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Abstract

Many important materials are metastable or unstable under certain operating regimes.
The degradation mechanisms can be varied and complex, making the discovery of un-
derlying differential equations (DEs) through a first-principles approach challenging.
This invites the application of data-science methods to infer root causes. Tradition-
ally, machine learning (ML) applied to materials research has focused on optimization
and regression over a limited training set. Inferring physical laws directly from data
may allow the extraction of more generalizable scientific information that enables one
to understand underlying mechanisms. In this study, we apply scientific ML — a
blend of traditional scientific mechanistic modeling (differential equations) with ma-
chine learning methodologies — to identify differential equations governing the degra-
dation of methylammonium lead iodide perovskite (MAPI), a material with known
instability under environmental stress. We explore scientific ML applied to simulated
and experimental datasets, obtaining equations that describe the temperature- and
time-dependencies of MAPI degradation. Our method of choice is sparse regression
method PDE-FIND [57]. We find that the underlying DE governing MAPI degrada-
tion corresponds to the Verhulst logistic function, often used to describe autocatalytic
or self-propagating kinetics. This thesis demonstrates the application of scientific ML
in practical materials science systems, highlighting the promise and challenges asso-
ciated with ML-aided scientific discovery.

Thesis Supervisor: Tonio Buonassisi
Title: Professor, Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

In the traditional scientific discovery process, prior knowledge from first-principles and

empirical laws are combined with experimental data and intuition to yield governing

equations. Newton’s law of gravitation [48], Einstein’s mass-energy equivalence equa-

tion [43], Kepler’s laws of planetary motion [58] and other physical principles were

uncovered through careful interpretation of experimental data and inductive reason-

ing [33]. The Edisonian approach of trial and error is difficult with systems that

are yet to be understood fully– the set of feasible equations capturing the physics is

enormous. This is the case for many areas, such as finance, biology and materials

science where there are complex systems for which we do not have quantitative ana-

lytic descriptions. A model could be fit to the experimental data through regression.

However, without knowledge of the underlying physics, verifying the result of a model

obtained from curve-fitting is challenging [16, 55].

Many materials are unstable under environmental stress. For example, alloys [65,

50] polymers [46], doped silicon [63] and hybrid materials [44] experience structural

changes at elevated temperatures. The degradation pathways can be complex and

not directly obvious when examining the experimental data. In these cases, data-

science methods can facilitate the interpretation. Machine learning (ML) has been

used to model and predict degradation [15, 62, 47, 29, 24] as well as to optimize

15



process conditions to reduce material decomposition [29, 66]. Traditional data-science

methods extrapolate poorly beyond the training data, which renders them of less use

when trying to identify and decouple complex degradation pathways. Hidden in the

black-box ML models is valuable scientific information on the dynamics of the system.

If uncovered, the knowledge of the governing dynamics can be used to extrapolate

beyond the dataset and serve as foundation for physical interpretation of phenomena

and scientific discovery.

1.2 Scientific Machine Learning

Herein, we use scientific ML, which combines regression-based ML with sparsity gen-

erating techniques in order to automatically learn equations. Scientific ML methods

are well-suited to identify governing equations directly from data, especially when the

systems being studied are too complicated to yield to traditional theoretical analysis.

Not only does scientific ML help us understand the underlying scientific phenomena

better, it also helps to make simulations faster and extrapolate beyond the dataset

at hand. Recently, many approaches aiming for this target have been presented in

literature. We review some of them below.

1.2.1 Partial Differential Equation - Functional Identification

of Nonlinear Dynamics [57]

This method is used for the discovery of physical laws describing dynamical systems.

First, a library of potential candidate functions is built. Differentials are calculated by

finite difference or polynomial interpolation. Once a large matrix with all candidate

functions is composed, different sparse regression methods may be used to extract

the partial differential equation (PDE) describing the system. The sparse methods

implemented are sequential threshold ridge regression, lasso regression, elastic net

regression and the greedy algorithm. Some knowledge of the system being studied

is necessary to appropriately select the library of candidate functions. This is the
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method that is applied in this thesis. More details can be found in the section 2.

1.2.2 Sparse Identification of Nonlinear Dynamics [14]

Sparse Identification of Nonlinear Dynamics (SINDy) uses a custom deep autoencoder

to find a coordinate system in which the dynamics of the system are sparse. A

library of candidate functions is built based on low-dimensional representation and

and sparse regression is to find the governing equations in the associated coordinate

system. The sparse regression technique used is sequential thershold least-squares

algorithm. The method lays equal importance on the discovery of a low-dimensional

latent space and the model describing the dynamics. SINDy finds models are based

on the latent space representation, making the inference of equations based on the

actual features difficult. Moreover, some knowledge of the system being studied is

necessary to appropriately set the dimension of the alternate coordinate system and

build the library of candidate functions.

1.2.3 Physics-Informed Research Assistant for Theory Extrac-

tion [4]

Physics-Informed Research Assistant for Theory Extraction (PIRATE) is a general-

ized method for the discovery of differential equations using genetic programming. It

uses computations over arbitrary compositions of functions, parameters, and poten-

tially differential operators. The dynamical dataset is preprocessed through differen-

tial function representations. The differential equation is represented using a graph,

where each node represents a mathematical operator, extracted from a library of user

defined operators. These operators include basic mathematical operations (+, -, *,

/) as well as differential operators. The leaves of the graph represent instances of

fitted models. An evolutionary algorithm initializes, mutates and mates graphs. The

parameters enter the graph as constant functions which are calibrated in a Bayesian

manner using black-box variational inference.

17



1.2.4 Physics-Informed Neural Networks [52]

Physics-Informed Neural Networks (PINN) is a deep learning methodology to incorpo-

rate scientific insights into machine learning approaches to solve and discover partial

differential equations. The system of interest, 𝑈 is modelled using a deep neural

network. Then, a physics-informed neural network is obtained by applying the chain

rule of differentiation to the network approximating 𝑈 using automatic differentiation

[7]. This gives a physics-informed estimate of 𝑈𝑡.

1.2.5 Partial Differential Equation Network [42, 41]

The cited papers above describe "PDE-NET," a transparent neural network capable

of extracting the governing PDE from dynamical data available about the system

without using any prior information about the system. It relies on the fact that

certain neural networks such as ResNet [32] have a connection with ODEs/PDEs and

can be merged with computational mathematical tasks. A feed forward deep neural

network is used. Time derivatives are described using forward Euler method. Spatial

derivatives are estimated using convolutionl layers stacked together. In order to obtain

the analytical form of the equation describing data, a symbolic neural network called

SymNet is designed by the authors. This method is promising however the current

implementation has been designed for the use cases in the paper and does not allow

for application to general problems.

These methods have shown great promise in several applications [53, 72, 73, 59].

The automatic discovery of scientific laws and principles is at the frontier of machine

learning that awaits application to materials science [13] and other domains [17, 11,

56]. More articles can be found here [60, 74, 21, 45, 70].

1.3 Lead-Halide Perovskites

Halide perovskite materials have potential to provide high performing and cost-

effective solar energy. In the past 10 years, the efficiencies of perovskite-based so-

18



Figure 1-1: Methyl Ammonium Lead Iodide Crystal Structure

lar cells have risen from 3.8% in 2009 to 25.5% in 2020 [54, 37], competing strongly

with silicon-based photovoltaic technology. Solar cells using perovskites as the light-

absorbing layer could be manufactured cheaply and efficiently. Using renewable en-

ergy more extensively is the need of the hour to help mitigate climate change [19, 38].

Perovskite photovoltaic technology deployment could help produce cheap solar energy.

However, perovskites degrade at elevated temperature [34, 18, 22, 25, 61, 64], hu-

midity [71, 36, 28], and illumination [49, 40]. This is a major issue hindering the

commercialization of perovskite photovoltaic technology. However, the degradation

mechanisms affecting halide perovskites are not well understood. Discovering the

underlying equations directly from perovskite degradation data could accelerate the

development of stable perovskite solar cells. Herein, we apply Scientific ML to study

the environmental degradation of methylammonium lead iodide (MAPI). From prior

knowledge in the literature, MAPI has multiple documented reaction pathways, in-

cluding decomposition to PbI2 via reaction [1]:

MAPbI3 −−→ PbI2 + [CH3NH3
+ + I−] −−→ PbI2 + CH3NH2 + HI
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Smecca et al. [64] demonstrate that the rate of MAPI degradation obeys an

Arrhenius-type law. Their data suggests that the degradation of MAPI follows zero-

order kinetics in the presence of moisture and first-order kinetics in vacuum at tem-

peratures ranging from 90℃ to 135℃. Bastos et al. [6] hypothesize that the thermal

degradation of MAPI is defined by the Avrami equation [5, 26] of nucleation and

growth. The Avrami equation has also been used to describe degradation kinetics

in humid air [67]. Recently, studies have shown that halide perovskite degradation

follows autocatalytic reaction kinetics [23] with the hypothesis that the degrada-

tion is propagated by iodine vapors [27]. The derivation of exact kinetics as well as

Arrhenius-type dependence through first principles is difficult because of the com-

plexity of MAPI decomposition, despite the availability of well-resolved dynamical

data, inviting the application of Scientific ML.

In this thesis, we focus on the application of PDE-FIND to perovskite degradation

data. We choose PDE-FIND as it is an interpretable method that provides a parsi-

monious description of the dynamics with the flexibility to apply domain expertise

for library selection. Successfully identifying governing differential equations directly

from the experimental aging test data would deepen the understanding of thermal

degradation and provide tools for reliable lifetime prediction of perovskite solar cells

as well as the determination of acceleration factors for long-term aging tests. These

developments could spur the advancement of the perovskite photovoltaic technology

and have been called for by the community [3, 10, 35], and provide a generalizable

pathway to identify degradation modes also in other materials research domains.
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Chapter 2

Methods

2.1 Experimental Methods

Our experimental workflow is shown in Figure 2-1. We subjected 206 thin-film sam-

ples of methylammonium lead iodide (MAPI) to 0.15±0.01 Sun illumination, 20±5%

relative humidity, and temperatures varying from 35∘C to 85∘C in our in-house en-

vironmental chamber (Figure 2-1 (a)). This degradation chamber simulates harsh

environmental conditions of elevated temperature and humidity that solar cells can

be subject to, in a controlled manner. It has been described in detail in [66]. The low

value of illumination is to ensure low light-induced degradation while guaranteeing

visibility within the chamber. Humidity is kept in a low range of 20±5% relative

humidity, the lowest setting possible in our experimental setup. This is to ensure

humidity-driven decomposition is minimized. We vary the nominal temperature from

35∘C to 85∘C to emulate temperature pertaining to indoors and harsh tropical out-

doors. We wish to study how high temperature affects the degradation of MAPI,

while other factors are held constant.

One hundred and eight samples were grown under low-variance conditions (labeled

“low-variance experimental”); ninety-eight samples were grown under high-variance

conditions (labeled “high-variance experimental”) (Figure B-13). The red value curves

from low and high variance datasets for samples degraded at 35 ∘C are shown in Figure

2-2. Unless specified otherwise, we assume “experimental” data in this paper refers
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Figure 2-1: Experimental Methods

Figure 2-2: Comparing High and Low Variance Samples for 35∘C

to the low-variance sample set. We quantify the noise in our experimental data to

be of the order of 0.35% for both high-variance and low-variance experimental data

sets. The sample-to-sample variance for the “low variance experimental” dataset is

estimated to be 20% in relative standard deviation and the maximum mean absolute

deviation is 12 units (Red color value varies from 0-255). For the “high variance

experimental” dataset, variance is estimated to be 23% in relative standard deviation

and the maximum mean absolute deviation is 31 units. The factors contributing to

the variance in the samples are related to the film fabrication process.

We monitored the degradation of MAPI based on the color change of the material.

As MAPI films decompose, they change their color from initial black (majority MAPI)
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Figure 2-3: RGB Curves from a Degradation test. Flat lines mean that particular
location in the sample holder was empty.

to degraded yellow (minority MAPI) (Figure 2-1 (b)). We acquired images of the

degrading films with 0.5-minute temporal resolution and processed them to obtain the

average red, blue and green color components of the films as a function of time (Figure

2-3). The red color time-series is chosen for further analysis because it sufficiently

captures the temporal perovskite decomposition behavior at the MAPI bandgap, as

shown in the Supporting Information of reference [29] (Figure 2-1 (c)).
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2.2 Computational Methods

Figure 2-4: Computational Workflow

Experimental data is often noisy. In order to study how noise affects the identification

of underlying differential equations, we produce a simulated dataset. Least-squares

24



regression is used to fit the Verhulst logistic function [68] combined with the Arrhe-

nius equation to experimental data (e.g., those shown in Figure 2-1 (c)). This is a

reasonable assumption because the logistic function is used to describe the thermal

decomposition dynamics of several materials [23, 27, 12]. Analysing the accuracy of

equation-identifying methods is simplified with simulated data since the underlying

equation as well as the corresponding weights are known precisely. The equations are

as follows,

𝑈 = 𝑀 +
𝑈0𝐾𝑒𝑘𝑡

(𝐾 − 𝑈0) + 𝑈0𝑒𝑘𝑡
(2.1)

𝜕𝑈

𝜕𝑡
= 𝑘(𝑈 −𝑀)

(︂
1 − 𝑈 −𝑀

𝐾

)︂
(2.2)

where 𝑈0 is the initial concentration, 𝑘 is growth rate, 𝐾 is the carrying capacity

and 𝑀 is a fitting constant. In the context of MAPI degradation, 𝑀 , 𝑈0 and 𝐾

can be considered as fitting parameters. The growth rate 𝑘 varies with temperature

according to the Arrhenius equation:

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇 (2.3)

Here, 𝐸𝑎 is the activation energy, 𝑇 is the temperature in Kelvin, 𝐴 is the pre-

exponential factor and 𝑅 is the universal gas constant. We use this model to pro-

duce noise-free simulated data (labeled “noiseless simulated”) and simulated data with

Gaussian noise (labelled “noisy simulated”).

2.2.1 Data Analysis

A summary of our data-analysis workflow is shown in Figure 2-4. Our goals for this

study are two-fold:

1. Uncover the underlying differential equation corresponding to perovskite degra-

dation using sparse regression methodology PDE-FIND [57] (Workflow (1)) and
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Polynomials of 𝑈 1, 𝑈 , 𝑈2, 𝑈3, 𝑈4, 𝑈5

Polynomials of 𝑡 𝑡0.5, 𝑡, 𝑡2, 𝑡3
𝑈× Polynomials of 𝑡 𝑈𝑡0.5, 𝑈𝑡, 𝑈𝑡2, 𝑈𝑡3

Sine and Cosine of U 𝑠𝑖𝑛(𝑈), 𝑐𝑜𝑠(𝑈)
Functions of 𝑇 𝑇 , 𝑒𝑥𝑝(100

𝑇
)

Table 2.1: Candidate Functions Used

2. Quantify the effect of noise on the accuracy of extraction of differential equations

by PDE-FIND by comparing noiseless and noisy simulated data (Workflow (2))

This is represented by the two workflows (dashed arrows) in the figure. For the first

objective, the input data is the red-color curves from degrading MAPI films. About 18

samples are degraded at six temperatures from 35∘C to 85∘C, giving us 96 time-series.

We use these time-series data from all the temperatures to infer the partial differential

equation (PDE) defining the relationship between MAPI degradation, temperature

and time. Then, we apply PDE-FIND to the time-dependent degradation data at

each temperature, to infer the ordinary differential equation (ODE) that describes

MAPI decomposition at a particular temperature. To study the effect of noise, we

apply PDE-FIND to simulated data with and without Gaussian noise. The library

of potential candidate functions consists of polynomials of 𝑈 , polynomials of time 𝑡,

sine and cosine of 𝑈 , Temperature 𝑇 and other non-linear functions of 𝑈 , 𝑡 and 𝑇

(Table 2.1).

Differentials are calculated by finite difference with convolutional smoothing using

a 1D Gaussian kernel. The convolutional smoothing is used to reduce the amplifica-

tion of noise that is often seen when numerical derivatives are computed. A large tall

matrix (Θ(𝑈)) is composed, with each column representing a candidate function and

each row corresponding to a particular time for a sample.

Sequential Threshold Ridge Regression (STRidge)

The sparse regression algorithm we employ is called sequential threshold ridge re-

gression (STRidge). Our goal is to identify which terms contribute to the dynamics

described by the data as well as those terms’ weights. The algorithm is summarized
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below:
Algorithm 1: STRidge_T - Thresholding Step
Result: Return 𝛽 through the application of thresholding for a value of tol

inc_f = [0,1, ... # features] (included features)

while iters < max_iters do
𝛽 = arg min (‖Θ(𝑈)[:, inc_f]𝛽 − 𝑈𝑡‖2 + 𝜆2‖𝛽‖2) (ridge regression)

inc_f = [i if 𝛽[i] > tol] (select contributing features)

𝛽[i not in inc_f] = 0 (hard-thresholding)

iters = iters + 1
end

𝛽 = arg min𝛽 (‖Θ(𝑈)[:, inc_f]𝛽 − 𝑈𝑡‖2 + 𝜆2‖𝛽‖2) (final ridge regression)

return 𝛽

Algorithm 2: STRidge - Optimizing Step
Result: Optimize the value of tol and return corresponding 𝛽

Θ(𝑈) → [Θ(𝑈)train Θ(𝑈)test]

𝑈𝑡 → [𝑈 train
𝑡 𝑈 test

𝑡 ] (80-20 train-test split)

𝛽 = arg min𝛽

(︀
‖Θ(𝑈)train𝛽 − 𝑈 train

𝑡 ‖2
)︀

(baseline result)

𝐿best = (‖Θ(𝑈)test𝛽 − 𝑈 test
𝑡 ‖2 + 𝜆0‖𝛽‖0) (baseline loss)

for iters = 1, ... tol_iters do
𝛽 = STRidge_T(Θ(𝑈)train, 𝑈 train

𝑡 , tol) (thresholding step)

𝐿 = ‖Θ(𝑈)test𝛽 − 𝑈 test
𝑡 ‖2 + 𝜆0‖𝛽‖0 (calculate loss)

if 𝐿 < 𝐿best then
𝐿best = 𝐿

tol = 𝑡𝑜𝑙 + 𝛿tol (increase tol)

𝛽 = 𝛽

else
tol = max([0, tol− 2𝛿tol]) (reduce tol)

𝛿tol = 𝛿tol
tol_iters−iters (reduce 𝛿tol)

tol = 𝑡𝑜𝑙 + 𝛿tol (increase tol by smaller 𝛿tol)

end

end

return 𝛽
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The goal of this method is to find a sparse coefficient vector 𝛽 that only consists of

the active features that best represent the time derivative 𝑈𝑡. The rest of the features

are hard-thresholded to zero. Thus, the algorithm conducts two tasks:

1. Identifying the terms contributing to the dynamics, that is, the columns of

(Θ(𝑈)) that add up to give 𝑈𝑡; and

2. Assigning appropriate weights to these terms.

The first task is achieved by performing several rounds of ridge regression. Each

time, a few terms that do not contribute significantly to the dynamics are hard-

thresholded to zero. This means, the weight corresponding to these terms is set to 0,

effectively eliminating them from the library for that round. This process is repeated

till convergence is reached. To determine which terms "contribute significantly", a

parameter called tolerance is optimized in each round. The initial value of tolerance is

a hyperparameter. After the contributing terms have been identified, ridge regression

is used to determine the weight or coefficient value of each contributing term.

The loss functions for the two steps are as follows (𝜆2 and 𝜆0 are the L-2 and L-0

regularization penalties respectively):

𝛽 = arg min
𝛽

(‖Θ(𝑈)𝛽 − 𝑈𝑡‖2 + 𝜆2‖𝛽‖2) (2.4)

ˆtol = arg min
tol

(‖Θ(𝑈)𝛽 − 𝑈𝑡‖2 + 𝜆0‖𝛽‖0) (2.5)

More details can be found in the supplementary information of reference [57]. All

hyperparameters are optimized for using the hyperopt package [9].

Other Sparse Regression Algorithms

Lasso Regression Solved Using Fast Iterative Shrinkage Thresholding Al-

gorithm (FISTA)

Lasso regression uses the L-1 norm to regularize weights which is a well-known

sparsity-inducing norm [30]. The objective of lasso regression is as follows (𝜆1 is the
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L-1 regularization penalty):

𝛽 = arg min
𝛽

(︂
1

2
‖Θ(𝑈)𝛽 − 𝑈𝑡‖22 + 𝜆1‖𝛽‖1

)︂
(2.6)

Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [8] is an accelerated

proximal gradient method used to solve this objective function. It is a faster version

of Iterative Thresholding Algorithm (ISTA) [20] that uses a first-order approximation

along with the gradient descent algorithm. FISTA uses information from previous

iterations to reach faster convergence rates.

Elastic-Net Regression Solved Using Fast Iterative Shrinkage Thresholding

Algorithm (FISTA)

Elastic-Net regression consists of both L-1 and L-2 regularization. It introduces

sparsity through the L-1 norm and shrinks together correlated features through the

L-2 norm [31]. The objective function is as follows:

𝛽 = arg min
𝛽

(︂
1

2
‖Θ(𝑈)𝛽 − 𝑈𝑡‖22 + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2

)︂
(2.7)

Like lasso regression, the solution can be found using FISTA.

Adaptive Forward-Backward Greedy Algorithm

Greedy algorithms recursively pick a solution that is sparse and locally optimal,

eventually hoping to get to a globally optimal solution. Adaptive Forward-Backward

Greedy Algorithm [75] uses forward greedy steps to find a sparse solution and back-

ward steps periodically in order to correct any mistakes made in the forward iterations.

All the above mentioned methods were tried with synthetic datasets (e.g., Burgers’

equation, reaction diffusion equation). STRidge algorithm was picked for our analysis
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as it performed better empirically across the different synthetic datasets. The authors

of [57] also recommend the use of STRidge in their work.
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Chapter 3

Results

3.1 Experimental Data

The workflow is represented in Figure 3-1. First, we fit our experimental data to the

most simple kinetic equations: 0th, 1st and 2nd order rate -kinetic equations to find

that these do not fit the data. We understand that the environmental degradation

of methyl ammonium lead iodide (MAPI) does not follow simple n-th order reaction

kinetics (Figure 3-2). This motivates the use of Scientific Machine Learning. Thus,

the PDE-FIND algorithm is employed. The full low-variance dataset containing all

the samples from all the temperatures is combined together. A broad set of candidate

functions is used in the library (Table 2.1).

The STRidge algorithm as described in 2.2.1 is used to obtain a differential equa-

tion that describes the dynamics of the data. PDE-FIND eliminates sine and cosine

terms, correctly discovering that periodicity is not a feature in the dynamics described

by our dataset. Moreover, polynomials of 𝑡 and 𝑈× polynomials of 𝑡 are removed from

the library or set to values very close to zero (See Table A.1). This is an interesting

result as polynomials of 𝑡 and 𝑈× polynomials of 𝑡 correspond to the terms from

the Avrami equation with different orders. To better understand how the obtained

equation fits the experimental data, the derivative estimated from the obtained equa-

tion is compared with the numerical derivative with respect to time (Figure B-1) at

various temperatures. While the equation captures the overall trends in the data, it
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Figure 3-1: Experimental Data Analysis Workflow

can be seen in many cases that the error in fitting the derivative is quite large for

certain temperatures (Figure 3-3). The averaged experimental data versus time at

each temperature is also plotted with the curve obtained on integrating the equation

identified by PDE-FIND (Figure B-1). We see that, when integrated, this equation

does not match experimental data. The mean absolute error (MAE) bar plots (Fig-

ure 3-4) elucidate these results graphically. Refinements to the approach are thus

required.

PDE-FIND is now applied to the averaged data at each temperature separately,

with the aim to obtain an ordinary differential equation (ODE) that correctly de-

scribes the degradation of methyl ammonium lead iodide (MAPI) at a particular
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Figure 3-2: Fitting 0th, 1st and 2nd Order Kinetic Equations to Experimental Data

temperature. Using averaged data help us deal with sample-to-sample variance. Since

all environmental conditions were exactly identical for samples degraded at a partic-

ular temperature, by applying PDE-FIND at each temperature separately, we hope

to reduce the influence of other variance-inducing conditions. Thus PDE-FIND is ap-

plied with the broad library as described in Table 2.1, excluding candidate functions

corresponding to 𝑇 as they are no longer required. From this analysis, it is seen that

the sine and cosine of 𝑈 , polynomials of 𝑡 and 𝑈× polynomials of 𝑡 do not feature in

the dynamics represented by the data. These results are in agreement with those ob-

tained from the use of the full dataset, as described in the previous paragraph. Thus,

the library is truncated to include polynomials of 𝑈 only. PDE-FIND is run 5 times

with data at each temperature, with the polynomial order of the library ranging from

1 to 5. We find that with the 1st order polynomial library, PDE-FIND is unable to

find an equation that fits the derivative of our data (Figures B-2, B-3, B-4, B-5, B-6,

B-7). All other libraries from 2nd order polynomial to 5th order polynomial appear

to fit the derivative of our data with significant accuracy – the MAE being as low as
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Figure 3-3: PDE-FIND Results with Full Experimental Data: MAE of Derivatives

Figure 3-4: PDE-FIND Results with Full Experimental Data: MAE of Integrated
Curve

10−3 (Figures B-2, B-3, B-4, B-5, B-6, B-7). When these differential equations are

integrated, they have the same S-shape as our experimental data (Figures B-2, B-3,

B-4, B-5, B-6, B-7). The 2nd order polynomial library seems to be the most minimal

library that fits our data. The functional form of this ODE is:

𝑑𝑈

𝑑𝑡
= 𝑎0 + 𝑎1𝑈 + 𝑎2𝑈

2 (3.1)

We also notice a trend in the values of the fitting coefficients with respect to

temperature – especially in the case of the 2nd order polynomial library (Figure 3-5).

The slope of the curve changes between 55 ∘C and 65∘C, the temperature at which a

well-known MAPI phase transition [69, 39] occurs. This may indicate that the phase

transition affects the degradation mechanism, but is not experimentally confirmed in

this work. The trends in coefficient weights with temperature are not so evident with

34



other libraries (Figure B-8, B-9, B-10, B-11, B-12).

Figure 3-5: PDE-FIND results with experimental data: a) A bar plot shows the
MAE between the actual experimental derivative (smoothened) and the value of the
derivative estimated using the differential equation identified by PDE-FIND. Inset:
Comparison of the experimental data with the curve obtained by integrating the
equation identified by PDE-FIND with 2nd order polynomial library . b) Comparison
of the 𝑑𝑈/𝑑𝑡 calculated from experimental data for T = 55∘C and estimated from
PDE-FIND for 2nd order polynomial library to 5th order polynomial libraries c)
Coefficient values estimated by PDE-FIND as a function of temperature for 2nd
order polynomial library.

Next, the effect of variance on PDE extraction is evaluated by comparing the above

results (obtained on the low-variance experimental dataset) with the same workflow

applied to the high-variance data. After averaging multiple curves (𝑈(𝑡)) for each

temperature, the results are qualitatively similar for a constrained function library of

polynomials of 2nd order – the obtained coefficients have the same sign and order of

magnitude (Figure B-14). This indicates that PDE-FIND can fit even high-variance

experimental data when appropriately averaging over multiple samples. Results are

shown in Figures B-14 and B-15. To quantify the effect of sample-to-sample variance,

we apply PDE-FIND to each curve individually. As expected, PDE-FIND extracts

a large variance in coefficient values. The values of coefficients about as 30% with

35



the low variance dataset and up to 60% with the high variance datasets for T = 55
∘C. This shows that one could increase the confidence in the results obtained through

PDE-FIND when experimental variance is reduced.

3.2 Simulated Data

Figure 3-6 explains the workflow adapted in the analysis of simulated data.

Figure 3-6: Simulated Data Analysis Workflow

3.2.1 Noiseless Data

To understand to the effect of noise on PDE-FIND’s ability to identify of equations,

we create a simulated dataset, by fitting the Verhulst logisitc function [68, 12] and

the Arrhenius equation to experimental data as shown in the Methods section 2. We

add up to 5% Gaussian noise to produce simulated data with artificial noise.

First, we apply PDE-FIND to the noiseless simulated data. The differential equa-

tion governing this dataset are known. As shown in section 2.2, the dynamics is
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described by,

𝑑𝑈

𝑑𝑡
= 𝑎0 + 𝑎1𝑈 + 𝑎2𝑈

2 (3.2)

The values of the coefficients 𝑎0, 𝑎1 and 𝑎2 are known. Sparse regression is applied

to the simulated dataset with different polynomial libraries - ranging from 1st order to

5th order. It is known that the 2nd order polynomial library would fit the data best,

corresponding to the differential equation obtained on differentiating the Verhulst

logistic function with respect to time (2.2). As expected, we see that the equation

obtained from the 1st order library does not fit the data. All the other polynomial

libraries fit the simulated data with remarkable precision at all temperatures. The

coefficient values of 𝑎0, 𝑎1 and 𝑎2 of terms 1, 𝑈 and 𝑈2 match the true values. For

3th, 4th and 5th order libraries, functional terms apart from 1, 𝑈 and 𝑈2 are expected

to be excluded from the dynamics. However, PDE-FIND does not eliminate these

terms in the differential equation it outputs - they are allotted very small non-zero

weights. Here, we see a small drawback of the sparse regression algorithm -its inability

to assess and separate certain dynamics even when no noise is present. As a sanity

check, we also add sin(𝑈) and cos(𝑈) to the 5th order polynomial library. In this case,

PDE-FIND correctly recognises that there is no periodicity in the data and eliminates

sin(𝑈) and cos(𝑈) from the library. The mean absolute error (MAE) between the

true derivative and one estimated from PDE-FIND’s differential equation when a 2nd

order polynomial library is used is as low as 0.0003 (derivative varies from 0 to 1).

When the differential equation identified by PDE-FIND is integrated with respect to

time, the curve matches true data very accurately to yield mean absolute error less

than 0.003 (on a color scale from 0 to 255). The error in fitting coefficients 𝑎0, 𝑎1 and

𝑎2 is 0%. This shows that when PDE-FIND is provided with data containing little or

no noise, it is able to identify the governing equation correctly. The results hold true

for data from all temperatures. The same differential equation is identified across all

temperatures.
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3.2.2 Noisy Data

Artificial Gaussian noise is added to simulated data using numpy’s random.randn()

function that draws samples from a normal distribution. 1%, 2%, 3%, 4% and 5%

Gaussian noise (in proportion to the data mean) are added to the simulated curves as

up to 5% noise is typical in most experimental settings. Figure 3-7 illustrates noisy

data at 55∘C.

Figure 3-7: Noisy Simulated Data at 55 ∘C

First, we analyse the effect of varying levels of noise on a simulated curve from

a particular temperature. As expected, noise obfuscates PDE-FIND’s ability to ac-

curately identify the underlying equation and the corresponding coefficient values.

We apply sparse regression with the 2 candidate function libraries: one, consisting

of 𝑈 exponentiated up to 5th power, sin(𝑈) and cos(𝑈), the "expanded library".

The second library consists of 1, 𝑈 and 𝑈2, the "constrained library", the Figure 3-8

summarizes of results from 55∘C data with the constrained library.

Identification of Correct Contributing Functions

We apply PDE-FIND to noisy data while using the "expanded library", which is de-

scribed in the preceding paragraph. The rationale behind this is to test PDE-FIND’s

ability to identify the terms contributing to the dynamics, even when the data is

noisy. From the section 3.2 we see that PDE-FIND fails to eliminate certain extrane-
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Figure 3-8: Results with Noisy Simulated Data at 55 ∘C

ous candidate functions in spite of being supplied with clean data. The results are not

different with noisy data. Not only are the extraneous terms not eliminated, but also

assigned higher weights as the amount of noise is increased. The sin(𝑈) and cos(𝑈)

terms, which are eliminated when noiseless data is used, are now assigned sizable

weights as well. Figure 3-9 shows how this occurs. Despite de-noising efforts through

1D convolutional smoothening, the noise in the numerical derivative is amplified and

PDE-FIND mistakenly fits this noise to sinusoidal terms.

Identification of Coefficient Values (Weights)

With zero noise, extraneous terms are not fully eliminated. However, the weights

attached to these terms are small and coefficient values of the terms that actually

make up the differential equation are identified correctly with little error. With

noisy data, this is not the case. The noise obfuscates the algorithm’s ability to

correctly identify contributing terms and thus assigns weights to each of them. With
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Figure 3-9: With Noisy Data, PDE-FIND Mistakenly Fits Sinusoidal Terms to Noise.
The figure shows results with 65 ∘C data with 5% noise and the expanded library.

the extended library, the weights assigned to 𝑈3, 𝑈4 and 𝑈5 increases substantially.

sin(𝑈) and cos(𝑈) terms which are eliminated when no noise is added to the data are

not removed from the final library in the presence of noise. This effect is seen even

when the candidate library only consists of 1, 𝑈 and 𝑈2, the terms that are a part

of the true solution. The weights of these terms are distorted by values as high as

85% with 55∘C data. Figure 3-8(b) shows the relative error in the coefficients of 1,

𝑈 and 𝑈2 when up to 5% noise is added. As a result, the estimate of the derivative

is affected, as shown in Figure 3-8(c) and B-16. When the equations identified by

PDE-FIND are numerically integrated, they yield curves that differ from the true

data (Figure B-17). For 55∘C, we see that the MAE between the derivative estimate

fom PDE-FIND and the true derivative is 0.055 (on the derivative scale from 0 to

1). Figure 3-8(a) depicts the full heatmap for different noise levels and temperatures.

The MAE between the true curve and the one obtained by numerically integrating

the differential equation identified by PDE-FIND is 15 (on a color scale from 0 to

255). Figure B-18 depicts the full heatmap for different noise levels and temperatures.

These errors are much smaller compared to the amount error in the estimation of the

coefficients. This shows that the weights are very sensitive to the amount of noise.

This could also indicate the fact that these solutions are "sloppy" [2], meaning a vast

number of combinations weights could fit the data with reasonable accuracy. This

makes the collecting noiseless data extremely vital. Alternately, efficient de-noising
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needs to be applied. With Gaussian noise higher than 5%, the equation does not

fit the true data, as seen in Figure 3-10. The curve obtained on integrating the

differential identified by PDE-FIND does not have S-shaped characteristics and does

not match the true data.

Figure 3-10: PDE-FIND Results at 10% Noise

We then consider different temperatures at the same noise level. The Verhulst

logistic equation model becomes increasingly steep and shifts to the left with higher

temperature. PDE-FIND successfully identifies this trend. It appears that the MAE

is higher for equation extraction at higher-temperature data. This could be because

of noise obscuring PDE-FIND’s ability to fit steeper peaks accurately.
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Chapter 4

Discussion

There remain many complex systems that have eluded quantitative analytic descrip-

tions or even characterization of a suitable choice of variables in many disciplines such

as biology, finance and materials science. With today’s state-of-the art equipment,

acquiring large quantities of data has never been easier. As put by Rackauckas et al.

[51], “the well-known adage ‘a picture is worth a thousand words’ might well be ’a

model is worth a thousand datasets.’ ”.

4.1 Scientific ML enables unique insights into MAPI

degradation

Scientific ML is a promising method that can be used to uncover governing equations

through data, especially when the derivation of physical laws using first principles is

challenging. In our study, we demonstrate that PDE-FIND identifies an underlying

rate equation for the degradation of perovskite solar cells. MAPI degradation does

not follow a simple rate law, defined as:

𝑑𝑈

𝑑𝑡
= 𝑘𝑈𝑛 (4.1)

Here, 𝑛 order of the reaction and 𝑈 is the concentration of the species. In our
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system, fitting with this simple reaction rate equation for 𝑛 = 0, 1 and 2 does not yield

a good fit . The S-shaped dynamics we see in our study have been reported in other

studies involving MAPI degradation as well [6, 67, 23, 27]. Some articles report that

the degradation results from nucleation and growth of PbI2 crystals [6, 67], supporting

the hypothesis that the kinetics follows the Johnson-Mehl-Avrami-Kolmorgorov or

simply, the Avrami equation [5, 26]:

𝑑𝑈̃

𝑑𝑡
= 𝑎0𝑡

𝑛−1 − 𝑎1𝑈̃ 𝑡𝑛−1 (4.2)

𝑈̃(𝑡) = 1 − 𝑒−𝑘𝑡𝑛 (4.3)

Where,

𝑈̃(𝑡) =
𝑈(𝑡) − min𝑡 𝑈

max𝑡 𝑈 − min𝑡 𝑈

And 𝑎0, 𝑎1 and 𝑘 are fitting constants. Recent studies have presented an alternate

hypothesis of self-propagating or autocatalytic kinetics [23, 27], arguing that the

reaction dynamics is described by the logistic function (Eqn 2.2). In this study, we

build a large library of candidate terms for the DE– polynomials of 𝑈 , that make up

the logistic function, and polynomials of 𝑡 and 𝑈 multiplied with polynomials of 𝑡,

which feature in the Avrami equation. PDE-FIND determines that the simplest ODE

that fits our experimental dataset best is of the form,

𝑑𝑈

𝑑𝑡
= 𝑎0 + 𝑎1𝑈 + 𝑎2𝑈

2 (4.4)

indicating the reaction is first, propelled forward by the presence of the reactant as

well as the product, leading to a rapid growth in the product that eventually saturates

when it exhausts its reactants – a self-propagating reaction. This is why we chose the

logistic function model for the simulated dataset over the Avrami equations [26, 5]

that has been used to model nucleation-growth reactions. The algorithm picks terms
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that describe self-propelling kinetics (2nd order polynomial library) as opposed to

nucleation and growth (Avrami equation). In Figure 4-1, snapshots of films degrading

at 55 ∘C are shown where one can see light areas of degraded material in the middle of

the film degradation. When we examine videos of degrading films, we often observe

a nucleation and growth behavior, whereby (lighter) regions of degraded material

nucleate at specific points in the films, and expand with time as shown in Figure 4-2.

Figure 4-1: Snapshots of MAPI Films Degrading at 55 ∘C

Equation 2.2 also offers insights that could help engineer more stable MAPI films.

Once the degradation has begun, the autocatalytic nature suggests that degradation

will continue, as the reaction products catalyze further MAPI degradation. Therefore,

suppressing degradation means delaying the creation of the first reaction products for

as long as possible. To engineer more stable MAPI films, this equation suggests that

reducing MAPI degradation may be possible by reducing the density of nucleation

points inside the material, including, e.g., by ensuring that all PbI2 precursors are

fully converted during film formation, and possibly by using highly purified (i.e.,

devoid of contaminant particles) reagents in the film and adjacent layers that could

nucleate PbI2.

45



Figure 4-2: Yellow regions of PbI2 grow radially

These insights bear consequence for researchers attempting to identify the under-

lying root cause(s) of perovskite degradation, as well as those modeling or predicting

the (accelerated) degradation of these materials. If indeed this is a nucleation and

growth phenomenon, little can be done to halt the growth of degraded regions once

the initial nucleation event occurs given the reaction is thereafter self-propagating.

Therefore, to improve phase stability of perovskite films, an emphasis can be placed

on identifying the nucleation points of these phase transformations, and inhibiting

them, perhaps through improved precursor purification to remove impurities, im-

proved packaging to prevent ingress of exogenous gasses, and improved control of

the nucleation process. Changes to the film composition may increase the nucleation

energy barrier; therefore, further investigation of stoichiometry optimization may be

warranted in combination with the above.
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4.2 Evaluating Scientific ML’s ability to accommo-

date noisy experimental data

We demonstrate the application of a scientific ML tool, PDE-FIND on MAPI degra-

dation data. When applied to experimental data, PDE-FIND identifies a differential

equation that fits the data, when appropriate constraints are applied. In spite of the

noise and variance in the dataset, only functions corresponding to the dynamics of the

system are picked and the DEs show good agreement with the numerical derivatives.

Our “robustness analysis” with simulated data shows that PDE-FIND with a 2nd or-

der polynomial library succeeds at identifying the differential equation describing the

simulated data when up to 5% Gaussian noise is added. With 5% noise, the resulting

integrated curve has a 6.2 MAE relative to the underlying noise-free simulated curve.

However, the error of the fitting parameters increases with noise, we see that the co-

efficients differ by as much as 80%. With the addition of noise, PDE-FIND is unable

to eliminate terms not in the DE (sine and cosine) and even fits the noise with these

terms.

Scientific ML methods can be immensely useful at uncovering governing equa-

tions of dynamical systems, if the data obtained has low noise or can be denoised by

noise-reduction techniques. Data obtained through experiments is not devoid of mea-

surement noise and denoising the data adequately can be challenging. Additionally,

certain operating conditions cannot be fully controlled, leading to sample-to-sample

variance making it hard to get rid of. Our contribution motivates the development

of scientific ML techniques that are more robust to noise as well as variance in data.

Scientific ML, in its current state, is well-suited to be applied to domains where ob-

taining large quantities of low-noise data is possible, and will find more applications

with methods that are robust to noise.
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Chapter 5

Conclusions and Future Work

While machine learning (ML) has demonstrated impressive predictive capabilities,

inductive reasoning and knowledge extraction remain elusive tasks. In this thesis,

we use ML to infer underlying dynamical equations from experimental data of de-

grading organic-inorganic lead-halide perovskite thin films under environmental stres-

sors (light, humidity, and temperature). Specifically, we apply the algorithm PDE-

FIND[57], a sparse regression algorithm that automatically identifies the differential

equation describing the dynamics from time-series data. PDE-FIND is an example

of a broader class of algorithms called “Scientific ML,” which is a blend of tradi-

tional scientific mechanistic modeling (differential equations) with machine learning

methodologies.

We adapt and apply the PDE-FIND algorithm to methyl ammonium lead iodide

(MAPI) experimental degradation data, to extract the underlying differential equa-

tion. We observe that MAPI degradation does not follow a simple 0th, 1st or 2nd

order reaction. We see that the minimal equation that describes the degradation

of MAPI is a second order polynomial, which corresponds to the Verhulst logistic

function. (The algorithm chooses this equation as opposed to the Avrami equation,

corresponding to diffusion-limited nucleation and growth phenomena). The Verhulst

logistic function describes reaction kinetics analogous in functional form to auto-

catalytic or self-propagating reactions and population growth, which suggests the

degradation product (PbI2) is catalyzing further degradation of the film.
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Experimental perovskite degradation data are obtained from accelerated environ-

mental testing. From these data, we ascertain that with only three terms (specifically,

a second-order polynomial equation), we can minimally describe the temporal degra-

dation of MAPI across a broad range of temperatures. To explore the robustness of

this approach, we apply the above approach to simulated data with varying degrees

of Gaussian noise. PDE-FIND still succeeds at identifying the differential equation

when up to 5% Gaussian noise is added to simulated data. However, at this noise

level, the relative error in the identified coefficients is high (about 80%). At above

5% noise, PDE-FIND does not correctly identify the underlying equation. Thus, we

illustrate the use of PDE-FIND with experimental data, and highlight the potential

and limits of this approach to other fields.

In closing, we believe this work to be of broader interest to researchers who wish

to infer scientific knowledge from trained machine-learning models applied to physical

systems. Not only does scientific machine learning aide us with understanding the

underlying scientific phenomena better, it may also enable faster simulations and

better extrapolations beyond our experimental datasets. We show that Scientific ML

has the potential to accelerate the understanding of materials degradation and the

reliability optimization of perovskite materials. The conclusions of any given materials

study may well be rendered more generalizable by identifying underlying equations

governing the observations. Extracting physical laws may facilitate the definition of

acceleration factors for aging tests and also help in the prediction of perovskite solar

cell degradation under varying environmental conditions.
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Appendix A

Tables

1 9.158

𝑈 −6.302 × 10−1

𝑈2 1.426 × 10−2

𝑈3 −1.475 × 10−4

𝑈4 7.096 × 10−7

𝑈5 −1.291 × 10−9

sin(𝑈) 0

cos(𝑈) 0

𝑡0.5 0

𝑈𝑡0.5 0

𝑡 0

𝑈𝑡 0

𝑡2 0

𝑈𝑡2 0

𝑡3 0

𝑈𝑡3 0

𝑇 1.294 × 10−3

exp(−100/𝑇 ) 2.093

Table A.1: Coefficient Values Corresponding to Candidate Terms in the Differential

Equation Identified by PDE-FIND With Full Experimental Data
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Appendix B

Figures

Figure B-1: PDE-FIND Results with Full Experimental Data
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Figure B-2: PDE-FIND Results with Average Experimental Data at 35 ∘C
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Figure B-3: PDE-FIND Results with Average Experimental Data at 45 ∘C
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Figure B-4: PDE-FIND Results with Average Experimental Data at 55 ∘C
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Figure B-5: PDE-FIND Results with Average Experimental Data at 65 ∘C
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Figure B-6: PDE-FIND Results with Average Experimental Data at 75 ∘C
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Figure B-7: PDE-FIND Results with Average Experimental Data at 85 ∘C
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Figure B-8: Coefficient Values vs Temperature with 1st Order Library with Average

Experimental Data

Figure B-9: Coefficient Values vs Temperature with 2nd Order Library with Average

Experimental Data
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Figure B-10: Coefficient Values vs Temperature with 3rd Order Library with Average

Experimental Data
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Figure B-11: Coefficient Values vs Temperature with 4th Order Library with Average

Experimental Data
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Figure B-12: Coefficient Values vs Temperature with 5th Order Library with Average

Experimental Data
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Figure B-13: Comparison Between the Red Value Plot of High and Low Variance

Experimental Data
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Figure B-14: Comparison of High and Low Variance Datasets: Coefficient Values

Averaged Over Samples with 2nd Order Library
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Figure B-15: Comparison of High and Low Variance Datasets: Mean Absolute Devi-

ation (%) in Coefficient Values Samples with 2nd Order Library
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Figure B-16: PDE-FIND Results with Noisy Simulated Data - 𝑑𝑈/𝑑𝑡 estimated from

the differential equation identified by PDE-FIND (with 2nd order library) vs ground

truth
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Figure B-17: PDE-FIND Results with Noisy Simulated Data - 𝑈(𝑡) estimated by

integrating the differential equation identified by PDE-FIND (with 2nd order library)

vs ground truth.
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Figure B-18: Heatmap depicting the MAE between the ground truth data and the

curves obtained by integrating the differential equation identified by PDE-FIND.
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Appendix C

Code and Data

The code and data used to produce the results presented in this thesis will be available

on Tonio Buonassisi Group’s official GitHub account, https://github.com/PV-Lab

in the PDE-Extraction repository: https://github.com/PV-Lab/PDE-Extration.

PDE-FIND is available on GitHub at https://github.com/snagcliffs/PDE-FIND.
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