2.3.1c, the resulting function has a small residual deviation from 𝒢linear, more

34



(a) Neighborhood ℬ(𝑥20) (b) 𝑓 ∈ ℱpiecewise linear

(c) 𝑔𝑥𝑖=1 ∈ 𝒢linear (d) 𝑔𝑥𝑖=1 ∈ 𝒢decision stump

Figure 2.3.1: Examples of fitting a neighborhood ℬ(𝑥20) (2.3.1a) with a piecewise
linear predictor (2.3.1b). Using different witness families (Figs. 2.3.1c&2.3.1d, dashed
lines) leads to predictors (solid green) with different behaviors, despite yielding the
same error (mean squared error = 1.026).

adhering to the linear functional class while still closely tracking the observed data.

Figure 2.3.1d highlights the flexibility of our framework where a very different func-

tional behavior can be induced by changing the functional class of the witness.

2.3.4 Asymmetric Game

Solving the symmetric criterion can be computationally inefficient since the predictor

is guided by its deviation from each of the local witnesses on all points within each

of the local neighborhoods. Moreover, the predictor value at any point 𝑥𝑖 is sub-

ject to potentially conflicting regularization terms across the neighborhoods, which is

undesirable. The inner summation in Eq. 2.3 may involve different sizes of neighbor-

hoods ℬ(𝑥𝑖) (e.g., end-point boundary cases) and this makes it more challenging to

parallelize the computation.

We would like to impose even functional regularization at every 𝑓(𝑥𝑖) based on how

much the value deviates from the witness associated with the local region ℬ(𝑥𝑖). This

approach leads to an asymmetric co-operative formulation, where the information

sets for the predictor 𝑓 and local witnesses 𝑔𝑥𝑖
differ. Specifically, the local best-

response witness 𝑔𝑥𝑖
is chosen to minimize the local discrepancy as in Eq. (2.1),
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and thus depends on 𝑓 values within the whole region; in contrast, the predictor 𝑓

only receives feedback in terms of the resulting deviation at 𝑥𝑖, only seeing 𝑔𝑥𝑖
(𝑥𝑖).

From the point of view of the predictor 𝑓 , the best response strategy is obtained by

minimizing

∑︁
(𝑥𝑖,𝑦𝑖)∈𝒟

[︂
ℒ(𝑓(𝑥𝑖), 𝑦𝑖) + 𝜆 𝑑(𝑓(𝑥𝑖), 𝑔𝑥𝑖

(𝑥𝑖))

]︂
(2.4)

To train the proposed method, we perform alternating updates for 𝑓(·) and 𝑔𝑥𝑖
(·) on

their respective criteria. Note that in this case the objective cannot be written as a

single minimization problem (different information sets) but can be still interpreted

as a game. The deviation between the predictor and the witness, 𝑑(·, ·), can also be

defined asymmetrically as we do in §2.5.3.

2.4 Analysis

We consider here the effectiveness of regularization in relation to the neighborhood

size and establish fixed point equations for the predictor under the three estima-

tion criteria. For simplicity, we assume 𝒳 = R𝐷 and 𝒴 = R, but the results are

generalizable to our examples in §2.5. All the proofs are in Appendix 2.A.

2.4.1 Neighborhood Size

The formulation involves a key trade-off between the size of the region where the

function should be simple and the overall accuracy achieved by the predictor and

thus the witness. When the neighborhood is too small, local witnesses become perfect,

inducing no regularization on 𝑓 and yielding no effective explanations. Thus the size

of the region is a key parameter. A neighborhood size is sufficient if the witness class

𝒢 cannot readily overfit 𝑓 values within the neighborhood. Formally,

Definition 2.1. We say that a neighborhood size 𝑚 is effective for 𝒢 if for any 𝑓 ̸∈ 𝒢
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we can find ℬ ⊂ 𝒳 : |ℬ| = 𝑚 s.t.

min
𝑔∈𝒢

1

𝑚

∑︁
𝑥∈ℬ

𝑑(𝑓(𝑥), 𝑔(𝑥)) > 0. (2.5)

A trivial example is when 𝒢 is the constant class, a neighborhood size 𝑚 is effective

if 𝑚 > 1. Note that the neighborhood ℬ in the above definition can be any finite

collection of points ℬ(·). For example, the points in the neighborhood induced by a

temporal window {𝑥𝑖−𝜖, . . . , 𝑥𝑖+𝜖} need not remain in a small ℓ𝑝-norm ball.

For linear models and decision trees, we have

• 𝐷 + 1 is the tight lower bound on the effective neighborhood size for the linear

class.

• 2𝑘 +1 is a lower bound on the effective neighborhood size for decision trees with

depth bounded by 𝑘.

When the sample size within a neighborhood falls below the bounds, regularization

can still be useful if the witness class is not uniformly flexible or if the algorithm for

finding the witness is limited (e.g., greedy induction for decision trees).

2.4.2 Equilibrium Solutions

The symmetric game constitutes a standard minimization problem, but the existence

or uniqueness of equilibria under the asymmetric game is not obvious. Our main

results in this section make the following assumptions.

(A1) the predictor 𝑓 is unconstrained.

(A2) both the loss and deviation are squared errors.

(A3) |ℬ(𝑥𝑖)| = 𝑚,∀𝑥𝑖 ∈ 𝒟𝑥.

(A4) 𝑥𝑗 ∈ ℬ(𝑥𝑖) =⇒ 𝑥𝑖 ∈ ℬ(𝑥𝑗),∀𝑥𝑖, 𝑥𝑗 ∈ 𝒟𝑥.

(A5) ∪𝑥𝑖∈𝒟𝑥ℬ(𝑥𝑖) = 𝒟𝑥.
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We note that (A3) and (A4) are not technically necessary but simplify the pre-

sentation. We denote the predictor in the uniform criterion (Eq. (2.2)), the sym-

metric game (Eq. (2.3)), and the asymmetric game (Eq. (2.4)) as 𝑓𝑈 , 𝑓𝑆, and 𝑓𝐴,

respectively. We use 𝑋𝑖 ∈ R𝑚×𝐷 to denote the neighborhood ℬ(𝑥𝑖) = {𝑥′
1, . . . , 𝑥

′
𝑚}

(𝑋𝑖 = [𝑥′
1, . . . , 𝑥

′
𝑚]⊤), and 𝑓(𝑋𝑖) ∈ R𝑚 to denote the vector [𝑓(𝑥′

1), . . . , 𝑓(𝑥′
𝑚)]⊤. 𝑋†

𝑗

denotes the pseudo-inverse of 𝑋𝑗. Then we have

Theorem 2.2. If (A1-5) hold and the witness is in the linear family, the optimal

𝑓𝑆 satisfies

𝑓 *
𝑆(𝑥𝑖) =

1

1 + 𝜆

[︂
𝑦𝑖 +

𝜆

𝑚

(︀ ∑︁
𝑥𝑗∈ℬ(𝑥𝑖)

𝑋†
𝑗 𝑓

*
𝑆(𝑋𝑗)

)︀⊤
𝑥𝑖

]︂
,

and the optimal 𝑓𝐴, at every equilibrium, is the fixed point

𝑓 *
𝐴(𝑥𝑖) =

1

1 + 𝜆

[︂
𝑦𝑖 + 𝜆(𝑋†

𝑖 𝑓
*
𝐴(𝑋𝑖))

⊤𝑥𝑖

]︂
,∀𝑥𝑖 ∈ 𝒟𝑥.

The equilibrium in the linear class is not unique when the witness is not fully

determined in a neighborhood due to degeneracy. To avoid these cases, we can use

Ridge regression to obtain a stable equilibrium (discussed also in Appendix).

A special case of Theorem 2.2 is when 𝑥𝑖 = [1],∀𝑥𝑖 ∈ 𝒟𝑥, which effectively yields

the equilibrium result for the constant class; we found it particularly useful to un-

derstand the similarity between the two games in this scenario. Concretely, each

𝑋†
𝑗 𝑓(𝑋𝑗)𝑥𝑖 becomes 1

𝑚

∑︀
𝑥𝑘∈ℬ(𝑥𝑗)

𝑓(𝑥𝑘), and the solutions for both the symmetric and

asymmetric games induce the optimal predictors as recursive convolutional averaging

of neighboring points with the same decay rate 𝜆/(1 + 𝜆), while the convolutional

kernel evolves twice as fast in the symmetric game than in the asymmetric game.

Next, we show that the uniform criterion yields a very different equilibrium.

Theorem 2.3. If (A1-5) hold and the witness is in the linear family, the optimal

𝑓𝑈 satisfies

𝑓 *
𝑈(𝑥𝑖) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼(𝑥𝑖, 𝑓

*
𝑈), if 𝛼(𝑥𝑖, 𝑓

*
𝑈) > 𝑦𝑖,

𝛽(𝑥𝑖, 𝑓
*
𝑈), if 𝛽(𝑥𝑖, 𝑓

*
𝑈) < 𝑦𝑖,

𝑦𝑖, otherwise,
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for 𝑥𝑖 ∈ 𝒟𝑥, where

𝛼(𝑥𝑖, 𝑓
*
𝑈) = max

𝑥𝑗∈ℬ(𝑥𝑖)

[︂
(𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))

⊤𝑥𝑖 −
√︃

𝛿𝑚−
∑︁

𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓 *
𝑈(𝑥𝑘)− (𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))⊤𝑥𝑘)2

]︂
;

𝛽(𝑥𝑖, 𝑓
*
𝑈) = min

𝑥𝑗∈ℬ(𝑥𝑖)

[︂
(𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))

⊤𝑥𝑖 +

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓 *
𝑈(𝑥𝑘)− (𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))⊤𝑥𝑘)2

]︂
.

A noticeable difference from the games is that, under the uniform criterion, the

optimal predictor 𝑓 *
𝑈(𝑥𝑖) may faithfully output the actual label 𝑦𝑖 if the functional

constraint is satisfied, while the functional constraints are translated into a “convolu-

tional” operator in the games.

2.4.3 Efficient Computation

We also analyze ways of accelerating the computation required for solving the sym-

metric game. An equivalent criterion is given by

Lemma 2.4. If 𝑑(·, ·) is squared error, ℒ(·, ·) is differentiable, 𝑓 is sub-differentiable,

and A(4-5) hold, then

∑︁
(𝑥𝑖,𝑦𝑖)∈𝒟

ℒ(𝑓(𝑥𝑖), 𝑦𝑖) +
𝜆

𝑁̄𝑖

[︂
𝑁̄𝑖𝑓(𝑥𝑖)−

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

𝑔𝑥𝑡(𝑥𝑖)

|ℬ(𝑥𝑡)|

]︂2
, (2.6)

where 𝑁̄𝑖 :=
∑︀

𝑥𝑡∈ℬ(𝑥𝑖)
1

|ℬ(𝑥𝑡)| , induces the same equilibrium as the symmetric game.

The result is useful when training 𝑓 on GPU and solving 𝑔𝑥𝑖
on CPU. Compared

to handling different neighborhood sizes for Eq. (2.3) on the GPU, computing a sum-

marized feedback on CPU as in Eq. (2.6) is more efficient (and easier to implement).

2.4.4 Discussion

We investigated here discrete neighborhoods and they are suitable also for structured

data as in the experiments. The method itself can be generalized to continuous

neighborhoods with an additional difficulty: the exact computation and minimization
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of functional deviation between the predictor and the witness in such neighborhoods

is in general intractable. We may apply results from learning theory (e.g., [128]) to

bound the (generalization) gap between the deviation computed by a finite number of

samples from the continuous neighborhood and the actual deviation under a uniform

probability measure.

2.5 Examples

2.5.1 Conditional Sequence Generation

The basic idea of co-operative modeling extends naturally to conditional sequence

generation over longer periods. Broadly, the mechanism allows us to inspect the

temporal progression of sequences on a longer term basis.

Given an observation sequence 𝑥1, . . . , 𝑥𝑡 ∈ R𝑐, the goal is to estimate probabil-

ity 𝑝(𝑥𝑡+1:𝑇 |𝑥1:𝑡) over future events 𝑥𝑡+1, . . . , 𝑥𝑇 ∈ R𝑐, typically done via maximum

likelihood. For brevity, we use 𝑥1:𝑖 to denote 𝑥1, . . . , 𝑥𝑖. We autoregressively model

the conditional distribution of 𝑥𝑖+1 given 𝑥1:𝑖 as a multivariate Gaussian distribution

with mean 𝜇(𝑥1:𝑖) and covariance Σ(𝑥1:𝑖), both parametrized via recurrent neural

networks. Each local witness model 𝑔𝑥1:𝑖
(·) is estimated based on the neighborhood

ℬ(𝑥1:𝑖) , {𝑥1:𝑖−𝜖, . . . , 𝑥1:𝑖+𝜖} with respect to the mean function 𝜇(·). A natural choice

would be a 𝐾th-order Markov autoregressive (AR) model with an ℓ2 deviation loss

as:

min
𝜃

∑︁
𝑥1:𝑡∈ℬ(𝑥1:𝑖)

‖
𝐾−1∑︁
𝑘=0

𝜃𝑘+1 · 𝑥𝑡−𝑘 + 𝜃0 − 𝜇(𝑥1:𝑡)‖22,

where 𝜃𝑘 ∈ R𝑐×𝑐, ∀𝑘 > 0 and 𝜃0 ∈ R𝑐. The AR model admits an analytical solution

similar to linear regression.

2.5.2 Chemical Property Prediction

The models discussed in §2.3 can be instantiated on highly-structured data, such as

molecules, too. A molecule can be represented as a graph ℳ = (𝒱 , ℰ) whose nodes
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encode the atom types and edges encode the chemical bonds. Such representation

enables the usage of recent graph convolutional networks (GCNs) [32, 89] as the

predictor 𝑓 . As it is hard to realize a simple witness on the raw graph representation,

we exploit an alternative data representation for the witness model; we leverage depth-

bounded decision trees that take as input Morgan fingerprints [122] 𝑥(ℳ), which are

binary feature vectors indicating the presence of various chemical substructures (e.g.,

the nodes in Figure 2.1.1).

Through automatic matching molecular pair analysis [53], we construct the neigh-

borhood ℬ(ℳ) with molecules {ℳ′} whose Tanimoto similarity with 𝑀 is greater

than 0.6. Here we use a multi-label binary classification task as an example, and

adopt a cross-entropy loss for each label axis for simplicity. At each neighborhood

ℬ(ℳ), we construct a witness decision tree 𝑔 that minimizes the total variation (TV)

from the predictor as

min
𝑔∈𝒢tree

1

|ℬ(ℳ)|
∑︁

ℳ′∈ℬ(ℳ)

dim(𝒴)∑︁
𝑖=1

|𝑓(ℳ′)𝑖 − 𝑔(𝑥(ℳ′))𝑖|. (2.7)

Note that Eq. (2.7) is an upper bound and an efficient alternative to fitting a tree for

each label axis independently.

2.5.3 Molecule Representation Learning

Our approach can be further applied to learn transparent latent graph representations

in variational autoencoders (VAEs) [73, 69]. Concretely, given a molecular graphℳ =

(𝒱 , ℰ), the VAE encoder 𝑞 outputs the approximated posterior 𝑧ℳ ∼ 𝒩 (𝜇ℳ,Σℳ)

over the latent space, where 𝑧ℳ is a stochastic, continuous representation of the

moleculeℳ. Following common practice, Σℳ is restricted to be diagonal. The VAE

decoder then reconstructs the molecule ℳ from its probabilistic encoding 𝑧ℳ. Our

goal here is to guide the behavior of the neural encoder 𝑞 such that the derivation of

(probabilistic) 𝑧ℳ can be locally explained and/or replaced by a decision tree.

We adopt the same setting for the witness function and the neighborhoods as

in §2.5.2, except that the local decision tree 𝑔 now outputs a joint normal distri-
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bution with parameters [̂︀𝜇ℳ, ̂︀Σℳ]. To train the encoder, we extend the original

VAE objective ℒVAE with a local deviation loss ℒ𝒢tree defined on the KL diver-

gence between the VAE posterior 𝑞(ℳ) = 𝒩 (𝜇ℳ,Σℳ) and the witness posterior

𝑔(𝑥(ℳ)) = 𝒩 (̂︀𝜇ℳ, ̂︀Σℳ), aggregated across neighborhoods, as

ℒ𝒢tree :=
1

|𝒟|
∑︁
ℳ∈𝒟

1

|ℬ(ℳ)|
min

𝑔∈𝒢tree

∑︁
ℳ′∈ℬ(ℳ)

KL(𝑔(𝑥(ℳ′))||𝑞(ℳ′))

The VAE is trained to minimize ℒVAE + 𝜆 · ℒ𝒢tree . For ease of optimization, we

asymmetrically estimate each decision tree 𝑔 with mean squared error between the

vectors [𝜇ℳ,Σℳ] and [̂︀𝜇ℳ, ̂︀Σℳ].

2.6 Experiments

We conduct experiments on chemical and time-series datasets. Due to the lack of ex-

isting works for explaining structured data, we adopt an ablation setting—comparing

our approach (Game) versus an unregularized model (Deep)—and focus on measur-

ing the resulting explanation (i.e., the local witnesses). We use subscripts to denote

specific versions of the Game models. Note that we only fit the local witnesses to

the Deep model during testing time for evaluation.

2.6.1 Chemical Property Prediction

We conduct experiments on molecular toxicity prediction on the Tox21 dataset from

MoleculeNet [158], which contains 12 binary labels and 7, 831 molecules. The labels

are very unbalanced; the fraction of the positive label is between 16.15% and 3.51%

among the 12 labels. We use GCN as the predictor and decision trees as the local

witnesses as described in §2.5.2. The neighborhood sizes 𝑚 of about 60% of the

molecules are larger than 2, whose median and maximum are 59 and 300, respectively.

Since each neighborhood has a different size 𝑚, we set the maximum tree depth as

max{⌈log2(𝑚)⌉−1, 1} for each neighborhood to prevent the corresponding size 𝑚 from

being not effective for 𝑚 > 2 (see Definition 2.1). More details are in Appendix 2.B.
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Table 2.6.1: Performance on the Tox-21 dataset. AUC𝒟(𝑔ℳ, 𝑓) and AUCℬ(𝑔ℳ, 𝑓)
generalize the AUC score to use 𝑓 values as labels, computed on the testing data and
their neighborhoods, respectively.

Aspect Measure Gameunif Gamesym Deep

Performance AUC(𝑔ℳ, 𝑦) 0.742 0.824 0.818
(the higher the better) AUC(𝑓, 𝑦) 0.744 0.826 0.815

Consistency AUCℬ(𝑔ℳ, 𝑓) 0.764 0.759 0.735
(the higher the better) AUC𝒟(𝑔ℳ, 𝑓) 0.959 0.967 0.922

Evaluation Measures: A more detailed version of how these measures are computed

can be found in Appendix 2.B.

(1) Performance: We compare the predictions of the witness with the labels in

AUC, denoted as AUC(𝑔ℳ, 𝑦). We also evaluate the predictor similarly (denoted as

AUC(𝑓, 𝑦)) so as to analyze the regularization effect of the games.

(2) Consistency: As labels are unavailable for testing data in practice, we may

instead measure the similarity between the predictor and the local witnesses to un-

derstand the consistency of the distillation. To this end1, we generalize the AUC

criterion for continuous labels for 𝑁 references 𝑦 and predictions 𝑦′ as

∑︀𝑁
𝑖=1

∑︀𝑁
𝑗=1 I(𝑦𝑖 > 𝑦𝑗)I(𝑦′𝑖 > 𝑦′𝑗)∑︀𝑁

𝑖=1

∑︀𝑁
𝑗=1 I(𝑦𝑖 > 𝑦𝑗)

.

The proposed score has the same pairwise interpretation as AUC, recovers AUC

when 𝑦 is binary, and is normalized to [0, 1]. Locally, we measure the criterion for

the local witnesses with respect to the predictor in each testing neighborhood as the

local consistency, where the average result is denoted as AUCℬ(𝑔ℳ, 𝑓). Globally, the

criterion is also validated among the testing data, denoted as AUC𝒟(𝑔ℳ, 𝑓).

The results with the uniform criterion and the symmetric game are shown in

Table 2.6.1. A baseline vanilla decision tree, with depth tuned between 2 and 30,

yields 0.617 in AUC(𝑓, 𝑦). Compared to Gamesym, the local consistency in Gameunif

is marginally improved due to the strict constraint at the cost of severe performance

1Since the predictor probability can be scaled arbitrarily to minimize the TV from decision trees
without affecting performance, using TV to measure consistency as used in training is not ideal.
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Table 2.6.2: AUC𝒟(𝑔ℳ, 𝑓) score on different ∆ in the Tox-21 dataset (lower ∆ implies
shallower trees).

Model Δ = 0 Δ = −1 Δ = −2 Δ = −3

Game 0.967 0.967 0.964 0.958
Deep 0.922 0.916 0.915 0.914

loss. We investigate the behaviors in training neighborhoods and find that Gamesym

exhibits a tiny fraction of high deviation losses, allowing the model to behave more

flexibly than the strictly constrained Gameunif (see Figure 2.A.1 in Appendix 2.B).

In terms of performance, our Gamesym model is superior to the Deep model in terms

of both the local witnesses and the predictor. When comparing the witness to the

predictor, locally and globally, the Game models significantly improve the consistency

from the Deep model. The local consistency should be interpreted relatively since

the tree depth inherently prevents local overfitting.

We visualize the resulting witness trees in Figure 2.1.1 under the same consis-

tency constraint: for a local neighborhood, we grow the witness tree for the Deep

model until the local consistency in AUCℬ is comparable to the Gamesym model. For

explaining the same molecule, the tree for the Deep model is deeper and extremely

unbalanced. Since a Morgan fingerprint encodes the existence of a substructure of

molecule graphs, an unbalanced tree focusing on the left branch (non-existence of a

substructure) does not capture much generality. Hence, the explanation of the Deep

model does not provide as much insight as our Gamesym model.

Here we do an analysis on the tree depth constraint for the witness model, as

a shallower tree is easier to interpret, but more challenging to establish consistency

due to the restricted complexity. To this end, we revise the depth constraint to

max{⌈log2(𝑚)⌉ − 1 + ∆, 1} during training and testing, and vary ∆ ∈ {−3, . . . , 0}.

All the resulting Game models outperform the Deep models in AUC(𝑓, 𝑦), and we

report the consistency score in terms of AUC𝒟(𝑔ℳ, 𝑓) in Table 2.6.2. Even when

∆ = −3, the witness trees in our Game model still represent the predictor more

faithfully than those in the Deep model with ∆ = 0, demonstrating the significance

of our game-theoretic approach which leads to such coherency.
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Table 2.6.3: Performance of the symmetric and asymmetric setting of the Game
model with 𝜖 = 9.

(×10−2) 𝜆 0 0.1 1 10 100 AR

Gameasym
Error 8.136 8.057 8.309 9.284 9.794 9.832

Deviation 4.197 4.178 3.431 1.127 0.186 0.000
TV 7.341 7.197 5.706 1.177 0.144 0.000

Gamesym
Error 8.136 8.089 8.315 9.314 9.807 9.832

Deviation 4.197 4.169 3.426 1.116 0.182 0.000
TV 7.341 7.292 5.621 1.068 0.132 0.000

2.6.2 Physical Component Modeling

We next validate our approach on a physical component modeling task with the

bearing dataset from NASA [87], which records 4-channel acceleration data on 4 co-

located bearings. We divide each sequence into disjoint subsequences, resulting in

200, 736 subsequences in total. Since the dataset exhibits high frequency periods of

5 points and low frequency periods of 20 points, we use the first 80 points in an

sequence to forecast the next 20. We parametrize 𝜇(·) and Λ(·) jointly by stacking 1

layer of CNN, LSTM, and 2 fully connected layers. We set the neighborhood radius

𝜖 to 9 such that the local witnesses are fit with completely different data for the

beginning and the end of the sequence. The Markov order 𝐾 is set to 2 to ensure the

effectiveness of the neighborhood sizes. More details are in Appendix 2.C.

In testing time, the local witnesses are estimated based on the autoregressive gen-

erative trajectories, so it is natural to treat each local witness as purely an explanation

rather than a predictive function, as in the typical post-hoc explanation setting.

Evaluation involves three different types of errors: 1) ‘error’ is the root mean

squared error (RMSE) between greedy autoregressive generation and the ground

truth, 2) ‘deviation’ is RMSE between the predictor 𝜇(𝑥1:𝑖) and the witness 𝑔𝑥1:𝑖
(𝑥1:𝑖),

and 3) ‘TV’ is the average total variation of witness 𝑔𝑥1:𝑖
parameters [𝜃, 𝜃0] between

every two consecutive time points. Since the deviation and error are both computed

on the same space in RMSE, the two measures are readily comparable.

We present the results in Table 2.6.3 to study the impact of the game coefficient
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Figure 2.6.1: Visualization of the local linear witnesses (middle and right plots) on
the first channel (left plot) along the autoregressive generative trajectory (𝑥-axis) on
the bearing dataset. The 𝑦-axis of the parameters from 0 to 8 denotes the bias (𝜃0)1
and weights (𝜃1)1,1:4, (𝜃2)1,1:4.

𝜆 and the symmetry of the games. The trends in the measures are quite monotonic

on 𝜆: with an increasing 𝜆, the predictor gradually operates toward the AR family

with lower deviation and TV but higher error. When 𝜆 = 0.1, the Game models are

more accurate than the Deep model (𝜆 = 0) due to the regularization effect. Given

the same hyper-parameters, marginally lower deviation in the symmetric game than

in the asymmetric game confirms our analysis about the similarity between the two.

In practice, the asymmetric game is more efficient and substantially easier to imple-

ment than the symmetric game. Indeed, the training time is 20.6 sequences/second

for the asymmetric game, and 14.6 sequences/second for the symmetric game. If

we use the formula in Lemma 2.4, the symmetric game can be accelerated to 20.4

sequences/second, but the formula does not generalize to other deviation losses.

We visualize the local witnesses with their parameters [𝜃0, 𝜃] along the autore-

gressive generative trajectories in Figure 2.6.1. The stable funcitonal patterns of the

Game model as reflected by 𝜃, before and after the 9th point, highlight not only close

local alignments between the predictor and the AR family (being constant vectors

across columns) but also flexible variation of functional properties on the predictor

across regions. In contrast, the Deep model yields unstable linear coefficients, and

relies more on biases 𝜃0 than the Game model, although the linear weights are more

useful for grounding the coordinate relevance for interpretability. Finally, we remark

that despite the uninterpretable nature of temporal signals, the functional pattern re-

flected by the linear weights as shown here yields a simple medium to understand its

behavior. Some additional analyses and visualization are included in Appendix 2.C.
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Table 2.6.4: The performance in ELBO for the raw neural encoders and locally
adapted decision trees. The deviation is defined in §2.5.3.

Model ELBOneural encoder ELBOdecision tree deviation (ℒ𝒢tree)

Deep -21.6 -25.4 4.64
Game -21.5 -25.1 3.98

Figure 2.6.2: The local decision tree explains the latent representation for a molecule
(upper left) by identifying locally discriminative chemical substructures. The leaf
nodes are annotated with their sizes (number of molecules belonging to that cluster).

2.6.3 Molecule Representation Learning

Finally, we validate our approach on learning representations for molecules with VAEs,

where we use the junction tree VAE [69] as an example. Here the encoders of VAEs,

with and without the guidance of local decision trees (see §2.5.3), are again denoted

as Deep and Game, respectively. The models are trained on the ZINC dataset [137]

containing 1.5M molecules, and evaluated on a test set with 20K molecules. We

measure the performance in terms of the evidence lower bound (ELBO) over the test

set. Here we consider two scenarios: the ELBO using the raw latent representations

from the original neural encoder, and using the transparent latent representations

generated by the local decision tree witnesses. The average deviation loss in KL

divergence ℒ𝒢tree , defined in §2.5.3, over the testing neighborhoods is also evaluated.

The results are shown in Table 2.6.4. Our Game model performs consistently

better than the baseline Deep model under all the metrics. Figure 2.6.2 shows an

example of how our decision tree witness embeds the local neighborhood of a molecule.

Most of the substructures selected by the decision tree occur in the side chains outside

of Bemis-Murcko scaffold [12]. This shows the variation in the latent representation
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mostly reflects the local changes in the molecules, which is expected since changes in

the scaffold typically lead to global changes such as chemical property changes.

2.7 Conclusion

We propose a novel game-theoretic approach to learning transparent models on struc-

tured data. The game articulates how locally transparent witnesses can be guided

towards a flexible predictor with consistency. This work opens up many avenues for

future work, from theoretical analysis of the games to a multi-player setting.

2.A Proofs

2.A.1 Proof and Discussion of Theorem 2.2

Proof. We first re-write the symmetric criterion explicitly as a game:

min
𝑓

∑︁
𝑖

(𝑓(𝑥𝑖)− 𝑦𝑖)
2 +

𝜆

𝑚

∑︁
𝑥𝑗∈ℬ(𝑥𝑖)

(𝑓(𝑥𝑗)− 𝑔𝑥𝑖
(𝑥𝑗))

2,

where 𝑔𝑥𝑖
is the best response strategy from the local witness.

Since 𝑓 is unconstrained and the objective in convex in it, we can treat each 𝑓(𝑥𝑖)

as a distinct variable, and use the derivative to find its optimum:

𝑓 *
𝑆(𝑥𝑖) =

1

1 + 𝜆

[︂
𝑦𝑖 +

𝜆

𝑚

∑︁
𝑥𝑗∈ℬ−1(𝑥𝑖)

𝑔𝑥𝑗
(𝑥𝑖)

]︂
=

1

1 + 𝜆

[︂
𝑦𝑖 +

𝜆

𝑚

∑︁
𝑥𝑗∈ℬ(𝑥𝑖)

𝑔𝑥𝑗
(𝑥𝑖)

]︂
, (2.8)

where ℬ−1(𝑥𝑖) = {𝑥𝑗 ∈ 𝒟𝑥 : 𝑥𝑖 ∈ ℬ(𝑥𝑗)}. Note that we only have to collect witnesses

𝑔𝑥𝑗
that are relevant to 𝑓(𝑥𝑖) for the first equality, and the second equality is due to

(A4). On the other hand, the objective for 𝑓 in the asymmetric game is:

min
𝑓

∑︁
𝑖

(𝑓(𝑥𝑖)− 𝑦𝑖)
2 + 𝜆(𝑓(𝑥𝑖)− 𝑔𝑥𝑖

(𝑥𝑖))
2.
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The corresponding optimum is:

𝑓 *
𝐴(𝑥𝑖) =

1

1 + 𝜆

[︂
𝑦𝑖 + 𝜆𝑔𝑥𝑖

(𝑥𝑖)

]︂
. (2.9)

For both games, the objective for 𝑔𝑥𝑖
can be described as:

min
𝑔𝑥𝑖

𝜆

𝑚

∑︁
𝑥𝑗∈ℬ(𝑥𝑖)

(𝑓(𝑥𝑗)− 𝑔𝑥𝑖
(𝑥𝑗))

2 = min
𝜃𝑖

𝜆

𝑚
‖𝑓(𝑋𝑖)−𝑋𝑖𝜃𝑖‖22, (2.10)

Then Eq. (2.11) is an optimal witness 𝑔*𝑥𝑖
at 𝑥𝑖.

𝑔*𝑥𝑖
(𝑥𝑗) = 𝜃⊤𝑖 𝑥𝑗 = (𝑋†

𝑖 𝑓(𝑋𝑖))
⊤𝑥𝑗,∀𝑥𝑗 ∈ 𝒳 , (2.11)

and we note that every optimal witness 𝑔*𝑥𝑖
has the same values on ℬ(𝑥𝑖)

Since the optimal 𝑔*𝑥𝑖
is functionally dependent to 𝑓 . we put Eq. (2.11) back to

Eq. (2.8) to obtain the optimal condition for 𝑓 *
𝑆 (at equilibrium) as

𝑓 *
𝑆(𝑥𝑖) =

1

1 + 𝜆

[︂
𝑦𝑖 +

𝜆

𝑚
(

∑︁
𝑥𝑗∈ℬ(𝑥𝑖)

𝑋†
𝑗 𝑓

*
𝑆(𝑋𝑗))

⊤𝑥𝑖

]︂
.

Again, putting Eq. (2.11) back to Eq. (2.9), we obtain the optimal condition for 𝑓 *
𝐴

at equilibrium as

𝑓 *
𝐴(𝑥𝑖) =

1

1 + 𝜆

[︂
𝑦𝑖 + 𝜆(𝑋†

𝑖 𝑓
*
𝐴(𝑋𝑖))

⊤𝑥𝑖

]︂
.

Note that the equilibrium for the linear class is not unique when the solution of

Eq. (2.10) is not unique: there may be infinitely many optimal solution to the witness

in a neighborhood due to degeneracy. In this case, Theorem 2.2 adopts the minimum

norm solution as used in the pseudo-inverse in Eq. (2.11). In this case, one may use

Ridge regression instead to establish a strongly convex objective for the witness to

ensure a unique solution.
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2.A.2 Proof of Theorem 2.3

Proof. The objective for the uniform criterion is:

min
𝑓

𝑁∑︁
𝑖=1

(𝑓(𝑥𝑖)− 𝑦𝑖)
2, 𝑠.𝑡. min

𝑔∈𝒢

1

𝑚

∑︁
𝑥𝑗∈ℬ(𝑥𝑖)

(𝑓(𝑥𝑗)− 𝑔(𝑥𝑗))
2 ≤ 𝛿, ∀𝑥𝑖 ∈ 𝒟𝑥.

Our strategy is to temporarily treat each 𝑔 as a fixed function, and then replace it

with its best response strategy.

Since 𝑓 is unconstrained, we can treat each 𝑓(𝑥𝑖) as a distinct variable for opti-

mization. For each 𝑓(𝑥𝑖), we first filter its relevant criteria:

min
𝑓(𝑥𝑖)

(𝑓(𝑥𝑖)− 𝑦𝑖)
2

𝑠.𝑡. (𝑓(𝑥𝑖)− 𝑔𝑥𝑗
(𝑥𝑖))

2 ≤ 𝛿𝑚−
∑︁

𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2, ∀𝑥𝑗 ∈ ℬ(𝑥𝑖).

For any feasible 𝑓 , we can rewrite the constraint of 𝑓(𝑥𝑖) with respect to each 𝑥𝑗 as:

𝑔𝑥𝑗
(𝑥𝑖)−

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2

≤ 𝑓(𝑥𝑖) ≤ 𝑔𝑥𝑗
(𝑥𝑖) +

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2.

Collectively, we can fold all the upper bounds of 𝑓(𝑥𝑖) as

𝑓(𝑥𝑖) ≤ min
𝑥𝑗∈ℬ(𝑥𝑖)

[︂
𝑔𝑥𝑗

(𝑥𝑖) +

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2

]︂
.

All the lower bounds can be folded similarly.

Since the objective for 𝑓(𝑥𝑖) is simply a squared error with an interval constraint,

evidently if 𝑦𝑖 satisfies the lower bounds and upper bounds, then 𝑓 *
𝑈(𝑥𝑖) = 𝑦𝑖. If

𝑦𝑖 > min
𝑥𝑗∈ℬ(𝑥𝑖)

[︂
𝑔𝑥𝑗

(𝑥𝑖) +

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2

]︂
,
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then we have

𝑓 *
𝑈(𝑥𝑖) = min

𝑥𝑗∈ℬ(𝑥𝑖)

[︂
𝑔𝑥𝑗

(𝑥𝑖) +

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2

]︂
.

For the remaining case, we have

𝑓 *
𝑈(𝑥𝑖) = max

𝑥𝑗∈ℬ(𝑥𝑖)

[︂
𝑔𝑥𝑗

(𝑥𝑖)−
√︃

𝛿𝑚−
∑︁

𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓(𝑥𝑘)− 𝑔𝑥𝑗
(𝑥𝑘))2

]︂
.

For each 𝑔𝑥𝑖
is in the linear class, Eq. (2.12) is an optimal solution.

𝑔*𝑥𝑗
(𝑥𝑖) = (𝑋†

𝑗 𝑓(𝑋𝑗))
⊤𝑥𝑖,∀𝑥𝑖 ∈ 𝒳 , (2.12)

and we note that every optimal witness 𝑔*𝑥𝑗
has the same values on ℬ(𝑥𝑗).

Since the optimal 𝑔*𝑥𝑖
is functionally dependent to 𝑓 , to obtain the optimal 𝑓 *

𝑈 , we

combine our previous result with 𝑔*𝑥𝑖
such that the optimality conditions for 𝑓 and

𝑔𝑥𝑖
are both satisfied. Finally, we have

𝑓 *
𝑈(𝑥𝑖) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼(𝑥𝑖, 𝑓

*
𝑈), if 𝛼(𝑥𝑖, 𝑓

*
𝑈) > 𝑦𝑖,

𝛽(𝑥𝑖, 𝑓
*
𝑈), if 𝛽(𝑥𝑖, 𝑓

*
𝑈) < 𝑦𝑖,

𝑦𝑖, otherwise,

for 𝑥𝑖 ∈ 𝒟𝑥, where

𝛼(𝑥𝑖, 𝑓
*
𝑈) = max

𝑥𝑗∈ℬ(𝑥𝑖)

[︂
(𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))

⊤𝑥𝑖 −
√︃

𝛿𝑚−
∑︁

𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓 *
𝑈(𝑥𝑘)− (𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))⊤𝑥𝑘)2

]︂
;

𝛽(𝑥𝑖, 𝑓
*
𝑈) = min

𝑥𝑗∈ℬ(𝑥𝑖)

[︂
(𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))

⊤𝑥𝑖 +

√︃
𝛿𝑚−

∑︁
𝑥𝑘∈ℬ(𝑥𝑗)∖{𝑥𝑖}

(𝑓 *
𝑈(𝑥𝑘)− (𝑋†

𝑗 𝑓
*
𝑈(𝑋𝑗))⊤𝑥𝑘)2

]︂
.
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2.A.3 Proof of Lemma 2.4

Proof. Since the criteria for the witness 𝑔𝑥𝑖
are the same in the symmetric game and

the proposed asymmetric criterion here, we only have to check for the optimality

condition for the predictor 𝑓 . Here we use ∇𝜃𝑓(𝑥) to denote the subgradient of 𝑓 at

𝑥 with respect to the underlying parameter 𝜃, the optimality condition for Eq. (2.6)

is

0 ∈
∑︁

(𝑥𝑖,𝑦𝑖)∈𝒟

[︂
𝜕

𝜕𝑓(𝑥𝑖)
ℒ(𝑓(𝑥𝑖), 𝑦𝑖) + 2𝜆(

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

𝑓(𝑥𝑖)

|ℬ(𝑥𝑡)|
−

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

𝑔𝑥𝑡(𝑥𝑖)

|ℬ(𝑥𝑡)|
)

]︂
∇𝜃𝑓(𝑥𝑖)

=
∑︁

(𝑥𝑖,𝑦𝑖)∈𝒟

[︂
𝜕

𝜕𝑓(𝑥𝑖)
ℒ(𝑓(𝑥𝑖), 𝑦𝑖)∇𝜃𝑓(𝑥𝑖) +

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

2𝜆

|ℬ(𝑥𝑡)|
(𝑓(𝑥𝑖)− 𝑔𝑥𝑡(𝑥𝑖))∇𝜃𝑓(𝑥𝑖)

]︂

For the symmetric game, the optimality condition is

0 ∈
∑︁

(𝑥𝑖,𝑦𝑖)∈𝒟

[︂
𝜕

𝜕𝑓(𝑥𝑖)
ℒ(𝑓(𝑥𝑖), 𝑦𝑖)∇𝜃𝑓(𝑥𝑖) +

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

2𝜆

|ℬ(𝑥𝑖)|
(𝑓(𝑥𝑡)− 𝑔𝑥𝑖

(𝑥𝑡))∇𝜃𝑓(𝑥𝑡)

]︂

It is evident that the two conditions coincide if Eq. (2.13) is equal to Eq. (2.14).

∑︁
(𝑥𝑖,𝑦𝑖)∈𝒟

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

1

|ℬ(𝑥𝑖)|
(𝑓(𝑥𝑡)− 𝑔𝑥𝑖

(𝑥𝑡))∇𝜃𝑓(𝑥𝑡) (2.13)

=
∑︁

𝑥𝑡∈∪𝑥𝑖∈𝒟𝑥ℬ(𝑥𝑖)

∑︁
𝑥𝑖∈ℬ−1(𝑥𝑡)

1

|ℬ(𝑥𝑖)|
(𝑓(𝑥𝑡)− 𝑔𝑥𝑖

(𝑥𝑡))∇𝜃𝑓(𝑥𝑡)

=
∑︁
𝑥𝑡∈𝒟𝑥

∑︁
𝑥𝑖∈ℬ(𝑥𝑡)

1

|ℬ(𝑥𝑖)|
(𝑓(𝑥𝑡)− 𝑔𝑥𝑖

(𝑥𝑡))∇𝜃𝑓(𝑥𝑡)

=
∑︁

(𝑥𝑖,𝑦𝑖)∈𝒟

∑︁
𝑥𝑡∈ℬ(𝑥𝑖)

1

|ℬ(𝑥𝑡)|
(𝑓(𝑥𝑖)− 𝑔𝑥𝑡(𝑥𝑖))∇𝜃𝑓(𝑥𝑖), (2.14)

where the first equality is simply re-ordering of the two summations, and the second

equality is due to 𝑥𝑡 ∈ ℬ(𝑥𝑖) ⇐⇒ 𝑥𝑖 ∈ ℬ(𝑥𝑡) and ∪𝑥𝑖∈𝒟𝑥ℬ(𝑥𝑖) = 𝒟𝑥.
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Figure 2.A.1: The cumulative distribution function of the total variation loss between
the predictor 𝑓 and the local witness 𝑔 in each training neighborhood.

2.B Supplementary Materials for Molecule Property

Prediction

Implementation. To conduct training, we use GCNs as the predictor with 6 layers

of graph convolution with 1800 hidden dimension. We use a 80%/10%/10% split for

training / validation / testing.

Evaluation Measures. We use the roc_auc_score in scikit-learn [114] to com-

pute the AUC score. Note that for each criterion, we evaluate the model with respect

to each label, and then report the average score across the 12 labels. Here 𝑁 denotes

the number of testing data.

• AUC(𝑓, 𝑦): we compare 𝑓(ℳ𝑖) with the labels 𝑦𝑖 among the testing data

{(ℳ𝑖, 𝑦𝑖)}𝑁𝑖=1 in AUC.

• AUC(𝑔ℳ, 𝑦): we compare 𝑔ℳ𝑖
(𝑥(ℳ𝑖)) with the labels 𝑦𝑖 among the testing data

{(ℳ𝑖, 𝑦𝑖)}𝑁𝑖=1 in AUC.

• AUCℬ(𝑔ℳ, 𝑓): for each testing data (ℳ, 𝑦), we evaluate the following score

among the neighborhood ℬ(ℳ) = {ℳ1, . . . ,ℳ𝑁ℳ}, where 𝑁ℳ := |ℬ(ℳ)|,
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aroundℳ: ∑︀𝑁ℳ
𝑖=1

∑︀𝑁ℳ
𝑗=1 I(𝑓(ℳ𝑖) > 𝑓(ℳ𝑗))I(𝑔ℳ(ℳ𝑖) > 𝑔ℳ(ℳ𝑗))∑︀𝑁ℳ

𝑖=1

∑︀𝑁ℳ
𝑗=1 I(𝑓(ℳ𝑖) > 𝑓(ℳ𝑗))

.

The average score across all the testing neighborhood is then reported.

• AUC𝒟(𝑔ℳ, 𝑓): we evaluate the following score among the testing data {(ℳ𝑖, 𝑦𝑖)}𝑁𝑖=1:∑︀𝑁
𝑖=1

∑︀𝑁
𝑗=1 I(𝑓(ℳ𝑖) > 𝑓(ℳ𝑗))I(𝑔ℳ𝑖(ℳ𝑖) > 𝑔ℳ𝑗 (ℳ𝑗))∑︀𝑁

𝑖=1

∑︀𝑁
𝑗=1 I(𝑓(ℳ𝑖) > 𝑓(ℳ𝑗))

.

Visualization. To investigate the behavior of the models, we plot their total vari-

ation loss from the local witness among the training neighborhoods in Figure 2.A.1.

The uniform criterion imposes a strict functional constraint, while the symmetric

game allows a more flexible model, exhibiting a tiny fraction of high deviation among

the training neighborhoods.

2.C Supplementary Materials for Physical Compo-

nent Modeling

Implementation. We randomly sample 85%, 5%, and 10% of the data for training,

validation, and testing. We set the learning rate as 10−5 with the Adam optimizer [72].

The batch size is set to 128. All the hidden dimensions are set to 128. We use the

MultivariateNormalTriL function in Tensorflow [1] to parametrize the multivariate

Gaussian distribution. Specifically, we let the network output a 𝑁 + (𝑁+1)(𝑁)
2

dimen-

sional vector. The first 𝑁 dimensions are treated as the mean. The second part is

transformed to a lower triangular matrix, where the diagonal is further processed with

a softplus nonlinearity. Such representation satisfies the Cholesky decomposition for

covariance matrix.

For fitting the linear witness, we use Ridge regression in scikit-learn [114] with
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Figure 2.C.1: Visualization of the local linear witnesses (middle and right plots) on
the first channel (left plot) along the teacher-forced trajectory (𝑥-axis) on the bearing
dataset. The 𝑦-axis of the parameters from 0 to 8 denotes the bias (𝜃0)1 and weights
(𝜃1)1,1:4, (𝜃2)1,1:4.

Figure 2.C.2: Parameter analysis of 𝜖 on the Game model with 𝜆 = 1.

the default hyperparameter. The usage of Ridge regression instead of vanilla linear

regression is justified by our analysis of the equilibrium for linear witnesses.

Visualization. The visualization for the teacher-forced generative trajectory is in

Figure 2.C.1.

Neighborhood size analysis. Here we investigate the effect of neighborhood radius

𝜖. The results are shown in Figure 2.C.2. The impact of the neighborhood size is quite

monotonic to deviation and TV, but in a reverse way. As 𝜖 increases, the weight of the

witness on fitting the current point 𝑥𝑖 among the neighborhood ℬ(𝑥𝑖) decreases, so the

deviation of the witness 𝑔𝑥𝑖
(𝑥𝑖) from 𝑓(𝑥𝑖) increases. In contrast, as more points are

overlapped between the neighborhoods of consecutive points, the resulting witnesses

are more similar and thus yield smaller TV. In terms of prediction error, as the

neighborhood radius 𝜖 determines the region to impose coherency, a larger region leads

to greater restriction on the predictive model. All the arguments are well supported

by the empirical results. We suggest users to trade off faithfulness (deviation) and
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smooth transition of functional properties (TV) based on the application at hand.

Note that smooth transition of functional properties does not imply smoothness of 𝑓 .

Finally, we remark that our sample complexity analysis for the linear class suggests

that the neighborhood size is guaranteed to be effective for 2𝜖 + 1 > 𝑑 = 2𝑐 + 1 =

9. However, since the result is an sufficient condition, the regularization may still

happens for 𝜖 < 5 if the neighborhood matrix 𝑋𝑖 = [𝑥𝑖−𝜖, . . . , 𝑥𝑖+𝜖]
⊤ is not full rank.
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Chapter 3

Towards Robust, Locally Linear

Models

3.1 Introduction

As briefly discussed in §1.2.2, despite the flexibility of the game-theoretic approach

proposed in Chapter 2, this approach is not very efficient when it comes to linear

witnesses in high dimensions. Indeed, the neighborhood size should be at least 𝐷+ 1

in 𝐷 dimensions in order to be effective, and thus, in general, each local estimation

will be Ω(𝐷3) in time. In this chapter, we tackle the same problem as building models

that are locally transparent, but focus on the case of locally linear models.

Here we make the observation that piecewise linear mappings are naturally locally

linear. In particular, the gradient evaluation with respect to the input coordinates

directly yields the linear model corresponding to the linear region where the input

resides. Such mappings are quite prevalent. Every feed-forward network with a

piecewise linear activation such as ReLU [106] is piecewise linear by definition [101].

We thus utilize these networks to represent locally linear models.

The key challenge lies in the fact that derivatives of functions parameterized by

deep learning models are not stable in general [48]. State-of-the-art deep learning

models [59, 66] are typically over-parametrized [162], leading to unstable functions as

a by-product. The instability is reflected in both the function values [50] as well as
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the derivatives [48, 4]. As an immediate consequence of the unstable derivatives, the

resulting local linear models also lack robustness [48, 4].

We note that gradient stability is a notion different from adversarial examples. A

stable gradient can be large or small, so long as it remains (approximately) invariant

within a local region. Adversarial examples, on the other hand, are small pertur-

bations of the input that change the predicted output [50]. A large local gradient,

whether stable or not in our sense, is likely to contribute to finding an adversarial

example. Robust estimation techniques used to protect against adversarial exam-

ples (e.g., [95]) focus on stable function values rather than stable gradients but can

nevertheless indirectly impact (potentially help) gradient stability. A direct exten-

sion of robust estimation to ensure gradient stability would involve finding maximally

distorted derivatives and require access to approximate Hessians of deep networks.

Instead, we leverage the special structure of this class of networks (functional char-

acteristics) to make the problem tractable. In particular, we infer lower bounds on the

ℓ𝑝 margin—the maximum radius of ℓ𝑝-norm balls around a point where derivatives

are provably stable, and formulate a regularization problem to maximize it. The re-

sulting objective is, however, rigid and non-smooth, and we further relax the learning

problem in a manner resembling (locally) support vector machines (SVMs) [146, 30].

Both the inference and learning problems in our setting require evaluating the

gradient of each neuron with respect to the inputs, posing a significant computational

challenge. Given 𝐷-dimensional data, we propose a novel perturbation algorithm that

collects all the exact gradients by means of forward propagating 𝐷+1 carefully crafted

samples in parallel without any back-propagation. When the GPU memory cannot

fit 𝐷+1 samples in one batch, we develop an unbiased approximation to the objective

with a random subset of such samples.

Empirically, we examine our inference and learning algorithms with fully con-

nected neural networks (FCNNs), residual networks (ResNets) [59], and recurrent

neural networks (RNNs) on image and time-series datasets with quantitative and

qualitative experiments. The main contributions of this work are as follows:

• Inference algorithms that identify input regions of neural networks, with piece-
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wise linear activation functions, that are provably stable.

• A novel learning criterion that effectively expand regions of provably stable

derivatives.

• Novel perturbation algorithms that scale computation to high dimensional data.

• Empirical evaluation with several types of networks.

3.2 Related Work

We focus in this chapter on neural networks with piecewise linear activation functions,

such as ReLU [106], leaky ReLU [94], parametric ReLU [58], and other variants [51, 7].

Since the nonlinear behavior of deep models is governed by the activation function,

a neural network defined with affine transformations and piecewise linear activation

functions is inherently piecewise linear [101]. For example, FCNNs, convolutional

neural networks (CNNs) [80], RNNs, ResNets [59], and densely connected networks

(DenseNets) [66] are all plausible candidates under our consideration. We will call

this class of networks piecewise linear networks throughout the thesis.

The proposed approach is based on a mixed integer linear representation of piece-

wise linear networks, activation pattern [116], which encodes the active linear piece

(integer) of the activation function for each neuron; once an activation pattern is

fixed, the network degenerates to a linear model (linear). Thus the feasible set cor-

responding to an activation pattern in the input space is a natural region where

derivatives are provably stable (same linear function). Note the possible degener-

ate case where neighboring regions (with different activation patterns) nevertheless

have the same end-to-end linear coefficients [126]. We call the feasible set induced

by an activation pattern [126] a linear region, and a maximal connected subset of

the input space subject to the same derivatives of the network [101] a complete lin-

ear region. Activation pattern has been studied in various contexts, such as visu-

alizing neurons [43], reachability of a specific output value [93], its connection to

vector quantization [9], counting the number of linear regions of piecewise linear net-
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works [116, 100, 126], and adversarial attacks [24, 43, 151] or defense [155]. Note

the distinction between locally linear regions of the functional mapping and decision

regions defined by classes [155, 159, 99, 31].

Here we elaborate differences between our work and the two most relevant cate-

gories above. In contrast to quantifying the number of linear regions as a measure

of complexity, we focus on the local linear regions, and try to expand them via

learning. The notion of stability we consider differs from adversarial examples. The

methods themselves are also different. Finding the exact adversarial example is in

general NP-complete [70, 131], and mixed integer linear programs that compute the

exact adversarial example do not scale [24, 43]. Layer-wise relaxations of ReLU ac-

tivations [151, 155] are more scalable but yield bounds instead of exact solutions.

Empirically, even relying on relaxations, the defense (learning) methods [155, 156]

are still intractable on ImageNet scale images [33]. In contrast, our inference algo-

rithm certifies the exact ℓ𝑝 margin around a point subject to its activation pattern

by forwarding Θ(𝐷) samples in parallel. In a high-dimensional setting, where it is

computationally challenging to compute the learning objective, we develop an unbi-

ased estimation by a simple sub-sampling procedure, which scales to ResNet [59] on

299× 299× 3 dimensional images in practice.

The proposed learning algorithm is based on the inference problem with ℓ𝑝 mar-

gins. The derivation is reminiscent of the SVM objective [146, 30], but differs in its

purpose; while SVM training seeks to maximize the ℓ𝑝 margin between data points

and a linear classifier, our approach instead maximizes the ℓ𝑝 margin of linear regions

around each data point. Since there is no label information to guide the learning

algorithm for each linear region, the objective is unsupervised and more akin to

transductive/semi-supervised SVMs (TSVMs) [147, 14]. In the literature, the idea of

margin is also extended to nonlinear classifiers in terms of decision boundaries [41].
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3.3 Methodology

The approaches are developed under the notation of fully connected DenseNets with

ReLU activations, which subsumes other feed-forward architectures and naturally

generalizes to other piecewise linear activation functions. We first introduce notation,

and then present our inference and learning algorithms. All the proofs are provided

in Appendix 3.A.

3.3.1 Notation

We consider a neural network 𝜃 with 𝐿 hidden layers and 𝑀𝑖 neurons in the 𝑖th layer,

and the corresponding function 𝑓𝜃 : R𝐷 → R𝑌 it represents. We use 𝑧𝑖 ∈ R𝑀𝑖 and

𝑎𝑖 ∈ R𝑀𝑖 to denote the vector of (raw) neurons and activated neurons in the 𝑖th layer,

respectively. We will use 𝑥 and 𝑎0 interchangeably to represent an input instance

from R𝐷 = R𝑀0 . For generality, we consider the DenseNet architecture [66], where

each hidden layer takes as input all the previous layers; it subsumes many existing

feed-forward architectures such as FCNNs, CNNs [80], and ResNets [59]. The neurons

𝑎𝑖 and 𝑧𝑖 are computed with the transformation weight matrix 𝑊 𝑖 ∈ R𝑀𝑖×
∑︀𝑖−1

𝑗=0 𝑀𝑗

and the bias vector 𝑏𝑖 ∈ R𝑀𝑖 as

𝑎0 , 𝑥, 𝑧𝑖 , 𝑊 𝑖 · CONCATENATE[𝑎0,𝑎1, ...,𝑎𝑖−1] + 𝑏𝑖, 𝑎𝑖 , 𝜎(𝑧𝑖),∀𝑖 ∈ [𝐿], (3.1)

where [𝐿] denotes the set {1, . . . , 𝐿} and 𝜎(·) is a point-wise activation function. We

use a subscript to further denote a specific neuron (e.g., 𝑧𝑖
𝑗 denotes the 𝑗th neuron in

the 𝑖th layer). Note that both 𝑎 and 𝑧 are functions of the specific instance denoted

by 𝑥, where we drop the functional dependency to simplify notation. We use the set

ℐ to denote the set of all the neuron indices in this network {(𝑖, 𝑗)|𝑗 ∈ [𝑀𝑖], 𝑖 ∈ [𝐿]}.

In this chapter, we will use ReLU [106] as a canonical example for the activation

function

𝑎𝑖
𝑗 = 𝜎(𝑧𝑖)𝑗 , max(0, 𝑧𝑖

𝑗),∀(𝑖, 𝑗) ∈ ℐ, (3.2)
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but the results naturally generalize to other piecewise linear activation functions [94,

58, 7]. The output of the network 𝑓𝜃(𝑥) is an affine transformation from all the hidden

units 𝑎0,𝑎1, ...,𝑎𝐿 to R𝑌 . The output can be further processed by a nonlinearity

such as softmax for classification problems. However, we focus on the piecewise

linear property of neural networks represented by 𝑓𝜃(𝑥), and leverage a generic loss

function ℒ(𝑓𝜃(𝑥),𝑦) to fold such nonlinear mechanism.

The activation pattern [116] used in this chapter is defined as:

Definition 3.1. (Activation Pattern) An activation pattern is a set of indicators

for neurons 𝒪̄ = {𝑜𝑖 ∈ {−1, 1}𝑀𝑖 |𝑖 ∈ [𝐿]} that specifies the functional constraints

𝑧𝑖
𝑗𝑜

𝑖
𝑗 ≥ 0,∀(𝑖, 𝑗) ∈ ℐ.

Each 𝑜𝑖
𝑗 is called an activation indicator. Note that a point on the boundary of a

linear region is feasible for multiple activation patterns (e.g., consider a network with

a single neuron). The definition fits the property of the activation pattern discussed

in §2.2. In particular, the feasible set of an activation pattern in the input space is a

linear region of 𝑓𝜃. We define ∇𝑥𝑧
𝑖
𝑗 to be the sub-gradient found by back-propagation

using 𝜕𝑎𝑖′

𝑗′/𝜕𝑧
𝑖′

𝑗′ , max(𝑜𝑖′

𝑗′ , 0),∀(𝑖′, 𝑗′) ∈ ℐ, whenever 𝑜𝑖′

𝑗′ is defined in the context.

We use 𝒟 to denote the set of training data {(𝑥,𝑦)}, 𝒟𝑥 to denote the same set

without labels 𝑦, and ℬ𝜖,𝑝(𝑥) , {𝑥̄ ∈ R𝐷 : ‖𝑥̄−𝑥‖𝑝 ≤ 𝜖} to denote the ℓ𝑝-ball around

𝑥 with radius 𝜖.

3.3.2 Inference for Regions with Stable Derivatives

Although the activation pattern implicitly describes a linear region, it does not yield

explicit constraints on the input space, making it hard to develop algorithms directly.

Hence, we first derive an explicit characterization of the feasible set on the input

space R𝐷 with Lemma 3.2.1

Lemma 3.2. Given an activation pattern 𝒪̄ with any feasible point 𝑥, each activation

1Similar characterization also appeared in [9].
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indicator 𝑜𝑖
𝑗 ∈ 𝒪̄ induces a feasible set

𝒮 𝑖
𝑗(𝑥) = {𝑥̄ ∈ R𝐷 : 𝑜𝑖

𝑗[(∇𝑥𝑧
𝑖
𝑗)

⊤𝑥̄ + (𝑧𝑖
𝑗 − (∇𝑥𝑧

𝑖
𝑗)

⊤𝑥)] ≥ 0},

and the feasible set of the activation pattern is equivalent to 𝒮(𝑥)= ∩𝑀𝑖=1 ∩
𝑁𝑖
𝑗=1 𝒮 𝑖

𝑗(𝑥).

Remark 3.3. 𝒮(𝑥) can be characterized as a feasible set with a finite set of linear

constraints with respect to the input space R𝐷, so 𝒮(𝑥) is a convex polyhedron.

ℓ𝑝 margin. Combining the linear property of 𝑓𝜃 subject to to an activation pattern

with the input space constraints from Lemma 3.2 yields the definition of 𝜖𝑥,𝑝, the ℓ𝑝

margin of a linear region of 𝑓𝜃 around 𝑥 subject to its activation pattern:

𝜖𝑥,𝑝 , max
𝜖≥0:ℬ𝜖,𝑝(𝑥)⊆𝒮(𝑥)

𝜖, (3.3)

where 𝒮(𝑥) can be based on any feasible activation pattern 𝒪̄ on 𝑥, since 𝜖𝑥,𝑝 is

always 0 when 𝑥 has multiple feasible activation patterns 𝒪̄. Therefore, 𝜕𝑎𝑖
𝑗/𝜕𝑧

𝑖
𝑗

at 𝑧𝑖
𝑗 = 0 from now on can take 0 or 1 arbitrarily as long as consistency among

sub-gradients {∇𝑥𝑧
𝑖
𝑗|(𝑖, 𝑗) ∈ ℐ} is ensured with respect to some feasible activation

pattern 𝒪̄. Note that 𝜖𝑥,𝑝 is a lower bound of the ℓ𝑝 margin subject to a derivative

specification (i.e., a complete linear region).

Directional verification, the cases 𝑝 = 1 and 𝑝 = ∞. We first exploit the

convexity of 𝒮(𝑥) to check the feasibility of a directional perturbation.

Proposition 3.4. Given a point 𝑥, a feasible set 𝒮(𝑥) and a unit vector ∆𝑥, if

∃𝜖 ≥ 0 such that 𝑥 + 𝜖∆𝑥 ∈ 𝒮(𝑥), then 𝑓𝜃 is linear in {𝑥 + 𝜖∆𝑥 : 0 ≤ 𝜖 ≤ 𝜖}.

The feasibility of 𝑥 + 𝜖∆𝑥 ∈ 𝒮(𝑥) can be computed by simply checking whether

𝑥 + 𝜖∆𝑥 satisfies the activation pattern 𝒪̄ in 𝒮(𝑥). Proposition 3.4 can be applied

to the feasibility problem on ℓ1-balls.

Proposition 3.5. Given a point 𝑥, a feasible set 𝒮(𝑥), and an ℓ1-ball ℬ𝜖,1(𝑥) with

extreme points 𝑥1, . . . ,𝑥2𝐷, if 𝑥𝑖 ∈ 𝒮(𝑥),∀𝑖 ∈ [2𝐷], then 𝑓𝜃 is linear in ℬ𝜖,1(𝑥).
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Proposition 3.5 can be extended to an ℓ∞-ball. However, in high dimension 𝐷, the

number of extreme points of an ℓ∞-ball is exponential to 𝐷, making it intractable.

Instead, the number of extreme points of an ℓ1-ball is only linear to 𝐷 (+𝜖 and

−𝜖 for each dimension). With the above methods to verify feasibility, we can do

binary searches to find the certificates of the margins for directional perturbations

𝜖𝑥,Δ𝑥 , max{𝜖≥0:𝑥+𝜖Δ𝑥∈𝑆(𝑥)} 𝜖 and ℓ1-balls 𝜖𝑥,1. The details are in Appendix 3.B.

The case 𝑝 = 2. The feasibility of ℓ1-balls is tractable due to convexity of 𝒮(𝑥) and

its certification is efficient by a binary search; by further exploiting the polyhedron

structure of 𝒮(𝑥), 𝜖𝑥,2 can be certified analytically.

Proposition 3.6. Given a point 𝑥, 𝜖𝑥,2 is the minimum ℓ2 distance between 𝑥 and

the union of hyperplanes ∪𝑀𝑖=1 ∪
𝑁𝑖
𝑗=1 {𝑥̄ ∈ R𝐷 : (∇𝑥𝑧

𝑖
𝑗)

⊤𝑥̄ + (𝑧𝑖
𝑗 − (∇𝑥𝑧

𝑖
𝑗)

⊤𝑥) = 0}.

To compute the ℓ2 distance between 𝑥 and the hyperplane induced by a neuron 𝑧𝑖
𝑗,

we evaluate |(∇𝑥𝑧
𝑖
𝑗)

⊤𝑥 + (𝑧𝑖
𝑗 − (∇𝑥𝑧

𝑖
𝑗)

⊤𝑥)|/‖∇𝑥𝑧
𝑖
𝑗‖2 = |𝑧𝑖

𝑗|/‖∇𝑥𝑧
𝑖
𝑗‖2. Then 𝜖𝑥,2 can

be computed as 𝜖𝑥,2 = min(𝑖,𝑗)∈ℐ |𝑧𝑖
𝑗|/‖∇𝑥𝑧

𝑖
𝑗‖2, where all the 𝑧𝑖

𝑗 can be computed by a

single forward pass.2 We will show in §3.4.1 that all the ∇𝑥𝑧
𝑖
𝑗 can also be computed

efficiently by forward passes in parallel. We refer readers to Figure 3.3.1c to see a

visualization of the certificates of ℓ2 margins.

Number of complete linear regions. The sizes of linear regions are also related

to their overall number, especially if we consider a bounded input space. Counting

the number of linear regions in 𝑓𝜃 is, however, intractable due to the combinatorial

nature of the activation patterns [126]. We argue that counting the number of linear

regions on the whole space does not capture the structure of data manifold, and we

propose to certify the number of complete linear regions (#CLR) of 𝑓𝜃 among the

data points 𝒟𝑥, which turns out to be efficient to compute given a mild condition.

Here we use |𝒜| to denote the cardinality of a set 𝒜, and we have

Lemma 3.7. If every data point 𝑥 ∈ 𝒟𝑥 has only one feasible activation pattern

denoted as 𝒪(𝑥), the number of complete linear regions of 𝑓𝜃 among 𝒟𝑥 is upper-
2Later, Croce et al. [31] found that the ℓ𝑝 margin 𝜖𝑥,𝑝 can be similarly computed as

min(𝑖,𝑗)∈ℐ |𝑧𝑖
𝑗 |/‖∇𝑥𝑧

𝑖
𝑗‖𝑞, where ‖ · ‖𝑞 is the dual norm of the ℓ𝑝-norm.

64



bounded by the number of different activation patterns |{𝒪(𝑥)|𝑥 ∈ 𝒟𝑥}|, and lower-

bounded by the number of different Jacobians |{𝐽𝑥𝑓𝜃(𝑥)|𝑥 ∈ 𝒟𝑥}|.

3.3.3 Learning: Maximizing the Margins of Stable Derivatives

In this section, we aim to maximize the ℓ2 margin 𝜖𝑥,2, which is (sub-)differentiable.

We first formulate a regularization problem in the objective to maximize the margin:

min
𝜃

∑︁
(𝑥,𝑦)∈𝒟

[︂
ℒ(𝑓𝜃(𝑥),𝑦)− 𝜆 min

(𝑖,𝑗)∈ℐ

|𝑧𝑖
𝑗|

‖∇𝑥𝑧𝑖
𝑗‖2

]︂
(3.4)

However, the objective itself is rather rigid due to the inner-minimization and the

reciprocal of ‖∇𝑥𝑧
𝑖
𝑗‖2. Qualitatively, such rigid loss surface hinders optimization and

may attend infinity. To alleviate the problem, we do a hinge-based relaxation to the

distance function similar to SVM.

Relaxation. An ideal relaxation of Eq. (3.4) is to disentangle |𝑧𝑖
𝑗| and ‖∇𝑥𝑧

𝑖
𝑗‖2 for

a smoother problem. Our first attempt is to formulate an equivalent problem with

special constraints which we can leverage later.

Lemma 3.8. If there exists a (global) optimal solution of Eq. (3.4) that satisfies

min(𝑖,𝑗)∈ℐ |𝑧𝑖
𝑗| > 0,∀𝑥 ∈ 𝒟𝑥, then every optimal solution of Eq. (3.5) is also optimal

for Eq. (3.4).

min
𝜃

∑︁
(𝑥,𝑦)∈𝒟

ℒ(𝑓𝜃(𝑥),𝑦)− 𝜆 min
(𝑖,𝑗)∈ℐ

|𝑧𝑖
𝑗|

‖∇𝑥𝑧𝑖
𝑗‖2

, 𝑠.𝑡. min
(𝑖,𝑗)∈ℐ

|𝑧𝑖
𝑗| ≥ 1,∀(𝑥,𝑦) ∈ 𝒟. (3.5)

If the condition in Lemma 3.8 does not hold, Eq. (3.5) is still a valid upper bound

of Eq. (3.4) due to a smaller feasible set. An upper bound of Eq. (3.5) can be

obtained consequently due to the constraints:

min
𝜃

∑︁
(𝑥,𝑦)∈𝒟

ℒ(𝑓𝜃(𝑥),𝑦)− 𝜆 min
(𝑖,𝑗)∈ℐ

1

‖∇𝑥𝑧𝑖
𝑗‖2

, 𝑠.𝑡. min
(𝑖,𝑗)∈ℐ

|𝑧𝑖
𝑗| ≥ 1,∀(𝑥,𝑦) ∈ 𝒟. (3.6)
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We then derive a relaxation that solves a smoother problem by relaxing the squared

root and reciprocal on the ℓ2 norm as well as the hard constraint with a hinge loss to

a soft regularization problem:

min
𝜃

∑︁
(𝑥,𝑦)∈𝒟

ℒ(𝑓𝜃(𝑥),𝑦) + 𝜆 max
(𝑖,𝑗)∈ℐ

[︂
‖∇𝑥𝑧

𝑖
𝑗‖22 + 𝐶 max(0, 1− |𝑧𝑖

𝑗|)
]︂
, (3.7)

where 𝐶 is a hyper-parameter. The relaxed regularization problem can be regarded

as a maximum aggregation of TSVM losses among all the neurons, where a TSVM

loss with only unannotated data 𝒟𝑥 can be written as:

min
𝑤,𝑏

∑︁
𝑥∈𝒟𝑥

‖𝑤‖22 + 𝐶 max(0, 1− |𝑤⊤𝑥 + 𝑏|), (3.8)

which pursues a similar goal to maximize the ℓ2 margin in a linear model scenario,

where the margin is computed between a linear hyperplane (the classifier) and the

training points.

To visualize the effect of the proposed methods, we make a toy 2D binary clas-

sification dataset, and train a 4-layer FCNN with 1) (vanilla) binary cross-entropy

loss ℒ(·, ·), 2) distance regularization as in Eq. (3.4), and 3) relaxed regularization

as in Eq. (3.7). Implementation details are in Appendix 3.E. The resulting piecewise

linear regions and prediction heatmaps along with gradient ∇𝑥𝑓𝜃(𝑥) annotations are

shown in Figure 3.3.1. The distance regularization enlarges the linear regions around

each training point, and the relaxed regularization further generalizes the property to

the whole space; the relaxed regularization possesses a smoother prediction boundary,

and has a special central region where the gradients are 0 to allow gradients to change

directions smoothly.

Improving sparse learning signals. Since a linear region is shaped by a set of

neurons that are “close” to a given a point, a noticeable problem of Eq. (3.7) is that

it only focuses on the “closest” neuron, making it hard to scale the effect to large

networks. Hence, we make a generalization to the relaxed loss in Eq. (3.7) with a set

of neurons that incur high losses to the given point. We denote ℐ̂(𝑥, 𝛾) as the set of
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(a) Vanilla loss (b) Distance regularization (c) Relaxed regularization

Figure 3.3.1: Toy examples of a synthetic 2D classification task. For each model
(regularization type), we show a prediction heatmap (smaller pane) and the corre-
sponding locally linear regions. The boundary of each linear region is plotted with
line segments, and each circle shows the ℓ2 margin 𝜖𝑥,2 around the training point.
The gradient is annotated as arrows with length proportional to its ℓ2 norm.

neurons with top 𝛾 percent relaxed loss (TSVM loss) on 𝑥. The generalized loss is

our final objective for learning RObust Local Linearity (Roll) and is written as:

min
𝜃

∑︁
(𝑥,𝑦)∈𝒟

ℒ(𝑓𝜃(𝑥),𝑦) +
𝜆

|ℐ̂(𝑥, 𝛾)|

∑︁
(𝑖,𝑗)∈ℐ̂(𝑥,𝛾)

[︂
‖∇𝑥𝑧

𝑖
𝑗‖22 + 𝐶 max(0, 1− |𝑧𝑖

𝑗|)
]︂
. (3.9)

A special case of Eq. (3.9) is when 𝛾 = 100 (i.e. ℐ̂(𝑥, 100) = ℐ), where the nonlinear

sorting step effectively disappears. Such simple additive structure without a nonlinear

sorting step can stabilize the training process, is simple to parallelize computation,

and allows for an approximate learning algorithm as will be developed in §3.4.2.

Besides, taking 𝛾 = 100 can induce a strong synergy effect, as all the gradient norms

‖∇𝑥𝑧
𝑖
𝑗‖22 in Eq. (3.9) between any two layers are highly correlated.

3.4 Computation, Approximate Learning, and Com-

patibility

3.4.1 Parallel Computation of Gradients

The ℓ2 margin 𝜖𝑥,2 and the Roll loss in Eq. (3.9) demands heavy computation

on gradient norms. While calling back-propagation |ℐ| times is intractable, we de-

velop a parallel algorithm without calling a single back-propagation by exploiting the

functional structure of 𝑓𝜃.
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Given an activation pattern, we know that each hidden neuron 𝑧𝑖
𝑗 is also a linear

function of 𝑥 ∈ 𝒮(𝑥). We can construct another linear network 𝑔𝜃 that is identical to

𝑓𝜃 in 𝒮(𝑥) based on the same set of parameters but fixed linear activation functions

mimicking 𝑓𝜃 in 𝒮(𝑥). Due to the linearity of 𝑔𝜃, the derivatives of all the neurons to

an input axis can be computed by forwarding two samples: subtracting the neurons

with an one-hot input from the same neurons with a zero input. The procedure

can be amortized and parallelized to all the dimensions by feeding 𝐷 + 1 samples to

𝑔𝜃 in parallel. We remark that the algorithm generalizes to all the piecewise linear

networks, and refer readers to Appendix 3.C for algorithmic details.3

To analyze the complexity of the proposed approach, we assume that parallel

computation does not incur any overhead and a batch matrix multiplication takes a

unit operation. To compute the gradients of all the neurons for a batch of inputs, our

perturbation algorithm takes 2𝐿 operations, while back-propagation takes
∑︀𝐿

𝑖=1 2𝑖𝑀𝑖

operations. The detailed analysis is also in Appendix 3.C.

3.4.2 Approximate Learning

Despite the parallelizable computation of ∇𝑥𝑧
𝑖
𝑗, it is still challenging to compute the

loss for large networks in a high dimension setting, where even calling 𝐷 + 1 forward

passes in parallel as described in §3.4.1 is infeasible due to memory constraints. Hence,

we propose an unbiased estimator of the Roll loss in Eq. (3.9) when ℐ̂(𝑥, 𝛾) = ℐ.

Note that
∑︀

(𝑖,𝑗)∈ℐ 𝐶 max(0, 1−|𝑧𝑖
𝑗|) is already computable in one single forward pass.

For the sum of gradient norms, we use the following equivalent decoupling:

1

|ℐ|
∑︁

(𝑖,𝑗)∈ℐ

‖∇𝑥𝑧
𝑖
𝑗‖22 =

1

|ℐ|

𝐷∑︁
𝑘=1

∑︁
(𝑖,𝑗)∈ℐ

(
𝜕𝑧𝑖

𝑗

𝜕𝑥𝑘

)2 =
𝐷

|ℐ|
E𝑘∼Unif([𝐷])

[︂ ∑︁
(𝑖,𝑗)∈ℐ

(
𝜕𝑧𝑖

𝑗

𝜕𝑥𝑘

)2
]︂
, (3.10)

where the summation inside the expectation in the last equation can be efficiently

computed using the procedure in §3.4.1 and is in general storable within GPU memory.

In practice, we can uniformly sample 𝐷′ (1 ≤ 𝐷′ ≪ 𝐷) input axes to have an unbiased

3When the network is fully connected (or can efficiently be represented as such), one can use a
dynamic programming algorithm to compute the gradients [110].
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approximation to Eq. (3.10), where computing all the partial derivatives with respect

to 𝐷′ axes only requires 𝐷′ + 1 times as much memory (one hot vectors and a zero

vector) as the typical forward pass for 𝑥.

3.4.3 Compatibility

The proposed algorithms can be used on all the deep learning models with affine trans-

formations and piecewise linear activation functions by enumerating every neuron that

will be imposed an ReLU-like activation function as 𝑧𝑖
𝑗. They do not immediately

generalize to the nonlinearity of maxout/max-pooling [51] that also yields a piecewise

linear function. We provide an initial step towards doing so in the Appendix 3.D, but

we suggest to use an average-pooling or convolution with large strides instead, since

they do not induce extra linear constraints as max-pooling and do not in general yield

significant difference in performance [134].

3.5 Experiments

In this section, we compare our approach (‘Roll’) with a baseline model with the

same training procedure except the regularization (‘vanilla’) in several scenarios. All

the reported quantities are computed on a testing set. Experiments are run on a GPU

with 12G memory.

3.5.1 MNIST

Evaluation measures: 1) accuracy (ACC), 2) the number of complete linear regions

(#CLR), and 3) ℓ𝑝 margins of linear regions 𝜖𝑥,𝑝. We compute the margin 𝜖𝑥,𝑝 for

each testing point 𝑥 with 𝑝 ∈ {1, 2}, and we evaluate 𝜖𝑥,𝑝 on 4 different percentiles

𝑃25, 𝑃50, 𝑃75, 𝑃100 among the testing data.

We use a 55, 000/5, 000/10, 000 split of the MNIST dataset for training/validation/

testing. Experiments are conducted on a 4-layer FCNN with ReLU activations. The

implementation details are in Appendix 3.F. We report the two models with the
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Table 3.5.1: FCNN on the MNIST dataset. Here #CLR is the number of complete
linear regions among the 10K testing points, and 𝜖𝑥,𝑝 shows the ℓ𝑝 margin for each
𝑟 ∈ {25, 50, 75, 100} percentile 𝑃𝑟.

Loss 𝐶 ACC #CLR
𝜖𝑥,1(×10−4) 𝜖𝑥,2(×10−4)

𝑃25 𝑃50 𝑃75 𝑃100 𝑃25 𝑃50 𝑃75 𝑃100

Vanilla 98% 10000 22 53 106 866 3 6 13 91

Roll 0.25 98% 9986 219 530 1056 6347 37 92 182 1070

Roll 1.00 97% 8523 665 1593 3175 21825 125 297 604 4345

Table 3.5.2: Running time for a gradient descent step of FCNNs on the MNIST
dataset. The full setting refers to Eq. (3.9) (𝛾 = 100), and 3-samples refers to
approximating Eq. (3.10) with 3 samples.

Vanilla
Roll Roll Roll

(full; back-prop) (full; perturb) (3-samples; perturb)

second (×10−5) 129 31185 2667 298

largest median 𝜖𝑥,2 among validation data given the same and 1% less validation

accuracy compared to the baseline model.

The results are shown in Table 3.5.1. The tuned models have 𝛾 = 100, 𝜆 = 2, and

different 𝐶 as shown in the table. The condition in Lemma 3.7 for certifying #CLR

is satisfied with tight upper bound and lower bound, so a single number is reported.

Given the same performance, the Roll loss achieves about 10 times larger margins

for most of the percentiles than the vanilla loss. By trading off 1% accuracy, about 30

times larger margins can be achieved. The Spearman’s rank correlation between 𝜖𝑥,1

and 𝜖𝑥,2 among testing data is at least 0.98 for all the cases. The lower #CLR in our

approach than the baseline model reflects the existence of certain larger linear regions

that span across different testing points. All the points inside the same linear region

in the Roll model with ACC= 98% have the same label, while there are visually

similar digits (e.g., 1 and 7) in the same linear region in the other Roll model. We

do a parameter analysis in Figure 3.5.1 with the ACC and 𝑃50 of 𝜖𝑥,2 under different

𝐶, 𝜆 and 𝛾 when the other hyper-parameters are fixed. As expected, with increased

𝐶 and 𝜆, the accuracy decreases with an increased ℓ2 margin. Due to the smoothness

of the curves, higher 𝛾 values reflect less sensitivity to hyper-parameters 𝐶 and 𝜆.
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(a) 𝜆 = 0.5 (b) 𝜆 = 0.5 (c) 𝐶 = 1 (d) 𝐶 = 1

Figure 3.5.1: Parameter analysis on the MNIST dataset. 𝑃50 of 𝜖𝑥,2 is the median of
𝜖𝑥,2 in the testing data.

To validate the efficiency of the proposed method, we measure the running time

for performing a complete mini-batch gradient descent step (starting from the forward

pass) on average. We compare 1) the vanilla loss, 2) the full Roll loss (𝛾 = 100)

in Eq. (3.9) computed by back-propagation, 3) the same as 2) but computed by our

perturbation algorithm, and 4) the approximate Roll loss in Eq. (3.10) computed

by perturbations. The approximation is computed with 3 = 𝐷/256 samples. The

results are shown in Table 3.5.2. The accuracy and ℓ2 margins of the approximate

Roll loss are comparable to the full loss. Overall, our approach is only twice slower

than the vanilla loss. The approximate loss is about 9 times faster than the full

loss. Compared to back-propagation, our perturbation algorithm achieves about 12

times empirical speed-up. In summary, the computational overhead of our method is

minimal compared to the vanilla loss, which is achieved by the perturbation algorithm

and the approximate loss.

3.5.2 Speaker Identification

We train RNNs for speaker identification on the Japanese Vowel dataset from the

UCI machine learning repository [34] with the official training/testing split.4 The

dataset has variable sequence length between 7 and 29 with 12 channels and 9 classes.

We implement the network with the state-of-the-art scaled Cayley orthogonal RNN

(scoRNN) [60], which parameterizes the transition matrix in RNN using orthogonal

matrices to prevent gradient vanishing/exploding, with LeakyReLU activation. The

4The parameter is tuned on the testing set and thus the performance should be interpreted as
validation.
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Table 3.5.3: RNNs on the Japanese Vowel dataset. 𝜖𝑥,𝑝 shows the ℓ𝑝 margin for each
𝑟 ∈ {25, 50, 75, 100} percentile 𝑃𝑟 in the testing data (the larger the better).

Loss 𝜆 𝐶 ACC
𝜖𝑥,1(×10−6) 𝜖𝑥,2(×10−6)

𝑃25 𝑃50 𝑃75 𝑃100 𝑃25 𝑃50 𝑃75 𝑃100

Vanilla 98% 66 177 337 1322 23 61 113 438

Roll 2−5 24 98% 264 562 1107 5227 95 207 407 1809

Roll 2−1 22 97% 1284 2898 6086 71235 544 1249 2644 22968

(a) The 9th channel of the sequence that
yields 𝑃50 of 𝜖𝑥,2 on the Roll model.

(b) The 9th channel of the sequence that yields
𝑃75 of 𝜖𝑥,2 on the Roll model.

Figure 3.5.2: Stability bounds on derivatives on the Japanese Vowel dataset.

implementation details are in Appendix 3.G. The reported models are based on the

same criterion as §3.5.1.

The results are reported in Table 3.5.3. With the same/1% inferior ACC, our ap-

proach leads to a model with about 4/20 times larger margins among the percentiles

on testing data, compared to the vanilla loss. The Spearman’s rank correlation be-

tween 𝜖𝑥,1 and 𝜖𝑥,2 among all the cases are 0.98. We also conduct sensitivity analysis

on the derivatives by finding 𝜖𝑥,Δ𝑥 along each coordinate ∆𝑥 ∈ ∪𝑖 ∪12𝑗=1 {−𝑒𝑖,𝑗, 𝑒𝑖,𝑗}

(𝑒𝑖,𝑗
𝑘,𝑙 = 0,∀𝑘, 𝑙 except 𝑒𝑖,𝑗

𝑖,𝑗 = 1), which identifies the stability bounds [𝜖𝑥,−𝑒𝑖,𝑗 , 𝜖𝑥,𝑒𝑖,𝑗 ] at

each timestamp 𝑖 and channel 𝑗 that guarantees stable derivatives. The visualization

using the vanilla and our Roll model with 98% ACC is in Figure 3.5.2. Qualitatively,

the stability bound of the Roll regularization is consistently larger than the vanilla

model.

3.5.3 Caltech-256

We conduct experiments on Caltech-256 [54], which has 256 classes, each with at least

80 images. We downsize the images to 299× 299× 3 and train a 18-layer ResNet [59]
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with initializing from parameters pre-trained on ImageNet [33]. The approximate

Roll loss in Eq. (3.10) is used with 120 random samples on each channel. We

randomly select 5 and 15 samples in each class as the validation and testing set,

respectively, and put the remaining data into the training set. The implementation

details are in Appendix 3.H.

Evaluation Measures: Due to high input dimensionality (𝐷 ≈ 270𝐾), computing

the certificates 𝜖𝑥,1, 𝜖𝑥,2 is computationally challenging without a cluster of GPUs.

Hence, we turn to a sample-based approach to evaluate the stability of the gradients

𝑓𝜃(𝑥)𝑦 for the ground-truth label in a local region with a goal to reveal the stability

across different linear regions. Note that evaluating the gradient of the prediction

instead is problematic to compare different models in this case.

Given labeled data (𝑥,𝑦), we evaluate the stability of gradient ∇𝑥𝑓𝜃(𝑥)𝑦 in terms

of expected ℓ1 distortion (over a uniform distribution) and the maximum ℓ1 distor-

tion within the intersection ℬ̄𝜖,∞(𝑥) = ℬ𝜖,∞(𝑥) ∩ 𝒳 of an ℓ∞-ball and the domain

of images 𝒳 = [0, 1]299×299×3. The ℓ1 gradient distortion is defined as ∆(𝑥,𝑥′,𝑦) :=

‖∇𝑥′𝑓𝜃(𝑥
′)𝑦 − ∇𝑥𝑓𝜃(𝑥)𝑦‖1. For a fixed 𝑥, we refer to the maximizer ∇𝑥′𝑓𝜃(𝑥

′)𝑦 as

the adversarial gradient. Computation of the maximum ℓ1 distortion requires opti-

mization, but gradient-based optimization is not applicable since the gradient of the

loss involves the Hessian ∇2
𝑥′𝑓𝜃(𝑥

′)𝑦 which is either 0 or ill-defined due to piecewise

linearity. Hence, we use a genetic algorithm [152] for black-box optimization. Imple-

mentation details are provided in Appendix 3.I. We use 8000 samples to approximate

the expected ℓ1 distortion. Due to computational limits, we only evaluate 1024 ran-

dom images in the testing set for both maximum and expected ℓ1 gradient distortions.

The ℓ∞-ball radius 𝜖 is set to 8/256.

The results along with precision at 1 and 5 (P@1 and P@5) are presented in

Table 3.5.4. The Roll loss yields more stable gradients than the vanilla loss with

marginally superior precisions. Out of 1024 examined examples 𝑥, only 40 and 42

gradient-distorted images change prediction labels in the Roll and vanilla model,

respectively. We visualize some examples in Figure 3.5.3 with the original and ad-

versarial gradients for each loss. Qualitatively, the Roll loss yields stable shapes
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Table 3.5.4: ResNet on Caltech-256. Here ∆(𝑥,𝑥′,𝑦) denotes ℓ1 gradient distortion
‖∇𝑥′𝑓𝜃(𝑥

′)𝑦 −∇𝑥𝑓𝜃(𝑥)𝑦‖1 (the smaller the better for each 𝑟 percentile 𝑃𝑟 among the
testing data).

Loss P@1 P@5
E𝑥′∼Unif(ℬ̄𝜖,∞(𝑥))[Δ(𝑥,𝑥′,𝑦)] max𝑥′∈ℬ̄𝜖,∞(𝑥)[Δ(𝑥,𝑥′,𝑦)]

𝑃25 𝑃50 𝑃75 𝑃100 𝑃25 𝑃50 𝑃75 𝑃100

Vanilla 80.7% 93.4% 583.8 777.4 1041.9 3666.7 840.9 1118.2 1477.6 5473.5
Roll 80.8% 94.1% 540.6 732.0 948.7 2652.2 779.9 1046.7 1368.2 3882.8

(a) Image
(Laptop)

(b) Orig. gra-
dient (Roll)

(c) Adv. gradi-
ent (Roll)

(d) Orig. gra-
dient (Vanilla)

(e) Adv. gradi-
ent (Vanilla)

(f) Image
(Bear)

(g) Orig. gra-
dient (Roll)

(h) Adv. gra-
dient (Roll)

(i) Orig. gradi-
ent (Vanilla)

(j) Adv. gradi-
ent (Vanilla)

Figure 3.5.3: Visualization of the examples in Caltech-256 that yield the 𝑃50 (above)
and 𝑃75 (below) of the maximum ℓ1 gradient distortions among the testing data on
our Roll model. The adversarial gradient is found by maximizing the distortion
∆(𝑥,𝑥′,𝑦) over the ℓ∞-norm ball with radius 8/256.

and intensities of gradients, while the vanilla loss does not. More examples (with

additional integrated gradient attributions) [139] are provided in Appendix 3.J.

3.6 Conclusion

This paper introduces a new learning problem to endow piecewise linear networks

with robust local linearity. The central attempt is to construct locally transparent

models, where the derivatives stably represent the local linear function and lends

itself to be robust tools for further applications. We utilize piecewise linear networks

and solve the problem based on a margin principle similar to SVM. Empirically, the

74



proposed Roll loss expands regions with provably stable derivatives, and further

generalize the stable gradient property across linear regions.

3.A Proofs

3.A.1 Proof of Lemma 3.2

Proof. For 𝑗 ∈ [𝑀1], we have ∇𝑥𝑧
1
𝑗 = 𝑊 1

𝑗,:, (𝑧
1
𝑗 − (∇𝑥𝑧

1
𝑗 )⊤𝑥) = 𝑏1𝑗 . If 𝑥̄ is feasible to

the fixed activation pattern 𝑜1
𝑗 , it is equivalent to that 𝑥̄ satisfies the linear constraint

𝑜1
𝑗 [(∇𝑥𝑧

𝑖
𝑗)

⊤𝑥̄ + (𝑧1
𝑗 − (∇𝑥𝑧

1
𝑗 )⊤𝑥)] = 𝑜1

𝑗 [(𝑊
1
𝑗,:)

⊤𝑥̄ + 𝑏1𝑗 ] ≥ 0 (3.11)

in the first layer.

Assume 𝑥̄ has satisfied all the constraints before layer 𝑖 > 1. We know if all the

previous layers follows the fixed activation indicators, it is equivalent to rewrite each

𝑎𝑖′

𝑗′ = max(0,𝑜𝑖′

𝑗′) · 𝑧𝑖′

𝑗′ ,∀𝑗′ ∈ [𝑀𝑖′ ], 𝑖
′ ∈ [𝑖− 1]. (3.12)

Then for 𝑗 ∈ [𝑀𝑖], it is clear that 𝑧𝑖
𝑗 is a fixed linear function of 𝑥 with linear weights

equal to ∇𝑥𝑧
𝑖
𝑗 by construction. If 𝑥̄ is also feasible to the fixed activation indicator

𝑜𝑖
𝑗, it is equivalent to that 𝑥̄ also satisfies the linear constraint

𝑜𝑖
𝑗[(∇𝑥𝑧

𝑖
𝑗)

⊤𝑥̄ + (𝑧𝑖
𝑗 − (∇𝑥𝑧

𝑖
𝑗)

⊤𝑥)] ≥ 0. (3.13)

The proof follows by induction.

3.A.2 Proof of Proposition 3.4

Proof. Since 𝒮(𝑥) is a convex set and 𝑥,𝑥 + 𝜖∆𝑥 ∈ 𝒮(𝑥), {𝑥 + 𝜖∆𝑥 : 0 ≤ 𝜖 ≤ 𝜖} ⊆

𝒮(𝑥).
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3.A.3 Proof of Proposition 3.5

Proof. 𝒮(𝑥) is a convex set and 𝑥𝑖 ∈ 𝒮(𝑥),∀𝑖 ∈ [2𝐷]. Hence, ∀𝑥′ ∈ ℬ𝜖,1(x), we know

𝑥′ is a convex combination of 𝑥1, . . . ,𝑥2𝐷, which implies 𝑥′ ∈ 𝒮(𝑥).

3.A.4 Proof of Proposition 3.6

Proof. Since 𝒮(𝑥) is a convex polyhedron and 𝑥 ∈ 𝒮(𝑥), ℬ𝜖,2(𝑥) ⊆ 𝒮(𝑥) is equivalent

to the statement: the hyperplanes induced from the linear constraints in 𝒮(𝑥) are

away from 𝑥 for at least 𝜖 in ℓ2 distance. Accordingly, the minimizing ℓ2 distance

between 𝑥 and the hyperplanes is the maximizing distance that satisfies ℬ𝜖,2(𝑥) ⊆

𝒮(𝑥).

3.A.5 Proof of Lemma 3.7

Proof. The number of different activation patterns is an upper bound since it counts

the number of linear regions instead of the number of complete linear regions (a

complete linear region can contain multiple linear regions). The number of different

Jacobians is a lower bound since it only count the number of different linear coefficients

𝑓𝜃(𝑥) on 𝒟𝑥 without distinguishing whether they are in the same connected region.

3.A.6 Proof of Lemma 3.8

Proof. The main idea is to construct a neural network feasible in Eq. (3.5) that has

the same loss as the optimal model in Eq. (3.4). Since the optimum in Eq. (3.5)

is lower-bounded by the optimum in Eq. (3.4) due to smaller feasible set, a model

feasible in Eq. (3.5) and having the same loss as the optimum in Eq. (3.4) implies

that it is also optimal in Eq. (3.5).

Given the optimal model 𝑓𝜃 in Eq. (3.4) satisfying the constraint min(𝑖,𝑗)∈ℐ |𝑧𝑖
𝑗| >

0,∀(𝑥,𝑦) ∈ 𝒟, we construct a model feasible in Eq. (3.5). For 𝑖 = 1, ..., 𝐿, we

compute the smallest neuron response 𝛿𝑖𝑗 = min(𝑥,𝑦)∈𝒟 |𝑧𝑖
𝑗|, ∀𝑗 ∈ [𝑀𝑖] in 𝑓𝜃, and revise
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the parameters by the following rules:

𝑊 𝑖
𝑗,: ←

1

𝛿𝑖𝑗
𝑊 𝑖

𝑗,:, 𝑏
𝑖
𝑗 ←

1

𝛿𝑖𝑗
𝑏𝑖𝑗,∀𝑗 ∈ [𝑀𝑖]. (3.14)

We also scale all the weight values that take as input 𝑧𝑖
𝑗 by 𝛿𝑖𝑗,∀𝑗 ∈ [𝑀𝑖]. The rules

only scale the neuron value of 𝑧𝑖
𝑗 without changing the value of all the higher layers,

so the realized function of 𝑓𝜃 does not change.

That says, the constructed network achieves the optimal loss in Eq. (3.4) while

being feasible in Eq. (3.5), so it is optimal in both Eq. (3.4) and Eq. (3.5). Since the

other optimal solutions in Eq. (3.5) have the same loss as the constructed network,

they are also optimal in Eq. (3.4).

3.B Certificates of Directional Margin and ℓ1 Margin

To certify the directional margin 𝜖𝑥,Δ𝑥 , max{𝜖≥0:𝑥+𝜖Δ𝑥∈𝑆(𝑥)} 𝜖 along a given ∆𝑥, we

can do a binary search between a lower bound 𝜖𝑙 and upper bound 𝜖𝑢. We initialize

𝜖𝑙0 = 0 and run a sub-routine to exponentially find an arbitrary upper bound 𝜖𝑢0 such

that 𝑥 + 𝜖𝑢0∆𝑥 /∈ 𝑆(𝑥). If 𝜖𝑢0 does not exist, we have 𝜖𝑥,Δ𝑥 =∞; otherwise, a binary

search is executed by iterating 𝑡 as⎧⎪⎨⎪⎩𝜖𝑙𝑡+1 , 0.5(𝜖𝑙𝑡 + 𝜖𝑢𝑡 ), 𝜖𝑢𝑡+1 , 𝜖𝑢𝑡 , if 𝑥 + 0.5(𝜖𝑙𝑡 + 𝜖𝑢𝑡 )∆𝑥 ∈ 𝑆(𝑥)

𝜖𝑙𝑡+1(𝑥) , 𝜖𝑙𝑡, 𝜖
𝑢
𝑡+1 , 0.5(𝜖𝑙𝑡 + 𝜖𝑢𝑡 ), otherwise

(3.15)

Clearly, 𝑥 + 𝜖𝑙𝑡∆𝑥 ∈ 𝑆(𝑥),𝑥 + 𝜖𝑢𝑡 ∆𝑥 /∈ 𝑆(𝑥) always holds, and the gap between

𝜖𝑙𝑡 and 𝜖𝑢𝑡 decreases exponentially fast: 𝜖𝑢𝑡 − 𝜖𝑙𝑡 = 0.5𝑡(𝜖𝑢0 − 𝜖𝑙0), which upper-bounds

𝜖𝑥,Δ𝑥 − 𝜖𝑙𝑡 ≤ 𝜖𝑢𝑡 − 𝜖𝑙𝑡. In practice, we run the binary search with finite iteration 𝑇

and return the lower bound 𝜖𝑙𝑇 with an identifiable bound 𝜖𝑢𝑇 − 𝜖𝑙𝑇 from the optimal

solution. In our experiments, we run the binary search algorithm until the bound is

less than 10−7.

If we denote 𝑒1, . . . , 𝑒𝐷 as the set of unit vector in each axis (𝑒𝑖
𝑖 = 1, 𝑒𝑖

𝑗 =

0,∀𝑗 ̸= 𝑖), the margin 𝜖𝑥,1 for the ℓ1-ball ℬ𝜖,1(𝑥) can be certified by 1) comput-
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ing the set of directional margins for each extreme point direction of an ℓ1 ball

{𝜖𝑥,−𝑒1 , 𝜖𝑥,𝑒1 , . . . , 𝜖𝑥,−𝑒𝐷 , 𝜖𝑥,𝑒𝐷}, and 2) returning the minimum in the set as 𝜖𝑥,1.

3.C Parallel Computation of the Gradients by Lin-

earity

We denote the corresponding neurons 𝑧𝑖
𝑗 and 𝑎𝑖

𝑗 of 𝑓𝜃 in 𝑔𝜃 as 𝑧𝑖
𝑗(𝑥̂) and 𝑎̂𝑖

𝑗(𝑥̂) given

𝑥̂, highlighting its functional relationship with respect to a new input 𝑥̂. The network

𝑔𝜃 is constructed with exactly the same weights and biases as 𝑓𝜃 but with a carefully-

crafted linear activation function 𝑜𝑖
𝑗 = max(0,𝑜𝑖

𝑗) ∈ {0, 1}. Note that since 𝑜 is

given, 𝑜 is fixed. Then each layer in 𝑔𝜃 is represented as:

𝑎̂𝑖(𝑥̂) = 𝑜𝑖 ⊙ 𝑧𝑖(𝑥̂), 𝑧𝑖(𝑥̂) = 𝑊 𝑖𝑧𝑖−1(𝑥̂) + 𝑏𝑖,∀𝑖 ∈ [𝐿]. 𝑧0(𝑥̂) = 𝑥̂. (3.16)

We note that 𝑎̂𝑖(𝑥̂),𝑜𝑖, and 𝑧𝑖(𝑥̂) are also functions of 𝑥, which we omitted for

simplicity. Since the new activation function 𝑜 is fixed given 𝑥, effectively it applies

the same linearity to 𝑧𝑖
𝑗 as 𝑧𝑖

𝑗 in 𝒮(𝑥) and each 𝑧𝑖
𝑗(𝑥̂) is linear to 𝑥̂,∀𝑥̂ ∈ R𝐷. As a

direct result of linearity and the equivalence of 𝑔𝜃 and 𝑓𝜃 (and all the respective 𝑧𝑖
𝑗

and 𝑧𝑖
𝑗) in 𝒮(𝑥), we have to following equality:

𝜕𝑧𝑖
𝑗(𝑥̂)

𝜕𝑥̂𝑘

=
𝜕𝑧𝑖

𝑗

𝜕𝑥𝑘

,∀𝑥̂ ∈ R𝐷. (3.17)

We then do the following procedure to collect the partial derivatives with respect to

an input axis 𝑘: 1) feed a zero vector 0 to 𝑔𝜃 to get 𝑧𝑖
𝑗(0) and 2) feed a one-hot vector

on the 𝑘th axis 𝑒𝑘 to get 𝑧𝑖
𝑗(𝑒

𝑘). Then the derivative of each neuron 𝑧𝑖
𝑗 with respect

to 𝑥𝑘 can be computed as

𝑧𝑖
𝑗(𝑒

𝑘)− 𝑧𝑖
𝑗(0) =

[︂
∇𝑒𝑘𝑧

𝑖
𝑗(𝑒

𝑘)⊤𝑒𝑘 + 𝑧𝑖
𝑗(0)

]︂
− 𝑧𝑖

𝑗(0) =
𝜕𝑧𝑖

𝑗(𝑒
𝑘)

𝜕𝑒𝑘
𝑘

× 1 =
𝜕𝑧𝑖

𝑗

𝜕𝑥𝑘

,
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where the first equality comes from the linearity of 𝑧𝑖
𝑗(𝑥̂) with respect to any 𝑥̂.

With the procedure, the derivative of all the neurons to an input dimension can

be computed with 2 forward passes, which can be further amortized and scaled by

computing all the gradients of 𝑧𝑖
𝑗 with respect to all the 𝐷 dimensions with 𝐷 + 1

forward passes in parallel. We remark that the implementation is very simple and

essentially the same across all the piecewise linear networks.

To analyze the complexity of the proposed approach, we assume that parallel

computation does not incur any overhead and a batch matrix multiplication takes a

unit operation. In this setting, a typical forward pass up to the last hidden layer takes

𝐿 operations. To compute the gradients of all the neurons for a batch of inputs, our

perturbation algorithm first takes a forward pass to obtain the activation patterns

for the batch of inputs, and then takes another forward pass with perturbations to

obtain the gradients. Since both forward passes are done up to the last hidden layers,

it takes 2𝐿 operations in total. We remark that the efficiency can be further improved

by combining the two forward passes since the weight matrices in 𝑓𝜃 and 𝑔𝜃 are the

same for each layer, but we adopt the 2𝐿 operations version for simplicity.

In contrast, back-propagation cannot be parallelized among neurons, so computing

the gradients of all the neurons must be done sequentially. For each neuron 𝑧𝑖
𝑗, it takes

2𝑖 operations for back-propagation to compute its gradient (𝑖 operations for each of

the forward pass and the backward pass). Hence, it takes
∑︀𝐿

𝑖=1 2𝑖𝑀𝑖 operations in

total for back-propagations to compute the same thing.

3.D Derivations for Maxout/Max-Pooling Nonlinear-

ity

Here we only make an introductory guide to the derivations for maxout/max-pooling

nonlinearity. The goal is to highlight that it is feasible to derive inference and learning

methods upon a (piecewise linear) network with max-pooling nonlinearity, but we do

not suggest to use it since a max-pooling neuron would induce new linear constraints;
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instead, we suggest to use convolution with large strides or average-pooling which do

not incur any constraint.

For simplicity, we assume the target network has a single nonlinearity, which maps

𝑀 neurons to 1 output by the maximum

𝑎1
1 = max(𝑧1

1 , . . . ,𝑧
1
𝑀), 𝑧1 = 𝑊 1𝑥 + 𝑏1. (3.18)

Then we can define the corresponding activation pattern 𝑜 = 𝑜1
1 ∈ [𝑀 ] as which input

is selected:

𝑧1
𝑖 ≥ 𝑧1

𝑗 ,∀𝑗 ̸= 𝑖 ∈ [𝑀 ], if 𝑜1
1 = 𝑖. (3.19)

It is clear to see once an activation pattern is fixed, the network again degenerates

to a linear model, as the nonlinearity in the max-pooling effectively disappears. Such

activation pattern induces a feasible set in the input space where derivatives are

guaranteed to be stable, but such representation may have a similar degenerate case

where two activation patterns yield the same linear coefficients.

The feasible set 𝒮(𝑥) of a feasible activation pattern 𝒪̄ = {𝑜1
1} at 𝑥 can be derived

as:

∩𝑗∈[𝑀 ]∖{𝑖}{𝑥̄ ∈ R𝐷 : (∇𝑥𝑧
1
𝑖 )⊤𝑥̄ + (𝑧1

𝑖 − (∇𝑥𝑧
1
𝑖 )⊤𝑥) ≥ (∇𝑥𝑧

1
𝑗 )⊤𝑥̄ + (𝑧1

𝑗 − (∇𝑥𝑧
1
𝑗 )⊤𝑥)}.

(3.20)

To check its correctness, we know that Eq. (3.20) is equivalent to

𝒮(𝑥) = ∩𝑗∈[𝑀 ]∖{𝑖}{𝑥̄ ∈ R𝐷 : 𝑊 1
𝑖 𝑥̄ + 𝑏1𝑖 ≥𝑊 1

𝑗 𝑥̄ + 𝑏1𝑗} (3.21)

= ∩𝑗∈[𝑀 ]∖{𝑖}{𝑥̄ ∈ R𝐷 : (𝑊 1
𝑖 −𝑊 1

𝑗 )𝑥̄ + (𝑏1𝑖 − 𝑏1𝑗) ≥ 0}, (3.22)

where the linear constraints are evident, and the feasible set is thus again a convex

polyhedron. As a result, all the inference and learning algorithms can be applied with

the linear constraints. Clearly, for each max-pooling neuron with 𝑀 inputs, it will
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induce 𝑀 − 1 linear constraints.

3.E Implementation Details on the Toy Dataset

The FCNN consists of 𝐿 = 4 fully-connected hidden layers, where each hidden layer

has 100 neurons. The input dimension 𝐷 is 2 and the output dimension 𝑌 is 1.

The loss function ℒ(𝑓𝜃(𝑥),𝑦) is sigmoid cross entropy. We train the model for 5000

epochs with Adam [72] optimizer, and select the model among epochs based on the

training loss. We fix 𝐶 = 5, and increase 𝜆 ∈ {10−2, . . . , 102} for both the distance

regularization and relaxed regularization problems until the resulting classifier is not

perfect. The tuned 𝜆 in both cases are 1.

3.F Implementation Details on the MNIST Dataset

The data are normalized with 𝜇 = 0.1307 and 𝜎 = 0.3081. We first compute the

margin 𝜖𝑥,𝑝 in the normalized data, and report the scaled margin 𝜎𝜖𝑥,𝑝 in the table,

which reflects the actual margin in the original data space since

‖𝑥− 𝑥′‖𝑝 = 𝜎‖𝑥/𝜎 − 𝑥′/𝜎‖𝑝 = 𝜎‖(𝑥− 𝜇)/𝜎 − (𝑥′ − 𝜇)/𝜎‖𝑝, (3.23)

so the reported margin should be perceived in the data space of 𝒳 = [0, 1]28×28.

We compute the exact Roll loss during training (i.e., approximate learning is

not used). The FCNN consists of 𝐿 = 4 fully-connected hidden layers, where each

hidden layer has 300 neurons. The activation function is ReLU. The loss function

ℒ(𝑓𝜃(𝑥),𝑦) is a cross-entropy loss with softmax performed on 𝑓𝜃(𝑥). The number

of epochs is 20, and the model is chosen from the best validation loss from all the

epochs. We use stochastic gradient descent with Nesterov momentum. The learning

rate is 0.01, the momentum is 0.5, and the batch size is 64.

Tuning: We do a grid search on 𝜆,𝐶, 𝛾, with 𝜆 ∈ {2−3, . . . , 22}, 𝐶 ∈ {2−2, . . . , 23},

𝛾 ∈ {max, 25, 50, 75, 100} (max refers to Eq. (3.7)), and report the models with the
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largest validation 𝜖2,50 given the same and 1% less validation accuracy compared to

the baseline model (the vanilla loss).

3.G Implementation Details on the Japanese Vowel

Dataset

The data are not normalized.

We compute the exact Roll loss during training (i.e., approximate learning is

not used). The representation is learned with a single layer scoRNN, where the state

embedding from the last timestamp for each sequence is treated as the representa-

tion along with a fully-connected layer to produce a prediction as 𝑓𝜃(𝑥). We use

LeakyReLU as the activation functions in scoRNN. The dimension of hidden neurons

in scoRNN is set to 512. The loss function ℒ(𝑓𝜃(𝑥),𝑦) is a cross-entropy loss with

softmax performed on 𝑓𝜃(𝑥). We use AMSGrad optimizer [119]. The learning rate is

0.001, and the batch size is 32 (sequences).

Tuning: We do a grid search on 𝜆 ∈ {2−6, . . . , 23}, 𝐶 ∈ {2−5, . . . , 27}, and set

𝛾 = 100. The models with the largest testing 𝜖2,50 given the same and 1% less testing

accuracy compared to the baseline model (the vanilla loss) are reported. (We do

not have validation data in this dataset, so the performance should be interpreted as

validation.)

3.H Implementation Details on the Caltech-256 Dataset

The data are normalized with

𝜇 = [0.485, 0.456, 0.406], and 𝜎 = [0.225, 0.225, 0.225]

along each channel. We train models on the normalized images, and establish a

bijective mapping between the normalized distance and the distance in the original

space with the trick introduced in Appendix 3.F. The bijection is applied to our
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sample-based approach to compute

E𝑥′∼Unif(ℬ8/256,∞(𝑥)∩𝒳 )[∆(𝑥,𝑥′,𝑦)]

and

max
𝑥′∈ℬ8/256,∞(𝑥)∩𝒳

[∆(𝑥,𝑥′,𝑦)]

that we ensure the perturbed space is consistent with 𝒳 = [0, 1]299×299×3 and ℬ8/256,∞(𝑥)

in the original space.

We download the pre-trained ResNet-18 [59] from PyTorch [113], and we revise

the model architecture as follows: 1) we replace the max-pooling after the first con-

volutional layer with average-pooling to reduce the number of linear constraints (be-

cause max-pooling induces additional linear constraints on activation pattern, while

average-pooling does not), and 2) we enlarge the receptive field of the last pooling

layer such that the output will be 512 dimension, since ResNet-18 is originally used for

smaller images in ImageNet data (most implementations use 224×224×3 dimensional

images for ImageNet while our data has even higher dimension 299× 299× 3).

We train the model with stochastic gradient descent with Nesterov momentum

for 20 epochs. The initial learning rate is 0.005, which is adjusted to 0.0005 after the

first 10 epochs. The momentum is 0.5. The batch size is 32. The model achieving

the best validation loss among the 20 epochs is selected.

Tuning: Since the training is computationally demanding, we first fix 𝐶 = 8, use only

18 samples (6 per channel) for approximate learning, and tune 𝜆 ∈ {10−6, 10−5, . . . }

until the model yields significantly inferior validation accuracy than the vanilla model.

Afterwards, we fix 𝜆 to the highest plausible value (𝜆 = 0.001) and try to increase

𝐶 ∈ {8, 80, . . . }, but we found that 𝐶 = 8 is already the highest plausible value.

Finally, we train a model with 360 random samples (120 per channel) for approximate

learning to improve the quality of approximation.
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3.I Implementation Details of the Genetic Algorithm

We implement a genetic algorithm (GA) [152] with 4800 populations 𝑃 and 30 epochs.

Initially, we first uniformly sample 4800 samples (called chromosome in GA literature)

in the domain ℬ𝜖,∞(𝑥) ∩ 𝒳 for 𝑃 . In each epoch,

1. ∀𝑐 ∈ 𝑃 , we evaluate the ℓ1 distance of its gradient from that of the target 𝑥:

‖∇𝑐𝑓𝜃(𝑐)𝑦 −∇𝑥𝑓𝜃(𝑥)𝑦‖1 (3.24)

2. (Selection) we sort the samples based on the ℓ1 distance and keep the top 25%

samples in the population (denoted as 𝑃 ).

3. (Crossover) we replace the remaining 75% samples with a random linear com-

bination of a pair (𝑐, 𝑐′) from 𝑃 as:

𝑐 = 𝛼𝑐 + (1− 𝛼)𝑐′, 𝑐, 𝑐′ ∈ 𝑃 , 𝛼 ∈ Unif([−0.25, 1.25]). (3.25)

4. (Projection) For all the updated samples 𝑐 ∈ 𝑃 , we do an ℓ∞-projection to the

domain ℬ𝜖,∞(𝑥) ∩ 𝒳 to ensure the feasibility.

Finally, the sample in 𝑃 that achieves the maximum ℓ1 distance is returned. We

didn’t implement mutation in our GA algorithm due to computational reasons. For

the readers who are not familiar with GA, we comment that the crossover operator is

analogous to a gradient step where the direction is determined by other samples and

the step size is determined randomly.

3.J Visualization of Adversarial Gradients in the Caltech-

256 dataset

We visualize the following images:

• Original image.
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• Original gradient: the gradient on the original image.

• Adv. gradient: the maximum ℓ1 distorted gradient in ℬ𝜖,∞(𝑥) ∩ 𝒳 .

• Image of adv. gradient: the image that yields the adversarial gradient.

• Original int. gradient: the integrated gradient attribution [139] on the original

image.

• Adv. int. gradient: the integrated gradient attribution [139] on the ‘image of

adv. gradient’. Note that we didn’t perform optimization to find the image

that yields the maximum distorted integrated gradient.

We follow a common implementation in the literature [132, 139] to visualize gra-

dients and integrated gradients by the following procedure:

1. Aggregating derivatives in each channel by summation.

2. Taking absolute value of aggregated derivatives.

3. Normalizing the aggregated derivatives by the 99th percentile.

4. Clipping all the values above 1.

After this, the derivatives are in the range [0, 1]299×299, which can be visualized as a

gray-scaled image. The original integrated gradient paper visualizes the element-wise

product between the gray-scaled integrated gradient and the original image, but we

only visualize the integrated gradient to highlight its difference in different settings

since the underlying images (the inputs) are visually indistinguishable.

We visualize the examples in Caltech-256 dataset that yield the 𝑃25, 𝑃50, 𝑃75, 𝑃100

(𝑃𝑟 denotes the 𝑟th percentile) of the maximum ℓ1 gradient distortions among the test-

ing data on our Roll model in Figure 3.J.1-3.J.4, where the captions show the exact

values of the maximum ℓ1 gradient distortion for each image. Note that the exact

values are slightly different from Table 3.5.4, because each percentile in Table 3.5.4 is

computed by an interpolation between the closest ranks (as in numpy.percentile),

and the figures in Figure 3.J.1-3.J.4 are chosen from the images that are the closest

to the percentiles.
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(a) Original im-
age (Projector)

(b) Image of adv.
gradient (Roll)

(c) Original gra-
dient (Roll)

(d) Adv. gradient
(Roll)

(e) Original gra-
dient (Vanilla)

(f) Adv. gradient
(Vanilla)

(g) Image of adv.
gradient (Vanilla)

(h) Original int.
gradient (Roll)

(i) Adv. int. gra-
dient (Roll)

(j) Original int.
gradient (Vanilla)

(k) Adv. int. gra-
dient (Vanilla)

Figure 3.J.1: Visualization of the examples in Caltech-256 dataset that yield the
𝑃25 of the maximum ℓ1 gradient distortions among the testing data using our Roll
model. For the vanilla model, the maximum ℓ1 gradient distortion ∆(𝑥,𝑥′,𝑦) is equal
to 893.3 in Figure 3.J.1f. For the Roll model, the maximum ℓ1 gradient distortion
∆(𝑥,𝑥′,𝑦) is equal to 779.9 in Figure 3.J.1d.
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(a) Original im-
age (Laptop)

(b) Image of adv.
gradient (Roll)

(c) Original gra-
dient (Roll)

(d) Adv. gradient
(Roll)

(e) Original gra-
dient (Vanilla)

(f) Adv. gradient
(Vanilla)

(g) Image of adv.
gradient (Vanilla)

(h) Original int.
gradient (Roll)

(i) Adv. int. gra-
dient (Roll)

(j) Original int.
gradient (Vanilla)

(k) Adv. int. gra-
dient (Vanilla)

Figure 3.J.2: Visualization of the examples in Caltech-256 dataset that yield the
𝑃50 of the maximum ℓ1 gradient distortions among the testing data using our Roll
model. For the vanilla model, the maximum ℓ1 gradient distortion ∆(𝑥,𝑥′,𝑦) is equal
to 1199.4 in Figure 3.J.2f. For the Roll model, the maximum ℓ1 gradient distortion
∆(𝑥,𝑥′,𝑦) is equal to 1045.4 in Figure 3.J.2d.

87



(a) Original im-
age (Bear)

(b) Image of adv.
gradient (Roll)

(c) Original gra-
dient (Roll)

(d) Adv. gradient
(Roll)

(e) Original gra-
dient (Vanilla)

(f) Adv. gradient
(Vanilla)

(g) Image of adv.
gradient (Vanilla)

(h) Original int.
gradient (Roll)

(i) Adv. int. gra-
dient (Roll)

(j) Original int.
gradient (Vanilla)

(k) Adv. int. gra-
dient (Vanilla)

Figure 3.J.3: Visualization of the examples in Caltech-256 dataset that yield the 𝑃75 of
the maximum ℓ1 gradient distortions among the testing data using our Roll model.
For the vanilla model, the maximum ℓ1 gradient distortion ∆(𝑥,𝑥′,𝑦) is equal to
1547.1 for in Figure 3.J.3f. For the Roll model, the maximum ℓ1 gradient distortion
∆(𝑥,𝑥′,𝑦) is equal to 1367.9 for in Figure 3.J.3d.
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(a) Original im-
age (Rainbow)

(b) Image of adv.
gradient (Roll)

(c) Original gra-
dient (Roll)

(d) Adv. gradient
(Roll)

(e) Original gra-
dient (Vanilla)

(f) Adv. gradient
(Vanilla)

(g) Image of adv.
gradient (Vanilla)

(h) Original int.
gradient (Roll)

(i) Adv. int. gra-
dient (Roll)

(j) Original int.
gradient (Vanilla)

(k) Adv. int. gra-
dient (Vanilla)

Figure 3.J.4: Visualization of the examples in Caltech-256 dataset that yield the
𝑃100 of the maximum ℓ1 gradient distortions among the testing data using our Roll
model. For the vanilla model, the maximum ℓ1 gradient distortion ∆(𝑥,𝑥′,𝑦) is equal
to 5473.5 in Figure 3.J.4f. For the Roll model, the maximum ℓ1 gradient distortion
∆(𝑥,𝑥′,𝑦) is equal to 3882.8 in Figure 3.J.4d.
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Chapter 4

Oblique Decision Trees from

Derivatives of ReLU Networks

4.1 Introduction

Prior work has attempted to generalize classic decision trees by extending coordinate

cuts to be weighted, linear classifications. The resulting family of models is known as

oblique decision trees [105]. However, the generalization accompanies a challenging

combinatorial, non-differentiable optimization problem over the linear parameters at

each decision point. Simple sorting procedures used for successively finding branch-

wise optimal coordinate-wise cuts are no longer available, making these models con-

siderably harder to train. While finding the optimal oblique decision tree can be cast

as a mixed integer linear program [15], scaling remains a challenge.

In this chapter, we provide an effective, implicit representation of piecewise con-

stant mappings such as oblique decision trees, termed locally constant networks. Our

approach exploits piecewise linear models such as ReLU networks as basic build-

ing blocks. Linearity of the mapping in each region in such models means that the

gradient with respect to the input coordinates is locally constant. We therefore im-

plicitly represent locally constant networks through gradients evaluated from ReLU

networks. We prove the equivalence between the class of oblique decision trees and

these proposed locally constant neural models. However, the sizes required for equiv-
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alent representations can be substantially different. For example, a locally constant

network with 𝑀̃ neurons can implicitly realize an oblique decision tree whose explicit

form requires 2𝑀̃ − 1 oblique decision nodes. The exponential complexity reduction

in the corresponding neural representation illustrates the degree to which parameters

are shared across the locally constant regions.

Our locally constant networks can be learned via gradient descent, and they can

be explicitly converted to oblique decision trees for interpretability. For learning via

gradient descent, however, it is necessary to employ some smooth annealing of piece-

wise linear activation functions so as to keep the gradients themselves continuous.

Moreover, we need to evaluate the gradients of all the neurons with respect to the in-

puts. To address this bottleneck, we devise a dynamic programming algorithm which

computes all the necessary gradient information in a single forward pass. A num-

ber of extensions are possible. For instance, we can construct approximately locally

constant networks by switching activation functions, or apply helpful techniques used

with normal deep learning models (e.g., DropConnect [149]) while implicitly training

tree models.

We empirically test our model in the context of molecular property classification

and regression tasks [158], where tree-based models remain state-of-the-art. We com-

pare our approach against recent methods for training oblique decision trees and clas-

sic ensemble methods such as gradient boosting [46] and random forest [19]. Empiri-

cally, a locally constant network always outperforms alternative methods for training

oblique decision trees by a large margin, and the ensemble of locally constant networks

is competitive with classic ensemble methods.

4.2 Related Work

Locally constant networks use the gradients of deep networks with respect to inputs

as the representations to build discriminative models. Such gradients have been used

in literature for different purposes. They have been widely used for local sensitivity

analysis of trained networks [129, 132]. When the deep networks model an energy
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function [81], the gradients can be used to draw samples from the distribution specified

by the normalized energy function [35, 133]. The gradients can also be used to train

generative models [49] or perform knowledge distillation [135].

The class of locally constant networks is equivalent to the class of oblique deci-

sion trees. There are some classic methods that also construct neural networks that

reproduce decision trees [127, 20, 26], by utilizing step functions and logic gates (e.g.,

AND/NEGATION) as the activation function. The methods were developed when back-

propagation was not yet practically useful, and the motivation is to exploit effective

learning procedures of decision trees to train neural networks. Instead, our goal is to

leverage the successful deep models to train oblique decision trees. Recently, Yang et

al. [160] proposed a network architecture with arg max activations to represent classic

decision trees with coordinate cuts, but their parameterization scales exponentially

with input dimension. In stark contrast, our parameterization only scales linearly

with input dimension (see our complexity analyses in §4.3.5).

Learning oblique decision trees is challenging, even for a greedy algorithm; for a

single oblique split, there can be
∑︀𝐷

𝑘=0

(︀
𝑁
𝑘

)︀
different ways to separate 𝑁 data points

in 𝐷-dimensional space [145] (cf. 𝑁𝐷 possibilities for coordinate-cuts). Existing

learning algorithms for oblique decision trees include greedy induction, global opti-

mization, and iterative refinements on an initial tree. We review some representative

works, and refer the readers to the references therein.

Optimizing each oblique split in greedy induction can be realized by coordinate

descent [104] or a coordinate-cut search in some linear projection space [97, 153].

However, the greedy constructions tend to get stuck in poor local optimum. There

are some works which attempt to find the global optimum given a fixed tree struc-

ture by formulating a linear program [13] or a mixed integer linear program [15], but

the methods are not scalable to ordinary tree sizes (e.g., depth more than 4). The

iterative refinements are more scalable than global optimization, where CART [18] is

the typical initialization. Carreira-Perpinán & Tavallali [23] developed an alternating

optimization method via iteratively training a linear classifier on each decision node,

which yield the state-of-the-art empirical performance, but the approach is only appli-
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cable to classification problems. Norouzi et al. [109] proposed to do gradient descent

on a sub-differentiable upperbound of tree prediction errors, but the gradients with re-

spect to oblique decision nodes are unavailable whenever the upperbound is tight. In

contrast, our method conducts gradient descent on a differentiable relaxation, which

is gradually annealed to a locally constant network.

4.3 Methodology

In this section, we construct the locally constant networks in §4.3.1, analyze the

networks in §4.3.2-4.3.3, and develop practical formulations and algorithms in §4.3.4-

4.3.5. Note that we will propose two (equivalent) architectures of locally constant

networks in §4.3.1 and §4.3.4, which are useful for theoretical analyses and practical

purposes, respectively.

In this chapter, we inherit the same notation as in §3.3.1 except for the activation

pattern, which is re-defined as the collection of activation indicator functions for each

neuron 𝑜𝑖
𝑗 : R𝐷 → {0, 1},∀(𝑖, 𝑗) ∈ ℐ (or, equivalently, the derivatives of ReLU units;

see below):

𝑜𝑖
𝑗 =

𝜕𝑎𝑖
𝑗

𝜕𝑧𝑖
𝑗

, I[𝑧𝑖
𝑗 ≥ 0],∀(𝑖, 𝑗) ∈ ℐ, (4.1)

where I[·] is the indicator function. Note that each 𝑜𝑖
𝑗 is a function of 𝑥, where we omit

the dependency for brevity. For mathematical correctness, we define 𝜕𝑎𝑖
𝑗/𝜕𝑧

𝑖
𝑗 = 1

at 𝑧𝑖
𝑗 = 0; this choice is arbitrary, and one can change it to 𝜕𝑎𝑖

𝑗/𝜕𝑧
𝑖
𝑗 = 0 at 𝑧𝑖

𝑗 = 0

without affecting most of the derivations.

4.3.1 Canonical Locally Constant Networks

Since the ReLU network 𝑓𝜃(𝑥) is piecewise linear, it immediately implies that its

derivatives with respect to the input 𝑥 is a piecewise constant function. Here we use

𝐽𝑥𝑓𝜃(𝑥) ∈ R𝑌×𝐷 to denote the Jacobian matrix (i.e., [𝐽𝑥𝑓𝜃(𝑥)]𝑖,𝑗 = 𝜕𝑓𝜃(𝑥)𝑖/𝜕𝑥𝑗), and

we assume the Jacobian is consistent with Eq. (4.1) at the boundary of the locally
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𝑥

𝑧! 𝑎!
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𝑧" 𝑎"
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Locally constant networks Decision trees

𝑔 0, 0 = 0
𝑔 0, 1 = 1
𝑔 1, 0 = 1
𝑔 1, 1 = 0

TrueFalse
𝑧!≥ 0

𝑧"≥ 0

0 1

𝑧"≥ 0
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≡ ≡

𝑔 0 = 1
𝑔 1 = 0

TrueFalse
𝑧!≥ 0
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Maps

𝑥
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𝑜!

𝑧" 𝑎"

𝑜"

𝑥

𝑧! 𝑎!

𝑜!𝐿 = 1

𝐿 = 2

𝐿 = 3

Figure 4.3.1: Toy examples for the equivalent representations of the same mappings
for different 𝐿. Here the locally constant networks have 1 neuron per layer. We show
the locally constant networks on the LHS, the raw mappings in the middle, and the
equivalent oblique decision trees on the RHS.

linear regions. Since any function taking the piecewise constant Jacobian as input

will remain itself piecewise constant, we can construct a variety of locally constant

networks by composition.

However, in order to simplify the derivation, we first make a trivial observation

that the activation pattern in each locally linear region is also locally invariant. More

broadly, any invariant quantity in each locally linear region can be utilized so as to

build locally constant networks. We thus define the locally constant networks as any

composite functions that leverage the local invariance of piecewise linear networks.

For the theoretical analyses, we consider the below architecture.

Canonical architecture. Let 𝑀̃ ,
∑︀𝐿

𝑖=1𝑀𝑖, 𝑜 : R𝐷 → {0, 1}𝑀̃ denote the con-

catenation of (𝑜1,𝑜2, . . . ,𝑜𝐿), and 𝑔 : {0, 1}𝑀̃ → R𝑌 be a table. Then we define the

canonical locally constant networks as the composite function 𝑔(𝑜).

Before elucidating on the representational equivalence to oblique decision trees,

we first show some toy examples of the canonical locally constant networks and their

equivalent mappings in Fig. 4.3.1, which illustrates their constructions when there is

only 1 neuron per layer (i.e., 𝑧𝑖 = 𝑧𝑖
1, and similarly for 𝑜𝑖 and 𝑎𝑖) and thus 𝑀̃ = 𝐿.
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When 𝐿 = 1, 𝑜1 = 1 ⇔ 𝑥1 − 𝑥2 + 1 ≥ 0, thus the locally constant network is

equivalent to a linear model shown in the middle, which can also be represented as

an oblique decision tree with depth = 1. When 𝐿 > 1, the activations in the previous

layers control different linear behaviors of a neuron with respect to the input, thus

realizing a hierarchical structure as an oblique decision tree. For example, for 𝐿 = 2,

𝑜1 = 0 ⇔ 𝑧1 < 0 ⇒ 𝑧2 = −4𝑥1 + 𝑥2 + 4 and 𝑜1 = 1 ⇔ 𝑧1 ≥ 0 ⇒ 𝑧2 = −3𝑥2 + 8;

hence, it can also be interpreted as the decision tree on the RHS, where the concrete

realization of 𝑧2 depends on the previous decision variable 𝑧1 ≥ 0. Afterwards, we

can map either the activation patterns on the LHS or the decision patterns on the

RHS to an output value, which leads to the mapping in the middle.

4.3.2 Representational Equivalence

In this section, we prove how oblique decision trees and locally constant networks

can be represented by each other. We first make an observation that any unbalanced

oblique decision tree can be rewritten to be balanced by adding dummy decision nodes

(e.g, 0⊤𝑥 ≥ −1). Thus we define the class of oblique decision trees with depth 𝑇 as:

Definition 4.1. The class of oblique decision trees with depth 𝑇 ∈ Z>0, denoted as

ℱTree
𝑇 , contains any functions that can be procedurally defined for 𝑥 ∈ R𝐷:

1. 𝑟1 , I[𝜔⊤
∅𝑥 + 𝛽∅ ≥ 0], where 𝜔∅ ∈ R𝐷 and 𝛽∅ ∈ R denote the weight and bias

of the root decision node.

2. For 𝑖 ∈ (2, 3, . . . , 𝑇 ), 𝑟𝑖 , I[𝜔⊤
𝑟1:𝑖−1

𝑥 + 𝛽𝑟1:𝑖−1
≥ 0], where 𝜔𝑟1:𝑖−1

∈ R𝐷 and

𝛽𝑟1:𝑖−1
∈ R denote the weight and bias for the decision node after the decision

pattern 𝑟1:𝑖−1.

3. 𝑣 : {0, 1}𝑇 → R𝑌 outputs the leaf value 𝑣(𝑟1:𝑇 ) associated with the decision

pattern 𝑟1:𝑇 .

The class of locally constant networks with 𝑀̃ ∈ Z>0 hidden neurons, defined by

the canonical architecture, is denoted as ℱNet
𝑀̃

.

We will first prove that locally constant networks can represent an oblique decision

tree with the same number of decision nodes (i.e., ReLU units). Since a typical
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oblique decision tree can produce an arbitrary weight in each decision node (cf. the

structurally dependent weights in the oblique decision trees in Fig. 4.3.1), the idea is

to utilize a network with only 1 hidden layer such that the neurons do not constrain

one another. Concretely,

Theorem 4.2. ℱNet
2𝑇−1 ⊇ ℱ

Tree
𝑇

Proof. For any oblique decision tree with depth 𝑇 , it contains 2𝑇 − 1 weights and

biases. We thus construct a locally constant network with 𝐿 = 1 and 𝑀1 = 2𝑇 − 1

such that each pair of (𝜔, 𝛽) in the oblique decision tree is equal to some 𝑊 1
𝑘,: and

𝑏1𝑘 in the constructed locally constant network.

For each leaf node in the decision tree, it is associated with an output value

𝑦 ∈ R𝑌 and 𝑇 decisions; the decisions can be written as 𝑊 1
idx[𝑗],:𝑥 + 𝑏1idx[𝑗] ≥ 0 for

𝑗 ∈ {1, 2, . . . , 𝑇 ′} and 𝑊 1
idx[𝑗],:𝑥 + 𝑏1idx[𝑗] < 0 for 𝑗 ∈ {𝑇 ′ + 1, 𝑇 ′ + 2, . . . , 𝑇} for some

index function idx : [𝑇 ]→ [2𝑇 −1] and some 𝑇 ′ ∈ {0, 1, . . . , 𝑇}. We can set the table

𝑔(·) of the locally constant network as

𝑦, if

⎧⎪⎨⎪⎩𝑜1
idx[𝑗] = 1(⇔𝑊 1

idx[𝑗],:𝑥 + 𝑏1idx[𝑗] ≥ 0), for 𝑗 ∈ {1, 2, . . . , 𝑇 ′}, and

𝑜1
idx[𝑗] = 0(⇔𝑊 1

idx[𝑗],:𝑥 + 𝑏1idx[𝑗] < 0), for 𝑗 ∈ {𝑇 ′ + 1, 𝑇 ′ + 2, . . . , 𝑇}.

As a result, the constructed locally constant network yields the same output as the

given oblique decision tree for all the inputs that are routed to each leaf node, which

concludes the proof.

Since the main idea of the proof is to map the decision nodes to the same number

of neurons, we can easily generalize the result to a more fine-grained statement. Below

a non-dummy decision node means that both decision outcomes {0, 1} are feasible

and uniqueness is with respect to the linear classification (i.e., invariant to scaling).

Corollary 4.3. ℱNet
𝑇 ⊇ {𝑓 ∈ ℱNet

𝑇 : 𝐿 = 1} ⊇ {𝑓 ∈ ℱTree
𝑇 : f contains at most 𝑇 non-

dummy and unique decision nodes} .

The proof is omitted due to the extreme similarity to the proof of Theorem 4.2.

Then we prove that locally constant networks with 𝑇 neurons can represent an oblique
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decision tree with an exponential number of decision nodes, which simply follows the

construction of the toy examples in Fig. 4.3.1.

Theorem 4.4. ℱTree
𝑇 ⊇ ℱNet

𝑇

Proof. For any locally constant network with 𝑇 neurons, it can be re-written to have

1 neuron per layer, by expanding any layer with 𝑀𝑖 > 1 neurons to be 𝑀𝑖 different

layers such that they do not have effective intra-connections. Below the notation

refers to the converted locally constant network with 1 neuron per layer. We define

the following oblique decision tree with depth 𝑇 for 𝑥 ∈ R𝐷:

1. 𝑟1 , 𝑜1
1 = I[𝜔⊤

∅𝑥 + 𝛽∅ ≥ 0] with 𝜔∅ = 𝑊 1
1,: and 𝛽∅ = 𝑏11.

2. For 𝑖 ∈ (2, 3, . . . , 𝑇 ), 𝑟𝑖 , I[𝜔⊤
𝑟1:𝑖−1

𝑥 + 𝛽𝑟1:𝑖−1
≥ 0], where 𝜔𝑟1:𝑖−1

= ∇𝑥𝑧
𝑖
1 and

𝛽𝑟1:𝑖−1
= 𝑧𝑖

1 − (∇𝑥𝑧
𝑖
1)

⊤𝑥. Note that 𝑟𝑖 = I[𝑧𝑖
1 ≥ 0] = 𝑜𝑖

1.

3. 𝑣 = 𝑔.

Note that, in order to be a valid decision tree, 𝜔1:𝑟𝑖−1
and 𝛽1:𝑟𝑖−1

have to be unique for

all 𝑥 that yield the same decision pattern 𝑟1:𝑖−1. To see this, for 𝑖 ∈ (2, 3, . . . , 𝑇 ), as

𝑟1:𝑖−1 = (𝑜1
1, . . . ,𝑜

𝑖−1
1 ), we know each 𝑧𝑖

1 is a fixed affine function given an activation

pattern for the preceding neurons, so ∇𝑥𝑧
𝑖
1 and 𝑧𝑖

1 − 𝑥⊤∇𝑥𝑧
𝑖
1 are fixed quantities

given a decision pattern 𝑟1:𝑖−1.

Since 𝑟1:𝑀 = 𝑜 and 𝑣 = 𝑔, we conclude that they yield the same mapping.

Despite the simplicity of the proof, it has some practical implications:

Remark 4.5. The proof of Theorem 4.4 implies that we can train a locally constant

network with 𝑀̃ neurons, and convert it to an oblique decision tree with depth 𝑀̃ .

Remark 4.6. The proof of Theorem 4.4 establishes that, given a fixed number of

neurons, it suffices (representationally) to only consider the locally constant networks

with one neuron per layer (i.e., 𝑀𝑖 = 1,∀𝑖 ∈ [𝐿]).

Remark 4.6 is important for learning small locally constant networks (which can be

converted to shallow decision trees for interpretability), since representation capacity

is critical for low capacity models. As a result, in the remainder of the chapter, we

will only consider the setting with 𝑀𝑖 = 1,∀𝑖 ∈ [𝐿] (and thus 𝑀̃ = 𝐿).
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To conclude this section, we make a simple observation that by taking the union of

across 𝑇 ∈ Z>0 in Theorem 4.2 and 4.4, we can derive the class-level equivalence be-

tween oblique decision trees and locally constant networks without depth constraints :

Corollary 4.7. ∪∞𝑇=1ℱNet
𝑇 ≡ ∪∞𝑇=1ℱTree

𝑇 .

4.3.3 Structurally Shared Parameterization

As briefly highlighted in the previous section, if we restrict the number of neurons in

the locally constant networks with some 𝑀̃ > 1, it cannot reproduce all the decision

trees with depth 𝑇 = 𝑀̃ . The result can be intuitively understood by the following

reason: we are effectively using 𝑀̃ pairs of (weight, bias) in the locally constant

network to implicitly realize 2𝑀̃ − 1 pairs of (weight, bias) in the corresponding

oblique decision tree. Such exponential reduction on the effective parameters in the

representation of oblique decision trees yields “dimension reduction” of the model

capacity. This section aims to reveal the implied shared parameterization embedded

in the oblique decision trees derived from locally constant networks.

In this section, the oblique decision trees and the associated parameters refer

to the decision trees obtained via the proof of Theorem 4.4. We start the analysis

by a decomposition of 𝜔𝑟1:𝑖 among the preceding weights 𝜔∅,𝜔𝑟1:1 , . . . ,𝜔𝑟1:𝑖−1
. To

simplify notation, we denote 𝜔𝑟1:0 , 𝜔∅. Since 𝜔𝑟1:𝑖 = ∇𝑥𝑧
𝑖+1
1 and 𝑧𝑖+1

1 is an affine

transformation of the vector CONCATENATE[𝑎0,𝑎
1
1, . . . ,𝑎

𝑖
1],

𝜔𝑟1:𝑖 = ∇𝑥𝑧
𝑖+1
1 = 𝑊 𝑖+1

1,1:𝐷 +
𝑖∑︁

𝑘=1

𝑊 𝑖+1
1,𝐷+𝑘 ×

𝜕𝑎𝑘
1

𝜕𝑧𝑘
1

×∇𝑥𝑧
𝑘
1

= 𝑊 𝑖+1
1,1:𝐷 +

𝑖∑︁
𝑘=1

𝑊 𝑖+1
1,𝐷+𝑘 × 𝑟𝑘 × 𝜔𝑟1:𝑘−1

,

where we simply rewrite the derivatives in terms of tree parameters. Since 𝑊 𝑖+1
1,1:𝐷

is fixed for all the 𝜔𝑟1:𝑖 , the above decomposition implies that, in the induced tree,

all the weights 𝜔𝑟1:𝑖 in the same depth 𝑖 are restricted to be a linear combination of

the fixed basis 𝑊 𝑖+1
1,1:𝐷 and the corresponding preceding weights 𝜔𝑟1:0 , . . . ,𝜔𝑟1:𝑖−1

. We

can extend this analysis to compare weights in same layer, beginning from comparing
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weights whose ℓ0 distance in decision pattern is 1. To help interpret the statement,

note that 𝜔𝑟1:𝑗−1
is the weight that leads to the decision 𝑟𝑗 (or 𝑟′

𝑗; see below).

Lemma 4.8. For an oblique decision tree with depth 𝑇 > 1, ∀𝑖 ∈ [𝑇 − 1] and any

𝑟1:𝑖, 𝑟′
1:𝑖 such that 𝑟𝑘 = 𝑟′

𝑘 for all 𝑘 ∈ [𝑖] except that 𝑟𝑗 ̸= 𝑟′
𝑗 for some 𝑗 ∈ [𝑖], we have

𝜔𝑟1:𝑖 − 𝜔𝑟′
1:𝑖

= 𝛼× 𝜔𝑟1:𝑗−1
, for some 𝛼 ∈ R.

The proof involves some algebraic manipulation, and is deferred to Appendix 4.A.1.

Lemma 4.8 characterizes an interesting structural constraint embedded in the oblique

decision trees realized by locally constant networks, where the structural discrepancy

𝑟𝑗 in decision patterns (𝑟1:𝑖 versus 𝑟′
1:𝑖) is reflected on the discrepancy of the corre-

sponding weights (up to a scaling factor 𝛼). The analysis can be generalized for all

the weights in the same layer, but the message is similar.

Proposition 4.9. For the oblique decision tree with depth 𝑇 > 1, ∀𝑖 ∈ [𝑇−1] and any

𝑟1:𝑖, 𝑟′
1:𝑖 such that 𝑟𝑘 = 𝑟′

𝑘 for all 𝑘 ∈ [𝑖] except for 𝑛 ∈ [𝑖] coordinates 𝑗1, . . . , 𝑗𝑛 ∈ [𝑖],

we have

𝜔𝑟1:𝑖 − 𝜔𝑟′
1:𝑖

=
𝑛∑︁

𝑘=1

𝛼𝑘 × 𝜔𝑟1:𝑗𝑘−1
, for some 𝛼𝑘 ∈ R,∀𝑘 ∈ [𝑛]. (4.2)

The statement can be proved by applying Lemma 4.8 multiple times.

Discussion. Here we summarize this section and provide some discussion. Locally

constant networks implicitly represent oblique decision trees with the same depth

and structurally shared parameterization. In the implied oblique decision trees, the

weight of each decision node is a linear combination of a shared weight across the

whole layer and all the preceding weights. The analysis explains how locally constant

networks use only 𝑀̃ weights to model a decision tree with 2𝑀̃ − 1 decision nodes;

it yields a strong regularization effect to avoid overfitting, and helps computation by

exponentially reducing the memory consumption on the weights.
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4.3.4 Standard Locally Constant Networks and Extensions

The simple structure of the canonical locally constant networks is beneficial for theo-

retical analysis, but the structure is not practical for learning since the discrete acti-

vation pattern does not exhibit gradients for learning the networks. Indeed, ∇𝑜𝑔(𝑜) is

undefined, which implies that ∇𝑊 𝑖𝑔(𝑜) is also undefined. Here we present another ar-

chitecture that is equivalent to the canonical architecture, but exhibits sub-gradients

with respect to model parameters and is flexible for model extension.

Standard architecture. Let 𝑎̃ : R𝐷 → R𝑀̃ denote the concatenation of (𝑎1,𝑎2, . . . ,

𝑎𝐿), 𝐽𝑥𝑎̃ ∈ R𝑀̃×𝐷 denote the Jacobian of 𝑎̃ with respect to the input, and 𝐽𝑥𝑎̃ denote

its vectorization. Then we define the standard locally constant networks as 𝑔𝜑(𝐽𝑥𝑎̃),

where 𝑔𝜑 : R(𝑀̃×𝐷) → R𝑌 is a fully-connected network.

We abbreviate the standard locally constant networks as Lcn. Note that each

𝑎𝑖
1 is piecewise linear and thus the Jacobian 𝐽𝑥𝑎̃ is piecewise constant. We replace 𝑜

with 𝐽𝑥𝑎̃ as the invariant representation for each locally linear region1, and replace the

table 𝑔 with a differentiable function 𝑔𝜑 that takes as input real vectors. The gradients

of Lcn with respect to parameters is thus established through the derivatives of 𝑔𝜑

and the mixed partial derivatives of the neurons (derivatives of 𝐽𝑥𝑎̃).

Fortunately, all the previous analyses also apply to the standard architecture, due

to a fine-grained equivalence between the two architectures. First, while it is easy to

see that the Jacobian 𝐽𝑥𝑎̃ can be written as a function of the activation pattern 𝑜,

we prove that they are actually equally powerful.

Theorem 4.10. There exists a bijection between the Jacobian 𝐽𝑥𝑎̃ and the activation

pattern 𝑜.

The core idea of the proof is to show the following by induction. Since 𝑜𝑖
1 = 0 =⇒

∇𝑥𝑎
𝑖 = 0 (the zero vector), we only have to show when 𝑜𝑖

1 = 1, the corresponding

gradient∇𝑥𝑎
𝑖 cannot degenerate to 0 unless 𝑜𝑖

1 is a constant, thus forming a bijection.

This is easy see for 𝑎1 : ∇𝑥𝑎
1 ̸= 0 ⇐⇒ 𝑜1

1 = 1 unless 𝑊 1 = 0. The complete proof

1In practice, we also include each bias 𝑎𝑖
1 − (∇𝑥𝑎

𝑖
1)

⊤𝑥, which is omitted here to simplify exposi-
tion.
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is available in Appendix 4.A.2. Combining Theorem 4.10 with the universality of

fully-connected networks [62] and tables, we have the corollary:

Corollary 4.11. Given any fixed 𝑓𝜃, any canonical architecture 𝑔(𝑜) can be equiva-

lently represented by a standard architecture 𝑔𝜑(𝐽𝑥𝑎̃), and vice versa.

The proof is available in Appendix 4.A.3. Since 𝑓𝜃 and 𝑔 control the decision

nodes and leaf nodes in the associated oblique decision tree, respectively (see the

proof of Theorem 4.4), Corollary 4.11 essentially states that both architectures are

equally competent for assigning leaf nodes. All the analyses in §4.3.2 and §4.3.3 are

thus immediately inherited.

Discussion. The standard architecture yields a new property that is only partially

exhibited in the canonical architecture. For all the decision and leaf nodes which no

training data is routed to, there is no way to obtain learning signals in classic oblique

decision trees. However, due to shared parameterization (see §4.3.3), locally constant

networks can “learn” all the decision nodes in the implied oblique decision trees (if

there is a way to optimize the networks), and the standard architecture can even

“learn” all the leaf nodes due to the parameterized output function 𝑔𝜑.

Extensions. The construction of (standard) locally constant networks enables sev-

eral natural extensions due to the flexibility of the neural architecture and the in-

terpretation of decision trees. The original locally linear networks (Lln) 𝑓𝜃, which

outputs a linear function instead of a constant function for each region, can be re-

garded as one extension. Here we discuss two examples.

• Approximately locally constant networks (Alcn): we can change the activa-

tion function while keeping the model architecture of Lcn. For example, we

can replace ReLU max(0, 𝑥) with softplus log(1 + exp(𝑥)), which will lead to

an approximately locally constant network, as the softplus function has an ap-

proximately locally constant derivative for inputs with large absolute values.

Note that the canonical architecture (tabular 𝑔) is not compatible with such

extension.
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• Ensemble locally constant networks (Elcn): since each Lcn can only output

2𝑀 different values, it is limited for complex tasks like regression (akin to deci-

sion trees). We can instead use an additive ensemble of Lcn or Alcn to increase

the capacity. We use 𝑔
[𝑒]
𝜑 (𝐽𝑥𝑎̃

[𝑒]) to denote a base model in the ensemble, and

denote the ensemble with 𝐸 models as
∑︀𝐸

𝑒=1 𝑔
[𝑒]
𝜑 (𝐽𝑥𝑎̃

[𝑒]).

4.3.5 Computation and Learning

In this section, we discuss computation and learning algorithms for the proposed

models. In the following complexity analyses, we assume 𝑔𝜑 to be a linear model.

Space complexity. The space complexity of Lcn is Θ(𝐿𝐷 + 𝐿2) for representing

decision nodes and Θ(𝐿𝐷𝑌 ) for representing leaf nodes. In contrast, the space com-

plexity for a classic oblique decision tree with the same depth is Θ((2𝐿 − 1)𝐷) for

decision nodes and Θ(2𝐿𝑌 ) for leaf nodes. Hence, our representation improves the

space complexity over classic oblique decision trees exponentially.

Computation and time complexity. Lcn and Alcn are built on the gradients of

all the neurons 𝐽𝑥𝑎̃ = CONCATENATE[∇𝑥𝑎
1
1, . . . , ∇𝑥𝑎

𝐿
1 ], which can be computationally

challenging to obtain. Automatic differentiation methods (e.g., back-propagation)

only compute the gradient of a scalar output. Instead, here we propose an efficient

dynamic programming procedure which only requires a forward pass:

1. ∇𝑥𝑎
1
1 = 𝑜1

1 ×𝑊 1.

2. ∀𝑖 ∈ {2, . . . , 𝐿},∇𝑥𝑎
𝑖
1 = 𝑜𝑖

1 × (𝑊 𝑖
1,1:𝐷 +

∑︀𝑖−1
𝑘=1𝑊

𝑖
1,𝐷+𝑘∇𝑥𝑎

𝑘
1),

The complexity of the dynamic programming is Θ(𝐿2) due to the inner-summation

inside each iteration. Straightforward back-propagation re-computes the partial so-

lutions ∇𝑥𝑎
𝑘
1 for each ∇𝑥𝑎

𝑖
1, so the complexity is Θ(𝐿3). We can parallelize the

inner-summation on a GPU, and the complexity of the dynamic programming and

straightforward back-propagation will become Θ(𝐿) and Θ(𝐿2), respectively. Note

that the complexity of a forward pass of a typical network is also Θ(𝐿) on a GPU.

The time complexity of learning Lcn by (stochastic) gradient descent is thus Θ(𝐿𝜏),

where 𝜏 denotes the number of iterations. In contrast, the computation of existing
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oblique decision tree training algorithms is typically data-dependent and thus the

complexity is hard to characterize.

Training Lcn and Alcn. Even though Lcn is sub-differentiable, whenever 𝑜𝑖
1 = 0,

the network does not exhibit useful gradient information for learning each locally con-

stant representation ∇𝑥𝑎
𝑖
1 (note that 𝐽𝑥𝑎̃ = CONCATENATE[∇𝑥𝑎

1
1, . . . ,∇𝑥𝑎

𝐿
1 ]), since

𝑜𝑖
1 = 0 implies ∇𝑥𝑎

𝑖
1 = ∇𝑥(𝑜𝑖

1𝑧
𝑖
1) = ∇𝑥0 = 0, yielding no useful gradients. To

alleviate the problem, we propose to leverage softplus as an infinitely differentiable

approximation of ReLU to obtain meaningful learning signals for ∇𝑥𝑎
𝑖
1. Concretely,

we conduct the annealing during training:

𝑎𝑖
1 = 𝜆𝑡 max(0, 𝑧𝑖

1) + (1− 𝜆𝑡) log(1 + exp(𝑧𝑖
1)),∀𝑖 ∈ [𝑀 ], 𝜆𝑡 ∈ [0, 1], (4.3)

where 𝜆𝑡 is an iteration-dependent annealing parameter. Both Lcn and Alcn can

be constructed as a special case of Eq. (4.3). We train Lcn with 𝜆𝑡 equal to the ratio

between the current epoch and the total epochs, and Alcn with 𝜆𝑡 = 0. Both models

are optimized via stochastic gradient descent.

We also include DropConnect [149] to the weight matrices 𝑊 𝑖 ← drop(𝑊 𝑖) dur-

ing training. Despite the simple structure of DropConnect in the locally constant

networks, it entails a structural dropout on the weights in the corresponding oblique

decision trees (see §4.3.3), which is challenging to reproduce in typical oblique decision

trees. In addition, it also encourages the exploration of parameter space, which is easy

to see for the raw Lcn: the randomization enables the exploration that flips 𝑜𝑖
1 = 0

to 𝑜𝑖
1 = 1 to establish effective learning signal. Note that the standard DropOut [136]

is not ideal for the low capacity models that we consider here.

Training Elcn. Since each ensemble component is sub-differentiable, we can di-

rectly learn the whole ensemble through gradient descent. However, the approach is

not scalable due to memory constraints in practice. Instead, we propose to train the

ensemble in a boosting fashion:

1. We first train an initial locally constant network 𝑔
[1]
𝜑 (𝐽𝑥𝑎̃

[1]).

2. For each iteration 𝑒′ ∈ {2, 3, . . . , 𝐸}, we incrementally optimize
∑︀𝑒′

𝑒=1 𝑔
[𝑒]
𝜑 (𝐽𝑥𝑎̃

[𝑒]).
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Table 4.4.1: Dataset statistics

Dataset Bace HIV SIDER Tox21 PDBbind

Task (Multi-label) binary classification Regression

Number of labels 1 1 27 12 1

Number of data 1,513 41,127 1,427 7,831 11,908

Note that, in the second step, only the latest model is optimized, and thus we can

simply store the predictions of the preceding models without loading them into the

memory. Each partial ensemble can be directly learned through gradient descent,

without resorting to complex meta-algorithms such as adaptive boosting [45] or gra-

dient boosting [46].

4.4 Experiments

Here we evaluate the efficacy of our models (Lcn, Alcn, and Elcn) using the chem-

ical property prediction datasets from MoleculeNet [158], where random forest per-

forms competitively. We include 4 (multi-label) binary classification datasets and 1

regression dataset. The statistics are available in Table 4.4.1. We follow the literature

to construct the feature [158]. Concretely, we use the standard Morgan fingerprint

(2,048 binary indicators of chemical substructures) [122] for the classification datasets,

with additional ‘grid features’ (fingerprints of pairs between ligand and protein, see

[158]) for the regression dataset. Each dataset is splitted into (train, validation, test)

sets under the criterion specified in MoleculeNet.

We compare Lcn and its extensions (Lln, Alcn, and Elcn) with the following

baselines:

• (Oblique) decision trees: Cart [18], Hhcart (oblique decision trees induced

greedily on linear projections) [153], and Tao (oblique decision trees trained

via alternating optimization) [23].

• Tree ensembles: Rf (random forest) [19] and Gbdt (gradient boosting decision

trees) [46].
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Table 4.4.2: Main results. The 1st section refers to (oblique) decision tree methods,
the 2nd section refers to single model extensions of Lcn, the 3rd section refers to
ensemble methods, and the last section is Gcn. The results of Gcn are copied from
[158], where the results in SIDER and Tox21 are not directly comparable due to lack
of standard splittings. The best result in each section is in bold letters.

Dataset Bace (AUC) HIV (AUC) SIDER (AUC) Tox21 (AUC) PDBbind (RMSE)

Cart 0.652 ± 0.024 0.544 ± 0.009 0.570 ± 0.010 0.651 ± 0.005 1.573 ± 0.000

Hhcart 0.545 ± 0.016 0.636 ± 0.000 0.570 ± 0.009 0.638 ± 0.007 1.530 ± 0.000

Tao 0.734 ± 0.000 0.627 ± 0.000 0.577 ± 0.004 0.676 ± 0.003 Not applicable

Lcn 0.839 ± 0.013 0.728 ± 0.013 0.624 ± 0.044 0.781 ± 0.017 1.508 ± 0.017

Lln 0.818 ± 0.007 0.737 ± 0.009 0.677 ± 0.014 0.813 ± 0.009 1.627 ± 0.008

Alcn 0.854 ± 0.007 0.738 ± 0.009 0.653 ± 0.044 0.814 ± 0.009 1.369 ± 0.007

Rf 0.869 ± 0.003 0.796 ± 0.007 0.685 ± 0.011 0.839 ± 0.007 1.256 ± 0.002

Gbdt 0.859 ± 0.005 0.748 ± 0.001 0.668 ± 0.014 0.812 ± 0.011 1.247 ± 0.002

Elcn 0.874 ± 0.005 0.757 ± 0.011 0.685 ± 0.010 0.822 ± 0.006 1.219 ± 0.007

Gcn 0.783 ± 0.014 0.763 ± 0.016 *0.638 ± 0.012 *0.829 ± 0.006 1.44 ± 0.12

• Graph networks: Gcn (graph convolutional networks on molecules) [37].

For decision trees, Lcn, Lln, and Alcn, we tune the tree depth in {2, 3, . . . , 12}. For

Lcn, Lln, and Alcn, we also tune the DropConnect probability in {0, 0.25, 0.5, 0.75}.

Since regression tasks require precise estimations of the prediction values while classi-

fication tasks do not, we tune the number of hidden layers of 𝑔𝜑 in {0, 1, 2, 3, 4} (each

with 256 neurons) for the regression task, and simply use a linear model 𝑔𝜑 for the

classification tasks. For Elcn, we use Alcn as the base model, tune the ensemble

size 𝐸 ∈ {20, 21, . . . , 26} for the classification tasks, and 𝐸 ∈ {20, 21, . . . , 29} for the

regression task. To train our models, we use the cross entropy loss for the classifica-

tion tasks, and mean squared error for the regression task. Other minor details are

available in Appendix 4.B.

We follow the chemistry literature [158] to measure the performance by AUC for

classification, and root-mean-squared error (RMSE) for regression. For each dataset,

we train a model for each label, compute the mean and standard deviation of the

performance across 10 different random seeds, and report their average across all the

labels within the dataset. The results are in Table 4.4.2.
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Figure 4.4.1: Empirical analysis for oblique decision trees on the HIV dataset, includ-
ing (a) an ablation study for Lcn and (b-c) comparisons of learning algorithms.

Among the (oblique) decision tree training algorithms, our Lcn achieves the state-

of-the-art performance. The continuous extension (Alcn) always improves the em-

pirical performance of Lcn, which is expected since Lcn is limited for the number

of possible outputs (leaf nodes). Among the ensemble methods, the proposed Elcn

always outperforms the classic counterpart, Gbdt, and sometimes outperforms Rf.

Overall, Lcn is the state-of-the-art method for learning oblique decision trees, and

Elcn performs competitively against other alternatives for training tree ensembles.

Empirical analysis. Here we analyze the proposed Lcn in terms of the optimization

and generalization performance in the large HIV dataset. We conduct an ablation

study on the proposed method for training Lcn in Figure 4.4.1a. Direct training

(without annealing) does not suffice to learn Lcn, while the proposed annealing suc-

ceed in optimization; even better optimization and generalization performance can

be achieved by introducing DropConnect, which corroborates our hypothesis on the

exploration effect during training in §4.3.5 and its well-known regularization effect.

Compared to other methods (Fig. 4.4.1b), only Tao has a comparable training perfor-

mance. In terms of generalization (Fig. 4.4.1c), all of the competitors do not perform

well and overfit fairly quickly. In stark contrast, Lcn outperforms the competitors by

a large margin and gets even more accurate as the depth increases. This is expected

due to the strong regularization of Lcn that uses a linear number of effective weights

to construct an exponential number of decision nodes, as discussed in §4.3.3. Some

additional analysis and the visualization of the tree converted from Lcn are included

in Appendix 4.C.
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4.5 Discussion and Conclusion

We create a novel neural architecture by casting the derivatives of deep networks

as the representation, which realizes a new class of neural models that is equivalent

to oblique decision trees. The induced oblique decision trees embed rich structures

and are compatible with deep learning methods. This work can be used to interpret

methods that utilize derivatives of a network, such as training a generator through

the gradient of a discriminator [49]. The work opens up many avenues for future

work, from building representations from the derivatives of neural models to the

incorporation of more structures, such as the inner randomization of random forest.

4.A Proofs

4.A.1 Proof of Lemma 4.8

Proof. We fix 𝑗 and do induction on 𝑖. Without loss of generality, we assume 1 =

𝑟𝑗 ̸= 𝑟′
𝑗 = 0.

If 𝑖 = 𝑗, since 𝑟′
𝑗 = 0, we have

⎧⎪⎨⎪⎩𝜔𝑟1:𝑖 = 𝑊 𝑖+1
1,1:𝐷 +

∑︀𝑖
𝑘=1 𝑊

𝑖+1
1,𝐷+𝑘 × 𝑟𝑘 × 𝜔𝑟1:𝑘−1

,

𝜔𝑟′
1:1

= 𝑊 𝑖+1
1,1:𝐷 +

∑︀𝑖−1
𝑘=1𝑊

𝑖+1
1,𝐷+𝑘 × 𝑟𝑘 × 𝜔𝑟1:𝑘−1

.

Hence, we have 𝜔𝑟1:𝑖 − 𝜔𝑟′
1:1

= (𝑊 𝑖+1
1,𝐷+𝑖 × 𝑟𝑖)× 𝜔𝑟1:𝑖−1

= 𝛼× 𝜔𝑟1:𝑗−1
.

We assume the statement holds for up to some integer 𝑖 ≥ 𝑗:

𝜔𝑟1:𝑖 − 𝜔𝑟′
1:𝑖

= 𝛼× 𝜔𝑟1:𝑗−1
, for some 𝛼 ∈ R.
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For 𝑖 + 1, we have

𝜔𝑟1:𝑖+1
=𝑊 𝑖+2

1,1:𝐷 +
𝑖+1∑︁
𝑘=1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟𝑘 × 𝜔𝑟1:𝑘−1

=𝑊 𝑖+2
1,1:𝐷 +

𝑗−1∑︁
𝑘=1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟𝑘 × 𝜔𝑟1:𝑘−1

+ 𝑊 𝑖+2
1,𝐷+𝑗 × 𝑟𝑗 × 𝜔𝑟1:𝑗−1

+
𝑖+1∑︁

𝑘=𝑗+1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟𝑘 × 𝜔𝑟1:𝑘−1

=𝑊 𝑖+2
1,1:𝐷 +

𝑗−1∑︁
𝑘=1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟′

𝑘 × 𝜔𝑟′
1:𝑘−1

+ 𝑊 𝑖+2
1,𝐷+𝑗 × 𝑟𝑗 × 𝜔𝑟1:𝑗−1

+
𝑖+1∑︁

𝑘=𝑗+1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟′

𝑘 × (𝜔𝑟′
1:𝑘−1

+ 𝛼𝑘 × 𝜔𝑟1:𝑗−1
), for some 𝛼𝑘 ∈ R

=𝑊 𝑖+2
1,1:𝐷 +

𝑖+1∑︁
𝑘=1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟′

𝑘 × 𝜔𝑟′
1:𝑘−1

+ (𝑊 𝑖+2
1,𝐷+𝑗 × 𝑟𝑗 +

𝑖+1∑︁
𝑘=𝑗+1

𝑊 𝑖+2
1,𝐷+𝑘 × 𝑟𝑘 × 𝛼𝑘)× 𝜔𝑟1:𝑗−1

=𝜔𝑟′
1:𝑖+1

+ 𝛼′ × 𝜔𝑟1:𝑗−1
, for some 𝛼′ ∈ R

The proof follows by induction.

4.A.2 Proof of Theorem 4.10

Proof. For any 𝑥 mapping to the same activation pattern 𝑜, the Jacobian 𝐽𝑥𝑎̃ is

constant, thus there is a function from the activation pattern to the Jacobian.

We prove the other direction by layer-wise induction (note that 𝑜 is the concate-

nation of (𝑜1
1, . . . ,𝑜

𝐿
1 ) and 𝐽𝑥𝑎̃ is the concatenation of (∇𝑥𝑎

1
1, . . . ,∇𝑥𝑎

𝐿
1 )):

1. The induction hypothesis is that (𝑜1
1, . . . ,𝑜

𝑖
1) is a function of (∇𝑥𝑎

1
1, . . . ,∇𝑥𝑎

𝑖
1).

2. (𝑖 = 1) If 𝑊 1 = 0 (zero vector), 𝑧1
1 , 𝑎1

1, and 𝑜1
1 are constant (thus being a

function of ∇𝑥𝑎
1
1). Otherwise, ∇𝑥𝑎

1
1 = 0⇔ 𝑜1

1 = 0 and ∇𝑥𝑎
1
1 = 𝑊 1 ⇔ 𝑜1

1 = 1,

so 𝑜1
1 can be written as a function of ∇𝑥𝑎

1
1.
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3. (𝑖 > 1) Assume that we are given (∇𝑥𝑎
1
1, . . . ,∇𝑥𝑎

𝑖−1
1 ) and the corresponding

(𝑜1
1, . . . ,𝑜

𝑖−1
1 ).

If either 𝑜𝑖
1 = 0 or 𝑜𝑖

1 = 1 is infeasible (but not both), by induction hypothesis,

(𝑜1
1, . . . ,𝑜

𝑖
1) can be written as a function of (∇𝑥𝑎

1
1, . . . ,∇𝑥𝑎

𝑖
1).

If 𝑜𝑖
1 = 1 for some 𝑥′ and 𝑜𝑖

1 = 0 for some 𝑥′′, we claim that 𝑜𝑖
1 = 1⇒ ∇𝑥𝑎

𝑖
1 ̸= 0:

If 𝑜𝑖
1 = 1 and∇𝑥𝑎

𝑖
1 = 0, we have 𝑜𝑖

1 = 1⇒ 𝑎𝑖
1 = 𝑧𝑖

1 ≥ 0 and 0 = ∇𝑥𝑎
𝑖
1 = ∇𝑥𝑧

𝑖
1,

which implies that the bias (of 𝑧𝑖, given (𝑜1
1, . . . ,𝑜

𝑖−1
1 )) 𝑧𝑖

1−(∇𝑥𝑧
𝑖
1)

⊤𝑥 ≥ 0. Note

that both ∇𝑥𝑧
𝑖
1 and 𝑧𝑖

1−(∇𝑥𝑧
𝑖
1)

⊤𝑥 are constant given (𝑜1
1, . . . ,𝑜

𝑖−1
1 ), regardless

of 𝑜𝑖
1. Hence, given (𝑜1

1, . . . ,𝑜
𝑖−1
1 ), we have 𝑧𝑖

1 = 𝑧𝑖
1− (∇𝑥𝑧

𝑖
1)

⊤𝑥 ≥ 0 and 𝑜𝑖
1 = 0

is infeasible (⇒⇐).

Note that, given fixed (𝑜1
1, . . . ,𝑜

𝑖−1
1 ), ∇𝑥𝑎

𝑖
1 ̸= 0 has a unique value in R𝐷.

Combining the result 𝑜𝑖
1 = 1⇒ ∇𝑥𝑎

𝑖
1 ̸= 0 with 𝑜𝑖

1 = 0⇒ ∇𝑥𝑎
𝑖
1 = 0, there is a

bijection between 𝑜𝑖
1 and ∇𝑥𝑎

𝑖
1 in this case, which implies that (𝑜1

1, . . . ,𝑜
𝑖
1) can

be written as a function of (∇𝑥𝑎
1
1, . . . ,∇𝑥𝑎

𝑖
1).

4.A.3 Proof of Corollary 4.11

Proof. We first prove that we can represent any 𝑔𝜑(𝐽𝑥𝑎̃) as 𝑔(𝑜). By Theorem 4.10,

we can write 𝐽𝑥𝑎̃ as a function of the activation pattern 𝐽 ′(𝑜), thus we can set set

the table as 𝑔(·) , 𝑔𝜑(𝐽 ′(·)).

To prove the other direction, we can similarly write 𝑜 as 𝑜′(𝐽𝑥𝑎̃) by Theorem 4.10.

Then it remains to show that there exists a feed-forward network 𝑔𝜑 such that

𝑔𝜑(𝐽𝑥𝑎̃) = 𝑔(𝑜(𝐽𝑥𝑎̃)) for at most 2𝑀̃ distinct inputs 𝐽𝑥𝑎̃, which can be proved by the

Theorem 2.5 of [62] or the Theorem 1 of [162].

4.B Implementation Details

Here we provide the full version of the implementation details.

110



For the baseline methods:

• Cart, Hhcart, and Tao: we tune the tree depth in {2, 3, . . . , 12}.

• Rf: we use the scikit-learn [114] implementation of random forest. We set

the number of estimators as 500.

• Gbdt: we use the scikit-learn [114] implementation of gradient boosting

trees. We tune the number of estimators in {23, 24, . . . , 210}.

For Lcn, Lln, and Alcn, we run the same training procedure. For all the datasets,

we tune the depth in {2, 3, . . . , 12} and the DropConnect probability in {0, 0.25, 0.5,

0.75}. The models are optimized with mini-batch stochastic gradient descent with

batch size set to 64. For all the classification tasks, we set the learning rate as 0.1,

which is annealed by a factor of 10 for every 10 epochs (30 epochs in total). For the

regression task, we set the learning rate as 0.0001, which is annealed by a factor of

10 for every 30 epochs (60 epochs in total).

Both Lcn and Alcn have an extra fully-connected network 𝑔𝜑, which transforms

the derivatives 𝐽𝑥𝑎̃ to the final outputs. Since regression tasks require precise esti-

mation of prediction values while classification tasks do not, we tune the number of

hidden layers of 𝑔𝜑 in {0, 1, 2, 3, 4} (each with 256 neurons) for the regression dataset,

and simply use a linear 𝑔𝜑 for the classification datasets.

For Elcn, we fix the depth to 12 and tune the number of base models 𝐸 ∈

{20, 21, . . . , 26} for the classification tasks, and 𝐸 ∈ {20, 21, . . . , 29} for the regression

task. We set the DropConnect probability as 0.75 to encourage strong regularization

for the classification tasks, and as 0.25 to impose mild regularization for the regression

task (because regression is hard to fit). We found stochastic gradient descent does

not suffice to incrementally learn the Elcn, so we use the AMSGrad optimizer [120]

instead. We set the batch size as 256 and train each partial ensemble for 30 epochs.

The learning rate is 0.01 for the classification tasks, and 0.0001 for the regression

task.

To train our models, we use the cross entropy loss for the classification tasks, and

mean squared error for the regression task.
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Table 4.C.1: Analysis for “unobserved decision patterns” of Lcn in the Bace dataset.

Depth 8 9 10 11 12

# of possible patterns 256 512 1024 2048 4096
# of training patterns 72 58 85 103 86
# of testing patterns 32 31 48 49 40
# of testing patterns - training patterns 5 2 11 8 11
Ratio of testing points w/ unobserved patterns 0.040 0.013 0.072 0.059 0.079

Testing performance - observed patterns 0.8505 0.8184 0.8270 0.8429 0.8390
Testing performance - unobserved patterns 0.8596 0.9145 0.8303 0.7732 0.8894

4.C Empirical Analysis and Visualization

4.C.1 Supplementary Empirical Analysis

In this section, we investigate the learning of “unobserved branching / leaves” dis-

cussed in §4.3.4. The “unobserved branching / leaves” refer to the decision and leaf

nodes of the oblique decision tree converted from Lcn, such that there is no training

data that are routed to the nodes. It is impossible for traditional (oblique) decision

tree training algorithms to learn the values of such nodes (e.g., the output value of a

leaf node in the traditional framework is based on the training data that are routed

to the leaf node). However, the shared parameterization in our oblique decision tree

provides a means to update such unobserved nodes during training (see the discussion

in §4.3.4).

Since the above scenario in general happens more frequently in small datasets than

in large datasets, we evaluate the scenario on the small Bace dataset (binary classifi-

cation task). Here we empirically analyze a few things pertaining to the unobserved

nodes:

• # of training patterns: the number of distinct end-to-end activation / decision

patterns 𝑟1:𝐿 encountered in the training data.

• # of testing patterns: the number of distinct end-to-end activation / decision

patterns 𝑟1:𝐿 encountered in the testing data.

• # of testing patterns - training patterns: the number of distinct end-to-end
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activation / decision patterns 𝑟1:𝐿 that is only encountered in the testing data

but not in the training data.

• Ratio of testing points w/ unobserved patterns: the number of testing points

that yield unobserved patterns divided by the total number of testing points.

• Testing performance - observed patterns: here we denote the number of testing

data as 𝑁 , the prediction and label of the 𝑖th data point as 𝑦𝑖 ∈ [0, 1] and

𝑦𝑖 ∈ {0, 1}, respectively. We collect the subset of indices 𝐼 of the testing data

such that their activation / decision patterns 𝑟1:𝐿 are observed in the training

data, and then compute the performance of their predictions. Since the original

performance is measured by AUC, here we generalize AUC to measure a subset

of points 𝐼 as:

∑︀
𝑖∈𝐼

∑︀𝑁
𝑗=1

(︂
I[𝑦𝑖 > 𝑦𝑗 ]

(︁
I[𝑦𝑖 > 𝑦𝑗 ] + 0.5I[𝑦𝑖 = 𝑦𝑗 ]

)︁
+ I[𝑦𝑖 < 𝑦𝑗 ]

(︁
I[𝑦𝑖 < 𝑦𝑗 ] + 0.5I[𝑦𝑖 = 𝑦𝑗 ]

)︁)︂
∑︀

𝑖∈𝐼

∑︀𝑁
𝑗=1

(︂
I[𝑦𝑖 > 𝑦𝑗 ] + I[𝑦𝑖 < 𝑦𝑗 ])

)︂ .

When 𝐼 = [𝑁 ], the above measure recovers AUC.

• Testing performance - unobserved patterns: the same as above, but use 𝐼 for the

testing data such that their activation / decision patterns 𝑟1:𝐿 are unobserved

in the training data.

The results are in Table 4.C.1. There are some interesting findings. For example,

there is an exponential number of possible patterns, but the number of patterns that

appear in the dataset is quite small. The ratio of testing points with unobserved

patterns is also small, but these unobserved branching / leaves seem to be controlled

properly. They do not lead to completely different performance compared to those

that are observed during training.

4.C.2 Visualization

Here we visualize the learned locally constant network on the HIV dataset in the

representation of its equivalent oblique decision tree in Fig. 4.C.1. Since the dimension
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of Morgan fingerprint [122] is quite high (2,048), here we only visualize the top-K

weights (in terms of the absolute value) for each decision node. We also normalize

each weight such that the ℓ1 norm of each weight is 1. Since the task is evaluated

by ranking (AUC), we visualize the leaf nodes in terms of the ranking of output

probability among the leaf nodes (the higher the more likely).

Note that a complete visualization requires some engineering efforts. Our main

contribution here is the algorithm that transforms an Lcn to an oblique decision tree,

rather than the visualization of oblique decision trees, so we only provide the initial

visualization as a proof of concept.
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Figure 4.C.1: Visualization of learned locally constant network in the representation
of oblique decision trees using the proof of Theorem 4.4. The number in the leaves
indicates the ranking of output probability among the 16 leaves (the exact value is
not important). See the descriptions in Appendix 4.C.2.
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Chapter 5

Tight Certificates of Adversarial

Robustness for Randomly Smoothed

Classifiers

5.1 Introduction

Many powerful classifiers lack robustness in the sense that a slight, potentially un-

noticeable manipulation of the input features, e.g., by an adversary, can cause the

classifier to change its prediction [50]. The effect is clearly undesirable in decision crit-

ical applications. Indeed, a lot of recent work has gone into analyzing such failures

together with providing certificates of robustness.

Robustness can be defined with respect to a variety of metrics that bound the

magnitude or the type of adversarial manipulation. The most common approach to

searching for violations is by finding an adversarial example within a small neighbor-

hood of the example in question, e.g., using gradient-based algorithms [42, 50, 95].

The downside of such approaches is that failure to discover an adversarial example

does not mean that another technique could not find one. For this reason, a recent

line of work has instead focused on certificates of robustness, i.e., guarantees that

ensure, for specific classes of methods, that no adversarial examples exist within a

117



certified region. Unfortunately, obtaining exact guarantees can be computationally

intractable [70, 93, 143], and guarantees that scale to realistic architectures have

remained somewhat conservative [31, 99, 151, 154, 163].

Ensemble classifiers have recently been shown to yield strong guarantees of robust-

ness [29]. The ensembles, in this case, are simply induced from randomly perturbing

the input to a base classifier. The guarantees state that, given an additive isotropic

Gaussian noise on the input example, an adversary cannot alter the prediction of the

corresponding ensemble within an ℓ2 radius, where the radius depends on the noise

variance as well as the ensemble margin at the given point [29].

In this work, we substantially extend robustness certificates for such noise-induced

ensembles. We provide guarantees for alternative metrics and noise distributions (e.g.,

uniform), develop a stratified likelihood ratio analysis that allows us to provide cer-

tificates of robustness over continuous spaces with respect to ℓ1 and ℓ∞ distances

as well as discrete spaces with respect to ℓ0 distance, which are tight and applicable

to any measurable classifiers. We also introduce scalable algorithms for computing

the certificates. The guarantees can be further tightened by introducing additional

assumptions about the family of classifiers. We illustrate this in the context of en-

sembles derived from decision trees. Empirically, our ensemble classifiers yield the

state-of-the-art certified guarantees with respect to ℓ0 bounded adversaries across

image and molecule datasets in comparison to the previous method adapted from

continuous spaces.

5.2 Related Work

In a classification setting, the role of robustness certificates is to guarantee a constant

classification within a local region; a certificate is always sufficient to claim robustness.

When a certificate is both sufficient and necessary, it is called an exact certificate. For

example, the exact ℓ2 certificate of a linear classifier is the ℓ2 distance between the

classifier and a given point. Below we focus the discussions on the recent development

of robustness guarantees for deep networks.
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Most of the exact methods are derived on piecewise linear networks, whose mixed

integer linear representations [83] enable the usage of mixed integer linear program-

ming [24, 36, 44, 93, 143] or satisfiability modulo theories [22, 40, 70, 124] for finding

the exact adversary under an ℓ𝑞 radius. However, the exact methods are in general

NP-complete, and thus do not scale to large problems [143].

A certificate that only holds a sufficient condition is conservative but can be more

scalable than exact methods. Through relaxation, such guarantees may be derived as

a linear program [154, 156], a semidefinite program [117, 118], or a dual optimization

problem [38, 39]. Alternative approaches conduct layer-wise relaxations of feasible

neuron values to derive the certificates [52, 99, 130, 151, 163]. Unfortunately, there is

no empirical evidence of an effective certificate from the above methods in large scale

problems. This does not entail that the certificates are not tight enough in practice; it

might also be attributed to the fact that it is challenging to obtain a robust network

in a large scale setting.

Recent works propose a new modeling scheme that ensembles a classifier by input

randomization [21, 91], mostly done via an additive isotropic Gaussian noise. Lecuyer

et al. [82] first propose a certificate based on differential privacy, which is improved

by Li et al. [90] using Rényi divergence. Cohen et al. [29] proceed with the analysis

by proving the tight certificate with respect to all the measurable classifiers based on

the Neyman-Pearson Lemma [108], which yields the state-of-the-art provably robust

classifier. However, the tight certificate is tailored to an isotropic Gaussian distribu-

tion and ℓ2 metric, while we generalize the result across broad classes of distributions

and metrics. In addition, we show that such tight guarantee can be tightened with

assumptions about the classifier.

Our method of certification also yields the first tight and actionable ℓ0 robustness

certificates in discrete domains (cf. continuous domains where an adversary is easy

to find [50]). Robustness guarantees in discrete domains are combinatorial in nature

and thus challenging to obtain. Indeed, even for simple binary vectors, verifying

robustness requires checking an exponential number of predictions for any black-box
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model.1

5.3 Certification Methodology

Given an input 𝑥 ∈ 𝒳 , a randomization scheme 𝜑 assigns a probability mass/density

Pr(𝜑(𝑥) = 𝑧) for each randomized outcome 𝑧 ∈ 𝒳 . We can define a probabilistic

classifier either by specifying the associated conditional distribution P(𝑦|𝑥) for a class

𝑦 ∈ 𝒴 or by viewing it as a random function 𝑓(𝑥) where the randomness in the

output is independent for each 𝑥. We compose the randomization scheme 𝜑 with a

classifier 𝑓 to get a randomly smoothed classifier E𝜑[P(𝑦|𝜑(𝑥))], where the probability

for outputting a class 𝑦 ∈ 𝒴 is denoted as Pr(𝑓(𝜑(𝑥)) = 𝑦) and abbreviated as 𝑝,

whenever 𝑓, 𝜑,𝑥 and 𝑦 are clear from the context. Under this setting, we first develop

our framework for tight robustness certificates in §5.3.1, exemplify the framework in

§5.3.2-5.3.4, and illustrate how the guarantees can be refined with further assumption

in §5.3.5-5.3.6. We defer all the proofs to Appendix 5.A.

5.3.1 A Framework for Tight Certificates of Robustness

In this section, we develop our framework for deriving tight certificates of robustness

for randomly smoothed classifiers, which will be instantiated in the following sections.

Point-wise certificate. Given 𝑝, we first identify a tight lower bound on the proba-

bility score Pr(𝑓(𝜑(𝑥̄)) = 𝑦) for another (neighboring) point 𝑥̄ ∈ 𝒳 . Here we denote

the set of measurable classifiers with respect to 𝜑 as ℱ . Without any additional

assumptions on 𝑓 , a lower bound can be found by the minimization problem:

𝜌𝑥,𝑥̄(𝑝) , min
𝑓∈ℱ :Pr(𝑓(𝜑(𝑥))=𝑦)=𝑝

Pr(𝑓(𝜑(𝑥̄)) = 𝑦) ≤ Pr(𝑓(𝜑(𝑥̄)) = 𝑦). (5.1)

Note that the bound is tight since 𝑓 satisfies the constraint.

Regional certificate. We can extend the point-wise certificate 𝜌𝑥,𝑥̄(𝑝) to a regional

certificate by examining the worst case 𝑥̄ over the neighboring region around 𝑥.
1We are aware of two concurrent works also yielding certificates in discrete domain [67, 68].
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Formally, given an ℓ𝑞 metric ‖ · ‖𝑞, the neighborhood around 𝑥 with radius 𝑟 is

defined as ℬ𝑟,𝑞(𝑥) , {𝑥̄ ∈ 𝒳 : ‖𝑥− 𝑥̄‖𝑞 ≤ 𝑟}. Assuming 𝑝 = Pr(𝑓(𝜑(𝑥)) = 𝑦) > 0.5

for a 𝑦 ∈ 𝒴 , a robustness certificate on the ℓ𝑞 radius can be found by

𝑅(𝑥, 𝑝, 𝑞) , sup 𝑟, 𝑠.𝑡. min
𝑥̄∈ℬ𝑟,𝑞(𝑥)

𝜌𝑥,𝑥̄(𝑝) > 0.5. (5.2)

Essentially, the certificate 𝑅(𝑥, 𝑝, 𝑞) entails the following robustness guarantee:

∀𝑥̄ ∈ 𝒳 : ‖𝑥− 𝑥̄‖𝑞 < 𝑅(𝑥, 𝑝, 𝑞),we have Pr(𝑓(𝜑(𝑥̄)) = 𝑦) > 0.5. (5.3)

When the maximum can be attained in Eq. (5.2) (which will be the case in ℓ0 norm),

the above < can be replaced with ≤. Note that here we assume Pr(𝑓(𝜑(𝑥)) = 𝑦) > 0.5

and ignore the case that 0.5 ≥ Pr(𝑓(𝜑(𝑥̄)) = 𝑦) > max𝑦′ ̸=𝑦 Pr(𝑓(𝜑(𝑥̄)) = 𝑦′). By

definition, the certified radius 𝑅(𝑥, 𝑝, 𝑞) is tight for binary classification, and provides

a reasonable sufficient condition to guarantee robustness for |𝒴| > 2. The tight

guarantee for |𝒴| > 2 will involve the maximum prediction probability over all the

remaining classes (see Theorem 1 of [29]). However, when the prediction probability

𝑝 = Pr(𝑓(𝜑(𝑥)) = 𝑦) is intractable to compute and relies on statistical estimation

for each class 𝑦 (e.g., when 𝑓 is a deep network), the tight guarantee is statistically

challenging to obtain. The actual algorithm used by Cohen et al. [29] is also a special

case of Eq. (5.2).

5.3.2 A Warm-up Example: the Uniform Distribution
ℒ4

ℒ1

ℒ3ℒ2

𝑥

𝑥̄

Figure 5.3.1: Uni-
form distributions.

To illustrate the framework, we show a simple (but new) sce-

nario when 𝒳 = R𝑑 and 𝜑 is an additive uniform noise with a

parameter 𝛾 ∈ R>0:

𝜑(𝑥)𝑖 = 𝑥𝑖 + 𝜖𝑖, 𝜖𝑖
𝑖.𝑖.𝑑.∼ Uniform([−𝛾, 𝛾]), ∀𝑖 ∈ {1, . . . , 𝑑}. (5.4)

Given two points 𝑥 and 𝑥̄, as illustrated in Fig. 5.3.1, we can partition the space

R𝑑 into 4 disjoint regions: ℒ1 = ℬ𝛾,∞(𝑥)∖ℬ𝛾,∞(𝑥̄), ℒ2 = ℬ𝛾,∞(𝑥) ∩ ℬ𝛾,∞(𝑥̄), ℒ3 =
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ℬ𝛾,∞(𝑥̄)∖ℬ𝛾,∞(𝑥) and ℒ4 = R𝑑∖(ℬ𝛾,∞(𝑥̄) ∪ ℬ𝛾,∞(𝑥)). Accordingly, ∀𝑓 ∈ ℱ , we can

rewrite Pr(𝑓(𝜑(𝑥)) = 𝑦) and Pr(𝑓(𝜑(𝑥̄)) = 𝑦) as follows:

Pr(𝑓(𝜑(𝑥)) = 𝑦) =
4∑︁

𝑖=1

∫︁
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧) Pr(𝑓(𝑧) = 𝑦))d𝑧 =
4∑︁

𝑖=1

𝜋𝑖

∫︁
ℒ𝑖

Pr(𝑓(𝑧) = 𝑦))d𝑧,

Pr(𝑓(𝜑(𝑥̄)) = 𝑦) =
4∑︁

𝑖=1

∫︁
ℒ𝑖

Pr(𝜑(𝑥̄) = 𝑧) Pr(𝑓(𝑧) = 𝑦))d𝑧 =
4∑︁

𝑖=1

𝜋̄𝑖

∫︁
ℒ𝑖

Pr(𝑓(𝑧) = 𝑦))d𝑧,

where 𝜋1:4 = ((2𝛾)−𝑑, (2𝛾)−𝑑, 0, 0), and 𝜋̄1:4 = (0, (2𝛾)−𝑑, (2𝛾)−𝑑, 0). With this repre-

sentation, it is clear that, in order to solve Eq. (5.1), we only have to consider the

integral behavior of 𝑓 within each region ℒ1, . . . ,ℒ4. Concretely, we have:

𝜌𝑥,𝑥̄(𝑝) = min
𝑓∈ℱ :

∑︀4
𝑖=1 𝜋𝑖

∫︀
ℒ𝑖

Pr(𝑓(𝑧)=𝑦))d𝑧=𝑝

4∑︁
𝑖=1

𝜋̄𝑖

∫︁
ℒ𝑖

Pr(𝑓(𝑧) = 𝑦))d𝑧

= min
𝑔:{1,2,3,4}→[0,1],

𝜋1|ℒ1|𝑔(1)+𝜋2|ℒ2|𝑔(2)=𝑝

𝜋̄2|ℒ2|𝑔(2) + 𝜋̄3|ℒ3|𝑔(3) = min
𝑔:{1,2,3,4}→[0,1],

𝜋1|ℒ1|𝑔(1)+𝜋2|ℒ2|𝑔(2)=𝑝

𝜋̄2|ℒ2|𝑔(2),

where the second equality filters the components with 𝜋𝑖 = 0 or 𝜋̄𝑖 = 0, and the last

equality is due to the fact that 𝑔(3) is unconstrained and minimizes the objective

when 𝑔(3) = 0. Since 𝜋2 = 𝜋̄2,⎧⎪⎨⎪⎩𝜌𝑥,𝑥̄(𝑝) = 0, if 0 ≤ 𝑝 ≤ 𝜋1|ℒ1| = Pr(𝜑(𝑥) ∈ ℒ1),

𝜌𝑥,𝑥̄(𝑝) = 𝑝− 𝜋1|ℒ1|, if 1 ≥ 𝑝 > 𝜋1|ℒ1| = Pr(𝜑(𝑥) ∈ ℒ1).

To obtain the regional certificate, the minimizers of min𝑥̄∈ℬ𝑟,𝑞(𝑥) 𝜌𝑥,𝑥̄(𝑝) are simply

the points that maximize the volume of ℒ1 = ℬ1∖ℬ2. Accordingly,

Proposition 5.1. If 𝜑(·) is defined as Eq. (5.4), we have 𝑅(𝑥, 𝑝, 𝑞 = 1) = 2𝑝𝛾−𝛾

and 𝑅(𝑥, 𝑝, 𝑞 =∞) = 2𝛾−2𝛾(1.5− 𝑝)1/𝑑.

Discussion. Our goal here was to illustrate how certificates can be computed with

the uniform distribution using our technique. However, the certificate radius itself

is inadequate in this case. For example, 𝑅(𝑥, 𝑝, 𝑞 = 1) ≤ 𝛾, which arises from the

bounded support in the uniform distribution. The derivation nevertheless provides
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some insights about how one can compute the point-wise certificate 𝜌𝑥,𝑥̄(𝑝). The key

step is to partition the space into regions ℒ1, . . . ,ℒ4, where the likelihoods Pr(𝜑(𝑥) =

𝑧) and Pr(𝜑(𝑥̄) = 𝑧) are both constant within each region ℒ𝑖. The property allows

us to substantially reduce the optimization problem in Eq. (5.1) to finding a single

probability value 𝑔(𝑖) ∈ [0, 1] for each region ℒ𝑖.

5.3.3 A General Lemma for Point-wise Certificate

In this section, we generalize the idea in §5.3.2 to find the point-wise certificate

𝜌𝑥,𝑥̄(𝑝). For each point 𝑧 ∈ 𝒳 , we define the likelihood ratio 𝜂𝑥,𝑥̄(𝑧) , Pr(𝜑(𝑥) =

𝑧)/Pr(𝜑(𝑥̄) = 𝑧).2 If we can partition 𝒳 into 𝑛 regions ℒ1, . . . ,ℒ𝑛 : ∪𝑛𝑖=1ℒ𝑖 = 𝒳

for some 𝑛 ∈ Z>0, such that the likelihood ratio within each region ℒ𝑖 is a constant

𝜂𝑖 ∈ [0,∞]: 𝜂𝑥,𝑥̄(𝑧) = 𝜂𝑖,∀𝑧 ∈ ℒ𝑖, then we can sort the regions such that 𝜂1 ≥ 𝜂2 ≥

· · · ≥ 𝜂𝑛. Note that 𝒳 can still be uncountable (see the example in §5.3.2).

Informally, we can always “normalize” 𝑓 so that it predicts a constant probability

value 𝑔(𝑖) ∈ [0, 1] within each likelihood ratio region ℒ𝑖. This preserves the integral

over ℒ𝑖 and thus over 𝒳 , generalizing the scenario in §5.3.2. Moreover, to minimize

Pr(𝑓(𝜑(𝑥̄)) = 𝑦) under a fixed budget Pr(𝑓(𝜑(𝑥)) = 𝑦), as in Eq. (5.1), it is advanta-

geous to set 𝑓(𝑧) to 𝑦 in regions with high likelihood ratio. These arguments suggest

a greedy algorithm for solving Eq. (5.1) by iteratively assigning 𝑓(𝑧) = 𝑦,∀𝑧 ∈ ℒ𝑖 for

𝑖 ∈ (1, 2, . . . ) until the budget constraint is met. Formally,

Lemma 5.2. ∀𝑥, 𝑥̄ ∈ 𝒳 , 𝑝 ∈ [0, 1], let 𝐻* , min𝐻∈{1,...,𝑛}:
∑︀𝐻

𝑖=1 Pr(𝜑(𝑥)∈ℒ𝑖)≥𝑝 𝐻, then

𝜂𝐻* > 0, any 𝑓 * satisfying Eq. (5.5) is a minimizer of Eq. (5.1),

∀𝑖 ∈ {1, 2, . . . , 𝑛},∀𝑧 ∈ ℒ𝑖,Pr(𝑓 *(𝑧) = 𝑦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑖 < 𝐻*,

𝑝−
∑︀𝐻*−1

𝑖=1 Pr(𝜑(𝑥)∈ℒ𝑖)

Pr(𝜑(𝑥)∈ℒ𝐻* )
, if 𝑖 = 𝐻*,

0, if 𝑖 > 𝐻*.

(5.5)

and 𝜌𝑥,𝑥̄(𝑝) =
∑︀𝐻*−1

𝑖=1 Pr(𝜑(𝑥̄) ∈ ℒ𝑖) + (𝑝−
∑︀𝐻*−1

𝑖=1 Pr(𝜑(𝑥) ∈ ℒ𝑖))/𝜂𝐻*

2If Pr(𝜑(𝑥̄) = 𝑧) = Pr(𝜑(𝑥) = 𝑧) = 0, 𝜂𝑥,𝑥̄(𝑧) can be defined arbitrarily in [0,∞] without
affecting the solution in Lemma 5.2.
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We remark that Eq. (5.1) and Lemma 5.2 can be interpreted as a likelihood ratio

testing [108], by casting Pr(𝜑(𝑥) = 𝑧) and Pr(𝜑(𝑥̄) = 𝑧) as likelihoods for two

hypothesis with the significance level 𝑝. We refer the readers to [144] to see a similar

Lemma derived under the language of hypothesis testing.

Remark 5.3. 𝜌𝑥,𝑥̄(𝑝) is an increasing continuous function of 𝑝; if 𝜂1 <∞, 𝜌𝑥,𝑥̄(𝑝) is a

strictly increasing continuous function of 𝑝; if 𝜂1 <∞ and 𝜂𝑛 > 0, 𝜌𝑥,𝑥̄ : [0, 1]→ [0, 1]

is a bijection.

Remark 5.3 will be used in §5.3.4 to derive an efficient algorithm to compute

robustness certificates.

Discussion. Given ℒ𝑖, Pr(𝜑(𝑥) ∈ ℒ𝑖), and Pr(𝜑(𝑥̄) ∈ ℒ𝑖),∀𝑖 ∈ [𝑛], Lemma 5.2

provides an 𝑂(𝑛) method to compute 𝜌𝑥,𝑥̄(𝑝). For any actual randomization 𝜑, the

key is to find a partition ℒ1, . . . ,ℒ𝑛 such that Pr(𝜑(𝑥) ∈ ℒ𝑖) and Pr(𝜑(𝑥̄) ∈ ℒ𝑖) are

easy to compute. Having constant likelihoods in each ℒ𝑖 : Pr(𝜑(𝑥) = 𝑧) = Pr(𝜑(𝑥) =

𝑧′),∀𝑧, 𝑧′ ∈ ℒ𝑖 (cf. only having constant likelihood ratio 𝜂𝑖) is a way to simplify

Pr(𝜑(𝑥) ∈ ℒ𝑖) = |ℒ𝑖|Pr(𝜑(𝑥) = 𝑧), and similarly for Pr(𝜑(𝑥̄) ∈ ℒ𝑖).

5.3.4 A Discrete Distribution for ℓ0 Robustness

We consider ℓ0 robustness guarantees in a discrete space 𝒳 =
{︀

0, 1
𝐾
, 2
𝐾
, . . . , 1

}︀𝑑 for

some 𝐾 ∈ Z>0;3 we define the following discrete distribution with a parameter 𝛼 ∈

(0, 1), independent and identically distributed for each dimension 𝑖 ∈ {1, 2, . . . , 𝑑}:

⎧⎪⎨⎪⎩Pr(𝜑(𝑥)𝑖 = 𝑥𝑖) = 𝛼,

Pr(𝜑(𝑥)𝑖 = 𝑧) = (1− 𝛼)/𝐾 , 𝛽 ∈ (0, 1/𝐾), if 𝑧 ∈
{︀

0, 1
𝐾
, 2
𝐾
, . . . , 1

}︀
and 𝑧 ̸= 𝑥𝑖.

(5.6)

Here 𝜑(·) can be regarded as a composition of a Bernoulli random variable and a

uniform random variable. Due to the symmetry of the randomization with respect

3More generally, the method applies to the ℓ0 / Hamming distance in a Hamming space (i.e., fixed
length sequences of tokens from a discrete set, e.g., (♠10,♠𝐽,♠𝑄,♠𝐾,♠𝐴) ∈ {♠𝐴,♠𝐾, ...,♣2}5).
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to all the configurations of 𝑥, 𝑥̄ ∈ 𝒳 such that ‖𝑥− 𝑥̄‖0 = 𝑟 (for some 𝑟 ∈ Z≥0), we

have the following Lemma for the equivalence of 𝜌𝑥,𝑥̄:

Lemma 5.4. If 𝜑(·) is defined as Eq. (5.6), given 𝑟 ∈ Z≥0, define the canonical

vectors 𝑥𝐶 , (0, 0, · · · , 0) and 𝑥̄𝐶 , (1, 1, · · · , 1, 0, 0, · · · , 0), where ‖𝑥̄𝐶‖0 = 𝑟. Let

𝜌𝑟 , 𝜌𝑥𝐶 ,𝑥̄𝐶
. Then for all 𝑥, 𝑥̄ such that ‖𝑥− 𝑥̄‖0 = 𝑟, we have 𝜌𝑥,𝑥̄ = 𝜌𝑟.

1 1 1 1 0 0 0

0 1 1
𝐾 0 0 3

𝐾 1

0 0 0 0 0 0 0

𝑥̄𝐶

𝑧

𝑥𝐶

𝑢 = 4

𝑣 = 5

𝑟 = 4 𝑑− 𝑟 = 3

𝑑 = 7

Figure 5.3.2: Illustration for
Eq. (5.7)

Based on Lemma 5.4, finding 𝑅(𝑥, 𝑝, 𝑞) for a given

𝑝, it suffices to find the maximum 𝑟 such that 𝜌𝑟(𝑝) >

0.5. Since the likelihood ratio 𝜂𝑥,𝑥̄(𝑧) is always pos-

itive and finite, the inverse 𝜌−1
𝑟 exists (due to Re-

mark 5.3), which allows us to pre-compute 𝜌−1
𝑟 (0.5)

and check 𝑝 > 𝜌−1
𝑟 (0.5) for each 𝑟 ∈ Z≥0, instead

of computing 𝜌𝑟(𝑝) for each given 𝑝 and 𝑟. Then

𝑅(𝑥, 𝑝, 𝑞) is simply the maximum 𝑟 such that 𝑝 >

𝜌−1
𝑟 (0.5). Below we discuss how to compute 𝜌−1

𝑟 (0.5) in a scalable way. Our first step

is to identify a set of likelihood ratio regions ℒ1, . . . ,ℒ𝑛 such that Pr(𝜑(𝑥) ∈ ℒ𝑖) and

Pr(𝜑(𝑥̄) ∈ ℒ𝑖) as used in Lemma 5.2 can be computed efficiently. Note that, due

to Lemma 5.4, it suffices to consider 𝑥𝐶 , 𝑥̄𝐶 such that ‖𝑥̄𝐶‖0 = 𝑟 throughout the

derivation.

For an ℓ0 radius 𝑟 ∈ Z≥0, ∀(𝑢, 𝑣) ∈ {0, 1, . . . , 𝑑}2, we construct the region

ℒ(𝑢, 𝑣; 𝑟) , {𝑧 ∈ 𝒳 : Pr(𝜑(𝑥𝐶) = 𝑧) = 𝛼𝑑−𝑢𝛽𝑢,Pr(𝜑(𝑥̄𝐶) = 𝑧) = 𝛼𝑑−𝑣𝛽𝑣}, (5.7)

which contains points that can be obtained by “flipping” 𝑢 coordinates from 𝑥𝐶 or

𝑣 coordinates from 𝑥̄𝐶 . See Figure 5.3.2 for an illustration, where different colors

represent different types of coordinates: orange means both 𝑥𝐶 , 𝑥̄𝐶 are flipped on

this coordinate and they were initially the same; red means both are flipped and were

initially different; green means only 𝑥𝐶 is flipped and blue means only 𝑥̄𝐶 is flipped.

By denoting the numbers of these coordinates as 𝑖, 𝑗*, 𝑢−𝑖−𝑗*, 𝑣−𝑖−𝑗*, respectively,

we have the following formula for computing the cardinality of each region |ℒ(𝑢, 𝑣; 𝑟)|.
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Algorithm 1 Computing 𝜌−1
𝑟 (0.5)

1: sort {(𝑢𝑖, 𝑣𝑖)}𝑛𝑖=1 by likelihood ratio
2: 𝑝, 𝜌𝑟 = 0, 0
3: for 𝑖 = 1, . . . , 𝑛 do
4: 𝑝′ = 𝛼𝑑−𝑢𝑖𝛽𝑢𝑖

5: 𝜌′𝑟 = 𝛼𝑑−𝑣𝑖𝛽𝑣𝑖

6: ∆𝜌𝑟 = 𝜌′𝑟 × |ℒ(𝑢𝑖, 𝑣𝑖; 𝑟)|
7: if 𝜌𝑟 + ∆𝜌𝑟 < 0.5 then
8: 𝜌𝑟 = 𝜌𝑟 + ∆𝜌𝑟
9: 𝑝 = 𝑝 + 𝑝′ × |ℒ(𝑢𝑖, 𝑣𝑖; 𝑟)|

10: else
11: 𝑝 = 𝑝 + 𝑝′ × (0.5− 𝜌𝑟)/𝜌

′
𝑟

12: return 𝑝
13: end if
14: end for

Lemma 5.5. For any 𝑢, 𝑣 ∈ {0, 1, . . . , 𝑑}, 𝑢 ≤ 𝑣, 𝑟 ∈ Z≥0 we have |ℒ(𝑢, 𝑣; 𝑟)| =

|ℒ(𝑣, 𝑢; 𝑟)|, and

|ℒ(𝑢, 𝑣; 𝑟)| =
min(𝑢,𝑑−𝑟,⌊𝑢+𝑣−𝑟

2
⌋)∑︁

𝑖=max{0,𝑣−𝑟}

(𝐾 − 1)𝑗
*
𝑟!

(𝑢− 𝑖− 𝑗*)!(𝑣 − 𝑖− 𝑗*)!𝑗*!

𝐾𝑖(𝑑− 𝑟)!

(𝑑− 𝑟 − 𝑖)!𝑖!
,

where 𝑗* , 𝑢 + 𝑣 − 2𝑖− 𝑟.

Therefore, for a fixed 𝑟, the complexity of computing all the cardinalities |ℒ(𝑢, 𝑣; 𝑟)|

is Θ(𝑑3). Since each region ℒ(𝑢, 𝑣; 𝑟) has a constant likelihood ratio 𝛼𝑣−𝑢𝛽𝑢−𝑣 and we

have ∪𝑑𝑢=0∪𝑑𝑣=0ℒ(𝑢, 𝑣; 𝑟) = 𝒳 , we can apply the regions to find the function 𝜌𝑥,𝑥̄ = 𝜌𝑟

via Lemma 5.2. Under this representation, the number of nonempty likelihood ratio

regions 𝑛 is bounded by (𝑑 + 1)2, the perturbation probability Pr(𝜑(𝑥) ∈ ℒ(𝑢, 𝑣; 𝑟))

used in Lemma 5.2 is simply 𝛼𝑑−𝑢𝛽𝑢|ℒ(𝑢, 𝑣; 𝑟)|, and similarly for the Pr(𝜑(𝑥̄) ∈

ℒ(𝑢, 𝑣; 𝑟)). Based on Lemma 5.2 and Lemma 5.5, we may use a for-loop to compute

the bijection 𝜌𝑟(·) for the input 𝑝 until 𝜌𝑟(𝑝) = 0.5, and return the corresponding 𝑝

as 𝜌−1
𝑟 (0.5). The procedure is illustrated in Algorithm 1.

Scalable implementation. In practice, Algorithm 1 can be challenging to imple-
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ment; the probability values (e.g., 𝛼𝑑−𝑢𝛽𝑢) can be extremely small, which is infeasible

to be computationally represented using floating points. If we set 𝛼 to be a rational

number, both 𝛼 and 𝛽 can be represented in fractions, and thus all the correspond-

ing probability values can be represented by two (large) integers; we also observe

that computing the (large) cardinality |ℒ(𝑢, 𝑣; 𝑟)| is feasible in modern large integer

computation frameworks in practice (e.g., python), which motivates us to adapt the

computation in Algorithm 1 to large integers.

For simplicity, we assume 𝛼 = 𝛼′/100 with some 𝛼′ ∈ Z : 100 ≥ 𝛼′ ≥ 0. If we

define 𝛼̃ , 100𝐾𝛼 ∈ Z, 𝛽 , 100𝐾𝛽 ∈ Z, we may implement Algorithm 1 in terms

of the non-normalized, integer version 𝛼̃, 𝛽. Specifically, we replace 𝛼, 𝛽 and the

constant 0.5 with 𝛼̃, 𝛽 and 50𝐾× (100𝐾)𝑑−1, respectively. Then all the computations

in Algorithm 1 can be trivially adapted except the division (0.5 − 𝜌𝑟)/𝜌
′
𝑟. Since the

division is bounded by |ℒ(𝑢𝑖, 𝑣𝑖; 𝑟)| (see the comparison between line 9 and line 11), we

can implement the division by a binary search over {1, 2 . . . , |ℒ{𝑢𝑖, 𝑣𝑖; 𝑟}|}, which will

result in an upper bound with an error bounded by 𝑝′ in the original space, which is

in turn bounded by 𝛼𝑑 assuming 𝛼 > 𝛽. Finally, to map the computed, unnormalized

𝜌−1
𝑟 (0.5), denoted as 𝜌−1

𝑟 (0.5), back to the original space, we find an upper bound

of 𝜌−1
𝑟 (0.5) up to the precision of 10−𝑐 for some 𝑐 ∈ Z>0 (we set 𝑐 = 20 in the

experiments): we find the smallest upper bound of 𝜌−1
𝑟 (0.5) ≤ 𝜌× (10𝐾)𝑐(100𝐾)𝑑−𝑐

over 𝜌 ∈ {1, 2, . . . , 10𝑐} via binary search, and report an upper bound of 𝜌−1
𝑟 (0.5) as

𝜌× 10−𝑐 with an error bounded by 10−𝑐 + 𝛼𝑑 in total. Note that an upper bound of

𝜌−1
𝑟 (0.5) is still a valid certificate.

As a side note, simply computing the probabilities in the log-domain will lead

to uncontrollable approximate results due to floating point arithmetic; using large

integers to ensure a verifiable approximation error in Algorithm 1 is necessary to

ensure a computationally accurate certificate.
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5.3.5 Connection Between the Discrete Distribution and an

Isotropic Gaussian Distribution

When the inputs are binary vectors 𝒳 = {0, 1}𝑑, one may still apply the prior

work [29] using an additive isotropic Gaussian noise 𝜑 to obtain an ℓ0 certificates

since there is a bijection between ℓ0 and ℓ2 distance in {0, 1}𝑑. If one uses a denoising

function 𝜁(·) that projects each randomized coordinate 𝜑(𝑥)𝑖 ∈ R back to the space

{0, 1} using the (likelihood ratio testing) rule

𝜁(𝜑(𝑥))𝑖 = I{𝜑(𝑥)𝑖 > 0.5},∀𝑖 ∈ [𝑑],

then the composition 𝜁 ∘ 𝜑 is equivalent to our discrete randomization scheme with

𝛼 = Φ(0.5;𝜇 = 0, 𝜎2), where Φ is the CDF function of the Gaussian distribution with

mean 𝜇 and variance 𝜎2.

If we apply a classifier upon the composition (or, equivalently, the discrete ran-

domization scheme), then the certificates obtained via the discrete distribution is

always tighter than the one via the Gaussian distribution. Concretely, we denote

ℱ𝜁 ⊂ ℱ as the set of measurable functions with respect to the Gaussian distribution

that can be written as the composition 𝑓 ′ ∘ 𝜁 for some 𝑓 ′, and we have

min
𝑓∈ℱ𝜁 :Pr(𝑓(𝜑(𝑥))=𝑦)=𝑝

Pr(𝑓(𝜑(𝑥̄)) = 𝑦) ≥ min
𝑓∈ℱ :Pr(𝑓(𝜑(𝑥))=𝑦)=𝑝

Pr(𝑓(𝜑(𝑥̄)) = 𝑦),

where the LHS corresponds to the certificate derived from the discrete distribution

(i.e., applying 𝜁 to an isotropic Gaussian), and the RHS corresponds to the certificate

from the Gaussian distribution.

5.3.6 A Certificate with Additional Assumptions

In the previous analyses, we assume nothing but the measurability of the classifier. If

we further make assumptions about the functional class of the classifier, we can obtain

a tighter certificate than the ones outlined in §5.3.1. Assuming an extra denoising

step in the classifier over an additive Gaussian noise as illustrated in §5.3.5 is one
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example.

Here we illustrate the idea with another example. We assume that the inputs are

binary vectors 𝒳 = {0, 1}𝑑, the outputs are binary 𝒴 = {0, 1}, and that the classifier

is a decision tree that each input coordinate can be used at most once in the entire

tree. Under the discrete randomization scheme, the prediction probability can be

computed via tree recursion, since a decision tree over the discrete randomization

scheme can be interpreted as assigning a probability of visiting the left child and

the right child for each decision node. To elaborate, we denote idx[𝑖], left[𝑖], and

right[𝑖] as the split feature index, the left child and the right child of the 𝑖th node.

Without loss of generality, we assume that each decision node 𝑖 routes its input to

the right branch if 𝑥idx[𝑖] = 1. Then Pr(𝑓(𝜑(𝑥)) = 1) can be found by the recursion

pred[𝑖] = 𝛼I{𝑥idx[𝑖]=1}𝛽I{𝑥idx[𝑖]=0}pred[right[𝑖]] + 𝛼I{𝑥idx[𝑖]=0}𝛽I{𝑥idx[𝑖]=1}pred[left[𝑖]],

(5.8)

where the boundary condition is the output of the leaf nodes. Effectively, we are

recursively aggregating the partial solutions found in the left subtree and the right

subtree rooted at each node 𝑖, and pred[root] is the final prediction probability. Note

that changing one input coordinate in 𝑥𝑘 is equivalent to changing the recursion in

the corresponding unique node 𝑖′ (if exists) that uses feature 𝑘 as the splitting index,

which gives

pred[𝑖′] = 𝛼I{𝑥idx[𝑖′]=0}𝛽I{𝑥idx[𝑖′]=1}pred[right[𝑖′]] + 𝛼I{𝑥idx[𝑖′]=1}𝛽I{𝑥idx[𝑖′]=0}pred[left[𝑖′]].

In addition, changes in the left subtree do not affect the partial solution found in the

right subtree, and vice versa. Hence, we may use dynamic programming to find the

exact adversary under each ℓ0 radius 𝑟 by aggregating the worst case changes found

in the left subtree and the right subtree rooted at each node 𝑖. See Appendix 5.B.1

for details.
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5.4 Learning and Prediction in Practice

Since we focus on the development of certificates, here we only briefly discuss how

we train the classifiers and compute the prediction probability Pr(𝑓(𝜑(𝑥)) = 𝑦) in

practice.

Deep networks. We follow the approach proposed by the prior work [82]: training

is conducted on samples drawn from the randomization scheme via a cross entropy

loss. The prediction probability Pr(𝑓(𝜑(𝑥)) = 𝑦) is estimated by the lower bound

of the Clopper-Pearson Bernoulli confidence interval [28] with 100K samples drawn

from the distribution and the 99.9% confidence level. Since 𝜌𝑥,𝑥̄(𝑝) is an increasing

function of 𝑝 (Remark 5.3), a lower bound of 𝑝 entails a valid certificate.

Decision trees. We train the decision tree greedily in a breadth-first ordering with

a depth limit; for each split, we only search coordinates that are not used before to

enforce the functional constraint in §5.3.6, and optimize a weighted gini index, which

weights each training example 𝑥 by the probability that it is routed to the node by the

discrete randomization. The details of the training algorithm is in Appendix 5.B.2.

The prediction probability is computed by Eq. (5.8).

5.5 Experiments

In this section, we validate the robustness certificate of the proposed discrete distribu-

tion (𝒟) in ℓ0 norm. We compare to the state-of-the-art additive isotropic Gaussian

noise (𝒩 ) [29], since an ℓ0 certificate with radius 𝑟 in 𝒳 = {0, 1
𝐾
, . . . , 1}𝑑 can be

obtained from an ℓ2 certificate with radius
√
𝑟. Note that the derived ℓ0 certificate

from Gaussian distribution is still tight with respect to all the measurable classifiers

(see Theorem 1 in [29]). We consider the following evaluation measures:

• 𝜇(𝑅): the average certified ℓ0 radius 𝑅(𝑥, 𝑝, 𝑞) (with respect to the labels) across

the testing set.

• ACC@𝑟: the certified accuracy within a radius 𝑟 (the average I{𝑅(𝑥, 𝑝, 𝑞) ≥ 𝑟} in

the testing set).
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Table 5.5.1: Randomly smoothed CNN models on the MNIST dataset. The first two
rows refer to the same model with certificates computed via different methods (see
details in §5.3.5).

𝜑 Certificate 𝜇(𝑅)
ACC@𝑟

𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6 𝑟 = 7

𝒟 𝒟 3.456 0.921 0.774 0.539 0.524 0.357 0.202 0.097
𝒟 𝒩 [29] 1.799 0.830 0.557 0.272 0.119 0.021 0.000 0.000
𝒩 𝒩 [29] 2.378 0.884 0.701 0.464 0.252 0.078 0.000 0.000

5.5.1 Binarized MNIST

We use a 55, 000/5, 000/10, 000 split of the MNIST dataset for training/validation/

testing. For each data point 𝑥 in the dataset, we binarize each coordinate by setting

the threshold as 0.5. Experiments are conducted on randomly smoothed CNN models

and the implementation details are in Appendix 5.C.1.

The results are shown in Table 5.5.1. For the same randomly smoothed CNN

model (the 1st and 2nd rows in Table 5.5.1), our certificates are consistently better than

the ones derived from the Gaussian distribution (see §5.3.5). The gap between the

average certified radius is about 1.7 in ℓ0 distance, and the gap between the certified

accuracy can be as large as 0.4. Compared to the model trained with Gaussian noise

(the 3rd row in Table 5.5.1), our model is also consistently better in terms of all the

measures.

Since the above comparison between our certificates and the Gaussian-based cer-

tificates is relative, we conduct an exhaustive search over all the possible adversary

within ℓ0 radii 1 and 2 to study the tightness against the exact certificate. The re-

sulting certified accuracies at radii 1 and 2 are 0.954 and 0.926, respectively, which

suggest that our certificate is reasonably tight when 𝑟 = 1 (0.954 vs. 0.921), but still

too pessimistic when 𝑟 = 2 (0.926 vs. 0.774). The phenomenon is expected since the

certificate is based on all the measurable functions for the discrete distribution. A

tighter certificate requires additional assumptions on the classifier such as the example

in §5.3.6.
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Table 5.5.2: The guaranteed accuracy of randomly smoothed ResNet50 models on
ImageNet.

𝜑 and certificate ACC@𝑟

𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6 𝑟 = 7

𝒟 0.538 0.394 0.338 0.274 0.234 0.190 0.176
𝒩 [29] 0.372 0.292 0.226 0.194 0.170 0.154 0.138

1 2 3 4 5 6 7
radius r

500000

1000000

1500000

2000000

n

Number of regions (ImageNet)
ImageNet

(a) # of nonempty ℒ(𝑢, 𝑣; 𝑟)

0 1 2 3 4 5 6 7
0 radius r

0.5

0.6

0.7

0.8

0.9

1.0

1
r

(0
.5

)

=0.1
=0.2
=0.3
=0.4
=0.5

(b) 𝜌−1
𝑟 (0.5) for an 𝛼

0 1 2 3 4 5 6 7
0 radius r

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ce
rti

fie
d 

ac
cu

ra
cy

=0.1
=0.2
=0.3
=0.4
=0.5

(c) The certified accuracy for an 𝛼

Figure 5.5.1: Analysis of the proposed method in the ImageNet dataset.

5.5.2 ImageNet

We conduct experiments on ImageNet [33], a large scale image dataset with 1, 000

labels. Following common practice, we consider the input space 𝒳 = {0, 1/255, . . . ,

1}224×224×3 by scaling the images. We consider the same ResNet50 classifier [59]

and learning procedure as Cohen et al. [29] with the only modification on the noise

distribution. The details and visualizations can be found in Appendix 5.C.2. For

comparison, we report the best guaranteed accuracy of each method for each ℓ0 radius

𝑟 in Table 5.5.2. Our model outperforms the competitor by a large margin at 𝑟 = 1

(0.538 vs. 0.372), and consistently outperforms the baseline across different radii.

Analysis. We analyze our method in ImageNet in terms of 1) the number 𝑛 of

nonempty likelihood ratio region ℒ(𝑢, 𝑣; 𝑟) in Algorithm 1, 2) the pre-computed

𝜌−1
𝑟 (0.5), and 3) the certified accuracy at each 𝛼. The results are in Figure 5.5.1.

For reproducability, the detailed accuracy numbers of 3) is available in Table 5.C.1 in

Appendix 5.C.2, and the pre-computed 𝜌−1
𝑟 (0.5) is available at our code repository. 1)

The number 𝑛 of nonempty likelihood ratio regions is much smaller than the bound

(𝑑 + 1)2 = (3× 224× 224)2 for small radii. 2) The value 𝜌−1
𝑟 (0.5) approaches 1 more

rapidly for a higher 𝛼 value than a lower one. Note that 𝜌−1
𝑟 (0.5) only reaches 1 when
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Figure 5.5.2: The guaranteed AUC in the Bace dataset across different ℓ0 radius 𝑟
and the ratio of testing data that the adversary can manipulate.

𝑟 = 𝑑 due to Remark 5.3. Computing 𝜌−1
𝑟 (0.5) in large integer is time-consuming,

which takes about 4 days for each 𝛼 and 𝑟, but this can be trivially parallelized across

different 𝛼 and 𝑟.4 For each radius 𝑟 and randomization parameter 𝛼, note that the

4-day computation only has to be done once, and the pre-computed 𝜌−1
𝑟 (0.5) can be

applied to any ImageNet scale images and models. 3) The certified accuracy behaves

nonlinearly across different radii; relatively, a high 𝛼 value exhibits a high certified

accuracy at small radii and low certified accuracy at large radii, and vice versa.

5.5.3 Chemical Property Prediction

The experiment is conducted on the Bace dataset [138], a binary classification dataset

for biophysical property prediction on molecules. We use Morgan fingerprints [122]

to represent molecules, which are commonly used binary features [158] indicating

the presence of various chemical substructures. The dimension of the features (fin-

gerprints) is 1, 024. Here we focus on an ablation study comparing the proposed

randomly smoothed decision tree with a vanilla decision tree, where the adversary is

found by dynamic programming in §5.3.6 (thus the exact worse case) and a greedy

search, respectively. More details can be found in Appendix 5.C.3.

Since chemical property classification datasets are typically evaluated by AUC due

to the unbalanced labels [158], we define a robust version of AUC that takes account of

the radius of the adversary as well as the ratio of testing data that can be manipulated.

Note that to maximally decrease the score of AUC via a positive (negative) example,

the adversary only has to maximally decrease (increase) its prediction probability,

4As a side note, computing 𝜌−1
𝑟 (0.5) in MNIST takes less than 1 second for each 𝛼 and 𝑟.
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regardless of the scores of the other examples. Hence, given an ℓ0 radius 𝑟 and a

ratio of testing data, we first compute the adversary for each testing data, and then

find the combination of adversaries and the clean data under the ratio constraint that

leads to the worst AUC score. See details in Appendix 5.C.4.

The results are in Figure 5.5.2. Empirically, the adversary of the decision tree

at 𝑟 = 1 always changes the prediction probability of a positive (negative) example

to 0 (1). Hence, the plots of the decision tree model are constant across different

ℓ0 radii. The randomly smoothed decision tree is consistently more robust than the

vanilla decision tree model. We also compare the exact certificate of the prediction

probability with the one derived from Lemma 5.2; the average difference across the

training data is 0.358 and 0.402 when 𝑟 equals to 1 and 2, respectively. The phe-

nomenon encourages the development of a classifier-aware guarantee that is tighter

than the classifier-agnostic guarantee.

5.6 Discussion and Conclusion

We present a stratified approach to certifying the robustness of randomly smoothed

classifiers, where the robustness guarantees can be obtained in various resolutions and

perspectives, ranging from a point-wise certificate to a regional certificate and from

general results to specific examples. The hierarchical investigation opens up many

avenues for future extensions at different levels.

Following the publication of this work as a conference paper, Bojchevski et al. [17]

extended the discrete randomization to be data-dependent and accelerated the certifi-

cation algorithm by partitioning the space into only 2𝑟+1 likelihood ratio regions. In

practice, given the ensemble prediction value 𝑝, their certification algorithm improves

the computation of 𝜌−1
𝑟 (0.5) on ImageNet data from 4 days to less than 1 second. The

ℓ0 certificate has also been applied to label-flipping attacks by Rosenfeld et al. [123].
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5.A Proofs

To simplify exposition, we use [𝑛] to denote the set {1, 2, . . . , 𝑛}.

5.A.1 Proof of Proposition 5.1

Proof. We have⎧⎪⎨⎪⎩𝜌𝑥,𝑥̄(𝑝) = 0, if 0 ≤ 𝑝 ≤ Pr(𝜑(𝑥) ∈ ℒ1),

𝜌𝑥,𝑥̄(𝑝) = 𝑝− Pr(𝜑(𝑥) ∈ ℒ1), if 1 ≥ 𝑝 > Pr(𝜑(𝑥) ∈ ℒ1),

where Pr(𝜑(𝑥) ∈ ℒ1) = Vol(ℬ1∖ℬ2)/Vol(ℬ1) and Vol(ℬ1) is a constant given 𝛾. Hence,

the minimizers of min𝑥̄∈ℬ𝑟,𝑞(𝑥) 𝜌𝑥,𝑥̄(𝑝) are simply the points that maximize the volume

of ℬ1∖ℬ2, or, equivalently, minimize the volume of ℬ1 ∩ ℬ2. Below we re-write 𝑥̄ as

𝑥 + 𝛿.

Case 𝑞 = 1: ∀𝑟 > 0, we want to find a 𝛿 s.t., ‖𝛿‖1 = 𝑟 and the overlapping region

is minimized: (By symmetry, we assume that 𝛿𝑖 ≥ 0 for all 𝑖)

arg min
𝛿≥0:‖𝛿‖1=𝑟

𝑑∏︁
𝑖=1

(2𝛾 − 𝛿𝑖). (5.9)

Since ∀𝑖, 𝑗 ∈ [𝑑], 𝑖 ̸= 𝑗, we know

(2𝛾 − 𝛿𝑖)(2𝛾 − 𝛿𝑗) = 4𝛾2 − (𝛿𝑖 + 𝛿𝑗) + 𝛿𝑖𝛿𝑗 ≥ 4𝛾2 − (𝛿𝑖 + 𝛿𝑗). (5.10)

So we can always move the mass of 𝛿𝑗 to 𝛿𝑖 to further decrease the product value.

That means, 𝛿1 = 𝑟, 𝛿𝑖 = 0, ∀𝑖 ̸= 1 minimizes Eq. (5.9) for a given 𝑟. As a result, we

know

sup 𝑟, 𝑠.𝑡. min
𝛿:‖𝛿‖1≤𝑟

𝜌𝑥,𝑥+𝛿(𝑝) > 0.5 (5.11)

= sup 𝑟, 𝑠.𝑡. 𝑝−
(︂

1− (2𝛾)𝑑−1(2𝛾 − 𝑟)

(2𝛾)𝑑

)︂
> 0.5 (5.12)

=2𝑝𝛾 − 𝛾 (5.13)
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Case 𝑞 =∞: Similarly, for 𝑞 =∞ case, we want to find a 𝛿 with ‖𝛿‖∞ = 𝑟, and

the following is minimized: (by symmetry we assume 𝛿𝑖 ≥ 0 for all 𝑖)

arg min
𝛿≥0:‖𝛿‖∞=𝑟

𝑑∏︁
𝑖=1

(2𝛾 − 𝛿𝑖).

In this case, we should set 𝛿𝑖 = 𝑟 for all 𝑖, which means

sup 𝑟, 𝑠.𝑡. min
𝛿:‖𝛿‖∞≤𝑟

𝜌𝑥,𝑥+𝛿(𝑝) > 0.5 (5.14)

= sup 𝑟, 𝑠.𝑡. 𝑝−
(︂

1− (2𝛾 − 𝑟)𝑑

(2𝛾)𝑑

)︂
> 0.5 (5.15)

= sup 𝑟, 𝑠.𝑡.
(2𝛾 − 𝑟)𝑑

(2𝛾)𝑑
> 1.5− 𝑝 (5.16)

It remains to see that

(2𝛾 − 𝑟)𝑑

(2𝛾)𝑑
> 1.5− 𝑝

⇐⇒ 2𝛾 − 𝑟 > 2𝛾(1.5− 𝑝)1/𝑑

⇐⇒ 2𝛾−2𝛾(1.5− 𝑝)1/𝑑 > 𝑟.

5.A.2 Proof of Lemma 5.2

Proof. ∀𝑓 ∈ ℱ , We may rewrite the probabilities in an integral form:

Pr(𝑓(𝜑(𝑥)) = 𝑦) =
𝑛∑︁

𝑖=1

∫︁
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧) Pr(𝑓(𝑧) = 𝑦)d𝑧,

Pr(𝑓(𝜑(𝑥̄)) = 𝑦) =
𝑛∑︁

𝑖=1

∫︁
ℒ𝑖

Pr(𝜑(𝑥̄) = 𝑧) Pr(𝑓(𝑧) = 𝑦)d𝑧

Note that for all possible 𝑓 ∈ ℱ , we can re-assign all the function output within a

likelihood region to be constant without affecting Pr(𝑓(𝜑(𝑥)) = 𝑦) and Pr(𝑓(𝜑(𝑥̄)) =
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𝑦). Concretely, we define 𝑓 ′ as

Pr(𝑓 ′(𝑧′) = 𝑦) =

∫︀
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧) Pr(𝑓(𝑧) = 𝑦)d𝑧∫︀
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧)d𝑧
,∀𝑧′ ∈ ℒ𝑖, ∀𝑖 ∈ [𝑛],

then we have

∫︁
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧) Pr(𝑓(𝑧) = 𝑦)d𝑧 =

∫︁
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧) Pr(𝑓 ′(𝑧) = 𝑦)d𝑧

Since in ℒ𝑖, Pr(𝜑(𝑥) = 𝑧)/Pr(𝜑(𝑥̄) = 𝑧) is constant, we also have

∫︁
ℒ𝑖

Pr(𝜑(𝑥̄) = 𝑧) Pr(𝑓(𝑧) = 𝑦)d𝑧 =

∫︁
ℒ𝑖

Pr(𝜑(𝑥̄) = 𝑧) Pr(𝑓 ′(𝑧) = 𝑦)d𝑧

Therefore,

Pr(𝑓(𝜑(𝑥)) = 𝑦) = Pr(𝑓 ′(𝜑(𝑥)) = 𝑦), and

Pr(𝑓(𝜑(𝑥̄)) = 𝑦) = Pr(𝑓 ′(𝜑(𝑥̄)) = 𝑦).

Hence, it suffices to consider the following program

(I) , min
𝑔:[𝑛]→[0,1]

𝑛∑︁
𝑖=1

∫︁
ℒ𝑖

Pr(𝜑(𝑥̄) = 𝑧)𝑔(𝑖)d𝑧,

𝑠.𝑡.

𝑛∑︁
𝑖=1

∫︁
ℒ𝑖

Pr(𝜑(𝑥) = 𝑧)𝑔(𝑖)d𝑧 = 𝑝,

where the optimum is equivalent to the program

min
𝑓∈ℱ :Pr(𝑓(𝜑(𝑥))=𝑦)=𝑝

Pr(𝑓(𝜑(𝑥̄)) = 𝑦),

and the each 𝑔 corresponds to a solution 𝑓 . For example, the 𝑓 * in the statement

137



corresponds to the 𝑔* defined as:

𝑔*(𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑖 < 𝐻*,

𝑝−
∑︀𝐻*−1

𝑖=1 Pr(𝜑(𝑥)∈ℒ𝑖)

Pr(𝜑(𝑥)∈ℒ𝐻* )
, if 𝑖 = 𝐻*,

0, if 𝑖 > 𝐻*.

(5.17)

We may simplify the program as

(I) = min
𝑔:[𝑛]→[0,1]

𝑛∑︁
𝑖=1

Pr(𝜑(𝑥̄) ∈ ℒ𝑖)𝑔(𝑖),

𝑠.𝑡.
𝑛∑︁

𝑖=1

Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔(𝑖) = 𝑝.

Clearly, if 𝜂𝑖 = 0, all the optimal 𝑔 will assign 𝑔(𝑖) = 0; our solution 𝑔* satisfies this

property since

𝐻* , min
𝐻∈{1,...,𝑛}:

∑︀𝐻
𝑖=1 Pr(𝜑(𝑥)∈ℒ𝑖)≥𝑝

𝐻 (5.18)

implies 𝜂𝐻* > 0 (otherwise, it implies that Pr(𝜑(𝑥) ∈ ℒ𝐻*) = 0 and leads to a

contradiction). Hence, we can ignore the regions with 𝜂𝑖 = 0, assume 𝜂𝑛 > 0, and

simplify program (I) again as

(I) = min
𝑔:[𝑛]→[0,1]

𝑛∑︁
𝑖=1

1

𝜂𝑖
Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔(𝜂𝑖), (5.19)

𝑠.𝑡.
𝑛∑︁

𝑖=1

Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔(𝜂𝑖) = 𝑝. (5.20)

It is evident that 𝑔* satisfies the constraint (5.20), and we will prove that any

𝑔 ̸= 𝑔* that satisfies constraint (5.20) cannot be better.
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∀𝑔 : [𝑛]→ [0, 1], we define ∆(𝑖) , (𝑔*(𝑖)− 𝑔(𝑖))𝑃 (𝜑(𝑥) ∈ ℒ𝑖). Then we have

𝑛∑︁
𝑖=1

1

𝜂𝑖
Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔(𝑖) =

𝑛∑︁
𝑖=1

1

𝜂𝑖

[︂
Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔

*(𝑖)−∆(𝑖)

]︂

=
𝐻*∑︁
𝑖=1

1

𝜂𝑖
Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔

*(𝑖)−
𝑛∑︁

𝑖=1

1

𝜂𝑖
∆(𝑖). (5.21)

Note that ∆(𝑖) ≥ 0 for 𝑖 < 𝐻*, ∆(𝑖) ≤ 0 for 𝑖 > 𝐻*, and
∑︀𝑛

𝑖=1 ∆(𝜂𝑖) = 0 due to the

constraint (5.20). Therefore, we have

𝑛∑︁
𝑖=1

1

𝜂𝑖
∆(𝜂𝑖) ≤

𝑛∑︁
𝑖=1

1

𝜂𝐻*
∆(𝜂𝑖) = 0. (5.22)

Finally, combining (5.21) and (5.22),

𝑛∑︁
𝑖=1

1

𝜂𝑖
Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔(𝑖) ≥

𝐻*∑︁
𝑖=1

1

𝜂𝑖
Pr(𝜑(𝑥) ∈ ℒ𝑖)𝑔

*(𝑖). (5.23)

5.A.3 Proof of Lemma 5.4

Proof. If 𝜙(·) is defined as Eq. (5.6), ∀𝑥, 𝑥̄ ∈ 𝒳 such that ‖𝑥 − 𝑥̄‖0 = 𝑟, below we

show that 𝜌𝑥,𝑥̄ is independent of 𝑥 and 𝑥̄. Indeed, since ‖𝑥 − 𝑥̄‖0 is the number

of non-zero elements of 𝑥 − 𝑥̄, we know there are exactly 𝑟 dimensions such that 𝑥

and 𝑥̄ do not match. Notice that 𝜙(·) applies to each dimension of 𝑥 independently,

so we can safely ignore any correlations between two dimensions. Therefore, by the

symmetry of the distribution, we can rearrange the order of coordinates, and assume

𝑥 and 𝑥̄ differ for the first 𝑟 dimensions, and match for the rest 𝑑− 𝑟 dimensions.

Notice that the randomization 𝜙(·) has the nice property that the perturbing prob-

abilities are oblivious to the actual values of the input. Therefore, by the definition

of 𝑥𝐶 , 𝑥̄𝐶 , we know that they are the canonical form of all pairs of 𝑥 and 𝑥̄ such that

‖𝑥− 𝑥̄‖0 = 𝑟; hence, 𝜌𝑥,𝑥̄(𝑝) is constant and equals 𝜌𝑟(𝑝) for every 𝑝 ∈ [0, 1].
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5.A.4 Proof of Lemma 5.5

Proof. In this proof, we adopt the notation of the canonical form 𝑥𝐶 and 𝑥̄𝐶 from

Appendix 5.A.3.

Recall that 𝑥𝐶 is a zero vector, and 𝑥̄𝐶 has the first 𝑟 entries equal to 1 and

the last 𝑑 − 𝑟 entries equal to 0. We use the likelihood tuple (𝑢, 𝑣) to refer the

scenario when 𝑥𝐶 “flips” 𝑢 coordinates (the likelihood is 𝛼𝑑−𝑢𝛽𝑢), and 𝑥̄𝐶 “flips” 𝑣

coordinates (the likelihood is 𝛼𝑑−𝑣𝛽𝑣). Note that 𝑢 ≤ 𝑣 by assumption. For 𝑟 ∈ [𝑑]

and (𝑢, 𝑣) ∈ {0, 1, . . . , 𝑑}2, the number of possible outcome 𝑧 ∈ 𝒳 with the likelihood

tuple (𝑢, 𝑣) can be computed in the following way:

|ℒ(𝑢, 𝑣; 𝑟)| =
min(𝑢,𝑑−𝑟)∑︁

𝑖=0

𝑢−𝑖∑︁
𝑗=0

(𝐾 − 1)𝑗I((𝑢− 𝑖− 𝑗) + (𝑣 − 𝑖− 𝑗) + 𝑗 = 𝑟)𝑟!

(𝑢− 𝑖− 𝑗)!(𝑣 − 𝑖− 𝑗)!𝑗!

𝐾𝑖(𝑑− 𝑟)!

(𝑑− 𝑟 − 𝑖)!𝑖!
,

where the first summation and the term

𝐾𝑖(𝑑− 𝑟)!

(𝑑− 𝑟 − 𝑖)!𝑖!

correspond to the case where 𝑖 entries out of the last (𝑑−𝑟) coordinates in 𝑥𝐶 and 𝑥̄𝐶

are both modified. Notice that 𝑥𝐶 and 𝑥̄𝐶 are equal in the last 𝑑− 𝑟 dimensions, so

if 𝑥𝐶 has 𝑖 entries modified among them, in order to ensure that 𝑥̄𝐶 equals 𝑥𝐶 after

modification, 𝑥̄𝐶 should have exactly the same 𝑖 entries modified as well (in order to

become the same 𝑧 in Eq. (5.7)).

The second summation and the term

(𝐾 − 1)𝑗I((𝑢− 𝑖− 𝑗) + (𝑣 − 𝑖− 𝑗) + 𝑗 = 𝑟)𝑟!

(𝑢− 𝑖− 𝑗)!(𝑣 − 𝑖− 𝑗)!𝑗!

corresponds to the case where 𝑗 entries out of the first 𝑟 coordinates of 𝑥𝐶 and 𝑥̄𝐶

are modified to any values other than {0, 1}, 𝑢− 𝑖− 𝑗 entries in 𝑥𝐶 are modified to

1, and 𝑣 − 𝑖− 𝑗 entries in 𝑥̄𝐶 are modified to 0. By the same analysis, we know that

both 𝑥𝐶 and 𝑥̄𝐶 should have exactly the same 𝑗 entries modified to any value other

than {0, 1}. The indicator function I((𝑢− 𝑖− 𝑗) + (𝑣− 𝑖− 𝑗) + 𝑗 = 𝑟) simply verifies
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that whether the value of 𝑗 is valid. Note that these two summations have covered

all possible cases of modifications on 𝑥𝐶 and 𝑥̄𝐶 in ℒ(𝑢, 𝑣; 𝑟).

After fixing the value of 𝑖 and 𝑗, each summand is simply calculating the number of

symmetric cases. (𝐾−1)𝑗 means there are 𝑗 entries modified to (𝐾−1) possible values.
𝑟!

(𝑢−𝑖−𝑗)!(𝑣−𝑖−𝑗)!𝑗!
is the number of possible configurations for the first 𝑟 coordinates. 𝐾𝑖

means there are 𝑖 entries momdified to 𝐾 possible values. (𝑑−𝑟)!
(𝑑−𝑟−1)!𝑖!

is the number of

possible configurations for the last 𝑑− 𝑟 coordinates.

Now it remains to simplify the expression. Let 𝑗* , 𝑢 + 𝑣 − 2𝑖− 𝑟, we have

|ℒ(𝑢, 𝑣; 𝑟)| =
min(𝑢,𝑑−𝑟)∑︁

𝑖=0

I(𝑗* ≥ 0)I(𝑗* ≤ 𝑢− 𝑖)(𝐾 − 1)𝑗
*
𝑟!

(𝑢− 𝑖− 𝑗*)!(𝑣 − 𝑖− 𝑗*)!𝑗*!

𝐾𝑖(𝑑− 𝑟)!

(𝑑− 𝑟 − 𝑖)!𝑖!
,

=

min(𝑢,𝑑−𝑟)∑︁
𝑖=max{0,𝑣−𝑟}

I(𝑗* ≥ 0)(𝐾 − 1)𝑗
*
𝑟!

(𝑢− 𝑖− 𝑗*)!(𝑣 − 𝑖− 𝑗*)!𝑗*!

𝐾𝑖(𝑑− 𝑟)!

(𝑑− 𝑟 − 𝑖)!𝑖!
,

=

min(𝑢,𝑑−𝑟,⌊𝑢+𝑣−𝑟
2

⌋)∑︁
𝑖=max{0,𝑣−𝑟}

(𝐾 − 1)𝑗
*
𝑟!

(𝑢− 𝑖− 𝑗*)!(𝑣 − 𝑖− 𝑗*)!𝑗*!

𝐾𝑖(𝑑− 𝑟)!

(𝑑− 𝑟 − 𝑖)!𝑖!
. (5.24)

Moreover, we know that |ℒ(𝑢, 𝑣; 𝑟)| = |ℒ(𝑣, 𝑢; 𝑟)| holds by the symmetry between 𝑥𝐶

and 𝑥̄𝐶 .

5.B Algorithms for Decision Trees

5.B.1 Dynamic Programming for Restricted Decision Trees

Given an input 𝑥 ∈ 𝒳 , we run dynamic programming (Algorithm 2) for computing

the certificate, based on the same idea mentioned in Section 5.3.6.

We use adv[𝑖, 𝑟] to denote the worst prediction at node 𝑖 if at most 𝑟 features can

be perturbed. Algorithm 2 uses the following updating rule for adv[𝑖, 𝑟].

adv[𝑖, 𝑟] = min{

min
𝑟∈{0,1,...,𝑟}

{𝛼I{𝑥idx[𝑖]=1}𝛽I{𝑥idx[𝑖]=0}
adv[right[𝑖], 𝑟] + 𝛼I{𝑥idx[𝑖]=0}𝛽I{𝑥idx[𝑖]=1}

adv[left[𝑖], 𝑟 − 𝑟]},

min
𝑟∈{0,1,...,𝑟−1}

{𝛼I{𝑥idx[𝑖]=0}𝛽I{𝑥idx[𝑖]=1}
adv[right[𝑖], 𝑟] + 𝛼I{𝑥idx[𝑖]=1}𝛽I{𝑥idx[𝑖]=0}

adv[left[𝑖], 𝑟 − 1− 𝑟]}}
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Algorithm 2 DP(𝑥, 𝑖, 𝑅)
1: if 𝑖 is leaf then
2: for 𝑟 = 1, · · · , 𝑅 do
3: adv[𝑖, 𝑟] =Leaf-Output(𝑖)
4: end for
5: Return
6: end if
7: 𝑟𝑤 = 𝛼I{𝑥idx[𝑖]=1}𝛽I{𝑥idx[𝑖]=0}

8: 𝑙𝑤 = 𝛼I{𝑥idx[𝑖]=0}𝛽I{𝑥idx[𝑖]=1}

9: DP(𝑥, right[i], 𝑅)
10: DP(𝑥, left[i], 𝑅)
11: for 𝑟 = 1, · · · , 𝑅 do
12: adv[𝑖, 𝑟] = 1
13: for 𝑟 = 0, · · · 𝑟 do
14: adv[𝑖, 𝑟] = min{adv[𝑖, 𝑟], 𝑟𝑤 * adv[right[𝑖], 𝑟] + 𝑙𝑤 * adv[left[𝑖], 𝑟 − 𝑟]}
15: end for
16: for 𝑟 = 0, · · · 𝑟 − 1 do
17: adv[𝑖, 𝑟] = min{adv[𝑖, 𝑟], 𝑙𝑤 * adv[right[𝑖], 𝑟] + 𝑟𝑤 * adv[left[𝑖], 𝑟 − 1− 𝑟]}
18: end for
19: end for

There are two cases in this updating rule. In the first case, the feature used at node

𝑖 is not perturbed, so it remains to see if we perturb 𝑟 features in the right subtree

and 𝑟 − 𝑟 features in the left subtree, what is the minimum adversarial prediction if

𝑟 ∈ {0, · · · , 𝑟}. In the second case, the feature used at node 𝑖 is perturbed, and we

check if we perturb 𝑟−1 features in the two subtrees, what is the minimum adversarial

prediction. Combining the two cases together, we get the solution for adv[𝑖, 𝑟].

5.B.2 Training Algorithm for Decision Trees

We consider the randomization scheme introduced in Eq. (5.6): for every coordinate

in a given input 𝑥, we may perturb its value with probability 𝛽. After perturbation, 𝑥

may arrive at any leaf node, rather than following one specific path as in the standard

decision tree. Therefore, when training, we maintain the probability of arriving at the

current tree node for every input 𝑥, denoted as probs. The probability is multiplied

by 𝛼 or 𝛽 after each layer, depending on the input and the feature used for the current
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Algorithm 3 Train(𝑋,𝑌 , maxdep)
1: 𝑄 = [(root, 0, [1, 1, · · · , 1])]
2: while Q not Empty do
3: 𝑖, dep, probs = 𝑄.pop()
4: if dep=maxdep then
5: Assign-Leaf-Node(𝑖, probs)
6: Continue
7: end if
8: f-list = Get-available-features()
9: for idx in f-list do

10: list = [(𝑦, 𝛼I{𝑥idx=1}𝛽I{𝑥idx=0}probs[𝑥]) for (𝑥, 𝑦) in 𝑋]
11: idx* = Update-best-feature-score (idx, list, idx*)
12: end for
13: idx[𝑖]= idx*

14: left-probs=probs
15: right-probs=probs
16: for 𝑥 in 𝑋 do
17: if 𝑥idx = 1 then
18: left-probs[𝑥] =left-probs[𝑥] * 𝛽
19: right-probs[𝑥] =right-probs[𝑥] * 𝛼
20: else
21: right-probs[𝑥] =right-probs[𝑥] * 𝛽
22: left-probs[𝑥] =left-probs[𝑥] * 𝛼
23: end if
24: end for
25: 𝑄.push(left[𝑖], dep + 1, left-probs)
26: 𝑄.push(right[𝑖], dep + 1, right-probs)
27: end while

tree node. See Algorithm 3 for details.

The overall framework of Algorithm 3 is standard: we train the tree nodes greedily

in breadth-first ordering, and pick the best splitting feature every time. However,

when picking the best splitting feature, the standard decision tree uses Gini impurity

based on all the remaining training data that follow the path from the root to the

current tree node. In our algorithm, this includes all the training data, but with

different arriving probabilities. Therefore, we apply the weighted Gini impurity metric

instead. Specifically, for a split, its weighted Gini impurity is (after probs is updated
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with idx):

1−
(︂∑︀

𝑥∈𝒳 ,𝑦=1 probs[𝑥]∑︀
𝑥∈𝒳 probs[𝑥]

)︂2

−
(︂∑︀

𝑥∈𝒳 ,𝑦=0 probs[𝑥]∑︀
𝑥∈𝒳 probs[𝑥]

)︂2

When the arriving probability for each 𝑥 is restricted to be either 0 or 1, this

definition becomes the standard Gini impurity.

5.C Experimental Details

5.C.1 Supplementary Materials for the MNIST Experiment

For the MNIST experiment, we use a simple 4-layer convolutional network, where

the first two layers are convolutional layers, and the last two layers are feedforward

layers. For the two convolutional layers, we use kernel size 5, and output channels 20

and 50, respectively. For the two feedforward layers, we use 500 hidden nodes. We

tune the hyperparameter 𝛼 ∈ {0.72, 0.76, 0.80, 0.84, 0.88, 0.92, 0.96} for 𝜇(𝑅) in the

validation set using the certificates from the Gaussian distribution [29]. The resulting

𝛼 is 0.8. We also train a CNN with an isotropic Gaussian with the 𝜎 that corresponds

to 𝛼 = 0.8 (see §5.3.5).

The learning procedure for all the models are the same (except the distribution).

The batch size is 400. We train each model for 30 epochs with the SGD optimizer

with Nesterov momentum (momentum = 0.9). The learning rate is initially set to be

0.05 and annealed by a factor of 10 for every 10 epochs of training. The models are

implemented in PyTorch [113], and run on a GPU with 12G memory.

5.C.2 Supplementary Materials for the ImageNet Experiment

We use the PyTorch [113] implementation provided by Cohen et al. [29] as the

backbone and implement our algorithm based on their pipeline. Thus, the training

details are consistent to the one reported in their paper except that we use a dif-

ferent distribution. Here, we summarize some important details. ResNet-50 is used

as the base classifier for our ImageNet experiment, whose architecture is provided
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Table 5.C.1: The guaranteed accuracy for different 𝛼 of ResNet50 models smoothed
by the discrete distribution on ImageNet.

𝛼 value ACC@𝑟

𝑟 = 0 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6 𝑟 = 7

0.5 0.666 0.412 0.388 0.000 0.000 0.000 0.000 0.000
0.4 0.650 0.538 0.356 0.338 0.000 0.000 0.000 0.000
0.3 0.592 0.516 0.314 0.300 0.274 0.234 0.000 0.000
0.2 0.524 0.448 0.394 0.270 0.218 0.212 0.190 0.176
0.1 0.350 0.314 0.282 0.248 0.212 0.182 0.150 0.100

= 1 = 0.5 = 0.4 = 0.3 = 0.2 = 0.1

= 1 = 0.5 = 0.4 = 0.3 = 0.2 = 0.1

Figure 5.C.1: ImageNet images corrupted by varying levels of the discrete noise.

in torchvision. After the randomization is done, we normalize each image by sub-

tracting the dataset mean (0.485, 0.456, 0.406) and dividing by the standard deviation

(0.229, 0.224, 0.225). Parameters are optimized by SGD with momentum set as 0.9.

The learning rate is initially set to be 0.1 and annealed by a factor of 10 for every 30

epochs of training. The total number of training epochs is 90. The batch size is 300,

parallelized across 2 GPUs. We tune 𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for the discrete dis-

tribution, and measure the performance in ACC@𝑟, compared to the classifier under

an additive isotropic Gaussian noise [29].5 The samples of the randomized image for

each 𝛼 are visualized in Figure 5.C.1. We follow the prior work [29] to evaluate every

100th image in the validation set. The detailed accuracy numbers of our approach

under different 𝛼 and 𝑟 are available in Table 5.C.1.

5We run their released model from https://github.com/locuslab/smoothing.
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5.C.3 Supplementary Materials for the Chemical Property Pre-

diction Experiment

The dataset contains 1, 513 molecules (data points). We split the data into the

training, validation, and testing sets with the ratio 0.8, 0,1, and 0,1, respectively.

Following common practice in chemical property prediction [158], the splitting is

done based on the Bemis-Murcko scaffold [12]; the molecules within a split are inside

different scaffolds from the other splits. We refer the details of scaffold splitting to

[158]. We observe similar experiment results when we use a random split.

For both the decision tree and the randomly smoothed decision tree, we tune the

depth limit in {6, 7, 8, 9, 10}. For the randomly smoothed decision tree, we also tune

𝛼 ∈ {0.7, 0.75, 0.8, 0.85, 0.9}. The tuned 𝛼 is 0.8, and the tuned depth limits are 10

for both models.

5.C.4 Computing Adversarial AUC

Assume that there are 𝑛 + 𝑚 data points, 𝑛 of them are positive instances, de-

noted as 𝐴 , {𝑥1, · · · , 𝑥𝑛}, and 𝑚 of them are negative instances, denoted 𝐵 ,

{𝑥𝑛+1, · · · , 𝑥𝑛+𝑚}. Denote the whole dataset as 𝑋 , 𝐴 ∪ 𝐵. For data point 𝑥 ∈ 𝑋,

we may adversarially perturb 𝑥 up to the perturbation radius 𝑟, denoted as 𝑥𝑟. Note

that, since 𝒴 is binary, maximizing the probability for predicting one class can be

equivalently done by minimizing the probability for predicting the other class. Hence,

we may use Algorithm 2 to find the adversaries for both the positive and negative

examples. Below we use the prediction probability for the class 1 as the score. Denote

the score of 𝑥 and 𝑥𝑟 as 𝑠(𝑥) and 𝑠(𝑥𝑟). For 𝑥 ∈ 𝐴, we know that 𝑠(𝑥) ≥ 𝑠(𝑥𝑟), and

for 𝑥 ∈ 𝐵, 𝑠(𝑥) ≤ 𝑠(𝑥𝑟).

If we are only allowed to perturb 𝑘 < 𝑛 + 𝑚 data points, to minimize AUC, we

aim to solve the following program:
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minimize
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

[︁
𝑎𝑖𝑏𝑗 Î(𝑠(𝑥𝑟

𝑖 ), 𝑠(𝑥
𝑟
𝑗+𝑛)) + 𝑎𝑖(1− 𝑏𝑗)Î(𝑠(𝑥𝑟

𝑖 ), 𝑠(𝑥𝑗+𝑛))

+(1− 𝑎𝑖)𝑏𝑗 Î(𝑠(𝑥𝑖), 𝑠(𝑥
𝑟
𝑗+𝑛)) + (1− 𝑎𝑖)(1− 𝑏𝑗)Î(𝑠(𝑥𝑖), 𝑠(𝑥𝑗+𝑛))

]︁
subject to

∑︁
𝑖∈[𝑛]

𝑎𝑖 +
∑︁
𝑗∈[𝑚]

𝑏𝑗 ≤ 𝑘,

𝑎𝑖 ∈ {0, 1}, 𝑖 = 1, ..., 𝑛

𝑏𝑗 ∈ {0, 1}, 𝑗 = 1, ...,𝑚

We may use standard mixed-integer programming solvers like Gurobi to solve the

program. Here we use 𝑎𝑖 to denote whether data point 𝑥𝑖 ∈ 𝐴 is perturbed, and

𝑏𝑗 to denote whether data point 𝑥𝑗+𝑛 ∈ 𝐵 is perturbed. The function Î(𝑥, 𝑥′) is an

indicator function defined as

Î(𝑥, 𝑥′) ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑥 > 𝑥′,

0.5, if 𝑥 = 𝑥′,

0, if 𝑥 < 𝑥′.

(5.25)
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Chapter 6

Discussion

This thesis presents a series of methods for building models that are transparent yet

expressive for complex tasks. For instance, we improved the capacity of existing mod-

els by enforcing transparency only locally (Chapter 2 and 3). We also generalized

simple interpretable models by extending coordinate-wise cuts in decision trees to

linear classifications (Chapter 4). Finally, focusing on robustness, we made black-

box classifiers provably robust over discrete spaces via a simple smoothing technique

(Chapter 5).

The methods in Chapter 2, 3, 4, and 5 realize locally transparent mappings,

locally linear mappings, locally constant mappings, and locally constant classifiers,

respectively. These functional perspectives provide an alternative view of this thesis

as a hierarchical investigation of local model classes. Nevertheless, useful properties

in machine learning models clearly extend beyond local properties. Below we discuss

some limitations and potential extensions of the methods developed in this thesis.

The game-theoretic approach in Chapter 2 requires an interpretable definition

of local neighborhoods. Sometimes such neighborhoods are easy to construct based

on existing domain knowledge, but not always. For example, in image classifica-

tions, we may need the neighborhoods to reflect visual similarities rather than, e.g.,

generic ℓ𝑝 distances. In this case, we could first seek some embeddings that capture

visual similarities (akin to concept activation vectors [71]), and then construct the

neighborhoods based on the embedding space.
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Local models developed in both Chapter 2 and 3 are not specifically controlled

across different local regions, making it possible for local models to differ even for

neighboring regions. In order to ensure that boundary cases are not treated very

differently if neighborhoods are constructed in a slightly modified way, stability of

neighboring local models is necessary. Solving this problem will draw on robustness

and fairness, further contributing to transparency.

As briefly discussed in Chapter 4, the extension of locally constant networks to

a boosting framework empirically outperforms gradient boosted decision trees. Per-

formance is, however, only comparable to random forests. Developing a randomized

ensemble method for locally constant networks akin to random forest could lead to

potential improvements in practical performance. The theoretical analyses can also

be extended. For instance, we utilized dummy decision nodes to simplify the state-

ments, so the precise relationship between an oblique decision tree and the equivalent

locally constant networks was not fully characterized.

The smoothing mechanism for constructing robust classifiers introduced in Chap-

ter 5 can be extended to more structured settings. For example, instead of simple

additive noise, smoothing mechanism may involve transformation of images. Study-

ing how structured smoothing may impact the guarantees is an important future

direction. On the other hand, we have shown in the decision tree example that the

certificates can be tightened by taking the functional form of the classifier into ac-

count. Similar extensions to other classifiers are possible but potentially technically

challenging.

While this thesis is motivated by interpretability, we explicitly separated trans-

parency from (human) interpretability. Mathematical statements that are at the heart

of transparency do not necessarily imply that they are understandable by end users.

Better connecting these two lines of research would be really helpful for practical AI

systems.
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