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Neural Stochastic Contraction Metrics for
Learning-based Control and Estimation

Hiroyasu Tsukamoto∗, Soon-Jo Chung∗, and Jean-Jacques E. Slotine†

Abstract—We present Neural Stochastic Contraction Metrics
(NSCM), a new design framework for provably-stable robust
control and estimation for a class of stochastic nonlinear systems.
It uses a spectrally-normalized deep neural network to construct
a contraction metric, sampled via simplified convex optimiza-
tion in the stochastic setting. Spectral normalization constrains
the state-derivatives of the metric to be Lipschitz continuous,
thereby ensuring exponential boundedness of the mean squared
distance of system trajectories under stochastic disturbances. The
NSCM framework allows autonomous agents to approximate
optimal stable control and estimation policies in real-time, and
outperforms existing nonlinear control and estimation techniques
including the state-dependent Riccati equation, iterative LQR,
EKF, and the deterministic neural contraction metric, as illus-
trated in simulation results.

Index Terms—Machine learning, Stochastic optimal control,
Observers for nonlinear systems.

I. INTRODUCTION

The key challenge for control and estimation of autonomous
aerospace and robotic systems is how to ensure optimality and
stability. Oftentimes, their motions are expressed as nonlinear
systems with unbounded stochastic disturbances, the time
evolution of which is expressed as Itô stochastic differential
equations [1]. As their onboard computational power is often
limited, it is desirable to execute control and estimation
policies computationally as cheaply as possible.

In this paper, we present a Neural Stochastic Contraction
Metric (NSCM) based robust control and estimation frame-
work outlined in Fig. 1. It uses a spectrally-normalized neural
network as a model for an optimal contraction metric (differen-
tial Lyapunov function), the existence of which guarantees ex-
ponential boundedness of the mean squared distance between
two system trajectories perturbed by stochastic disturbances.
Unlike the Neural Contraction Metric (NCM) [2], where we
proposed a learning-based construction of optimal contrac-
tion metrics for control and estimation of nonlinear systems
with bounded disturbances, stochastic contraction theory [3]–
[5] guarantees stability and optimality in the mean squared
error sense for unbounded stochastic disturbances via convex
optimization. Spectral Normalization (SN) [6] is introduced in
the NSCM training, in order to validate a major assumption
in stochastic contraction that the first state-derivatives of the
metric are Lipschitz. We also extend the State-Dependent-
Coefficient (SDC) technique [7] further to include a target
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Fig. 1. Illustration of NSCM (M(x, t): optimal contraction metric; xi and Mi:
sampled states and contraction metrics; y(t): measurements; x(t), xd(t), and
x̂(t): actual, target, and estimated trajectories, respectively.

trajectory in control and estimation, for the sake of global
exponential stability of unperturbed systems.

In the offline phase, we sample contraction metrics by solv-
ing convex optimization to minimize an upper bound of the
steady-state mean squared distance of stochastically perturbed
system trajectories (see Fig. 1). Other convex objectives such
as control effort could be used depending on the application of
interest. We call this method the modified CV-STEM (mCV-
STEM), which differs from the original work [8] in the follow-
ing points: 1) a simpler stochastic contraction condition with
an affine objective function both in control and estimation,
thanks to the Lipschitz condition on the first derivatives of
the metrics; 2) generalized SDC parameterization, i.e., A s.t.
A(x,xd , t)(x− xd) = f (x, t) + B(x, t)ud − f (xd , t)− B(xd , t)ud
instead of A(x, t)x = f (x, t), for systems ẋ = f (x, t)+B(x, t)u,
which results in global exponential stability of unperturbed
systems even with a target trajectory, xd for control and x
for estimation; and 3) optimality in the contraction rate α

and disturbance attenuation parameter ε . The second point is
in fact general, since A can always be selected based on the
line integral of the Jacobian of f (x, t)+B(x, t)ud , a property
which can also be applied to the deterministic NCM setting
of [2]. We then train a neural network with the sampled metrics
subject to the aforementioned Lipschitz constraint using the
SN technique. Note that reference-independent integral forms
of control laws [9]–[13] could be considered by changing
how we sample the metrics in this phase. Our contraction-
based formulation enables larger contracting systems to be
built recursively by exploiting combination properties [14],
as in systems with hierarchical combinations (e.g. output
feedback or negative feedback), or to consider systems with
time-delayed communications [15].

In the online phase, the trained NSCM models are exploited
to approximate the optimal control and estimation policies,
which only require one neural network evaluation at each
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time step as shown in Fig 1. The benefits of this framework
are demonstrated in the rocket state estimation and control
problem, by comparing it with the State-Dependent Riccati
Equation (SDRE) method [5], [7], Iterative LQR (ILQR) [16],
[17], EKF, NCM, and mCV-STEM.

Related Work: Contraction theory [14] is an analytical
tool for studying the differential dynamics of a nonlinear
system under a contraction metric, whose existence leads to
a necessary and sufficient characterization of its exponential
incremental stability. The theoretical foundation of this paper
rests on its extension to stability analysis of stochastic non-
linear systems [3]–[5]. The major difficulty in applying it in
practice is the lack of general analytical schemes to obtain
a suitable stochastic contraction metric for nonlinear systems
written as Itô stochastic differential equations [1].

For deterministic systems, there are several learning-based
techniques for designing real-time computable optimal Lya-
punov functions/contraction metrics. These include [2], [18],
[19], where neural networks are used to represent the optimal
solutions to the problem of obtaining a Lyapunov function.
This paper improves our deterministic NCM [2], as the NSCM
explicitly considers the case of stochastic nonlinear systems,
where deterministic control and estimation policies could fail
due to additional derivative terms in the differential of the
contraction metric under stochastic perturbation.

The CV-STEM [8] is derived to construct a contraction
metric accounting for the stochasticity in dynamical processes.
It is designed to minimize the upper bound of the steady-state
mean squared tracking error of stochastic nonlinear systems,
assuming that the first and second derivatives of the metric
with respect to its state are bounded. In this paper, we only
assume that the first derivatives are Lipschitz continuous,
thereby enabling the use of spectrally-normalized neural net-
works [6]. This also significantly reduces the computational
burden in solving the CV-STEM optimization problems, al-
lowing autonomous agents to perform both optimal control
and estimation tasks in real-time.

II. PRELIMINARIES

We use ‖x‖ and ‖A‖ for the Euclidean and induced 2-
norm, I for the identity matrix, E[·] for the expected value,
sym(A) = (A+AT )/2, and A � 0, A � 0, A ≺ 0, and A � 0
for positive definite, positive semi-definite, negative definite,
and negative semi-definite matrices, respectively. Also, fx is
the partial derivative of f (x, t) respect to the state x, and Mxi

is of M(x, t) with respect to the ith element of x, Mxix j is of
M(x, t) with respect to the ith and jth elements of x.

A. Neural Network and Spectral Normalization

A neural network is a mathematical model for representing
training samples {(xi,yi)}N

i=1 of y = φ(x) by optimally tuning
its hyperparameters W`, and is given as

yi = ϕ(xi;W`) = TL+1 ∗σ ∗TL ∗ · · · ∗σ ∗T1(xi) (1)

where T`(x) =W`x, ∗ denotes composition of functions, and σ

is an activation function σ(x) = tanh(x). Note that ϕ(x) ∈C∞.

Spectral normalization (SN) [6] is a technique to overcome
the instability of neural network training by constraining (1)
to be globally Lipschitz, i.e., ∃ Lnn ≥ 0 s.t. ‖ϕ(x)−ϕ(x′)‖ ≤
Lnn‖x− x′‖, ∀x,x′, which is shown to be useful in nonlinear
control designs [20]. SN normalizes the weight matrices W`

as W` = (CnnΩ`)/‖Ω`‖ with Cnn ≥ 0 being a given constant,
and trains a network with respect to Ω`. Since this results
in ‖ϕ(x)−ϕ(x′)‖ ≤CL+1

nn ‖x− x′‖ [6], setting Cnn = L1/(L+1)
nn

guarantees Lipschitz continuity of ϕ(x). In Sec. III-B, we
propose one way to use SN for building a neural network that
guarantees the Lipschitz assumption on Mxi in Theorem 1.

B. Stochastic Contraction Analysis for Incremental Stability

Consider the following nonlinear system with stochastic
perturbation given by the Itô stochastic differential equation:

dx = f (x, t)dt +G(x, t)dW (t), x(0) = x0 (2)

where t ∈ R≥0, x : R≥0 → Rn, f : Rn × R≥0 → Rn, G :
Rn×R≥0→ Rn×d , W (t) is a d-dimensional Wiener process,
and x0 is a random variable independent of W (t) [21]. We
assume that 1) ∃L1 > 0 s.t. ‖ f (x1, t)− f (x2, t)‖+ ‖G(x1, t)−
G(x2, t)‖F ≤ L1‖x1 − x2‖, ∀t ∈ R≥0 and ∀x1, x2 ∈ Rn, and
2) ∃L2 > 0, s.t. ‖ f (x1, t)‖2+‖G(x1, t)‖2

F ≤ L2(1+‖x1‖2), ∀t ∈
R≥0 and ∀x1 ∈Rn for the sake of existence and uniqueness of
the solution to (2).

Theorem 1 analyzes stochastic incremental stability of two
trajectories of (2), x1 and x2. In Sec. IV, we use it to find a
contraction metric M(x, t) for given α , ε , and Lm, where α is
a contraction rate, ε is a parameter for disturbance attenuation,
and Lm is the Lipschitz constant of Mxi . Note that ε and Lm
are introduced for the sake of stochastic contraction and were
not present in the deterministic case [2]. Sec. IV-B2 delineates
how we select them in practice.

Theorem 1: Suppose ∃g1,g2 ∈ [0,∞) s.t. ‖G(x1, t)‖F ≤ g1
and ‖G(x2, t)‖F ≤ g2, ∀x, t. Suppose also that ∃M(x, t)� 0 s.t.
Mxi , ∀xi is Lipschitz with respect to the state x, i.e. ‖Mxi(x, t)−
Mxi(x

′, t)‖ ≤ Lm‖x− x′‖, ∀x,x′, t with Lm ≥ 0. If M(x, t) � 0
and α,ε,ω,ω ∈ (0,∞) are given by

Ṁ(x, t)+2sym(M(x, t) fx(x, t))+αgI �−2αM(x, t) (3)

ω
−1I �M(x, t)� ω

−1I, ∀x, t (4)

where αg = Lm(g2
1 + g2

2)(ε + 1/2), then the mean squared
distance between x1 and x2 is bounded as follows:

E
[
‖x1− x2‖2]≤ C

2α

ω

ω
+ωE[V (x(0),δx(0),0)]e−2αt . (5)

where V (x,δx, t) = δxT M(x, t)δx and C = (g2
1 +g2

2)(2/ε +1).
Proof: Let us first derive the bounds of Mxi and Mxix j .

Since Mxi , ∀xi is Lipschitz, we have ‖Mxix j‖ ≤ Lm, ∀i, j by
definition. For h ≥ 0 and a unit vector ei with 1 in its ith
element, the Taylor’s theorem suggests ∃ξ−,ξ+ ∈ Rn s.t.

M(x±hei, t) = M(x, t)±Mxi(x, t)h+Mxixi(ξ±, t)h
2/2. (6)

This implies that ‖Mxi‖ is bounded as ‖Mxi‖ ≤ h−1ω−1 +

Lmh/2 ≤
√

2Lmω−1, where h =
√

2/(Lmω) is substituted to
obtain the last inequality. Next, let L be the infinitesimal
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differential generator [8]. Computing LV using these bounds
as in [8] yields

LV ≤δxT (Ṁ+2sym(M fx)
)

δx

+(g2
1 +g2

2)(Lm‖δx‖2/2+2
√

2Lmω−1‖δx‖+ω
−1)

≤δxT (Ṁ+2sym(M fx)+αgI
)

δx+Cω
−1 (7)

where the relation 2ab ≤ ε−1a2 + εb2, which holds for any
a,b∈R and ε > 0, is used with a =

√
2/ω and b =

√
Lm‖δ z‖

to get the second inequality. This reduces to LV ≤−2αV +
Cω−1 under the condition (3). The result (5) follows as in the
proof of Theorem 1 in [8].

Remark 1: Note that there is a trade-off in using large ε in
Theorem 1, as it yields small C to decrease the steady-state
error in (5), but renders the constraint (3) tighter.

Lemma 1 is used to convexify the cost function in Sec. IV.
Lemma 1: The inequalities (3) and (4) are equivalent to[

− ˙̄W +2sym( fx(x, t)W̄ )+2αW̄ W̄
W̄ − ν

αg
I

]
� 0 (8)

I � W̄ � χI, ∀x, t (9)

where ν = 1/ω , χ = ω/ω , and W̄ = νW = νM−1.
Proof: Multiplying both sides of (3) by W � 0 and then

by ν > 0 preserves matrix definiteness [22, pp. 114]. This
operation with Schur’s complement lemma [22, pp. 28] yield
(8). The rest follows the proof of Lemma 1 of [2].

Remark 2: The variable conversion in Lemma 1 is necessary
to get a convex cost function (28) from the non-convex
cost (5) as t → ∞. In Sec. IV, we use it to derive a semi-
definite program in terms of ν , χ , and W̄ for finding a
contraction metric computationally efficiently [23]. We show
in Proposition 2 that this is equivalent to the non-convex
problem of minimizing (5) as t→∞, subject to (3) and (4) in
terms of the original decision variables ω , ω , and M [8].

Finally, Lemma 2 introduces the generalized SDC form of
dynamical systems to be exploited also in Sec. IV.

Lemma 2: Suppose that f (x, t) and B(x, t) are contin-
uously differentiable. Then ∃A(x,xd , t) s.t. A(x,xd , t)(x −
xd) = f (x, t) + B(x, t)ud(xd , t) − f (xd , t) − B(xd , t)ud(xd , t),
∀x,xd ,ud , t, and one such A is given as follows:

A(x,xd , t) =
∫ 1

0

∂ f̄
∂x

(cx+(1− c)xd , t)dc (10)

where f̄ (q, t) = f (q, t) +B(q, t)ud(xd , t). We call A an SDC
form when it is constructed to satisfy controllability and
observability conditions (see Theorem 2 and Corollary 1).

Proof: This follows from the integral relation given as∫ 1
0 (d f̄ (cx+(1− c)xd , t)/dc)dc = f̄ (x, t)− f̄ (xd , t).

III. NEURAL STOCHASTIC CONTRACTION METRICS

This section illustrates how to construct an NSCM using
state samples S = {xi}N

i=1 and stochastic contraction metrics
given by Theorem 1. This is analogous to the NCM [2], which
gives an optimal contraction metric for nonlinear systems with
bounded disturbances, but the NSCM explicitly accounts for
unbounded stochastic disturbances. For simplicity, we denote
the metric both for feedback control and estimation as X with
mI � X �mI, i.e., m = ω

−1, m = ω−1, X = M for control, and
m = ω , m = ω , X =W for estimation.

A. Data Pre-processing

Since X � 0, where X is a contraction metric for control or
estimation, it has a unique upper triangular matrix Y ∈ Rn×n

with positive diagonal entries s.t. X =Y TY [24, pp. 441]. We
use the nonzero entries of Y , denoted as θ(x, t) ∈ Rn(n+1)/2,
for yi of (1) to reduce its output dimension [2].

B. Lipschitz Condition and Spectral Normalization (SN)

We utilize SN in Sec. II-A to guarantee the Lipschitz
condition of Theorem 1 or Proposition 2 in Sec. IV.

Proposition 1: Let ϑ(x;Wsn) be a neural network (1) to
model θ(x, t) in Sec. III-A, and Nunits be the number of
neurons in its last layer. Also, let Wsn = {W`}L+1

`=1 , where W` =
(Ω`/‖Ω`‖)Cnn for 1≤ `≤ L, and W` =

√
m(Ω`/‖Ω`‖)/

√
Nunits

for `= L+1. If ∃Cnn,Lm > 0 s.t.

2‖ϑxi(x;Wsn)‖
∥∥ϑx j(x;Wsn)

∥∥ (11)

+2‖ϑ(x;Wsn)‖‖ϑxix j(x;Wsn)‖ ≤ Lm, ∀i, j,x,Ω

then we have ‖X ‖ ≤m and ‖Xxix j‖ ≤ Lm, ∀xi,x j, where X
is the neural network model for the contraction metric X(x, t).
The latter inequality implies Xxi , ∀i is indeed Lipschitz
continuous with 2-norm Lipschitz constant Lm.

Proof: Let Y be the neural net model of Y in Sec. III-A.
By definition of X = Y TY and θ , where X is the contrac-
tion metric, we have ‖X ‖ ≤ ‖Y ‖2 ≤ ‖Y ‖2

F = ‖ϑ‖2. Thus,
the relation ‖ϑ(x;Wsn)‖ ≤

√
Nunits‖WL+1‖ yields ‖X ‖ ≤ m

for WL+1 =
√

m(ΩL+1/‖ΩL+1‖)/
√

Nunits. Also, differentiating
X twice yields ‖Xxix j‖/2 ≤ ‖Yxi‖‖Yx j‖+ ‖Y ‖‖Yxix j‖ ≤
‖ϑxi‖‖ϑx j‖+‖ϑ‖‖ϑxix j‖, where the second inequality is due
to ‖Y ‖ ≤ ‖Y ‖F = ‖ϑ‖. Substituting Wsn gives (11).

Example 1: To see how Proposition 1 works, let us consider
a scalar input/output neural net with one neuron at each
layer in (1). Since we have ‖ϑ(x;Wsn)‖ ≤ ‖WL+1‖, X � mI
is indeed guaranteed by ‖WL+1‖ =

√
m. Also, we can get

the bounds as ‖ϑx(x;Wsn)‖ ≤
√

mCL
nn and ‖ϑxx(x;Wsn)‖ ≤

‖WL+1‖CL
nn(∑

L
`=1 C`

nn) =
√

mCL+1
nn (CL

nn−1)/(Cnn−1) using
SN. Thus, (11) can be solved for Cnn by standard nonlinear
equation solvers, treating m and Lm as given constants.

Remark 3: For non-autonomous systems, we can treat t or
time-varying parameters p(t) as another input to the neural
network (1) by sampling them in a given parameter range of
interest. For example, we could use p = [xd ,ud ]

T for systems
with a target trajectory. This also allows us to use adaptive
control techniques [25], [26] to update an estimate of p.

IV. MCV-STEM SAMPLING OF CONTRACTION METRICS

We introduce the modified ConVex optimization-based
Steady-state Tracking Error Minimization (mCV-STEM)
method, an improved version of CV-STEM [8] for sampling
the metrics which minimize an upper bound of the steady-state
mean squared tracking error via convex optimization.

Remark 4: Due to its contraction-based formulation, com-
bination properties [14] also apply to the NSCM framework.
For example, contraction is preserved through hierarchical
combination of estimation and control (i.e. output feedback
control), or through time-delayed communications [15].
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A. Stability of Generalized SDC Control and Estimation

We utilize the general SDC parametrization with a target
trajectory (10), which captures nonlinearity through A(x,xd , t)
or through multiple non-unique Ai [5], resulting in global
exponential stability if the pair (A,B) of (12) is uniformly
controllable [5], [7]. Note that xd and ud can be regarded as
extra inputs to the NSCM as in Remark 3, but we could use
Corollary 2 as a simpler formulation which guarantees local
exponential stability without using a target trajectory. Further
extension to control contraction metrics, which use differential
state feedback δu = K(x, t)δx [9]–[13], could be considered
for sampling the metric with global reference-independent
stability guarantees, achieving greater generality at the cost of
added computation. Similarly, while we construct an estimator
with global stability guarantees using the SDC form as in (22),
a more general formulation could utilize geodesics distances
between trajectories [4]. We remark that these trade-offs would
also hold for deterministic control and estimation design via
NCMs [2].

1) Generalized SDC Control: Consider the following sys-
tem with a controller u ∈ Rm and perturbation W (t):

dx =( f (x, t)+B(x, t)u)dt +Gc(x, t)dW (t) (12)
dxd =( f (xd , t)+B(xd , t)ud(xd , t))dt (13)

where B : Rn×R≥0 → Rn×m, Gc : Rn×R≥0 → Rn×d , W (t)
is a d-dimensional Wiener process, and xd : R≥0 → Rn and
ud : Rn×R≥0→ Rm denote the target trajectory.

Theorem 2: Suppose ∃gc ∈ [0,∞) s.t. ‖Gc(x, t)‖F ≤ gc, ∀x, t,
and ∃M(x,xd , t) � 0 s.t. Mxi and Mxd,i , ∀xi,xd,i are Lipschitz
with respect to its state with 2-norm Lipschitz constant Lm.
Let u be designed as

u = ud(xd , t)−B(x, t)T M(x,xd , t)(x− xd) (14)

Ṁ+2sym(MA)−2MBBT M+αgcI �−2αM (15)

ω
−1I �M(x,xd , t)� ω

−1I, ∀x, t (16)

where α > 0, αgc = Lmg2
c(ε +1/2), ε > 0, and A is given by

(10) in Lemma 2. If the pair (A,B) is uniformly controllable,
we have the following bound for the systems (12) and (13):

E[‖x− xd‖2]≤ Cc

2α
χ +ωE[V (x(0),xd(0),δq(0),0)]e−2αt

(17)

where V (x,xd ,δq, t) = δqT M(x,xd , t)δq, Cc = g2
c(2/ε + 1),

ν = 1/ω , χ =ω/ω , and q is the state of the differential system
with its particular solutions q = x,xd . Further, (15) and (16)
are equivalent to the following constraints in terms of ν , χ ,
and W̄ = νW = νM−1:[
− ˙̄W +2sym(AW̄ )−2νBBT +2αW̄ W̄

W̄ − ν

αgc
I

]
� 0 (18)

I � W̄ � χI, ∀x, t. (19)

where the arguments are omitted for notational simplicity.
Proof: Using the SDC parameterization (10) given in

Lemma 2, (12) can be written as dx = ( f̄ (xd , t)+(A(x,xd , t)−
B(x, t)B(x, t)T M(x,xd , t))(x − xd))dt + Gc(x, t)dW . This re-
sults in the following differential system, dq = ( f̄ (xd , t) +

(A(x,xd , t)−B(x, t)B(x, t)T M)(q− xd))dt +G(q, t)dW , where
G(q, t) is defined as G(q= x, t) =Gc(x, t) and G(q= xd , t) = 0.
Note that it has q = x,xd as its particular solutions. Since
fx, g1, and g2 in Theorem 1 can be viewed as A(x,xd , t)−
B(x, t)B(x, t)T M(x,xd , t), gc, and 0, respectively, applying its
results for V = δqT M(x,xd , t)δq gives (17) as in (5). The
constraints (18) and (19) follow from the application of
Lemma 1 to (15) and (16).

Remark 5: For input non-affine nonlinear systems, we can
find f (x,u)− f (xd ,ud) = A(x,u, t)(x− xd)+B(x,u, t)(u− ud)
by Lemma 2 and use it in Theorem 2, although (14) has to be
solved implicitly as B depends on u in this case [12], [13].

2) Generalized SDC Estimation: Consider the following
system and a measurement y(t) with perturbation W1,2(t):

dx = f (x, t)dt +Ge(x, t)dW1(t) (20)
ydt =h(x, t)dt +D(x, t)dW2(t) (21)

where h : Rn × R≥0 → Rm, Ge : Rn × R≥0 → Rn×d1 , D :
Rn×R≥0→ Rm×d2 , and W1,2(t) are two independent Wiener
processes. We have an analogous result to Theorem 2.

Corollary 1: Suppose ∃ge,d ∈ [0,∞) s.t. ‖Ge(x, t)‖F ≤ ge
and ‖D(x, t)‖F ≤ d, ∀x, t. Suppose also that ∃W (x̂, t) =
M(x̂, t)−1 � 0 s.t. Wxi , ∀xi is Lipschitz with respect to its state
with 2-norm Lipschitz constant Lm. Let ν = 1/ω and x be
estimated as

dx̂ = f (x̂, t)dt +M(x̂, t)CL(x̂, t)T (y−h(x̂, t))dt (22)

Ẇ +2sym(WA−CT
L C)+αgeI �−2αW (23)

ωI �W (x̂, t)� ωI, 0 < ν ≤ 3
√

νc, ∀x, x̂, t (24)

where α,νc,ε > 0, αge = αe1 +νcωαe2, αe1 = Lmg2
e(ε +1/2),

and αe2 = Lmc2d
2
(ε + 1/2). Also, A(x, x̂, t) and C(x, x̂, t) are

given by (10) of Lemma 2 with ( f ,x,xd ,ud) replaced by
( f , x̂,x,0) and (h, x̂,x,0), respectively, and CL(x̂, t) =C(x̂, x̂, t).
If (A,C) is uniformly observable and ‖C(x, x̂, t)‖ ≤ c, ∀x, x̂, t,
then we have the following bound:

E[‖x− x̂‖2]≤ Ce

2α
+

1
ω

E[V (x(0),δq(0),0)]e−2αt (25)

where V (x̂,δq, t) = δqTW (x̂, t)δq, Ce =Ce1χ +Ce2χν2, Ce1 =

g2
e(2/ε + 1), Ce2 = c2d

2
(2/ε + 1), χ = ω/ω , and q is the

state of the differential system with its particular solutions
q = x̂,x. Further, (23) and (24) are equivalent to the following
constraints in terms of ν , νc, χ , and W̄ = νW :

˙̄W +2sym(W̄A−νCT
L C)+ναe1I +νcαe2I �−2αW̄ (26)

I � W̄ � χI, 0 < ν ≤ 3
√

νc, ∀x, x̂, t (27)

where the arguments are omitted for notational simplicity.
Proof: The differential system of (20) and (22) is given

as dq = f (x, t) + (A(x, x̂, t) − M(x̂, t)CL(x̂, t)TC(x, x̂, t))(q −
x))dt +G(q, t)dW , where G(q, t) is defined as G(q = x, t) =
Ge(x, t) and G(q = x̂, t) = M(x̂, t)C(x̂, t)T D(x, t). Viewing V ,
g1, and g2 in Theorem 1 as V = δqTW (x̂, t)δq, g1 = ge, and
g2 = cd/ω , (25) – (27) follow as in the proof of Theorem 2
due to ν3 = ω−3 ≤ νc and the contraction condition (23).

Note that (15) and (23) depend on their target trajectory,
i.e., xd for control and x for estimation. We can treat them



H. TSUKAMOTO et al.: NEURAL STOCHASTIC CONTRACTION METRICS FOR LEARNING-BASED CONTROL AND ESTIMATION 5

as time-varying parameters p(t) in a given space during the
mCV-STEM sampling as in Remark 3. Alternatively, we could
use the following to avoid this complication.

Corollary 2: Using predefined trajectories (e.g. (xd ,ud) =
(0,0) for control or x = 0 for estimation) in Thm. 2 or Cor. 1
leads to local exponential stability of (12) or (22).

Proof: This follows as in the proof of Thm. 2 [2].

B. mCV-STEM Formulation

The following proposition summarizes the mCV-STEM.
Proposition 2: The optimal contraction metric M =W−1 that

minimizes the upper bound of the steady-state mean squared
distance ((17) of Thm. 2 or (25) of Corr. 1 with t → ∞) of
stochastically perturbed system trajectories is found by the
following convex optimization problem:

J∗CV = min
ν>0,νc>0,χ∈R,W̄�0

c1χ + c2ν + c3P(ν ,νc,χ,W̄ ) (28)

s.t. (18) & (19) for control, (26) & (27) for estimation

where c1,c2,c3 ∈ [0,∞) and P is an additional performance-
based convex cost (see Sec. IV-B1). The weight of ν , c2, can
either be viewed as a penalty on the 2-norm of feedback gains
or an indicator of how much we trust the measurement y(t).
Note that α , ε , and Lm are assumed to be given in (28) (see
Sec. IV-B2 for how to handle ˙̄W preserving convexity).

Proof: For control (17), using c1 =Cc/(2α) and c2 = c3 =
0 gives (28). We can set c2 > 0 to penalize excessively large
‖u‖ through ν ≥ supx,t ‖M(x,xd , t)‖. Since we have ν > 0 and
1≤ χ ≤ χ3, (25) as t→ ∞ can be bounded as

Ce1χ +Ce2χν2

2γ
≤ 1

3
√

3Ce1

(√
3Ce1
3
√

2γ
χ +

√
Ce2

3
√

2γ
ν

)3

. (29)

Minimizing the right-hand side of (29) gives (28) with c1 =√
3Ce1/ 3

√
2γ , c2 =

√
Ce2/ 3
√

2γ , and c3 = 0. Finally, since d = 0
in (21) means Ce2 = 0 and no noise acts on y, c2 also indicates
how much we trust the measurement.

1) Choice of P(ν ,νc,χ,W̄ ): Selecting c3 = 0 in Propo-
sition 2 yields an affine objective function which leads to
a straightforward interpretation of its weights. Users could
also select c3 > 0 with other performance-based cost func-
tions P(ν ,νc,χ,W̄ ) in (28) as long as they are convex.
For example, an objective function ∑xi∈S ‖u‖2 = ∑xi∈S ‖ −
B(xi, t)T M(xi, t)xi‖2 ≤∑xi∈S ‖B(xi, t)‖2‖xi‖2ν2, where S is the
state space of interest, gives an optimal contraction metric
which minimizes the upper bound of its control effort.

2) Additional Parameters and ˙̄W: We assumed α , ε , and
Lm are given in Proposition 2. For α and ε , we perform a line
search to find their optimal values as will be demonstrated
in Sec. V. For Lm, we guess it by a deterministic NCM [2]
and guarantee the Lipschitz condition by SN as explained in
Sec. III-B. Also, (28) can be solved as a finite-dimensional
problem by using backward difference approximation on ˙̄W ,
where we can then use −W̄ � −I to obtain a sufficient
condition of its constraints, or solve it along pre-computed
trajectories {x(ti)}M

i=0 [2], [27]. The pseudocode to obtain the
NSCM depicted in Fig. 1 is given in Algorithm 1.

Algorithm 1: NSCM Algorithm

Inputs : States & parameters: S = {xi}N
i=1 or {x̂i}N

i=1
& T = {pi}M

i=1 (e.g. p = t, [xd ,ud ]
T , or x)

Outputs: NSCM and J∗CV in (28)

1. Sampling of Optimal Contraction Metrics
Find Lm in Thm. 1 using a deterministic NCM [2]
for (α,ε) ∈ ALS (ALS is a search set ) do

Solve (28) of Prop. 2 using x, p or x̂, p in S & T
Save the optimizer (ν ,χ,{W̄i}N

i=1) and optimal
value J(α,ε) = c1χ + c2ν + c3P(ν ,νc,χ,W̄ )

Find (α∗,ε∗) = argmin(α,ε)∈ALS
J and J∗CV = J(α∗,ε∗)

Obtain (ν(α∗,ε∗),χ(α∗,ε∗),{W̄i(α
∗,ε∗)}N

i=1)

2. Spectrally-Normalized Neural Network Training
Pre-process data as in Sec. III-A
Split data into a train set Strain and test set Stest
for epoch← 1 to Nepochs do

for s ∈Strain do
Train a neural network using SGD with the
Lipschitz condition on Xxi as in Prop. 1

Compute the test error for data in Stest
if test error is small enough then

break

Fig. 2. Rocket model (angle of attack ϕ , pitch rate q).

V. NUMERICAL IMPLEMENTATION EXAMPLE

We demonstrate the NSCM on a rocket autopilot prob-
lem (https://github.com/astrohiro/nscm). CVXPY [28] with the
MOSEK solver [29] is used to solve convex optimization.

A. Simulation Setup

We use the nonlinear rocket model in Fig. 2 [30], assuming
q and specific normal force are available via rate gyros and
accelerometers. We use Gc = (6.0e–2)In, Ge = (3.0e–2)In, and
D = (3.0e–2)Im for perturbation in the NSCM construction.
The Mach number is varied linearly in time from 2 to 4.

B. NSCM Construction

We construct NSCMs by Algorithm 1. For estimation, we
select the Lipschitz constant on Xxi to be Lm = 0.50 (see
Sec. IV-B2). The optimal α and ε , α∗ = 0.40 and ε∗ = 3.30,
are found by line search in Fig. 3. A neural net with 3 layers
and 100 neurons is trained using N = 1000 samples, where its
SN constant is selected as Cnn = 0.85 as a result of Proposi-
tion 1. We use the same approach for the NSCM control and
the resultant design parameters are given in Table I. Figure 4
implies that the NSCMs indeed satisfy the Lipschitz condition
with its prediction error smaller than 0.08 thanks to SN.

VI. DISCUSSION AND CONCLUDING REMARKS

We compare the NSCM with the SDRE [7], ILQR [16],
[17], EKF, NCM [2], and mCV-STEM. As shown in Fig. 5,

https://github.com/astrohiro/nscm
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Fig. 3. Optimal steady-state estimation error as a function of α and ε .
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Fig. 4. NSCM spectral normalization and prediction error.

the steady-state errors of the NSCM and mCV-STEM are
indeed smaller than its steady-state upper bounds (17) and
(25) found by Proposition 2, while other controllers violate
this condition. Also, the optimal contraction rate of the NCM
for state estimation is much larger (α = 6.1) than the NSCM
as it does not account for stochastic perturbation. This renders
the NCM trajectory diverge around t = 5.8 in Fig. 5. The
NSCM Lipschitz condition on Xxi guaranteed by SN as in
Fig. 4 allows us to circumvent this difficulty.

In conclusion, the NSCM is a novel way of using spectrally-
normalized deep neural networks for real-time computation of
approximate nonlinear control and estimation policies, which
are optimal and provably stable in the mean squared error
sense even under stochastic disturbances. We remark that the
reference-independent policies [4], [9]–[13] or the generalized
SDC policies (14) and (22) introduced in this paper, which
guarantee global exponential stability with respect to a target
trajectory, could be used both in stochastic and deterministic
frameworks including the NCM [2]. It is also noted that the
combination properties of contraction theory in Remark 4 still
holds for the deterministic NCM. An important future direction
is to consider a model-free version of these techniques [31].
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