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By
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Abstract

This thesis is composed of three essays on various topics in applied econometrics.
The first essay (coauthored with Ernst R. Berndt and Jeffrey M. Wooldridge) compares
two estimators: the well-known Box-Cox (BC) estimator and the relatively new nonlinear
least squares (NLS) alternative developed by Wooldridge. The estimators are each
applied to three classical data sets to determine if significant differences are apparent
between the two estimators both regarding to estimates of parameters and to goodness-
of-fit statistics.

The second essay is a Monte Carlo study of the BC and NLS estimators. This is
the first Monte Carlo study of the NLS estimator and it also extends previous Monte
Carlo work for the BC estimator by examining the effects of autocorrelation and
heteroskedasticity. The study is constructed to allow comparison between the BC and
the NLS estimators.

The third essay examines monopoly behavior in the presence of intertemporal
demands. The defining characteristic of intertemporal demands is that demand in one
period is affected by demand in previous and possibly future periods. Results for the
measurement of monopoly power and the time path of consurrption are examined in
detail. An empirical framework is developed to test for forward-looking behavior on the
part of consumers and the monopolist. This framework is then applied to a panel data
set of cigarette prices and consumption.
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Essay I:

A Theoretical and Empirical Investigation of the Box-Cox Model
and a Nonlinear Least Squares Alternative

by

Ernst R. Berndt
Mark H. Chowalter
Jeffrey M. Wooldridge

Abstract:

The Box-Cox (BC) estimation procedure has been widely used in empirical work, often to aid in
choosing a functional form. There are a number of problems with the BC estimator, however, including the
lack of invariance of Wald test statistics involving slope parameter estimates to arbitrary scaling of the data,
and difficulties in computing "fitted values” when the BC power transformation parameter differs from zero or
one.

In this paper we employ an altemative generalized functional form estimator, recently developed by
Jeffrey Wooldridge, and then compare it to the BC estimator both theoretically and empirically. We begin by
briefly reviewing the drawbacks of the BC estimator, and then we propose a non-linear least squares (NLS)
alternative which retains the desirable qualities of the BC estimator without involving the associated problems.
We compare estimation results--point estimates, inferences ard fitted values--using data from several classic
hedonic regression studies. These include a wage rate equation, and two computer hedonic regression
equations, one from Gregory Chow and the other an IBM data set that formed the basis of the new official
BLS computer price index.

We discuss at length the lack-of-invariance property of Wald statistics inherent in nonlinear estimators,
and illustrate the poteniial seriousness of the problem with empirical examples; then we propose a possible
solution for the NLS estimator. We conclude by summarizing our findings and suggesting possible avenues
for future research.

We have benefitted from the comments of participants at the MIT-Harvard joint
econometrics seminar, at Boston College and the University of Montréal.



1. Introduction

The choice of an appropriate functional form is a very important issue in applied
econometrics, for in many cases the underlying economic theory provides only limited
guidance, e.g., use a functional form in which theoretically-consistent homogeneity and/or
symmetry restrictions can be imposed. In practice, the Box-Cox and Box-Tidwell
procedures have often been employed to choose among alternative functional forms.
Spitzer (1984), however, has noted a very serious lack-of-scale invariance for t-statistics
that emerges when one uses the Box-Cox or Box-Tidwell method. Moreover, uniess the
Box-Cox transformation parameter A on the dependent variable y equals 0 or 1, one
cannot solve for or compute ¥, the fitted value of y, in closed form.

Recently, Wooldridge (1990) has developed an alternative to the Box-Cox procedure,
one based on direct nonlinear least squares methods. With the nonlinear least squares
(NLS) prccedure, one can easily solve the fitted value problem inherent to the Box-Cox
(BC) method, and although t-statistics on slope coefficients for the NLS estimator also
lack invariance to arbitrary scaling of the dependent variable, Wooldridge has outlined
how scale-invariant test statistics for exclusionary hypotheses can be conducted using the
Lagrange multiplier test procedure. Moreover, since one important characteristic of the
Box-Cox procedure is that it transforms the distribution of the dependent variable,
Wooldridge has also derived computational formulae for obtaining heteroskedasticity-
robust standard error estimates.

To understaud better how important these theoretical issues might be in practice, it
is necessary to implement the various procedures empirically and then to compare them.
In this paper, therefore, we undertake an empirical comparison of the Box-Cox,
nonlinear least squares, and weighted nonlinear least squares estimation procedures.

Although choice of functional form is an important issue in almost all areas of applied



econometrics, this issue is of special interest in labor economics and in hedonic pricing
studies. We have therefore chosen one data set comparable to those commonly used in
labor economics and two data sets previously employed in hedonic applications for our
empirical comparisons.

The first data set, called CPS78, is similar to that used by many labor economists in
estimating wage rate (or statistical earnings) equations and returns to education; this data
set consists of 550 observations, randomly drawn from the May 1978 U.S. Current
Population Survey. The second data set, called COLE, is that used by Cole et al. (1986)
in their hedonic pricing study of mainframe computers in the U.S. from 1972 to 1984.
This study is of special interest since in part it formed the basis of the official quality-
adjusted price indexes for mainframe computers recently published by the U.S. Bureau
of Economic Analysis.! The third data set, called CHOW, is that underlying the classic
study by Chow (1967) of prices and the price elasticity of demand for mainframe
computers in the U.S. from 1960 to 1965.

The outline of this paper is as follows. We begin with a theoretical overview, drawn
in part from Wooldridge (1990). After providing a brief summary discussion of data sets
and sources in section 3, in section 4 we present empirical evidence on the extent of
scale invariance (or lack thereof), a comparison of parameter estimates and inference
for the BC, NLS and WNLS estimators, and a comparison of residuals and goodness-cf-

fit measures. In section 5§ we summarize, conclude, and outline future research issues.

1See Cole et al. (1986) and Cartwright (1986).
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2. Approaches to Generalizing Functicnal Form

The primary purpose of this paper is to compare competing methodologies for
generalizing furictional form in econometrics. Although there are several approaches to
generalizing functional form, most can be put into one of two broad classes: (i)
transformation methods, and (ii) methods that directly specify flexible functional forms
for E(y|x). The former category is dominated by the approach popularized by Box and
Cox (1964), and its numerous extensions; for a survey, see Spitzer (1982). An approach
which works directly with E(y|x), which will simply be referred to as "nonlinear
regression methods", has recently been suggested by Wooldridge (1990). In this section
we discuss each of these approaches in turn, focusing on the issues of robustness,
efficiency, and scale invariance. We also consider goodness-of-fit measures for choosing

among the approaches in actual empirical applications.

2.1 Transformation Methods

Let y > 0 be the variable of interest, and let x = (1,x,,...Xx) be the vector of
explanatory variables.?  Throughout this paper, x can represent nonlinear
transformations of an underlying set of variables; this is in contrast to y, which should be
the economic variable of interest. Note that we assume x contains a constant.

Rather than postulating a model for E(y|x) directly, the simplest transformation
methods seek to find a transformation of y which has a linear conditional expectation.
Although other classes could be considered, this paper focuses on the well-known Box-

Cox transformation. For strictly positive y, define

“The Box-Cox procedure is ill defined for the case y=0.
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y=2l a0 @.1)

log(y), A=0. (2.2)

Given this definition, the weake:i assumption employed in transformation methods is

that, for some A € & and some K x 1 vector g € &¥

Ey() 2] = xB 2.3)

(throughout, the “true" values of lambda and beta are denoted A and § ). By itself,
of course, assumption (2.3) is not enough to recover E(y|x) as a function of x, f ,and
A. This is not to say that A and £ cannot be estimated under (2.3); see, for example,
Amemiya and Powell (1981).3

Because we take E(y|x) to be of substantial interest, (2.3) in isolation is almost
useless. While B; measures the effect of x; on E(y(3)|x), it generally tells us nothing
about the effect of x; on E(y|x). As discussed in Wooldridge (1990), a consistent
framework for defining elasticities, semi-elasticities, and other ecomomic quantities
generally requires these quantities to be defined in terms of E(y|x). To move from
E(y(2)[x) to E(y|x), at least one additional distributional assumption on D(y|x) is
needed. One natural assumption is that log(y) is normally distributed with constant
variance. Although plausible, this is not the preferred assumption in the literature, as
the transformation y(1) is presumed to "regularize" the distribution in addition to yielding
a linear conditional expectation. Thus, the original Box-Cox model assumes that, for

some A € R, there exists 8 € R and ¢ > 0 such that

*However, Khazzoom (1989) has recently revealed some shortcomings of Amemiya
and Powell’s nonlinear 2SLS estimator in the Box-Cox context.
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y(AM|x ~ NxB,0?) (2.4)

(see also Spitzer (1982) and Hinkley and Runger (1984)). As has been observed by
many statisticians and econometricians, (2.4) cannot strictly be true unless A = 0. Thus,
the distribution D(y|x) -- and in particular the expectation E(y|x) -- implied by (2.4) is
not well-defined, nor do the traditional consistency properties of maximum likelihood
estimation carry over (see, for example, Draper and Cox (1969) and Amemiya and
Powell (1981)).

From our perspective, what is important is how well the approximation (2.4) allows
one to estimate E(y|x). This raises the rather important issue of how one obtains
predictions of y in transformation models. Under (2.4), one might use the naive

approach as suggested by equations (2.5) and (2.6):

Ey|x)=[1+Axp]"*,1 0 (2.5)

=exp(xf),A =0. (2.6)

Of course these are incorrect given (2.4), but neither is there a well-defined conditional
expectation function. However, one might want to use the normality assumption more
intensively. If one believes that u|x is distributed (approximately) as N(0,0%), then the

natural expectations are

Eyl= [ Deaxperngn G0N g, g @7
RZ-%(I’hp) ‘Nn‘(l +Axp))
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g,
u< A(l Axf)

= perapeagn 000G 4 50 @8
- B(-—=(1+Axp)

= exp(a?/2+xB),1 =0, (2.9)

where ¢(z) denotes the standard normal density and ®(z) denotes the standard normal

distribution function. The integration in (2.7) and (2.8) must be restricted tc the regions

u = -A7(1 + AxB) and u < -1(1 + AxB), respectively, to ensure that the expectation is

well-defined. Estimates of E(y|x) are obtained from (2.7)-(2.9) once i ) B , and
o> have been computed, usually by quasi-maximum likelihood methods.

Given observations {(x,y,):t=1,2,...,.N}, the QMLE’s of , 8, and ¢” solve the problem

N
Max Y 4(A,B,6?) (2.10)
2B, g2 =1

where €,(,8,0%) is the conditional log-likelihood of y, given x, for observation t:
UAB0D= ky(DlogeD -0 M5 +(h-Dlogy) (21D
g

(in a time series context, it is assumed that D(y,|x) = D(y,|%, Yi1Xe10--)s i-€. there is
no dynamic misspecification). Let 8 = (1,8,0%) be the vector of parameters, and let

5,(0)=V,4,(0) (2.12)

be the 1 x (K+2) gradient of the conditional log-likelihood with respect to 6. If the

a

distributional assumption (2.4) (approximately) holds then the QMILE 6 s

11



asymptotically normally distributed about 8 with asymptotic variance estimated most

easily by

A ‘v A A
&1 . (z s {0)'s8)

t=1

J-x (2.13)

The asymptotic standard errors are obtained as the square roots of the diagonal elements
of é". 4 If (2.4) fails to hold then 8 is generally inconsistent for 6. Nevertheless,
Draper and Cox (1969) argue that 8 s approximately consistent provided the
distribution of y(A) is symmetric’ When u|x depends on x, e.g. Var(y(a)|x) is
nonconstant, the QMLE based on the normality assumption (2.3) can be pocrly behaved
(e.g. Amemiya and Powell (1981); Seakes and Layson (1983)). In addition, Poirier
(1978) finds that even if u is independent of x, the QMLE can exhibit severe asymptotic
bias if y(4) is asymmetric. Generally speaking, the Box-Cox MLE can be very sensitive
to the assumptions of homoskedasticity and normality of y(A). This is not a very
desirable property of a method if it is intended primarily to generalize functional form.

In addition to it being nonrobust, the Box-Cox approach has another undesirable
feature. This has to do with the lack of scale invariance of the t-statistics on ﬁ] ,
j=1,..,K. As was pointed out by Spitzer (1984) and others, the t-statistics on the
coefficients fi ; »J=1,..,K, can be altered simply by multiplying y, by a nonzero constant.
This is unfortunate because the units of measurement of y is frequently arbitrary in

economics (e.g. whether price is recorded in hundreds or thousands of dollars should be

irrelevant). Dagenais and Dufour (1986) have noted that certain other nonlinear models

“On this, however, see Amemiya and Powell (1981).

’Note that Draper and Cox also assume that u is independent of x, so that theirs is
a very limited finding.
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have this feature (below, we show that the nonlinear regression approach aiso suffers
from this problem).

One solution to this problem is, rather than to report t-statistics for coefficients, to
use scale invariant likelihood ratio or Lagrange multiplier statistics for testing exclusion
of each variable. For example, let  §,=s ,(50)) denote the 1x (K+2) score evaluated
at é(:) , where é(f) is the QMLE computed under the restriction 8; = 0. Dagenais
and Dufour (1986) show that the outer product LM statistic, obtained as

N - SSR = NR? from the regression
1on§, t=1,.,N, (214)

is invariant to the scale of y. Under Hy: B; = 0, NR? is distributed approximately as

xf , provided (2.4) holds. While this is an attractive alternative, it is computationally
expensive because it requires estimation of K distinct Box-Cox regression models (one
for each B;). Also, outer product forms of LM statistics are notorious for their poor
finite sampie properties; see Bollershev and Wooldridge (1988).

Rather than use an LM statistic, Dagenais and Dufour suggest using a particular
version of Neyman’s (1959) C(a) statistic. For the Box-Cox model, this results in
significant computational advantages because A need only be estimated once, from the
unrestricted model. The reader is referred to the Dagenais and Dufour (1986) paper for
further details.

Pedagogically, the LM and C(a) approaches are unsatisfying because they do not
allow construction of confidence intervals; hypotheses of the form Hy: B; = b, using an
LM or C(a) test require a separate computation whenever b; changes. Researchers
typically prefer to see standard errors attached to parameter estimates, so that a

confidence interval can be constructed, and t-statistics (Wald statistics) can be computed

13



for testing any hypothesis of the form Hy: §; = b;. Thus, it seems useful to attempt to
salvage the usual t-statistic.

The problem with the usual t-statistic is that, as the analyst searches over different
scalings of y, the t-statistics of the fi ; can be changed, sometimes (as we shall show)
dramatically. This is, of course, a form of data mining, and is not attractive given the
usual assumptions underlying statistical inference. One solution to this problem is to
force the analyst to estimate a scale parameter using the sample data. This is what
Spitzer (1984) recommends in order to obtain scale-invariant t-statistics. He suggests
dividing each observation y, by the sample geometric mean of {y:t=1,..,N}, say v .
The new variable y /3 is trivially scale invariant, so one might think that this solves the
problem.5

However, there are two potential problems with this approach. The first is that the
coefficients fi ;, might become more difficult to interpret. Fortunately, this turns out
not to be much of a problem because the estimate of marginal effects from (2.5) or (2.7)
- (2.9) are affected exactly as one would expect: they are simply scaled down by v .
Moreover, point estimates of elasticities and semi-elasticities are invariant to the scaling
of y.

The second problem is potentially more serious: one needs to account for the
randomness of v when computing standard errors of f) ; and A . The simplest way

to address this problem is to view the estimaior @ as a two-step estimator. Thus

consider the extended model

%One additional advantage of employing this geometric mean transformation is that
with the transformed data, maximizing the log-likelihood function is equivalent to
minimizing the sum of squared residuals. For a discussion of this computational nuance,
see Zarembka (1968).

14



y(v,A) ~ N(xB,0?) {2.15)

v = exp[E(log(y)] (2.16)

where y(v,A) = ((y/v)* - 1)/A, & # 0, y(v,A) = log(y/v), A = 0. The parameter v is the
population geometric mean of y. Admittedly, v could be defined to be one of a variety
of other scale parameters, e.g. v = E(y). A researcher is free to choose any moment of
¥, provided the moment exists. The important point is that, no matter how v is defined,
because it is estimated using sample data, the variance of the estimator v should be

accounted for in any inference procedures.

The QMLE 6 now solves’

N A
gz Y e6;v),
t=l
@.17)
S
where vzexpl —3 log(y)| and
\ N1

06,9)=ky~(1/2)log(a)-(1/2) (v, 1) ~x B0 +(A-Dloglyjv).  (218)

A standard mean value expansion can be used to derive an estimate of the asymptotic
variance of © . Redefining s, to account for the dependence upon 7 gives
8,(0,v)=V,t(0,v) , the 1x(K+2) score of the log-likelihood for observation t. Let
8,=8(0,¥) equal the score evaluated at the estimated values 8,9. Now define

N
2,28 +C - 0log(y/9) where C Ly ye Then, as can be shown using
t ot N N N vt

tl

"Alternatively, one might simply want arbitrarily to choose one observation as
“numeraire”. While such a procedure might be "natural” in a time series context (say,
take the first observation), in a cross-section context the choice of numeraire observation
would seem to be totally arbitrary, yielding somewhat capricious t-statistics.

15




e 31 s,

methods similar to those employed in the appendix to Wooldridge (1990), a consistent

a

estimator of the asymptotic variance of 6 is

N“, -1 NA’ N.;, -1 (2.19)
() [Soefzin)
tal =] t=]

Note that if the estimation of v were ignored, this reduces to the usual outer product
of the score estimator. Surprisingly, the standard error of A, se(i’) , Obtained from

(2.19), differs from that obtained from (2.13), even though se(4) is scale invariant for

any fixed scaling of y.

2.2 The Nonlinear Least Squares Approach
Let y and x = (1,x5...%,) be defined as in the previous subsection. Without any

assumptions on the conditional distribution of y given x (except that its support is

contained in [0,)), consider the following model for E(y|x):

E(y|x)=[1+Axp]¥*,A =0 2.20)

= exp(xp),A =0. (2.21)

When A = 1 (2.20) reduces to a linear model for E(y|x).® The exponential regression
model (2.21) is particularly appealing for a strictly positive y because it ensures that the
predicted values are well-defined and positive for all x and any value of B, whereas this

is not necessarily the case for (2.20). Note that the semi-elasticity for this model is

®Interestingly, the conditional mean functions (2.20) and (2.21) can be derived from
a modified version of the Box-Cox model if P(y > 0) = 1. If the conditional mean
assumption (2.3) is supplemented with the assumption that log(y)|x is normally
distributed with constant variance, then (2.20) and (2.21) can be shown to hold; see
Wooldridge (1990) for details.
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EQ) 1
a, EQlx)

=[1+Lxﬁ]“[3,, (2.22)

while the elasticity is

OEQIM) . % _1,1ep1! 2.23
% Eom AxB1p x, (2.23)

To estimate £ and A by nonlinear least squares (NLS) or weighted NLS (WNLS), the
derivatives of the regression function are needed. Define the (K+1)x1 parameter vector

d = (B,A) and express the parameterized regression function for E(y|x) as

m(x;8) =[1+AxBI¥:, A0

(2.24)
=exp(xp), A=0.
For A # 0 the gradient of m(x;5) with respect to B is the 1xK vector
Vym(x;8) =[1+Axp1M -1y, (2.25)
For A =0,
Vym(x;B,0)= exp(xp)x. (2.26)

The derivative of m(x;5) with respect to A, when A # 0, is derived in Wooldridge (1996)

as
a-y
V;m(x;ﬂ,l)=—;—z-[1+xxp] A [AxB-(1+AxB)log(l +Axp)]. (2.27)
For A = 0 it equals
v, m(x;p,0)= - ("";)("9)2 (2.28)

17
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Equation (2.27) is the basis for the LM statistic for the hypothesis Hy: A = Ag, while
(2.28) is the basis for the LM test of I{;: A = 0; see Wooldridge (1990) for further
details.

Under the assumption that (2.24) holds, § can be consistently estimated by NLS. In
addition, if V(y|x) is constant and equal to, say 5% then standard formulae are availablc

A

for estimating the asymptotic variance of the NLS estimator. Let & be the NLS

estimator, let &=y ,-m(x,,ﬁ) denote the NLS residuals, and estimate 7? by the degrees-

of-freedom adjusted estimator

N
fra—l &, (2.29)
N-P¢ 3
where P = K+1 is the number of parameters. A standard estimate of the asymptotic

A

variance of & is

N -1
{f vaisa)
t=1
which is valid provided that V(y,|x) = 7% and, in a time series context, E(v,|x) =
E(y,| %Y1 X,.1p---)- (This latter condition ensures that the errors e, = y, - E(y,|x,) are
conditionally serially uncorrelated.)

The heteroskedasticity-robust asymptotic variance estimator of 8 and A can be

obtained by using the approach of White (1980). That estimator in this context is

N N

N -1 1
N . A
A (E Vi,V th ,] (E 81V, Vb ,12, v,m’,vam,] , (2.31)
( -}o ‘-l =] ‘-l

which uses a degrees-of-freedom adjustment to enhance finite sample performance.
Although the NLS estimator is robust to heteroskedasticity and requires no

distributional assumption, the estimate in (2.31) might be large if V(y,|x,) is highly

18




variable. Improvements in efficiency might be realized by using a weighted NLS
approach. Let & =w(x,¥) be a set of weights that can depend on x, and a vector of

estimates ‘} . Then, if
V%) =n’e(x,Y) (2.32)

and y is VN-consistent for y, 72 is estimated as in (2.29) where E‘ is now weighted

by 1//6, . An estimator of the asymptotic variance of the WNLS estimator 8 is

given by (2.30), except that e, and Vi, are weighted by 14/6, . In the

t

empirical work, we use the NLS estimator and a WNLS estimator with
@(x,v)=[m(x,8)I% (2:33)

the estimated &, weights are obtained as the squared fitted values from the initial
NLS regression.

The Lagrange multiplier tests for the linear (A=1) and exponential(2 =0) models are
simple to compute. In the general WNLS case, the test for Hy: A = 1 is obtained as

NR: from the regression

€ x, YJog)

\/— RS

where §, and & are the fitted values and residuals from the WNLS estimation. LM

t=1,..N, (2:34)

is distributed as xf under H; if the variance assumption (2.33) holds. To obtain a

robust form of the statistic, first compute the residuals 'f‘ from the regression

(2.35)

and then form LM = N - SSR from the regression

19




1 on &7 ,t=1,.,N, (236)

where étséN(b_, . Testing Hy: A = 0 requires WNLS estimatior of an exponential
regression model. Let 3 and & be the fitted values, and let §, and & be the
weighted quantities. Then, from Wooldridge (1990), compute LM = NR: from the
OLS regression

&, on §,x, 7,{log® )% 237

again, LM ¢ xf under H; and (2.33). The robust test is based on the residuals, ¥, ,

from the OLS regression

¥ [og@ )I* on §,x, (238)

and the LM test statistic is then computed as LM = N - SSR, as in (2.36).

One problem that the NLS and WNLS approaches share with transformation
methods is that the t-statistics of .., lack invariance to the scaling of y whenever
A is estimated along with the B’s. Wooldridge (1990) shows that the estimate and
standard error for A (both the usual and robust form) are invariant to rescaling of y, and
moreover, that the LM statistic for testing any exclusion restrictions on the B8, slope
coefficients is also invariant to the scaling of y; hence LM tests can be used as
alternatives to t-statistics. = Unfortunately, if there are many x’s, this can be
computationally expensive.

As one method of obtaining scale invariant t-statistics, consider adding a scale

parameter to (2.24):
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1
m(x:,B,l,v)= v[l+lxtB]‘, A#O,

- m(x,B,A,v)= vexp(x,B), A=0,
v = exp[E(log(y))];

(2.39)

again, this definition of 7 is arbitrary, but it is estimable from the data. Let ¢ be the
sample geometric mean of {y,}. Then substituting ¢ into (2.39) and using NLS or
WNLS is the same as dividing each y, by ¢ and estimating the model as before. As
in the Box-Cox case, the variation in ¢ must be taken into account. Wooldridge
(1990) has derived a consistent estimator of the asymptotic variance of 8 where &
now refers to the set of parameters in the (sample geometric mean scaled) model.

Let

N /
Ry Vo, | V12, (2.49)
vz | e, )\ /B,

where Vi, -is the same as before except that it is not multiplied by ¢ ; also, note

that Vi, = [1+4xf]* is simply the fitted value for the scaled regressand v/o . A

consistent estimate of the asymptotic variance of 6 is

[f? V@’.V.m.)-l[lpl C.{EN: g2 .}1,,1 q]{f; v,m’,vam,)“' (2.41)

tal tal tul
where P = K+1, §, is the 1x(P+1) vector

z.a(é,vam, #lo %)] (2.42)

and all "~" variables are weighted by 1,/6, . This expression is robust to variance

misspecification and also accounts for the randomness of ¥ .
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2.3 Goodness-of-Fit Measures

From our perspective, the ultimate goal of any exercise to generalize functional form
is to obtain reliable estimates of E(y|x). Therefore, it is important to have goodness of
fit measures that allow discrimination among alternative methods. One natural measure
is simply an R-squared defined in terms of the untransformed variable y. Given fitted

values ¥, , t=1,..,N, the R-squared is simply

N
E (7‘-9,)2
R2=1-1! (2.43)

m .
E (yg-y 2

t=1

This R-squared measures the percentage of the variation in y "explained by" the x’s,
regardless of how the fitted values §, are obtained. In the context of NLS or WNLS, §,
is obtained directly as §, = m(x‘,ﬁ) . The fitted values from a transformation model
can be obtained only once an expression for E(y|x) is available. In the Box-Cox context,
this expression is given by (2.7)-(2.9).

The R-squared defined by (2.43) is not without its problems. First, for a given
functional form for E(y | x), R? is always maximized by the NLS estimator. Consequently,
(2.43) cannot be used to choose between weighted and unweighted least squares
estimators. This is less of a problem that it might seem because, provided E(y|x) is
correctly specified, the fitted values from these procedures should be similar.

In this paper, the primary use of R? is to compare the direct procedures, NLS and
WNLS, to transformation methods (specifically Box-Cox). Because the models for
E(y|x) are nonnested for these two approaches, R? can legitimately be used as a
goodness-of-fit measure. However, since transformation methods do not directly

minimize the sum of squared residuals in y, R? criteria will tend to favor NLS.
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An alternative to a standard R-squared measure would be a metric of how well the
models estimated the conditional variance as well as the conditional mean. One
possibility is simply to evaluate a normal log-likelihcod function at the implied
conditional mean and conditional variance. It is well-known that the true conditional
mean and the true conditional variance maximize the expected log-likelihood whether
or not y conditional on x is normally distributed. We do not pursue this approach for
two reasons. First, estimation of V(y|x) in the Box-Cox context is computationally
cumbersome (it is more difficult than estimating E(y|x)). Second, a primary motivation
for using NLS and WNLS is that the estimates are robust to heteroskedasticity in the
former case and variance misspecification in the latter case. A goodness-of-fit measure
based on the conditional mean and conditional variance essentially ignores the robustness
considerations.

In addition to aggregate R? statistics which summarize the sample information in a
single statistic, one might be interested in how well individual order statistics of the
various empirical distributions of the fitted values match with those of the dependent
variable. While this does not provide a metric for comparison across samples, it should
provide clues to possible anomolies in the estimation procedures.

In a similar vein we can calculate the correlation matrices of the various fitted values
and the dependent variables. This gives a direct measure of how well the various
procedures match the dependent variable and also what similarities exist among the
estimation procedures.

In the empirical section of the paper we shall use several of these variations to assess

goodness-of-fit for each of the sample data sets.
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3. Data and Empirical Implementation

For the BC procedure, we compute standard error estimates employing the variance-
covariance matrix of analytic first derivatives as outlined by Berndt, Hall, Hall and
Hausman (1974), and the estimate corrected for the sample geometric mean (see (2.19)).
For NLS and WNLS, we compute three sets of standard errors using: first, the Gaussian
quadratic form of analytic first derivatives; second, a heteroskedasticity-robust estimator
due to White (1980); and third, a heteroskedasticity-robust estimator which alsc accounts
for the estimated geometric mean of y (equation (2.31)).

The data sets used for comparing the alternative estimators have been chosen to
generate additional interest in classic findings and to facilitate replication, and are all
taken from the data diskette accompanying Berndt (1990). Specifically, we employ three
data sets. The first, called CPS78, is a random sample of 550 observations drawn from
the May 1978 U.S. Current Population Survey, originally constructed by Henry S. Farber.
This type of data set is frequently employed by labor economists to estimate statistical
earnings functions, where the dependent variable is some transformation (often
logarithmic) of the hourly wage rate in dollars (WAGE), and the set of regressors
includes a constant term, potential experience (EXP) (measured as age minus years of
education minus schooling minus six), and its square (EXP2), a race dumnmy variable
(RACE) taking on the value one only if the individual is non-white and non-Hispanic,
a gender dummy variable (FEMALE) taking on the value one only if the individual is
female, and an education variable (EDN) measuring the years of schooling.

A second data set is that underlying the classic study of quality-adjusted mainframe
computer prices and the demand for computers by Gregory Chow (1967). Chow related
the monthly rental price of mainframe computers (PRICE) to multiplication speed

(MULT), memory capacity (MEM), access time (ACCESS), and a set of annual dummy
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variables; we employ Chow’s 1961-1965 data, whose details are discussed further in
Berndt (1990,ch.4).

The third and final data set we employ is that underlying the more recent mainframe
computer hard disk drive price index study by Rosanne Cole et al. (1986). This study
is of interest since it has played a critical role in the U.S. Bureau of Economic Analysis
decision to employ hedonic regression methods to adjust mainframe computer prices for
quality change over time in its official computer price index. The Cole et al. data set
encompasses 91 models over the 1972-84 time period, and relates the list price of hard
disk drives (PRICE) to a constant, 1973-84 annual time dummy variables, and two
performance variables, SPEED and CAP (capacity); further details on these data are
given in Cole et al. (1986), Triplett (1989) and Berndt (1990,Ch. 4).

Computations for this empirical research were carried out on an IBM 4381
mainframe and an AT&T 6386 personal computer, using the statistical programs TSP

and GAUSS.

4. Empirical Results

Our discussion of empirical results focuses on three issues: (a) we begin by
addressing the lack of scale invariance issue, assessing its numerical significance on
estimated slope coefficients, and then we implement scale invariant t-statistics using the
LM test procedure for both the BC and NLS estimators; (b) we then go on to discuss
similarities and differences among the BC, NLS and WNLS parameter estimates in our
three data sets, as well as the estimated standard errors; and finally (c) we compare the

alternative estimation procedures using a variety of goodness-of-fit criteria.
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4.1 Resolving the Lack of Invariance to Scaling Issue

We begin by demonstrating empirically, in a rather persuasive manner, the lack of
invariance of t-statistics on slope coefficients to arbitrary re-scaling of the dependent
variable in the BC and NLS estimation procedures, and then we present LM-based scale
invariant t-statistics. Using the CPS78 data we estimated a model in which WAGE was
measured in dollars per hour, and then multiplied this by 100, resulting in a measure in
units of cents per hour. Results from the various estimations are presented in Table 1.

With both the BC and NLS procedures, as expected, estimates of A and its standard
error are invariant to scaling; the BC parameter estimate (standard error) is 0.072
(0.037), while that for NLSis -0.275(0.300). Note that A=0 cannot be rcjected at usual
significance levels, thereby lending support to the common procedure in labor economics
of employing log (WAGE) as the dependent variable in statistical earnings functions.

Matters are rather different, however, when we examine estimated slope coefficients
and their associated t-statistics. For the BC estimator, although the RACE coefficient
and t-statistic are relatively robust under scaling, other coefficients and t-statistic vary
considerably, with some t-statistics changing by a factor of more than two. For the NLS
estimates, this lack of robustness also is present; the coefficients and t-statistics on the
EDN and EXP variables, for example, change by a factor greater than three after
arbitrary re-scaling. Notice that no sign changes occur under re-scaling for either the BC
or NLS estimators. Finally, for each coefficient in the line labeled "LM t-Stat", we
present NLS scale-invariant t-statistics based on the LM test statistic, computed as the
(positive) square root of the x; test statistic based on (2.35) with weights all equal to
one. We conclude that while the issue of scaling is empirically significant for these
models in particular, and for nonlinear models in general, scale-invariant t-statistics can

be obtained using the LM test procedure.
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4.2 Comparison of Parameters and Standard Errors for BC, NLS and WNLS

Having disposed of the scaling issue for t-statistics, we now compare parameter
estimates and standard errors for the BC, NLS and WNLS estimators, where in each
case we follow Spitzer’s (1984) suggestion and transform the dependent variable by the
sample geometric mean, as discussed underneath (2.36). We begin with a comparison
based on the CPS78 data discussed briefly in the previous sub-section.

As seen in Table 2, although estimates of A vary in sign based on the BC, NLS and
WNLS methods, standard errors are relatively large (especially when corrected for both
heteroskedasticity and the random geometric sample mean), and it is not clear these
estimates differ significantly. Coefficient estimates on the EDN, RACE, FEMALE ,EXP
and EXP2 variables are also very similar across the BC, NLS and WNLS estimation
procedures with this data set, but both usual, robust and corrected (for the geometric
mean) NLS standard errors are larger than those for the BC and WNLS. The NLS t-
statistics are not always largest, however, owing to variation in parameter estimates
among estimations; scale-invariant LM t-statistics bear no systematic inequality
relationship to the various values based on traditional computations.

The similarity in parameter estimates and inference obtained using the BC, NLS and
WNLS procedures does not occur, however, for the COLE data set. As seen in Table
3, estimates of A based on NLS (2.60) and WNLS (4.46) differ dramatically from that
based on BC (0.87). The coefficients for SPEED also differ widely across models with
(13.26) for BC, (10.27) for NLS and (-0.85) for WNLS. Only the WNLS estimate would
be considered insignificantly different from zero. The estimates fo CAP are all positive
and small. With respect to the annual time dummy variable coefficients estimates (used
as a basis for forming quality-adjusted computer price indexes in the hedonic price
literature), sign differences among BC, NLS and WNLS occur for four of the twelve

coefficients--1973, 1974, 1977 and 1978. Interestingly, towards the end of the sample in
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1982-84, LM t-statistics on the WNLS time dummies become smaller (in absolute value)
than those based on the other procedures.’

Finally, another interesting finding in Table 3 concerns alternative estimates of the
standard errors. For the BC procedure, traditional and "correct” standard error estimates
are quite similar, with no discernible inequality relationship between them occurring. For
the NLS and WNLS procedures, we see that correcting for the sample geometric mean
has a somewhat larger effect than in the BC case, but most of this is due to the
heteroskedasticity adjustment implicit in the "correct" standard errors.

The final data set we use in comparing the BC, NLS and WNLS procedures is that
underlying the classic study by Gregory Chow on estimating the prices and price elasticity
of demand for computers. Our results from the CHOW data set are presented in Table
4. A number of results are worth noting.

First, estimates of A vary dramatically across estimation procedures. While the 0.129
BC estimate of A is positive, small and statistically insignificant, the NLS (-2.03) and
especially the WNLS (-3.05) estimates are negative, large and statistically significant. A
negative estimate of A in the computer market is not entirely unexpected (see Jack E.
Triplett (1989) for a conjecture that this might occur), and demonstrates the importance
of allowing A to vary outside the (0,1) interval when implementing such models
empirically. For the estimated slope coefficients on the MULT, MEM and ACC
variables, no sign differences occur among the three estimation procedures, but one sign
variation is found among the annual time dummy variablcs--ihat for 1962.

In terms of standard error estimation procedures, for BC the traditional and "correct"
method yield roughly similar results, with the "correct" estimates being slightly larger than

the traditional in all cases but one (the 1961 time dummy). Interestingly, for NLS the

Implications of these results for price index computation are discussed in detail by
Berndt, Showalter and Wooldridge (1990).
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corrections (both heteroskedasticity and sample geometric mean) actually lower the
standard errors for all the parameters. For WNLS we have mixed results. Generally the
robust standard errors are smaller than the traditional ones while the "correct" standard
errors are, with one exception, the highest of the three estimates (the exception being
the MEM coefficient where the "correct” standard error is higher than the traditional but
lower than the robust).

On the basis of parameter estimates and inference, therefore, we conclude that
substantial differences are found among the BC, NLS and WNLS estimates, particularly
with the COLE and CHOW data sets. We see no systematic effect of adjusting for the
sample geometric mean, although there is some evidence that using White’s robust
standard errors might be an adequate approximation for the "correct" standard errors.

We now move on to a comparison of estimation methods using goodness-of-fit
criteria. Recall from our earlier discussion that if one defines the residuai as

& =y, - f(xt,ﬁ,i) , then by construction the NLS estimator wiii always produce a
lower sum of squared residuals than the WNLS method. However, we cannot say that
NLS will result in a lower sum of squared residuals than BC when the residuals are
calculated using equations (2.7)-(2.9) (although we suspect that this will generally be the
case). As a result, it is important to use criteria other than sums of squared residuals
when comparing the BC, NLS and WNLS procedures.

In Table 5 we present summary statistics (min, max, 25%, 75%, std. dev. and mean)
for the observed (scaled by the sample geometric mean) dependent variable, y, and fitted
values, where the latter are computed in four ways, as discussed in Section 2: IBC
(Incorrect Box-Cox, Box-Cox using equation (2.5)), BC (Box-Cox using equation (2.7)-
(2.9)), NLS (nonlinear least squares fitted value) and WNLS (weighted nonlinear least
squares fitted values), all for the CPS78 data. Corresponding summary statistics for the

COLE and CHOW data sets are given in Tables 6 and 7.
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As seen in Table 5, for the CPS78 data the distribution of the fitted values is roughly
similar for all four procedures, although the inean of the fitted value for IBC is about
10% less than the sample mean of y, implying that for the IBC, the mean "residual” is
non-zero. For the COLE data (see Table 6), while mean fitted values are all
approximately equal and close to the sample observed mean, the IBC and BC minimum
fitted values (0.573 and 0.583) are substantially larger than those for NLS (0.296) and
WNLS (0.312), and for the sample observed min (0.294). However, maximum fitted
values of the IBC (2.755) and BC (2.757) are close to the observed sample max (2.766),
but these maximum values are larger than the maximum fitted values based on the NLS
(2.439) and WNLS (2.128) procedures.

Finally, for the CHOW data (see Table 7), greater diversity appears. The mean fitted
values for IBC (2.170), NLS (1.999) and WNLS (2.029) are quite closc to the sample
mean of the observed y (2.034), but the mean fitted value from BC (2.574) is about 20%
larger. Although the min (0.086) and max (21.221) fitted values from WNLS are virtually
identical to those observed (0.090 and 21.218), the min fitted values for NLS (0.021) and
IBC (0.055) are smaller, and the max fitted values for IBC (74.892) and BC (81.636) are
much larger than for observed y (21.218). Since the max values for IBC and BC are so
much Jarger than for the observed y, several IBC and BC residuals will be
correspondingly large, one might expect that the sum of squared residuals will be
correspondingly large, and therefore that the sum of squared residuals based on the BC
and IBC methods and the CHOW data will be much larger than for the NLS and WNLS
methods. This is in fact what occurs; as seen in Table 7, with the CHOW data the sums
of squared residuals for IBC (3089.09) and BC (3829.93) are much larger than for WNLS
(91.47) or NLS (87.08). For the CPS78 data (Table 5), differences in the sums of
squared residuals are very small, while for the COLE data (Table 6), the differences are

only slightly larger.
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In the last panel of Tables 5,6 and 7, we present simple correlations between the
observed and four sets of fitted values (IBC, BC, NLS and WNLS), both centered about
their sample means and uncentered. For the CPS78 data (Table 5), the uncentered
correlations are all very large (above 0.9), and for the centered correlations with
observed y, the fitted value correlations are all very similar (about 0.59). For the COLE
data (Table 6), simple correlations display a bit more diversity, but differences are not
dramatic. With the CHOW data, however (Table 7), two groups of correlations differ.
While the IBC and BC fitted values are very highly correlated (the centered and
uncentered correlation are each 1.00C) with each other, and while the NLS and WNLS
reveal similarly high correlations (0.997 centered, 0.998 uncentered), simple correlations
between the IBC, BC and NLS-WNLS fitted values are lower, around 0.8 for both the
centered and uncentered data.

These correlations among fitted values and between fitted and actual values of y
imply correlation structures among residuals. Simple (uncentered) residual correlatiors
for the CPS78, COLE and CHOW data sets are presented in the bettom panel of Tables
5, 6 and 7, respectively. As seen in Table 5, the inter-correlations among the IBC, BC,
NLS and WNLS residual for the CPS78 data set are all very high--greater than 0.99. For
the COLE data set (Table 6), we find that the WNLS residuals have a relatively low
correlation with the BC-IBC residuals (0.641), with the remaining correlations 0.86 or
above.set (Table 7), however, three clusters of correlations become evident. While
correlations btetween IBC and BC residuals (0.999) and between NLS and WNLS
residuals (0.977) remain very high, simple correlations between one of IBC-BC and one
of NLS-WNLS are very low--between about 0.11 and 0.13. With the CHOW data,
therefore, two very distinct groups of residuals emerge--one set based on Box-Cox

variants, and the other on nonlinear least squares variants. For this data set in
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particular, the transformation and nonlinear least squares methods yield very different

results.

8. Concluding Remarks

Our purpose in this paper has been to compare empirically two distinct approaches
to choosing a functional form--the Box-Cox and nonlinear least squares procedures--
based on three publicly available data sets.

We can summarize our findings as follows. First, we provided a rather persuasive
empirical example demonstrating that with both the Box-Cox (BC) and nonlinear least
squares (NLS) procedures, while t-statistics on the transformation parameier A are
invariant to arbitrary scaling of the dependent variable, the t-statistics on slope
coefficients, intercepts and dummy variables can be changed dramatically simply by
arbitrarily re-scaling the data. We also noted that since the t-statistic is a Wald test
statistic, this lack of invariance is not surprising, and we eliminated it by employing a
computationally more cumbersome Lagrange multiplier test statistic, systematically
excluding one variable at a time and re-estimating. We conclude, therefore, that while
in practice in these nonlinear models scaling issues are very important, they can be
resolved though use of the LM test statistic procedure. Future research that focuses on
necessary and sufficient conditions for such lack of scaling invariance, as well as on more
computationally efficient ways of doing scale-invariant testing of exclusionary restrictions,
would appear to be most useful.

Second, we have found that differences among the BC, NLS and weighted nonlinear
least squares (WNLS) parameter estimates vary by data set, and that little in general can
be stated concerning what a researcher should expect with a particular data set.
Specifically, in one data set (CPS78) parameter estimates differed very little among

alternative estimators, in a second data set (COLE) the differences were substantially
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larger--sometimes even resulting in different signs for estimated coefficients, and in our
third data set (CHOW) the differences were very large, with the estimated
transformation parameter A having a different sign depending on the estimation
procedure employed. Since in some cases we find substantial differences among
estimators, we are now faced with issues assessing which estimator is "best" in terms of
yielding estimates closest to the "true" parameters. Our results therefore imply that
empirical assessment of these alternative estimators based on a well-designed } fonte-
Carlo approach is warranted.!

Third, we have computed standard error estimates wusing traditional,
heteroskedasticity-robust and simultaneous heteroskedasticity-robust and sample
geometric mean-adjusted computational procedures. Our results suggest that when there
are differences among these alternative standard error estimates, most of the difference
can be attributed to adjusting for heteroskedasticity; the marginal change induced by
adjusting for the random sample geometric mean of the dependent variable is relatively
minor.

Fourth, in terms of fitted values and residuals, we have found that in some cases the
common but incorrect Box-Cox (IBC) and correct Box-Cox(BC) procedures yield fitted
values much greater than (less than) the sample maximum (minimum) values of the
observed y, and that in such cases the resulting extremely large residuals for IBC and BC
yield very large sums of squared residuals, much larger than that for NLS and WNLS.
In these cases, while the correlations between IBC and BC residuals, and between NLS
and WNLS residuals, are very high, the IBC-BC and NLS-WNLS residuals tend to cluster
in two distinct groups, with simple correlations between any one of IBC-BC and one of

NLS-WNLS being very small (less than 0.15). Which of these residuals are more

1%Research on this topic is currently underway. See Showalter (1990).
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“correct”" depends of course on the true parameters and model, and in this study those
are still unknown. Further research on this topic using Monte Carlo approaches would
be useful

Finaily, in this paper we have reported results using only the Box-Cox transformation
on the dependent variable, and have employed "natural” (i.e., untransformed) values for
the explanatory variables. In particular, we have not reported results when some
explanatory variatles are transformed into logarithms (as was done in the original COLE
and CHOW studies) oi are transformed using the Box-Tidwell procedures. We have
done some research on these issues, however, and can briefly report that when one
employs logarithmic transformations of explanatory variables as was dcne in the original
studies by Cole et al. and Chow, differences among the BC, NLS and WNLS estimates
of A become rather small, and typically our A estimates were insignificantly different from
zero, thereby lending support to the log-log functional form specification used by Cole
et al. and Chow.!’! However, when Box-Tidwell-type procedures are employed,

differences among the various estimation procedures re-emerge.

"For further discussion, see Berndt, Showalter and Wooldridge (1990).
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=== Tablg 1 ===
Resolution of the Lack of Invariance to Scaling Iszsue
CPS 1978 Data
Box-Cox NLS

Unscaled Scaled Unscaled Scaled
($ per hour) (#100) ($ per hour) (*100)

Lambda 0.072 0.072 =0.275 -0.275
3td Err 0.037 0.037 0.300 6.300
t-Stat 1.917 1.917 -C.917 =0.917
LM t-Stat 0.816 0.816 0.563 0.563

Constant 0.540 6.204 0.702 2.807
Std Err 0.120 0.596 0.099 1.685
t-Stat 4.515 10.412 7.087 1.666
LM t-Stat 9.734 9.734 4.844 4.844

FEMALE -0.371 -0.515 =0.200 =0.056
Std Err G.046 0.134 0.115 0.109
t-Stat -8.054 -3.849 -1.741 -0.514
LM t-Stat 9.092 9.092 6.890 6.890

RACE -0.131 -0.182 -0.094 -0.026
std Err 0.050 0.075 0.063 0.052
t-Stat -2.602 -2.420 -1.490 -0.5907
LM t-Stat 2.485 2.485 2.236 2.226

EDN 0.080 0.111 0.042 0.012
std Err 0.010 0.029 0.026 0.024
t-Stat 8.308 3.822 1.614 0.501
LM t-Stat 9.152 9.152 5.596 5.596

EXP 0.034 0.047 0.020 0.006
std Err 0.007 0.015 0.012 0.011
t-Stat 4.734 3.078 1.690 0.511
LM t-Stat 6.412 6.412 5.695 5.695

EXP2 ~4.10E-04 -5.69E-04 -2.35E-04 -6.62E~-05
std Err 1.40E-04 2.40E-04 1.47E-04 1.29E-04
t-stat -2.928 -2.377 -1.599 -0.513
LM t-Stat 3.777 3.777 3.173 3.173

Note: The LM t-Stats are based on the LM test statistic
(computed as the square root of the chi-squared test
statistic), allowing for heteroskedasticity.
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Lambda
Usual
Robust
Correct

Constant
Usual
Robhust
Correct

EDN
Usueal
Robust
Correct

RACE
Usual
Robust
Correct

FEMALE
Usual
Robust
Correct

EXP
Usual
Robust
Correct

EXP2
Usual
Robust
Correct

0.07151

-1.10529

0.07109

-0.11591

-0.32857

0.02980

-0.00036

et s, sy ven e
S

= Tablg 2 ===
Alternative Estimates of 8tandard Errors and t-Statistics
CPS8 1978 Data

BC
Std.Err. t-stat
0.03730 1.917
0.03720 1.917
0.10211 -=10.825
0.10€633 ~10.395
0.00692 10.269
0.00692 10.268
0.04548 -2.548
0.04549 -2.548
0.03461 -9.,492
0.03463 -9.487
0.00574 5.194
0.00574 5.192
0.00012 -3.024
0.00012 -3.024
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NLS

Std.Err. t-stat
-0.27532

0.30020 -0.917

0.45707 -0.602

0.45707 -0.602
-1.02175%

0.14443 -7.074

0.11650 ~-8.771

0.118€9 -C.30.
0.06712

0.00950 7.062

0.00805 8.336

0.00807 8.317
-0.14922

0.05757 -2.592

c.05113 -2.919

0.05111 -2.920
-0.31723

0.04589 -6.913

0.04456 -7.119

0.04433 -7.156
0.03115

0.00583 5.348

0.00574 5.426

0.0057% 5.419
-0.00037

0.00012 -3.204

0.00013 -2.957

0.00012 -2.957



-== Table 2 (Coatianued) ---

Alternative Estimates of standard Brrors and t-Statistics
CP8 1978 Data

Lambda
Usual
Robust
Correct

Constant
Usual
Robust
Correct

EDN
Usual
Robust
Correct

RACE
Usual
Robust
Correct

FEMALE
Usual
Robust
Correct

EXP
Usual
Robhust
Correct

EXP2
Usual
Robust
Correct

b

-0.25248

-1.08120

0.07051

-0.11212

~0.30226

0.03224

=0.00040

WNLS
Std.Err. t-stat
0.30592 -0.825
0.30563 -0.826
0.30563 -0.826
0.10850 -9.965
0.10329 -10.467
0.10593 <10.206
0.00766 9.200
0.00676 20.425
0.00679 10.389
0.04684 =-2.394
0.04856 -2.309
0.04857 -2.308
0.03675 -8.225
0.03637 -8.311
0.03621 -8.347
0.00501 6.430
0.00427 7.559
0.00429 7.523
0.00011 -3.717
0.00009 -4.215
0.000909 -4.209
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~== Tablg 3 ===

Alternative Estimates of Standard Errors and t-Statistics

38

Cole Data
BC NLS
Std.Err. t-stat Std.Err. t-stat
Lambda 0.86257 2.58990
Usual 0.21118 4.085 0.38164 6.786
Robust 0.39420 6.570
Correct ‘0.25534 3.378 0.39420 6.570
Constant -0.64311 =-0.55997
Usual 0.12193 -5.274 0.07618 -~7.2351
Robust 0.08288 =6.756
Correct 0.11730 -5.483 0.08418 -6.652
SPEED 13.41629 10.54324
Usual 2.66228 5.039 3.40578 3.095%
Robust 4.03067 2.816
Correct 2.37244 5.655 4.00958 2.630
CAPACITY 0.00014 0.00127
Usual 0.00017 0.808 0.00046 2.733
Robust 0.00043 2.938
Correct 0.00016 0.847 0.00048 2.667
1973 0.23921 0.07760
Usual 0.11940 2.003 0.11749 0.661
Robust 0.11883 0.653
Correct 0.11882 2.013 0.11880 0.653
1974 0.03888 -0.07403
Usual 0.10020 0.388 0.G8205 =0.902
Robust 0.08402 ~0.881
Correct 0.09982 0.389 0.08520 -0.869
1975 -0.06402 ~0.12453
Usual 0.14118 -0.453 0.06563 -1.897
Robust 0.04985 =-2.498
Correct 0.14160 -0.452 0.05051 =2.465
1876 -0.06146 -0.14651
Usual 0.10056 -0.611 0.05743 -~2.551
Robust 0.04446 -3.295
Correct 0.10052 -0.611 0.04540 =-3.227



-== Table 3 (Contimnued) =—-=-
Alternative Estimates of 8tandard Errors and t-g8tatistics
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Cole Data
BC NLS
Std.Err. t-stat sStd.Err. t-stat
1977 0.02961 ~-0.11924
Usual 0.11167 0.265 0.09137 -1.305
Robust 0.07297 -=1.634
Correct 0.11099 0.267 0.07103 -1.679
1978 0.21434 ~-0.18883
usual 0.19080 1.123 0.27742 -=0.681
Robust 0.22777 =-0.829
Correct 0.18700 1.146 0.22597 -=0.836
1979 -0.03698 -0.60416
Usual 0.32848 -0.113 0.26236 -2.303
Robust 0.20254 -2.983
Correct 0.32614 -0.113 0.20737 =2.914
1980 -0.25360 -0.82602
Usual 0.22352 -1.135 0.23597 -=3.500
Robust 0.20057 -4.118
Correct 0.22263 -1.139 0.21764 -=3.795
1981 -0.25941 -0.82932
Usual 0.24131 -1.075 0.23729 =3.495
Robust 0.19870 -=4.174
Correct 0.23882 -1.086 0.21587 -=3.842
1982 -0.23589 -0.85830
Usual 0.40696 -0.580 0.26206 -=3.27%
Robust 0.20860 -4.115
Correct 0.40553 -0.582 0.22578 =3.802
1983 -0.52679 -1.02977
Usual 0.28303 -1.861 0.25643 -4.016
Robust 0.20253 -~5.084
Correct 0.28643 -1.839 0.22645 =4.547
1984 -0.62440 -1.06818
Usual 0.28959 -2.156 0.24510 -4.358
Robust 0.21192 -5.041
Correct 0.29171 -2.140 0.23639 -4.519



-== Table 3 (Continued) ===
Alternative Estimates of Standard Errors and t-statistics

Cole Data
WNLS
Std.Err. t-stat
Lambda 2.57957
Ucsual 0.50334 5.125
Robrst 0.42342 6.092
Correct 0.42342 6.092
Constant -0.51235
Usual 0.08453 -6.061
Robust 0.07367 -6.955
Correct 0.07452 -6.875
SPEED 7.49824
Usual 3.37800 2.220
Robust 3.39850 2.206
Correct 3.30321 2.270
CAPACITY 0.00150
Usual 0.00054 2.762
Robust 0.00045 3.323
Correct 0.00050 2.966
1973 0.04042
Usual 0.10073 0.401
Robust 0.09236 0.438
Correct 0.09273 0.436
1974 -0.08976
Usual 0.05832 -1.539
Robust 0.07314 -1.227
Correct 0.07435 -1.207
1975 -0.12700
Usual 0.04356 -2.915
Robust 0.04503 -2.820
Correct 0.04618 -2.750
1976 -0.13947
Usual 0.03813 -3.658
Robust 0.04194 -3.2325
Correct 0.04378 -3.186
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=== Table 3 (Continued)

Alternative Estimates of Standard Errors and t-Statistics

Cole Data
WNLS
Std.Err. t-stat
1977 ~-0.06388
Usual 0.07378 -0.934
Robust 0.05468 -1.260
Correct 0.05245 -1.313
1978 -0.17382
Usual 0.36390 -0.478
Robust 0.22203 -0.783
Correct 0.22026 -0.789
1979 -0.59740
Usual 0.30069 -1.987
Robust 0.21982 -2.718
Correct 0.22217 ~2.689
1980 -0.80706
Usual 0.26348 -3.063
Robust 0.21954 -3.676
Correct 0.23102 -3.494
1981 -0.80916
Usual 0.26508 -3.052
Robust 0.21680 -3.732
Correct 0.22800 =3.549
1982 -0.86386
Usual 0.2%019 -2.977
Robust 0.22379 -3.860
Correct 0.23557 -3.667
1983 -0.99009
Usual 0.26393 -3.751
Robust 0.20154 -4.913
Correct 0.22070 -4.486
1984 -0.99120
Usual 0.25817 -3.839
Robust 0.20059 -4.941
Correct 0.21965 -4.513
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=== Table 4 =---
Alternative Estimates of Standard Errors and t-sStatistice

Chow Data
BC
Std.Err. t-stat
Lambda 0.12913
Usual 0.14056 0.919
Robust
Correct 0.14167 0.911
Constant 0.04120
; Usual 0.24733 0.167
Robust
Correct 0.30742 0.134
MULT -0.00001
Usual 9.82E-06 -0.947
Robust
Correct 1.00E-05 -0.870
]
MEM 0.00042
Usual 7.10E-05 5.894
Robust
Correct 9.00E-05 4.824
ACCESS -0.00008
Usual 4.74E-05 -=1.694
Robust
Correct 5.00E-05 -1.679
1961 -0.15710
Usual 0.38903 ~0.404
Robust
Correct 0.38590 -=0.407
1962 0.09273
Usual 0.29238 0.317
Robust
Correct 0.30276 0.306
1963 -C.25717
Usual 0.30548 -0.842
Robust
Correct 0.30768 =-0.836
1964 -0.14770
Usual 0.35770 -0.413
Robust
Correct 0.35788 -=0.413
1965 -0.73291
Usual 0.31279 =2.343
Robust
Correct 0.31540 -=2.324
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NLS
Std.Err. t-stat
-2.02749
0.4316% =4.697
0.40781 -4.974
0.40761 -4.974
0.63441
0.19839 3.45%0
0.17167 3.987
0.16964 4.034
-0.00094
0.00052 -1.804
0.00043 =-2.171
0.00045 =-2.084
0.00001
0.00001 2.106
0.00001 2.446
0.00001 2.570
-0.04812
0.02594 -1.855
0.02155 =2.233
0.02150 -2.238
-0.29943
0.14187 =-2.111
0.12025%5 =-2.476
0.11648%8 -=2.871
-0.15363
0.08247 =1.936
0.06872 =2.323
0.06821 =2.340
-0.21562
0.10775 -=2.001
0.09052 -=2.382
0.08889 =-2.426
-0.22731
0.11520 -~1.973
0.09655 =2.354
0.09526 =2.386
-0.23832
0.12272 =1.942
0.10301 -2.314
0.102068 -=2.335



--= Table 4 (Continued) =--
Alternative Estimates of Standard Errors and t-8tatistics

Chow Data
WNLS
Std.Err. t-stat
Lambda -3.05296
Usual 0.23361 =13.069
Robust 0.24741 -12.340
Correct 0.24741 -12.340
Constant 0.36960
Usual 0.02142 17.253
Robust 0.02788 13.256
Correct 0.03127 11.820
MULT -0.00125
Usual 0.00044 -2.813
Robust 0.00048 -2.604
Correct 0.00049 -2.535
MEM 0.00001
Usual 0.00000 2.668
Robust 0.00000 3.071
Correct 0.00000 2.744
ACCESS -0.00247
Usual 0.00154 -1.606
Robust 0.00168 -1.472
Correct 0.0020¢ -1.181
1961 -0.16786
Usual 0.05856 -2.867
Robust 0.05497 -3.054
Correct 0.06123 -2.742
1962 -0.04633
Usual 0.01608 -2.881
Robust 0.01452 -3.190
Correct 0.01703 -2.720
1963 -0.09324
Usual 0.03105 -3.003
Robust 0.02%90 -3.118
Correct 0.03403 -2.740
1964 -0.08507
Usual 0.02779 -3.061
Robust 0.02647 -3.214
Correct 0.03098 -2.746
1965 -0.08294
Usual 0.02742 -3.025
Robust 0.02653 -3.126
Correct 0.03021 -2.745
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Table 5 - CP8 1978 Datsa

Summary Statistics

Y IBC BC NLS WNLS
Min 0.1156 0.477 0.516 0.532 0.542
Max 5.314 2.129 2.268 2.546 2.566
25% 0.698 0.816 0.878 0.859 0.857
75% 1.396 1.239 1.327 1.335 1.330
std Dev 0.607 0.314 0.334 0.362 0.361
Mean 1.129 1.050 1.126 1.129 1.129

Sum of Squarad Residuals
IBC -- 135.641
BC =-- 131,487
NLS ~-- 130.351
WNLS -- 130.402

X2 2 222 3 2 2 2 22 + F- 3~ 3 £+ 2 3 3.

Correlation Matrices

--Centered-~ --Uncentered--
Y 1.000 1.000
IBC 0.592 1.000 0.924 1.000
BC 0.592 1.000 1.000 0.924 1.000 1.000
NLS 0.596 0.995 0.995 1.000 0.925 0.999 0.999 1.000

WNLS 0.595 0.995 0.995 1.000 1.000 0.925 0.999 0.999 1.000 1.000

-=-Regidualg-~-
IBC 1.000
BC 0.999 1.000
NLS 0.993 0.996 1.000
WNLS 0.993 0.996 1.000 1.000
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Tahle 6 - Cole Data

Summary Statistics

Y IBC BC NLS  WNLS
Min 0.294 0.571 0.581 0.294 0.319
Max 2.766 2.757 2.759 2.439 2.448
25% 0.742 0.760 0.766 0.773 0.791
75% 1.291 1.178 1.182 1,283 1.294
Std Dev 0.565 0.502 0.501 0.511 0.513
Mean 1.132 1.3i26 1.131 1.132 1.132

Sum of Squared Residuals
IBC -~ 6.659
BC -~ 6.668
NLS -- 5.175
WNLS -~ 5.214

Corraslation Hatrices

--Centered-- -=-Uncentered--
Y 1.000 1.000
IBC 0.877 1.000 0.977 1.000
BC 0.876 1.000 1.000 0.977 1.000 1.000
NLS 0.905 0.968 0.967 1.000 0.982 0.995 0.995 1.000

WNLS 0.905 0.967 0.966 0.999 1.000 0.982 0.994 0.394 1.000 1.000

-=-Residualg~-
IBC 1.000
BC 1.000 1.000
NLS 0.880 0.880 1.000
WNLS 0.875 0.875 0.997 1.000
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Table 7 - Chow Data

Sunmary Statistics

Y IBC BC NLS  WNLS
Min 0.090 0.055 0.091 0.023 0.086
Max 21.218 74.892 81.636 21.218 21.221
25% 0.398 0.810 1.057 0.610 0.853
75% 2.254 1.299 1.646 2.019 1.88%
Std Dev 3.003 8.215 8.944 2.844 2.780
Mean 2.034 2.170 2.574 1.999 2.029

-t -1 3 23 1 33 22 2 ¢ -+ -+ - 3-3-3 £ % 3+ .+ .+ £ 3-32 2 -§£-2-%2.% %3

Sum ¢f Squared Residuals
IBC -- 3089.093

BC -- 3829.932

NLS -~ 87.081
WNLS -- 91.472

Correlation Matrices

--Centered-- --Uncentered--
Y 1.000 1.000
IBC 0.778 1.000 0.766 1.000
BC 0.782 1.0C0 1.000 0.778 1.000 1.000
NLS 0.939 0.813 0.816 1.000 0.958 0.790 0.801 1.000

WNLS 0.935 0.827 0.831 0.997 1.000 0.956 0.797 0.808 0.9%8 1.000

-=-Regsidualg-~
IBC 1.000
BC 0.999 1.000
NLS 0.125 0.107 1.000
WMLS 0.139 0.117 0.977 1.000
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Essay II:

A Monte Carlo Investigation of the Box-Cox
Model and a Nonlinear Least Squares Alternative

by

Mark H. Showalter

Abstract:

This paper is a Monte Carlo study of the Box-Cox and the nonlinear least squares (NLS) estimators.
This is the first Monte Carlo study of the NLS estimator and it also extends previous Monte Carlo work for
the BC estimator by examining the effects of autocorrelation and heteroskedasticity. The study is constructed
to allow comparison between the Box-Cox and the NLS estimators.

The results suggest: 1) The transformation parameter in the Box-Cox model appears to be
inconsistently estimated in the presence of conditional heteroskedasticity. 2) The constant term in both the
Box-Cox and the NLS models is poorly estimated in small samples. 3) The ratio of the variance of the ervor
term to the total variance of the dependent variable overshadows the effects of misspecification
(autocorrelation or heteroskedasticity). 4) The effect of sample size is more evident in the NLS model than
in the Box-Cox counterpart. 5) Asymptotic size is generally overestimated in the NLS model when Gaussian
variance estimators are used. 6) The true value of the transformation parameter appears to be important in
determining the fit of the data in the Box-Cox model while it is unimportant in the NLS model.
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1. Introduction

Since its introduction, the Box-Cox model has been widely used as a framework for
generalizing functional form in econometric research. This has occurred despite the fact
that the distributional assumptions underlying Box-Cox (BC) cannot be true except in the
special case of the transformation parameter, usually denoted A, equalling zero.
Additionally, the BC procedure estimates a transformation of the dependent variable
when, in fact, researchers are most frequently interested in the original untransformed
variable. This use of a (not necessarily consistent) estimate of the transformed
dependent variabie poses difficulties in correctly determining the marginal effects of
changes in the independent variables on the untransformed dependent variable, and also
in computing fitted values for the untransformed dependent variabie.

Nonetheless, the importance of the BC transformation for distinguishing among
alternative specifications has transcended its theoretical drawbacks. The BC
transformation provides some statistical rigor to the otherwise ad hoc choice between a
model which uses an untransformed dependent variable and a model which measures the
dependent variable in logs. It additionally allows for choices other than these two
common ones. The Box-Cox procedure also has the convenient property that parameter
estimates can be (laboriously) obtained using ordinary least squares techniques.

This tension between the desire for a statistical methodology to determine the most
appropriate functional form and the obvious theoretical flaws of the BC model provides
fertile ground for a Monte Carlo study of the properties of the BC procedure. Such a
study would provide researchers with a better idea of the limitations involved when using
the BC model. Since the estimation of a BC model involves either maximum likelihood
estimation or iterated OLS, Monte Carlo simulation has been rather limited. Spitzer
(1978) is probably the best of the work done thus far and he acknowledges the

limitations of his study, due in large part to the cost of doing nonlinear simulations.
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However, as computing costs have gone down, use of the BC procedure appears to be
increasing in the empirical literature. This would therefore seem an appropriate time
for a more detailed Monte Carlo study of the BC procedure.

A norlinear least squares (NLS) alternative to the BC model has recently been
proposed by Jeff Wooldridge (1990) which, like the BC model, allows the data to
determine the most appropriate functional form--be it linear, logarithmic or some other
form--but avoids the theoretical problems of the BC model in that no comprehensive
distributional assumptions are required. The model is specified such that fitted vaiues
of the dependent variable are easy to calculate and the marginal effects of the
explanatory variables are straightforward to compute, requiring only differentiation of the
estimated conditional mean function. This flexibility comes at a cost, however. Unlike
the BC model, consistent parameter estimates generally cannot be obtained from an OLS
regression. Also, one might wonder if perhaps BC might be more efficient in the sense
of smaller standard errors if in fact the normality assumption of the BC model were close
to the true distribution.

This paper investigates both the BC model and the NLS alternative using simpie
Monte Carlo methods. The organization of the paper is as follows: First we present a
brief review of the BC model. Then we outline more extensively the NLS alternative
proposed by Wooldridge and provide details on the simulation methodology. We then

present the simulation results and analysis, and conclude with a brief summary.
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2. The Box-Cox Model

The BC model typically assumes the following form:

ye-1
x

x, = lxk vector of explanatory variables; first element equal to 1

B - kxl vector of coefficients (1)
A - scalar transformation parameter

>0

e, IID N(O,0%

€, X, independent

=X P +e
] (4

By performing a change of variables from ¢, to y, we find the log likelihood function of

the sample of y,’s to be

A

T T 1 e Y-l .
Logl=-—In(2n)-~Ino?-——¥" (Z— -x,8)2+(A-DT_ lny, @)
2 2 20t A tal

The BC procedure consists of maximizing this log likelihood function over (1,0%8).
Conceptually this allows the data to decide what is the most appropriate transformation
of the dependent variable y.

However it is well known that the normality assumption for €, cannot be true except
in the special case, A=0, due to the positivity constraint on y,. This implies that the
likelihood function is misspecified and therefore we cannot apply the usual maximum
likelihood properties of consistency or efficiency. Instead, at best, we must use quasi-
maximum likelihood resuits and evaluate the objective function with the true distribution.

Various proposals for fixing the BC model have been advanced. Amemiya and
Powell (1981) offer a two-stage nonlinear least squares estimator while Poirier (1978)

suggests using a truncated normal distributional assumption. Even with the
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misspecification, work by Draper and Cox (1969) suggest that the results from BC might

not be too wrong if in fact the true distribution is close to normal.

3. The NLS Model

An alternative to the BC model has been proposed by Jeff Wooldridge (1990),
representing a distinct departure from these adjustments. Wooldridge motivates his
model by noting that in the great majority of economic research the interest in estimation
focuses on the mean of the untransformed dependent variable, conditional on the
explanatory variables. For example, in a hedonic specification of the price of computers,
the interest might lie in predicting the price of a new model for use in a price index--not
in predicting a transformation of the price as the BC model would do. Or a researcher
might want to find the marginal effect of a change in the price with respect to a change
in the computing speed. Such questions obviously center around the untransformed
dependent variable.

Observing the quandary surrounding BC estimation, Wooldridge proposes instead

a conditional mean function

PI-—

bEx) = EO,lx) = (1+AxB) . @)

Such a model can be consistently estimated using NLS and has some very attractive
properties. First it generalizes the functional form in much the same way as does the BC

model: For A=1 we have a linear model

p(x) = 1+x @

and for A = 0 we have an exponential model
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bGx) = Eplxp), ®)

which is analogous to the logarithmic case for BC (In fact, (5) is implied by the BC
model when A=0). As such it generalizes the choice of functional form in much the
same way as BC, but does not have the theoretical flaws.

Second, it relaxes the independence assumption of the BC model (¢, and x,
independently distributed) and can be expressed having either an additive error (see
equation 8a below) or a multiplicative error (see equation 8b).

Having introduced the NLS alternative, we make two additional points. First, since
the Wooldridge approach is a nonlinear model, standard nonlinear estimation problems
arise (e.g. selection of starting values). These type of problems can often be avoided
with a BC model since a BC model can usually be estimated with software having OLS
and matrix algebra capabilities. Second, both the BC and NLS models can be viewed

as approximations to the following more general framework

y,=fx,0,e) ()

where 0’ = (B’, A).
In the BC case

1
fx,e,0)=(1+A(x,B+€))>. M

In the NLS case
3 (8a)
fx,2,0)=(1+1x,8)* +e,
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or

flx,e,6) =(1+Lx,3)%e,. (8b)
It is an open question which one better approximates the true function, f(x,¢,,8).

A problem common to both the BC and the NLS models is the lack of invariance
of standard Wald-type statistics (t-tests) to multiplicative scaling of the dependent
variable. In the basic OLS model, multiplicative scaling of the dependent variable simply
scales the estimated slope parameters and their associated standard errors by the same
factor leaving t-statistics--hence inference results--unchanged.

This is not necessarily true with a nonlinear modei. In general, there is no
guarantee that inference results remain unchanged after scaling in a nonlinear model.
This has unsettling implications. This lack of invariance means that when estimating, for
example, a nonlinear wage equation, how you measure wage--in cents, or dollars, for
example--could affect the statistical significance of the estimated coefficients. Such an
effect has been noted by Spitzer (1984) for the BC model, by Wooldridge (1990) for the
NLS model and its possible effects have been highlighted for both models by Berndt,
Showalter, and Wooldridge (1990a). Each of these papers suggest as a possible solution
scaling the original dependent variable by the sample geometric mean which makes the
dependent variable trivially scale invariant, while Wooldridge and Berndt et al suggest
as an alternative a Lagrange multiplier test which is invariant to multiplicative scaling.

The purpose of this paper is to use Monte Carlo methods to simulate both the BC
model and the NLS model under alternative error covariance structures. Since no
hypothesis framework is available to decide statistically which model performs the best,
the research strategy sets the simulations such that the models are as similar as possible.
The decision to focus attention on alternative error covariance structures is motivated

largely by the observation that this will be the likely stumbling block of the BC model,
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and it would be useful to evaluate the sensitivity of the BC model to various assumptions
about the error term. Although several studies have suggested that misspecification of
the BC model will likely lead to values of A biased toward zero (Amemiya and Powell
(1981); Seaks and Layson (1983)), relatively little is known about the effects of
misspecification on the estimated slope coefficients.!

The dependent variables in both models are normalized by the sample geometric
mean. This is done for two reasons. First it makes models with differing A’s
comparable. A previous Monte Carlo simulation of the BC model by Spitzer (1978)
found that not normalizing can lead to the wrong conclusions. Second, this seems the
more logical approach if in fact researchers use the models as Spitzer, Wooldridge and
Berndt et al have suggested.

However, this normalization brings with it some problems. As Weoldridge points
out, the sample geometric mean should be considered an estimate of the true geormetric
mean. Since this use of the sample geometric mean defines a new "true" parameter
vector, each model with a different value for A will have a different true parameter
vector. Perhaps an example is in order.

Suppose we have the following BC specification

1
y=(1+Ax B +re)’ @

Let the sample geometric mean be

!Amemiya and Powell (1981) assume a two-parameter gamma distribution in which
the magnitude of A affects both the sign and the size of the bias on the coefficient
estimates (coefficients include a constant term and one slope parameter).

56



T
g-Ep(2T I y) (16)

o}

Now we redefine our model to be normalized by §

i

y,°82§5=(1+).x,6+}.e:)‘

where

1
1+18, = 8 "(I+AB‘) (1)

1
3, =2 *p, i=2,..k
1

e =g *e

Equation (11) is the model we would estimate. Conceptually, g is an estimate of the
population geometric mean g = exp (E(log(y,))). As the value of A changes the value
of the population geometric mean will change also. But this implies that our true
parameter vector & will be different for different values of A. Also, we note that for the

(additive) NLS model,

1
R (12)

Here, even if 8,x,¢, and A are the same as in equation (11), the geometric mean--both
sample and population--wili be different from the BC model. This implies that direct
comparison between the two models will not be possible.

The approach taken here is one of cautious pragmatism: It is of some interest to
determine the properties of the BC model given its theoretical flaws. It is also of interest

to compare the performance of the BC and NLS models. But differing objective
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functions and unobservable "true" parameter vectors make direct comparisons between
models and even within a model across different A’s somewhat arbitrary. Since it is of
interest to compare models when A varies it will be necessary to normalize the models.
We will proceed by making a large sample estimate of the true geometric mean for each
permutation of A, the estimation method (BC or NLS) and the covariance structure. We
will make this our reference point in determining the performance of the estimators. All
comparisons will be done in percentage terms to make interpretation easier.

The simulation methodology focuses on the effects of both A and the error
distribution on the estimation of the slope coefficients. Following Hendry’s (1984)
suggestion to estimate a response function over the parameter space, we select several
values for A and also for the error distribution. The values chosen for A-- -1.0, -0.5, 0,
0.5 and 1.0 --are similar to those used in Amemiya and Powell (1981) and in Spitzer
(1978). They also encompass the range of A estimated in several empirical studies which
employ the BC model (e.g. Heckman and Polachek (1974), and Dinan and Miranowski
(1989)).

The error structures are chosen to include interesting cases, three of which fit the
classical BC assumptions on the error term (IID normal errors), and two error structures
which are commonly found in empirical work but which violate the BC paradigm--
namely, heteroskedastic errors and autocorrelated errors.

The three classical error structures were chosen to account for approximately 10
percent (Case 1), 30 percent (Case 2) and 50 percent (Case 3) of the total variation of

y (hereafter these percentages will be referred to as the variance ratio).2 These values

%By comparison, Spitzer (1978) locked only at the case of errors accounting for 5
percent of the total variation.
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correspond loosely to standard R-squared measures of approximately 0.9, 0.7 and 0.5,
respectively.?

For the heteroskedastic model (Case 4) we choose an error structure similar to
those discussed in Greene (1990, pp. 408-409) having a conditional variance of the form
V(e |x,) = 0*(1 + x,8) with a variance ratio approximately equal to 10 percent.

For the autocorrelation model (Case S5) we choose a model with simple first order
autocorrelation of the form €, = 0.7%,, + v, v, a white noise disturbance and the
variance ratio again approximately equal to 10 percent.

With the primary focus of the simulation being on the effect of 4 and the error
structure, the selection of the B’s and the x’s is done to facilitate those ends. Again
following Spitzer’s lead, we choose a model with a constant term and two continuous
regressors. Like Spitzer we have opposing signs on the two slope coefficients, but we
simplify the values to be B,=B,=-B,=1 with B, and B, being the coefficients on the
continuous regressors. The value of x,8 is chosen to equal zero in expectation to keep
the variance ratio approximately the same across differing values of A and across models
(BC and NLS). We generalize Spitzer’s specification somewhat by drawing a new set of
x’s for each replication rather than keeping the x’s fixed. This is done to make the
simulation results dependent upon a distribution (in our case, a bivariate normal) rather
than on a particular draw from a distribution, as in Spitzer. A more detailed description

of the estimation procedure is given in the appendix.

*The approximation is due to differences between the BC and the NLS models and
across different values of A.
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4. Analysis

The presentation of the simulation results highlight the similarities and differences
between the BC and the NLS models. First we examine the parameter estimation
results, and then we investigate the fit of the two models to the data.

We are first interested in the rates of convergence of the various parameter
estimates in the two models. To gain an intuitive appreciation for the rates of
convergence, we present a series of graphs for each parameter in each of the two
models. Each graph displays five line plots, one for each of the covariance structures.
Since our results suggest a great similarity across different values of A, we present results
only for the case of A=1. All terms are represented as percentage deviations from the
true parameters.

Figures 1a and 1b give the mean squared percentage error (MSPE) for the constant

term where MSPE is defined in equation (13).

MSPE-—E[GOO)

NS

13
where: (13)
B, is the parameter estimate

0 is the true parameter
N is the number of simulations

It is readily seen from the graphs that the MSPE decreases in all cases as sample size
grows, even in the case of heteroskedasticity and autocorrelation for the BC model. The
graphs also suggest that the largest determinant of MSPE is the variance ratio. Recall
that the simulation was set up to give the autocorrelation and heteroskedasticity cases
approximately the same variance ratio (10 percent) as model 1. A comparison of the BC

and NLS models reveal a striking similarity with trends matching in magnitudes across
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the two models. Figures 2a, 2b, 3a and 3b reveal similar results for the two slope
parameters. The major difference between the slope parameters and the constant term
is the magnitude of the MSPE. For T=30, model 3 (variance ratic = 50 percent), the
MSPE for the constant is 0.26 while for the first slope coefficient it is 0.06. This suggests
that while the estimate of the constant may be consistent, in all cases it may be poorly
estimated in small samples when the variance ratio is large.

Figures 4a and 4b give the MSPE results for A. This is a case where BC differs
substantially from NLS. The first major difference is that NLS generally exhibits much
larger MSPE than does the BC model. Much of the discrepancy comes from a few very
large outliers in the NLS model, the largest being an estimate of 25 when the true value
is 1. Secondly, the differences between the various error structures do not seem as
pronourced as in the case of the other parameters. Figure S shows a graph of the mean
bias for the transformation parameter in the BC model. The graph indicates that in the
case of heteroskedasticity, the BC estimate of A is in fact inconsistent.

A more formal analysis of the above observations involves the calculation of a
response function for each of the parameters. Interestingly, this is a potentially excellent
use of the BC-NLS generalization framework. A large number of Monte Carlo
simulations have the format of a positive variable (e.g. MSPE) explained by a set of
explanatory variables (e.g. sample size).* The exact functional form is unknown and
therefore various approximations are used. Both the BC and NLS models allow for a
considerable amount of generality in functional formn including interaction between
explanatory variables with a relatively parsimonious form. For this reason we use both

the BC and the NLS models to calculate response functions for the MSPE of each of the

“For example, see Lc and MacKinlay (1989) or Donald and Donner (1990).
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parameters. The response functions are shown in tables 2-9 with an explanation of the
variables in Table 1.

Through this set of tables several striking patterns emerge. Firsi is the confirmation
of the results shown in the previous graphs: heteroskedasticity and autocorrelation have
relatively little impact on MSPE relative to the other variables. Coefficients for
heteroskedasticity and autocorrelation are almost always small and insignificant. The
notable exception is for the transformation parameter in the BC model in the presence
of heteroskedasticity (Table 9: columns 3 and 4) It is also interesting to note that the
OLS approximations of the response function do not give as clear results in this
particular case. They instead show heteroskedasticity as statistically insignificant.

The effect of A on the estimation results also shows some variation between the BC
and the NLS models. In the NLS model the value of A generally does not matter; the
coefficients are typically small and insignificant. However for the BC model a pattern
of statistical significance and negative coefficients seems to predominate. For instance,
looking at Table 5 (BC parameter 2) we see that three of the four estimates of the effect
of A are negative and significant.

Looking at the effect of sample size we see that the rates of convergence are higher
in the NLS model (larger coefficient vaiues in absolute value). As an example compare
the dummy coefficients for time for parameter 2 between the BC and NLS models
(Tables 4 and 5 for BC and NLS, respectively). We see that the coefficients for T60 in
the BC model=-0.0099 while in the NLS model it is -0.0121. Such patterns emerge
consistently across all the regressions. Another possibly related pattern is that NLS
usually exhibits a larger constant term than BC. We also find the NLS model is typically
more sensitive to the variance ratio than the BC analog.

It is also of interest to know the general shape of the small sample parameter

distribution. Again using the case when A=1 we have calculated a set of two-tailed
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Kolmogorov statistics testing for normality of the distribution of the parameter estimates
using as the null the sample mean and sample variance. The results in Tables 10-13
show that generally we cannot reject the null of being normally distributed, albeit with

a mean and variance different from the true values.’

Since we are using the sample
rather that true population moments, we would not necessary expect a decrease in
significance as the sample size increases, whose lack of trend is evidenced in the tables.
Of note again is the similarity between alternative covariance structures. Increasing
variance, autocorrelation or heteroskedasticity does not seem to have a major effect on
the test results.

A more useful analysis for applied work involves calculating the implied
probabilities for standard t-tests. The results are listed in Tables 14-17. As a general
rule, we see that the estimated probabilities of correctly "accepting” the null hypothesis
underestimate the asymptotic level of 0.95.° Some interesting patterns emerge, however.
First we see that the pattern of underestimation seem to be more true for the NLS
model than for the BC model. For example, in Table 14 for parameter 1, only 2 of 20
NLS estimates equal or exceed 0.95, while in the parallel case for the BC, 8 of 20 do.
Similar patterns exist for the two slope parameters. Also, as would be expected,
heteroskedasticity and autocorrelation appear lower relative to the standard cases,
evidencing an incorrect estimate of the standard errors. Somewhat disturbing is the
apparent lack of trend toward the asymptotic values of 0.95. Also we see a very distinct

difference in pattern for the BC estimate of A in Table 17. In this table we see values

ranging from 0.696 to 0.992, with a decided downward trend in the case of

5The critical value for a test of (asymptotic) size 0.05 is approximately 0.6608 (From
Lindgren (1976), Table VI, N=500).

More precisely, the estimate of a type [ error for testing the nuil hypothesis that the
estimated parameter equals the true parameter is generally overestimated.
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heteroskedasticity. This table also shows that for relatively low sample sizes (T=30,60)
the average t-statistic exceeds 0.95 while for sample sizes 200 and 500 the t-statistic is less
than 0.95. The pattern for NLS more closely matches that of the other parameters.

Given the resuits to this point, we can say several useful things. First, both BC and
NLS exhibit surprising similarities given that they are estimated with different objective
functions. The constant term appears to be poorly estimated in both models. Also the
trends toward consistency for the constant and slope coefficients look remarkably similar.
The major distinction between that two models comes in the estimation of A. The
estimated A for NLS has similar patterns to the NLS slope coefficients, but for the BC
model A exhibits a different pattern: It appears to be less sensitive to the variance ratio
and appears inconsistent for the heteroskedastic case.

Finally, NLS appears to be more sensitive to sample size than the BC model with

MSPE decreasing more rapidly (relative to BC) with an increase in sample size.

Fitted Values

Beyond asking questions about each individual parameter, we are also interested
in how well the models fit the data. A reasonable and simple statistic to use would be
the standard R-squared measure computed by most econometric packages. By
construction, however, we know that NLS maximizes R-squared (for a given functional
form) and so it will dominate the simple BC fitted values.” It is still of interest,
however, to calculate functions to gauge marginal effects (e.g. of sample size). Also, if
we use as our criterion the deviation from a "true" R-squared we have no assurance that

NLS will dominate BC.

"Where the stochastic error is set to zero and the BC model is solved for y to
compute the fitted value.
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A related measure, one which does not necessarily favor NLS, is an absolute
deviation based R-squared measure whose essential difference from the standard R-
squared is that sums are taken over absolute diffences rather that squared differences.

We use both these R-squared measures as a means for testing goodness-of-fit. As
in the parameter analysis section, we calculate response functions based on squared
percentage deviations from the true R-squared value where the true R-squared involves
using the true residuals. We use the same set of variables as before except now we just
perform simple OLS calculations measuring all the continuous positive variables in
logarithms. The results are given in Tables 18 and 19 with R1 refering to the standard
R-squared and R2 the absolute deviation R-squared.

Looking first at R1 we see that the dependent mean is lower for NLS than BC.
This is to be expected given the setup of NLS. Somewhat surprising, though, is that for
some cases BC gets closer to the true value than NLS. As we noted, NLS maximizes R-
squared, but that might mean NLS overstates the true R-squared. Since BC has a
smalier value for the constant term (-9.11 versus -8.976 for NLS) if we take the case
A=0, T=30 (the norm), Variance Ratio=0.1, using the OLS1 model we see that BC
estimate equals -7.53 while NLS = -7.404; i.e. BC gets closer to the true value. This
special case appears to erode quickly as sample size increases. The NLS model improves
at a much quicker rate than BC, roughly twice as fast looking at the coefficients for T
(-0.044 for BC; -0.088 for NLS). As would be expected, the dominant determinant is the
variance ratio, having roughly the same effect in both models.

Interestingly, given the poor performance of 4 in the BC model in the presence of
heteroskedasticity, the effect of heteroskedasticity is rather small, not evident at all in
OLS1 and marginally significant in OLS2. Of course, we see no effect in the NLS model

to either heteroskedasticity or autocorrelatior.
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The other major difference between BC and NLS is the effect of the true A. The
true A has no effect in the NLS model while its effect in the BC model is relatively
strong. OLS1 for BC suggests that the larger the true A, the better the model fits, while
OLS2 suggests a convex function in A with a minimum around -1 (depending on the
other variables).

Locking at R2 we see much the same pattern. First we see that NLS has a lower
mean than BC. Also, as with R1, it would appear that BC might produce better results
than NLS in small samples (T less than 60). Sample size has a strong effect in NLS with
rapid improvement as sample size increases (coefficients: OLS2--BC= -0.02, NLS= -
0.03). Using R2 we see that heteroskedasticity has little effect in the BC model in
contrast to what we found with R1. We also see that the true A does have an effect in
the BC model, much the same as we found with R1.

The major conclusions from this analysis would suggest that relative to their own
“true” models, NLS generally gives better fitted values although BC might be preferable
in small samples. BC is sensitive to the true A and shows some evidence, although not

overwhelming, of being quite sensitive to the presence of heteroskedasticity.

5. Conclusions

In this paper we have presented the results of a Monte Carlo study of the Box-Cox
model and a nonlinear least squares alternative proposed by Wooldridge (1990). The
simulation extends previous Monte Carlo work on the Box-Cox model by looking
explicitly at alternative structures of the error distribution, including the case of
heteroskedastic errors and autocorrelated errors. The simulation also presents new work
on the NLS estimator and was structured to allow for comparision between the BC and
the NLS model. Several interesting results were discovered and can be summarized as

follows:
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1)

2)

3)

4)

3)

6)

A appears to be inconsistently estimated in the BC model in the presence
of conditional heteroskedasticity. This, of course, does not occur in the
NLS model. Ali other parameters appear to be consistently estimated
(decrcasing MSPE as sample size increases).

Relative to the slope parameters, the constant term in both the BC and
the NLS model is poorly estimated in small samples.

The variance ratio (ratio of error variance to the total variance of y) is the
most important factor in determining MSPE for both models,
overshadowing the effects of misspecification (autocorrelated or
heteroskedastic errors).

While the effect of sample size is more evident in the NLS model, there
is some evidence that BC might perform better than NLS ir small samples
(relative to the correct specification), both in terms of parameter
estimation and in fitting the data. Also there is some evidence that the
NLS estimator is sensitive to a high variance ratio.

Asymptotic size is generally overestimated in the NLS model when
Gaussian variance estimators are used.

The true value of A appears to be important in determining the fit of the

data in the BC model while it is unimportant in the NLS model.

This research suggests several avenues for further exploration. Given the poor

performance of both models in estimating the constant term, it is of some practical

interest to study the effect of estimating a model with dummy variables. Several possible

applications of the general BC-NLS framework involve hedonic studies with time
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dummies and in these models the effectiveness of estimating the coefficients on the
dummy variables takes on significant practical importance.®

Also of practical significance is gauging the relative importance of transformations
on the x’s as well as on the y’s. Initial work done by Berndt, Showalter and Wooldridge
(1990b) suggests a substantial amount of substitutibility between transforming the y’s and
transforming the x’s.

Finally, and perhaps most obviously, more refined Monte Carlo methods could be
employed. These would include simulations over a larger parameter set (including
variations on the distribution of the x’s) in order to fit the response function better. As
the price of computing power continues its expected decline, these projects should

become more feasible.

8For a discussion of the use of the BC-NLS framework in the context of hedonic
models see Berndt, Showalter and Wooldridge (1990a) and (1990b).
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Figure la
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Figure 1b
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Figure 2a
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Figure 2b

Parameter 2 -- BC

Q.07
0.06 |-
:
o 0.05 |-
a
a
s
A\
5 0.04
L
L
W
N
d 0.03 +
]
&
C
]
{ 0.02 |-
;
0.01 |
0.00 L .
0 100 200 300 400 500
-- Sample Size (T) --

0O 1% + 0% o0 50% A Heter. X Auto.

72




okl et

Figure 3a
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Figure 3b
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Figure 4a
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Figure 4b
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Figure 5
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Table 1

Description of variables used to calculate response functions.

LAMBDA - True Value of A

T
3 (e
e=1

T

2 @) i
T60,T200,T500 - Dummy variabld $6?)sample size
(e.g. T60=1 if T<¥0, 0 otherwise)
VAR RATIO - Estimate of true variance ratio calculated with true

“residuals 1 I 1z
E?E € Y*;E Ye

ts] t=l

T - Sample Size

HETER - 1 if Heteroskedastic errors (Case 4), 0 otherwise.
AUTO - 1 if Autocorrelated errors (Case 5), 0 otherwise.

VAR_RATIO_SQ,LAMBDA_SQ,T_SQ,T*VAR RATIO,T*LAMBDA,
LAMBDA*VAR_ RATIO - Square and Crossproduct terms.

MSPE_TP - Transformation parameter for dependent variable
(MSPE) .

T_TP - Transformation parameter for Time (7).

VAR _RATIO_TP - Transformation parameter for VAR_RATIO.
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_Table 2

Response Function Results for Parameter 1 (Constant)

NLS

Dep. Mean
R-Squared
CONSTANT
LAMBDA

T

T60

T200

T500

VAR_RATIO
HETER

AUTO

LAMBDA_SQ

T_SQ
VAR_RATIO_SQ
T*VAR_RATIO
LAMBDA*VAR_RATIO
T*LAMBDA

MSPE_TP

T_TP

VAR_RATIO_TP

OoLSs1

0.0332
0.6769

0.0322
(0.0107)

0.0004
(0.0047)

-0.0477
(0.0093)

-0.0711
(0.0093)

-0.0779
(0.0093)

0.2277
(0.0274)

0.0057
(0.0099)

0.0053
(0.0100)

OLS2

0.0332
0.8184

0.0296
(0.0150)

0.0019
(0.0072)

-0.0004
(0.0001)

0.0880
(0.1136)

-0.0007
(0.0079)

-0.0016
(0.0081)

-0.0004
(0.0060)

7.40E-07
(1.21E-07)

0.5133
(0.1898)

-8.06E-G4
(8.96E-05)

~0.0029
(0.0238)

-2.23E-06
(1.92E-05)
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NLS

0.0332
0.9939

6.0328
(0.7270)

0.0248
(0.0107)

-2.1146
(0.4681)

2.9608
(0.2893)

-0.0038
(0.0976)

-0.0816
(0.1178)

-0.0157
(0.0394)

-0.1426
(0.0674)

0.5018

0.1055)

e ren g = ey

BC

4.0719
(0.2427)

0.0545
(0.0108)

~1.1367
(0.0995)

2.8324
(0.2068)

0.0037
(0.0275)

-0.0340
(0.0227)

-0.0075
(0.0080)

-0.0075
(0.0217)

0.4769
(0.0516
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Response Function Results for Parameter 1 (Constant)
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—== BC ===
OLS1 oLS2 NLS BC
Dep. Mean 0.0326 0.0326 0.0326
R-Squared 0.6935 0.8428 0.9820
CONSTANT 0.0284 0.0209 4.1269 3.1937
(0.0100) (0.0132) (0.8731) (0.4626)
| LAMBDA ~-0.0048 0.0052 -0.1547 -0.0988
(0.0043) (0.0068) (0.0289) (0.0240)
i T -0.0003 -1.3652 -0.9435
(0.0001) (0.4966) (0.1579)
T60 ~0.0424
(0.0086)
T200 -0.0657
(0.0086)
T500 -0.0727
| (0.0086)
VAR_RATIO 0.2355 0.1100 2.0154 2.0407
(0.0270) (0.1036) (0.3128) (0.3736)
HETER 0.0053 0.0002 0.1618 -0.0115
(0.0091) (6.00790) (0.1744) (0.0565)
AUTO 0.0047 ~0.0006 0.1136 -0.0306
" (0.0092) (0.0071) (0.2080) (0.0604)
LAMBDA_SQ 0.0072
(0.0054)
T_SQ 6.70E-07
(1.07E-07)
VAR_RATIO_SQ 0.5221
(0.1812)
T*VAR_RATIO -7.98E-04
(8.51E-05)
LAMBDA*VAR RATIO -0.0659
(0.0260)
T*LAMBDA 1.07E-05
(1.70E-05)
MSPE_TP -0.0168 -0.0007 |
(0.0675) (0.0150) §
T TP -0.0581 0.0184
(0.1101) (0.0340)
VAR _RATIO_TP 0.1787 0.2577
| - (o.1616)  (0.1242) §
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Table 4
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Response Function Results for Parameter 2

T e g vy

Ty e TR T Y

==~ NLS§ === i
oLS1 OLS2 NLS BC |
Dep. Mean 0.0084 0.0084 0.0084 §
R-Squared 0.6762 0.8239 0.9984 ]
CONSTANT 0.0078 0.0072 4.3128 2.8639 |
(0.0028) (0.0038) (0.3670) (0.4323) §
LAMBDA -0.0006 0.0002 -0.0559 -0.0618 |
(0.0012) (0.0018) (0.0063) (0.0134) §
T -8.98E-05 -1.9785 -1.1543 |
(1.77E-05) (0.2100) (0.1214) )
T60 -0.0121 :
(0.0024) §
T200 -0.0181 i
(0.0024) 3
TS00 -0.0198 §
(000024) H
VAR_RATIO 0.0593 0.0193 2.9381 3.1487 |
(0.0070) (0.0287) (0.1838) (0.4524) |
HETER 0.0014  -3.33E-04 -0.0623 ~0.0363 |
(0.0026) (2.00E-03) (0.0515) (0.0273) §
AUTO 0.0018 -3.48E-05 0.0874 0.0665 |
(0.0026) (2.05E-03) (0.0559) (0.0259) |
LAMBDA_SQ 4.89E-04 §
(1.52E-03) !
T_SQ 1.88E-07 i
(3.07E-08) |
VAR_RATIO_SQ 0.1396 g
(0.0480) %
T#VAR_RATIO ~2.08E-04 |
(2.26E-05) ;
LAMBDA*VAR_RATIO -4.88E-03 !
(6.03E-03)
T*LAMBDA 1.77E-06
(4.85E-06)
MSPE_TP 0.0073 -0.0013 }
(0.0202) (0.0125) |
T_TP -0.1445 -0.0171 |
(0.0343) (0.0264) |
VAR_RATIO_TP 0.5215 0.5457
0:0547) (00810

gy

T ————r—————

e e o e ——
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Response Function Results for Parameter 2

Table 5

BC ---

T o T prwer

Dep. Mean
R-Squared

| CONSTANT

LAMBDA

T

T60

T200

T500

VAR_RATIO

HETER

AUTO

LAMBDA_SQ

T_SQ

VAR_RATIO_SQ

T*VAR_RATIO

LAMBDA*VAR RATIO

T*LAMBDA

MSPE_TP

T_TP

VAR_RATIO_TP

OLS1

0.0072
0.6980

0.0070
(0.0022)

~0.0012
(0.0009)

-0.0099
(0.0019)

-0.0150
(0.0019)

-0.0164
(0.0019)

0.0500
(0.0058)

0.0010
(0.0020)

0.0011
(0.0020)

OoLS2

0.0072
0.8351

0.0047
(0.0029)

8.02E-04
(1.51E=03)

-7.52E=-05
(1.38E-05)

0.0262
(0.0232)

7.16E-05
(1.56E-03)

3.28E~05
(1.59E~-03)

2.14E-03
(1.20E-03)

1.54E-07
(2.38E-08)

0.1070
(0.0405)

-1.71E-04
(1.90E-05)

~1.46E-02
(5.81E-03)

3.38E-06
(3.79E-06)

82

NLS

0.0072
0.9855

3.3526
(1.0158)

-0.1957
(0.0438)

-1.7655
(0.5500)

1.9605
(0.3641)

0.0891
(0.1456)

0.1480
(0.1714)

-0.0135
(0.0585)

-0.1058
(0.1002)

0.1845

1.9570
(0.5677) |
-0.1227 |
(0.0237) |
~1.0751 |
(0.2023) |

2.1335 |
(0.4490) |
0.0601 §
(0.0564) §
0.0364 |
(0.0459) |

0.0111 §
(0.0166) |

-0.0203 |
(0.0404) |
0.3389 §




— . Table 6 e
Response Function Results for Parameter 3

--- NL§ =--
oLS1 oLS2 NLS BC
Dep. Hean 0.0085 0.0085 0.0085
R-Squared 0.6702 0.8277 0.9973
CONSTANT 0.0076 0.0076 3.4120 3.1048 |
(0.0028) (0.0038) (0.3790) (0.3809) |
LAMBDA -0.0007 1.91E-04 -0.0763 -0.0595 ¢
(0.0012) (1.84E-03) (0.0095) (0.0127) §
T -9.21E-05 -1.3281 -1.2662 |
(1.78E-05) (0.1849) (0.1220) |
T60 -0.0117 ;
(0.0024)
T200 -0.0183
(0.0024)
T500 -0.0197
(0.0024)
VAR _RATIO 0.0602 0.0167 3.3390 3.1664 |
(0.0072) (0.0288) (0.2747) (0.4317) §
HETER 0.0015 -2.9CE-04 -0.0577 ~0.0299
(0.0026) (2.01E-03) (0.0712) (0.0228) |
AUTO 0.0018 -1.85E-04 0.0249 0.0076
(0.0026) (2.06E-03) (0.0785) (0.0230) §
LAMBDA_SQ 0.0005 :
(0.0015)
T_SQ 1.93E-07
(3.08E-08)
VAR _RATIO SQ 0.1470
(0.0482)
T+*VAR_RATIO ~2.12E-04
(2.27E-05)
LAMBDA*VAR RATIO -0.0058
(0.0061)
T+*LAMBDA 2.25E-06
(4.87E-06)
MSPE_TP -0.0081 0.0039 ¢
(0.0269) (0.0111) }
T TP ~0.0357 ~0.0400
(0.0459) (0.0247) |
VAR _RATIO TP 0.5682 0.5707
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_Table 7

Response Function Results for Parameter 3

e Ay ttre i et g aaph e 1 ¢ et i Y vy

84

e ———— e m———————c—————r e —— Ty

-—— BC === i

OLS1 OLS2 NLS BC |

Dep. Mean 0.0074 0.0074 0.0074 g

R-Squared 0.6895 0.8389 0.9794 !

CONSTANT 0.0068 0.0048 2.1932 2.1887

(0.0023) (0.0030) (0.9016) (0.5273) |

LAMBDA -0.0012 8.26E-04 -0.1983 -0.1238 |

(0.0010) (1.55E-03) (0.0544) (0.0222) §

. -7.76E-05 -1.1161 -1.1446

(1.41E-05) (0.4184) (0.2071) §

T60 -0.0096 :

(0.0019) ;

-0.0153 §

(0.0019) i

T200 |

T500 -0.0166 !

(6.0019) ;

VAR_RATIO 0.0523 0.0258 2.0135 2.2323 |

(0.0062) (0.0237) (0.4492) (0.4486) |

HETER 0.0012 1.10E-04 0.1447 0.0308 |

(0.0021) (1.60E-03) (6.1904) (0.0514) |

AUTO 0.0011 -2.74E-05 0.1612 -0.0187 |

(0.0021) (1.63E-03) (0.2240) (0.0455) |

LAMBDA_SQ 0.0023 }

(0.0012) |

T_SQ 1.60E-07 :

(2.44E-08) ;

H

VAR_RATIO_SQ 0.1145 :

(0.0415) ;

T*#VAR RATIO -1.79E-04 g

(1.95E-05) ;

LAMBDA#VAR_RATIO -0.0150 i

(0.0060) |

T*LAMBDA 3.40E-06 %

(3.89E-06) {

MSPE_TP -0.0189 0.0141 |

(0.0727) (0.0151) &

T TP 0.0053 -0.0353 |

(0.1225) (0.0396) |

| VAR_RATIO TP 0.1668 0.3790
0.1688)  (0.1340

pot.govens el b - e A Y



Table 8

esponse Function Results for Farameter 4 (I.ambda)

e

=== NLS ==-
OLS1 OLS2 NLS BC
Dep. Mean 0.9365 0.9369 0.9369
R-Squared 0.5401 0.6555 0.9939
CONSTANT 1.0577 1.2354 12.8112 11.1533
(0.5026) (0.8101) (4.2768) (0.9135)
LAMBDA -0.0578 0.0612 -0.0717 0.0991 |
(0.2183) (0.3918) (0.0118) (0.0240) j
T -0.0125 -3.8421 ~-2.7628
(0.0038) (2.5609) (0.4764)
T60 -2.1825
(0.4361)
T200 -2.6626
(0.4362)
T500 -2.7567
(0.4362)
VAR _RATIO 7.8930 -1.9911 2.7815 2.8684
(1.2847) (6.1541) (0.7093) (0.3862)
IIHE’I‘ER 0.2834 -0.0501 -0.0390 -0.0109
(0.4658) (0.4294) (0.1917) (0.0553)
AUTO 0.3066 -0.0621 -C.0075 0.0158
(0.4696) (0.4392) (0.2247) (0.0487)
LAMBDA_SQ -0.0536
(0.3266)
T_SQ 2.77E-05
(6.57E-06) |
VAR _RATIO_SQ 27.4752
(10.2821)
T*VAR_RATIO -0.0306
(0.0049)
LAMBDA*VAR RATIO -0.7552
(1.2916)
T*LAMBDA 2.90E-04
(1.04E-03)
MSPE_TP -0.1901 -0.0438
i (0.0609) (0.0104) §
T TP -0.2174 -0.1471 |
(0.1612) (0.0379) §
VAR_RATIO_TP 0.4148 :

0.4076
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_Table 9

Response Function Results for Parameter 4 (Lambda)

e e e

-~ BC ===
oLS1 OLS2 NLS BC
Dep. Mean 0.1576 0.1576 0.1576
R-Squared 0.9389 0.8396 0.9887
CONSTANT 0.3585 0.2663 4.6902 5.4388
(0.0133) (0.0394) (0.9254) (1.0694)
LAMBDA -0.0042 -0.0094 -0.0381 -0.0242 |
(0.0057) (0.0203) (0.0120) (0.0173) §
T -0.0024 -2.0287 -2.8586 |
(0.0002) (0.6910) (0.8241)
T60 -0.2229
(0.0113)
T200 -0.3438
(0.0113)
TS00 -0.3709
(0.0113)
VAR_RATIO 0.1838 1.0481 0.0044 0.0268
. {0.0358) (0.3105) (0.0035) (0.0357)
HETER 0.0080 0.0221 0.0802 0.2209 |
(0.0121) (0.0209) (G.0287) (0.0707) §
AUTO -0.0252 -0.0082 0.0133 -0.0266 |
(0.0122) (0.0213) (0.0390) (0.0768)
LAMBDA_SQ -0.0098
(0.0161)
T_SQ 3.72E-06
((3.20E-07)
VAR_RATIO_SQ -1.2435
(0.5426)
T*VAR_RATIO -0.0009
(0.0003)
LAMBDA*VAR_RATIO 0.0215
(0.0779)
T*LAMBDA 2 2.10E-05
(5.09E-05)
MSPE_TP 0.0325 0.1668
(0.0929) (0.0755)
T_TP -0.1536 -0.2959
(0.1155) (0.0896)
VAR _RATIO TP -2.3324 -1.2126
B (0.3992) (0.6836
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Table 10

oty
! Kolmogorov Statistics Testing for Normality
: Using Sample Mean and Variance |
: --~ Parameter 1 (Constant) =---
| R 1) =T ——
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e | e i e e e e s e e e e e e e 0 e e 0 e i D = -
|
30 | 0.04246 0.03096 0.03357 0.02703 0.03210
60 | 0.02606 0.02494 0.03204 0.04376 0.03069%
200 | 0.04184 0.04415 0.04335 0.04698 0.03049
500 | 0.02242 0.02402 0.03493 0.01868 0.02466
-------------------- BC -——— - — - - - - - - -
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e | e e e e e e n o e e m e o a a - an  -- -
|
30 | 0.03915 0.02992 0.04365 0.02221 0.02993
60 | 0.02463 0.02855 0.03128 0.04639 0.02995
200 | 0.03676 0.05661 0.04682 0.04023 0.03416
500 | 0.02264 0.01883 0.03681 0.03032 0.02974
Table 11
Kolmogorov Statistics Testing for Ncrmality
Using Sample Mean and Variance
—-——- Parameter 2 —-———
------------------- NLS —-—ecmmcccccccccv e
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e | mam e o o o s e o o o e . > - - e - . - - -
[}
30 | 0.02102 0.02958 0.02228 0.03628 0.03278
60 | 0.02673 0.01989 0.03012 0.04696 0.04468
200 | 0.03835 0.03557 0.04354 0.03941 0.04992
500 | 0.02708 0.03011 0.03257 0.03490 0.026958
———————————————————— BC - o - e == o - - - - - - -
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e | e e et ———————— e
t
30 ; 0.02725 0.02221 0.01655 0.03239 0.03091
60 | 0.01935 0.01807 0.01744 0.03975 0.04596
200 | 0.03512 0.03565 0.03359 0.03687 0.05482
500 | 0.02476 0.03918 0.02777 0.03280 0.02865
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Table 12

[P e e e e e e B e e e

Kolmogorov Statistics Testing for Normality
Using Sample Mean and Variance
Parameter 3

------------------- NLS ----mecromcrccrcecne——-
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e ) e ——————————
i
30 | 0.02725 0.02221 0.01655 0.03239 (.03091
60 | 0.01935 0.01807 0.01744 0.03975 0.04596
200 | 0.03512 0.03565 0.03359 0.03687 0.05482
500 | 0.02476 0.03918 0.02777 0.03280 0.02865
--------- cmmmmencmee B cecccccceconomoe oo - -—-
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
amamer | e e s o e o e = = = o~ - " - - . -~ .-
|
30 | 0.02745 0.03074 0.04515 0.02874 0.03113
60 | 0.02094 0.01543 0.03159 0.03615 0.02541
200 | 0.07640 0.06839 0.0.725 0.02143 0.02143
500 | 0.02249 0.02919 0.02087 0.03151 0.03105
Table 13
Kolmogorov Statistics Testing for Normality
Using Sample Mean and Variance
--- Parameter 4 (Lambda) ---
------------------- NLS ==—ecccwcccncncccnncca—
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
marar | e i m em n an o m o s e s e o e e - = _n - € = > s = ——
|
20 | 0.06304 0.06937 0.86600 0.06712 0.06232
60 | 0.04095 0.04741 0.05735 0.02249 0.03489
200 | 0.03260 0.03199 0.02813 0.02437 0.02269
500 ! 0.02825 0.04314 0.04870 0.03837 0.02428
-------------------- BC == rccccvnccrmcccrne-
Variance Structure
T ! 10 % 30 & 50 $ Heter. Auto.
e | e e e e
t
30 | 0.04691 0.04415 0.02730 0.03637 0.05041
60 | 0.02964 0.02817 0.01855 0.0311i8 0.02831
200 | 0.03974 0.04375 0.05426 0.02648 0.03342
500 | 0.04869 0.03119 0.02249 0.02943 0.01698
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Table 14

e

e

Average "Acceptance" Rates for Testing Null
of Parameter 1 Equalling True Value

------------------- I e T
Variance Structure
T ! 10 % 30 % 50 % Heter. Auto.
i ar | o r an an s o o e e e e e = = = - - = = - = i o - - = - s o - ——
!
30 } 0.926 0.924 0.906 0.922 0.896
60 | 0.916 0.938 0.942 0.914 0.906
200 | 0.898 0.916 0.820 0.930 0.916
500 : 0.914 0.956 0.968 0.934 0.946
------------------- Bc - . - -0 -, = e - = - - - = -
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
emmmem | e - e o o o o o o o s - - — — - - - -~ - O - - = — —— — =" — — - - -
|
30 | 0.958 0.962 0.950 0.932 0.936
60 | 0.928 0.968 0.964 0.928 0.930
200 ! 0.910 0.910 0.916 0.934 0.924
500 : 0.918 0.952 0.964 0.934 0.250
Table 15

Average '"Acceptance" Rat s for Testing Nultl
of Parameter 2 Equalling True Value

------------------- NLS -———mrrmemmcmmmme e
Variance Structure
T | 10 % 30 % 50 % Heter. Auto
e | et e e e e e et o e e e e e
[}
30 } 0.912 0.922 0.930 0.912 0.876
60 | 0.922 0.938 0.9238 0.934 0.892
200 : 0.912 0.930 0.936 0.920 0.886
500 { 0.920 0.938 0.950 0.914 0.924
------------------- BC g S g S pp—
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
S U,
]
30 : 0.944 0.952 0.956 0.928 0.906
60 { 0.928 0.948 0.958 0.936 0.924
200 : 0.902 0.924 0.948 0.916 0.894
500 { 0.924 0.942 0.956 0.918 0.930
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Table 16

Average "Acceptance" Rates for Testing Null
of Parameter 3 Equalling True Value

-

------------------- NLS ~mwrmcccccmeccnca e ea—-
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e | e e e e e e e e e e € e o 2 e i e
[}
30 | 0.918 0.928 0.922 0.900 0.866
60 | 0.898 0.922 0.916 0.890 0.898
200 { 0.898 0.916 0.924 0.926 0.910
500 | 0.908 0.928 0.938 0.918 0.956
___________________ BC [ ——
Variance Structure
T | 10 % 30 % 50 § Heter. Auto. i
O,
i
30 } 0.948 0.956 0.942 0.918 0.912
60 | 0.916 0.930 0.924 0.912 0.908
200 | 0.910 0.928 0.930 0.928 0.914
500 } 0.918 0.934 0.944 0.926 0.954
Table 17
Average "Acceptance" Rates for Testing Null
of Parameter 4 Equalling True Value
------------------- NLS ~=—wmmrmecccc e cc e e e =
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
e ) e e o - o O - —— - — . . A . . . -
1
30 | 0.920 0.902 0.902 0.938 0.920
60 | 0.940 0.942 0.898 0.918 0.950
200 | 0.954 0.946 0.924 0.978 0.938
S00 l 0.950 0.926 0.924 0.954 0.954
------------------- BC S pp——
Variance Structure
T | 10 % 30 % 50 % Heter. Auto.
B R,
[}
30 } 0.976 0.986 0.992 0.966 0.976
60 : 0.970 0.972 0.980 0.936 0.966
200 } 0.928 0.888 0.916 0.866 0.936
500 : 0.952 0.926 0.932 0.696 0.942
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Response Function Calculations for R1

R RIS T

oot g o

Dep. Mean
R-Squared
CONSTANT
LAMBDA

T

T60

T200

TS00
VAR_RATIO
HETER
AUTO

LAMBDA_SQ

T_SQ

-8.4022
0.9260

-8.9756
(0.2701)

-0.0491
(0.1173)

-2.2620
(0.2344)

-4.0415
(0.2344)

-4.9075
(0.2344)

15.7160
(C.6903)

0.0980
(0.2503)

0.2400
(0.2523)

VAR_RATIO_SQ
T*VAR_RATIO
LAMBDA*VAR_RATIO

T+*LAMBDA

-8.4022
0.9235

-8.9906
(0.5500)

-0.4225
(0.2660)

-0.0283
(0.0026)

14.2316
(4.1782)

0.0279
(0.2915)

0.1654
(0.2982)

0.3296
(0.2217)

4.06E-05
(4.46E-06)

6.3043
(6.9808)

-0.0109
(0.0033)

1.4670
(0.8769)

3.76E-04
7.05E-04)

91

-7.3076
0.8535

=9.1099
(0.3774)

-1.9820
(0.1629)

-1.5225
(0.3223)

-2.0954
(0.3225)

-2.1679
(0.3225)

15.7238
(1.0179)

0.4570
(0.3441)

-0.0454
(0.3467)

e

£
¥
z
4

i

3 iziyd e 5 riin ] e i VAR Rl T s JE I

-7.3076
0.9109

-10.3398
(0.5400)

-1.0098
(0.2775)

~0.0142
(0.0025)

18.8286
(4.2518)

0.5862
(0.2859)

0.0956
(0.2918)

1.3145 |
(0.2205) }

2.27E-05 |

P T Tme——r e r—e—

(4.38E-06) |

-2.0587 |
(7.4306) |

-0.0066 |
(0.0035)

-0.9464 |
(1.0663) |

¥

-4.03E-03 |

6.97E-04) |
= i}




Table 19 _

]
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i i

Response Function Calculations for R2

T R T Y

1
OLS1 OLs2
Dep. Mean -7.0645 -7.0645
R-Squared 0.8981 0.8947
CONSTANT -7.0838 -6.5227
(0.3282) (0.6213)
LAMBDA -0.1400 -0.3930
(0.1426) (0.3005)
T -0.0297
(0.0029)
T60 -2.3833
(0.28438)
T200 -4.3214
(0.2849)
T500 -5.2120
(0.2849)
VAR _RATIO 13.6961 6.2502
(0.8389) (4.7203)
HETER 0.1969 -0.0102
(0.3042) (0.3293)
AUTO 0.3785 0.1448
(0.3066) (0.3369)
LAMBDA_SQ 0.3034
(0.2505)
T_SQ 4.36E-05
(5.04E-06)
VAR _RATIO_SQ 17.8932
(7.8865)
T*VAR_RATIO ~0.0145
(0.0037)
LAMBDA*VAR RATIO 0.8414
(0.9907)
T*LAMBDA 4.56E-04
7.96E-04
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P

-6.7345
0.8117

-7.5289
(0.3874)

-1.2899
(0.1672)

-1.7689
(0.3309)

-2.8961
(0.3311)

-3.0615
(0.3311)

13.1394
(1.0449)

0.3641
(0.3532)

0.0357
(0.3559)

-6.7345
0.8851

-8.3300
(0.5553)

-0.3096
(0.2854)

-0.0206
(0.0026)

12.3189
(4.3721)

0.4169
(0.2940)

0.0877
(0.3001)

1.4503
(0.2267)

3.17E-05
(4.50E-06)

5.5739

D ey oot v 1 e e e, ey e payen sy~ pemee rrmgerepos

(7.6413) §

-0.0078

(0.0036)

-1.3156

(1.0965) |

-3.79E-03
7.17E-04
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Appendix:

This appendix describes in detail the simulation methodology. All the simulations were
done on a MicroVAX 3400 computer using the computer program TSP.

Simulaticn Steps:

1 Choose Error Structure (see below: Error Structure)
2 Estimate geometric mean with large sample apgroximation and
--compute true Farametcr vectors (see below: Geometric Mean)

3 Choose sample size (T=30,60,200,500)

4 Choose true A (2=-1,-5,0, .5, 1)

5 Choose iteration number (i= 1 to 500)

6) Draw x’s, errors, and compute y’s (see below:
--Simulation)

7 Calculate sample geometric mean; then normalize y’s
--(see below: Normalization)

83 Estimate BC and NLS (see below: Estimation)

9 Loop over stens 5 through 9 (i)

10 Loop over steps 4 through 10 (1)

11 Loop over steps 3 through 11 (T)

12 Loop over steps 1 through 12 (Error structure)

Notes:

1) Error Structure: As described in the text, we choose S error structures, three

corresponding to classical BC assumptions, two to misspecifications of the BC
model (autocorrelation and conditional heteroskedasticity). Specifics follow:
Case 1 e, distributed N(0,0.002704

2 e, distributed N(0,0.010201

3 e, distributed N(0,0.024025)
4 e, distributed N(0,0.002704*(1+x,3))

x,=1; x,, and x, distributed joint normal

“Eg)=2, E(x3,3=3, V(x,)=0.04, V(x3)=0.04
- Covele,xs,)=0. 28

S) e =09, & v
-'v, distributed N(0,0.002704*(1-.49))
- &, distributed N(0,0.002704).

2) Geometric Mean: The large sample approximation of the geometric mean was
computed by taking the average geometric mean of 1000 samples of 900
observations each.

1) Compute 900 s’s from a given error structure for both the BC and the
NLS models &s drawn each time from population described in error
structure 4 above).

2) Compute geometric mean of that sample discarding any negative or
missing y’s.

3) Repeat steps (1) and (2) 1000 times and take average value of geometric
mean as the true population geometric mean.
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4) Using the estimates of the population geometric mean compute true
parameter values using equation (11) from the text.

6) Simulation: x’s were drawn from a population described in case 4 of step 1
(Bivariate normal population). Error terms were drawn from the appropnate
distributions (according to the error structure). Then y’s were computed for the BC
(equation (7)) and the NLS (equation (8a)) models using B,=8,=-8,=1.

7) Normalization: Sample geometric means for both the BC and the NLS models
were computed discarding any missing or nonpositive y’s. Then the original y’s
were normalized by the appropriate geometric means.

8) Estimation: The BC model was estimated by maximum likelihood using the true
parameter values as the starting values. The NLS estimation also used the true
parameters as starting values. Both BC and NLS procedures were allowed a
maximuin_of 500 iterations to converge otherwise the observations would be
discarded.’ Berndt, Hall, Hall, Hausmarn estimates of the standard errors were
used in the BC model while Gaussian standard errors were used in the NLS model.

Simulation took approximately three weeks of computer time.

*This occurred 3 times out of 100,000 estimations.
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Essay III:

Monopoly Behavior with Intertemporal Demands

by

Mark H. Showalter

Abstract:

This paper investigates optimal monopoly behavior when demand for the monopolist’s product is
related over time. The product is called an intertemporal good ard the resulting demand function is referred
1o as an intertemporal demand. The theoretical section of the paper shows that it might be optimal for a
monopolist to produce in the inelastic portion of demand contrary to static monopoly theory. A secord result
is that regardless of whether the consumer is forward-looking or not, the observed time path of consumption
will be related to future variables due to the forward-looking behavior of the monopolist. The paper continues
by deriving four alterative models for consumer and monopoly behavior and then proceeds to estimate the
models with data on cigarette consumption and prices. The results strongly suggest that firms are forward-
looking while the evidence that consumers are forward-looking is less persuasive.
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. Introduction

Recently, intertemporal utility functions and the resulting intertemporal demand
functions have seen an increasing amount of use in economics. Probably the most active
research has been done in the empirical and theoretical finance literature where, for
example, Huang and Kreps (1987) argue for the use of intertemporal utilities (time-
nonseparable) in the widely used continuous-time models of consumption since it is
unreasonable to assume that consumption at one instant is unaffected by consumption
in an adjacent instant. Other authors (for example, Constantinides (1990)) have
suggested that allowing for intertemporal utilities might help explain the famous "Equity
Premium Puzzle" of Mehra and Prescott (1985).!

Other fields in economics have begun using intertemporal utilities in novel and
interesting ways. In a provocative article, Becker and Murphy (1988, hereafter EM)
build a "rational addict" model using a simple intertemporal utility function and then
derive various implications, some of which are tested in an empirical companion piece
by Becker, Grossman and Murphy (1990). Their work will be discussed at some length
in this paper.

One unifying element of the research to date is the assumption of a perfectly
competitive market in the supply of the consumption good. This assumption has proven
very useful in allowing researchers to compute a time path for the consumption good and
in providing estimable equations from which various hypotheses can be tested. But an

equally interesting set of issues and predictions emerge when this perfect competition

An excellent introduction to these and related topics is given in Heaton (1989).
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assumption is relaxed. Demand will still be related over time owing to the consumer’s
intertemporal utility, but now the question arises: How will firms optimally account for
these intertemporal dependencies? How will firms set their control variables, such as
price and advertising? How will the nature of interfirm competition be affected by these
intertemporal linkages? The usefulness of investigating these and related questions
about firm behavior in the presence of intertemporal demands is suggested from any
number of demand studies which find that lagged consumption is an important predictor
of current consumption (see, for example, Houthakker and Taylor (1970)) suggesting
that, in fact, intertemporal dependencies do exist and might be empirically important.
The strength of these lags has been rationalized by explanations ranging from habit
behavior and partial adjustment to simple ignorance on the part of the researcher; but
regardless of the explanation, firms supplying the good have a strong incentive to account
for these intertemporal linkages.

Becker, Grossman, and Murphy (1990, hereafter BGM) give one example of how
intertemporal demands can affect firm behavior. BGM present a simple two-period
model where demand for a good is related across time and supply is controiled by a
classic monopolist. They show--counter to textbook monopoly theory--that the
monopolist might in fact produce in the inelastic portion of the demand curve. As will
be shown in this paper, the insight holds true for the multi-period monopolist model as
well. But this has important implications for much of the New Empirical Industrial
Organization (NEIO) literature which attempts to identify and quantify market power

from comparative static results based on simple, static, monopoly or oligopoly models.
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Examples of this literature are Bresnahan (1989), Panzer and Rosse (1987), Ashenfelter
and Sullivan (1987), Sumner (1983), and Applebaum (1982). The market power indices
these type of papers attempt to measure can alternatively be interpreted as measuring
the degree of forward-looking behavior on the part of a monopolistic firm instead of the
intended measure of oligopolist competitive behavior.

Another possible effect of intertemporal demands is that current measures of returns
to advertising (and possibly other activities) could be biased downward, possibly seriously
so. For example, in models with intertemporal demands, firms will be receiving a return
on current advertising for possibly several future periods. This would suggest that studies
looking only at current returns to advertising (as has been the practice) would seriously
misstate the actual returns the firms expect and plan for.

The cigareite industry is, not surprisingly, probably the best example of this type of
market. For years economists have puzzied over the extraordinary amount of advertising
that the cigarette industry uses. Measured static returns to advertising (measured as the
change in current consumption due to current advertising) are substantially below
“rational" levels and economists have generally assumed that the advertising is simply
used in interfirm competition.? But if, in fact, demand is intertemporally linked, as is
unquestionably the case with cigarettes, then firms could conceivably be willing to spend
a large amount on advertising (in the current period) to attract a few new customers in
order to receive revenues from those newiy "hooked" consumers in the future. The same

argument could also be applied to many pharmaceutical drugs.

%See, for example, Baltagi and Levin (1986) page 153.
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In a similar vein, if we think of price as the control variable, it is easy to think of
examples where firms might consider pricing below marginal cost--dumping or preying
in the economic vernacular--for some period in order to receive increased revenues in
the future. Note that this is not the case of predatory behavior where a firm tries in the
current period to drive rivals out of the market in order to enjoy a monopoly in the
future. In a model with intertemporal demands, it results from a firm attempting to
expand the market by attracting new customers and then recouping the loss from the
initial period by an increase in profits in later periods from the "hooked" consumers.

As the preceding discussion has indicated, the study of firm behavior in the presence
of intertemporal demands has many interesting applications in several areas of
economics. Depending on the application, consumers might be modeled as rational and
forward-looking, as has been done in the finance literature and in the work of BM and
BGM; or, alternatively, intertemporal utilities "justify" the assumption of myopic habit
behavior. In the empirical section of this paper I develop a framework to test rational
versus myopic consumer behavior as well as rational versus myopic monopoly behavior.
The framework is then applied to data on cigarette consumption. Cigarettes is the ideal
consumer good to use for this particular test both because the good obviously has
intertemporal qualities to its use and because cigarette manufacturing is a highly
concentrated industry. Although several previously cited economic studies find little
evidence of monopoly power in the cigarette industry, one of the key points of this paper
is that those studies are fundamentally flawed due to the intertemporal nature of the

demand for cigarettes.
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The organization of the paper is as follows: In the next section I formalize the above
discussion by presenting and analyzing a simple model of monopoly behavior in the
presence of intertemporal demands. Following that, in section 3, I develop a framework
to test empirically for rational behavior on the part of a monopolist and consumers. In
section 4 I present and discuss the estimation results and in section 5 I present a brief

conclusion.

2. A Model of Monopoly Behavior

The ideas presented in the introduction can be illustrated with a straightforward
example. Initially, assume the existence of an economy with one individual with a
concave utility function of the form U(Q,,Q,;,Z,) where Q, and Q,, are complements.
Further, suppose that the consumer discounts the future at an infinite rate so that her
optimization problem only accounts for the current and the past but not the future. The
optimization problem in period t with an income Y, and Z, as the numeraire good then

becomes

Max UQ,Q._;,Z) such that Y,=Z +PQ,

2.1)
(Qp2,}
where P, is the price of the intertemporal good. Suppose for simplicity I take the utility

function as separable in Q, and Z,. Then the first order conditions are calculated as:

U

Q; 20,

(Q.Q,.))-AP,=0 (2.2)
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Z.

‘o

oU
—(Z)-\= 23
az(Z,) A=0 23)

t
A Y, - Z ~ PQ,=0 24)
Substituting (2.4) into (2.3) and then (2.3} into (2.2) I then get

u

Uy :
aQ,(Q" 1) aZ,(Y‘ PQ)P, (2.5)

which implicitly defines a demand for Q, in terms of P,, Y, and Q,,. Using the implicit

function theorem, Appendix A shows that the following conditions hold:

* <0, aQ‘>0 , Q >0. (2.6)
oP, Y, oQ,_,
Write this demand function as
Q‘=Q(P t’Yr’Qx-l) @.7)

Now suppose the supply of good Q, is controlled by a monopolist whe maximizes the
present value of profits with respect to price and further that the monopolist has

constant marginal costs of production, c. The monopolist’s problem is then

Max Y p"Y(P,-0)Q(P,Y,Q, ) (2.8)

t=1

{Pt}:-l

where @ is the one period discount rate and Q, is given. The first order condition for

an arbitrary P, will then be
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1o wp -0 2.p] 2.9
p [Q, 2, C)aP D,] = 0 (2.9)

s

where

D=Y 6, C)LH % ]f’; 2.10)
{ut+l =t+1

D, is the key to this intertemporal problem; it represents the cumulative discounted
effect of a change in price P, on all future periods.

It is instructive to solve for the markup equation implied by equation (2.9):

R
Pt et Ql Qt+Dl

where

t

2P 2.12)
a t

If the solution to the entire system implies price above marginal cost, then from the
concavity assumptions I get D, < 0. This in turn implies that the monopolist will set his
markup lower than he would in the time-separable case where D, = 0. This sustains the
result suggested by BGM that a monopolist might set prices in the inelastic portion of
the demand curve due to intertemporal factors, thus contradicting the elementary
textbook characterization of monopoly behavior.

Also note that equation (2.11) has a form similar to that used in many of the papers

in the NEIO literature. This literature equates the markup to the inverse of the product

104




of the demand elasticity and a parameter which is interpreted as a measure of market
power. The parameter theoretically varies from 1 (a monopoly or perfect cartel) to
positive infinity (perfect competition). Examples of this literature are Bresnahan (1989)
and Sullivan (1985). However, as (2.11) makes clear, this estimated parameter can also
be interpreted as measuring the optimal value of Q/{(Q, + D,) for a monopolist, not
market power for possibly oligopolist firms as was the intended purpose. Without further
specification, the hypothesis of market power as given in the NEIO literature and an
alternative of a forward-looking monopolist facing intertemporal demands are
inaistinguishable.

In a similar vein, methods which attempt to assess monopoly behavior by using
predictions from the static monopoly model will likewise be misleading (for examples of
this type of paper see Panzer and Rosse (1987) and Ashenfeiter and Sullivan (1987)).
These methods start from the premise that monopolists will not operate in the inelastic
portion of demand. From this various testable hypotheses can be generated. But if a
monopolist operates in the inelastic region of demand for intertemporal reasons, the
above premise will be false.

Another interesting implication of the model emerges from (2.9). At the optimum,
equation (2.9) will be satisfied for all t. But this implies that P, (and hence Q,) will be
related to past and future prices. This occurs even in the case of an "“irrational" myopic
consumer modeled above. The forward-looking time path of prices and consumptions
occurs solely due to the optimization behavior of the monopolist. This suggests an

alternative explanation for the results in BGM. They find the “rational addict" model
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supported by their empiricﬁl results. What the above model suggests is that the
intertemporal optimization of a monopolist with myopic consumers will generate a
similar and possibly indistinguishable pattern from the "rational addict" model. Given
that the optimization incentives are probably stronger for the firm than for consumers,
it seems probable that, in fact, the BGM results come more from the supply side rather
than the demand side as hypothesized by BGM. This conjecture is lent support in the
empirical section of this paper.

In this section I have discussed several interesting implications of the monopoly mode!
with intertemporal demands. Although general properties of the solution can be
characterized from the first order conditions, a closed form solution to the monopolist’s
maximization problem requires additional parameterization. The following section
continues by developing a framework for testing rational versus myopic behavior both

on the part of the consumer and on the part of a n.onopolist.

3. Alternative Behavioral Models

In this section of the paper I develop four alternative behavioral models for
interaction between a consumer and a monopolist, assuming full information. Both
agents can act either "rationally", meaning that the agent takes the future into account
in determining optimal current actions, or, alternatively, each can act "myopically” where
the future plays no role in current optimization decisions. The four models are then:

1) Myopic Consumer--Myopic Monopolist

2) Myopic Consumer--Rational Monopolist
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3) Rational Consumer--Myopic Monopolist

4) Rational Consumer--Rational Monopolist.

The basic strategy for solving each of the four models is first to posit a consumer
behavior, either rational or myopic, quantified as a demand equation and then solve a
monopoly optimization problem which varies both with the monopolist’s optimization
horizon (current (myopic) or current and future (rational)) and with the demand
equation of the consumer. The end result is a two-equation system for each of the four
models which can then be estimated. After developing the models, I outline the actual

estimation strategy and the associated assumptions.

3.1 Myopic Consumer--Myopic Monopolist (Model 1)

This is the simplest of the four models to be considered and readily illustrates the

general methodology used to solve each of the models. The consumer is modeled as a
Stackelberg follower taking prices as given while the monopolist is modeled as a
Stackelberg leader who optimizes expected profits with respect to price. As will become
clear in the development of Models 2 and 4, a simple specification of the demand
function is essential in order to obtain the solution to the monopoly optimization
problem. For that reason the myopic consumer is assumed to have a linear demand of

the form,
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Q=a.P+a,Y +a.Q , +e
t 10 2% T3 ¢ (3'1)
a,<0, a,>0, 0<a,<1

where Q, is quantity, P, is price, Y, is income, and e, is an iid stochastic term known to
the consumer at time t but unknown at time t both to the monopolist and to the
econometrician. The monopolist has a time t expectation of e, of e™ while the
econometrician has time t expectation of e, of zero. Equation (3.1) and the rational
demand to be introduced in Model 3 are similar to those used in BGM.

The myopic monopolist ignores the intertemporal linkages and simply maximizes
expected profits,

Max (P,-c)EIQM (32)
P

4
for each time t where I,™ is the information set of the monopolist at time t and is
assumed to contain ¢, Y, and Q,,. This expected profit function is strictly concave in P,

(2, < 0) so the solution to the first-order condition will guarantee a maximum. The

optimal price for this problem is then

1 1%, 10, 1
Pl==c-=2Y-—2Q,  -—e" (33)
2" 24q, " 2alo"' 2a,

The econometrician is assumed to have a zero expectation of e™. The optimal price is

seen to be increasing in ¢, Y, and Q,;. Equations (3.1) and (3.3) characterize Model 1.
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3.2 Myopic Consumer--Rational Monogolist (Model 2)

The myopic consumer-rational monopolist model was used extensively in section 2
to outline the implications of intertemporal demands. Here, I parameterize the general
specification of section 2 in a form similar to Model 1. Demand is again modeled as

linear,
Q=a P+, Y +a,Q _+e, (3.4

with definitions and parameter restrictions the same as in Model 1. The monopolist,

however, now solves the intertemporal problem

Max E ﬂi(P '*,-C‘“)E[QMV,M] 0<p<1 3.5)
i=0

{ Pui } ;0

The associated first-order condition for an arbitrary P, is

B{E[Q,‘ill,”’]m,z (BaY(P,.;,~C,.i.)| = 0 (3.6)
j=0

Equations (3.4) and (3.5) together form what is known in the dynamic optimization
literature as a stochastic linear optimal regulator problem which is characterized by a
solution where the control variable (P, in this model) is a linear function of the state
variables (c,, Y, and Q,;).> However, the linear functions in general depend upon an
iterated matrix which is impossible to characterize without knowing the parameter values

(@v,205,203,8) 2 priori. As an alternative to the general linear regulator problem, I propose

*Sargent (1987; pp. 36-40) gives an excellent exposition of this type of problem.
109



solving a "knife-edge" special case where, using the property that these type of problems
have a unique solution, I construct the problem such that the monopolist faces the same
problem for each time period. I therefore assume constant real marginal costs, ¢,=c,
constant real incomes, Y =Y, E[e,;|I["] = e™ for i>0, and, in equilibrium, the
monopolist rationally expects future quantities to equal Q,,. This implies that
E[QlI"] = ayP,; + @Y + a;Q,; + €™ for all i greater than zero which in turn
implies that (3.6) has the same form for all P,,;. This leads to the obvious solution of

constant prices,

a P+ra,Y+a, ,_l+e"'+a1(P-c)§ («,BY = 0. 3.7
j

With the assumption that O<a,8<1 so that the infinite sum is convergent, this can be

solved for price in terms of ¢, Y and Q,,,

p'=( 1 ]c - (M]y - [M)Qr-x _[ “‘“gﬁ)_ n (3.8)

2-a,p o, (2-0,p) o, (2-0,p) @,(2-a,p)
Note that if =0 (the monopolist ignores the future) equation (3.8) reduces to (3.3)
making Model 1 a special case of Model 2 (when income, costs, and quantities are
constant). It is also seen that since a,8<1, price is an increasing function of ¢, Y, Q, ;.
Also note that the markup over marginal costs will be lower than in the myopic case
since in this intertemporal setting a monopolist has an incentive to lower prices in the
current period in order to gain profits in future periods. Equations (3.4) and (3.8) then

form the basis for estimating Model 2.

110



3.3 Rational consumer--Myopic Monopolist (Model 3)

This mode! is similar to Model 1 and is relatively straightforward. Demand is linear

of the form

Qt=a1P,+a2Y,+a3Q‘_l+a4Q,il+e, @3.9)
where Q° ,, is the consumer’s rational forecast of Q,,,. Both the monopolist and the
econometrician are assumed to have rational, although not necessarily identical, forecasts
of Q°,,;- The monopolist is assumed to have the same expectation, e™, for all e ,;. In
the same manner that the myopic demand incorporated all past values of income and
prices through the lagged term Q,,, (3.9) incorporates consumer’s expectations of all
future prices and income through the lead term, Q¢,,.

The monopolist, on the other hand, is only concerned about the present and given
information at time t solves

Max (P,~c)ETQI"] (3.10)
Pt
where Q, is defined as in (3.9). Again the problem is concave in P, and the resulting

price equation is
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(3.11)

where 7," is the monopolist’s forecast error of Q°,,. As would be expected, if @, = 0
(no forward-looking component of demand), (3.11) reduces to the myopic monopolist

FOC ot Model 1 (equation (3.3)). (3.9) and (3.11) then characterize Model 3.

3.4 Rational Consumer--Rational Monopolist (Model 4)

The final case models both consumers and the monopolist as rational. Demand has

the same form as in Model 3,

Q=a,P+a,¥ +e,Q,_,+a,Q,,, +e, 3.12)

but unlike Model 3, the rational monopolist accounts for the intertemporal behavior of
the consumer in setting the time path of prices. The setup of this rational monopoly
model will be slightly different from the one introduced in Model 2. An examination of
the FOC of the monopolist assuming demand as in (3.12) will explain why a change is
necessary.

Using demand as defined in (3.12) and computing a first-order condition for an

arbitrary P, (FOC for (3.5)) results in
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Y IAY - (3.13)
BIEIQ M V+(P, ¢, ), +a, Y (-Bi) PrijCru )+, (BaY(P,, € )l = 0.
J=1

jo1

Define the quantities B,,; and D,,; as follows:

-1 (o \!

B 'Ealz [—f—) (P 4Ce) (3.14)
i=]

D rgali (B a3)I(P tﬂ'-ctd)' (3.15)
i=l

where D, ,; accounts for the monopolist’s forward-looking behavior and B, ,; represents
the "backward-looking" component where the monopolist accounts for the consumer’s
forward-looking behavior. If a, equals 0, then B,,; will equal 0.

This model arbitrarily starts at date 0 and B, will hence have a differing number of
elements (indexed by i) for each t+i. If t+i=1 B,,, will coutain no elements. If t+i=2
there will be 1. For t+i=3 there will be 2 and so on. The convenient symmetry of the
FOC in Model 2 where the FOC for each P,,; lcoks the same is lost in this case. To
regain the symmetry, for this model [ assume a doubly infinite horizon, i ranging from
negative to positive infinity, which again restores the symmetry.

Including this additional assumption along with the assumptions used to solve Model
2 (constant costs, incomes, and expectations) and also assuming 0<(«,/8)<1, equation

(3.13) can be solved for P as
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(Vl-i-Vz“'l) ®, o,
P‘: C - Y N Ty, v A -1
[ v, +V2+2)) [ o,V +V2+2)) ( a,(V,+V,+2) )Q‘ (3.16)

%o, +¢
- —— +
a, (V,+V,+2) |t °°

= 3.17
Vi (3.17)
V= Bey (3.18)

where {, is the zero expectation (to the econometrician) error term subsuming forecast
errors on Q,;, Q,,; and e,. Note that the assumption of a doubly infinite horizon would

not change any of the conditions in Models 1, 2 or 3.

3.5 Dynamics and Elasticities

From a public policy perspective, probably the most important and interesting
number from the host of cigarette studies to date is the own-price elasticity of demand.
The intertemporal demand equations used in this study, in particular the forward-looking
“rational" demands of Models 3 and 4, offer interesting and informative variations on the
standard elasticity calculations. These variations can be motivated by examining the
solutions to the difference equations embodied in the two demand equations. The

myopic demand is a simple first order difference equation whose general solution is
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o2 4 RA LIRS

QﬁE “;(“1P t-i+a2Yt-i)+cla; (3.19)
i=0

where ¢, is an arbitrary constant term.* If time starts at date 1 and Q, is given then the

solution to the problem is

t-1 ;

t
Q=) as(e,P, ;+a,Y, )+ Qs (3.20)

i=0
These equations imply that only past and current prices enter into current period
demand; any change in future prices will leave current demand unaffected.

This contrasts sharply with the rational demands of Models 3 and 4. The rational

demand is a second order difference equation in Q, whose general solution is

Q,=(1 "4“3“4)-1,22 )"1(“ Pt )
i=1

ot 3.21
-4, )Y AP, Y, Jre ey O
i=0
t=...,-1,0,1,...

where ¢, and c, are arbitrary constants and 4, and i, are inverses of the roots of the

characteristic equation

2% -z+a,=0. (3.22)

and are equal to

“This section ignores the error term, e,, used in the previous section. Inclusicn would
unnecessarily complicate an already burdensome notation without adding anything to the
discussion since the elasticities calculated later in the text are identical to those based on
the expectation of Q, with respect to the time t information set of the econometrician.
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N 2a,
1= ’
1+(1-4e,a )2 (3.23)
2a,
A=

1-(1-4a,a )2

The roots will be real if and only if (1-4a;e,) = 0 and the system will be stable if
1A;1,11/4;] < 1 and c;=c,=0.

Also implicit in (3.21) is the fact that when a price changes, all quantities adjust; past,
present and future. Perhaps a more reasonable specificaticn would consirain past
quantities to remain unchanged when, for instance, P, changes, forcing any adjus:ments
to affect only current and future consumption. This is the purpose of equation (3.24)

where these type of questions can be answered by analysis at t=1, with Q, fixed.

t-1
Q,=(1-4a;a )7y Ai(alPtuﬁazY,_l)
i=1
+1-4aye) -UZE A‘;‘(a 1Pt Y e 1(1‘1 "A;) (3.29)
=0

3-'{(?0'(1 ‘4“3“4)-1,22 )‘:(“xp m"“zym))

i1

The major distinction between the solutions to the rational demand ((3.21) and
(3.24)) and the solutions to the myopic demand ((3.19) and (3.20)) is that Q, in the
raticnal demand depends upon the full sequence of prices--past, present and future price
changes will change current demand; while Q, in the myopic demand is unaffected by
future price changes. It follows that for rational demand, in contrast to myopic demands,

a temporary price change will have a different impact from a permanent price change.
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Table 1

Various measures of the change in current quantity

Demand

Elements held fixed: Rational

Temporary Price Change:

1) Q.1,Q1,P; it a, a,

2) P, Q, i=t (Anticipated) @, a,(1-da )17

3) P, i#t, Q; i<t (Surprise) @, a,(1-daze ) %(1-1,%)

Permanent Price Change: H
4) P, i<t, Q, i=t a, o, (1-das0 ) 2(Ao/(A - 1))
(Anticipated)

5) P, Q; i<t (Surprise) a, a,(1-daza, ) 2 (A2, NI(A, - 1)

Table 1 gives the 5 different measures upon which I will base my elasticity
calculations. The first measure is derived directly from the demand equations (3.1) and
(3.9) as 6Q,/0P,. Measure 2 is 3Q,/dP, using (3.19) and (3.21) and is interpreted as the
fully anticipated effect of a change in P, on Q,. Measure 3 is 3Q,/dP, using (3.20) and
(3.25) and is interpreted as the effect of a surprise change in P, on Q,. Measure 4 is the
fully anticipated effect of a permanent change in price and measure 5 is the analogous
effect of a "surprise" permanent change in price holding Q, fixed. Both are computed
as dQ/dP where dP is the differential change in prices from time t to infinity.
Specifically measure 4 uses (3.19) for the myopic and (3.21) for the rational demand.
Measure 5 uses (3.20) and (3.25) evaluated at t=1. Having developed the mathematical

framework I now turn to estimation issues.
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3.6 Data and Estimation
The data for this study comes largely from the widely used resource bock, The Tax

Burden on Tobacco, published by the Tobacco Institute, an industry trade group. The

data is well described in Sumner (1981) and Sullivan (1987) and I will only give a brief
overview here. The annual publication provides information by state and year (from
1955 to 1988 for most states) on: 1) average per capita consumption in packs of
cigarettes, 2) average price per pack, and 3) average excise tax (state and federal) per
pack. Additionally, I collected per capita disposable income for each of the states from
1956 to 1988 from various issues of the Survey of Current Business. From various issues
of the Economic Report of the President I constructed a fiscal year price index along the
lines suggested by BGM to convert incomes and prices into real (1967) terms. A
detailed explanation of the data is found in Appendix B. Following Sumner (1981) and
Sullivan (1987) among others, I assume a no arbitrage condition between states; i.e.,
there is no cross-border smuggling of cigarettes.> Using the assumption of no arbitrage
and thus independent markets, I can use Sumner’s clever insight that excise taxes can be
considered an additive component of (unobservable) marginal costs, thus identifying the

parameters on marginal cost. Notationally, consider price as a function of c, and x,,

SSumner details the legal restrictions that make this a plausible assumption although
there exists evidence that for some states this might not be a reasonable approximation
(see Doran (1979) and BGM). Preliminary investigation on my part showed little
evidence of cross-border smuggling for my data although further study is needed.
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P=0,c,+X9,+¢, (3.25)

where ¢, is unobservable marginal cost, X, in my models includes income, lagged quantity
and possibly lead quantity, and ¢, is a random disturbance. Sumner’s insight is that if c,

has the following form:

c,=¢, +ex, (3.26)
where ¢,” is the unobservable component of marginal costs and ex, is the observable

excise tax and ¢,” is statistically independent of ex, and X,, then P, can be written as

P,=0,ex,+X 0,+v, (3.27)

v,=e,+0,c, (3.28)
where now 6, can be estimated with observable variables.

The estimation technique used in this study is nonlinear two-stage least squares
(N2SLS) with cross-equation constraints. This provides for consistent parameter
estimates (conditional on the correct specification of the model) while not imposing a
complete structure on the error covariance matrix as required, for instance, by three-

stage least squares. In this two equation context, N2SLS solves

. 1
Min ﬁ__e(e)’ P ¢(9) (3.29)
0

where
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31(9)} (339)

e(G)E[ez(B)

€;(0) is the vector of residuals from equation i; and

Pz 0
P=
[ 0 Pz] (3.31)

P,=2(Z'2)"'Z/,

Z is the matrix of instruments; and

51
37, (332)

where T, is the number of observation for state i.

Models 1 and 2 (myopic demand models) use as instruments excise taxes, income,
lagged quantity, and state and year dummy variables. Models 3 and 4 (rational demand
models) add lead quantity to the instrument set. Under traditional regularity conditions,

parameter estimates will be asymptotically distributed as

YT* (Bypss-8,) ~N(O,plim T"A"BOB/A™)
AEVOF/ PV OF’ (3.33)

B=VF' P.

where A and B are evaluated at the true parameter value, 8, V;F signifies the gradient
of the conditional mean function (of the two stacked equations) with respect to 6, and

(1 represents the covariance of the error vector. The classical assumption on ) is
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Q= 2el* with X defined as:

0’2 g )
s+ O (334)

0y 0

which is easily estimated from the estimated residuals. For robustness I assume two
additional structures cn sigma: one (WHITE) allows for unspecified heteroskedasticity
within and between the two equations and is estimated using White’s (1982) estimator
and the other (NW) allows for general heteroskedasticity and autocorrelation and is
estimated using Newey and West’s (1987) estimator. The details on constructing the
various covariance matrices is contained in Appendix B. The use of these more general
covariance structures allows for robust tests of the various hypotheses of interest. The
models are partially nested, allowing for a test of Model 1 as a special case of both
Model 2 (8=0) and Model 3 (a, = 0). I can also test Model 2 (a,=0) and Model 3 (V,

+ V, = 0) as special cases of Model 4. The next section details estimation results and

various hypothesis tests.

4. Estimation Results
Table 2 (following page) reports some descriptive statistics of the data used for
estimation. After accounting for 11issing data and dropping the first and last year’s
observations for each state, 1517 observations remain to be used in the estimation.
Table 3 (page 123) gives the first estimation results. Each parameter estimate is

associated with three values of the asymptotic t-statistic (H,: parameter = 0)
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Table 2
N=1517
Mean Std.Dev. Minimum

Quantity 126.43 31.45 54.70
Price 28.75 3.25 18.36
Tax 12.47 3.41 3.36
Income 3303.10 852.490 1229.00
Lagged 126.38 31.59 57.20
Lead 126.32 31.37 54.70

corresponding to the three alternative covariance estimates outlined in section 3.6. The
parameter estimates from each of the four models are all of the expected sign and are
generally significantly different from zero regardless of the covariance estimate used.
The lone exception is the coefficient on income which is small and insignificantly
different from zero in all but the fourth model where it is marginally significant.

The estimates on the price coefficient (a,) range from -0.60 in Model 4 to -2.78 in
Model 1. The two myopic demand models, 1 and 2, have relatively high estimates of the
coefficient on lagged quantity (a;) of 0.73 and 0.85, respectively; while the rational
demands produce estimates of 0.42 (Model 3) and 0.48 (Model 4). The estimate on lead
quantity (@,) is about the same magnitude as that on lagged quantity, equalling 0.38 in
Model 3 and 0.48 in Model 4. The results from the rational demand models are
interesting when compared with the results from BGM. In the BGM model the ratio of
a,Ja, gives the consumer’s discount rate with its implied interest rate (a,/a, = (1+r1)”,
where r is the interest rate). BGM estimate implausibly high values for r of about 0.25.

In contrast, the implied (real) interest rate in these rational derand models is 0.09 in
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Table 3 e
Parameter Estimates and Varlious t-statistics |

/
Parameter | Asymptotic t-statistics ;
Estimates {
Model: Classical ?
1 (MY-MY) ;
Price (o) -2.78 -30.77 -21.02 -13.56 |
Income (a,) 1.56E-4 | 0.19 0.14 0.25 }
Lagged (a,) 073 | 69.15 32.21 51.77 §
2 (MY-RA) , %
b
Price (o) -1.25 | -10.31 -8.05 -12.56 |
Income (a,) 4.02E-4 0.52 0.36 0.63 ,
Lagged (a,) 0.85 71.76 30.34 66.83
B 1.20 65.44 28.85 64.50 |
3 (RA-MY) | i
Price (a,) -2.65 -36.65 i
Income (a,) 7.25E-4 1.08 i
Lagged (a;) 042 27.11
Lead (a,) 0.38 i 24.67
4 (RA-RA)
Price (a,) -0.60 | -6.61
Income (a,) 1.19E-3 2.11
Lagged (a;) 0.49 37.14
Lead (a,) 0.48 35.80
B 2.08 36.70

Model 3 and 0.02 in Model 4 (@,, a, evaluated to the third decimal) which are much
more reasonable estimates.

However, the modeis estimated here do not perform as well in estimating the
monopolist’s discount rate, 8. The estimate of 8 in Model 2 is 1.20 and in Model 4 is

2.08 with both estimates being quite high relative to the theoretical value (0<g<1),
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which is probably due to the no-growth assumption required to solve these models. The
high value of B implies that the monopolist is giving great weight to future profits reiative
to current profits and is evidenced by a relatively low price in early periods and a high
price in later periods. But if in fact prices increase over time due to other factors such
as rising costs and incomes, the estimated 8 will capture this growth effect in addition to
the true discounting effect. This growth effect might explain a large part of the
estimated B in Model 2 where the estimate of 1.20 is 0.25 above a reasonable estimate
of 0.95. It seems unlikely to explain the very large value of 2.08 in Model 4.

In another interesting comparison to previous literature, I can compute the
“"monopoly power index" of Sumner (1981) as the coefficient on excise taxes in the FOC
equation for the two rational monopoly Models (2 and 4). For Model 2 the index equals
1.02 which is identical to Sumner’s estimate while for Model 4 it is 1.01. Sumner
interprets his results as a rejection of monopoly power in the cigarette industry.

However, in my framework the index value close to 1 reflects the exercise of monopoly

power through a monopolist charging a low price in early periods and a high price in
later periods. It is unclear how the two opposing interpretations of essentially the same
data and the same numbers can be resolved without resorting to firm level data. At the
very least, this study suggests a reevaluation of past market power studies which use
aggregate industry data.

Table 4 (following page) gives the estimates of the various own-price elasticities
described in section 3.5. The values are based on the formuias given in Table 1

multiplied by the ratio of the mean price to the mean quantity (0.227). The estimates

124



Table 4

Various measures of the change in current quantity

Myopic Demand Ratlonal Demand
Model: | 1 (MY-MY) | 2 (MY-RA) | 3 (RA-MY) | 4 (RA-RA) §
Elements held ﬁxed
Temporary Pnce Change:
1) Ql-l’Ql‘i'l’ i 1¢t '0.63 '0.28 ‘0.60
2) P, Q, i=t -0.63 -0.28 -0.99
( (Anticipated)
3) P, i=t, Q, i<t -0.63 -0.28 -0.77
(Surprise)
Permanent Price Change:
4) P, i<t, Q, i#t -0.63 -0.28 -1.89
(Anticipated)
5) P, Q i<t -0.63 -0.28 -1.46
(Surprise)
_————e e ————r e

vary considerably acrdss the models. For the myopic demands (Models 1 and 2) future
price changes have no impact on current consumption decisions, which accounts for the
lack of variation in the various elasticity estimates in these two models. The estimate for
Model 1 is -0.63 and for Model 2 it is -0.28.

In sharp contrast to the myopic demands, the rational demands have a large amount
of variation among the several estimates. Focusing on the results for Models 3 and 4 we
see that Model 4 gives more inelastic estimates relative to Model 3 with the exception

of elasticity 4 which is the effect of a permarent increase in price when all quantities are
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allowed to adjust. For example, elasticity 3 (a surprise temporary price increase) is -0.77
in Model 3 while it is -0.22 in Mode! 4. The difference between a temporary and a
permanent increase in price is also striking. Using the estimates from Model 4, a
temporary increase in price results in an estimate of -0.22 while a permanent increase
results in -0.88. All the elasticities estimated for Model 3 seem implausibly high
especially those due to a permanent price change. The estimates from Model 4 suffer
similar problems although they are generally not as severe with the exception of the
estimate of -2.02 for the anticipated permanent price change (elasticity 4).

Table 5 (next page) gives some goodness-of-fit statistics. The first line labeled DET

gives the determinant of the matrix

where 31 is the 1517x1 vector of estimated residuals from the demand equation and 32

is the 1517x1 vector of estimated residuals from the FOC equation. DET acts as a
generalized measure of fit for the iwo equation system accounting for the variances of
both equations as well as the covariance between the equations. The results range from
4.50 in Model 4 up to 177.37 in Model 1. The dichotomy beiween the rational (2 snd
4) and the myopic (1 and 3) monopoly models is most apparent. Conditioning on a
myopic consumer, a change from a myopic monopolist to a rational monopolist reduces
the value of the determinant from 177.37 to 8.57 while conditioning on a myopic

monopolist (Models 1 and 3) the determinant changes from 177.37 in the myopic
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Table §
Goodness-of-Fit Statistics
Model (Consumer-Monopolist)

]

EL ¥ sl B T WS N G e T

1 (MY-MY) 2 (MY-RA) 3 (RA-MY) 4 (RA-RA)
DET 177.37 8.57 141.47 4.50

553 TR O =i

SSR: Demand  45770.8 39733.9 31469.6 21256.1 )
SSR: FOC 8932.9 496.5 10383.4 488.8 §
R2% Demand 0.97 0.97 0.98 0.99 {
R% FOC 0.53 0.9/ 048 0.97 ,

consumer case only down to 141.47 in the rational consumer case. The same pattern
holds true with the sum-of-squared residual terms (SSR). The SSR for the demand
equations range from a low of 21256.1 in Model 4 up to 45770.8 in Model 1. A
tremendous amount of variation exisis in the SSR for the FOC equation with the SSR
for the two rational monopoly Models (2 and 4) about 1/20 the size of the myopic
monopoly Models (1 and 3). For example, Model 2 (myopic consumer-rational
mocnopolist) has an SSR for the FOC equation of 496.5 while the SSR for Model 1
(myopic consumer-myopic monopolist) is 8932.9.

The hypothesis test results are given in Tables 6 and 7 (next page) where the
conservative WHITE estimate of the standard error has been used. Table 6 gives the
results where Model 1 is a special case of Model 2 (8=0) and where Model 1 is a special
case of Model 3 (a,=0). Both tests reject the null hypothesis of Model 1 with the
asymptotic two-tailed t-statistic for 8=0 in Model 2 equalling 28.85 and the equivalent
statistic for «,=0 in Model 3 equalling 12.33. Table 7 presents the results of testing
Models 2 (a, = 0) and 3 (V, + V, = 0) as special cases of Model 4. The asymptotic
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Table 6

[

s a special case of Model 2:
| Hy: B = Hy 8=0 t-stat: 28.85
case of Model 3:

t-stat: 12.33 “

Table
Test Model 2 as a special case of Model 4:
Hy a,=0 Hy: ap#20 t-stat: 13.66
Test Model 3 as a spccial case of Model 4:

. V4V, =0 Hy V4V, # 0 t-stat: 5.23 E

t-statistic for a,=0 equals 13.66 while the equivalent statistic for V, + V, = 0 equals 5.23
and therefore both Model 2 and 3 are rejected as special cases of Model 4 on the basis
of these test statistics.

Combined with the goodness-of-fit statistics, the hypothesis test results suggest that
the most general model of both rational consumer and rational monopolist best describes
the data. However the actual parameter estimates for Model 4 are somewhat less than
satisfactory. As noted previously the model gives an unbelievable estimate of 8 as well
as several irnplied price elasticities which are quite high compared to previous studies.
Model 2, while suffering from drawbacks similar to Model 4, seems to have much more
defensible estimates of both the price elasticities and the estimate of B, although B is still
too high. The tradeoff is a relatively slight decrease in the precision of the fit when

compared to Model 4. The myopic monopoly models seem to explain the data quite
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poorly relative to their rational counterparts. My conclusion is that Model 4 wins the
statistical horserace but that Model 2 draws even on broader considerations. Models 1

and 3 can be rejected out of hand.

5. Conclusion

In this paper I have examined both theoretically and empirically monopoly behavior
with intertemporal demanaus. Tie theuretical discussion suggests that intertemporal
deriands might play a significant and largely unexplored, role in influencing firm
behavior. In the empirical section, I established a framework for testing various
alternative hypothesis about consumer and monopoly behavior, and then I employed 2
widely-used cigarette database to conduct the tests. The results suggest that the myopic
monopoly model can be rejected in favor of the rational monopoly model, but the results
were somewhat less conclusive distinguishing between the rational and the myopic
consumer. These initial results suggest that further research on firm behavior in the
presence of intertemporal demands could prove very fruitful. Specifically disentangling
competitive oligopolistic behavior from the strictly monopolistic setting of this paper
would be very useful. Also of interest is the effect on other control variables such as
research and development expenditures and advertising when demands are linked over

time.
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Appendix A:

This appendix proves the results given in equation (2.6) in the text concerning the
implicit demand equation. The utility function is assumed to be strictly increasing in cach
of *he arguments, strictly concave, separable in Z,, and it is also assumed that Q, and Q,
are complements. Denoting partial derivatives with subscripts (U, denotes the partial
with respect to Q,, U, with respect to Q,,, and U, with respect to Z)) I can rewrite
equation (2.5) as

U/(Q.Q,.) - Uy(Y,-P»Q)+P, = 0

at the optimum. Taking the total derivative I get
2
U dR, + U, dQ,., - UyPdY, + UyQPAP, + UyP,dQ, - UdP, = 0.

First [ want to sign dQ,/dP, (with dQ,,, and dY, equal to zero).
th - U3 - U”Q'P ¢

<0
P, y, + U,P

which is negative due to the assumptions on the utility function.
Next I want to determine the sign of dQ,/dY, (with dQ, ,=dP,=0).

th = U:!3P ¢

d, U, + UyP :2

> 0.

which is positive. Finally I want to determine the sign of dQ/dQ, , (where dP,=dY,=0):
dQ, Uy,

= > 0.
dQ,., U, + U”p‘z
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Appendix B:

The cigarette data (prices, taxes and quantities) are from the 1990 edition of Tax
Burden on Tobacco published by the Tobacco Council. Prices are measured as the
weighted average price per pack, taxes as the average excise tax per pack (state and
federal), and quantities are per capita sales in packs. Quantities are measured on June
30th of each year while associated prices and taxes are measured on either November
1 or October 1 of the prior year. I adjusted prices and taxes to be on the same fiscal year
basis as quantities by takmg a weighted average of current year and prevnous year values.
For concreteness, the price and tax variables for 1970--P,," and t,, , respectively--were
constructed as follows: (P,4,t50), (Pﬁg,t@) come from the data book. First subtract taxes
from the wrice: P, = Pyg - tiy Py = Pgg - teg. Then welght prices according to the
fraction of the year each price (or tax) was in effect: P]o = (2/3)P70" + (1/3)P6.,", th”
= (2/3)tz + (1/3)tes. Add taxes back to get Pyt Prp = Ppo® + t30% tyy = 5% Py’
and t,,’ were then normalized by a fiscal year price index for 1970 (a simple average of
the 1969 and 1970 CPI taken from the survey of current business).

The income variable is the personal disposable income by state and year from variocus
issues of the survey of current business. Income was also adjusted tc a real fiscal year
basis. :

Covariance construction

Three alternative covariance matrices were construced, each based on a different
error structure assumption. Each of the (loosely speaking) estimated asymptotic
covariance matrices, €_avar, has a similar form (from equation (3.33) in the text):

e_avar=A"'BOB'A™!

where

A=vF' p vF

B-vF' P
with ~ signifying evaluation at the estimated parameters, V,F defining the gradient of
the conditional mean, and P being the block diagonal projection matrix ((3.31) in the

text). The three covariance estimates differ in the estimates of PQP which is the inner
matrix of BIB. Writing ) in partitioned form I have,

Q= 11 212 ’
221 2'.’.2
51

where Z; represents the T’xT" error covariance matrix for equation i and j ( T=%T,,
el
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T, is the number of time periods state i is observed). Z,, is the covariance for equation
1, 2y, for equation 2 and Z,,,%,, are the cross-equation covariance matrices. For the
simple classical covariance, %; = o;I;* and oy is estimated as

TG
1
Fé‘ €,

For the WHITE covariance %; is assumed to be diagonal and the quantity 2% Z
estimated as

1 L /
F§ Zlei!ejlzl

To estimate the NW estimator [ used a variation of the Newey-West (1987)
estimator. Suppressing the equation subscripts, Z’2Z can be written as

r 1T 1r 1
| z2(1)', ..., Z(N)'I Z(11) ... Z(1N) Z(1)
L 4 . . . .

z.(m) z(m.q)

[ ————————

where the matrices have been partitioned into the component states (Z(i) is the (TxK)
matrix of intruments for state i for all years, Z(ij) is the TixT) covariance matrix of
residuals for state i and state j). This quadratic form can be written as

N N
232-%" Y Z(i) 2(Gj) Z(G).

ial jal

I estimated each of the components Z(i)’%(ij) Z(j) with the Newey-West estimator after
truncating all states to have the same number of observations in order to create a
balanced panel.®

SIn Newey-West notation: G(N) = 2 (=(number of years for each state) raised to the
(1/4)th power).
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The following four pages give parameter estimates for the dummy variables of the four
different models along with WHITE standard errors.
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Model 1 (MY=-MY)

State Variables Year Variables
Demand FOC Demand FOC

Param. Std.Er|Param. Std.Er Param. Std.Er|Param. Std.Er
124.69 8.82 14.52 1.66 1857 -8.86 2.48 ~-4.82 0.71
115.91 6.72 16.00 1.16 1958 -7.08 2.44 -4.56 0.68
116.33 6.73 14.13 1.18 1959 =0.99 2.49 -4.55 0.687
113.20 7.06é 12.43 1.30 1960 -~2.49 2.44 -5.37 0.65
114.99 7.72 12.87 1.48 1961 -0.14 2.38 -5.94 0.66
108.34 7.22 9.90 1.39 1962 =2.79 2.3% -6.45 0.65%
125.09 B8.24 13.02 1.68 1963 -1.99 2.31 -6.35 0.85
125.52 8.41 3.92 2.27 1964 -5.09 2.19 -6.28 0.64
126.64 7.98 8.38 1.61 1965 -0.76 2.11 -5.89 0.61
126.15 7.63 12.67 1.42 1966 =-0.15 2.12 -5.89 0.60
116.11 §6.90 13.52 1.28 1967 -0.11 1.90 -5.82 0.61
105.58 7.40 18.52 1.8 1968 =-0.52 1.77 -5.33 0.55
115.41 7.17 13.87 1.25%5 1969 -0.89 1.69 -5.30 0.51
102.50 6.73 13.85 1.19 1970 =-1.48 1.70 -4.81 0.50
129.09 7.75 11.32 1.46 1971 4.42 1.53 -4.02 0.49
113.64 7.12 8.04 1.44 1972 7.19 1.%54 -4.36 0.49
112.08 7.17 12.77 1.28 1973 3.16 1.35 ~-5.68 0.51
116.58 6.98 3.58 1.87 1974 0.14 1.33 ~-7.08 0.50
120.89 7.01 13.24 1.26 1975 -3.26 1.38 -8.00 0.50
124.24 7.86 13.31 1.42 1976 -1.34 1.42 -7.86 0.52
112.91 7.47 10.79 1.41 1977 ~5.90 1.43 -8.47 0.53
121.03 7.18 10.01 1.36 1978 =4.99 1.27 ~7.68 0.54
119.31 7.55 11.22 1.40 1979 =-9.00 1.25 -7.95 0.52
117.95 7.34 14.47 1.26 1980 -12.15 1.37 -8.%0 0.50
114.04 7.14 9.82 1.37 1981 -16.06 1.53 -9.91 0.51
113.69 6.45 15.31 1.13 1982 -17.50 1.52 -9.47 0.52
115.59 6.98 13.15 1.22 1983 -14.54 1.34 -6.87 0.52
115.38 7.39 -0.51 1.89 1984 -9.37 1.25 -4.42 0.52
112.49 6.89 14.33 1.18 1985 -=3.47 1.10 -2.78 0.51
112.17 7.07 13.40 1.24 1986 -1.79 1.00 -1.51 0.50
142.07 8.96 -5.11 2.26
124.60 8.11 12.84 1.49
112.53 6.81 16.59 1.10
134.17 8.56 5.04 1.88
121.79 7.90 12.51 1.51
115.52 7.30 10.62 1.38
118.12 7.08 12.19 1.30
111.86 7.28 7.44 1.63
119.39 7.43 13.26 1.31
122.35 7.54 S.61 1.46
107.44 6.38 12.13 1.28
111.24 6.74 14.25 1.158
115.77 6.79 13.54 1.22
121.00 7.36 14.15 1.27
100.78 6.48 19.08 0.98
106.54 6.89 7.86 1.43
122.25 7.29 9.62 1.43
118.85 7.59 17.46 1.24
116.74 7.28 14.12 1.25
116.25 6.82 13.81 1.18
114.23 7.40 8.53 1.46
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Model 2 (MY-RA)

State Variables Year Varisblas
Demand FOC Demand FOC
Param. Std.Er|Param. Std.Er Param. Std.Er|Param. Std.Er

55.72 9.37 27.31 0.23 1957 -1.37 2.31 -8.11 0.16
52.40 7.87 24.28 0.19 1958 -0.08 2.35 -7.63 0.15
§3.02 7.%9 22.39 0.18 1959 5.50 2.31 -7.34 0.14
$0.92 7.83 23.93 0.19 1960 2.86 2.29 -7.34 0.15
50.93 8.38 25.11 0.23 1961 5.18 2.24 -7.46 0.15
48.61 7.89 22.56 0.23 1962 1.28 2.19 -7.37 0.14
§5.61 8.95 24.29 0.28 1963 1.94 2.17 -7.41 0.14
57.58 8.98 25.16 0.30 1964 -~1.55 2.07 -7.39 0.14
57.88 8.95 24.65 0.23 1965 3.18 1.98 -7.54 0.14
§7.04 8.56 24.16 0.22 1966 2.77 2.07 -7.51 0.14
52.97 7.7% 23.81 0.18 1967 2.49 1.77 -7.35 0.14
45.83 17.76 23.65 0.19 1968 1.34 1.70 -6.73 0.14
51.84 7.92 23.72 0.22 1969 1.39 1.60 -6.84 0.14
49.03 17.48% 23.52 0.20 1970 0.26 1.59 -6.57 0.14
53.51 8.53 24.43 0.22 1971 5.81 1.38 -6.10 0.15
52.08 8.00 23.10 0.21 1972 8.07 1.47 -6.08 0.15
50.33 7.88 23.13 0.19 1973 4.66 1.19 -6.62 0.14
55.32 8.17 23.40 0.22 1974 4.04 1.17 -7.29 0.13
56.04 8.00 24.21 0.20 1975 2.04 1.24 -7.18 0.14
55.73 8.66 23.96 0.20 1976 3.72 1.27 -6.40 0.14
50.91 8.17 23.58 C.26 1977 -0.51 1.31 -6.25 0.14
55.02 8.22 22.76 0.20 1978 -0.10 1.12 -5.26 0.14
53.90 8.38 23.89 0.20 1979 -2.80 1.06 -5.19 0.14
52.93 8.00 23.20 0.21 1980 =-2.95 1.21 -5.94 0.14
$1.92 8.00 23.74 0G.21 1981 -4.66 1.41 -6.49 0.14
51.60 7.34 23.65 0.18 1982 -6.41 1.38 -5.78 0.14
51.40 7.82 23.42 0.22 1983 -6.77 1.16 ~3.42 0.14
53.39 8.75 23.50 0.26 1984 -5.23 1.06 -2.62 0.16
50.46 7.63 23.08 0.18 1985 -0.49 0.91 -2.17 0.17
50.18 7.78 23.06 0.18 1986 -0.25 0.81 -1.15 0.17
68.04 10.61 23.77 0.30
55.65 8.86 23.73 0.20
49.92 7.50 23.94 0.17
61.61 9.80 25.83 0.27
54.39 8.67 24.41 0.23
52.21 8.12 22.90 0.20
53.56 7.98 22.95 0.19
45.85 8.13 22.69 0.24
$3.65 8.22 22.77 0.20
55.28 8.49 22.92 0.22
49.11 7.21 23.11 0.19
49.82 7.50 22.%8 0.20
52.88 7.65 23.30 0.17
54.36 8.19 23.01 0.19
44.01 6.87 23.37 0.19
48.93 7.68 23.60 0.20
55.78 8.35 23.26 0.21
52.46 8.20 24.52 0.23
$2.28 8.01 22.74 0.19
52.57 7.73 23.84 0.18
51.64 8.25 23.57 0.22
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Param. Std.Er

112.70 6.35
114.04 6.10
104.51 5.54
$7.02 6.0S
104.46 5.77
99.61 5.41
107.09 6.19
101.02 s5.71
101.16 5.76
101.61 5.54
109.18 5.61
112.30 6.30
101.04 5.98
109.00 5.72
107.19 6.03
107.01 5.95
102.00 5.69
103.31 5.20
105.44 5.59
102.44 +5.64
102.19 5.53
101.74 5.67
122.68 6.88
112.51 6.51
103.23 5.52
118.80 6.72
110.02 6.33
103.80 5.83
106.60 5.67
101.08 5.79
108.02 5.97
109.92 6.03
96.53 5.13
101.23 5.42
104.30 5.44
109.93 5.91
93.28 5.28
94.27 5.52
109.78 5.82
108.73 6.13
105.94 +5.85
105.40 5.48
102.23 5.90

Model 3 (RA-MY)

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1978
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
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Year Variablee

Demand

-y e - - -

-10.97 2.06

~-3.63 1.98

-6.60 1.80

-2.40 0.84

0.52
0.54
0.54
0.58
0.57

0.55



AL

AZ
CA
Co
cT
DC
DE

GA
HI
IA

IL
IN
KS
KY
LA

MD

MI
MN
MO
MS
MT
NC
ND
NE
NH
NJ
NM

OH
OX
OR
PA
RI
sC
sD
TN
X
uT
VA
vT
WA
WI

Model 4 (RA-RA)

5.73

5.23

6.31

6.10

5.51

0.20

0.19

0.19

0.20
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Year Variables

Demand FOC
Param. Std.EBr|Param. Std.Er
-1.01 1.69 -8.04 0.15
-2.84 1.77 -7.52 0.14
1.85 1.75 -7.21 0.14
-0.97 1.72 -7.21 0.14
2.46 1.65 -7.35 0.14
-0.01 1.62 -7.28 0.14
2.16 11.57 -7.34 0.13
-2.30 1.52 -7.31 0.13
0.80 1.47 -7.42 0.14
0.59 1.44 -7.4C 0.14
1.13 1.32 -7.26 0.14
2.1 1.23 -6.70 0.14
0.80 1.29 -6.76 0.14
-2.47 1.18 -6.46 0.14
-0.15 1.24 -5.95 0.15
2.00 1.18 -5.92 G06.14
-0.75 0.98 -6.47 0.14
-0.62 0.98 -7.14 0.13
-2.3% 0.99 -7.03 0.13
0.35 1.00 -6.28 0.14
-2.13 0.91 -6.15 0.13
-1.28 0.81 -5.19 0.14
-3.81 0.79 -5.11 0.14
-3.64 0.95 -5.86 0.14
-3.45 1.02 -6.44 0.13
-2.95 0.99 -5.77 0.14
-2.66 0.86 -3.45 0.14
-3.8% 0.74 -2.61 0.16
-0.95 0.66 -2.14 0.17
-0.52 0.65 -1.14 0.17
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