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Master of Science

Abstract: In routine problem solving, people reason from experience,
remembering their solutions to recurrent problems rather than reconstructing
them from scratch each time. The method of case-based reasoning attempts
to exploit this intuitive strategy on a computer, by maintaining a memory of
precedents, and by solving a new case according to the solution of the most
suitable precursor. Diverse applications of the method seem to suggest its
viability, but a widespread lack of thorough evaluation questions this support.
Indeed, while previous work implies that case-based reasoning is successful
for a variety of domains, few papers identify the general relationships between
performance and the domain characteristics and scaling factors that underlie
it. Thus, researchers are left without an understanding of the method’s scope
or scale, and intuitions about human experience continue to be its primary
Jjustification.

This study addresses many of these open concerns in the context of heart
failure diagnosis, evaluating the existing case-based reasoner CASEY with
respect to a pool of 240 patients. To investigate the method’s scale, I mea-
sured the effects of increasing experience on both accuracy and efficiency. I
also analyzed the distribution of cases in order to quantify its intrinsic reg-
ularity, thus exposing the dependence of the system’s utility on the dom.ain
and facilitating an extrapolation of this utility to other, similarly character-
ized applications. First, I gauged the recurrence of similar cases in varying
size collections of patients; secondly, I measured the correlation between
symptomatic similarity and diagnostic similarity; and finally, I appraised the
absolute diagnostic homogeneity of the case pool.
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Because cardiologists claim that most cases are variations on recurring,
well-understood pathophysiologic themes, I expected to justify the appli-
cation and verify the presumed regularity upon which its success depends.
Instexd, I discovered that CASEY’s accuracy dces not increase with experi-
ence, while its efficiency degrades with the number of available precedents.
Fundamentally, similar cases and similar diagnoses were rare among the 240
patients, and moreover, symptomatic resemblances did not guarantee diag-
nostic correspondence. Because of the varying combination and interaction
of multiple diseases, the patients were largely heterogeneous, suggesting that
the regularity described by cardiologists occurs at a more detailed level of
abstraction, perhaps in the recurrence of diagnostic syndromes comprised
within the cases. This more fine-grain uniformity can be exploited only by
analyzing precedents, rather than by applying them in their entirety.

Thesis Supervisor: Peter Szolovits
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Reasoning from experience is, intuitively, a powerful alternative to problem
solving from scratch. Most real world domains harbor tremendous regularity,
in that similar situations recur, each time requiring similar responses. While
these responses remain applicable, employing experience is effective and accu-
rate. Experience also engenders efficiency, because it obviates the reconstruc-
tion of expensive analysis and deliberation. Rarely should a problem require
as much attention the second time.

People rely upon and exploit these principles, using the solutions they con-
struct repeatedly, often adapting them and tailoring them to fit new circum-
stances. When we give advice, we inevitably bring up “the time that I ...
and proceed to recount the appropriate anecdote. In fact, we are rarely con-
sidered sources of advice unless we have a reputation for possessing experience.
Ezperience is thus the definitive difference between the ezpert and the novice.
Not surprisingly, reasoning from cases or precedents is the paradigm for ex-

perts in fields as dissimilar as medicine, law, management, political science,
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and economics [25].

Medical diagnosis, in particular, relies critically on experience. Students
spend two years in rotation and at least three additional years of residency to
augment their basic knowledge with clinical “practice.” Seasoned physicians
diagnose unusual cases by extrapolating from relevant precedents, while able to
solve familiar cases almost without thinking. Indeed, a substantial portion of
any physician’s diagnoses are routine, and accordingly, the knowledge involved

is automatic.

Case-based reasoning (CBR) is a form of reasoning from experience based
on discrete problem-solving situations called “cases.” Computationally, CBR
resembles dynamic programming, an acceleration technique that advocates
caching the results of calcula.ions to avoid repeating them. To this end, a
case-based reasoner stores previous cases with their solutions in a case base.
Faced with a new problem, the reasoner searches this memory for appropriate
precedents and then derives a solution from the best matched, or most similar,
case retrieved. Numerous implementations substantiate the plausibility of this
approach, and their success suggests broad applicability.

Methodologico’ly, however, very little has been done to validate these op-
timistic indications, and few papers reach strong conclusions concerning the
generality of CBR’s success. Questions such as “What characteristics of the
domain make CBR a useful approach?”, “When is CBR better than other
techniques?”, and “How do accuracy and complexity scale with the number of
cases?” are answered without formal >r empirical support. Current research

focuses on enhancing and applying the technique without yet understanding
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its scope or scale.

To address these open concerns, this thesis presents an evaluation of Phyl-
lis Koton’s CASEY [14], an existing application of CBR to the diagnosis of
heart failure.! Using a pool of 240 cases provided by the Tufts New England
Medical Center, I conducted a thorough empirical study of the case-based
approach, investigating both its admissibility within the heart failure domain
and its profitability as implemented in CASEY. Because clinical cardiology is a
comparably systematic medical discipline, involving recurring presentations of
well-understood pathophysiology, I expected to jasiify the application. A large
proportion of heart failure patients are variavions on the common themes of
ischemic, hypertensive, and alcohol related heart disease.? Surprisingly, how-
ever, my results indicate that even this apparent regularity is too diffuse to

make CASEY succeed.

! Although its design remains intact, I have rewritten and improved much of CASEY’s
implementation. Technically, I should refer to the new system as CASEY+, but I will
continue to call it CASEY, for purposes of simplicity.

*William Long, personal communication.



Chapter 2

Case-Based Reasoning

2.1 Background

The origins of case-based reasoning can be traced to Schank [19], who identifies
“reminding” as the motivating feature of any dynamic memory. Reminding
occurs when a new experience, in the process of being integrated into mem-
ory, collides with a previous episode sharing similar situational details. In
this sense, the new experience “reminds” us of the previous encounter. Be-
cause memories are organized according to their distinguishing features, an
experience is destined to evoke its historical counterparts, simply by virtue of
seeking its place in the proper conceptual cluster. Precedents raise expecta-
tions concerning the new situation and often become the inductive basis for
generalization. Accordingly, Schank feels that “reminding is at the root of how
we understand ... at the root of how we learn” [19].

Kolodner expanded Schank’s initial intuitions by describing a memory in-
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16 CHAPTER 2. CASE-BASED REASONING

dexing structure that facilitates reminding on a computer [10]. Within her
scheme, memories are clustered into “organization packets,” which specify nor-
mative features for the episodes they subsume. Beneath each packet, memories
are indexed according to their differences from the norm, first by the features
through which they differ, and then by their distinctive feature values. Thus,
two situations are indexed together if they have distinguishing traits in com-
mon.

Kolodner employed this indexed memory construct, along with the notion
of analogical transfer proposed by Carbonell 2], in her subsequent definition of
the CBR paradigm [12]. The procedure comprises three rudimentary phases:

1. Integrate the new case into memory, retrieving all similar cases encoun-

tered.
2. Evaluate these precedents for relevance to the current case.

3. Transfer the solution of the best matched precedent to the new situation,

adjusting it according to differences between the two cases (if possible).

Some case-based reasoners also include a fourth phase to address the contin-
gency that no applicable precedents are found. In this phase, the reasoner
may resort either to problem solving from first principles or to the advice of

an expert.

2.2 Intuitive Support

Initially, intuition was used to justify the experiential approach. Schank draws

examples from everyday life, citing, for instance, the similarity between a trip
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to Burger King and a trip to McDonalds. Certainly, one prepares us for the
other [19]. Carbonell argues that although a person may have no truck-driving
experience, (s)he could successfully employ knowledge about automobile mo-
toring when faced with navigating the unfamiliar vehicle [2]. Kristian Ham-
mond appeals to our sensibility with aphorisms: “If it worked, use it again”

[7]. More persuasive still is his invocation of Santayana’s admonishing words:
Those who cannot remember the past are condemned to repeat it.

Unfortunately, there are circumstances under which these intuitions break
down. To ensure that we do not approach CBR with unsound assumptions,

we must confront the following non-obvious questions:
e How often might the past repeat?
e Under what conditions do our memories remain valid?

e To what extent do they apply to other situations within the same con-

text?

e When is repeating the past more efficient than remembering it?

2.3 Methodology and Case-Based Reasoning

Many of the seminal ideas for incorporating methodology into case-based rea-
soning research were presented at the 1989 DARPA sponsored Case-Based
Reasoning Workshop. Phyllis Koton and Paul Cohen express several pressing

reasons for the importance of this undertaking. First, CBR is no longer solely
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a vehicle for psychological modeling. Applied increasingly to real-world prob-
lems, it is obliged to acquire justifications more substantial than “plausibility.”
In Koton’s words, “With increased visibility comes increased responsibility”
[15]). Secondly, the emerging field must appraise itself critically before it allows
its opponents to do so: indeed, by upholding standards within its realm, it will
earn the respect of the general research community. Most crucially, research
must be directed to be effective. Relying on demonstration and exposition,
researchers may forfeit many of the insights they could derive from evaluating
their efforts, empirically or otherwise. Without a methodological framework,
they can not attribute definite meaning to their results, and are destined to
“do clumsy, inconclusive, redundant research!” [4].

Cohen maintains that productive research addresses itcelf to certain fun-
damental questions. To investigate a method such as CBR, according to his

agenda[4], one might inquire:
o What criteria should be used to judge the method’s success?
o What assumptions does the method presume?
e Why is the method correct?
¢ What is the scale and complexity of the method?
¢ How is the method more effective or efficient than other techniques?
» For what class of tasks is the method general?

Furthermore, the experiments that answer these questions should be guided

themselves by more specific questions [3], such as:
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e How representative are the test cases?
e What limitations do they illustrate?

How robust is the implementation?

Is its performance predictable?

o Is it efficient?

What aspects of the program are crucial or incidental to its success?

Why are results confirming or unexpected?

Can these results be generalized?

2.4 Previous Work in Validation

Although substantial research has Leen devoted to implementing case-based
reasoners and demonstrating their capabilities in various domains [12,6] (see
also the 1988 and 1989 Proceedings of the DARPA-Sponsored Case-Based Rea-
soning Workshop), few papers address these questions convincingly. Typically,
evaluating case-based reasoning has involved measuring the percentage of test
case solutions that meet some standard of accuracy. This standard may be
defined either by the judgement of an expert, by comparison to a solution
entailed by first principles, or by the real-world success of the case-based solu-
tion itself. Paul Cohen laments, though, that “We never learn why the author
believes his or her scheme is a good idea, only that it works for a handful of

examples in a program which serves only to produce demonstrations” [4].
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Several researchers, however, have moved somewhat beyond the prescrip-
tion. Marc Goodman, who developed a case-based reasoner for battle plan-
ning, correlated the accuracy of his system’s predictions with the number of
cases it retrieved [5]. His work confirms that (in battle planning, at least) the
number of potential precedents increases the likelihood that a good match will
be found. William Mark notes that “the value of our case based approach will
be measured by the ease with which it can be applied to other problems” [18].
He anticipates expanding the use of his autoclave layout manager, Clavier, to
different autoclave applications and to other configuration problems.

Ray Bareiss devised and executed a diversity of tests for Protos, his case-
based classifier of hearing disorders [1]. After comparing its accuracy to that of
experts, intermediates, and novices, as well as other case-based and inductive
approaches, Bareiss concluded that the case-based method was more effective
than all but the experts (for his domain). Moreover, he determined that, as the
number of cases increased, Protos’ knowledge base experienced linear growth
at most. Thus, (in clinical audiology) CBR attains some measure of efficiency.
Finally, he identified the case base as his reasoner’s “source of power” through
ablation studies in which he eliminated indexing and matching knowledge.

In conclusion, however, Bareiss acknowledged that “even the results of a
battery of experiments as comprehensive as those described cannot be taken as
validation of an approach to learning and problem solving. In particular, our
results are generalizable only insofar as the audiology task is representative of
a larger class” [1]. Thus, while researchers are attempting to broaden their
evaluations, they are limited by the dependence of their results on the domain.

Indeed, merely exhibiting a domain for which CBR succeeds does not entail
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general applicability when the factors responsible for success are not identi-
fied. In response to this concern, Phyllis Koton makes an initial attempt to

characterize domains that admit CBR [16]. Her criteria are as follows:

1. “Similar problems recur.” If history repeats often, then remembering

the past is useful. The benefits of CBR outweigh the costs if:

the probability of finding a good match
X the time gained by not having to recompute the solution
>
the probability that no match is found

x  the time wasted searching and examining precedents!

2. “The domain is stable under perturbations.” If similar problems require
similar solutions, then memories of these solutions are broadly applica-
ble. Conversely, when almost all aspects of a precedent solution must be

modified, it is more efficient to start from scratch.

3. “Interactions are limited.” For solution transfer to be efficient, the num-
ber of modifications required should be proportional to the number of

differences between the old and new cases. Thus, modifications can be

1This equation, paraphrased from Koton’s paper, does not account for the possibility of
error. Specifically, the solution derived from a precedent might be unsuitable despite the
fact that the precedent was judged to be a “good match.” Certainly, criteria 2 and 3 assure
us that this possibility is rare, but they do not rule it out entirely.
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made locally and incrementally. (Although stated as a separate criterion,

this is—I believe—a qualification of 2.)

Koton’s criteria make a significant step towards delineating the scope of
CBR. However, as her work is recent, no confirming empirical studies have yet

been attempted.



Chapter 3

CASEY

3.1 The Heart Failure Domain

The CASEY system, designed by Phyllis Koton, applies CBR to the medical
domain of heart failure. Heart failure occurs in a patient when cardiac output,
the induced rate of blood flow through the heart, is too low to serve the body’s
requirements. The condition may be triggered by many different cardiac dis-
eases, and additionally, syn:pton:s typical of heart failure may be produced by
diseases of other organ systems. However, the goal of heart failure diagnosis is
not merely to pinpoint underlying causes, because many of the implicated dis-
eases are chronic and essentially incurable. Instead, the physician must infer
the physiological mechanisms producing the symptoms, so that these causal
processes can be intercepted through therapy. The task is complicated by the
prevalence of multiple diseases and by the effects of previous intervention.

CASEY is not equipped to diagnose heart failure from first principles. It is

23
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grounded, however, on the model-hased Heart Failure system [17], which au-
tomates this complex undertaking. Developed by William Long, Heart Failure
reasons from a causal network of about 300 potential pathophysiologic states.
Each state is represented by a node in the network and describes a condition
such as AORTIC STENOSIS or HIGH LEFT ATRIAL PRESSURE. A causal link
between two nodes specifies that one causes the other with a given conditional
probability. Similar links embody the probabilistic causal relations between
pathophysiologic states and symptoms (also called findings). Through these
links, findings and intermediate states can be “explained” by one or more of
their potential causes. A pathophysiologic state that needs no explanation is
called a primary cause.

Heart Failure receives as input a list of symptoms, or patient findings,
expressed as (feature value) pairs. Each of the several hundred potential fea-
tures has a prespecified range of possible values. For example, the numerical
feature “heart-rate” can be valued anywhere between 30 and 200 beats per
minute. The categorical feature “cough” can be characterized as “present” or
“absent.” Normal values, when known, are included. Figure 3.1 exhibits a
sample patient description.

Given the patient description, Heart Failure constructs a causal ezplana-
tion, a diagram which links the patient’s abnormal findings to underlying pri-
mary causes, through various intermediate states and causal links. Figure 3.2
displays a sample causal explanation; findings appear in lowercase, and pri-
mary causes are bold. Within such a hypothesis, every finding and state must
be accounted for by another state unless it is primary. Thus, the causal expla-

nation identifies a high probability pathophysiologic mechanism that produces



3.1. THE HEART FAILURE DOMAIN

HISTORY
(AGE . 74)
(SEX MALE)
(DYSPNEA AT-REST NOCTURNAL)
(KNOWN-DIAGNOSES CONGESTIVE-CARDIOMYOPATHY
HYPERTENSION
OLD-MI
CORONARY-HEART-DISEASE)
(THERAPIES CAPTOPRIL
DILTIAZEM
NITROGLYCERIN
PROPRANOLOL
FUROSEMIDE
DIGITALIS
CORONARY-ARTERY-BYPASS-GRAFT)

VITAL-SIGNS
(BLOOD-PRESSURE 100 60)
(HEART-RATE . 60)

(RESP . 20)

(TEMP . 97.700005)

PHYSICAL-EXAM
(APPEARANCE RESPIRATORY-DISTRESS)
(CHEST RALES DECREASED-BRFATH-SOUNDS)
(RALES 1/2-WAY-UP)

(AUSCULTATION S2 S1)

(S1 NORMAL)

(S2 NORMAL)

(ABDOMEN NORMAL-EXAM)

LABORATORY-FINDINGS
(EKG WNL)
(CXR CARDIOMEGALY
PLEURAL-EFFUSION
CONGESTIVE-FAILURE)
(CARDIOMEGALY GENERALIZED)
(NA . 140)
(K. 4.3)
(BUN . 15)
(CREAT . 1.9)
(BLOOD-GASES HYPOCAPNIA ALKALOSIS HYPOXEMIA)
(ALKALOSIS RESPIRATORY)
(URINALYSIS NORMAL)

HEMODYNAMIC-MONITORING

ADDITIONAL-LABORATORY-FINDINGS
(ECHOCARDIOGRAPHY SEVERELY-DEPRESSED-EF)

Figure 3.1: A patient description for case PT1001
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the symptoms presented. In general, the connectivity of a causal explana-
tion is determined uniquely by the states and findings it encompasses; once
a particular set of pathophysiologic states has been hypothesized, the system
assumes that all known influences among them will contribute to the disease
mechanism.

Because each finding and intermediate state has several potential causes,
the number of potential explanatory pathways grows exponentially. Since
paths can span as many as twelve links, there are about 7,000 possible. Pre-
computing and pruning them relieves some of the complexity, but nonetheless,
every path’s probability must be calculated and ranked when the patient in-
formation is entered. Heart Failure searches backward through the paths from
each finding for the primary nodes that account for it, identifying a minimal
(or at least small) set of diseases that “cover” most of the findings. As findings
are integrated into the complete explanation, each potentially relevant path is
considered. In fact, several consistent combinations are constructed simulta-
neously. Finally, the hypotheses are evaluated and the most probable ones are
selected.

Given the problem of constructing, from scratch, a high probability causal
explanation for a set of findings, the system is surprisingly efficient. Its clever
heuristics prune the unmanageable space of solutions so that diagnosis is fast
enough to be pragmatic and yet robust enough to be powerful. Indeed, Heart
Failure can diagnose a typical patient in under a minute, while still able to
solve a broad range of common and unusual cases. However, although its
heuristics reduce the diagnostic computation significantly, the system must

inevitably consider, evaluate, and combine exponentially many potentially rel-
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Figure 3.2: A causal explanation for case PT1001
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evant pathways. Since remembering its solutions might save the system this

computation in the future, the domain appears ripe for case-based reasoning.

3.2 Implementation

CASEY [14] attempts to achieve efficiency through case-based reasoning with-
out sacrificing the effectiveness and completeness of Heart Failure. For every
patient it sees, it remembers the set of findings input and a complete causal ex-
planation. Thus, when it recognizes a new problem as familiar, it can retrieve
and transfer the appropriate solution from its case base. However, CASEY
also realizes when a problem is not familiar, calling Heart Failure to construct
a new diagnosis, which it adds to its repertoire. The system’s functionality
can be divided into three aspects, following the case-based reasoning paradigm:
precedent retrieval, pzecedent evaluation, and solution transfer.

To understand CASEY’s approach to precedent retrieval requires an un-
derstanding of its memory, whose implementation closely resembles Kolodner’s
construction [10]. Individual cases are stored beneath a discrimination network
of generalizations (GENs), such that each GEN records resemblances between
the cases and sub-generalizations it subsumes, while indexing these cases and
sub-generalizations by the features that distinguish them. A GEN retains the
patient findings that are common to at least 2/3 of the cases it encompasses
and stores pathophysiologic states included by the causal explanations of all
of its cases. Figure 3.3 displays a sample GEN.

Within a GEN, cases and sub-generalizations are discriminated on the basis

of two levels of indexing: the first level specifies distinguishing features, and
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GEN °*FEATURE-GEN*® NODES: 46

FEATURES
(auscultation s2)
(angina unstable)
(sex male)

CAUSAL il

DIFFS acute-mi syncope/near-syncops ...

GEN 083 NODES: 23

FEATURES

(cardiomegaly Iv)

(spex-impulse sustained)

(s2 single)

(characteristic-murmur as)

(pulse siow-rise)

(chest-pain anginal)

(dyspnes on-exertion)

CAUSAL

limited-cardiac-output goneral-flow-deficit
exertions! angina fixed-high-outflow-resistance

DIFFS
known diagnoses heart-rate auscultation ...

Figure 3.3: A fragment of CASEY’s memory structure (taken from Koton’s
doctoral dissertation [14])
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the second, distinguishing values for those features. For example, if a case is
atypical by virtue of the finding (syncope on-exertion), it is indexed first under
“syncope”, and then under “on-exertion”. The indexing scheme is redundant,
because it catalogs a case according to every finding that differentiates it from
the norm, at every level of the discrimination network. Thus, there exist
several paths through memory to any one case, each generalizing the case on
the basis of different attributes. Regrettably, the redundancy is necessary, as
subsequent cases may match any subset of these attributes without matching
the others. Indeed, different findings are important to different cases, and thus,
restricting the set of indices might cause CASEY to miss the most suitable
precedent for a new case.

CASEY is reminded of precederts in the process of incorporating a new
case into its memory. When the new case encounters a GEN, CASEY compares
them, remembering the GEN if the new case is representative in all aspects.
Otherwise, CASEY searches every index-pair specifying a finding that distin-
guishes the new case from the GEN norm. If any oi these index-pairs are
“empty,” the case is stored there, and the GEN becomes a reminding. If sub-
generalizations are encountered, they are searched recursively. Finally, if an
individual case is found, CASEY replaces it with a new GEN that embodies
its similarity to the new case. The two cases are then stored beneath this GEN
on the basis of their distinguishing features, and the precedent case becomes
a reminding.

Once CASEY retrieves potential precedents, it must evaluate their applica-
bility to the new case. In the heart failure domain, as in many others, different

features can be manifestations of the same underlying state. For example, the
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findings (ekg lv-strain) and (chest-xray lv-enlargement) both provide evidence
for the more general state LV-HYPERTROPHY.! Thus, the feature-based simi-
larity that was used to retrieve the precedents is not necessarily the optimal
basis for evaluation and comparison. Instead, cases are more likely to have
similar causal explanations if they share generalized causal features, such as
“evidence of LV-HYPERTROPHY,” which subsumes both (ekg lv-strain) and
(chest-xray lv-enlargement). In fact, CASEY maintains a second discrimina-
tion net that indexes cases exclusively through their generalized causal fea-
tures; CASEY searches this memory for additional remindings.

CASEY’s similarity metric for ranking potential precedents counts gener-
alized causal features matched by new case evidence and subtracts from these
the number unmatched by new case evidence. Thus, precedents are given pri-
ority if (1) they match a large number of new case findings and (2) the new
case accounts for a large proportion of their pathophysiologic states. After the
precedents are ranked, CASEY attempts to transfer the solution of its best
candidate. If the attempt fails, it continues through the remaining precedents
until a successful transfer occurs. When none of its precedents are appropriate,
it requests a diagnosis from Heart Failure.

CASEY also makes extensive use of Heart Failure in justifying and adapting
a solution foz transfer. Solution adaptation proceeds in three stages. First, the
system removes from the precedent hypothesis all disease states contradicted
by new case findings. Secondly, CASEY incorporates those findings that can be
directly explained by precedent pathophysiologic states. Symptoms remaining

14]y” ig an abbreviation for “left ventricular.”
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unexplained are accounted for, using the model, by augmenting the causal
explanation with additional pathways. If any findings defy explanation, given
the precedent diagnostic scheme, the transfer fails. Finally, CASEY prunes the
resulting solution by eliminating all disease states bereft of evidence, failing
here if no primary states remain. Otherwise, transfer is complete.

Although CASEY guarantees a valid and plausible explanation for each
new case, its reasoning is heavily biased by the diagnostic hypothesis estab-
lished in the precedent. Indeed, its very efficiency derives from the locality of
its modifications and from the fact that these modifications are bounded by the
number of differences between the precedent and the new case. Consequently,
it is not able, like Heart Failure, to ensure a high probability explanation for
the new case findings considered as a whole. Presumably, it will approach this

ideal when the differences are small.



Chapter 4

Evaluating CASEY

4.1 Criteria For Success

Before we can even begin to evaluate CASEY, we must answer the question:
“What are our criteria for success?” Certainly, a range of judgments may be
made using measures as different as elegance, cognitive validity, and utility. For
the present evaluation, utility seems the most objective and most appropriate
standard; even so, there exist several possible ways to define and assess it.
Two primary and necessary contributors to utility are accuracy and effi-
ciency. CASEY’s accuracy ultimately refers to the quality of its diagnoses. Yet
because all domain knowledge and precedent solutions are obtained exclusively
from Heart Failure, CASEY is constrained by the correctness of this underlying
system; it must not be penalized for reasoning from incorrect solutions that it
receives on faith. Therefore, to judge the accuracy of the case-based reasoning

involved, independent of Heart Failure, we establish the model-based solutions

33
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as ideal, measuring CASEY’s analogically derived causal explanations against
that standard.

One technique for assessing relative accuracy might quantify the discrep-
ancy between the ideal solution and the case-based approximation, by enumer-
ating the pathophysiologic states missing from CASEY’s causal explanation
along with the superfluous states included spuriously therein. The error frac-

tion € will be computed accordingly, as:

Number of missing states Number of spurious states
included in Heart Failure’s + included in CASEY’s causal
causal explanation but explanation but not in Heart
omitted from CASEY’s Failure’s

Total number of states in Heart Failure’s causal explanation’

The error measure € is merely a syntactic, structural criterion, computed inde-
pendently of the semantics and function of the diagnoses that it assesses. An
alternative and perhaps more sensitive measure of accuracy would consider the
likelihood that CASEY’s causal explanation is the actual mechanism behind
the findings presented.? The Heart Failure System can make this assessment
using the prevalences and link probabilities specified in its causal model. Be-
cause I am interested in relative accuracy, however, I will compute the relative

likelihood ) as the ratio of the likelihood of CASEY’s solution to the likelihood

1This fraction can exceed the value 1 when the spurious states outnumber the accurate
pathophysiologic states.

¥While even richer criteria might take into account the cost of terminal illness or the
utility of treatable disease, this study lacks a solid basis for such judgments and therefore
will not go beyond the two more conventional measures.
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of the ideal:

Likelihood of CASEY’s causal explanation
Likelihood of Heart Failure’s causal explanation

As its experience grows, CASEY’s relative accuracy should increase asymp-
totically. The system is efficient, then, as long as it requires only moderately
increasing amounts of memory and time to store and retrieve the growing
number of precedents. CASEY’s memory requirements can be measured by
the number of cases stored in the case base and the number of GENs be-
neath which these are indexed. Its search time is bounded by the number of
cases and GENs that it explores during precedent retrieval. The number of
modifications the system must make to precedent solutions is an additicnal
component of time complexity.

For CASEY to be worthwhile, it must supersede Heart Failure in some
measure. Although CASEY can, in general, only emulate Heart Failure’s
accuracy,® it can surpass its efficiency, presumably by avoiding the computa-

tionally intensive model-based problem solving.

30ccasionally, CASEY may find a precedent whose solution is a more likely explanation
of the new case findings than the Heart Failure ideal; however, it is unlikely that the model-
based system would construct this more accurate hypothesis for the precedent but overlook
it for the new case. Alternately, CASEY could overtake the accuracy of the original Heart
Failure system by obtaining less fallible precedents either from physicians or from a less
heuristic, more robust, more time consuming version of the model-based system.
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4.2 Experimental Method

In 1867, Louis Pasteur introduced to scientific thought the notion of a con-
trolled experiment. Bacteria flourished in an open flask he filled with unfer-
mented liquids but failed to grow in a similar, sealed container. Before his
breakthrough, scientists believed that bacteria were spontaneously generated
from food and liquids under all circumstances.

In 1990, many Artificial Intelligence researchers continue to conduct eval-
uations without any semblance of experimental control. Studies that investi-
gate the viability of a new method do not test different circumstances across
which its performance may vary. However, in this examination of case-based
reasoning, I use experience itself as an experimental variable: rather than
merely evaluating reasoning from experience per se, I determine the effects
of increasing experience on both accuracy and efficiency. My results are still
inevitably limited, since they are derived from only a single domain. However,
by uncovering and making explicit characteristics of heart failure that influ-
ence CASEY’s performance, through statistical analysis of the test cases, |
will be able to generalize my conclusions to encompass similarly characterized

domains.

4.3 Experimental Design

This study measured various facets of CASEY’s performance and their de-
pendence upon experience, using a pool of 240 cases provided by Tufts New

England Medical Center. To modulate the amount of experience, I composed
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varying size collections of precedents, including 25, 50, 75, 100, 125, 150, 175,
and 200 patients respectively. Each case base contained 25 new precedents,
in addition to all the precedents contained in the previous case base, so that
experience was both uniformly incremental and cumulative.

Employing each case base in turn, CASEY diagnosed the 40 remaining
patients, which were designated as “test cases.” Each such diagnosis was

subsequently evaluated according to the following criteria:

e ¢, the diagnostic error of CASEY’s causal explanation, with respect to

the Heart Failure ideal (see section 4.1)

e ¢p, the raw precedent error, representing the diagnostic error of the
precedent causal explanation before solution adaptation, with respect

to the Heart Failure ideal

e ), the relative likelihood of CASEY’s causal explanation for the findings,
with respect to the Heart Failure ideal (see section 4.1)*

e the number of memory nodes (GENs and precedents) searched during

precedent retrieval
In addition, each case base was assessed for:

e the number of memory nodes (GENs and precedents) it contained

Whenever CASEY found no appropriate precedents for a particular test case, € was
assigned the default value of 1, because CASEY’s null solution was, by definition, missing
every ideal state. Since the likelihood of a null solution is 0, A was assigned this default
value. The default value of ep, however, was calculated vsing the best matched precedent
retrieved, even though CASEY could not transfer its solution to the test case.
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For the purpose of computing the relative accuracy criteria, “ideal” diag-
noses for all 40 test cases were provided by the Heart Failure system. All 200
precedents were also diagnosed by Heart Failure, and to maintain consistency,
CASEY’s causal explanations for test cases were not incorporated dynamically
into the case bases, as they might have been otherwise. Thus, the capabili-
ties of case-based reasoning were isolated from the quality of the precedent
solutions.

The sample of 240 patients is reasonably and convincingly representative
of the real-world distribution of heart failure cases: it includes all patients
diagnosed at Tufts New England Medical Center, from all DRGs related to
heart failure, during a period of about two years. Thus, the sample contains
no bias, as did the 45 cases used to test CASEY initially; indeed, 20 of those 45
were hand selected from patients with either coronary artery disease or aortic
stenosis [14]. Each case base incorporates, in order, the first N cases from a
prespecified random permutation on the 200 potential precedents. The ran-
dom permutation eliminated the skew intrinsic to the initial sequence, which
organized the patients by DRG. Moreover, enforcing the same permutation
over all case bases factored the issue of learning order out of the study.

The 40 test cases had also been selected at random from the pool, and to
ascertain whether they represent a valid statistical sample, I constructed four
additional test sets, each also containing 40 randomly chosen cases, in order to
measure variances. With a case base of 25 precedents, CASEY diagnosed the
40 test cases from each of the five sets, and I computed, for each set, averages
of the relative accuracy criteria and an average of the number of memory nodes

searched.
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Figure 4.1 presents the spread of the five averages along each criterion.
The scale of each plot represents the natural rauge of the measure it quantifies
(see figures 5.4, 5.5, 5.6, and 6.5), and because the variances extend over
relatively small portions of these ranges, we can conclude that 40 test cases
are a sufficient predictor of average performance. The boxes contain 50% of
the spread, or three set averages, while the fences encompass the remaining

averages, with the exception of extreme outlyers, denoted by asterisks.



40 CHAPTER 4. EVALUATING CASEY

Q0 Q1 Q2 03 Q4 o5 (o]} a7 o8 09 10

Average Dlagnostic Error (Epsion)

<[

L 1 L 1 1 1 1 1 1 i J

00 02 04 a8 o]} 10 12 14 18 18 20

Average Diagnostic Error Before Solution Adaptation (EpelonP)

— 1 1 1 | 1 i 1 [l 1 1 1 i |

-2 -1 -0 9 6 -7 4 € <4 -3 -2 - ] 1

Relative Diagnostic Likethood (Lambda. logarithm base 10)

0 200 400 600 800 1000 1200 1400

Average Number of Memory Nodes Searched

Figure 4.1: Variances for four performance criteria
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Accuracy

5.1 Predictions

Even now that we have a basis for evaluating CASEY, we must postpone
asking “How well does CASEY work?” until we have answered “Why does
CASEY work?”, or more simply: “Does CASEY work?”. Fundamentally, we
should investigate whether the heart failure domain is a suitable application
for case-based reasoning. For a number of reasons, I hypothesized that it is.
First, not every combination of findings represents a plausible case. Be-
cause these findings are merely the outward manifestations of particular disease
states, they occur not randomly but causally, appearing often in the company
of certain related symptoms and almost never in the company of others. Fur-
thermore, the primary causes (and multiple disease sets, as well) have varying
likelihoods a priori. Thus, many of even the plausible cases will be rare, while

a few common syndromes will appear time after time. For these “routine”

41
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cases, which are likely to begin with, history will repeat, and similar versions
will recur. Accordingly, case-based reasoning deces well to remember their so-
lutions, which are destined to be all but worn out with future use. The method
also relies on the converse tautology: cases for which it has most likely not
encountered precedents are—just that!—rare.

Winston perceived, as early as 1982, that these “Causal relations identify
the regularities that can be exploited from past experience” [25]. Invariably,
the same causal mechanisms that explain a particular case will entail similar
explanations for slight variations on the case. Rarely does hypothesizing a dis-
ease depend upon the presence or absence of a single symptom. Relationships
between states in the Heart Failure model are expressed locally, as links, and
therefore small differences will necessitate only local modifications. However,
as the differences grow, the entire backbone of a diagnosis may be eroded,
no longer supported by the same constellation of symptoms. Accordingly, al-
though the new set of findings may be explained plausibly by the precedent
causal explanation, they may be more probably explained by a completely
different pattern of pathophysiologic states. Indeed, with increased diagnostic
confidence comes the subtle, increased danger of transforming an unsuitable
precedent solution into a technically possible, but improbable causal explana-
tion for the new case.

Because of the primacy of obtaining an appropriate precedent, the case
memory will be unequivocally CASEY’s primary “source of power.” However,
I expect that CASEY’s extensive use of the Heart Failure model has significant
effects on its performance. For example, indexing and evaluating precedents

on the basis of generalized causal features is extremely clever, as it allows
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CASEY to preview potential components of the new case solution and match
them with componeuts of precedent causal explanations. Clearly, the system
has much to gain and little to lose from these local, but powerful operations.
In terms of generalized causal features, similar problems will recur even more
frequently and will harbor even fewer differences between their solutions.

CASEY’s solution transfer process is probably the implementation’s largest
contribution to performance. Through local application of the Heart Failure
model, CASEY can make a close solution perfect, a moderately appropriate
solution close, and a distant solution plausible. The very facility of these mod-
ifications allows CASEY to search for broad equivalence classes of diagnestic
hypotheses, rother than particular hypotheses themselves, thus enhancing the
generality and applicability of its case-based reasoning.

Given that similar problems recur, CASEY can become proficient at “rou-
tine” diagnosis without an inordinate number of precedents. As the number
of precedents increases, the best inatched previous case will come closer and
closer to the new case. Moreover, if similar problems require similar solu-
tions, the error measures ¢, €p, and A should improve rapidly as the case base
grows, particularly as the decreasing difference between the new case and its
precedent increases the locality of potential modifications.

Unfortunately, these intuitions were fundamentally misleading.

5.2 Accuracy and Experience

In actuality, CASEY’s accuracy does not improve with experience. Figures 5.1,

5.2, and 5.3 show three criteria of accuracy unchanging as experience increases



44 CHAPTER 5. ACCURACY

from 25 to 200 precedents. Each point represents an average over the 40 test
cases, diagnosed using a case base of the specified size. Given the variances
illustrated in figure 4.1, the small changes that these graphs experience are
insignificant.

In figure 5.1, the diagnostic error €, which was expected to asymptote
towards zero, hovers around 0.5. Thus, even with 200 precedents to reason
from, CASEY constructs causal explanations in which, on average, half of
the pathophysiologic states are either missing or spurious. According to this
criterion, case-based reascaing is both ineffective and unimproving.

Figure 5.2 plots the relative diagnostic likelihood A, which should asymp-
tote towards 1 if experience were successful. ) is plotted on a logarithmic scale
and averaged logarithmically as well, because it is calculated as a product, us-
ing conditional probabilities. These conditional probabilities, embodied in the
causal links of a diagnosis, represent the chance that a particular finding or
intermediate state is caused by the pathophysiologic state used to explain it.
Because each link contributes multiplicatively to the likelihood, the measure
is extremely sensitive to change. Intuitively though, an increasing number of
precedents should improve CASEY’s chances of obtaining a high probability
solution, or at least, a solution closer to Heart Failure’s. Instead, CASEY’s
causal explanations for test case findings remain approximately 1000 times less
likely that the explanations constructed by Heart Failure for the same cases.

How crucial or incidental to CASEY’s reasoning is the solution adaptation
process? During this process, CASEY uses the Heart Failure model to reduce
the difference between a precedent causal explanation and the ideal solution

for the new case. To isolate the contribution of the underlying case-based
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reasoning, we can ablate solution adaptation, computing the raw precedent
error ep as the difference between the pathophysiologic states from the most
appropriate precedent, before transfer, and those of the ideal solution for the
new case.

Figure 5.3 displays both the raw error ep before solution adaptation (dot-
ted line) and the error ¢ after solution adaptation (solid line). Obviously,
adaptation is significant, as it allows CASEY on average to reduce error by
half. The difference |ep — €| approximates the number of modifications that
CASEY makes during adaptation, in proportion to the size of the solution
itself; since the average causal explanation contains roughly 23.5 pathophysio-
logic states, CASEY actually changes half of these, or 11.75 states. Even more
significant, however, is the fact that the error ep before solution adaptation
does not decrease with increasing case base size. CASEY simply does not find
better precedents, even when its choices grow substantially.

Almost as surprising as the fact that accuracy does not improve are the
occasional increases in relative error and the occasional decreases in relative
likelihood. Undoubtedly, these retrogressions are miniscule, but the reader
may wonder how they could occur at all. Once CASEY solves a test case using
a particular precedent, achieving a certain level of accuracy, then adding more
patients to the case base should not compromise this achievement, because
the system always has the option of reverting to the original precedent. This
argument is misleading, however, because it assumes that the most appropriate
precedent will also bear the most resemblance to the test case. Since CASEY
does not yet know the diagnosis of the new case, it cannot judge precedents

according to the suitability of their causal explanations. Instead, it must rely
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on a more fallible similarity metric based on findings or generalized causal
features. Consequently, the system may retrieve from the larger case base a

less appropriate precedent which it deems more similar to the new case.

5.3 Accuracy Range

Although average accuracy remains constant with increasing case base size,
accuracy results vary considerably over individual test cases. Figures 5.4, 5.5,
and 5.6 display histograms for the three accuracy criteria over 320 tests, which
comprise the diagnoses of all 40 test cases by each of the 8 case bases.

Figure 5.4 reveals that the diagnostic error € resides primarily between 0
and 1. However, several outlying points testify that it can exceed 1 when the
number of spurious states overwhelms the number of correct pathophysiologic
states.

In figure 5.5, the raw diagnostic error ep before solution adaptation sprawls
predominantly between 0.2 and 1.8. Because CASEY has not yet eliminated
flagrantly spurious states from or incorporated blatantly missing states into
the precedent causal explanation, the number of incorrect states overwhelms
the number of accurate states as often as not. Five extreme outlying points
at ep = 5.0 and one at ep = 5.3 did not even fit within the graph boundaries.

Figure 5.6 displays the relative diagnostic likelihood A ranging from 10~12
to 101. Only twice in 320 tests did CASEY arrive at a causal explanation more
likely than Heart Failure’s. Otherwise, many solutions were plausible, while a
few were abysmal, at nearly one trillion times less likely than Heart Failure’s

diagnosis.
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5.4 Precedents and Accuracy

Figures 5.7, 5.8, and 5.9 plot the average number of precedents that were
available when CASEY obtained solutions with the specified accuracy. The
lines represent locally weighted scatterpl.i smoothings. Intuitively, improved
accuracy values should imply that larger case bases were used to obtain them.
However, because accuracy remains constant as case base size varies, this
supposition does not hold. If anything, the number of precedents used to
support increasing accuracy decreases, but the points are too scattered and

uncorrelated to support conclusions of any sort.
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Chapter 6

Efficiency

6.1 Predictions

Although CASEY’s accuracy is primarily domain determined, its efficiency
depends heavily upon implementation. In particular, CASEY’s memory re-
quirements may be significantly larger than the number of precedents might
suggest. Kolodner’s construction (the basis for CASEY’s memory) is both
complex and redundant. The number of GENs it creates may equal and even
overwhelm the number of actual cases. Recall that in CASEY a case is in-
dexed, at each stage of the discrimination network, according to every finding
that differentiates it from the norm.!

Because indexing is redundant, the size of the case base has the potential
to grow exponentially with the number of cases. Hypothetically, thére could
be O(2¥) GENs , each representing a different subset of the N precedents and

!Recall also that this redundancy is essential, as the most appropriate precedent may
match the new case according to any of the combinatorially many subsets of possible findings.
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defined by the unique group of findings common to that subset. Granted,
cases that are prototypical for a GEN are not stored, and features included in
the GEN norms are eliminated from further indexing. However, the intuition
that the case memory grows more slowly after it has seen increasing numbers
of cases [14] is not substantiated empirically or formally.

Retrieval time may also slow, despite the fact that CASEY never searches
all paths through the discrimination net. At each stage of the network, the
search must branch according to the number of differentiating features, which
may decrease, but not dramatically. Although retrieval time seems to be
constant for up to 44 cases [14], this relation may change as the case base
becomes truly large.

To promote compactness, CASEY merges a GEN with its parent when
it accumulates 2/3 of its parent’s cases. Thus, every GEN’s “case count”
is at most 2/3 times the “case count” of its parent, and consequently, the
memory structure is no deeper than O(logy/; N) = O(log N). As long as the
precedent search branches at each stage of the discrimination net, it will visit
O(8°s") = O(N) nodes (where b is the branching factor). This does not
imply that the search visits a constant fraction of the cases, however, as a case
indexed into any parent GEN may be indexed, recursively, into several of its
children, and may thus be visited several times in the course of a search.

The preceding estimates of exponential space and linear time are the results
of a worst-case analysis. Undoubtedly, there are domains that elicit this no-
torious performance, and in such cases, ¢ven an O(N) tiime brute force search
through the simple O(N) size precedent list would be preferable. However, the

regularity intrinsic to the heart failure domain should simplify the memory’s
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complexity in practice.

Because similar cases recur, they will cluster compactly into larger and
fewer GENs. Moreover, clusters of co-occurring findings will be roughly dis-
joint, causing the rapidly diverging branching factor to converge on relatively
few sub-generalizations. In the best case, the discrimination net will resemble a
tree, expending only O(N) space; if only a small fraction of the paths through
this structure are actually searched, retrieval time may approach O(log N).
Although CASEY does fall short of this ideal, I expected its memory to grow
only as a small polynomial in the number of precedents and its time complexity

to be sublinear.

6.2 Memory

An exceptionally smooth curve in Figure 6.1 outlines the number of memory
nodes, including both GENs and cases, required to index precedent popula-
tions of varying size. Figure 6.2 plots the same points on a double logarith-
mic scale, and its perfect linearity demonstrates that CASEY’s memory grows
polynomially as predicted, and not exponentially.? A subsequent linear regres-
sion analysis using the simplex algorithm revealed the degree of the curve to
be 1.668. However, although its order of growth is small, CASEY’s memory
grows rapidly enough to become infeasible even when the number of prece-
dents is moderate. Almost 9000 memory nodes are required to index only 200
precedents.

As explained in the previous section, CASEY collapses a GEN into its

*flogY = alog X + b, then 10'°8Y = 103196 X10% and thus Y = 10°X*, a polynomial.
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parent when it subindexes 2/3 of its parent’s cases. Figure 6.3 illustrates the
consequences of failing to collapse such GENs. The solid line in the figure plots
the number of memory nodes required when collapsing is performed; the dotted
line represents memory growth without collapsing. Certainly, the process is
significant, as it reduces the number of nodes required by approximately half.
However, it does not diminish the memory’s order of growth.

Section 3.2 discussed the fact that CASEY maintains two discrimination
networks, one that indexes precedents based on their findings, and another
that indexes them based on generalized causal features. Figure 6.4 depicts the
breakdown of memory growth between the two networks. Since generalized
causal features abstract findings to the level of the pathophysiologic states for
which they provide evidence, they provide a superior representation for the
regularity inherent in the cases. Consequently, the dotted line representing the
generalized causal memory rises more slowly than does the solid line, which
represents the memory based on findings per se. Clearly, the added abstraction

facilitates more parsimonious, more compact generalization.

6.3 Retrieval Time

Figure 6.5 shows retrieval time fulfilling the worst case scenario of linear
growth. Each point represents the number of memory nodes searched during
precedent retrieval, averaged over the 40 test cases, for each case base. Con-
sidering the slope of the plot renders CASEY’s retrieval process not only dis-
appointing but acutely impractical as well. For instance, the system searched

over 1200 memory nodes in a case base of only 200 precedents.
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In figure 6.6, retrieval time is broken down between the findings memory
(solid line) and the generalized causal memory (dotted line). Because a new
case is, by definition, undiagnosed, its findings are not yet explained by patho-
physiologic states. Consequently, CASEY must include among its generalized
causal features all possible causes for all of its findings. Thus, a search through
the generalized causal memory will branch according to a more extensive se-
quence of indices and will therefore visit a larger number of nodes.

How does retrieval time grow as accuracy increases? Intuitively, the case
bases used to achieve higher accuracy values should be larger, and thus should
require more time for retrieval. Also, cases for which good precedents ex-
ist are presumably well represented in the case base and, thus, must search
through a relatively large segment of it. Conversely, rare cases will find few
sub-generalizations with similar distinguishing features, and thus can quickly
locate their best matches, which are actually quite poor.

Figures 6.7, 6.8, and 6.9 are scatterplots attempting to correlate retrieval
time with the three accuracy criteria. Each point corresponds to a single
test case, while each test case appears at eight points, representing different
retrieval times and different diagnostic accuracies obtained from each of the
eight case bases. Although curves were obtained using locally weighted scat-
terplot smoothing, the plots are sufficiently diffuse to warrant forbearing any
unsubstantiated conclusions we might draw from them. Only in two of the
graphs does retrieval time seem to increase with decreasing diagnostic error,
but it does so in sections of the graphs that are almost entirely unpopulated.
As the average number of precedents available did not increase with accu-

racy, we cannot expect retrieval time, a significantly more indirect measure of
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relevant experience, to increase.

6.4 Generalization Granularity

Because GEN norms are compiled from features common to at least 2/3 of the
subsumed cases, CASEY merges a sub-generalization with its parent when it
indexes the same fraction of its parent’s precedents. How is CASEY’s per-
formance affected by changing the granularity of generalization through this
fraction’s value? To answer this question, I conducted an additional series of
experiments, holding the number of precedents constant at 100, but allowing
the granularity parameter to vary among the values 1/2, 2/3, 3/4, and 9/10.

Intuitively, decreasing this parameter yields larger, vaguer GENs. Thus,
although the memory will be more compact and the retrieval time will decrease,
I predicted that the quality of CASEY’s solutions, as measured by ¢, ¢p and
A, would diminish. Conversely, as the granularity parameter increases, GENs
will become smaller and more specific. Consequently, the memory will be more
discriminating, and unfortunately, more expansive, suggesting that retrieval
time will increase and that solution quality will improve.

Figures 6.10 through 6.13 confirm increases in memory size and retrieval
time with larger granularity values. Memory size experiences the slight in-
crease shown in figure 6.10 because larger granularity causes GEN collapsing
to occur less frequently. Figure 6.11 demonstrates that the findings mem-
ory (solid line) and the generalized causal memory (dotted line) are equally
affected. Retrieval time increases, as shown in figure 6.12, because stricter re-

quirements for including features in GEN norms leave more features available
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for branching; in addition, there are more GENs to search. Figure 6.13 por-
trays the more pronounced effects on the generalized causal memory’s retrieval
time (dotted line), encouraged by that memory’s greater tendency to branch
during search.

Figures 6.14, 6.15, and 6.16 plot the three accuracy criteria against gen-
eralization granularity.®> Not surprisingly, since accuracy does not vary with

case base size, it is “marble-constant” across all granularity values.

8 A newer version of the Heart Failare system computed the likelihood of CASEY’s solu-
tions for this experiment. Its stricter “probability of hypothesis” function tended to produce
lower A values, relative to the precomputed ideal likelihoods. However, the increased mag-
nitude of the disparity does not change the criterion’s constancy over varying generalisation
granularity.
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Chapter 7

Domain Regularity

7.1 Similar Cases

Cardiologists perceive a great deal of regularity in the heart failure domain,
claiming that a preponderance of their diagnostic tasks are routine. The rea-
son: many of the cases that they see are similar. However, if heart failure
patients resemble each other significantly, then case-based reasoning should
succeed, first in finding similar cases among potential precedents, and sec-
ondly, in transferring the diagnoses of these homologous precedents to new
patients. As this study demonstrates, case-based reasoning confounds our ex-
pectations, unable to construct accurate diagnoses even with 200 potential
precedents. Two aspects of regularity are consequently at issue.

Conceivably, similar cases may not recur. The resemblances that cardi-
ologists suggest could be more diffuse than what CASEY expects, perhﬁps

requiring thousands of cases for adequate rep.csentation. Human beings no-
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toriously make broad generalizations on an abstract, encompassing level while
implicitly cognizant of important individual differences. For example, we can
state the rule “look before you leap” with conviction and still be able to finesse
circumstances under which “he who hesitates is lost.”

Alternately, and perhaps in addition, similar cases may not require similar
solutions. Symptomatic or syntactic resemblance does not necessarily entail
the diagnostic, semantic homology upon which case-based reasoning depends.
Heart failure is a complex, context sensitive domain, in which the collective
evidence provided by clusters of findings reveals more than the collected con-
tributions of findings considered in isolation. For example, a systolic ejection
murmur is often evidence for high cardiac output. However, when other symp-
toms characterize the cardiac output as normal or low, the same murmur is
more probably explained by aortic stenosis. Mitral regurgitation, although
only weakly suggested by a particular murmur alone, is almost definitely the
murmur’s cause if it is supported by more specific evidence. Since the presence
or absence of a particular finding can determine the explanation of others, two
almost equivalent cases may diverge diagnostically. Thus, CASEY may re-
trieve “similar” precedents whose causal explanations do not lead to the best
explanation for the new patient.

Uncovering the heart failure domain characteristics responsible for CASEY’s
diagnostic inefficacy will allow us to delineate a general class of domains for
which case-based reasoning fails. Accordingly, this chapter presents a series of

experiments designed to investigate the domain, with respect to whether:

e Similar cases recur
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e Similar cases require similar solutions

However, before we undertake these inquiries, we must define what we mean
by “similar cases.”

Intuitively, two cases are similar if they have a large number of findings
in common. However, because disease states can express themselves through
any of a variety of findings, cases with equivalent disease states may differ
superficially. Generalized causal features (see section 3.2), which represent the
pathophysiologic states for which findings provide evidence, seem to be a more
powerful predictor of diagnostic similarity. However, because new findings have
not yet been assigned to particular pathophysiologic states, all of their possible
causes must be included among the generalized causal features, thus diffusing
the power of the representation.

CASEY’s own similarity metric enumerates precedent pathophysiologic
states matched by the new case’s generalized causal features, but then pe-
nalizes the precedent for its unmatched states. In this way, the system avoids
precedents that contain overwhelming amounts of inappropriate and mislead-
ing information. As precedents can be judged both by common findings and
by common “gen causals,” they can also be penalized according to both rep-
resentations. Table 7.1 diagrams the four similarity metrics that result.

The last conceivable similarity metric is the perfect, or retrospective, met-
ric, which judges two cases to be similar if their diagnoses agree. CASEY can
not use this metric until the new case has been diagnosed, thus defeating its
purpose, but I can exploit it to measure the absolute limits of regularity in the

heart failure domain.
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M1 M3

Common Findings Common Gen Causals
M2 M4 (CASEY’s Metric)
Common Findings Common Gen Causals

- Unmatched Findings | - Unmatched Gen Causals

Table 7.1: Four similarity metrics

7.2 Do Similar Cases Recur?

If similar cases recur, then as case base size increases, the best matched prece-
dent should approximate the new case more and more closely, approaching
perfect correspondence in the limit. To test this expectation, I compared each
of the 40 test cases to the 200 precedents in order, measuring similarity based
on the four metrics described in the previous section. For each metric, I plot-
ted 200 points, each corresponding to the highest similarity achieved by any
of the first N precedents. Thus, the graphs in figures 7.1 through 7.4 portray
increases in the similarity of the best matched precedent, as case base size
grows from 1 to 200.

Values along each metric rise sharply and then plateau abruptly before even
25 precedents have been considered. The plots thus illustrate simply and con-
clusively the reason for accuracy’s unresponsiveness to experience. Figure 7.1
shows the number of common findings halting well below 40, the total num-
ber of findings in a typical case. When the number of unmatched findinge is
subtracted from this measure (figure 7.2), the resulting net similarity cloes not
even reach zero, signifying that, on average, even the best matched precedent

from a case base of 200 has more findings unmatched than matched. Encom-
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passing all possible causes of the new findings, generalized causal features tend
to be a catch-all net, matching large numbers of precedent pathophysiologic
states, and matching larger numbers of states from larger precedents (notice
the jump at precedent 86 in figure 7.3). Consequently, the number of common
“gen causals” is not a particularly discriminating metric. CASEY’s own met-
ric, which subtracts the number of unmatched “gen causals,” is more sensitive;
accordingly, it reaches a net similarity of only 7 (figure 7.4).

Apparently, although somewhat similar cases populate even a small pool
of 25 precedents, truly similar cases are rare in even a moderately large pool of
200. Given the slight and, moreover, the diminishing slope of the four curves,
CASEY might need vast numbers of cases before any of the metrics (with the

exception of the third) approach maximum value.

7.3 Do Similar Cases Require Similar Solu-
tions?

For the purpose of analyzing the correlations between case similarity and so-
lution similarity, I derived diagnoses for each of the 40 test cases using each of

the 200 precedents and measured the following:

o Case similarity, according to the four metrics

e The difference between the precedent causal explanation and the ideal
causal explanation for the test case, computed as the number of different

pathophysiologic states
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e The raw error e¢p of the precedent diagnosis before solutio. adaptation,

with respect to the ideal

e The error € of CASEY’s solution after adaptation, with respect to the
ideal

> The relative likelihood A of CASEY’s solution, with respect to the ideal

Figure 7.5 displays a scatterplot matrix of diagnostic difference, ¢p, and €
graphed against the four similarity metrics. The points of each plot represent
a random selection of approximately 250 of the original 8000 test case and

precedent pairs;! the curves were computed using a locally weighted smooth-

ing algorithm. On average, solution disparity deccreases with increasing case
similarity, and therefore, on average, similar cases tend to require similar solu-
tions. However, the plots are diffuse and the confidence intervals are wide, so
that, despite the trends, a similar precedent does not guarantee an appropriate
diagnosis.

Al*hough all correlations are weak, CASEY’s similarity metric (M4) proves
to be the strongest predictor of precedent suitability. Figures 7.6 throngh 7.11
enlarge the plots involving this metric and the baseline metric (M1), which
measures the number of common findings. The larger plots incorporate 500
randomly selected points.

What appear to be horizontal lines across the ¢ plots in figures 7.5, 7.10,
and '.11 are in fact concentrations of points at the default value 1, assigned

to ¢ when CASEY deems solution trausfer inappropriate. Recall that solu-

!Restricting the point set was unavoidable given the capacity of the graphing package.
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tion adaptation fails either when a new finding cannot be explained within
the precedent diagnostic scheme, or when pruning unsupported pathophysio-
logic states leaves the causal explanation bereft of a diagnosis {see section 3.2).
Because similar cases tend to require similar solutions, the proportion of un-
suitable precedents should decrease with increasing similarity. The graphs in
figure 7.12, however, refute this supposition. For each of the four metrics, I
organized the 8000 test case and precedent pairs according to their similar-
ity, computing the fraction of inappropriate matches at each similarity value.
Although a locally weighted smoothing algorithm attempted to characterize
curves for the plots, they were distinctly uncorrelated. Thus, despite the
overall similarity between two cases, a few crucial, distingnishing findings can
dichotomize their causal explanations to the point of incompatibility.

Figure 7.13 is a matrix of scatterplots involving the four similarity metrics
and the relative likelihood ), plotted on a logazithmic scale. 500 test pairs were
selected for the plot, but because inappropriate solution transfer results in a
default relative likelikood of 0, which is infinitely negative on a logarithmic
scale, unsuitable matches were not plotted, leaving 324 points. Lines were
computed using locally weighted smoothing, and large scale versions of the
graphs for metrics M1 and M4 appear in figures 7.14 and 7.15.

Surprisingly, the relative likelihood criterion remains independent of prece-
dent similarity. Unlike the Heart Failure system, CASEY does not take full ac-
count of the probability of the diagnostic hypotheses that it generates. Rather,
it accepts a precedent scheme unquestioningly, linking new case findings to it
whether these links are probable or not. Given the mediocre precedents that

populate a 200 patient case base, finding a match that is not only qualitatively
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close, but quantitatively likely as well, appears to require different mechanisms.
Perhaps precedent matches must be almost perfect before they can even be-
gin to constrain the likelihood of solution transfer; alternatively, perhaps the
notion of precedent matching is not the appropriate constraint.

In summary, do similar cases require similar solutions? The best answer
that the heart failure domain can muster is “possibly.” Case similarity only
weakly influences solution difference and error of transfer; indeed, each simi-
larity value admits a wide range of close and distant solution matches. The
domain is even more noncommittal with respect to associating similar prece-
dents with likely, or even appropriate, solutions for the new case. Interactions
among findings that determine diagnostic success are too context sensitive and

specific to be accounted for by an overall metric.

7.4 Retrospective Similarity

In order to probe the true limits of regularity in heart failure diagnosis, I
will leave our four practical, but fallible, similarity metrics behind. Instead,
I will judge two cases as close if their diagnoses are close, calling my metric
retrospective, because it measures similarity by hindsight, after diagnosis has
taken place. Using the new, perfect metric, we can combine the two questions
“Do similar cases recur?” and “Do similar cases require similar solutions?”,

asking the more profound question:

Do similar solutions recur?
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To pursue the new line of inquiry, I used the entire pool of 240 cases,

240 \
constructing the = 26860 possible case pairs and comparing the
2

ideal diagnoses of the two cases within each pair. Figure 7.16 is a histogram of
the number of case pairs differing in the specified number of pathophysiologic
states. Unequivocally, similar solutions do not recur. All 240 solutions are
mutually distinct, and the closest pair of solutions differ in five disease states.
Moreover, the median pair of solutions differ in almost thirty states, which is
larger than the size of a typical causal explanation (23.5 states), and therefore
larger than half the size of the typical paiz. Whatever regularity heart failure
diagnosis contains must be exceedingly diffuse.

Figure 7.17 plots the fraction of the 26860 case pairs whose diagnostic
difference was at most the specified number of states. Almost none of the case
pairs differed in less than 10 states, while 90% of them differed in at least 18
states. Astonishingly, 80% of the case pairs differed in 21 states, almost half
the size of a typical diagnostic pair.

The fraction plotted in figure 7.17 represents the proportion of pairs of
cases whose solutions fell within a specific distance of each other. It can also
be interpreted as an empirical estimate of the probability that the solutions
of a random case matching will achieve ‘he specified proximity. Therefore,
the reciprocal of this probability bounds the expected number of precedents
required to assure us that a new case will find a close match. Figure 7.18 graphs
this empirical expectation on a logarithmic scale. The number of precedents
required rises with dizzying rapidity 2s we demand better matches for the new

case, and the double logarithmic plot in figure 7.19 assures us, through its
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upward concavity, that the ascent is exponential. CASEY would need a case
base of tens or even hundreds of thousands of patients to provide its new cases
with decent precedents.

According to this empirical curve, if CASEY has 240 patients in its case
base, then its best matched precedents should, on average, have solutions dif-
ferent from the new case diagnosis in approximately 10 or 11 pathophysiologic
states. To corroborate the curve’s prediction, I located, for each of the 240
cases, the closest causal explanation among the remaining 239 and computed
the diagnostic difference between them. Figure 7.20 displays the resuiting his-
togram. Averaged over the 240 cases, the closest diagnosis differed from the
current case’s solution in 12 states. Thus, the previous curve’s prediction is
approximately confirmed.

Figure 7.21 plots the fraction of cases for which the closest matching diag-
nosis fell within the specified distance. Less than 7% of the cases could find
matching diagnoses with fewer than 7 different states, while approximately
80% of the cases could not find diagnoses with fewer than 9 different states.
Bearing in mind that the average causal explanation contains only 23.5 states,
we realize that among 240 cases, appropriate precedents simply do not exist;

even a perfect, retrospective metric would not help us find them.
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ber of unmatched findings
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Figure 7.3: Effects of increasing experience on the similarity of the best
matched precedent, judged by the number of common generalized causal fea-
tures
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Figure 7.4: Effects of increasing experience on the similarity of the best
matched precedent, judged by the number of common generalized causal fea-
tures minus the number of unmatched generalized causal features



94 CHAPTER 7. DOMAIN REGULARITY

M1 M2 M3 M4

OFF

EPSILONP

%le ) .u‘.:.: l:: ;' oo

2038
AN
ey ge et
Bg gt .

welialas
oA

Figure 7.5: Correlations between case similarity and diagnostic disparity, mes-
sured by: 1. the diagnostic difference (DIFF); 2. the diagnostic error ep before
solution adaptation (EPSILONP); and 3. the diagnostic error ¢ (EPSILON)
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Figure 7.6: Correlation between the nurmbsr of commoa findings (M1) and

diagnostic difference
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Figure 7.7: Correlation between CASEY’s similarity metric (M4) and diag-

nostic difference



FIGURES 97

8 T T T
5
<
cC
.‘__9
3
0
&
2
w ..
= AL
g 2 .
a
&)
O | 13 |

Common Findings

Figure 7.8: Correlation between the numbe: of common findings (M1) and the
diagnostic error ¢p before solution adaptation
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Figure 7.9: Correlation between CASEY’s similarity metric (M4) and the
diagnostic error ep before solution adaptation




FIGURES 99

25 , , |
20 ]

S 15 B

|

IS

g

A 10 Foeee :.:: ........... SR -

Common Findings

Figure 7.10: Correlation between the number of common findings (M1) and
the diagnostic error ¢
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Figure 7.11: Correlation between CASEY’s similarity metric (M4) and the
diagnostic error €
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