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Abstract

This thesis explores the ability of the discontinuous Galerkin (DG) method to nu-
merically solve the Boltzmann equation. Constructing numerical methods for this
equation is a challenge, due in part to the kinetic theory description of moving par-
ticles, which relies on space, time, and velocity variables. Two novel approaches are
presented and compared. The first uses a spectral collocation basis in velocity space.
The resulting system is solved in time using Diagonally Implicit Runge-Kutta meth-
ods, chosen in order to mitigate stiffness concerns. A Jacobian-Free Newton—Krylov
method is presented, accelerated with a sweeping preconditioner. The method is
tested on 1D and 2D problems in order to validate its convergence behavior and in-
vestigate its efficiency. The second method uses DG for moment equations, which can
be derived as spectral methods in velocity space with spatial and temporal adaptiv-
ity. These methods were first proposed in 1949 by Grad, but their applicability has
been limited. The equations are not guaranteed to be hyperbolic, leading to stabil-
ity issues. The elegance and potential for cost-reduction of Grad’s moment method
have led to the development of different moment closures that preserve hyperbolicity
and model accuracy. The approaches studied in this thesis, the globally hyperbolic
moment methods, restore hyperbolicity by introducing a term that cannot be written
in conservative form. The equations are typically solved with operator splitting and
low-order methods. We examine the promise and challenges of applying a high-order
DG method with explicit Runge-Kutta time-stepping to these equations on common
1D test cases. The thesis ends with a discussion on the prospects of both methods
and suggestions for future work.
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Chapter 1

Introduction

Flow in extreme conditions, like the high speeds experienced by vehicles entering

the atmosphere or the small scales of microelectromechanical systems, may not be

well described as a continuum. In such regimes, collisions between particles become

increasingly rare and thermodynamic equilibrium can no longer be assumed. Instead,

the Boltzmann equation, derived from kinetic theory, may be required. The equation

describes the movement of particles streaming and colliding at a statistical level,

rather than tracking each particle individually.

In these regimes, particularly for hypersonic flows, setting up experiments can be

a challenge [47]. Therefore, predictive numerical simulation plays an important role

in studying these effects.

Probabilistic methods like Direct Simulation Monte Carlo (DSMC) [6] have proven

effective for numerically solving the Boltzmann equation. There are, however, regimes

of interest where DSMC loses efficiency; this motivates the development of determin-

istic methods for the Boltzmann equation.

Increasing computational power has made typically costly deterministic methods

more feasible in the last few decades [22]. One reason for the cost of these methods

is dimensionality; the solution of the Boltzmann equation depends not only on space

and time, but also on velocity.

The treatment of this velocity domain, or velocity space, is a key differentiatior

between deterministic methods. A common method is to directly discretize a trun-
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cated velocity space. These methods allow for an arbitrarily rich discretization of the

velocity space, meaning they can describe a very wide range of physical phenomena.

In practice though, great care must be taken to avoid a proliferation of degrees of

freedom [22, 24].

Another approach is to attempt to derive model equations that take into account

velocity space information. Here we consider the moment equations, which track the

evolution of moments of a velocity distribution function (vdf). Moment equations are

usually valid only in certain physical regimes, but when applicable they present an

opportunity to dramatically reduce computational cost. Significant effort has gone

into deriving moment methods that are more descriptive and robust, particularly in

regimes where probabilistic methods and direct discretizations become very costly

[79].

Both approaches give systems of PDEs in space and time, which can then be

solved using classic methods for numerical PDEs. Finite volume (FV) methods are

often used [22, 58, 70], while semi-Lagrangean methods have had impressive results

for direct discretizations of the Boltzmann equation [24, 23, 25] and finite element

methods have recently been investigated for moment equations [82, 78].

In this thesis, we investigate the discontinuous Galerkin (DG) method for the

Boltzmann equation, in particular for a certain class of globally hyperbolic moment

methods [30]. DG possesses a number of attractive properties including easy exten-

sions to high-order, stable discretizations for a wide range of operators, discretely-

enforced conservativity, and the potential for local adaptivity. This comes at the

price of increased computational cost. Despite the fact that computational cost is

already seen as a barrier for the Boltzmann equation, there has been recent interest

in using DG for direct discretizations [44, 76, 75, 28]. DG is less commonly used for

the moment equations [7, 1].

The next chapter explains in greater detail the theory behind the Boltzmann

equation and deterministic methods that aim to solve it. We focus on the theoretical

results that are most relevant to the moment methods, including equilibrium states

and asymptotics.

14



Chapter 3 focuses on the details of our DG methods. These include a novel implicit

DG method for a direct solution of the Boltzmann equation and an explicit method

for the moment equations. The shortcomings of the former inspired the investigation

of the latter.

Numerical results are shown in Chapter 4. Reflections on these results and direc-

tions for future research are given in Chapter 5.
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Chapter 2

Background

2.1 The Boltzmann Equation

The Boltzmann equation describes the evolution of a nonnegative velocity distribution

function (vdf) 𝑓(𝑡, 𝑥, 𝜉), which evaluates to the number density of particles with

velocity 𝜉 ∈ R𝑑𝜉 at position 𝑥 ∈ R𝑑𝑥 and time 𝑡 ∈ R+. Here we will assume 𝑑𝑥 = 𝑑𝜉 =

𝑑. The equation can be written as

𝜕𝑓

𝜕𝑡
+ 𝜉 · ∇𝑥𝑓 =

1

𝜏
𝐶(𝑓, 𝑓) (2.1)

and is defined on a spatial domain Ω ⊆ R𝑑, temporal domain 𝑡 ∈ [0, 𝑡𝑓 ], and velocity

domain Ξ = R𝑑. The right-hand side involves the relaxation time 𝜏 and the collision

operator 𝐶. The relaxation time can depend on different parameters but will always

vary based on the Knudsen number Kn. The Knudsen number is defined as the ratio

Kn =
𝜆

𝐿
. (2.2)

𝐿 is a characteristic length scale, which is problem dependent. In the numerator is

𝜆, or the mean-free path, which describes how far a particle will go before a collision

occurs. A small Kn means that particles are frequently colliding without much free

motion, allowing continuum descriptions of a group of particles to suffice. As Kn

17



grows larger, particles are in free motion for longer, leading to rarefied gases. This

description can be made more mathematically precise, but the physical intuition

is helpful: as Kn increases, a continuum gas becomes more rarefied, transitioning

into kinetic regimes and eventually into free flight, where particles are travelling

unimpeded.

2.1.1 Collisions and Macroscopic Moments

Collision operators are constructed to preserve mass, momentum, and energy. Re-

spectively, this means that

∫︁
R𝑑

𝐶(𝑓, 𝑓)𝜓(𝜉)𝑑𝜉 = 0 (2.3)

for 𝜓(𝜉) = (1, 𝜉, |𝜉|2). The component functions of 𝜓 are sometimes called the ele-

mentary collision invariants because they span the space of collision invariants [18].

The same operation in (2.3) can be applied to both sides of the Boltzmann equa-

tion (2.1). This gives a system of balance laws

𝜕

𝜕𝑡

∫︁
R𝑑

𝜓𝑖𝑓𝑑𝜉 + ∇ ·
∫︁
R𝑑

𝜉𝜓𝑖𝑓𝑑𝜉 = 0 (2.4)

which is not a closed system since it involves higher-order moments of 𝑓 .

The inner products of 𝑓 and the collision invariants are weighted averages of a

distribution which describe macroscopic quantities of interest. Specifically, we have

relationships for the density 𝜌, the macroscopic momentum 𝜌𝑣, and the energy 𝜌𝐸

𝜌 =

∫︁
R𝑑

𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉 (2.5)

𝜌𝑣 =

∫︁
R𝑑

𝜉𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉 (2.6)

𝜌𝐸 =
1

2

∫︁
R𝑑

|𝜉|2𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉. (2.7)

18



where 𝜌𝐸 is related to the temperature 𝜃 by

𝜌𝐸 =
1

2
𝜌|𝑣|2 +

𝑑

2
𝜌𝜃.

H-Theorem and Equilibrium

Collision operators for the Boltzmann equation satisfy the Boltzmann inequality :

𝒮 =

∫︁
R𝑑

𝐶(𝑓, 𝑓) log(𝑓)𝑑𝜉 ≤ 0. (2.8)

If 𝒮 = 0 then log(𝑓) is a collision invariant. Therefore, log(𝑓) = 𝑎 + 𝑏 · 𝜉 + 𝑐|𝜉|2 or

𝑓 is an exponential function. We can determine the values of 𝑎, 𝑏, and 𝑐 by enforcing

that 𝑓 and the exponential have the same density, velocity, and temperature. This

function is referred to as the local Maxwellian

ℳ(𝑓)(𝑡, 𝑥) =
𝜌(𝑡, 𝑥)√︀
2𝜋𝜃(𝑡, 𝑥)

exp

(︂
−|𝜉 − 𝑣(𝑡, 𝑥)|2

2𝜃(𝑡, 𝑥)

)︂
(2.9a)

𝜌(𝑡, 𝑥) =

∫︁
R𝑑

𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉; 𝑣 =
1

𝜌(𝑡, 𝑥)

∫︁
R𝑑

𝜉𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉; (2.9b)

𝜃(𝑡, 𝑥) =
1

𝜌(𝑡, 𝑥)

∫︁
R𝑑

(𝜉 − 𝑣(𝑡, 𝑥))2𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉. (2.9c)

In the space homogeneous case, we can multiply both sides of (2.1) by log(𝑓) to get

𝜕

𝜕𝑡

∫︁
R𝑑

𝑓 log(𝑓)𝑑𝜉 = 𝑆 ≤ 0. (2.10)

This is an entropy inequality where the entropy ℋ =
∫︀
𝑓 log(𝑓)𝑑𝜉 is always decreasing.

At equilibrium, entropy has stopped changing, or 𝒮 = 0. This happens when 𝑓 is

equal to its local Maxwellian, which is why this distribution is sometimes referred to as

the local equilibrium distribution. The proof of this for the space-inhomogenous case

can be found in [18] and leads to a similar conclusion. Both cases imply irreversibility

of the Boltzmann dynamics due to a decreasing entropy function.

As 𝜏 → 0, 𝐶(𝑓, 𝑓) → 0 and 𝑓 becomes ℳ(𝑓). In this case, (2.4) becomes the
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compressible Euler equations

𝜕𝑡

⎛⎜⎜⎜⎝
𝜌

𝜌𝑣

𝜌𝐸

⎞⎟⎟⎟⎠+ ∇𝑥 ·

⎛⎜⎜⎜⎝
𝜌𝑣

𝜌𝑣 ⊗ 𝑣 + 𝑝I

(𝜌𝐸 + 𝑝)𝑣

⎞⎟⎟⎟⎠ = 0 (2.11)

with pressure 𝑝 = 𝜌𝜃.

In regimes of slight non-equilibrium, Chapman-Enskog theory can be used to

obtain the Navier-Stokes equations from the Boltzmann equation as well [18].

2.1.2 Collision Operators

The right-hand side of (2.1) describes collisions between particles. The kinetic theory

derivation of the Boltzmann equation leads to the operator

𝐶(𝑓, 𝑓) =

∫︁
R3

∫︁
S2

(𝑓 ′𝑓 ′
* − 𝑓𝑓*)𝐵(𝜉, 𝜉*, 𝜃)𝑑𝜃𝑑𝜉* (2.12)

where 𝑓 ′ is the distribution post-collision and 𝐵 is a collision kernel that varies based

on the collision model. For each velocity, an integral needs to be taken over all

other velocities and the unit hemisphere S2. This operator will be referred to as

the full collision operator.While not implemented in this thesis, this operator plays

an important role in influencing certain design choices of numerical methods for the

Boltzmann equation.

Instead, we consider model collision operators, specifically the Bhatnagar-Gross-

Krook (BGK) collision operator [5]. It describes relaxation towards equilibrium,

defined as:

𝐶(𝑓, 𝑓) = ℳ(𝑓) − 𝑓. (2.13)

The BGK operator is clearly a significant simplification of the full operator. De-

spite this, it can still be useful in numerical simulations. First, the theory in the

previous section mostly still applies; it obeys the same H-theorem and retains the

asymptotic continuum behavior, albeit with an incorrect Prandtl number in the
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Navier-Stokes limit. Note that the Prandtl number can be corrected with similar

models like ellipsoidal statistical BGK and Shakhov operators. Furthermore, the

BGK operator can be used to accelerate methods that use the full collision operator

through operator penalization [26] or multi-fidelity models [17]. As a practical con-

cern, the efficiency of the BGK model allows for the easier implementation of more

complicated physical systems like reacting gases [70].

2.2 Deterministic Methods for the Boltzmann Equa-

tion

This section gives a brief overview of different numerical methods for the Boltzmann

equation. While not comprehensive, we hope to emphasize some of the key factors

that are considered when designing such methods. Particular emphasis is placed on

different ways of treating velocity space.

2.2.1 Challenges

Despite focused efforts, solving the Boltzmann equation deterministically is a chal-

lenge. The first issue is dimensionality. Especially in 3D simulations, the velocity

space increases compute times and can require prohibitive levels of memory.

Another issue is the computational treatment of the aforementioned asymptotics.

In many flows of interest like rarefied hypersonic flow, the Knudsen number can vary

drastically across the domain. As Kn goes to 0, the collision operator becomes stiff,

necessitating smaller timesteps or implicit-in-time methods. On the other hand, as

Kn increases, the flow can experience greater levels of nonequilibrium and require a

richer disretization of velocity space in order to capture non-Maxwellian distributions.

This is an inherently multiscale problem, necessitating the development of specialized

schemes. These include methods that couple kinetic and continuum schemes target-

ing different Kn regimes [73, 34] and time-stepping schemes that discretely preserve

asymptotics [46].
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Perhaps the most daunting challenge in solving the Boltzmann equation is the col-

lision operator. With 𝑁 being the number of points in each velocity direction, direct

implementations take 𝑁6 operations. The fastest Fast Fourier Transform (FFT)-

based methods for general collision kernels takes 𝑂(𝑀𝑁4 log(𝑁)), where 𝑀 << 𝑁2

is the number of points on the unit sphere [36]. For the commonly used variable hard

sphere (VHS) model, this can be reduced to 𝑂(𝑀𝑁3 log(𝑁)) [32]. It is typical for

the collision operator to dominate time-dependent problems [25, 51]. Note that the

collision operator is local in physical space and is integrated over velocity space; this

means that the velocity space representation is key in how the collision operator is

evaluated.

2.2.2 Velocity Space Treatment

The most substantial difference between methods is how the velocity space is dealt

with. Once that choice is made, what remains is a system of equations in space and

time, which can be solved with more standard differential equation solvers.

Discrete Velocity Models

A common approach is to split the velocity space into evenly-spaced points and to

solve a system of 𝑁 equations that are coupled by the collision operator.

The first advantage of this is simplicity. Integration in velocity space can be

calculated using equal spaced Newton-Cotes rules with no need to interpolate to

quadrature nodes. In fact, it was recently pointed out in [19] that this method can be

surprisingly effective for certain problems due to the spectral convergence of Newton-

Cotes quadrature for smooth functions on infinite domains [80]. Furthermore, equal

spaced grids abet the use of fast spectral methods.

A downside of this approach is that it requires truncating the velocity domain.

This can make certain methods lose conservation of the moments, which can be dealt

with through optimization methods first proposed in [64]. Bounds for the velocity

domain must also be specified a priori or calculated using heuristics that approximate
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the support of 𝑓 [4]. This can be wasteful especially if the support of the 𝑓 changes

significantly over space or time.

2.2.3 Galerkin Methods in Velocity Space

Another approach is to expand 𝑓 in terms of basis functions and enforce the equation

in velocity space in a weak sense. We next review basis functions that are particularly

effective in this context.

Orthogonal Polynomials

A set of polynomials {𝜑𝑖}𝑁𝑖=1 that are orthogonal with respect to some weight func-

tion 𝑤 and domain Ω (or equivalently, a choice of measure) are called orthogonal

polynomials.

An advantage is that with particular choices of 𝑤(𝑥), Ω can be an infinite domain,

making them a suitable basis for capturing pdfs without truncating velocity space.

A relevant example are the probabilist’s Hermite polynomials, which are defined as

𝐻𝑒𝑛(𝑥) = (−1)𝑛 exp

(︂
𝑥2

2

)︂
𝑑𝑛

𝑑𝑥𝑛

(︂
exp

(︂
−𝑥

2

2

)︂)︂
. (2.14)

𝐻𝑒𝑖 are orthogonal on Ω = R𝑛 and 𝑤(𝜉) = exp(−𝜉2/2). Specifically, the Hermite

polynomials satisfy

∫︁
R
𝐻𝑒𝑛(𝜉)𝐻𝑒𝑚(𝜉)𝑒

(︂
− 𝜉2

2

)︂
𝑑𝜉 = 𝑛!

√
2𝜋𝛿𝑛𝑚 (2.15)

where 𝛿𝑛𝑚 is the Kronecker delta. They are a natural choice for the Boltzmann equa-

tion because the weight function is of the same form as the Maxwellian distribution.

All orthogonal polynomials satisfy a three term recurrence relation. The Hermite

polynomials satisfy

𝐻𝑒𝑛+1(𝑥) = 𝑥𝐻𝑒𝑛(𝑥) − 𝑛𝐻𝑒𝑛(𝑥). (2.16)

Hermite polynomials have been used extensively for Galerkin methods in velocity

space [48, 43] and are also used to derive the moment equations described in the
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following section and chapters.

Other orthogonal polynomials used for velocity space bases include Burnett Poly-

nomials [42, 50] Polar-Laguerre polynomials [69], Half-space Hermite Polynomials

[38], and Chebyshev Polynomials [41]. Some choices of velocity space basis functions

do not always admit fast algorithms for the collision operator. They do possess a

number of attractive qualities though, like more efficient representations of 𝑓 and

enforced conservation of the macroscopic quantities [37].

2.2.4 Adaptivity in Velocity Space

Before moving on to the macroscopic model equations, it is worth mentioning the

concept of velocity space adaptivity, as it is both an approach for accelerating the

aforementioned methods and a way to derive the moment equations to be described

below.

Typically for the methods presented so far, every point in space shares the same

velocity domain. This simplifies implementation greatly. However, it can be hugely

wasteful. In the case of a gas in equilibrium with a velocity that varies in space, each

distribution can be recovered with just five degrees of freedom at each point in space,

but the velocity space discretization must be able to capture all distributions.

It has been pointed out that for hypersonic rarefied flow in particular, adaptive

grids could be a requirement [3, 8]. The temperature and velocity can vary greatly

across the domain, necessitating a velocity grid that extends far out and requires very

fine spacing.

For discrete velocity methods, there have been recent attempts to use local velocity

grids at different points in space [3, 4]. In a Galerkin method, it is the basis functions

that vary in space. The most common approach is not to change the functions

themselves at each point, but to shift and scale the velocity domain. This idea is

practical because 𝑣 and 𝜃, due to their definition as the mean and variance of 𝑓 ,

contain details of the support of 𝑓 . If the velocity domain is shifted by the mean

(𝜉 = 𝜉 − 𝑣) and scaled by the variance (𝜉 = 𝜉/
√
𝜃), then 𝑓(𝑡, 𝑥, 𝜉) will be normalized

in a sense. Distributions that could vary in width and location are now brought to
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the origin and scaled to have similar widths.

In fact, it is common for Galerkin methods in velocity space to shift and scale their

inputs by a constant characteristic velocity and temperature [49, 41]. Allowing the

rescaling parameters to change in space and time complicates the PDE and introduces

the question of how exactly should the parameters be determined. For example, [51]

uses a predictor-corrector method while [33] uses the asymptotic equations.

2.3 Moment Equations

Another way to address the computational burden of the velocity space discretiza-

tion is to avoid it entirely. As mentioned in Section 2.1.1, the Navier-Stokes equa-

tions can be derived from the Boltzmann equation using Chapman-Enskog theory. A

higher-order extension of the same theory results in the Burnett and Super-Burnett

equations. Unfortunately, these equations are in general not stable [79].

A more reliable approach stems from noticing that the continuum equations evolve

integrated quantities, the moments, of 𝑓 . In 1949, Grad derived the first moment

equations for nonequilibrium gas dynamics [39]. While influential, fundamental issues

with Grad’s equations limited their applicability for realistic problems for a long

time. This section explains Grad’s equations and their limitations. We then describe

methods that circumvent these limitations.

2.3.1 Grad’s Method

Grad’s method can be derived by expanding 𝑓 as

𝑓(𝑡, 𝑥, 𝜉) =
∞∑︁
𝛼=0

𝑓𝛼(𝑡, 𝑥)ℋ𝑣,𝜃
𝛼 (𝜉) (2.17)

where the basis functions are shifted and scaled Hermite polynomials:

ℋ𝑣,𝜃
𝛼 (𝜉) = 𝜃(𝑡, 𝑥)−𝛼/2𝐻𝑒𝛼

(︃
𝜉 − 𝑣(𝑡, 𝑥)√︀

𝜃(𝑡, 𝑥)

)︃
1√︀

2𝜋𝜃(𝑡, 𝑥)
exp

(︂
−|𝜉 − 𝑣(𝑡, 𝑥)|2

2𝜃(𝑡, 𝑥)

)︂
.
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Through this lens, Grad’s method can be seen as an adaptive spectral method in

velocity space, where the rescaling parameters are exactly the macroscopic moments,

rather than approximations.

This expansion is plugged into (2.1), which results in an unclosed system of equa-

tions. Orthogonality of the Hermite polynomials means that 𝑓0 = 𝜌 and the additional

use of exact 𝑣 and 𝜃 constrains 𝑓1 = 𝑓2 = 0. Grad’s closure is to set 𝑓𝛼 = 0 for 𝛼 ≥ 𝑁

for a fixed 𝑁 . Coefficients 𝑓𝛼 are then matched to form a system of equations. Fol-

lowing the notation of [9], Grad’s system can be written compactly by defining a

convective derivative d
d𝑡 = 𝜕𝑡 + 𝑣𝜕𝑥 and a term

ℱ𝛼 = 𝜕𝑥𝑓𝛼 + 𝑓𝛼−1𝜕𝑥𝑣 +
1

2
𝑓𝛼−2𝜕𝑥𝜃. (2.18)

Then the system can be written as

d𝑓𝛼
𝑑𝑡

+
d𝑣
d𝑡
𝑓𝛼−1 +

1

2

d𝜃
d𝑡
𝑓𝛼−2 + 𝜃ℱ𝛼−1 + (𝛼 + 1)ℱ𝛼+1

= −1 − 𝛿𝛼0
𝜏

𝑓𝛼 ; ∀𝛼 = 0, . . . 𝑁 − 1 (2.19)

where any 𝑓𝛼 with 𝛼 ≤ 0 or 𝛼 ≥ 𝑁 is set to 0.

2.3.2 Hyperbolicity

To understand the limited success of this system, we must define the concept of

hyperbolicity. Suppose a system of PDEs has the form

𝜕𝑢

𝜕𝑡
+ 𝐴(𝑢)

𝜕𝑢

𝜕𝑥
= 𝑆(𝑢). (2.20)

If the system can be written in conservative form for some flux function 𝐹 ,

𝜕𝑢

𝜕𝑡
+
𝜕𝐹 (𝑢)

𝜕𝑥
= 𝑆(𝑢) (2.21)

then 𝐴(𝑢) is the Jacobian of 𝐹 (𝑢).

This system is hyperbolic if the eigenvalues of 𝐴(𝑢) are real and 𝐴(𝑢) is diagonal-
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izable. The eigenvalues of 𝐴 are the characteristic speeds of propagation. Imaginary

characteristic speeds can result in unphysical behavior. Note that this definition does

not involve the source term.

The hyperbolicity issue is particularly potent for Grad’s equations. For 1 spatial

dimension, the characteristic polynomial for Grad’s system was shown to be

|𝜆𝐼 − 𝐴| = 𝜃
𝑁
2 𝐻𝑒𝑁

(︂
𝜆− 𝑣√

𝜃

)︂
− 𝑁 !

2𝜌

(︀
(𝜆− 𝑣)2 − 𝜃)𝑓𝑁−2 + 2(𝜆− 𝑣)𝑓𝑁−1

)︀
the roots of which are not guaranteed to be real. In 1D it has long been known Grad’s

method can fail for certain problems. In 3D however, there is no neighborhood around

the local equilibrium for which 𝐴(𝑢) is hyperbolic everywhere in that neighborhood

(specifically, an equilibrium Maxwellian 𝑢 lies on the boundary of the hyperbolicity

region rather than on the interior). This means in 3D that arbitrary perturbations

can make the system lose hyperbolicity [13].

2.3.3 Modern moment methods

While Grad’s method proved to be of limited practical use, significant work has gone

into finding similar equations that are more reliable for a wider range of problems.

Some models change the way in which 𝑓 is expanded. Examples include the

quadrature-based moment methods, which expands 𝑓 as a linear combination of delta

functions [35], and the maximum entropy methods which enforce that 𝑓 minimizes

an entropy functional at every point [61, 1].

Another approach is to use the same or similar bases as Grad and to add terms

to the equations that stabilize or regularize it. The regularized moment equations for

example add a stabilizing diffusive source term [74]. An advantage of these models is

that the added terms are directly related to physical quantities through constitutive

relations [79]. Therefore, the study of these equations can reveal insight into the

physics of a rarefied flow that might be otherwise obscured. The derivation of these

models is not straightforward, however, making them a challenge to apply to different

equations.
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2.3.4 Framework for Globally Hyperbolic Moment Methods

We focus on the globally hyperbolic equations first derived in [10] for 1D and [12]

for 3D. The Hyperbolic Moment Equations (HME) emphasize efficiency over the

interpretability of the regularized methods, but they can be derived through rigorous

frameworks that are easily extendable.

These methods use the same basis for 𝑓 as a Grad’s method but are constructed

to be hyperbolic. They were first derived as correction to Grad’s equations, with an

added term that forces the characteristic speeds to be real [10].

Hyperbolic Moment Equations

Later, these equations were rederived as approximations to the Boltzmann equation,

with an explicit procedure that we restate here. This approach was elucidated by the

development of alternate hyperbolic moment equations such as [59]. The procedure,

adopted from [11], is summarized as follows

1. Expand 𝑓 in the adaptive Hermite basis: 𝑓(𝑡, 𝑥, 𝜉) =
∑︀∞

𝛼=0 𝑓𝛼(𝑡, 𝑥)ℋ𝑣,𝜃
𝛼 (𝜉)

2. Evaluate 𝜕𝑓
𝜕𝑡
, 𝜕𝑓
𝜕𝑥

, and 𝐶(𝑓, 𝑓) and expand the results in the same basis (though

in general different choices of bases can be taken at each step).

3. Truncate the expansion of the terms from step 2 to a fixed 𝑁 .

4. Evaluate the expression 𝜉 𝜕𝑓
𝜕𝑥

and truncate the resulting series.

5. Insert the expressions for 𝜕𝑓
𝜕𝑡
, 𝜉 𝜕𝑓

𝜕𝑥
, and 𝐶(𝑓, 𝑓) into the Boltzmann equation and

match coefficients for each basis function.

The truncation in step 3 is emphasized because it turns out to actually be the step that

differs from Grad’s method and the step that ensures hyperbolicity. Every operation,

whether a derivative, multiplication, or the source term, must be treated in the same

way: expanded in a chosen basis and truncated. The issues in Grad’s method comes

from not truncating the expansion of 𝜕𝑓
𝜕𝑥

before multiplying it by the velocity. The
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system of equations ends up being the same as (2.19) with the ℱ𝛼+1 term in the last

equation removed:

d𝑓𝛼
d𝑡

+
d𝑣
d𝑡
𝑓𝛼−1 +

1

2

d𝜃
d𝑡
𝑓𝛼−2 + 𝜃ℱ𝛼−1 + (1 − 𝛿𝑁−1,𝛼)(𝛼 + 1)ℱ𝛼+1

= −1 − 𝛿𝛼0
𝜏

𝑓𝛼 ; ∀𝛼 = 0, . . . 𝑁 − 1. (2.22)

For numerical methods an equivalent conservative form is typically preferred; as such

it will be used in chapter 3. Still, this formulation is useful for analysis. Note that

using this form, it was recently proved in [63] that HME retains the correct asymptotic

Navier-Stokes limit.

It can be shown that the characteristic speeds for this system are the roots of

𝐻𝑒𝑁

(︁
𝜆−𝑣√

𝜃

)︁
, confirming that the roots are real and the system is hyperbolic.

Highest-Moment-Based Hyperbolic Moment Method

While this correction has increased the usability and versatility of hyperbolic moment

methods, there is a limit to their applicability.

The derivation repeatedly assumes that the infinite sum
∑︀

𝛼 𝑓𝛼ℋ𝛼 converges. As

pointed out in [16], this is not always a valid assumption. The series can diverge

when trying to represent the sum of two Maxwellians with a large enough difference

in temperature. A new moment method was recently proposed in [9] that avoids this

issue while keeping most of the structure of HME. It is termed the Highest-Moment-

Based Moment Method (HMBMM) due to a rescaling that instead of using 𝜃, uses

the 𝑁 − 1-th centered moment, Θ

Θ(𝑡, 𝑥) =

(︂
1

(𝑁 − 2)!!𝜌(𝑡, 𝑥)

∫︁
R
(𝜉 − 𝑣(𝑡, 𝑥))𝑁−1𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉

)︂2/(𝑁−1)

. (2.23)

The expressions are different for even and odd 𝑁 , since the 𝑁−1-th centered moment

of the equilibrium distribution is zero if 𝑁 is even. For simplicity we assume for

HMBMM that 𝑁 is always odd.

Now 𝑓 is expanded with basis functions ℋ𝑣,Θ. The choice of Θ guarantees that
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this expansion can converge to any linear combination of Maxwellian distributions.

The steps for deriving a hyperbolic system of equations can be repeated with this

basis, with many of the expressions being similar. For example, the characteristic

speeds are now the roots of 𝐻𝑒𝑁
(︁

𝜆−𝑣√
Θ

)︁
. The system of equations is

d𝑓𝛼
d𝑡

+
d𝑣
d𝑡

+
1

2

dΘ

d𝑡
𝑓𝛼−2 + Θℱ𝛼−1 + (1 − 𝛿𝑁−1,𝛼(𝛼 + 1)ℱ𝛼+1 (2.24a)

=
1

𝜏

[︃
1 + (−1)𝛼

2

𝑓0
𝛼!!

(︂
2𝑓2
𝑓0

)︂𝛼/2

− 𝑓𝛼

]︃
, ∀𝛼 = 0, 1, . . . 𝑁 − 1. (2.24b)

Note that while 𝑓1 is still constrained to equal 0, the use of Θ introduces a new

constraint on 𝑓𝑁−1 rather than 𝑓2:

𝑓𝑁−1 =
𝑁−3∑︁

𝛼=2; 𝛼 even

𝑓𝛼Θ(𝑁−1−𝛼)/2

(𝑁 − 1 − 𝛼)!!
. (2.25)

While the unknowns for HME are 𝑓0, 𝑣, 𝜃, 𝑓3, . . . 𝑓𝑁−1, the unknowns for HMBMM

are 𝑓0, 𝑣, 𝑓2, . . . , 𝑓𝑁−2,Θ.

It is not yet known whether this method preserves the Navier-Stokes asymptotics

in general, though [9] proved the Euler limit for 𝑁 = 5.

Projection-based Framework

Before describing our numerical implementation of these equations, we note that

they can also be described in a more general projection-based framework [11, 30].

For example, the truncations above can be explained as the projection into a finite

dimensional function space spanned by the adaptive Hermite polynomials [30].

While not necessary here as we use previously-derived methods, this enables the

systematic derivation of different hyperbolic models, both for the Boltzmann equation

with different bases [31, 57] and different equations entirely [60, 21, 55, 27].
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Chapter 3

Formulation of DG Methods for the

Boltzmann Equation

This chapter details the DG methods investigated in this thesis. The first method

directly solves for the velocity distribution function 𝑓 , using spectral collocation in

velocity space with implicit time stepping by means of a Jacobian-Free Newton–

Krylov (JFNK) method. The second method evolves the moments of the distribution

using the framework described in Section 2.3.4 through the use of a DG discretization

and explicit time integration.

3.1 Preliminaries

3.1.1 Notation

Let Ω ∈ R𝑑 be a domain with Lipschitz boundary 𝜕Ω ∈ R𝑑−1. A disjoint partition

of the domain is a triangulation 𝒯ℎ. Elements that partition the domain are denoted

𝐾 ∈ 𝒯ℎ and the boundary of each element is 𝜕𝐾.

We also define 𝒫𝑘(𝐷) to be the polynomials of at most order 𝑘 on the domain 𝐷

and 𝐿2(𝐷) as the space of square-integrable functions on 𝐷.

Common to all DG methods is the need to define a numerical flux. For an analytic

flux 𝐹 , the corresponding numerical flux will be denoted ̂︀𝐹 . The numerical flux
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depends on the solution on a face 𝐸 ∈ 𝜕𝐾 ∪ 𝜕Ω. Due the discontinuous nature of

the approximation spaces, the solution on 𝐸 is double valued. Then, for 𝑦(𝑥) on face

𝐸 of element 𝐾, we define 𝑦+(𝑥) to be the value on the interior of the element and

𝑦−(𝑥) to be the corresponding value in the neighbor element.

3.1.2 Approximation Spaces

We define the discontinuous approximation spaces

𝒲𝑘
ℎ = {𝑤 ∈ 𝐿2(𝒯ℎ) : 𝑤|𝑘 ∈ 𝒫𝑘(𝐾) , ∀𝐾 ∈ 𝒯ℎ} (3.1)

𝒱𝑘
ℎ = {𝑣 ∈ 𝐿2(𝒯ℎ) : 𝑣|𝑘 ∈ (𝒫𝑘(𝐾))𝑑, ∀𝐾 ∈ 𝒯ℎ}. (3.2)

We also require inner products on the triangulation and its boundaries:

(𝑎, 𝑏)𝒯ℎ =
∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

𝑎 · 𝑏 (3.3)

⟨𝑎, 𝑏⟩𝜕𝒯ℎ =
∑︁

𝜕𝐾∈𝜕𝒯ℎ

∫︁
𝜕𝐾

𝑎 · 𝑏 (3.4)

These approximation spaces and inner products will be used to derive semi-discrete

systems that depend on a continuous time derivative.

3.1.3 Time Integration

The two methods presented below use different strategies for time integration, but

both are advanced in time using the Runge-Kutta (RK) schemes [81]. The semi-

discrete systems can be cast in the form

𝑑𝑦

𝑑𝑡
= 𝑔(𝑡, 𝑦).

for an evolved quantity 𝑦 and function 𝑔. The time domain is split into discrete

times 𝑡0 = 𝑡1, 𝑡2, . . . , 𝑡𝐿−1, 𝑡𝐿 = 𝑡𝑓 and the approximation of 𝑦 at timestep ℓ is 𝑦ℓ. To
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advance from 𝑦ℓ to 𝑦ℓ+1 with 𝑡ℓ+1 − 𝑡ℓ = ∆𝑡, an 𝑠-stage RK method uses

𝑦ℓ+1 =𝑦ℓ +
𝑠∑︁

𝑖=1

𝑏𝑖𝑔(𝑡ℓ,𝑖, 𝑦ℓ,𝑖) (3.5a)

𝑦ℓ,𝑖 =𝑔

(︃
𝑡+ 𝑐𝑖∆𝑡, 𝑦

ℓ + ∆𝑡
𝑠∑︁

𝑗=1

𝑎𝑖,𝑗𝑦
ℓ,𝑗

)︃
, 𝑖, 𝑗 = 1, . . . 𝑠. (3.5b)

RK methods can be expressed compactly with Butcher tableaus

𝑎11 𝑎12 . . . 𝑎1𝑠 𝑐1

𝑎21 𝑎22 . . . 𝑎2𝑠 𝑐2
...

... . . .
...

...

𝑎𝑠1 𝑎𝑠2 . . . 𝑎𝑠𝑠 𝑐𝑠

𝑏1 𝑏2 . . . 𝑏𝑠

. (3.6)

If 𝑎𝑖𝑗 = 0 for 𝑖 < 𝑗 then the method is a Diagonally implicit Runge-Kutta (DIRK)

scheme. If 𝑎𝑖𝑗 = 0 for 𝑖 ≤ 𝑗, the method is an Explicit Runge-Kutta (ERK) method.

Explicit methods are usually less computationally expensive, but the time step

size is limited in the presence of small grid size or numerical stiffness. This restriction

is avoided in implict methods at the cost of requiring a nonlinear solve at each stage

[81]. This is particularly relevant for the Boltzmann equation, because as mentioned

in Section 2.2.1 the equation becomes stiff as 𝜏 → 0 [46].

3.2 Implicit DG for the Boltzmann-BGK Equation

This method approximates the velocity distribution function 𝑓 with a spectral collo-

cation method in velocity space. The velocity space is expanded with basis functions,

much like the Galerkin methods of Section 2.2.3. The particular choice of basis is

such that the Boltzmann equation needs to be solved only at discrete velocities called

collocation points, similar to the discrete velocity methods described in Section 2.2.2.

A collocation method was used in [38], but with different choices of collocation points,

bases, and numerical methods.
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3.2.1 Velocity Space Collocation

To approximate 𝑓 , we use continuous basis functions in the velocity domain, {𝜑𝑖(𝜉)}𝑁𝛼=1

where 𝜉 ∈ R𝑑. Specifically, 𝑓 evaluated at a velocity 𝜉* is approximated as

𝑓(𝑡,𝑥, 𝜉*) ≈
𝑁∑︁

𝛼=1

𝑓𝛼(𝑡,𝑥)𝜑𝛼(𝜉*) (3.7)

We also assume a given set of 𝑁 collocation points {𝜉𝛼}𝑁𝛼=1 such that 𝜑𝑖(𝜉𝛼) =

𝛿𝑖𝛼. This means that the coefficients of the expansion (3.7) are given by 𝑓𝛼(𝑡,𝑥) =

𝑓(𝑡,𝑥, 𝜉𝛼). The collocation method enforces the Boltzmann equation (2.1) at the

collocation points

𝜕𝑓𝛼(𝑡,𝑥)

𝜕𝑡
+ 𝜉𝛼 · ∇𝑥𝑓𝛼(𝑡,𝑥) − 1

𝜏
(ℳ(𝑓) − 𝑓𝛼(𝑡,𝑥)) = 0, 𝛼 = 1, . . . , 𝑁 (3.8)

where 𝑓 = (𝑓1, . . . 𝑓𝑁). Note that this system is coupled through the collision term,

particularly through the function ℳ(𝑓) from the BGK operator (2.13). Calculating

the local Maxwellian of 𝑓 , while local in space, requires evaluating integrals over all

velocity space to calculate the macroscopic moments by equations (2.5) - (2.7). With

the velocity space basis, the operations for the macroscopic moments can be evaluated

as ∫︁
R𝑑

𝜓(𝑐)𝑓(𝑡,𝑥, 𝜉) =
𝑁∑︁

𝛼=1

𝑓𝛼

∫︁
R𝑑

𝜓(𝜉)𝜑𝛼(𝜉)𝑑𝜉 =
𝑁∑︁

𝛼=1

𝑓𝛼𝑎𝛼. (3.9)

The integrals for the coefficients 𝑎𝛼 in (3.9) can be precomputed.

The velocity space basis can be any collection of spectral basis functions. Here we

use a tensorized basis similar to those developed for spectral element methods [66].

Minimum and maximum velocities are specified a-priori and the interval between

them is divided into elements. A piecewise polynomial basis is constructed with

Lagrange polynomials inerpolating at Chebyshev nodes within each element. The

higher dimensional basis is created by taking the tensor product of this 1D basis.
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3.2.2 Weak Form

The spectral collocation results in 𝑁 transport equations with a nonlinear source

term. The weak form of this system is as follows: for all 𝑓𝛼, find an approximation

𝑓𝛼,ℎ ∈ 𝒲𝑘
ℎ that satisfies

(︂
𝜕𝑓𝛼,ℎ
𝜕𝑡

, 𝑤

)︂
𝒯ℎ

− (𝜉𝛼𝑓𝛼,ℎ,∇𝑥𝑤)𝒯ℎ +
⟨

(𝜉𝛼 · 𝑛) ̂︀𝑓𝛼,ℎ, 𝑤⟩
𝜕𝒯ℎ

+

(︂
1

𝜏
(𝑓𝛼,ℎ −ℳ(𝑓ℎ)) , 𝑤

)︂
𝒯ℎ

= 0, 𝑡 ∈ (0, 𝑡𝑓 ], ∀𝑤 ∈ 𝒲𝑘
ℎ ,

(3.10)

where 𝑓ℎ = (𝑓1,ℎ, . . . 𝑓𝑁,ℎ) and

(𝜉𝑛 · 𝑛) ̂︀𝑓𝛼,ℎ(𝑡,𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜉𝛼 · 𝑛)𝑓𝑛,ℎ(𝑡,𝑥), if 𝜉𝛼 · 𝑛 ≥ 0

(𝜉𝛼 · 𝑛)𝑓−
𝑛,ℎ(𝑡,𝑥), if 𝜉𝛼 · 𝑛 < 0 and 𝐸 /∈ 𝜕Ω

(𝜉𝛼 · 𝑛)𝑓𝐷(𝑡,𝑥, 𝑐𝑛), if 𝜉𝛼 · 𝑛 < 0 and 𝐸 ∈ 𝜕Ω

(3.11)

for far-field boundary conditions 𝑓𝐷.

3.2.3 Solution Method and Preconditioning

Equation (3.10) is solved with DIRK time integration. Let 𝑓 ℓ
ℎ be 𝑓ℎ at timestep ℓ.

We assume that the same velocity space basis is used at every point in space, so that

𝑓 ℓ
ℎ ∈ R𝑁𝑀 where 𝑀 is the number of degrees in 𝒯ℎ. Then we can associate a residual

𝑟𝛼 that takes the same form for each equation in (3.10):

𝑟𝛼(𝑓 ℓ
ℎ) ≡ 𝐴𝛼𝑓

ℓ
𝛼,ℎ + 𝑔𝛼(𝑓 ℓ

ℎ) + 𝑏ℓ𝛼. (3.12)

The terms in the residual are associated with the inner products in (3.10): 𝐴𝛼 is

associated with bilinear terms, 𝑔𝛼 with the nonlinear part of the collision term, and

𝑏𝛼 with the linear terms due to the time discretization and boundary terms.

We define a vector of residuals 𝑟(𝑓 ℓ
ℎ) = (𝑟1(𝑓

ℓ
ℎ), 𝑟2(𝑓

ℓ
ℎ), . . . , 𝑟𝑁(𝑓 ℓ

ℎ)) ∈ R𝑁𝑀 . Sim-

ilarly we define 𝑔(𝑓 ℓ
ℎ) := (𝑔1(𝑓

ℓ
ℎ), 𝑔2(𝑓

ℓ
ℎ), . . . , 𝑔𝑁(𝑓 ℓ

ℎ)), 𝑏ℓ := (𝑏ℓ1, 𝑏
ℓ
2, . . . , 𝑏

ℓ
𝑁), and
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block diagonal matrix 𝐴 = diag(𝐴1,𝐴2, . . . ,𝐴𝑁). Each stage of the DIRK scheme

will require finding the roots of the following nonlinear system of equations

𝑟(𝑓 ℓ
ℎ) ≡ 𝐴𝑓 ℓ

ℎ + 𝑔(𝑓 ℓ
ℎ) − 𝑏ℓ = 0. (3.13)

Equation (3.13) is solved with Newton’s method. At iteration 𝑘 of Newton’s method,

the Newton step 𝛿𝑓 ℓ,𝑘
ℎ is determined by solving

(𝐴 + 𝐽 ℓ,𝑘) 𝛿𝑓 ℓ,𝑘
ℎ = −

(︁
𝐴𝑓 ℓ,𝑘

ℎ + 𝑔(𝑓 ℓ,𝑘
ℎ ) − 𝑏ℓ

)︁
. (3.14)

where 𝐽 ℓ,𝑘 is the Jacobian of 𝑔(𝑓 ℓ,𝑘
ℎ ). For the initial guess of each Newton iteration,

we take the solution from the previous timestep, 𝑓 ℓ−1
ℎ . The linear system (3.14), likely

too large to be solved with a direct method, is solved with preconditioned GMRES.

Computing the preconditioner

As a preconditioner, we use the inverse of 𝐴. Since 𝐴 is block diagonal, its inverse

is also block diagonal. The action of this preconditioner on a vector 𝑧 = (𝑧1, . . . ,𝑧𝑁)

requires the evaluation of 𝐴−1𝑧. Equivalently, we must solve 𝑁 linear systems of the

form

𝐴𝛼𝑦𝛼 = 𝑧𝛼, 𝛼 = 1, . . . , 𝑁. (3.15)

Recall that each 𝐴𝛼 corresponds to the bilinear terms in (3.10). The matrix-vector

multiplication in (3.15) is therefore equivalent to the following DG weak form

(𝛽𝑦𝛼,ℎ, 𝑤)𝒯ℎ − (𝜉𝛼𝑦𝛼,ℎ,∇𝑥𝑤)𝒯ℎ + ⟨(𝜉𝛼 · 𝑛)̂︀𝑦𝛼,ℎ, 𝑤⟩𝜕𝒯ℎ = (𝑧𝛼, 𝑤)𝒯ℎ , ∀𝑤 ∈ 𝒲𝑘
ℎ ,

(3.16a)

where 𝛽 is a constant arising from DIRK scheme and

(𝜉𝛼 · 𝑛)̂︀𝑦𝛼,ℎ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜉𝛼 · 𝑛)𝑦𝛼,ℎ, if 𝜉𝛼 · 𝑛 ≥ 0

(𝜉𝛼 · 𝑛)𝑦−𝛼,ℎ, if 𝜉𝛼 · 𝑛 < 0 and 𝐹 /∈ 𝜕Ωℎ

0 if 𝜉𝛼 · 𝑛 < 0 and 𝐹 ∈ 𝜕Ωℎ.

(3.16b)

36



Note that the boundary value is set to 0 since the boundary conditions in (3.12)

are contained in 𝑏ℓ𝛼. Due to the equivalency between (3.15) and (3.16), an efficient

solution of (3.16) will be an efficient application of the preconditioner.

To solve this, we make use of a sweeping technique, commonly used for neutron

transport [65]. We focus on the weak form in a single element 𝐾 ∈ 𝒯ℎ. Let 𝜕𝐾− =

{𝑥 ∈ 𝜕𝐾 : 𝜉𝛼 · 𝑛 < 0}. Then we can use (3.16b) to more explicitly write out the

boundary integral term in (3.16a) to get

(𝛽𝑦𝛼,ℎ, 𝑤)𝐾 − (𝜉𝛼𝑦𝛼,ℎ,∇𝑥𝑤)𝐾 + ⟨(𝜉𝛼 · 𝑛)𝑦𝛼,ℎ, 𝑤⟩𝜕𝐾∖𝜕𝐾−

= (𝑧𝛼, 𝑤)𝐾 −
⟨︀
(𝜉𝛼 · 𝑛)𝑦−𝛼,ℎ, 𝑤

⟩︀
𝜕𝐾− , ∀𝑤 ∈ 𝒲𝑘

ℎ ,

(3.17)

If the value of 𝑦−𝛼,ℎ is known, then we are able to solve for 𝑦𝛼,ℎ on element 𝐾.

To solve for 𝑦𝛼,ℎ on the whole domain, we first let 𝑆0 be the set of elements where

𝜕𝐾− ⊂ 𝜕Ω. For 𝐾 ∈ 𝑆0, (3.17) becomes

(𝛽𝑦𝛼,ℎ, 𝑤)𝐾 − (𝜉𝛼𝑦𝛼,ℎ,∇𝑥𝑤)𝐾 + ⟨(𝜉𝛼 · 𝑛)𝑦𝛼,ℎ, 𝑤⟩𝜕𝐾∖𝜕𝐾− = (𝑧𝛼, 𝑤)𝐾 , ∀𝑤 ∈ 𝒲𝑘
ℎ ,

(3.18)

so the solution on these elements can be computed without requiring information

from neighboring elements. Let 𝑆1 be the set of elements for which 𝜕𝐾− are also

faces on elements in 𝑆0. Once the solution in all of 𝑆0 is known, the solution in 𝑆1

can be calculated by (3.17). This process can be repeated throughout the domain,

sequentially sweeping from one set of elements to the next and solving for 𝑦𝛼,ℎ in

every element 𝐾.

Therefore, 𝑦𝛼 can be solved in an element-by-element fashion, providing an element-

by-element method for computing the action of a single block of the preconditioner.

To apply the entire preconditioner, this process must be applied for all collocation

points 𝜉𝛼, each corresponding to a different sweep through the domain. The pre-

conditioner can be applied in parallel, and since the collocation points are fixed, the

orderings of the elements and the inverse of each 𝐴𝛼 can be precomputed and stored.
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Jacobian-Free Newton Krylov method

After applying 𝐴−1, (3.14) becomes

(𝐼 + 𝐴−1𝐽 ℓ,𝑠) 𝛿𝑓 ℓ,𝑠
ℎ = −

(︁
𝑓 ℓ,𝑠
ℎ + 𝐴−1

(︁
𝑔(𝑓 ℓ,𝑠

ℎ ) − 𝑏ℓ
)︁)︁

. (3.19)

For GMRES, instead of storing (𝐼 + 𝐴−1𝐽 ℓ,𝑠) we need to know its application to a

vector:

(𝐼 + 𝐴−1𝐽 ℓ,𝑠)𝑦 = 𝑦 + 𝐴−1𝐽 ℓ,𝑠𝑦. (3.20)

The matrix 𝐽 ℓ,𝑠 is the Jacobian of 𝑔(𝑓 𝑙,𝑠
ℎ ), which can be approximated with a finite

difference

𝐽 ℓ,𝑠𝑦 =
𝜕𝑔(𝑓 ℓ,𝑠

ℎ )

𝜕𝑓ℎ

𝑦 ≈ 𝑔(𝑓 ℓ,𝑠
ℎ + 𝜖𝑦) − 𝑔(𝑓 ℓ,𝑠

ℎ )

𝜖
(3.21)

for small 𝜖 [53]. Accordingly, the matrix-vector application needed for GMRES is

approximated as

(𝐼 + 𝐴−1𝐽 ℓ,𝑠) 𝛿𝑓 ℓ,𝑠
ℎ ≈ 𝑦 +

1

𝜖
𝐴−1

(︁
𝑔(𝑓 ℓ,𝑠

ℎ + 𝜖𝑦) − 𝑔(𝑓 ℓ,𝑠
ℎ )
)︁
. (3.22)

Therefore we can compute the matrix-vector product needed for GMRES, allowing

us to iteratively solve for the Newton step in each iteration. This in turn allows the

solution of the nonlinear residual (3.13), which completes the definition of the spectral

collocation method.

3.3 DG for Hyperbolic Moment Equations

Efficiency concerns with the previous method spurred the investigation of using DG

for the globally hyperbolic moment equations introduced in Section 2.3.4. For this

section we assume 𝑑 = 1. In expressions that are applicable to both scaling by 𝜃

(HME) and scaling by Θ (HMBMM) we by default refer to the scaling parameters as

𝑣 and Θ, with the understanding that 𝜃 can be used interchangeably when needed.
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3.3.1 Conservative Form

The starting point for DG methods is a system of conservation laws involving a

flux function 𝐹 as in expression (2.21). Grad’s equations (2.19) can be written in

conservative form with the change of variables [72]

𝑀𝑖 =
1

𝑖!

∫︁
R
𝜉𝑖𝑓𝑑𝜉 (3.23)

which results in the equations1

𝑢 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑀0

𝑀1

...

𝑀𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎠ ; 𝐹 (𝑢) =

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑀1

2𝑀2

...

𝑁𝑀𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ ; 𝑆(𝑢) =
1

𝜏

⎛⎜⎜⎜⎜⎜⎜⎝

∫︀
R𝑑 𝜉

0(ℳ− 𝑓)𝑑𝜉∫︀
R𝑑 𝜉

1(ℳ− 𝑓)𝑑𝜉
...∫︀

R𝑑 𝜉
𝑁−1(ℳ− 𝑓)𝑑𝜉

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.24)

Recall that Grad’s system are not globally hyperbolic. According to the definition of

hyperbolicity in Section 2.3.2, this means the eigenvalues of the Jacobian of 𝐹 (𝑢) are

not guaranteed to be real.

While HME and HMBMM are globally hyperbolic, they cannot be written in the

conservative form of (2.21). The issue arises from the extra term (2.18) subtracted

in the last equations of (2.22) and (2.24)

ℱ𝑁 = 𝑓𝑁−1
𝜕𝑣

𝜕𝑥
+
𝑓𝑁−2

2

𝜕Θ

𝜕𝑥
(3.25)

These partial derivatives cannot be written as the antiderivative of a flux function.

While a nonconservative term can pose complications for standard methods, sacrific-

ing a conservative form for hyperbolicity is a worthy trade here due to the ease of

which the nonhyperbolic system can become unstable.

We use the approach used in [10, 58] which uses the same change of variables that

puts Grad’s equations in conservative form. Due to the similarity in the systems, the

1Note that some references including [58, 9] use a change of variables ̃︁𝑀𝑖 = 𝑖!𝑀𝑖. We found 𝑀𝑖

to be more numerically stable for large numbers of moments so the derivations will proceed with
this definition
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result is a system that is almost conservative; it consists of 𝑁 − 1 conservation laws

and one equation that cannot be written in conservative form

𝜕𝑢

𝜕𝑡
+
𝜕𝐹 (𝑢)

𝜕𝑥
−𝒩 (𝑢, 𝜕𝑥𝑢) = 𝑆(𝑢) ; 𝒩 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0
...

𝑁 (ℱ𝑁) .

⎞⎟⎟⎟⎟⎟⎟⎠ (3.26)

It is worth noting that ℱ𝑁 involves the coefficient 𝑓𝑁−1, which for HMBMM is the

constrained coefficient given by (2.25).

3.3.2 Non-conservative Product

Where our method departs from previous attempts is how the nonconservative prod-

uct is evaluated. Previous approaches have either approximated it with finite differ-

ences [14] or used Dal Maso-LeFloch-Murat (DLM) theory for a rigorous treatment

involving path-dependent Rankine–Hugoniot conditions [58].

Instead, we move the nonconservative product to the other side of the equation

and treat it as part of the source term, giving a modified soure term that depends on

𝑢 and its gradient

𝐿(𝑢, 𝜕𝑥𝑢) = 𝑆(𝑢) + 𝒩 (𝑢, 𝜕𝑥𝑢) (3.27)

This has been shown to provide satisfactory results for other equations, as long as

the derivative is treated in a consistent way in the weak form [62].

3.3.3 Weak Form

While one could directly take the derivative of 𝑢 by taking the gradient of the basis

functions, these functions are not differentiable at the edge between two elements.

Instead, we treat the derivatives in the way they typically are in DG methods, by
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adding an equation:

𝜕𝑢

𝜕𝑡
+
𝜕𝐹 (𝑢)

𝜕𝑥
= 𝐿(𝑢, 𝑞) (3.28a)

𝜕𝑢

𝜕𝑥
− 𝑞 = 0. (3.28b)

Then the DG method is defined by finding (𝑢ℎ, 𝑞ℎ) ∈ (𝒲𝑘
ℎ ,𝒱𝑘

ℎ) such that for all

(𝑤,𝑣) ∈ (𝒲𝑘
ℎ ,𝒱𝑘

ℎ) the following weak form is satisfied:

(︂
𝜕𝑢ℎ

𝜕𝑡
, 𝑤

)︂
𝒯ℎ

−
(︂
𝐹 (𝑢ℎ),

𝜕𝑤

𝜕𝑥

)︂
𝒯ℎ

+
⟨ ̂︀𝐹 (𝑢+

ℎ ,𝑢
−
ℎ ,𝑥), 𝑤

⟩
𝜕𝒯ℎ

= (𝐿(𝑢, 𝑞), 𝑤)𝒯ℎ (3.29a)

(𝑞ℎ,𝑣)𝒯ℎ +

(︂
𝑢ℎ,

𝜕𝑣

𝜕𝑥

)︂
𝒯ℎ

− ⟨̂︁𝑢ℎ,𝑣 · 𝑛⟩𝜕𝒯ℎ = 0 (3.29b)

with ̂︁𝑢ℎ = 𝑢−
ℎ and ̂︀𝐹 (𝑢+

ℎ ,𝑢
−
ℎ ) calculated with a local Lax-Friedrichs flux

̂︀𝐹 (𝑢+
ℎ ,𝑢

−
ℎ ,𝑥) =

1

2
(𝐹 (𝑢+

ℎ ) + 𝐹 (𝑢−
ℎ )) +

𝐶(𝑥)

2
(𝑢+

ℎ − 𝑢−
ℎ ) (3.30)

where 𝐶 is the maximum characteristic speed of the system at 𝑥.

3.3.4 Solution Method

Solving the weak form for 𝑢ℎ leads to the time dependent system

𝑑𝑢ℎ

𝑑𝑡
= 𝑅(𝑢ℎ, 𝑞ℎ) (3.31)

which is solved with explicit Runge-Kutta time stepping. At each stage in the RK

scheme, 𝑞ℎ is calculated by solving the linear system corresponding to (3.29b) and

then used in the evaluation of the inner products that make up (3.29a).

The stiffness concern mentioned in Section 3.1.3 is still relevant here, but due to

the untested nature of this approach, it was decided to focus on determining whether

this method was viable, rather than using an implicit method.
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Evaluation of primitive variables, fluxes, and source term

The components of 𝑢ℎ will be referred to as the conservative variables. The primitive

variables will refer to the unknown coefficients in the spectral expansion (2.17).

In order to calculate the residual in (3.31), it is necessary to have mappings be-

tween the primitive and conservative variables. Initial conditions are typically ex-

pressed in terms of the primitive variables, as are the final quantities of interest.

Furthermore, the primitve variables are used in the evaluation of the flux and source

terms.

Mapping from primitive to conservative variables can be calculated analytically

or numerically using the Hermite expansion:

∫︁
R
𝜉𝑖𝑓𝑑𝜉 =

∫︁
R
𝜉𝑖

𝑁−1∑︁
𝛼=0

𝑓𝛼(𝑡, 𝑥)ℋ𝑣,Θ
𝛼 (𝜉)𝑑𝜉 (3.32a)

=
𝑁−1∑︁
𝛼=0

𝑓𝛼(𝑡, 𝑥)

∫︁
R
𝜉𝑖𝐻𝑣,Θ

𝛼 (𝜉)𝑑𝜉. (3.32b)

The velocity space integral can be expanded and solved using a change of variables

𝑐 = (𝜉 − 𝑣)/Θ

∫︁
R
𝜉𝑖ℋ𝑣,Θ

𝛼 (𝜉)𝑑𝜉 = Θ−𝛼/2

∫︁
R
𝜉𝑖𝐻𝑒𝛼

(︂
𝜉 − 𝑣√

Θ

)︂
1√
2𝜋Θ

exp

(︂
−|𝜉 − 𝑣|2

2Θ

)︂
𝑑𝜉 (3.33a)

= Θ−𝛼/2

∫︁
R

(︁
𝑐
√

Θ + 𝑣
)︁𝑖
𝐻𝑒𝛼(𝑐)

1√
2𝜋

exp

(︂
−𝑐

2

2

)︂
𝑑𝑐 (3.33b)

which can be written out exactly using the binomial theorem or solved exactly using

Gauss-Hermite quadrature [20].

Going from the conservative to primitive variables is less straightforward. First

we need expressions for the scaling parameters 𝑣 and Θ:

𝑣 =
𝑀1

𝑀0

(3.34)
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Θ
𝑁−1

2 =
1

(𝑁 − 2)!!𝜌

∫︁
R
(𝜉 − 𝑣)𝑁−1𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉 (3.35a)

=
1

(𝑁 − 2)!!𝜌

∫︁
R

𝑁−1∑︁
𝑘=0

(︂
𝑁 − 1

𝑘

)︂
𝜉𝑘(−1)𝑁−1−𝑘𝑣𝑁−1−𝑘𝑓(𝑡, 𝑥, 𝜉)𝑑𝜉 (3.35b)

=
1

(𝑁 − 2)!!𝜌

𝑁−1∑︁
𝑘=0

(︂
𝑁 − 1

𝑘

)︂
(−1)𝑁−1−𝑘𝑣𝑁−1−𝑘𝑘!𝑀𝑘. (3.35c)

In particular for the 3rd centered moment used for rescaling in HME:

𝜃 =
1

𝜌

(︀
2𝑀2 − 2𝑣𝑀1 + 𝑣2𝑀0

)︀
(3.36a)

=
1

𝑀0

(︃
2𝑀2 − 2

𝑀2
1

𝑀0

+

(︂
𝑀1

𝑀0

)︂2

𝑀0

)︃
(3.36b)

=
2𝑀2

𝑀0

− 𝑣2. (3.36c)

The mapping from conservative to primitive variables is complete by using the ex-

pression derived in [15]:

𝑓𝛼 =
𝛼∑︁

𝑘=0

(−1)(𝛼−𝑘)𝐻𝑒𝛼−𝑘(𝑣/
√

Θ)

(𝛼− 𝑘)!
Θ(𝛼−𝑘

2 )𝑀𝑘. (3.37)

The numerical flux function involves known quantities𝑀1, . . . ,𝑀𝑁−1 and an unknown

𝑀𝑁 . To calculate 𝑀𝑁 we map from the known conservative values 𝑢ℎ to primitive

variables and use (3.32) and (3.33b). The primitive variables calculated for the flux

evaluation are reused for the source term evaluation. All source term components

contain ∫︁
R
𝜉𝑖(ℳ(𝑓) − 𝑓)𝑑𝜉 =

∫︁
R
𝜉𝑖ℳ(𝑓)𝑑𝜉 −𝑀𝑖 (3.38)

with the first integral exactly calculable with quadrature or analytically. To evaluate

the source term, it remains to calculate the nonconservative product (3.25).

For the nonconservative product now in the last component of the source term,

we need to evaluate 𝜕𝑥𝑣 and 𝜕𝑥𝜃 or 𝜕𝑥Θ, depending on the scaling used. We can
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assume we have access to the approximate solution 𝑢ℎ and the approximation to its

derivative 𝑞ℎ. Since we have expressions for 𝑣 (3.34), 𝜃 (3.36), and Θ (3.35), in terms

of the components of 𝑢ℎ, we can get expressions for their derivatives. Specifically,

these expressions are

𝜕𝑣

𝜕𝑥
=
𝑀0𝑞1 −𝑀1𝑞0

𝑀2
0

(3.39)

𝜕𝜃

𝜕𝑥
= 2

𝑀0𝑞2 −𝑀2𝑞0
𝑀2

0

− 2𝑣
𝜕𝑣

𝜕𝑥
(3.40)

𝜕Θ

𝜕𝑥
=

2

2(𝑁 − 1)(𝑁 !!)
Θ(3−𝑁)/2

(︃
𝐴𝑁−1 +

𝑁−2∑︁
𝑘=0

(𝐴𝐾 +𝐵𝑘)

)︃
(3.41)

with

𝐴𝑘 =
(𝑁 − 1)!

(𝑁 − 𝑘 − 1)!

(︂
(−𝑣)𝑁−1−𝑘𝑀0𝑞𝑘 −𝑀𝑘𝑞0

𝑀2
0

)︂
(3.42a)

𝐵𝑘 = − (𝑁 − 1)!

(𝑁 − 𝑘 − 2)!

(︂
(−𝑣)𝑁−2−𝑘𝑀𝑘

𝑀0

𝜕𝑣

𝜕𝑥

)︂
. (3.42b)

With the ability to evaluate 𝑅(𝑢ℎ, 𝑞ℎ), we can proceed by using the explicit Runge-

Kutta methods described in Section 3.1.3 to evolve the system in time.
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Chapter 4

Numerical Results

This chapter includes numerical results for both methods. The spectral collocation

method is tested on 1D and 2D problems and later used as a reference solution for the

DG moment methods. The DG moment methods have their convergence validated

and are demonstrated on a common shock tube problem in varying physical regimes.

4.1 Reference Implicit DG Solver

4.1.1 Smooth Problem

The first test case is adapted from [68] and is used here for demonstrating convergence.

The spatial and velocity domains are one-dimensional and the initial distribution is

smooth and varying in space:

𝑓(𝑥, 𝑣, 0) =
𝜌√
2𝜋𝑇

exp
(︂
−(𝑣 − 𝑢0(𝑥))2

2𝑇

)︂
, 𝑥 ∈ [−1, 1]

𝑢0(𝑥) =
1

10

(︀
exp

(︀
−
(︀
10𝑥− 1)2

)︀)︀
− 2exp

(︀
−
(︀
10𝑥+ 3)2

)︀)︀)︀
.

To measure convergence, we calculate a reference solution with 512 uniform ele-

ments in space and degree 4 basis functions. The velocity space uses a single element

with a degree 23 spectral and the solution is advanced until 𝑡 = 0.04 with an 𝐿-stable
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p Order 𝜌 v 𝜃
1 1.7033 1.7788 1.7477
2 3.0455 2.8105 3.0760
3 3.9621 3.7828 3.8997
4 4.9024 4.7915 4.8006

Table 4.1: Order 𝑝 + 1 rates of 𝐿2 convergence for reference implicit DG method on
smooth problem

DIRK(3,3) method. The very high order of the velocity space approximation is viable

with this specific choice of basis and is chosen so that the error in velocity space is

negligible. See Figure 4-1 and table 4.1.1 for 𝑝+ 1 order convergence.
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Figure 4-1: Convergence in moments for implicit DG method

4.1.2 2D Problem

This method was run on a number of other standard 1D benchmarks, but its flaws

weren’t apparent until a 2D problem was attempted. For 2D problems, it was found

that the sweeping preconditioner was not scaling well enough to be viable in its

current form. Relatively modest 2D problems, for example with around 902 and 502
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degrees of freedom in physical and velocity space respectively, were found to already

computationally expensive, with the sample in Figure 4-2 taking almost an hour on

64 processors on the MIT SuperCloud cluster using MPI parallelization [71]. With

the use of the BGK collision operator, this is just not competitive with other similar

solvers.

Figure 4-2: Macroscopic moments for a 2D Riemann problem using a 100x100 spatial
grid and degree 2 basis functions with a velocity space of 302 collocation points.

4.2 Hyperbolic Moment Models

4.2.1 Smooth Problem

We now use the moment models on the same smooth problem from Section 4.1.1.

Our method should perform well for this problem due to the spectral accuracy of the
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Hermite polynomial basis. Similarly, with a high order DG discretization in physical

space, we can use relatively few elements in space. While not too challenging of a

problem on its own, it allows us to validate our approach and measure its convergence.

The spectral collocation method is used as a reference solution.

To check that the approximation in velocity space is converging, we start with

a 4th-order spatial approximation with 300 elements and a small time step with

RK4 time stepping so that the errors in space and time are negligible. As shown in

Figure 4-3, the solutions coincide visually with just 5 basis functions. Increasing the

number of basis functions does not pollute the solution. In fact, Figure 4-4 shows

the absolute error of the moment method and the reference method decrease as more

basis functions are added. The case with 5 equations is already quite close to the

reference solution, and adding more equations improves the approximation.
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x
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N = 5

N = 7

N = 9

N = 11

Figure 4-3: Density for smooth initial conditions

To check spatial convergence, we set 𝑁 = 11 and compare HME and HMBMM

results against the reference solution. See Figure 4-5 for convergence plots of 𝜌, 𝑣,

and 𝜃 and table 4.2.1 for the rates. For 𝑝 = 3 and 𝑝 = 4 the error flattens out

somewhat for the finest meshes; at these small magnitudes (a squared 𝐿2 error of 1e-

13), the solution could be polluted by time-stepping or velocity-space approximation

error. Note that the errors for the two models are indistinguishable. This shows the

48



-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x

10
-8

10
-7

10
-6

10
-5

10
-4

|f
tr

u
e
 -

 f
N h

|

N = 5

N = 7

N = 9

N = 11

Figure 4-4: As the number of equations is increased, the maximum error decreases

approximation in velocity space is independent of scaling strategy as long as enough

basis functions are used.

p Order 𝜌 v 𝜃
1 1.7546 1.9058 1.7864
2 2.5173 2.5652 3.0055
3 3.9791 3.8694 3.8358
4 4.9112 4.9140 4.6546

Table 4.2: Rates of convergence for HMBMM show rates between 𝑝+ 1/2 and 𝑝+ 1.
Nearly identical rates are found for HME

4.2.2 Riemann Problem

The second example is a standard benchmark for moment methods. It is a Riemann

problem on the domain [-2,2] with states on either side of the origin:

𝑓(𝑥, 𝑣, 0) =

⎧⎪⎨⎪⎩
𝜌𝐿√
2𝜋𝜃𝐿

exp
(︁
− 𝑣2𝐿

2𝜃𝐿

)︁
, 𝑥 ∈ [−2, 0)

𝜌𝑅√
2𝜋𝜃𝑅

exp
(︁
− 𝑣2𝑅

2𝜃𝑅

)︁
, 𝑥 ∈ [0, 2]

(4.1)

with (𝜌𝐿, 𝑣𝐿, 𝜃𝐿) = (7, 0, 1) and (𝜌𝑅, 𝑣𝑅, 𝜃𝑅) = (1, 0, 1)
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Figure 4-5: Convergence in 𝐿2 norm for macroscopic quantities for the DG hyperbolic
moment models. HMBMM and HME results are indistinguishable

Discontinuities like this are a known challenge for DG. Usually the discontinuity

is handled with shock capturing of some form, for example with limiters or artificial

viscosity. For now, we sidestep this concern by replacing the discontinuity in the initial

condition with a fitted smooth function, in this case a hyperbolic tangent function.

Comparisons to results in the literature confirm that this does not have a discernable

effect on the final result.

These simple initial conditions can introduce significant nonequilibrium effects

depending on the relaxation time. For this reason we focus on the behavior of the

solution for different values of 𝜏 . For all examples below, the relaxation time 𝜏

is defined as Kn/𝜌 and is therefore a function of space. The results are shown at

𝑡 = 0.3.
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Figure 4-6: Kn=1e-4 results approximate approach the Euler solution

Fluid Regime

We begin close to the fluid regime, with Kn=5e-4. In this case, the rescaling should

be particularly effective. Figure 4-6 confirms this is the case. We see that 𝑁 = 5

and 𝑁 = 9 give similar results. This means that five basis functions in velocity space

is sufficient to capture the distributions that are expected to be near-Maxwellian

everywhere. Note that there are some slight oscillations around 𝑥 = 0.7, likely a

result of the sharp gradient in the solution.

One issue worth noting is the time step; as the Knudsen number decreases, the

source term becomes more stiff and a smaller time-step is required as mentioned in

Section 3.1.3.

Transitional Regime

For moderate nonequilibrium we increase the Knudsen number to 5e-2. We fix a

spatial discretization of 300 uniform elements and 𝑝 = 2 basis functions. See Figure

4-7 for examples with increasing 𝑁 . Now, the solution smooths out as we increase 𝑁 ,

with near identical results for 𝑁 = 9 and 𝑁 = 11, indicating convergence in velocity

space. The profile of the solution agrees with results in [58], which compares a few
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different moment methods, including HME.

As we increase the degree of nonequilibrium, the nonconservative product in the

last equation becomes more relevant. see Figure 4-8 for an example of its impact on

the final solution.
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Figure 4-7: Standard Riemann problem. As the number of equations is increased,
the solution smooths out

Kinetic Regime

Finally we increase Kn to 5e-1. Previous tests for this problem see unphysical sub-

shocks, which appear as a staircase-like pattern in front of the shock.

As noted in [9], the Θ-scaling of HMBMM will not resolve the subshock issue.

We can see in Figure 4-9 that both HME and HMBMM behave in similar ways. The

pattern and number of steps coincides with the number of basis functions, but the

locations and size of the subshocks differ. This is likely due to the fact that the two

52



-1 -0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
No conservative product

p

v

-1 -0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
With conservative product

Figure 4-8: Left is the solution with out the nonconservative product in the last
equation, right has it included. It has a small smoothing effect

methods have different characteristic speeds. This can be seen more clearly in Figure

4-10, which overlays HMBMM and HME results for 𝑁 = 13. Due to the hyperbolic

correction, we can increase the number of polynomials in velocity space. In theory,

we can increase 𝑁 arbitrarily, but in practice numerical difficulties can occur.

This is particularly the case for HMBMM. The definition of Θ leaves little room for

error. Despite greatly increasing the spatial and temporal resolution, using HMBMM

with 15 polynomials would regularly become unstable due to the appearance of a

negative Θ. At first, this seemed to be a failure of the handling of the nonconservative

term. While this could be the case, the implementation has the desired effect for HME

and appears to be correct for HMBMM with smaller 𝑁 . In fact, as 𝑁 increases, Θ

can become negative if the distribution 𝑓 is even slightly negative. See Figure 4-11 for

an example of this. At the same time, the HMBMM results are better quality than

the corresponding HME results. It seems that using Θ is a more effective scaling but

is much more sensitive. Therefore it appears to have stricter requirements on grid

and time-step size than the 𝜃 scaling of HME and the handling of discontinuities is

likely even more important than for HME.

Convergence in velocity space is very slow as shown in Figure 4-12. This is a known
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Figure 4-9: Gradual convergence for the discontinuous problem. HMBMM seems to
be of better quality, though there is a practical limit to how large 𝑁 can grow for it.
After 𝑁 = 13, we find it difficult to avoid negative Θ

issue and it has to do with the distribution function 𝑓 in this problem. Figure 4-13

compares the calculated distribution from HME to a reference distribution calculated

with the spectral collocation method with a very fine velocity space approximation.

The true solution approaches a discontinuous function and, as 𝑁 is increased, the

spectral approximation exhibits oscillations, a consequence of the Gibbs phenomenon.

An advantage of the moment methods is that they provide a rigorous framework for
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Figure 4-10: More direct comparison of the subshock patterns for HME and HMBMM.
While the general behavior is similar, the exact structure of the subshocks is notice-
ably different between the two methods.
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Figure 4-11: An example of the sensitivity of Θ for large 𝑁 . On the left is distribution
that appears in our simulation of the Riemann problem with Kn = 0.5. On the right
is the function 𝑔(𝜉) = (𝜉 − 𝑣)𝑁−1𝑓 for increasing values of 𝑁 . The distribution is
slightly negative (5e-6) at two regions; this slight negativity can lead to

∫︀
𝑔(𝜉)𝑑𝜉 being

negative for large enough 𝑁 . By (2.23), this leads to negative or imaginary Θ.

addressing this issue. These discontinuous distributions can occur in shock problems

and at solid boundaries with reflective boundary conditions, so it’s not a problem that
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Figure 4-12: Riemann problem using HME with very high 𝑁 . Despite the very high
order, convergence is slow
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Figure 4-13: 𝑓 at a fixed 𝑡* = 0.3 and 𝑥* = 0.1 for the Riemann problem with
Kn = 0.5. A reference 𝑓 , computed with the implicit DG method, has a steep jump
around the origin. Oscillations occur as we try to use higher order spectral bases,
slowing down the convergence in velocity space.

can be ignored. But it can be addressed with alternate basis functions like splines

[57] or methods like filtering that improve the convergence of spectral methods [29].
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These approaches will be important for a robust DG solution for hyperbolic mo-

ment equations and HMBMM in particular. First, high spatial accuracy is wasted if

the velocity space is underresolved. Second, the subshocks that appear in this case

can easily cause instabilities for DG. To avoid the oscillations that can be particularly

problematic for HMBMM, a careful treatment of discontinuous distributions is likely

essential.
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Chapter 5

Future directions

This thesis explored two novel DG methods for the Boltzmann equation. The first

method, a spectral collocation approach, aimed to combine the simplicity of having

equations corresponding to discrete velocities, with the flexibility and expressivity of

a spectral velocity space basis. Implicit time integration was used with an iterative

method and sweeping preconditioner. Examples were shown in 1D and 2D to inves-

tigate the method’s efficiency. The second approach used DG for globally hyperbolic

moment equations. The focus here was to validate that this method could work with

these equations, so it was tested on common 1D problems. This chapter focuses on

the ramifications of our results and promising directions for future research.

5.1 Spectral Collocation

While this particular method was validated and could conceivably be made viable for

slightly rarefied low speed flows, it was not successful enough to encourage further

development in its current form. In 2D, the preconditioner was found to be inefficient

and exhibited poor scalability. The nodal polynomial basis adds cost and complicates

extensions to reflective boundary conditions, while losing the benefits of fast spectral

methods for the full collision operator. An area where this approach could be effective

is to allow for adaptive basis functions, but this particular sweeping preconditioner

requires a uniform velocity space treatment everywhere. While the sweeping order
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could be recalculated to allow for adaptation in time, spatial adaptivity is not an

obvious extension.

Still, there is interest in developing high order solvers for the Boltzmann equation.

Our experience shows that success for realistic problems depends greatly on how the

velocity space is described. It should either be constructed to allow for efficient

collision operator evaluations [45, 76, 23] or adaptation to macroscopic features in

space and time [52, 77]. A spectral collocation method that can accomplish this, for

example with more deliberate choices of basis functions or the ability to vary the

collocation nodes across space and time, could be an effective method.

5.2 DG for Moment Models

Using DG for the hyperbolic moment equations seems promising enough to warrant

further investigation. The strategy of moving the nonconservative product to the

source term appears to successfully stabilize the system even for large numbers of

moments, in particular for HME. In addition to the obvious extensions to higher

dimensions and different test cases, future work should focus on improving efficiency

and robustness.

5.2.1 Future work

There are recent improvements to moment methods that could be implemented here,

like alternative basis choices [57, 40] and Asymptotic-Preserving schemes tailored to

these models that avoid the CFL restriction [56].

The locality inherent in the approximation spaces of DG allows for ℎ-𝑝 adaptivity,

where the mesh and polynomial order are adjusted to local solution features. This

would also make DG a natural method with which to implement moment- or 𝑚-

adaptivity, where the resolution in velocity space is adjusted based on a local measure

of nonequilibrium. This has been attempted with different moment models [2] and

HME with a first-order finite volume method [54]. This approach would allow for a

high-order adaptive method and could even accommodate ℎ-𝑝-𝑚 adaptivity.
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The biggest challenge for applying DG to moment methods appears to be robust-

ness in the presence of velocity-space underresolution. Discontinuous distributions can

occur in rarefied conditions with standard Riemann problems and reflective boundary

conditions. While the hyperbolic fix allows for an arbitrary number of velocity space

basis functions, there is a practical limit to how many can be used, especially in 2 or 3

dimensions. The unphysical subshocks that form as a result of the discontinuous dis-

tribution can lead to oscillations that are particularly problematic for the numerically

sensitive Θ scaling. Anything that can be done to mitigate this issue should be used

with a DG implementation. A promising approach is the use of spectral filters, as

proposed in [29]. The interpretation of these filters as artificial collisions could serve

as a guide for the construction of other artificial source terms, which have proven

successful with DG methods [67]. The artificial Knudsen number method used in [83]

could also be helpful.

A useful application of this method could be in a hybrid solver, like [34]. In this

method, Navier-Stokes and Boltzmann solvers are coupled. The moment methods

could be an effective bridge between these models. The globally hyperbolic moment

methods could be used in regimes of moderate nonequilibrium, reducing the use of an

expensive Boltzmann solver. At the same time, use of the method in regions where

unphysical subshocks might appear would be limited. This is another form of model

adaptivity abetted by using DG, where the fluid and kinetic regimes solve different

PDEs entirely. The fact that these methods are high-order in space would allow the

development of a uniformly high-order hybrid method.
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