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Abstract

This project aimed in the finite element modeling of a venebral body and in particular the
modeling of osteoporosis and of metastatic defects. The geometric considerations included
tapering, teardrop cross sectional geometry as well as biconcavity of the endplate. The
improvement in modeling by the utilization of more realistic property data derived by
regional QCT density measurements was also examined and evaluated. Osteoporosis was
modeled as a reduction in the mechanical properties of both cancellous and cortical bone.
The parametric study of the effects of a metastatic defect was done by defining two
parameters related to its position and size. The case in which both cancellous and cortical
bone were degenerated due to a metastatic defect was also considered.

The criteria with which results were examined and compared were nodal displacement,
principal stress and Von Mises stress. In particular, Von Mises stress was determined to be
the most important criteria, because of its capacity to describe the stress state at a point with
a scalar, non vectorial or tensorial, quantity. The results demonstrated that the utilization of
variable regional densities did not significantly change the mechanical behavior of the
model. The consideration of biconcavity, however, altered substantially the mechanical
behavior and was found to be necessary in order for an accurate model to be produced.
Osteoporosis was found to have relatively strong influence in causing peak displacements
to rise to values up to 67% and principal stresses up to 47%. For the metastatic defect case
size was found to be the most critical parameter (stresses were higher by 300% for a
doubling in the diameter of the spherical defect) but alsc location influenced the mechanical
behavior although no clear trend was found to correlate location and change in mechanical
behavior. Finally, the metastatic defect that penetrated the anterior cortex was found to also
strongly influence the mechanical behavior of the vertebral body, especially in the case of
non-uniform pressure loading in which peak principal stresses were elevated by 93%. The
critical regions where failure of the vertebral body would occur first were predicted to be
the contical shell regions directly below the endplate.
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Chapter !

INTRODUCTION

1.1 Spine and (steoporosis

The spine is the primary mean of the human body to support its weight and absorb
the stresses that are produced by the various loading conditions associated with its motion.
The spine is a column shaped structure consisting of 29 bones which are arranged as 7
cervical, 12 thoracic, 5 lumbar, and 5 sacrum (Fig. 1) (16]. Each of these "bean" shaped
bones is consisted of two areas of distinct properties: an outside hard cortical shell and a
porous inner core of cancellous bone(Fig. 2). These two distinct areas have also distinct

material properties.

Osteoporosis is a bone disease which is characterized by a loss of bone mass
primarily of cancellous bone where the trabeculae become thin and sparse [4] but also of
cortical bone. As a result the strength of the bone is reduced and there is an increased
susceptibility to fractures. Since the disease is progressive, the elderly have a much higher
risk of bone fracture due to osteoporosis. In particular postmenopausal osteoporosis in
elderly women is currently a public health problem [6]). Most frequently the fracture of the
spine due to spontaneous compressive loading occars much before the fracture of any other
bone, mainly because of the importance of the spine as a supportive structure due to the

large magnitude of loads that it supports.

Various treatments exist for osteoporosis such as estrogen replacement therapy . Most
of these have serious side effects. The assessment of osteoporosis is mainly done by non-
invasively determining the bone density. In such a way bone loss can be determined. Since
treatments for osteoporosis have serious side effects a method that would predict the risk of

fracture with oniy inputs the bone geometry and the bone densities would be of major
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importance. This method would permit a proper assessment of the severity of osteoporosis

and the utilization of an effective clinical treatment.

1.2 Quantitative Computed Tomography for the Diagnosis ¢f Osteoporosis

The measurement of bone density is usually performed by non invasive radiographic
techniques that accurately determine the mineral bone density. Quantitative Computed
Tomography utilizes a bone mineral calibration and has been shown to provide an accurate

measurement of spinal cancellous bone density. [7] [17]

1.3 The utilization of Finite Element Methods as a predictive tool

The development of theoretical models for the prediction of mechanical behavior of
structures has been largely based on finite element models. Bridges, support structures for
buildings and machine parts that support static and cy<-:1ic loads are designed by considering
finite element methods. These techniques usually require a mathematical expression of the
existing geometry and a digital computer for manipulating the input data and producing the

output information.

Finite element analysis has been utilized in other studies for the modeling of the in-
vivo stress conditions of bone. Knopf [10] developed a finite element model for predicting
the strength of a lumbar vertebral body under static compression. Hakim et al [8] who
conducted a three-dimensional finite element analysis of a vertebra, with static and dynamic
loading pattems, also verified his results experimentally. The same model was further
improved by Yang et al [19] by incorporating an adjacent vertebrae and the interconnecting
soft tissues. Shirazi et al [18] developed more detailed and technically complex models that
reflected the geometry and material properties of normal intact vertebrae based on

measurements of vertebral morphology and the material properties of bone and soft tissues.
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The above models describe geometry approximations and material properties that
vary significantly although most are taken from actual vertebral measureinents and testing
of bone and soft tissues. The modeling of osteoporosis was not generally considered in

previous studies.

1.4 Objectives

The project aimed in the modeling of the centrum of the vertebral body (L3)
including the effects of osteoporosis and of metastatic defects. This model could be utilized
to predict the static fracture risk in patients with only inputs the individual geometry and

bone density data obtained by QCT that can easily be translated into material property data.

Osteoporosis was modeled as a reduction in mechanical properties in both cortical
and cancellous bone. A metastatic defect was modeled as a sphere of low Young’s
modulus that corresponded to bone loss. This spherical volume was placed within the
canceilous bone where bone loss most commonly occurs. The contribution of the spherical
volume to the mechanical strength of the bone was examined as well as the effects of the
change of the location of the sphere within the bone. The metastatic cavity was further
placed in the anterior part of the vertebral body in order to model the case in which both
cortical and cancellous bone have been affected. A series of 27 models listed in Table 1

was examined examining the effects of variation of material properties and of the geometry.
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TABLE 1A : MODELS CREATED
T T T e T e s 10 11 12 13 1
Uniform Losdcase t m *.m ¥ M ¥ W ¥ ®w ¥ =
Peziphesrzal Loadcasa ® Y B ¥ KN ¥ H k 4 " b 4 ] R 4
Ecorticala$, oson/—" Yy ¥ ¥ ¥ Y Y Y Y b 4 Y ] - |
Ecancelloug=l§. SIIm?' Y Y N N K N H ). | ;] H ] - |
Varisble Ecancellocus n R b 4 Y b 4 b 4 Y Y b 4 b 4 b 4 ¥
focressed Bcort at the X H ¥ ¥ Y ¥ ¥ ¥ ¥ Y ¥ ¥
postericxr wall
Endplate Biconcavity M N X N M N X Y Y ¥ Y 4
30% Reduction in Ecanc N N K N N N N | Y Y Y Y
254 Reduction in Ecort N RN K H W N N ): § N N b 4 ¥

TABLE 1B : MODELS CREATED

Kodel § 13 16 17 18 20 21 22 2% 26 27 286 29 30 31 32
Unif.Loedcase ¥ Y Y N N Y RN ¥ N b 4 N K ®H N R
Periph.loadcsse N N N Y Y N Y N Y N Y N N N N
Bending Loadcase N N .| - | - | N | R H N N ¥ N ¥ N
Uneven Band.Loadc.N N N N N N N N N N N N Y N Y
l-ph.:c-lo.ou/m" Y N ¥ Y N N N W N N N N N N N
EspheremS.0M/m ® Y N N N N ¥ N N W K H ¥ W K
Espheres0.IN/ms~ ¥ ¥ Y N Y ¥ Y Y Y Y Y ¥ W N =¥
Parameter a=0.4 M K ® N N Y Y N N N N H ® ¥ R
Parameter b=0.25 N X N N N N WM Y ¥ N N R K N X
Parameter b=0.40 M N ¥ X N M N W K Y Y N H N H
Metastatic dafect ¥ N ¥ M N M N K N N W Y Y Y Y
at both corticanc

Emetast=0.1M/mm* M ® N N K N N K K N N WK N Y X




.13-

Chapter 2

METHODS

2.1 FINITE ELEMENT TOOL PROGRAMS

The strength analysis of the 27 models was performed by the program ADINA a
displacement-based element code. The input files for the ADINA program were created by
the use of the pre-processor FEMGEN and various pre-AGINA programs. The results were
presented and examined using the post-processor FEMVIEW. All programs were run on a
DEC VAX/VMS computer system available at the Orthopaedic Biomechanics Laboratory
at Beth Israel Hospital.

2.1.1 Material properties

The vertebral body consists of two types of bone: cortical and trabecular or
cancellous. Cortical bone is the hard bone that consists the shell and the endplate. The
inner part of the vertebral body is consisted by trabecular or cancellous bone that is spongy
and soft. In the finite element models used the bone was considered a standard engineering
isotropic material. It was characterized by two properties: the modulus of

elasticity(Young’s modulus,E) and the Poisson’s ratio(v).

2.2 Model Geometry

The geometry of an actual lumbar bone is shown in Fig. 3. In this study only the
vertebral body was modeled. Since two planes of symmetry can be assumed in a vertebral
body only 1/4 of the body was represented. Since in uniaxial compression most of the load

is carried by the vertebral body the elemeua< posterior to the pedicles were removed.
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2.2.1 Vertebral Tapering and "Teardrop" Cross Sectional Geomelry

The model developed was a quarter of the total vertebral bone and also included the
endplate. In actual vertebra the cross sectional area at the center of the bone is less that the

one at the endplate and this was taken into account by including tapering in the model.

Since the bodies of actual vertebrae are not exactly cylindrical the geometry produced
by the pn-procec;or FEMGEN had to be modified. The vertebral bodies have the greatest
cross-section at the endplate and taper towards the mid-plane. Also the cross sectional
geometry is not usually circular but teardrop shaped, often with jagged edges due to the

presence of osteophytes.

A program was used [10] (CHANGE 2) in the FORTRAN programming language
that changed the geometrical nodal coordinates that were produced by the pre-processor

FEMGEN.

The sides of the vertebral body were transformed from straight and vertical to inward
sloping curves which were approximated by a cosine function. The taper ratio was set to
0.8 . Also the cross sectional geometry was modified by recalculating the coordinates. The

approximation of a teardrop-shaped cross sectional area is as follows:
R;(9)=R {(0)[1+0.0063(cos¢-2cos2¢+cos3¢]

and was taken from equations originally presented by Broberg [5] to describe the
shape of the intervertebral disc. The constant R0=19.9 and 0.0063 were calculated by
inputing a saggital diameter of 44.98 and a posterior-anterior diameter of 34.7 as the final
dimensions [14] [15]. The height (half of the total height) was taken as 13.95
mm [14] [15]. Figure 4 shows the mesh of the SP2 FEMGEN model. Figures 5, 6 and 7
show the element groups within the vertet.ral body. The FEMGEN data file for model SP2
is included in the APPENDIX. Also the FORTRAN program CHANGE?2 is included in the
APPENDIX. [ Table 1, Models 3, 4, 5, 6, 7, 8]
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2.2.2 Endplate Biconcavity

In the models described so far (Models 3, 4, 5, 6, 7, 8 of Table 1) the endplate was
modeled as a flat plate with a Imm thickness. However, in reality the actual geometry of
the endplate is a biconcave one. A program CHANGE3 was written in FORTRAN that
improved the geometry. The endplate thickness is greater at the peripheral positions than at
the central ones. The ratio of minisnum to maximum thickness was taken as 0.87. [1] The
new model took into account all of these considerations and included the biconcavity of the
endplate. This produced a much more realistic geometry that would determine more

accurately the mechanical behavior of the vertebral body.

[ Table 1, Models 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

2.2.3 Modeling of metastatic defects, variation in the sphere diameter

Metastatic defects significantly alter the properties of certain areas of cancellous
bone. Metastatic regions are usually spherical and can vary significantly in dimensions and
properties. Initially, the spherical cavity that modeled metastatic defects, was placed in the

geometric center of the vertebral body.

The size of the spherical region that modeled the metastatic defect was varied. A
parameter o was defined as the ratio of the diameter of the sphere over the diameter of the
cancellous bone. Two different models were produced for parameter values of 0.21 and

0.40.

[Table 1, Models 21, 22, 23, 24]

2.2.4 Variation of metastatic sphere location

The location of the cavity was also varied. Two different models were produced in
which the location of the sphere had been moved radiaily outwards. The ratio of the

distance from the center of the sphere to the geometric center of the vertebral body over the
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radius of the cancellous bone was defined as the parameter  The parameter values for the

two models were 0.25 and 0.4 respectively.

[Table 1, Models 27,28]

2.2.5 The case of a " prismatic" defect that penetrates anterior cortex

Both cortical and cancellous bone can be affected by metastatic defects. In
particular, there is the possibility that a defect could penetrate the anterior cortex,
influencing the properties of both cortical and cancellous bone. A model was created in
order to represent this case. The prismatic cavity was positioned at the anterior middle part

of the vertebral body.(See figure 8 for location of the metastatic defect)

[Table 1, Models 29, 30]

2.3 Material properties

2.3.1 Homogeneous cancellous and cortical bone

The material properties in the basic model were for the cortical bone E=5030 N/mm?

o
and for the cancellous bone E = 16.5 N/mm?2, poisson’s ratio was taken as 0.2 for both
cortical and cancellous bone. [13]1[9] [10] The material was considered an isotropic

standard engineering material.

[Table 1, Models 3, 4]

2.3.2 Variation in the material properties of the cancellous bone

Cancellous bone density is not necés'sari]y uniform throughout the bone. Regional
density values were recently obtained from the Departiment of Diagnostic Radiology, Henry
Ford Hospital, Detroit (personal communication) that led to an improved finite element

model. Specifically, the correlation of the densities for the various parts of the cancellous
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bone were converted to regional values for the Young’s modulus by raising the density
value to the 1.2 power [11][12]. The models produced had twelve regions of different
mechanical properties for the cancellous bone as compared to one of the basic model.

Figure 9 shows the twelve regions for which distinct mechanical properties were assigned.

[Table 1, Models 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

2.3.3 Strengthening of the cortical bone in the middle portion of the posterior wall

Like cancellous bone, cortical bone density is not uniform throughout the cortical
shell. In particular, the middle portion of the posterior wall is sironger than the rest of the
shell. An improved modei that considered the variation of properties within the cortical
shell was produced. The strengthening effect of the posterior wall was modeled as an
increase by 20% in Young’s modulus. The Young’s modulus for this part of the shell was

taken as 6036 N/mm?2.

[Table 1, Models 7, 8, 9, 10, 11, 12, 13, 14}

2.3.4 Modeling of the effects of osteoporosis on cancellous bone

As a result of osteoporosis cancellous bone appears to be weakened. In order for
osteoporosis to be represented a model was produced that included a reduction by 50% in
the strength of the cancellous bone. That reduction was performed in all regions of the

cancellous bone.

[Table 1, Models 11, 12, 13, 14]

2.3.5 Modeling of the effect of osteoporosis on cortical bone

Osteoporosis also affects cortical bone. In particular osteoporotic cortical bone
appears to be thinner and consequently weaker. The modeling of the weakening of the

cortical bone was done by reducing the Young’s modulus by 25% in all regions.
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[Table 1, Models 13, 14]

2.3.6 Material properties for models with a spherical metastatic defect

Three different models were produced that differed in the Young’s modulus value
that was assigned to the cavity. The three different values were 10N/mm2, 5SN/mm? and
0.IN/mm?. The last value was assigned to the model that represented the case of having

total loss of the cancellous bone as a metastatic effect.

[Table 1, Models 15, 18, 16, 19, 17, 20]

2.4 Loading conditions

2.4.1 Uniformly distributed loading on the whole of the top surface

The models that were assumed to be in uniaxial compression uniformly distributed
along the endplate surface were subjected to a pressure of 1.24N/mm?, corresponding to a
weight loading of 868 N associated with loading present in normal activities, such as lifting

and changes in position [13].

[Table 1, Models 3, 5,7, 9, 11, 13, 15, 16, 17, 21, 23, 25, 27]

2.4.2 Peripherally Distributed loading

The models that were assumed to be under peripherally loading conditions were
subjected to a pressure of 1.96N/mm? along the three outer layers of elements of the

endplate surface(See figure 10).

[Table 1, Models 4, 6, 8, 10, 12, 14, 18, 19, 20, 22, 24, 26, 28]



«

-26-
2.4.3 Uniformly Distributed Loading corresponding to bending forward by 20°

The higher than norinal pressure of 1.85 N/mm?2 was corresponding to the pressure
exerted on the vertebral body at the 20° bending case [2], [3]. [Table 1, Model 29, 31]

2.4.4 Unevenly Distributed Loading, with maximum at the anterior part of the

vertebral body

The pressures were unevenly distributed on the top surface at four different regions.
Figure 11 shows these regions and the corresponding pressure values for each region.

These values were taken from Horst et al [3].

[Table 1, Model 30, 32]
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Chapter 3

RESULTS

Using the post-processor FEMVIEW the following data were obtained:

¢ Displacements
® Von-Mises Stresses
o Principal Stresses
In order for quantitative corparisons to be made, certain nodes had to be isolated and
examined with respect to t} ¢ above data. These nodes were selecied by global examination

of the maximums and minimums for the above criteria.

Numerical data were collected and presented in tables. Also various plots of
principal stress, Von Mises stress and displacement were collected by using the post-

processor FEMVIEW.

There were nine comparison cases for which, in order for conclusions to be reached

certain models were isolated and compared.

In addition to the numerical results, there were also graphs produced that
qualitatively described the disptacement, principal stress and Von Mises stress fields
throughout the vertebral body. Figure 12 shows the displacement field for model 3. Also
Figure 13 shows the principal stress field (P3) for the same model (Contour graph in 3
levels). Figure 14 shows the principal stresses in vectorial representation. Also Figure 15

shows the Von Mises stress field in 3 contours.



mmmmm

ooooo

nnnnn
......

s X &
Tl

Mz  .
el 72 ;
ok Lo ,/' ...:V‘. :

Nlneug?‘
nnnnnnn




31

I 2= mrH € THACK ¥Ood
$°SI- wvw
Zs'g- ag

$Z°1- =23 u¢
£0°9 XWH

CIEXId €d SSTELS TVdIONINd ° €1 FTANOIA

¥

13 3
Y
883418 IVAIDEIESE
A £







wwwww
.....
mmmmm

ﬂﬂﬂﬂﬂ

uuuuu
ﬁﬁﬁﬁﬁ




-34-

3.1 NORMAL CASE

3.1.1 Examination of the effects ¢f variable regional E cancellous

For this comparison, models 3&5 were studied for the uniformly distributed pressure
case and models 4&6 for the peripherally distributed pressure case. The data obtained as
well as the calculated percentage changes are presented in Table 2. Nodes 1390 and 397,
where maximum displacement occured, are located at the top surface of the endplate. Peak
values for principal stresses were obtained at nodes 2607 and 4 which are located at the
cortical shell directly below the endplate. Finally, peak values for Von Mises were
obtained at nodes 2145 & 2187 which are both located on the upper surface of the endplate.

UNIFORMLY DISTR.PRESS PERIPHERALLY DIS.PRES

Nodes Model 3 Model 5 % Model 4 Model 6 %

Displ. 1390 0.449 0.456 +1.6 - - -
[mm] 397 - - - 0.188 0.19C +1.1
Princ. 2607 -23.1 -23.4 +1.3 - - -
Strass 4 = - - -25.2 -25.4 +0.8
P3

[N/mof ]

at the 1 -19.7 -19.8 0.5 - - -
endplate 3 - - - -24.8 =-24.9 +0.4
[N/mnt ]

Yon

Misas 2145 39.6 39.9 +0.8 - - -
Stress 2187 - - - 51.7 51.8 +0.2
[N/me? ]

TABLE 2:EFFECTS OF VARIABLE Ecancellous
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3.1.2 Examination of the effect of the increase in E cortical in the posterior wail

Models 5&7 were examined for the uniformly distributed pressure case and models
6&8 for the peripherally distributed pressure one. The data are presented in Table 3.
Nodes 1390 and 397, where maximum displacement occured, are located at the top surface
of the endplate. Peak values for principal stresses were obtained at nodes 2607 and 4 which
are located at the cortical shell directly below the endplate. Finally, peak values for Von
Mises were obtained at nodes 2145 & 2187 which are both located on the upper surface of

the endplate.

UNIFORMLY DISTR.PRESS PERIPHERALLY DIS.PRES

Nodes Model 5 Model 7 % Modael 6 Model 8 %

Displ. 1390 0.456 0.456 +0.00 - - -
[mm] 397 - - - 0.190 0.190 +0.00
Princ. 2607 -23.4 -23.4 +0.00 - - -
Stress 4 - - - -25.4 -25.4 +0.00
P3

[N/mm” ]

at the 1 ~-19.8 -19.8 +0.00 - - -
endplate 3 - - - -24.9 -24.9 +0.00
[N/mm" ]

Von

Mises 2145 39.9 39.9 +0.00 - - -
Stress 2187 - - - 51.8 51.8 +0.00
[N/mm”]

TABLE 3:EFFECT OF STRENGTHENING MIDDLE POSTERIOR WALL



3.1.3 Effect of Biconcavity

Models 7&9 were examined for the uniformly distributed pressure case and models
8&10 for the peripherally distributed pressure one.
maximum displacement occured, are located at the top surface of the endplate. Peak values
for principal stresses were obtained at nodes 2607, 4 and 5 which are located at the cortical
shell directly below the endplate. Finally, peak values for Von Mises were obtained at
nodes 2145, 2187 and 646 which are all located on the upper surface of the endplate. This

data are presented in Table 4

2607

Prinec.
Stress
P3
[N/mm’ ]
at the
endplate
[N/mm* ]

von
Mises
Stress
[N/mm® ]

UNIFORMLY DISTR.PRESS

Model 7 Model © %
0.456 0.420 -7.9 -
397 - - - 0.190

-23.4 -18.5 -20.9 -

4 - - - -25.4
5 - -21.1 - -
1 -19.8 -8.9 -54.7 -

3 - -16.4 - -24.9
2145 39.9 33.9 -15.1 -
2187 - - - 51.8
646 - 34.4 - -

TABLE 4: EFFECT OF BICONCAVITY

Model 8 Modelld

0.202
0.203

Nodes 1390, 397 and 396, where

PERIPHERALLY DIS.PRES

%
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3.2 OSTEOPOROTIC BONE

3.2.1 Pathology, effect of reduction in E cancellous by 50%

Models 9&11 were examined for the uniformly distributed pressure case and models

10&:12 for the peripherally distributed pressure one.

Nodes 1390, 396, 397 and 1151 where maximum displacement occured, are located
at the top surface of the endplate. Peak values for principal stresses were obtained at nodes
2607, 4, 5 and 431 which are located at the cortical shell directly below the endplate.
Finally, peak values for Von Mises were obtained at nodes 2145, 2187, 646 and 2680 which
are all located on the upper surface of the endplate.

The data are presented in Table 5.
UNIFORMLY DISTR.PRESS PERIPHERALLY DIS.PRES

Nodas Model 9 Model 11 % Model 10 Model 12 &

Displ. 1390 0.420 0.704 +67.6 - - -
[mm] 397 - - - 0.202 0.314 +55.5
396 - 0.203 0.313 +54.2
1151 - 0.708 - - - -
Prinec. 2807 -18.5 - - - - -
Stress 4 - - - -24.2 - -
P3 5 -21.1 -31.1 +47.4 - -31.0 -
[N/mm"] 431 - -32.5 - - - -
at the 1 -8.97 - - - - -
endplate 3 -16.4 -20.5 +25.0 -23.0 =-26.4 +14.8
[N/mm®] 1284 - -25.6 - - - -
Von 2145 33.9 - - - - -
Mises 2187 - - - 52.2 57.0 +9.20
Strass 646 34.4 43.3 +25.9 - - -
[N/mm>] 2680 - 57.1 - - - -

TABLE 5: EFFECT OF REDUCTION IN Ecancellous
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3.2.2 Pathology, effect of reduction in E cortical by 25%

Models 11&13 were examined for the uniformly distributed pressure case and

models 12814 for the peripherally distributed pressure one.

Nodes 1390, 397, 396 and 1151 wheire maximum displacement occured, are located
at the top surface of the endplate. Peak values for principal stresses were obtained at nodes
431 and 5 which are located at the cortical shell directly below the endplate. Finaliy, peak
values for Von Mises were obtained at nodes 2680, 2187 and 646 which are all located on

the endplate.

The data are presented in Table 6.

UNIFORMLY DISTR.PRESS PERIPHERALLY DIS.PRES

Nodes Model 11 Model 13 % Model 12 Model 14 %

Displ. 1390 0.704 - - - - -
[mm] 397 - - - 0.314 0.353 +12.4
396 0.313
1151 0.708 0.768 +8.47 - - -
Prinec. 5 -31.1 -31.0 -28.0 +9.68
Straess 431 -32.5 -27.3 -16.0 - - -
P3
[N/mm” ]
at the 3 - -18.7 - -26.4 -25.0 -5.3
endplate
[N/mm" ]
Von 2187 - - -~ 57.0 55.1 -3.33
Migas 646 43.3 - - - - -
Stress 2680 57.1 45.4 -20.5 - - -
[N/mm’ ]

TABLE 6: EFFECT OF REDUCTION IN Ecortical
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3.3 METASTATIC DEFECTS

3.3.1 Pathology, effect of the spherical metastatic defect

Models 9, 15, 16, 17 were examined for the uniformly distributed pressure case and
models 10, 18, 20 for the peripherally distributed pressure one. The data are presented in
Table 7 and 8. Three graphs were also produced that plotted displacement, principal stress
P3 and Von Mises stress versus E cancellous for the spherical cavity. These graphs appear
in Figures 16, 17, 18.

UNIFORMLY DISTRIBUTED PRESSURE

Nodes Model 9 Model 15 Model 16 Model 17

Displ 1390 0.420

[mm] 1136 0.174 0.221 0.320
1154 0.425 0.433 0.448

Princ. 2607 -18.5 - - -

Stress 5 - -21.2 -21.3 -21.5

P3

[N/ma” ]

at the 1130 - -6.7 -5.1 -0.7

endplate 3 -16.4 - - -

[N/mm” ]

Von 2145 33.9 - - -

Mises 1130 - 6.5 5.1 3.9

Stress 646 - 34.4 34.3 34.3

(N/mm® ]

TABLE 7:VARIATION IN Esphere (UNIFORM LOADCASE)
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PERIPHERALLY DISTRIBUTED PRESSURE

Nodes Model 10 Model 18 Model 20

Prine. 4 -24.2 -24.2 -24.3

Von 2187 52.2 52.3 52.3
Mises

Stress

[N/mm" ]

TABLE 8:VARIATION IN Esphera (PERIPHERAL LOADCRASE)
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3.3.2 Effect of variation in the metastatic sphere diameter

Models 21&9 were examined for the uniformly distributed pressure case and models

22&10 for the peripheraly distributed pressure case. The data are presented in Table 9.

UNIFORMLY DISTR.PRESS PERIPHERALLY DIS.PRES

Nodes Model 9 Model 21 Model 10 Modasl 22

Displ. 1390 0.42 - - -
[mm] 396 - - 0.20 -

848 - 2.2 - -
% change +433 %
Princ. 2607 ~18.5 - - -
Stresa 4 - - -24.2 -
P3 2433 - -74.1 - -
[N/mm” ]
% change +301 %
Von 2187 - - 52.2 -
Migsee 646 34.4
Stress 184 - 184.0 -
[80/ma? }
% change +435 %

TABLE 9: VARIATION OF PARAMETER a
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3.3.3 Effect of the metastatic sphere location

Models 9, 25 and 27 were examined for the uniformly distributed pressure case. The

data are presented in Table 10. Figure 19 shows the variation of maximum principal

stresses with the parameter f.

UNIFORMLY DISTRIBUTED PRESSURE

Model S

b=0.0

Model 25

b=0.21

Modal 27

b=0.4

[mm] 880
1936
% change
Princ. 5
Stress 13
P3 2627
[N/mm" )
% change
Von 646

Mises 207
81:!’.‘0'{ 2690
[N/mm™ ]

% change

TABLE 10: VARIATION OF PARAMETER b



3.3.4 Effect of the prismatic defect

Models 29&31 were examined for the uniformly distributed pressure case and

models 30&32 for the uneven distributed pressure case. The data are presented in Table 11.

UNIF. DISTR.PRESS. UNEVEN DISTR.PRESS

Nodes Mod 29 Mod 31 Mod 30 Mod 32
Disp. 398 1.1 1.4 1.2 1.5
[mm] 257 - 1.7 - 1.9
% change +50 % +83 %
Pzinec. 21 -21.3 -26.2
Stress 23 -33.7 -40.8
P3
[N/zm" ]
% change +58 % +91 %
Yon 634 32.5 32.5
Mises 132 44.43 58.3
Stress
[N/mm™)
% change +36 % +79 %

TABLE 11: PRISMATIC DEFECT CASE vs. NORNAL CASE
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Chapter 4

DISCUSSION

4.1 NORMAL CASE

In interpreting the results, three criteria were utilized, nodal displacement, principal
stress in the P3 direction and Von Mises effective stress. Von Mises stress was determined
to be the most useful of the criteria, mainly because it represents the stress condition of a
point in the vertebral body by taking into account all normal and shear stresses but

presenting them in a scalar rather than a tensorial form.

The utilization of variable cancellous bone density depending on the region did not
have a strong effect in the displacements and stresses generated. There was a 1-2%
increase in maximum displacement and a2 0.2-1.3% increase in maximum stresses.
Consequently, the simplified model with constant E cancellous proved to accurately
describe the mechanical behavior of the vertebral body.(See Table 2) In this study the
models that were utilized for the strength analysis of the vertebral body for the pathological
case of metastatic defects did not include variable E cancellous since the simplified model

was proved to be sufficient.

The increase in E cortical in the posterior wall had a very insignificant effect on the
displacements and stresses throughout the vertebral body. There was a slight increcase in
the associated stresses in the middle posterior wall (as well as a decrease in displacements)
but the maximum stresses were much higher than the ones in the middle posterior wall and
remained unchanged. Therefore, the effects were located only within the middie posterior
wall and were accompanied by a decrease in regional stresses in the cancellous bone

elements which were attached to the middle posterior cortical wall. (See Table 3)
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The improvement in the geometric description of the vertebral body that included
biconcavity of the endplate, had different effects depending on the loading case. In the
uniformly distributed case maximum displacement was lower, principal stresses were much
lower and Von Mises stresses were also reduced but to a lower extent. In the peripherally
distributed case the peak displacements appeared to be higher, the principal stresses were
lower and the Von Mises stresses were affected by very little. The displacement changes
ranged from -8% to +6%, while the principal stress changes from -5% to -55%. The Von
Mises stress changes ranged from 1% to 52%. Hence, it is concluded that the incorporation
of biconcavity into the geometry of the model significantly influenced the stresses and
displacements and was therefore necessary in order to accurately model the mechanical
behavior of the vertebral body. It was therefore included in all of the subsequently

produced models. (See Table 4)

4.2 PATHOLOGICAL CASE: OSTEOPOROSIS

In the pathological case in which due to osteoporosis we have a reduction in
mechanical properties by 50% the effects were dramatic. The effects were most noticeable
in the uniformly distributed case for which there was a 67.6% increase in maximum
displacement, a 47.4% increase in maximum stress and a 25.9% increase in Von Mises
stresses. Also in the peripherally distributed case the effects were strong but due to the
reason that the pressure load is mainly sustained by the outer layers of elements, the
resulting percentage changes were not as dramatic as in the uniformly distributed case.

(See Table 5)

Examining the effect of osteoporosis on cortical bone, mainly what was modeled as a
reduction in mechanical properties by 25% it was concluded that it has serious
consequences in the resulting displacements and stresses. As anticipated, the displacement

increases were larger for the peripherally distributed pressure case. Also the stresses were
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lower at the cortical shell but significantly higher at the cancellous bone regions. The
maximum value for principal stresses was decreased by 16 % for the uniform loading case
and increased by 10 % in the peripheral loading case. The corresponding maximum
displacements were increased by 9 and 12 % for the respective loading cases.(See Table 6)

4.3 PATHOLOGICAL CASE : METASTATIC DEFECTS

By examining Figures 17 it can be concluded that the maximum principal stress
increases with decreasing E sphere and also that this increase is is minimized as the E
values approach zero. Von Mises stresses are relatively constant with variable E sphere for
both loading conditions. Also, the maximum displacement is kept relatively unchanged
with decreasing E sphere for both loading conditions as well. Hence, the effect of a
metastatic effect in the geometric center of the vertebral body is not major, as long as its

dimensions are small.

The effects of increasing the metastatic sphere diameter were of major importance to
the mechanical behavior of the vertebral body. The parameter o was varied from 0.21 to
0.40. The almost doubling of the sphere diameter gave rise to as much as 433% to the peak
displacement and of 300% to principal stresses as well as 435 % to Von Mises stresses.
Therefore, the size of the spherical cavity was the most important factor in influencing the

strength of the vertebral body.

The change in location of the metastatic sphere showed no specific trend in terms of
correlating the parameter B with the observed change in displacements and stresses.
Specifically, maximum displacement decreased as the sphere moved radially outwards but
increased as it further approached the cortical shell. Maximum principal stresses increased
by as much as 89% for B=0.25 but then were reduced to only 10% of the original value for
B=0.40. Maximum Von Mises stresses also exhibited similar behavior by reaching 130%
of the original value for =0.25 and dropping to 63% for P=0.4. The increase in the
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observed stresses can be qualitatively attributed to the non-symmetrical geometry that gives
rise to the stresses in the cortical shell closer to the defect. However, the effect should have

been amplified for B=0.4, instead it showed a significant decrease.

The prismatic defect that penetrated the anterior cortex was also of significant
importance in developing higher stresses and displacements. The effects were even more
dramatic in the non-uniform loadcase in which maximum displacement was increased by
83% and principal stresses by 92%. Von Mises stresses were also higher by 80%. In the
uniform loadcase the corresponding percentages were lower but still significantly large.
The fact that part of the anterior cortical shell was degenerated in combination with the
increased pressure applied on the anterior part in the non-uniform loadcase, lead to major
increases in the observed stresses. Hence, this specific kind of metastatic defects was also

one of the most influential in the strength of the vertebral body.
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Chapter 5

CONCLUSION

The objectives of this study were achieved and the importance of the various
geometric and material property parameters was determined. In developing the models it
was found that the biconcavity of the endplate was the most important geometric factor
influencing the mechanical behavior of the vertebral body. The effects of osteoporosis, that
was modeled as a reduction in the material properties of both cancellous and cortical bone,
were also examined and analyzed and found to be critical for the vertebral body. Also the
parametric study of metastatic defects was highly successful since a relative order of
significance was obtained for the two parameters; size was more important than location.
However, the results would have been more enlightening if a larger number of sphere sizes
had been examined as well as of locations. Also a conclusion about the relative importance
of cancellous and cortical bone in supporting loads would have been reached if models with
the same amount of reduction for both types of bone had been utilized. | Finally, a model
that would include both osteoporosis and a metastatic defect would have been an interesting

situation in which we could examine the way in which the two pathological cases combine.
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APPENDIX






=1

QQOnN Gacaoanc

90
100

200

300

o ¥

CHANGE2 recalculates the nodal coordinates
in order for a tapered and a teardrop cross
sectional geom~try to be produced

SP.NCNO3 is the old ~odal point file and
SP.NCNO is the newly generated file

PI=3,1415¢

A=Amplitude cf cogine wuve which weaves about
point B such that A+¥F{=19.55

A=3.91

B=15.64

OFEN (UNIT=],NAHE=’SP,NONOGZ®,TYFE~"OLD’ , READONLY)
OPEY (UNIT=2.NAilZa’SY . NONO’ , TYPB< NEW’)

READ (1,100) C?,N,JPR,X1,12,13,14,75,16,¥%,Y,%Z,KN,NRST,MIDS

FORMAT (Al1,I4,A1,14,515,3F10.¢,315)

TH=ABS(Z2*PI)/27.9

RNEWoA*(1-COS(74) }+8

IP (X.EQ.0) TEIEH
PHI=PI/;

ELSE IF ((ZX.LT.0).AND.(Y.EQ.9)) TE1:
PHI=PI ‘

ELSE 1 (X.LT.0) ‘’HEN
PHI=PI-ATAN(ABS(Y/X))

ELSE IP ((X.G6%.0).AND.{¥.GT.0j) TaEN
PHI=ATAN(ABS(Y/X;) .

ELSE IF ((X.GT.0).AND.(Y.EQ.0)} TEEK
PHI=( ) '

ENDIP

RTEAR=KNEW*(1+0.0649*(COS(PHI j-2*COS(2*PK2)+CO5{3*PHI)))

ZN=2Z :

IFr (X.NE.O0) THEN

Xid= (RTEAR/19.55) *X

ELSE I {X.EQ.0) THEN

XN=0

ENDIF

IF (Y.NE.QO) THEN

YN=(RTEAR/19.55)*Y

ELSE I¥ (Y.EQ.0) THEN

YN=0

ENDIF

WRITE (2,200) CT,N,JPR,11,12,73,14,15,I6,XN,¥YN,2ZN

PORMAT (Al1,I4.A1,I4,515,3Pr10.4,315)

YO=PHI*(180/°I)

B8O=RTBAR/RN=H ’ L

WRITE (6,300} YO,B0,2N

FORMAT (3P1C.4)

IF (N.LT.1298) GO TO 90

CLOSE (UNIT=l)

CLOSE (UNITA2)

END
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I-N INTEGER, A-J REAL

Program CHANGE3 changes mesh to conform
to a new geometry that considers
biconcavity of the endplate

SP.NODO is the old nodal point file and
SP.NONO3 is the newly generated file
PI=3.14159

A=1.81

B=12.14 ‘
OPEN (UNIT=1,NAME=’SP.NODO’,TYPE=’OLD’,READONLY)
OPEN (UNIT=2,NAME=’SP.NONO3’, TYPE=’NEW’)

READ (1,100) CT,N,JEFR,I1,12,13,14,15,16,X,Y,2,KN,NRST,MIDS
FORMAT (Al,1I4,A1,14,51I5,3F10.4,315)
TH=SQRT(X*X+¥*Y)/39.8*PX '

RNEW=A* (ABS(1-COS(TH)) )+B

XN=X

¥YNaY _

ZN=(RNEW/13.95)*Z"

WRITE (2,200) CT,N,JPR,I1,12,13,14,15,16,XN,¥YN,ZN
FORMAT (Al,I4,A1,I4,515,3P10.4,31I5)

WRITE (6,300) RNEW,TH

FORMAT (2F10.4)

If (N.LT.1298) GO TO 920

CLOSE (UNIT=1)

CLOSE (UNIT=2)

END
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PNT
PNT
PNT
PNT
PNT
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PNT
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PNT
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PNT
PNT
PNT
PNT
PNT
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Q21
Q22
Q23
Q24
Q25
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
N41

0.00000
3.30000
0.00000
2.48000
4.13000
¢.00000
0.00000
2.07000
0.00000
1.65000
2.48000
0.00000
0.00000
0.00000
9.09000
7.44000
18.90000
0.00000
18.90000
0.00000
18.90000
0.00000
19.90000
0.00000
19.90000
0.00000
19.90000
0.00000
0.00000
7.44000
9.09000
0.00000
0.00000
18.90000
19.90000
0.00000
0.00000
7.44000
9.09000
0.00000
0.00000
18.90000
16.90000
0.00000
-7.44000

-2.07000

-1.65000
-3.30000
-2.48000
-2.48000

- -4.13000

-7.44000
-18.90000
-18.90000
-18.90000
-19.90000
-19.90000
~19.90000

~-7.44000

-9.09000
-18.90000
-19.90000

-7.44000

-9.09000
-18.50000

1 -19.90000

0.000¢v
0.00000
3.30000
2.48000
0.00000

4.13000

0.00000
0.00000
2.07000
1.65000
0.00000
2.48000
¢.00000
§.09000
0.00000
7.44000
0.00000
18.90000
0.00000
18.90000
0.00000
18.90000
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