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Abstract. We propose a novel framework for learning stabilizable nonlinear dy-
namical systems for continuous control tasks in robotics. The key idea is to de-
velop a new control-theoretic regularizer for dynamics fitting rooted in the notion
of stabilizability, which guarantees that the learned system can be accompanied
by a robust controller capable of stabilizing any open-loop trajectory that the sys-
tem may generate. By leveraging tools from contraction theory, statistical learn-
ing, and convex optimization, we provide a general and tractable semi-supervised
algorithm to learn stabilizable dynamics, which can be applied to complex un-
deractuated systems. We validated the proposed algorithm on a simulated pla-
nar quadrotor system and observed notably improved trajectory generation and
tracking performance with the control-theoretic regularized model over models
learned using traditional regression techniques, especially when using a small
number of demonstration examples. The results presented illustrate the need to
infuse standard model-based reinforcement learning algorithms with concepts
drawn from nonlinear control theory for improved reliability.

Keywords: Model-based reinforcement learning, contraction theory, robotics.

1 Introduction

The problem of efficiently and accurately estimating an unknown dynamical system,

ẋ(t) = f(x(t), u(t)), (1)

from a small set of sampled trajectories, where x ∈ Rn is the state and u ∈ Rm is the
control input, is the central task in model-based Reinforcement Learning (RL). In this
setting, a robotic agent strives to pair an estimated dynamics model with a feedback
policy in order to optimally act in a dynamic and uncertain environment. The model of
the dynamical system can be continuously updated as the robot experiences the con-
sequences of its actions, and the improved model can be leveraged for different tasks
affording a natural form of transfer learning. When it works, model-based Reinforce-
ment Learning typically offers major improvements in sample efficiency in comparison
to state of the art RL methods such as Policy Gradients [3,23] that do not explicitly esti-
mate the underlying system. Yet, all too often, when standard supervised learning with
powerful function approximators such as Deep Neural Networks and Kernel Methods
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are applied to model complex dynamics, the resulting controllers do not perform at par
with model-free RL methods in the limit of increasing sample size, due to compound-
ing errors across long time horizons. The main goal of this paper is to develop a new
control-theoretic regularizer for dynamics fitting rooted in the notion of stabilizability,
which guarantees that the learned system can be accompanied by a robust controller
capable of stabilizing any trajectory that the system may generate.

Formally, a reference state-input trajectory pair (x∗(t), u∗(t)), t ∈ [0, T ] for sys-
tem (1) is termed exponentially stabilizable at rate λ > 0 if there exists a feedback
controller k : Rn × Rn → Rm such that the solution x(t) of the system:

ẋ(t) = f(x(t), u∗(t) + k(x∗(t), x(t))),

converges exponentially to x∗(t) at rate λ. That is,

‖x(t)− x∗(t)‖2 ≤ C‖x(0)− x∗(0)‖2 e−λt (2)

for some constant C > 0. The system (1) is termed exponentially stabilizable at rate λ
in an open, connected, bounded region X ⊂ Rn if all state trajectories x∗(t) satisfying
x∗(t) ∈ X , ∀t ∈ [0, T ] are exponentially stabilizable at rate λ.

Problem Statement: In this work, we assume that the dynamics function f(x, u)
is unknown to us and we are instead provided with a dataset of tuples {(xi, ui, ẋi)}Ni=1
taken from a collection of observed trajectories (e.g., expert demonstrations) on the
robot. Our objective is to solve the problem:

min
f̂∈H

N∑
i=1

∥∥∥f̂(xi, ui)− ẋi
∥∥∥2
2

+ µ‖f̂‖2H (3)

s.t. f̂ is stabilizable, (4)

whereH is an appropriate normed function space and µ > 0 is a regularization param-
eter. Note that we use (̂·) to differentiate the learned dynamics from the true dynamics.
We expect that for systems that are indeed stabilizable, enforcing such a constraint
may drastically prune the hypothesis space, thereby playing the role of a “control-
theoretic” regularizer that is potentially more powerful and ultimately, more pertinent
for the downstream control task of generating and tracking new trajectories.

Related Work: The simplest approach to learning dynamics is to ignore stabiliz-
ability and treat the problem as a standard one-step time series regression task [3,5,23].
However, coarse dynamics models trained on limited training data typically generate
trajectories that rapidly diverge from expected paths, inducing controllers that are inef-
fective when applied to the true system. This divergence can be reduced by expanding
the training data with corrections to boost multi-step prediction accuracy [35, 36]. In
recent work on uncertainty-aware model-based RL, policies [3, 23] are optimized with
respect to stochastic rollouts from probabilistic dynamics models that are iteratively
improved in a model predictive control loop. Despite being effective, these methods are
still heuristic in the sense that the existence of a stabilizing feedback controller is not
explicitly guaranteed.

Learning dynamical systems satisfying some desirable stability properties (such as
asymptotic stability about an equilibrium point, e.g., for point-to-point motion) has been
studied in the autonomous case, ẋ(t) = f(x(t)), in the context of imitation learning.
In this line of work, one assumes perfect knowledge and invertibility of the robot’s
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controlled dynamics to solve for the input that realizes this desirable closed-loop mo-
tion [10, 11, 14, 20, 27, 31]. Crucially, in our work, we do not require knowledge, or
invertibility of the robot’s controlled dynamics. We seek to learn the full controlled dy-
namics of the robot, under the constraint that the resulting learned dynamics generate
dynamically feasible, and most importantly, stabilizable trajectories. Thus, this work
generalizes existing literature by additionally incorporating the controllability limita-
tions of the robot within the learning problem. In that sense, it is in the spirit of recent
model-based RL techniques that exploit control theoretic notions of stability to guaran-
tee model safety during the learning process [1]. However, unlike the work in [1] which
aims to maintain a local region of attraction near a known safe operating point, we con-
sider a stronger notion of safety – that of stabilizability, that is, the ability to keep the
system within a bounded region of any exploratory open-loop trajectory.

Potentially, the tools we develop may also be used to extend standard adaptive robot
control design, such as [33] – a technique which achieves stable concurrent learning
and control using a combination of physical basis functions and general mathematical
expansions, e.g. radial basis function approximations [29]. Notably, our work allows
us to handle complex underactuated systems, a consequence of the significantly more
powerful function approximation framework developed herein, as well as of the use of
a differential (rather than classical) Lyapunov-like setting, as we shall detail.

Statement of Contributions: Stabilizability of trajectories is a complex task in
non-linear control. In this work, we leverage recent advances in contraction theory for
control design through the use of control contraction metrics (CCM) [17] that turns
stabilizability constraints into convex Linear Matrix Inequalities (LMIs). Contraction
theory [16] is a method of analyzing nonlinear systems in a differential framework,
i.e., via the associated variational system [4, Chp 3], and is focused on the study of
convergence between pairs of state trajectories towards each other. Thus, at its core,
contraction explores a stronger notion of stability – that of incremental stability be-
tween solution trajectories, instead of the stability of an equilibrium point or invariant
set. Importantly, we harness recent results in [17, 19, 32] that illustrate how to use con-
traction theory to obtain a certificate for trajectory stabilizability and an accompanying
tracking controller with exponential stability properties. In Section 2, we provide a brief
summary of these results, which in turn will form the foundation of this work.

Our paper makes four primary contributions. First, we formulate the learning stabi-
lizable dynamics problem through the lens of control contraction metrics (Section 3).
Second, under an arguably weak assumption on the sparsity of the true dynamics model,
we present a finite-dimensional optimization-based solution to this problem by leverag-
ing the powerful framework of vector-valued Reproducing Kernel Hilbert Spaces (Sec-
tion 4.2). We further motivate this solution from a standpoint of viewing the stabilizabil-
ity constraint as a novel control-theoretic regularizer for dynamics learning. Third, we
develop a tractable algorithm leveraging alternating convex optimization problems and
adaptive sampling to iteratively solve the finite-dimensional optimization problem (Sec-
tion 5). Finally, we verify the proposed approach on a 6-state, 2-input planar quadrotor
model where we demonstrate that naive regression-based dynamics learning can yield
estimated models that generate completely unstabilizable trajectories. In contrast, the
control-theoretic regularized model generates vastly superior quality, trackable trajec-
tories, especially for smaller training sets (Section 6).

2 Review of Contraction Theory
The core principle behind contraction theory [16] is to study the evolution of distance
between any two arbitrarily close neighboring trajectories and drawing conclusions on
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the distance between any pair of trajectories. Given an autonomous system of the form:
ẋ(t) = f(x(t)), consider two neighboring trajectories separated by an infinitesimal
(virtual) displacement δx (formally, δx is a vector in the tangent space TxX at x). The
dynamics of this virtual displacement are given by:

δ̇x =
∂f

∂x
δx,

where ∂f/∂x is the Jacobian of f . The dynamics of the infinitesimal squared distance
δTx δx between these two trajectories is then given by:

d

dt

(
δTx δx

)
= 2δTx

∂f

∂x
δx.

Then, if the (symmetric part) of the Jacobian matrix ∂f/∂x is uniformly negative defi-
nite, i.e.,

sup
x
λmax

(
1

2

∂f(x)

∂x

∧)
≤ −λ < 0,

where (·)
∧

:= (·) + (·)T , λ > 0, one has that the squared infinitesimal length δTx δx is ex-
ponentially convergent to zero at rate 2λ. By path integration of δx between any pair of
trajectories, one has that the distance between any two trajectories shrinks exponentially
to zero. The vector field is thereby referred to be contracting at rate λ.

Contraction metrics generalize this observation by considering as infinitesimal squared
length distance, a symmetric positive definite function V (x, δx) = δTxM(x)δx, where
M : X → S>0

n , is a mapping from X to the set of uniformly positive-definite n × n
symmetric matrices. Formally, M(x) may be interpreted as a Riemannian metric ten-
sor, endowing the space X with the Riemannian squared length element V (x, δx). A
fundamental result in contraction theory [16] is that any contracting system admits a
contraction metric M(x) such that the associated function V (x, δx) satisfies:

V̇ (x, δx) ≤ −2λV (x, δx), ∀(x, δx) ∈ T X ,

for some λ > 0. Thus, the function V (x, δx) may be interpreted as a differential Lya-
punov function.

2.1 Control Contraction Metrics
Control contraction metrics (CCMs) generalize contraction analysis to the controlled
dynamical setting, in the sense that the analysis searches jointly for a controller design
and the metric that describes the contraction properties of the resulting closed-loop
system. Consider dynamics of the form:

ẋ(t) = f(x(t)) +B(x(t))u(t), (5)

whereB : X → Rn×m is the input matrix, and denoteB in column form as (b1, . . . , bm)
and u in component form as (u1, . . . , um). To define a CCM, analogously to the previ-
ous section, we first analyze the variational dynamics, i.e., the dynamics of an infinites-
imal displacement δx:

δ̇x =

:=A(x,u)︷ ︸︸ ︷(
∂f(x)

∂x
+

m∑
j=1

uj
∂bj(x)

∂x

)
δx +B(x)δu, (6)
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where δu is an infinitesimal (virtual) control vector at u (i.e., δu is a vector in the control
input tangent space, i.e., Rm). A CCM for the system {f,B} is a uniformly positive-
definite symmetric matrix function M(x) such that there exists a function δu(x, δx, u)
so that the function V (x, δx) = δTxM(x)δx satisfies

V̇ (x, δx, u) = δTx

(
∂f+BuM(x) +M(x)A(x, u)
∧)

δx + 2δTxM(x)B(x)δu

≤ −2λV (x, δx), ∀(x, δx) ∈ T X , u ∈ Rm,
(7)

where ∂gM(x) is the matrix with element (i, j) given by Lie derivative ofMij(x) along
the vector g. Given the existence of a valid CCM, one then constructs a stabilizing (in
the sense of eq. (2)) feedback controller k(x∗, x) as described in Appendix D.

Some important observations are in order. First, the function V (x, δx) may be in-
terpreted as a differential control Lyapunov function, in that, there exists a stabilizing
differential controller δu that stabilizes the variational dynamics (6) in the sense of
eq. (7). Second, and more importantly, we see that by stabilizing the variational dynam-
ics (essentially an infinite family of linear dynamics in (δx, δu)) pointwise, everywhere
in the state-space, we obtain a stabilizing controller for the original nonlinear system.
Crucially, this is an exact stabilization result, not one based on local linearization-based
control. Consequently, one can show several useful properties, such as invariance to
state-space transformations [17] and robustness [18,32]. Third, the CCM approach only
requires a weak form of controllability, and therefore is not restricted to feedback lin-
earizable (i.e., invertible) systems.

3 Problem Formulation

Using the characterization of stabilizability using CCMs, we can now formalize our
problem as follows. Given our dataset of tuples {(xi, ui, ẋi)}Ni=1, the objective of this
work is to learn the dynamics functions f(x) and B(x) in eq. (5), subject to the con-
straint that there exists a valid CCM M(x) for the learned dynamics. That is, the CCM
M(x) plays the role of a certificate of stabilizability for the learned dynamics.

As shown in [17], a necessary and sufficient characterization of a CCM M(x) is
given in terms of its dual W (x) := M(x)−1 by the following two conditions:

BT⊥

(
∂bjW (x)− ∂bj(x)

∂x
W (x)

∧)
B⊥ = 0, j = 1, . . . ,m ∀x ∈ X , (8)

B⊥(x)T

(
−∂fW (x) +

∂f(x)

∂x
W (x)

∧

+ 2λW (x)

)
B⊥(x)︸ ︷︷ ︸

:=F (x;f,W,λ)

≺ 0, ∀x ∈ X , (9)

where B⊥ is the annihilator matrix for B, i.e., B(x)TB⊥(x) = 0 for all x. In the def-
inition above, we write F (x;W, f, λ) since {W, f, λ} will be optimization variables
in our formulation. Thus, our learning task reduces to finding the functions {f,B,W}
and constant λ that jointly satisfy the above constraints, while minimizing an appro-
priate regularized regression loss function. Formally, problem (3) can be re-stated as:
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min
f̂∈Hf ,b̂j∈HB ,j=1,...,m

W∈HW
w,w,λ∈R>0

:=Jd(f̂ ,B̂)︷ ︸︸ ︷
N∑
i=1

∥∥∥f̂(xi) + B̂(xi)ui − ẋi
∥∥∥2
2

+ µf‖f̂‖2Hf + µb

m∑
j=1

‖b̂j‖2HB +

+ (w − w) + µw‖W‖2HW︸ ︷︷ ︸
:=Jm(W,w,w)

(10a)

subject to eqs. (8), (9) ∀x ∈ X , (10b)
wIn �W (x) � wIn, ∀x ∈ X , (10c)

whereHf andHB are appropriately chosen Rn-valued function classes on X for f̂ and
b̂j respectively, and HW is a suitable S>0

n -valued function space on X . The objective
is composed of a dynamics term Jd – consisting of regression loss and regularization
terms, and a metric term Jm – consisting of a condition number surrogate loss on the
metric W (x) and a regularization term. The metric cost term w − w is motivated by
the observation that the state tracking error (i.e., ‖x(t) − x∗(t)‖2) in the presence of
bounded additive disturbances is proportional to the ratio w/w (see [32]).

Notice that the coupling constraint (9) is a bi-linear matrix inequality in the decision
variables sets {f̂ , λ} and W . Thus at a high-level, a solution algorithm must consist of
alternating between two convex sub-problems, defined by the objective/decision vari-
able pairs (Jd, {f̂ , B̂, λ}) and (Jm, {W,w,w}).

4 Solution Formulation
When performing dynamics learning on a system that is a priori known to be exponen-
tially stabilizable at some strictly positive rate λ, the constrained problem formulation
in (10) follows naturally given the assured existence of a CCM. Albeit, the infinite-
dimensional nature of the constraints is a considerable technical challenge, broadly
falling under the class of semi-infinite optimization [8]. Alternatively, for systems that
are not globally exponentially stabilizable inX , one can imagine that such a constrained
formulation may lead to adverse effects on the learned dynamics model.

Thus, in this section we propose a relaxation of problem (10) motivated by the con-
cept of regularization. Specifically, constraints (8) and (9) capture this notion of stability
of infinitesimal deviations at all points in the space X . They stem from requiring that
V̇ ≤ −2λV (x, δx) in eq (7) when δTxM(x)B(x) = 0, i.e., when δu can have no effect
on V̇ . This is nothing but the standard control Lyapunov inequality, applied to the differ-
ential setting. Constraint (8) sets to zero, the terms in (7) affine in u, while constraint (9)
enforces this “natural” stability condition.

The simplifications we make are (i) relax constraints (9) and (10c) to hold pointwise
over some finite constraint set Xc ∈ X , and (ii) assume a specific sparsity structure
for input matrix estimate B̂(x). We discuss the pointwise relaxation here; the sparsity
assumption on B̂(x) is discussed in the following section and Appendix A.

First, from a purely mathematical standpoint, the pointwise relaxation of (9) and
(10c) is motivated by the observation that as the CCM-based controller is exponentially
stabilizing, we only require the differential stability condition to hold locally (in a tube-
like region) with respect to the provided demonstrations. By continuity of eigenvalues
for continuously parameterized entries of a matrix, it is sufficient to enforce the matrix
inequalities at a sampled set of points [13].
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Second, enforcing the existence of such an “approximate” CCM seems to have
an impressive regularization effect on the learned dynamics that is more meaningful
than standard regularization techniques used in for instance, ridge or lasso regression.
Specifically, problem (10), and more generally, problem (3) can be viewed as the pro-
jection of the best-fit dynamics onto the set of stabilizable systems. This results in dy-
namics models that jointly balance regression performance and stabilizablity, ultimately
yielding systems whose generated trajectories are notably easier to track. This effect of
regularization is discussed in detail in our experiments in Section 6.

Practically, the finite constraint set Xc, with cardinality Nc, includes all xi in the
regression training set of {(xi, ui, ẋi)}Ni=1 tuples. However, as the LMI constraints are
independent of ui, ẋi, the set Xc is chosen as a strict superset of {xi}Ni=1 (i.e., Nc >
N ) by randomly sampling additional points within X , drawing parallels with semi-
supervised learning.

4.1 Sparsity of Input Matrix Estimate B̂

While a pointwise relaxation for the matrix inequalities is reasonable, one cannot apply
such a relaxation to the exact equality condition in (8). Thus, the second simplification
made is the following assumption, reminiscent of control normal form equations.

Assumption 1 Assume B̂(x) to take the following sparse representation:

B̂(x) =

[
O(n−m)×m

b(x)

]
, (11)

where b(x) is an invertible m×m matrix for all x ∈ X .

For the assumed structure of B̂(x), a valid B⊥ matrix is then given by:

B⊥ =

[
In−m

Om×(n−m)

]
. (12)

Therefore, constraint (8) simply becomes:

∂b̂jW⊥(x) = 0, j = 1, . . . ,m.

where W⊥ is the upper-left (n − m) × (n − m) block of W (x). Assembling these
constraints for the (p, q) entry of W⊥, i.e., w⊥pq , we obtain:[

∂w⊥pq (x)

∂x(n−m)+1
· · ·

∂w⊥pq (x)

∂xn

]
b(x) = 0.

Since the matrix b(x) in (11) is assumed to be invertible, the only solution to this equa-
tion is ∂w⊥pq/∂x

i = 0 for i = (n−m) + 1, . . . , n, and all (p, q) ∈ {1, . . . , (n−m)}.
That is,W⊥ cannot be a function of the lastm components of x – an elegant simplifica-
tion of constraint (8). Due to space limitations, justification for this sparsity assumption
is provided in Appendix A.
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4.2 Finite-dimensional Optimization

We now present a tractable finite-dimensional optimization for solving problem (10)
under the two simplifying assumptions introduced in the previous sections. The deriva-
tion of the solution algorithm itself is presented in Appendix B, and relies extensively
on vector-valued Reproducing Kernel Hilbert Spaces.

Step 1: Parametrize the functions f̂ , the columns of B̂(x): {b̂j}mj=1, and {wij}ni,j=1
as a linear combination of features. That is,

f̂(x) = Φf (x)Tα, (13)

b̂j(x) = Φb(x)Tβj j ∈ {1, . . . ,m}, (14)

wij(x) =

{
φ̂w(x)T θ̂ij if (i, j) ∈ {1, . . . , n−m},
φw(x)T θij else,

(15)

where α ∈ Rdf , βj ∈ Rdb , θ̂ij , θij ∈ Rdw are constant vectors to be opti-
mized over, and Φf : X → Rdf×n, Φb : X → Rdb×n, φ̂w : X → Rdw and
φw : X → Rdw are a priori chosen feature mappings. To enforce the spar-
sity structure in (11), the feature matrix Φb must have all 0s in its first n−m
columns. The features φ̂w are distinct from φw in that the former are only
a function of the first n −m components of x (as per Section 4.1). While
one can use any function approximator (e.g., neural nets), we motivate this
parameterization from a perspective of Reproducing Kernel Hilbert Spaces
(RKHS); see Appendix B.

Step 2: Given positive regularization constants µf , µb, µw and positive tolerances
(δλ, ελ) and (δw, εw), solve:

min
α,βj ,θ̂ij ,θij ,w,w,λ

:=Jd︷ ︸︸ ︷
N∑
k=1

‖f̂(xi) + B̂(xi)ui − ẋi‖22 + µf‖α‖22 + µb

m∑
j=1

‖βj‖22

+ (w − w) + µw
∑
i,j

‖θ̃ij‖22︸ ︷︷ ︸
:=Jm

(16a)

s.t. F (xi;α, θ̃ij , λ+ ελ) � 0, ∀xi ∈ Xc, (16b)
(w + εw)In �W (xi) � wIn, ∀xi ∈ Xc, (16c)

θij = θji, θ̂ij = θ̂ji (16d)
λ ≥ δλ, w ≥ δw, (16e)

where θ̃ij is used as a placeholder for θij and θ̂ij to simplify notation.

We wish to highlight the following key points regarding problem (16). Constraints
(16b) and (16c) are the pointwise relaxations of (9) and (10c) respectively. Constraint (16d)
captures the fact that W (x) is a symmetric matrix. Finally, constraint (16e) imposes
some tolerance requirements to ensure a well conditioned solution. Additionally, the
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tolerances εδ and εw are used to account for the pointwise relaxations of the matrix
inequalities. A key challenge is to efficiently solve this constrained optimization prob-
lem, given a potentially large number of constraint points in Xc. In the next section, we
present an iterative algorithm and an adaptive constraint sampling technique to solve
problem (16).

5 Solution Algorithm
The fundamental structure of the solution algorithm consists of alternating between
the dynamics and metric sub-problems derived from problem (16). We also make a
few additional modifications to aid tractability, most notable of which is the use of
a dynamically updating set of constraint points X(k)

c at which the LMI constraints are
enforced at the kth iteration. In particularX(k)

c ⊂ Xc withN (k)
c := |X(k)

c | being ideally
much less than Nc, the cardinality of the full constraint set Xc. Formally, each major
iteration k is characterized by three minor steps (sub-problems):

1. Finite-dimensional dynamics sub-problem at iteration k:

min
α,βj ,j=1,...,m, λ

s≥0

Jd(α, β) + µs‖s‖1 (17a)

s.t. F (xi;α, θ̃
(k−1)
ij , λ+ ελ) � s(xi)In−m ∀xi ∈ X(k)

c

(17b)

s(xi) ≤ s̄(k−1) ∀xi ∈ X(k)
c (17c)

λ ≥ δλ, (17d)

where µs is an additional regularization parameter for s – anN (k)
c dimensional

non-negative slack vector. The quantity s̄(k−1) is defined as

s̄(k−1) := max
xi∈Xc

λmax

(
F (k−1)(xi)

)
, where

F (k−1)(xi) := F (xi;α
(k−1), θ̃

(k−1)
ij , λ(k−1) + ελ).

That is, s̄(k−1) captures the worst violation for the F (·) LMI over the entire
constraint set Xc, given the parameters at the end of iteration k − 1.

2. Finite-dimensional metric sub-problem at iteration k:

min
θ̃ij ,w,w,s≥0

Jm(θ̃ij , w, w) + (1/µs)‖s‖1 (18a)

s.t. F (xi;α
(k), θ̃ij , λ

(k) + ελ) � s(xi)In−m ∀xi ∈ X(k)
c (18b)

s(xi) ≤ s̄(k−1) ∀xi ∈ X(k)
c (18c)

(w + εw)In �W (xi) � wIn, ∀xi ∈ X(k)
c , (18d)

w ≥ δw. (18e)
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3. Update X(k)
c sub-problem. Choose a tolerance parameter δ > 0. Then, define

ν(k)(xi) := max
{
λmax

(
F k(xi)

)
, λmax

(
(δw + εδ)In −W (xi)

)}
, ∀xi ∈ Xc,

and set

X(k+1)
c :=

{
xi ∈ X(k)

c : ν(k)(xi) > −δ
}⋃{

xi ∈ Xc \X(k)
c : ν(k)(xi) > 0

}
.

(19)

Thus, in the updateX(k)
c step, we balance addressing points where constraints are being

violated (ν(k) > 0) and discarding points where constraints are satisfied with sufficient
strict inequality (ν(k) ≤ −δ). This prevents overfitting to any specific subset of the
constraint points. A potential variation to the union above is to only add up to say K
constraint violating points from Xc \ X(k)

c (e.g., corresponding to the K worst viola-
tors), where K is a fixed positive integer. Indeed this is the variation used in our experi-
ments and was found to be extremely efficient in balancing the size of the set X(k)

c and
thus, the complexity of each iteration. This adaptive sampling technique is inspired by
exchange algorithms for semi-infinite optimization, as the one proposed in [37] where
one is trying to enforce the constraints at all points in a compact set X .

Note that after the first major iteration, we replace the regularization terms in Jd
and Jm with ‖α(k) − α(k−1)‖22, ‖β(k)

j − β(k−1)
j ‖22, and ‖θ̃(k)ij − θ̃

(k−1)
ij ‖22. This is done

to prevent large updates to the parameters, particularly due to the dynamically updating
constraint set X(k)

c . The full pseudocode is summarized below in Algorithm 1.

Algorithm 1 Stabilizable Non-Linear Dynamics Learning (SNDL)

1: Input: Dataset {xi, ui, ẋi}Ni=1, constraint set Xc, regularization constants {µf , µb, µw},
constraint tolerances {δλ, ελ, δw, εw}, discard tolerance parameter δ, Initial # of constraint
points: N (0)

c , Max # iterations: Nmax, termination tolerance ε.
2: k ← 0, converged← false, W (x)← In.
3: X(0)

c ← RANDSAMPLE(Xc, N
(0)
c )

4: while ¬converged ∧ k < Nmax do
5: {α(k), β

(k)
j , λ(k)} ← SOLVE (17)

6: {θ̃(k)ij , w, w} ← SOLVE (18)

7: X
(k+1)
c , s̄(k), ν(k) ← UPDATE X

(k)
c using (19)

8: ∆← max
{
‖α(k) − α(k−1)‖∞, ‖β(k)

j − β(k−1)
j ‖∞, ‖θ̃(k)ij − θ̃

(k−1)
ij ‖∞, ‖λ(k) − λ(k−1)‖∞

}
9: if ∆ < ε or ν(k)(xi) < ε ∀xi ∈ Xc then

10: converged← true.
11: end if
12: k ← k + 1.
13: end while

Some comments are in order. First, convergence in Algorithm 1 is declared if either
progress in the solution variables stalls or all constraints are satisfied within tolerance.
Due to the semi-supervised nature of the algorithm in that the number of constraint
points Nc can be significantly larger than the number of supervisory regression tuples
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N , it is impractical to enforce constraints at all Nc points in any one iteration. Two
key consequences of this are: (i) the matrix function W (x) at iteration k resulting from
variables θ̃(k) does not have to correspond to a valid dual CCM for the interim learned
dynamics at iteration k, and (ii) convergence based on constraint satisfaction at all Nc
points is justified by the fact that at each iteration, we are solving relaxed sub-problems
that collectively generate a sequence of lower-bounds on the overall objective. Poten-
tial future topics in this regard are: (i) investigate the properties of the converged dy-
namics for models that are a priori unknown unstabilizable, and (ii) derive sufficient
conditions for convergence for both the infinitely- and finitely- constrained versions of
problem (10).

Second, as a consequence of this iterative procedure, the dual metric and contrac-
tion rate pair {W (x), λ} do not possess any sort of “control-theoretic” optimality. For
instance, in [32], for a known stabilizable dynamics model, both these quantities are
optimized for robust control performance. In this work, these quantities are used solely
as regularizers to promote stabilizability of the learned model. A potential future topic
to explore in this regard is how to further optimize {W (x), λ} for control performance
for the final learned dynamics.

6 Experimental Results
In this section we validate our algorithms by benchmarking our results on a known
dynamics model. Specifically, we consider the 6-state planar vertical-takeoff-vertical-
landing (PVTOL) model. The system is defined by the state: (px, pz, φ, vx, vz, φ̇) where
(px, pz) is the position in the 2D plane, (vx, vz) is the body-reference velocity, (φ, φ̇)
are the roll and angular rate respectively, and 2-dimensional control input u correspond-
ing to the motor thrusts. The true dynamics are given by:

ẋ(t) =


vx cosφ− vz sinφ
vx sinφ+ vz cosφ

φ̇

vzφ̇− g sinφ

−vxφ̇− g cosφ
0

+


0 0
0 0
0 0
0 0

(1/m) (1/m)
l/J (−l/J)

u,

where g is the acceleration due to gravity, m is the mass, l is the moment-arm of
the thrusters, and J is the moment of inertia about the roll axis. We note that typi-
cal benchmarks in this area of work either present results on the 2D LASA handwriting
dataset [10] or other low-dimensional motion primitive spaces, with the assumption of
full robot dynamics invertibility. The planar quadrotor on the other hand is a complex
non-minimum phase dynamical system that has been heavily featured within the acro-
batic robotics literature and therefore serves as a suitable case-study.

6.1 Generation of Datasets

The training dataset was generated in 3 steps. First, a fixed set of waypoint paths in
(px, pz) were randomly generated. Second, for each waypoint path, multiple smooth
polynomial splines were fitted using a minimum-snap algorithm. To create variation
amongst the splines, the waypoints were perturbed within Gaussian balls and the time
durations for the polynomial segments were also randomly perturbed. Third, the PV-
TOL system was simulated with perturbed initial conditions and the polynomial trajec-
tories as references, and tracked using a sub-optimally tuned PD controller; thereby em-
ulating a noisy/imperfect demonstrator. These final simulated paths were sub-sampled
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at 0.1s resolution to create the datasets. The variations created at each step of this pro-
cess were sufficient to generate a rich exploration of the state-space for training.

Due to space constraints, we provide details of the solution parameterization (num-
ber of features, etc) in Appendix C.

6.2 Models

Using the same feature space, we trained three separate models with varying training
dataset (i.e., (xi, ui, ẋs) tuples) sizes of N ∈ {100, 250, 500, 1000}. The first model,
N-R was an unconstrained and un-regularized model, trained by solving problem (17)
without constraints or l2 regularization (i.e., just least-squares). The second model, R-R
was an unconstrained ridge-regression model, trained by solving problem (17) without
any constraints (i.e., least-squares plus l2 regularization). The third model, CCM-R is
the CCM-regularized model, trained using Algorithm 1. We enforced the CCM reg-
ularizing constraints for the CCM-R model at Nc = 2400 points in the state-space,
composed of the N demonstration points in the training dataset and randomly sampled
points from X (recall that the CCM constraints do not require samples of u, ẋ).

As the CCM constraints were relaxed to hold pointwise on the finite constraint set
Xc as opposed to everywhere on X , in the spirit of viewing these constraints as reg-
ularizers for the model (see Section 4), we simulated both the R-R and CCM-R mod-
els using the time-varying Linear-Quadratic-Regulator (TV-LQR) feedback controller.
This also helped ensure a more direct comparison of the quality of the learned models
themselves, independently of the tracking feedback controller. The results are virtually
identical using a tracking MPC controller and yield no additional insight.

6.3 Validation and Comparison

The validation tests were conducted by gridding the (px, pz) plane to create a set of 120
initial conditions between 4m and 12m away from (0, 0) and randomly sampling the
other states for the rest of the initial conditions. These conditions were held fixed for
both models and for all training dataset sizes to evaluate model improvement.

For each model at each value of N , the evaluation task was to (i) solve a trajec-
tory optimization problem to compute a dynamically feasible trajectory for the learned
model to go from initial state x0 to the goal state - a stable hover at (0, 0) at near-
zero velocity; and (ii) track this trajectory using the TV-LQR controller. As a baseline,
all simulations without any feedback controller (i.e., open-loop control rollouts) led to
the PVTOL crashing. This is understandable since the dynamics fitting objective is not
optimizing for multi-step error. The trajectory optimization step was solved as a fixed-
endpoint, fixed final time optimal control problem using the Chebyshev pseudospectral
method [6] with the objective of minimizing

∫ T
0
‖u(t)‖2dt. The final time T for a given

initial condition was held fixed between all models. Note that 120 trajectory optimiza-
tion problems were solved for each model and each value of N .

Figure 1 shows a boxplot comparison of the trajectory-wise RMS full state errors
(‖x(t)−x∗(t)‖2 where x∗(t) is the reference trajectory obtained from the optimizer and
x(t) is the actual realized trajectory) for each model and all training dataset sizes. AsN
increases, the spread of the RMS errors decreases for both R-R and CCM-R models as
expected. However, we see that the N-R model generates several unstable trajectories
for N = 100, 500 and 1000, indicating the need for some form of regularization. The
CCM-R model consistently achieves a lower RMS error distribution than both the N-R
and R-R models for all training dataset sizes. Most notable however, is its performance
when the number of training samples is small (i.e., N ∈ {100, 250}) when there is
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Fig. 1: Box-whisker plot comparison of trajectory-wise RMS state-tracking errors over all
120 trajectories for each model and all training dataset sizes. Top row, left-to-right: N =
100, 250, 500, 1000; Bottom row, left-to-right: N = 100, 500, 1000 (zoomed in). The box edges
correspond to the 25th, median, and 75th percentiles; the whiskers extend beyond the box for an
additional 1.5 times the interquartile range; outliers, classified as trajectories with RMS errors
past this range, are marked with red crosses. Notice the presence of unstable trajectories for N-R
at all values of N and for R-R at N = 100, 250. The CCM-R model dominates the other two at
all values of N , particularly for N = 100, 250.

considerable risk of overfitting. It appears the CCM constraints have a notable effect on
the stabilizability of the resulting model trajectories (recall that the initial conditions of
the trajectories and the tracking controllers are held fixed between the models).

For N = 100 (which is really at the extreme lower limit of necessary number of
samples since there are effectively 97 features for each dimension of the dynamics func-
tion), both N-R and R-R models generate a large number of unstable trajectories. In con-
trast, out of the 120 generated test trajectories, the CCM-R model generates one mildly
(in that the quadrotor diverged from the nominal trajectory but did not crash) unstable
trajectory. No instabilities were observed with CCM-R for N ∈ {250, 500, 1000}.

Figure 2a compares the (px, pz) traces between R-R and CCM-R corresponding to
the five worst performing trajectories for the R-R N = 100 model. Similarly, Figure 2b
compares the (px, pz) traces corresponding to the five worst performing trajectories for
the CCM-RN = 100 model. Notice the large number of unstable trajectories generated
using the R-R model. Indeed, it is in this low sample training regime where the control-
theoretic regularization effects of the CCM-R model are most noticeable.

Finally, in Figure 3, we highlight two trajectories, starting from the same initial
conditions, one generated and tracked using the R-R model, the other using the CCM
model, for N = 250. Overlaid on the plot are the snapshots of the vehicle outline itself,
illustrating the quite aggressive flight-regime of the trajectories (the initial starting bank
angle is 40o). While tracking the R-R model generated trajectory eventually ends in
complete loss of control, the system successfully tracks the CCM-R model generated
trajectory to the stable hover at (0, 0).

An interesting area of future work here is to investigate how to tune the regulariza-
tion parameters µf , µb, µw. Indeed, the R-R model appears to be extremely sensitive
to µf , yielding drastically worse results with a small change in this parameter. On the
other hand, the CCM-R model appears to be quite robust to variations in this parameter.
Standard cross-validation techniques using regression quality as a metric are unsuitable
as a tuning technique here; indeed, recent results even advocate for “ridgeless” regres-
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(a)

(b)

Fig. 2: (px, pz) traces for R-R (left column) and CCM-R (right column) corresponding to the 5
worst performing trajectories for (a) R-R, and (b) CCM-R models at N = 100. Colored cir-
cles indicate start of trajectory. Red circles indicate end of trajectory. All except one of the R-R
trajectories are unstable. One trajectory for CCM-R is slightly unstable.

sion [15]. However, as observed in Figure 1, un-regularized model fitting is clearly
unsuitable. The effect of regularization on how the trajectory optimizer leverages the
learned dynamics is a non-trivial relationship that merits further study.

7 Conclusions

In this paper, we presented a framework for learning controlled dynamics from demon-
strations for the purpose of trajectory optimization and control for continuous robotic
tasks. By leveraging tools from nonlinear control theory, chiefly, contraction theory,
we introduced the concept of learning stabilizable dynamics, a notion which guaran-
tees the existence of feedback controllers for the learned dynamics model that ensures
trajectory trackability. Borrowing tools from Reproducing Kernel Hilbert Spaces and
convex optimization, we proposed a bi-convex semi-supervised algorithm for learning
stabilizable dynamics for complex underactuated and inherently unstable systems. The
algorithm was validated on a simulated planar quadrotor system where it was observed
that our control-theoretic dynamics learning algorithm notably outperformed traditional
ridge-regression based model learning.

There are several interesting avenues for future work. First, it is unclear how the al-
gorithm would perform for systems that are fundamentally unstabilizable and how the
resulting learned dynamics could be used for “approximate” control. Second, we will
explore sufficient conditions for convergence for the iterative algorithm under the finite-
and infinite-constrained formulations. Third, we will address extending the algorithm to
work on higher-dimensional spaces through functional parameterization of the control-
theoretic regularizing constraints. Fourth, we will address the limitations imposed by
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Fig. 3: Comparison of reference and tracked trajectories in the (px, pz) plane for R-R and CCM-
R models starting at same initial conditions with N = 250. Red (dashed): nominal, Blue (solid):
actual, Green dot: start, black dot: nominal endpoint, blue dot: actual endpoint; Top: CCM-R,
Bottom: R-R. The vehicle successfully tracks the CCM-R model generated trajectory to the stable
hover at (0, 0) while losing control when attempting to track the R-R model generated trajectory.

the sparsity assumption on the input matrix B using the proposed alternating algorithm
proposed in Section 4.1. Finally, we will incorporate data gathered on a physical system
subject to noise and other difficult to capture nonlinear effects (e.g., drag, friction, back-
lash) and validate the resulting dynamics model and tracking controllers on the system
itself to evaluate the robustness of the learned models.
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Appendix

A Justification for Sparsity Assumption for B̂

Physically, structural assumption (11) is not as mysterious as it appears. Indeed, con-
sider the standard dynamics form for mechanical systems:

H(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)u,

where q ∈ Rnq is the configuration vector, H ∈ S>0
nq is the inertia matrix, C(q, q̇)q̇

contains the centrifugal and Coriolis terms, g are the gravitational terms, B ∈ Rnq×m
is the (full rank) input matrix mapping and u ∈ Rm is the input. For fully actuated
systems, rank(B) = m = nq . For underactuated systems, m < nq . By rearranging
the configuration vector [24,28,34], one can partition q as (qu, qa) where qu ∈ Rnq−m
represents the unactuated degrees of freedom and qa ∈ Rm represents the actuated
degrees of freedom. Applying this partitioning to the dynamics equation above yields[

Huu(q) Hua(q)
Hua(q) Haa(q)

] [
q̈u
q̈a

]
+

[
τu(q, q̇)
τa(q, q̇)

]
=

[
O(nq−m)×m

b(q)

]
u

where b ∈ Rm×m is an invertible square matrix. As observed in [28], a substantial class
of underactuated systems can be represented in this manner. Of course, fully actuated
systems also take this form (m = nq). Thus, by taking as state x = (q, p) ∈ Rn where
p = H(q)q̇ is momentum (so that n = 2nq), the dynamics can be written as (5):

ẋ =

[
q̇
ṗ

]
=

[
H−1(q)p

Ḣ(q)q̇ − τ(q, q̇)

]
+

[
O(n−m)×m

b(q)

]
u. (20)

Notice that the input matrix takes the desired normal form in (11). To address the appar-
ent difficult of working with the state representation of (q, p) (when usually only mea-
surements of (q, q̇, q̈) are typically available and the inertia matrix H(q) is unknown),
we make use of the following result from [17]:

Theorem 1 (CCM Invariance to Diffeomorphisms). Suppose there exists a valid
CCM Mx(x) with respect to the state x. Then, if z = ψ(x) is a diffeomorphism,
then, the CCM conditions also hold with respect to state z with metric Mz(z) =
Ψ(z)−TMx(x)Ψ(z)−1, where Ψ(z) = ∂ψ(x)/∂x evaluated at x = ψ−1(z).

Thus, for the (substantial) class of underactuated systems of the form (20), one
would solve problem (10) by alternating between fitting H, τ, b (using the demonstra-
tions (q, q̇, q̈)) and leveraging Theorem 1 and the previous estimate of H to enforce the
matrix inequality constraints using the state representation (q, p). This allows us to bor-
row several existing results from adaptive control on estimating mechanical system by
leveraging the known linearity of H(q) in terms of unknown mass property parameters
multiplying known physical basis functions. We leave this extension however, to future
work.

B Derivation of Problem (16)

To go from the general problem definition in (10) to the finite dimensional problem
in (16), we first must define appropriate function classes for f , bj , and W . We will do
this using the framework of RKHS.
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B.1 Reproducing Kernel Hilbert Spaces

Scalar-valued RKHS: Kernel methods [30] constitute a broad family of non-parametric
modeling techniques for solving a range of problems in machine learning. A scalar-
valued positive definite kernel function k : X × X 7→ R generates a Reproducing
Kernel Hilbert Space (RKHS) of functions, with the nice property that if two functions
are close in the distance derived from the norm (associated with the Hilbert space), then
their pointwise evaluations are close at all points. This continuity of evaluation func-
tionals has the far reaching consequence that norm-regularized learning problems over
RKHSs admit finite dimensional solutions via Representer Theorems. The kernel k may
be (non-uniquely) associated with a higher-dimensional embedding of the input space
via a feature map, φ : Rn 7→ RD, such that k(x, z) = 〈φ(x), φ(z)〉, where D is infinite
for universal kernels associated with RKHSs that are dense in the space of square inte-
grable functions. Standard regularized linear statistical models in the embedding space
implicitly provide non-linear inference with respect to the original input representation.
In a nutshell, kernel methods provide a rigorous algorithmic framework for deriving
non-linear counterparts of a whole array of linear statistical techniques, e.g. for classifi-
cation, regression, dimensionality reduction and unsupervised learning. For details, we
point the reader to [7].

Vector-valued RKHS: Dynamics estimation is a vector-valued learning problem.
Such problems can be naturally formulated in terms of vector-valued generalizations of
RKHS conceps. The theory and formalism of vector-valued RKHS can be traced as far
back as the work of Laurent Schwarz in 1964, with applications ranging from solving
partial differential equations to machine learning. Informally, we say that that H is an
RKHS of Rn-valued maps if for any v ∈ Rn, the linear functional that maps f ∈ H to
vT f(x) is continuous.

More formally, denote the standard inner product on Rn as 〈·, ·〉 and let Rn(X ) be
the vector space of all functions f : X → Rn and let L(Rn) be the space of all bounded
linear operators on Rn, i.e., n × n matrices. A function K : X × X → L(Rn) is an
operator-valued positive definite kernel if for all (x, z) ∈ X ×X , K(x, z)T = K(z, x)
and for all finite set of points {xi}Ni=1 ∈ X and {yi}Ni=1 ∈ Rn,

N∑
i,j=1

〈yi,K(xi, xj)yj〉 ≥ 0.

Given such a K, we define the unique Rn-valued RKHS HK ⊂ Rn(X ) with re-
producing kernel K as follows. For each x ∈ X and y ∈ Rn, define the function
Kxy = K(·, x)y ∈ Rn(X ). That is, for all z ∈ X , Kxy(z) = K(z, x)y. Then,
the Hilbert space HK is defined to be the completion of the linear span of functions
{Kxy | x ∈ X , y ∈ Rn} with inner product between functions f =

∑N
i=1Kxiyi, g =∑M

j=1Kzjwi ∈ HK , defined as:

〈f, g〉HK =

N∑
i=1

M∑
j=1

〈yi,K(xi, zj)wj〉 .

Notably, the kernel K satisfies the following reproducing property:

〈f(x), y〉 = 〈f,Kxy〉HK ∀(x, y) ∈ X × Rn ∧ f ∈ HK , (21)
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and is thereby referred to as the reproducing kernel for HK . As our learning problems
involves the Jacobian of f , we will also require a representation for the derivative of
the kernel matrix. Accordingly, suppose the kernel matrix K lies in C2(X × X ). For
any j ∈ {1, . . . , n}, define the matrix functions ∂

∂sjK : X × X → L(Rn) and ∂
∂rjK :

X × X → L(Rn) as

∂

∂sj
K(z, x) :=

∂

∂sj
K(r, s)

∣∣∣∣
r=z,s=x

,
∂

∂rj
K(z, x) :=

∂

∂rj
K(r, s)

∣∣∣∣
r=z,s=x

,

where the derivative of the kernel matrix is understood to be element-wise. Define the
C1 function ∂jKxy on Rn(X ) as

∂jKxy(z) :=
∂

∂sj
K(z, x)y ∀z ∈ X .

The following result provides a useful reproducing property for the derivatives of func-
tions inHK that will be instrumental in deriving the solution algorithm.

Theorem 2 (Derivative Properties on HK [21]). Let HK be a RKHS in Rn(X ) with
reproducing kernel K ∈ C2(X × X ). Then, for all (x, y) ∈ X × Rn:

(a) ∂jKxy ∈ HK for all j = 1, . . . , n.
(b) The following derivative reproducing property holds for all j = 1, . . . , n:〈

∂f(x)

∂xj
, y

〉
= 〈f, ∂jKxy〉HK , ∀f ∈ HK .

As mentioned in Section 5, the bi-linearity of constraint (9) forces us to adopt an
alternating solution strategy whereby in the “dynamics” sub-problem, {W,w,w} are
held fixed and we minimize Jd with respect to {f,B, λ}. In the “metric” sub-problem,
{f,B, λ} are held fixed and we minimize Jm with respect to {W,w,w}.

In the following we derive several useful representer theorems to characterize the
solution of the two sub-problems, under the two simplifying assumptions introduced in
Section 4.2.

B.2 Dynamics Sub-Problem

Let Kf be the reproducing C2 kernel for an Rn-valued RKHS HfK and let KB be
another reproducing kernel for an Rn-valued RKHSHBK . Define the finite-dimensional
subspaces:

Vf :=

{
Nc∑
i=1

Kf
xiai +

Nc∑
i=1

n∑
p=1

∂pK
f
xia
′
ip, ai, a

′
ip ∈ Rn

}
⊂ HfK . (22)

VB :=

{
Nc∑
i=1

KB
xici +

Nc∑
i=1

n∑
p=1

∂pK
B
xic
′
ip, ci, c

′
ip ∈ Rn

}
⊂ HBK . (23)

Note that all xi taken from the training dataset of (xi, ui, ẋi) tuples are a subset of Xc.
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Theorem 3 (Representer Theorem for f,B). Suppose the reproducing kernel KB

is chosen such that all functions g ∈ HBK satisfy the sparsity structure gj(x) = 0
for j = 1, . . . , n −m. Consider then the pointwise-relaxed dynamics sub-problem for
problem (10):

min
f̂∈HfK , b̂j∈H

B
K ,j=1,...,m

λ∈R>0

Jd(f̂ , B̂)

s.t. F (xi; f̂ ,W, λ) � 0, ∀xi ∈ Xc. (24)

Suppose the feasible set for the LMI constraint is non-empty. Denote f∗ and b∗j , j =
1, . . . ,m as the optimizers for this sub-problem. Then, f∗ ∈ Vf and bj ∈ VB for all
j = 1, . . . ,m.

Proof. For a fixed W , the constraint is convex in f̂ by linearity of the matrix F in f̂
and ∂f̂/∂x. By assumption (1), and the simplifying form for B⊥, the matrix F is ad-
ditionally independent of B. Then, by strict convexity of the objective functional, there
exists unique minimizers f∗, b∗j ∈ HK , provided the feasible region is non-empty [12].

Since Vf and VB are closed, by the Projection theorem, HfK = Vf ⊕ V⊥f and
HBK = VB ⊕ V⊥B . Thus, any g ∈ HfK may be written as gVf + g⊥ where gVf ∈ Vf ,
g⊥ ∈ V⊥f , and

〈
gVf , g⊥

〉
HfK

= 0. Similarly, any g ∈ HBK may be written as gVB + g⊥

where gVB ∈ VB , g⊥ ∈ V⊥B , and
〈
gVB , g⊥

〉
HBK

= 0.

Let f = fVf + f⊥ and bj = bVBj + b⊥j , and define

HV(x, u) = fVf (x) +

m∑
j=1

ujbVBj (x)

H⊥(x, u) = f⊥(x) +

m∑
j=1

ujb⊥j (x).

We can re-write Jd(f,B) as:

Jd(f,B) =

N∑
i=1

〈
HV(xi, ui)− ẋi, HV(xi, ui)− ẋi

〉
+ 2

〈
HV(xi, ui)− ẋi, H⊥(xi, ui)

〉
+
〈
H⊥(xi, ui), H

⊥(xi, ui)
〉

+ µf

(
‖fVf ‖2HfK + ‖f⊥‖2HfK

)
+ µb

 n∑
j=1

‖bVBj ‖
2
HBK

+ ‖b⊥j ‖2HBK

 .
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Now,〈
HV(xi, ui)− ẋi, H⊥(xi, ui)

〉
=

〈
f⊥(xi) +

m∑
j=1

uji b
⊥
j (xi), H

V(xi, ui)− ẋi

〉

=
〈
f⊥,Kf

xi

(
HV(xi, ui)− ẋi

)〉
HK︸ ︷︷ ︸

=0

+

〈
m∑
j=1

uji b
⊥
j ,K

B
xi

(
HV(xi, ui)− ẋi

)〉
HBK︸ ︷︷ ︸

=0

sinceKf
xi

(
HV(xi, ui)− ẋi

)
∈ Vf , V⊥B is closed under addition, andKB

xi

(
HV(xi, ui)− ẋi

)
∈

VB . Thus, Jd(f,B) simplifies to
N∑
i=1

∥∥HV(xi, ui)− ẋi
∥∥2
2

+ µf‖fVf ‖2HfK + µb

n∑
j=1

‖bVBj ‖
2
HBK

+

+

 N∑
i=1

∥∥H⊥(xi, ui)
∥∥2
2

+ µf‖f⊥‖2HfK + µb

n∑
j=1

‖b⊥j ‖2HBK

 .
(25)

Now, the (p, q) element of ∂fW (xi) takes the form〈
∂wpq(xi)

∂x
, f(xi)

〉
=

〈
f,Kf

xi

∂wpq(xi)

∂x

〉
HfK

=

〈
fVf ,Kf

xi

∂wpq(xi)

∂x

〉
HfK

.

Column p of ∂f(xi)∂x W (xi) takes the form

n∑
j=1

wjp(xi)
∂f(xi)

∂xj
=


∑n
j=1 wjp(xi)

〈
∂f(xi)
∂xj , e1

〉
...∑n

j=1 wjp(xi)
〈
∂f(xi)
∂xj , en

〉
 =


∑n
j=1 wjp(xi)

〈
f, ∂jK

f
xie1

〉
HfK

...∑n
j=1 wjp(xi)

〈
f, ∂jK

f
xien

〉
HfK



=


∑n
j=1 wjp(xi)

〈
fVf , ∂jK

f
xie1

〉
HfK

...∑n
j=1 wjp(xi)

〈
fVf , ∂jK

f
xien

〉
HfK

 ,
where ei is the ith standard basis vector in Rn. Thus, f⊥ plays no role in pointwise
relaxation of constraint (9) and thus does not affect problem feasibility. Given assump-
tion 1, b⊥ also has no effect on problem feasibility. Thus, by non-negativity of the term
in the square brackets in (25), we have that the optimal f lies in Vf and optimal bj lies
in VB . ut

The key consequence of this theorem is the reduction of the infinite-dimensional
search problem for the functions f and bj , j = 1, . . . ,m to a finite-dimensional convex
optimization problem for the constant vectors ai, a′ip, {c

(j)
i , c

(j)′

ip }mj=1 ∈ Rn, by choos-
ing the function classes Hf = HfK and HB = HBK . Next, we characterize the optimal
solution to the metric sub-problem.
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B.3 Metric Sub-Problem

By the simplifying assumption in Section 4.1, constraint (8) requires that W⊥ be only a
function of the first (n−m) components of x. Thus, define κ : X ×X → R as a scalar
reproducing kernel with associated real-valued scalar RKHS Hκ. Additionally, define
κ̂ : X ×X → R as another scalar reproducing kernel with associated real-valued scalar
RKHSHκ̂. In particular, κ̂ is only a function of the first (n−m) components of x ∈ X
in both arguments.

For all (p, q) ∈ {1, . . . , (n −m)}, we will take wpq ∈ Hκ̂ (corresponding to W⊥)
and all other entries of W as functions inHκ. Define the kernel derivative functions:

∂jκx(z) :=
∂κ

∂rj
κ(r, s)

∣∣∣∣
(r=x,s=z)

∂j κ̂x(z) :=
∂κ̂

∂rj
κ(r, s)

∣∣∣∣
(r=x,s=z)

∀z ∈ X .

From [38], it follows that the kernel derivative functions satisfy the following two prop-
erties, similar to Theorem 2:

∂jκx ∈ Hκ ∀j = 1, . . . , n, x ∈ X
∂f

∂xj
(x) = 〈f, ∂jκx〉Hκ , ∀f ∈ Hκ.

A similar property holds for κ̂ and Hκ̂. Consider then the following finite-dimensional
spaces:

Vκ :=

{
Nc∑
i=1

aiκxi +

Nc∑
i=1

n∑
p=1

a′ip ∂pκxi , ai, a
′
ip ∈ R

}
⊂ Hκ (26)

Vκ̂ :=

{
Nc∑
i=1

ciκ̂xi +

Nc∑
i=1

n∑
p=1

c′ip ∂pκ̂xi , ci, c
′
ip ∈ R

}
⊂ Hκ̂ (27)

and the proposed representation for W (x):

W (x) =

Nc∑
i=1

Θ̂iκ̂xi(x) +

Nc∑
i=1

n∑
j=1

Θ̂′ij∂j κ̂xi(x)

+

Nc∑
i=1

Θiκxi(x) +

Nc∑
i=1

n∑
j=1

Θ′ij∂jκxi(x),

(28)

where Θ̂, Θ̂′ ∈ Sn are constant symmetric matrices with non-zero entries only in the
top-left (n −m) × (n −m) block, and Θ,Θ′ ∈ Sn are constant symmetric matrices
with zero entries in the top-left (n−m)× (n−m) block.

Theorem 4 (Representer Theorem for W ). Consider the pointwise-relaxed metric
sub-problem for problem (10):

min
wpq∈Hκ̂,(p,q)∈{1,...,(n−m)}

wpq∈Hκ else
w,w∈R>0

Jm(W,w,w)

subject to F (xi; f̂ ,W, λ) � 0, ∀xi ∈ Xc, (29)
wIn �W (xi) � wIn, ∀xi ∈ Xc, (30)
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Suppose the feasible set of the above LMI constrains is non-empty. Denote W ∗ as the
optimizer for this sub-problem. Then, W ∗ takes the form given in (28).

Proof. Notice that while the regularizer term is strictly convex, the surrogate loss func-
tion for the condition number is affine. However, provided the feasible set is non-empty,
there still exists a minimizer (possible non-unique) for the above sub-problem.

Now, notice that the (p, q) element of ∂fW⊥(xi) takes the form

∂fw⊥pq (xi) =

n∑
j=1

∂w⊥pq (xi)

∂xj
f j(xi)

=

n∑
j=1

〈
w⊥pq , ∂j κ̂xi

〉
Hκ̂

f j(xi)

=

〈
w⊥pq ,

n∑
j=1

f j(xi)∂j κ̂xi

〉
Hκ̂

=

〈
wVκ̂⊥pq ,

n∑
j=1

f j(xi)∂j κ̂xi

〉
Hκ̂

Additionally, the (p, q) element of W (xi) takes the form

wpq(xi) =

{〈
wVκ̂pq , κ̂xi

〉
Hκ̂

if (p, q) ∈ {1, . . . , (n−m)}〈
wVκpq , κxi

〉
Hκ

else.

That is, constraints (9) and uniform definiteness at the constraint points in Xc can be
written in terms of functions in Vκ and Vκ̂ alone. By strict convexity of the regularizer,
and recognizing that W (x) is symmetric, the result follows. ut

Similar to the previous section, the key property here is the reduction of the infinite-
dimensional search over W (x) to the finite-dimensional convex optimization problem
over the constant symmetric matrices Θi, Θ′ij , Θ̂i, Θ̂

′
ij by choosing the function class

for the entries of W using the scalar-valued RKHS.
At this point, both sub-problems are finite-dimensional convex optimization prob-

lems. Crucially, the only simplifications made are those given in Section 4.2. However,
a final computational challenge here is that the number of parameters scales with the
number of training N and constraint Nc points. This is a fundamental challenge in all
non-parametric methods. In the next section we present the dimensionality reduction
techniques used to alleviate these issues.

B.4 Approximation via Random Matrix Features

The size of the problem using full matrix-valued kernel expansions in grows rapidly in
Ncn, the number of constraint points times the state dimensionality. This makes train-
ing slow for even moderately long demonstrations even in low-dimensional settings.
The induced dynamical system is slow to evaluate and integrate at inference time. Ran-
dom feature approximations to kernel functions have been extensively used to scale up
training complexity and inference speed of kernel methods [9, 25] in a number of ap-
plications. The quality of approximation can be explicitly controlled by the number of



24 Sumeet Singh, Vikas Sindhwani, Jean-Jacques E. Slotine, and Marco Pavone

random features. In particular, it has been shown [26] that any function in the RKHS
associated with the exact kernel can be approximated to arbitrary accuracy by a linear
combination of sufficiently large number of random features.

These approximations have only recently been extended to matrix-valued kernels [2,
22]. Given a matrix-valued kernel K, one defines an appropriate matrix-valued feature
map Φ : X → Rd×n with the property

K(x, z) ≈ Φ(x)TΦ(z),

where d controls the quality of this approximation. With such an approximation, notice
that any function g in the associated RKHSHK can be re-parameterized as:

g(x) =

Nc∑
i=1

K(x, xi)ai ≈
Nc∑
i=1

Φ(x)TΦ(xi)ai = Φ(x)Tα,

where α =
∑Nc
i=1 Φ(xi)ai ∈ Rd. Thus, the function g is now summarized by the d−

dimensional vector α instead ofNc vectors in Rn (Ncn parameters). Applying a similar
trick to:

∂

∂sj
K(x, z) ≈ Φ(x)T

∂

∂sj
Φ(s)

∣∣∣∣
s=z

,

one can approximate terms of the form

Nc∑
i=1

n∑
j=1

∂jKxicij(x)

byΦ(x)T v for some v ∈ Rd. Applying this approximation to the subspaces in (22), (23),
and (28), we finally arrive at the function parameterizations4 in eqs. (13)–(15), and the
constraints reformulation in problem (16) in terms of the constant vectors. The regular-
ization terms in the objective follow from the definition of the inner product inHK :

‖g‖2HK =

Nc∑
i,j=1

〈ai,K(xi, xj)aj〉 ≈
Nc∑
i,j=1

〈Φ(xi)ai, Φ(xj)aj〉 =

〈
Nc∑
i=1

Φ(xi)ai,

Nc∑
j=1

Φ(xj)aj

〉
= ‖α‖2.

A canonical example is the the Gaussian separable kernel Kσ(x, z) := e
−‖x−z‖22

σ2 In
with feature map:

1√
s


cos(ωT1 x)
sin(ωT1 x)

...
cos(ωTs x)
sin(ωTs x)

⊗ In
where ω1, . . . , ωs are i.i.d. draws from N (0, σ−2In).

4 To apply this decomposition toW (x), we simply leverage vector-valued feature maps for each
entry of W (x).
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C Solution Parameters for PVTOL

Notice that the true input matrix for the PVTOL system satisfies Assumption 1. Further-
more, it is a constant matrix. Thus, the feature mapping Φb is therefore just a constant
matrix with the necessary sparsity structure.

The feature matrix for f was generated using the Random Fourier approximation
to the Gaussian separable matrix-valued kernel (see Appendix B.4) with σ = 6 and
s = 8n = 48 sampled Gaussian directions, yielding a feature mapping matrix Φf with
df = 576 (96 features for each component of f ). The scalar-valued reproducing kernels
for the entries of W were taken to be the Gaussian kernel with σ = 15. To satisfy
condition (8), the kernel for wij , (i, j) ∈ {1, . . . , (n−m)} was only a function of the
first n −m components of x. A total of s = 36 Gaussian samples were taken to yield
feature vectors φw and φ̂w of dimension dw = 72. Furthermore, by symmetry of W (x)
only n(n + 1)/2 functions were actually parameterized. Thus, the learning problem
in (16) comprised of df + dwn(n+ 1)/2 + 4 = 508 parameters for the functions, plus
the extra scalar constants λ,w,w.

The learning parameters used were: model N-R (all N ): µf = 0, µb = 10−6,
R-R (all N ): µf = 10−6, µb = 10−6, CCM-R (all N ): µf = 10−3, µb = 10−6;
N ∈ {100, 250, 500} : µw = 10−3, N = 1000 : µw = 10−4. Tolerance parameters:
constraints: {δλ, ελ, δw, εw} = {0.01, 0.01, 0.01, 0.01}; discard tolerance δ = 0.05.
Note that a small penalization on µb was necessary for all models due to the fact that
feature matrix Φb is rank deficient.

D CCM Controller Synthesis

Let Γ (p, q) be the set of smooth curves c : [0, 1] → X satisfying c(0) = p, c(1) = q,
and define δc(s) := ∂c(s)/∂s. At each time t, given the nominal state/control pair
(x∗, u∗) and current actual state x:

Step 1: Compute a curve γ ∈ Γ (x∗, x) defined by:

γ ∈ argmin
c∈Γ (x∗,x)

∫ 1

0

δc(s)
TM(c(s))δc(s)ds, (31)

and let E denote the minimal value.
Step 2: Define:

Ed(k) :=2δγ(1)TM(x)(f(x) +B(x)(u∗ + k))

− 2δγ(0)TM(x∗)(f(x∗) +B(x∗)u∗).
(32)

Step 3: Choose k(x∗, x) to be any element of the set:

K := {k : Ed(k) ≤ −2λE} . (33)

By existence of the metric/differential controller pair (M, δu), the set K is always
non-empty. The resulting k(x∗, x) then ensures that the solution x(t) indeed converges
towards x∗(t) exponentially [32].
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From an implementation perspective, note that having obtained the curve γ, con-
straint (33) is simply a linear inequality in k. Thus, one can analytically compute a
feasible feedback control value, e.g., by searching for the smallest (in any norm) ele-
ment of K; for additional details, we refer the reader to [17, 32].
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