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Abstract

Mechanistic understanding of disease has been dramatically enhanced by an explosion of new
high-throughput experimental techniques for profiling biological samples, including RNA-Seq,
mass spectrometry, and single-cell sequencing However, the ability to gather exponentially more
measurements comes with pitfalls of increased Type I error and reduced interpretability In theory,
single-cell measurements can be helpful in combating this problem, since each sample of cells
represents hundreds to thousands of observations But thinking is still emerging on how best to
utilize single-cell data to boost statistics and generate meaningful findings

This thesis represents several parallel efforts to develop and apply new bioinformatic techniques
to generate robust findings from single-cell data The advances are especially pertinent for small
clinical studies in which low sample numbers are limiting In the first part of the thesis, two classes
of methods are introduced gene module discovery in single-cell RNA sequencing data using
sparse PCA, and probability-based metrics for evaluating the degree of association between
paired modalities of single-cell data (in this case, single-cell RNA sequencing and paired TCR
sequencing data) The methods are shown on two different human datasets, as proof-of-concept
and examples of the biological findings capable of being unearthed

In the second part of the thesis, these methods are applied to larger clinical datasets with
questions surrounding acquired tolerance and clinical reactivity in food allergy In the first study,
T-helper cells from peanut-allergic patients undergoing oral immunotherapy were profiled to
identify therapy-induced effects and baseline predictors of outcome Two distinct subsets of
expanded TH2 clones were found to be suppressed, but not deleted, by the therapy In the second
study, transcriptional correlates of clinical reactivity were evaluated in peanut-activated memory
T-helper cells from peanut-allergic adults Cells from more reactive patients had higher expression
of TH1 and MHC I gene programs, suggesting activation of auxiliary, non-TH2 cell types In each
of these studies, new single-cell analysis techniques were integrated to generate clinical findings
with improved robustness and interpretability
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1. Introduction

In the last hundred years, the landscape of human disease has been drastically altered by

advancements in therapies and vaccines, changes in environment, diet, and lifestyle, increased

use of antibiotics, and several other factors1'2 While some of these elements reflect great strides

in treating infectious disease, others may play a role in the increasing prevalence of

noncommunicable disease (such as heart disease, cancer, and type Il diabetes), which accounted

for 68% of all deaths globally in 20123 Several of these diseases, particularly immune-mediated

disorders such as autoimmune diseases, cancer, and allergy, have complex mechanisms and

present significant challenges for developing treatment strategies in the absence of an obvious

pathogen In order to create effective diagnostics and therapies for these diseases, a precise

understanding of the underlying cellular and molecular states is required Ideally, human clinical

samples will need to be profiled at the deep resolution required to achieve such understanding

In response to this need, there has been a recent explosion of new high-throughput

techniques for profiling biological samples, including RNA-Seq, ChIP-Seq, ATAC-Seq, and mass

spectrometry for proteomics or metabolomics These powerful methods allow for the unbiased,

parallel measurement of all molecules of a particular class, without a pnori knowledge required of

the targets to be analyzed This means that hundreds to thousands of molecules can be profiled

simultaneously to determine disease-relevant interactions and signaling pathways, not just

individual markers, and that previously unknown biomolecules can be identified as nodes for

monitoring or modulation Several of these measurements are now possible at the single-cell

level, enabling even more high-resolution mechanistic discovery and tracking of heterogeneous

cell populations

This exciting set of innovations presents several opportunities for medical advancement,

and significant challenges for data analysis An often-ignored pitfall of the ability to profile samples
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in a high-throughput, unbiased fashion is the vastly increased probability of Type I error, i e false-

positives A closely related challenge is interpretability, sifting through hundreds of features

instead of a few can run counter to the goal of identifying a small, reliable set of biomarkers or

drug targets Because the field is so nascent, an additional challenge is knowing what research

questions are possible and feasible to ask of high-throughput datasets

In the effort to overcome these problems, single-cell measurements could be

unexpectedly helpful In a single-cell experiment, each sample theoretically represents hundreds

to thousands of independent observations (i e cells), it therefore seems feasible to be able to

utilize these data to improve, rather than hurt, statistical power and interpretation But thinking is

still emerging on how to go about this in practice

This thesis represents several endeavors to develop and apply bioinformatics techniques

for attaining adequate statistics and biological meaning in single-cell data analysis In the

remainder of this chapter, I review motivations for single-cell profiling and existing single-cell

experimental methods, as well as precedent and prior thinking on how to cleverly use single-cell

data to improve, rather than hinder, reproducibility and interpretability Finally, I preview the

subsequent chapters of the thesis that describe new advances in data analysis and clinical

discoveries that my colleagues and I made in this space

1.1. Motivation for single-cell resolution of clinical samples

There is an increasing appreciation that human cells, beyond well-described differences in

lineage, are extremely heterogeneous, and that highly specific subsets of cells may be

dysregulated in disease For example, it has recently been shown that subsets of exhausted CD8

T cells may be differentially responsive to cancer immunotherapies4 , myelin-reactive T-helper

cells have divergent gene expression programs in healthy adults and multiple-sclerosis patients5,
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and a small subset of dendritic cells that expresses an antiviral program is associated with elite

control of HIV6 Thus, for most disease contexts there are compelling reasons to study clinical

samples at the single-cell level in order to unearth insights regarding specific subtypes of cells

In addition to discovering new disease-relevant cell types, single-cell resolution is

advantageous or required for the following goals 1) Finding rare cells against a large background

of unwanted cells. As an example, antigen-specific T cells are extremely rare in circulation (about

1 in 103 to 105 cells)7 and cannot be profiled reliably by bulk methods without extremely stringent

selection Single-cell resolution relaxes the requirement for stringent selection of rare cell types

and enables many new types of studies 2) Studying multiple cell types from one sample in

parallel Profiling multiple cell types at once may be a practical goal, based on cost or a clinical

sample with low cell numbers Alternatively, it may be motivated by the desire to model

intercellular communication by profiling signaling cues in multiple cell types, or to survey all cells

present in a tissue environment Studying a sample at single-cell resolution can allow for the

parallel measurement of most or all cell types present in the dataset 3) Separating out the effects

of changes in cell frequencies from changes in intracellular gene expression levels Cell

frequencies and functional states often change in tandem, and both changes are reflected in bulk

readouts such as gene expression In bulk measurements, the two phenomena are impossible to

tell apart, and the distinction between them is critical for understanding regulation and mechanism

in disease Single-cell measurements allow for the resolution of whether, for example, cells are

proliferating and increasing in number, or whether cells are individually becoming more activated

1.2. Experimental methods for single-cell profiling

Stemming from an increased appreciation for the roles that rare and heterogeneous cell types

play in diseases like food allergy, there has been a proliferation in new experimental techniques
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for single-cell profiling Until recently, the only widely available methods for single-cell profiling

were flow cytometry and ELISPOT, which could measure up to 17 multiplexed surface or

intracellular molecules, and a single secreted cytokine, per cell, respectively8 These assays were

augmented by the advent of single-cell mass cytometry, or CyToF (which can reliably profile up

to 40 molecules per cell with isotope-tagged instead of fluorophore-tagged antibodies)9 , and

single-cell protein secretion assays0 (which can profile 4 to 12 secreted proteins simultaneously

from a single cell) These advances led to new insights on the dynamics of cytokine secretion by

T cells" and on how to derive signaling networks from single-cell data12 Results with these

methods, though, were still limited to cellular markers that were known and for which antibodies

could be made

At the same time, unbiased "omics" techniques for profiling samples in bulk, such as RNA-

Seq, ChIP-Seq, ATAC-Seq, proteomics, and metabolomics, were emerging Rather than using

reagents for a set of pre-specified molecules, these methods relied on sequencing, mass

spectrometry, or other measurements that could recognize all analytes of a given class with

relatively low bias For example, in a typical RNA-Seq protocol, all RNA molecules with a poly(A)

tail are enriched using poly(dT) binding reagents, amplified using PCR with random priming

sequences, and read using next-generation sequencing, in as unbiased a way as possible for

different transcripts (barring small inherent biases in amplification and sequencing for transcripts

of differing GC content and length) This class of methods allowed for the measurement of

analytes that were not selected a pnon, and even analytes that were not known, fundamentally

changing the way biological samples could be studied

As a natural confluence of discoveries in cell heterogeneity and innovations in high-

throughput measurements, massively parallel single-cell techniques have rapidly appeared and

been improved upon in the past few years Single-cell RNA sequencing techniques, for example,

include plate-based sorting13 , drop-Seq14 , lOX1 5, and Seq-Wel 16 (progressively newer and more
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cost-effective), other measurement platforms include single-cell ATAC-Seq1 7 and single-cell

ChIP-Seq18 , as well as more specialized measurements like highly multiplexed single-cell FISH1 9,

dynamic single-cell mass cytometry20, and multiplexed single-cell protein secretion'° An

extremely recent avenue of innovation has been the development of multimodal single-cell

profiling, that is, the ability to measure two types of data on the same cell, such as paired spatial

and transcriptomic information 21 Multimodal single-cell measurements are an exciting opportunity

to provide critical context and validation to each dataset Overall, these advances allow for the

unbiased discovery of precise and rare cell populations, giving additional resolution and

knowledge into biological phenomena

1.3. Challenges and opportunities in single-cell data analysis

The emergence of massively parallel single-cell techniques is exciting for learning about basic

biological phenomena and for uncovering complex mechanisms or biomarkers of disease

However, significant challenges exist in converting the often terabytes of data generated by each

experiment into actionable knowledge Analysis approaches are still emerging that are suited to

the unique challenges of single-cell data, which include high sparsity and noise resulting from tiny

amounts of starting material, vulnerability to batch effects, reliably identifying subpopulations of

cells, and more Arguably, the biggest challenge to contend with is that the huge number of

features generated can vastly increase the chances of false positives and obscure signal to noise

in the discovery of potential biomarkers, drug targets, or disease mechanisms

Both high-throughput and single-cell methods represent a double-edged sword for

discovering real, reproducible findings On one hand, high-throughput techniques allow for the

measurement of thousands of analytes, and single-cell approaches allow for ever-increasing

resolution and tracking of narrow subpopulations of cells, which together could enable more
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precise descriptions of disease states or treatment groups On the other hand, both of these

classes of techniques also increase the number of features that can be defined per sample,

without selecting for clinically relevant features, and thus also increase the probability of Type I

error (false-positives) This downside is evident when one considers the hundreds or thousands

of analytes and cell subsets being measured that are irrelevant to the biological context but that

may randomly vary with the covariate of interest (such as clinical outcome) and cause a false

signal By extension, integrating together multiple modalities of high-throughput data can make

for even more potential features and thus false-positives Smaller clinical studies, in which the

feature-to-sample ratio is more heavily skewed, are especially vulnerable to this pitfall This

problem of irreproducibility has been broadly described in the biomedical literature and has been

partially attributed to measuring many relationships without preselection2 2

Hand-in-hand with the difficulty of extracting signal from a sea of false-positives, is the

challenge of attaining interpretability of results Biological interpretation and clinically actionable

knowledge are a central desired outcome of single-cell studies, but the presence of thousands of

features, of which tens or hundreds may be flagged as statistically significant, may be challenging

to interpret Gene set enrichment analysis and other pathway analysis tools exist to identify

common signaling pathways or network motifs among a myriad of significant genes, but these

tools were designed for microarray or bulk RNA-Seq studies and are not easily generalized to

single-cell studies (in part because of different library preparation techniques for bulk and single-

cell samples, making comparisons to bulk reference datasets inherently biased)

Unexpectedly, the very nature of single-cell data could be helpful in mitigating these

challenges In theory, each single cell is a separate observation within a biological sample, so it

seems that cells could be utilized as individual samples, rather than just as the basis for additional

features, to improve both statistical power and interpretability There is not, however, much

precedent for how to envision this idea in practice, but the best example may be a study by Sachs
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et al in 2005 that derived an entire signaling network architecture de novo using single-cell CyToF

data12 The researchers made use of the fact that each cell was in a slightly different state of

signaling, so correlations between nodes in the network could be robustly assessed using the

thousands of collected observations, in combination with perturbations to the network This study

was an example of how single-cell data improved the ability to make biological conclusions by

allowing the researchers to organize the measurements into an accurate network As a completely

different, clinically-focused example, a recent study showed that mutation calling within single

circulating tumor cells could be made more robust by a census-based approach in which a

mutation had to be observed in a threshold number of cells in order to be credible23 In this case,

measuring single-cell exomes allowed the researchers to have confidence (and increased

statistical power) from the same mutation being detected in multiple cells In both of these studies,

the liabilities of individual cells as observations were acknowledged and overcome by analyzing

many cells together These studies serve as useful and thought-provoking examples of how one

might use single-cell high-throughput data to help, rather than hurt, statistics and interpretability

1.4. Thesis objectives

The aims of this thesis work are twofold The first is to make advances in the quantitative analysis

of single-cell data to help boost reproducibility and biological interpretation, especially in studies

with small numbers of samples The second is to apply these advances to larger clinical studies

to help reveal new disease-relevant insights In light of these aims, the thesis is organized into

two parts

Part I: Bioinformatic tools

- Chapter 2 Gene module discovery in single-cell RNA sequencing data of T cells in pediatric

milk allergy Analysis of single-cell RNA sequencing data is hindered by high noise and
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sparsity in individual genes In this chapter, we show a method to mitigate this challenge by

compressing genes co-expressed within many single cells into gene modules without a prion

knowledge The method is based on sparse PCA which allows for several useful mathematical

features such as pseudo-orthogonality of the gene modules and algorithmic transparency We

show the usefulness of the method, on a case study with T-helper cells from pediatric milk

allergy samples, in discovering and interpreting multiple functional states in milk-reactive T

cells that vary longitudinally

Chapter 3 Analysis of multimodal single-cell data to identify a highly activated, clonotypically

distinct state in antigen-reactive T cells An exciting new extension of single-cell profiling is

the ability to measure analytes of multiple modalities on the same cell A central question is

often the degree of overlap between the modalities, but how to evaluate this quantitatively and

statistically is an ongoing question We developed an analysis framework incorporating

concepts from probability and information theory to concisely convey the overlap between T-

cell receptor (TCR) sequence and paired transcriptome data We apply this framework to a

case study of CMV-reactive T-helper cells, isolated at different stimulation times with CMV

antigen, and we show a tight and time-dependent association between TCR sequence and T

cell state, highlighting the possible role of epitope recognition in shaping the T-cell response

Additionally, we identified a highly activated, clonotypically distinct state that peaks at very

early time points, is likely associated with specific epitopes, and has not been previously

described

Part |1: Clinical applications

- Chapter 4 Transient suppression, but not deletion, of distinct subsets of TH2 clonotypes in

peanut oral immunotherapy Oral immunotherapy (OIT) is a trial-stage treatment for food

allergy with a low rate of inducing sustained unresponsiveness to allergen We profiled T-

helper cells from twelve peanut-allergic patients experiencing different outcomes from OIT, in
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order to better understand T cell changes induced by the treatment and cell states that could

predict patient outcome Using single-cell RNA sequencing and paired TCR sequencing, we

found multiple clonotypically distinct subsets of TH2 cells that were transiently suppressed,

but not deleted, by treatment Additionally, we discovered baseline predictors of outcome

including TH17 signatures These findings underscore the difficulty of inducing durable

reprogramming in OIT and that clinical outcome may be set in stone prior to the start of

treatment

- Chapter 5 T-cell correlates of clinical reactivity to peanut allergen Peanut-allergic patients

present with a wide range of clinical symptoms and seventies, and the underlying immune

states contributing to this heterogeneity are not well-understood We profiled circulating

peanut-reactive T-helper cells from peanut-allergic patients with high or low clinical reactivity

to peanut, in order to discover associated T cell states We found that surprisingly, TH1 and

MHC I gene modules were upregulated in cells from patients with higher reactivity to peanut,

and that TH2 modules were slightly upregulated in less reactive patients, suggesting that

auxiliary effector phenotypes might be correlated with more severe disease
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2. Gene module discovery in single-cell RNA sequencing data of

T cells in pediatric milk allergy

This chapter introduces a technique for compressing individual genes in single-cell RNA

sequencing data into gene modules in an unsupervised manner Single-cell RNA sequencing data

is inherently noisy and sparse, qualities that are problematic for analyses such as differential

expression We show that using a sparse PCA-based approach, this noise can be mitigated and

biologically meaningful gene modules can be generated from measurements of individual genes

Compared to other methods by which researchers have addressed this challenge, our approach

is algorithmically transparent and user-friendly Using a dataset generated from T cells from

pediatric milk allergy patients, we show that the method generates gene modules representing

both known and unknown T cell functional programs without appreciable loss of information By

tracking the modules longitudinally within patients, we observe that TH1 and NF-kB gene modules

are upregulated as a milk-allergic individual ages, regardless of how their allergy progresses

Overall, this gene module approach is simple and powerful for gleaning knowledge about gene

programs present in the cells and for dimensionality reduction for downstream tests
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2.1. Motivation

2.1.1. Challenges of dropout in single-cell RNA sequencing data

Single-cell RNA sequencing is a powerful technique for discovering new subpopulations of cells

and identifying disease-relevant cell states and signaling pathways A key challenge of single-cell

RNA-Seq data, however, is a phenomenon known as dropout', wherein many, often a majority,

of entries in the digital gene expression matrix of cells versus gene counts are zeros (Figure 2-1)

Cell 1 9 0 0 1 0 0 0 0 0

Cell 2 18 0 0 1 5 0 0 0 0

Cell 3 12 0 0 3 0 0 0 4 0

Cell 4 0 0 0 1 0 0 1 2 1

Cell 5 17 0 0 5 0 0 0 2 0

Cell 6 21 1 0 3 0 0 0 0 1

Cell 7 9 1 0 0 0 1 0 1 0

Cell 8 25 1 0 5 0 0 0 0 1

Cell 9 10 2 0 0 0 0 0 0 0

Cell 10 11 1 0 2 0 0 0 0 0

Cell11 11 0 0 1 0 0 0 0 0

Cell 12 10 3 0 0 0 0 0 0 0

Cell13 15 0 0 1 0 0 0 0 0

Cell 14 7 1 0 10 1 0 0 1 0

Cell 15 14 4 0 2 0 0 0 0 1

Figure 2-1 Snapshot of single-cell RNA-Seq digital gene expression matrix This matrix
represents a random snapshot of cells and variable genes in an experiment with milk-reactive
memory T-helper cells

Dropout is attributed to two main causes The first is biological mRNA transcription has

been described to happen in "bursts", not uniformly, meaning that zeros may simply be a function

of transcriptional noise and sampling time3 Depending on the application, it may be desirable to

retain this "real" biological noise The second cause of dropout is technical Capturing the tiny
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amount of mRNA from a cell is inherently inefficient', a rough estimate of the fraction of starting

mRNA that is converted to cDNA is proposed to be 2-20% for single-cell RNA-Seq via 1OX 4 Thus,

many of the zeros are likely missing values due to insufficient mRNA capture (or subsequent

under-amplification or under-sequencing)

Regardless of the reason, dropout represents a significant challenge for any quantitative

analysis Individual gene measurements are complicated by noise and sparsity, and as a result,

only highly-expressed genes tend to score well in differential expression tests (Figure A2-3)

Additionally, it is challenging to fully utilize single cells as separate observations, which may be

desirable for longitudinal tracking, trajectory-based inferencing, or other analyses, but which is

hampered by the noisiness of data within each individual cell In order to adequately address

these challenges of dropout, statistics must either account for the zero-inflated nature of the data,

or the data must be smoothed in some way

2.1.2. Approaches for addressing dropout

Three main approaches have emerged along these lines The first is to employ statistical

models that explicitly model dropout''5 or the high incidence of zeros6 '7 , or that give lower

importance to genes likely to be affected by dropout8 Such tests are designed to decrease the

biases produced by dropout on subsequent statistical analyses, by modeling dropout events or

zeros probabilistically This approach is the simplest and does not require data manipulation, but

is also the narrowest in scope, as it can only be used if the research question of interest can be

answered with one of the available models Additionally, imperfectly modeling the molecular

events surrounding dropout and biased amplification (which is, to some extent, inevitable) can

actually introduce technical artifacts into differential expression or other analyses9

23



The second approach uses imputation to replace some of the zeros or low-count values

with higher, imputed values based on predictions of which ones represent dropout events. This

strategy, which includes methods such as MAGIC'°, Drlmpute", and scImpute , typically relies

on similarity to nearest-neighbor cells as the basis for imputation. In theory, this approach is

powerful and broadly useful for any downstream analysis, correcting the data for technical defects

in mRNA recovery, but in practice it can be extremely precarious, as imputation can paint over

biological noise, cell-to-cell variability, and other real features in the data.

-N Pearson
correlation

10.5

Figure 2-2. Correlation matrix of immune genes in a single-cell RNA-Seq dataset of T cells.
Pearson correlation of every gene pair is plotted.

The third approach relies on dimensionality reduction for smoothing, making use of the

phenomenon that small subsets of genes tend to be highly co-expressed (Figure 2-2), and that

combining genes into gene "modules" may thus be a way to reduce noise from dropout without

loss of information. Such a method is ideally done in an unbiased way, without a prioriinformation

such as published gene sets, since not all disease contexts or cell states have well-described

gene pathways, and moreover, not all published gene sets are generalizable to different
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experimental setups or clinical settings Existing gene module discovery methods are

predominantly based on non-negative matrix factorization (NMF) 13 ,14,15 or topic modeling16'17 , and

have been used to great effect In addition to reducing noise, this approach has the added

advantage of decreased Type I error and improved interpretability over individual genes, because

of the reduced number of features and the biological information encoded in the grouping of

genes Drawbacks of this strategy include the inability to directly address the noise present in

individual genes, if individual genes are required for any analyses (which they often are)

Both of the smoothing approaches described (imputation and dimensionality reduction)

cleverly make use of the single-cell nature of the data as the basis for smoothing, and are feasible

for use on single-cell data generated from a variety of sample types and experimental techniques

Almost all existing methods, however, have limitations on ease of implementation (successfully

accessing and running the method) and/or algorithmic transparency We saw a need for simpler

techniques that were easier both to implement and to understand intuitively

In light of this, we came up with a new dimensionality reduction method for discovering

co-expressed gene modules from genes in single-cell RNA-Seq data The method is simple and

easy to implement, being based on a method for sparse PCA (principal component analysis)18

Sparse PCA is like PCA in that it discovers co-expressed genes by deriving principal components,

i e the eigenvectors of the correlation matrix of genes, but it additionally imposes a lasso penalty

on each component to induce sparseness This method confers the following beneficial

properties 1) the sparsity can be tuned using a single parameter for the desired gene module

size depending on the biological application, where smaller modules usually have increased

interpretability, 2) gene modules can be made to be pseudo-orthogonal (exact orthogonality is not

possible with sparse PCA, unlike PCA), meaning that redundant or highly overlapping gene

programs are unlikely, and 3) both negative and positive gene weights can be optionally allowed,

which may better represent certain biological phenomena in which genes are negatively regulated
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with respect to each other As a case study, we show the method's usefulness in discovering

gene modules, and thus enabling better interpretation of longitudinal analysis, on a single-cell

dataset of T cells from pediatric milk allergy patients

2.1.3. Motivation for case study in pediatric milk allergy

Milk allergy, unlike some other food allergies, is often but not always outgrown in childhood 19

The reasons for acquisition of tolerance to milk in a subset of the population are still being

investigated, and are of great interest in the effort to develop better therapies for food allergy

For example, correlates of natural tolerance could be useful in directing desired cell states to

induce during allergen-specific immunotherapy To discover such correlates, we collected

samples at two time points (about 1-2 years apart) from children whose milk allergy either

improved in status, remained the same, or was already resolved, in order to identify immune

changes associated with tolerance We measured gene expression in milk-reactive T-helper

cells, a central player in milk allergy Previous work has shown the transient emergence of

Tregs in milk-tolerant patients2 as well as elevated TH1 function in allergen-stimulated cells

from peanut-tolerant patients21 , but a deep and comprehensive survey of the functional

phenotypes present in milk-specific T cells was not previously possible Here we show, using

our method for gene module discovery, the diversity of major T-cell states that are present

among milk-reactive T cells We also perform a differential expression analysis to track which

cell states are altered with time, and we show that the gene module approach helps in

interpreting these changes
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2.2. Methods

Pediatric cohort. Patients were enrolled in accordance with IRB number 2014P000256/PHS at

Partners Health Pediatric milk allergy patients ages 3 to 12 were enrolled for a longitudinal

study Patients were first subjected to a diagnostic panel for milk allergy including a skin-prick

test, IgE blood test, and baked and uncooked milk challenges to assess their level of reactivity

Patients then gave two longitudinal blood samples about one year apart, with additional

diagnostic tests at or near the second visit to evaluate whether their milk allergy status had

changed At each time point, patients were classified by an allergist as having full milk allergy

(able to tolerate neither baked nor uncooked milk), partial milk allergy (able to tolerate baked but

not uncooked milk), or no milk allergy (able to tolerate both baked and uncooked milk) Based

on the status at both time points, patients were binned into one of four groups "Persistent",

meaning the patient had the same status of milk allergy at both time points, "Transient",

meaning the patient's milk allergy status had improved between the two time points (from full to

partial, or from full or partial to no allergy), "Resolved", meaning that the patient had a previous

history of milk allergy but no diagnostic signs of milk allergy at either time point, or "No history,"

meaning the patient had never had any history of milk allergy At each time point, a blood

sample was collected and PBMCs were immediately isolated via density-gradient centrifugation

using Ficoll-Paque (GE) and frozen in FBS containing 10% DMSO

PBMC stimulation and sorting. Cryopreserved PBMCs from pediatric milk-allergic donors were

thawed and plated in a 24-well plate at 5M cells/1 ml/well in AIM-V medium (Gibco) PBMCs were

stimulated with either milk extract (100ug/ml), anti-CD3/CD28 beads (Dynabeads) or PBS

Cultures were incubated at 37C for 22h before being harvested for staining and flow sorting 3h

before harvesting each culture, PE anti-CD154 antibody (BD, clone TRAP1) was added at a

dilution of 1 50 For staining, cells were incubated for 25min at 4C with live-dead blue viability dye
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(Biolegend), AF700 anti-CD3 (clone), APC-Cy7 anti-CD4 (clone), FITC anti-CD45RA (clone

H1100), PE anti-CD154 (clone TRAPI), and APC anti-CD137 (clone 4B4-1) All antibodies were

purchased from Biolegend except for PE anti-CD154, which was from BD After staining, cells

were sorted on a BD FACS Aria instrument Cells were sequentially gated as lymphocytes,

singlets, live cells, CD3+CD4+, and CD45RA-, and were then sorted as either CD154+CD137+/-

, CD154-CD137+, or CD154-CD137-

Single-cell transcriptome sequencing. Sorted cells were immediately processed for single-cell

RNA sequencing via the Seq-Well protocol 22 Briefly, up to 30,000 cells per sample were co-

loaded into wells at approximately single-cell occupancy with poly(dT) beads and lysed to allow

mRNA to hybridize onto the beads Beads were then pooled and mRNA was reverse-transcribed,

PCR-amplified, and prepared for sequencing via the Nextera XT kit Libraries were sequenced on

the Illumina Novaseq

Sequencing data preprocessing. Raw read processing was performed as in Macosko et a123

Briefly, sequencing reads were aligned to the hg38 human genome and counted to obtain a digital

gene expression matrix of cells versus genes The matrix was filtered to exclude any cells with

fewer than 1,000 detected genes or 2,000 detected transcripts (UMIs) Counts were then

normalized by cell library size and log2-transformed using the Seurat package in R, and were

visualized using a two-dimensional t-SNE projection

Gene module discovery. Gene modules were generated from the data using a sparse PCA

approach described by Witten et al18 and in the R package 'PMA' This approach employs an

Li -norm penalty which constrains the sum of all gene weights in each component Prior to

running sparse PCA, the normalized gene expression matrix (cells as rows, genes as columns)

was randomly downsampled to have an equal number of cells from the top 70 (out of 109)

samples, in order to prevent the results from being dominated by a few samples and to

decrease computational time Genes were filtered down to the union of immune genes (defined
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as the gene lists on ImmPort at https //www immport org/shared/genelists) and the most

variable genes in the dataset, using the 'var genes' command in the R package 'Seurat' Finally,

the data was scaled and centered with respect to genes, and sparse PCA was run using the

command 'SPC' (with 'orth' parameter set to TRUE and tuning parameter 'sumabsv' tuned as

described below) Gene module scores were calculated as the scaled gene expression input

matrix multiplied by the output loadings matrix 'v'

Gating module expression To classify whether cells were "expressing" a gene module or not,

the distribution of module expression across all cells was fit to a mixture model of a Gaussian

and a log-normal distribution (to model the case of a bimodal distribution with a clear negative

population, where the Gaussian was chosen to model the negative population and the log-

normal was chosen to model the positive population), and a single Gaussian (to model the case

of a unimodal distribution) The fit with the lower AIC (Akaike Information Criterion) was taken

In the case of the mixture model, cells assigned to the log-normal curve were classified as

"expressing" the module, and in the case of the single Gaussian, cells at or above one standard

deviation above the mean were classified as "expressing" the module

Differential expression analysis. Differential expression was performed using a Mann-Whitney

U test, to suit the non-normal distribution of most single-cell features, with a Benjamini-Hochberg

correction for multiple hypothesis testing

2.3. Results: Case study with pediatric milk allergy cohort

2.3.1. Milk allergy study design

To demonstrate the performance and features of the gene module discovery method, we ran it

on data from T cells sequenced from a pediatric milk allergy cohort using Seq-Well Samples

from thirteen children ages 3 to 12 were included in the study (Table 2-1) Patients were
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selected on the basis of having banked PBMC samples from two visits about 1-2 years apart,

and a well-defined milk allergy diagnosis at both visits Based on allergy status at each time

point, four patient groups were defined "Resolved", meaning the patient's milk allergy had fully

resolved before the first visit, "Transient", meaning the patient acquired partial or complete

tolerance to milk during the time between the two visits, "Persistent", which meant that the

patient had milk allergy which did not change in severity between the two visits, and "No

history", meaning that the patient had never shown signs of milk allergy

PBMCs from each visit were stimulated with milk antigen in order to preferentially

activate milk-specific T cells CD4 memory T cells were sorted on the basis of CD154 and

CD137, markers for capturing antigen-activated effector and regulatory T cells, respectively

(Figure 2-3) CD154+CD137+/-, CD154-CD137+, and CD154-CD137- cells were then profiled

using single-cell RNA-Seq This analysis focuses on the CD154+ compartment, for which we

recovered the most cells A t-SNE visualization of CD154+ cell transcriptomes shows strong

segregation by patient and a possible enrichment of certain cell clusters with time (Figure 2-4)

Table 2-1 Pediatric milk allergy cohort
Time between Baseline milk-

Patient Age at visits 1 and 2 specific IgE (kU/L)
ID enrollment Gender (days) Group
PM003 8 M 417 0 76 Resolved
PM073 11 M 348 0 71 Resolved
PM008 12 M 405 10 3 Transient
PM009 9 F 274 24 Transient
PM019 6 F 584 <0 35 Transient
PM078 12 M 383 26 Transient
PM090 3 F 403 3 83 Transient
PM002 6 F 731 14 Persistent
PM026 7 M 448 8 35 Persistent
PMO40 12 M 388 21 4 Persistent
PM071 5 F 549 3 63 Persistent
PM049 3 F 463 -- No history
PM081 3 F 378 -- No history
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Figure 2-3. Activation of milk-stimulated CD4 memory T cells from a representative milk-allergic
individual. Cells are from a "persistent" subject, and are pre-gated as lymphocytes, singlets, and
live+CD3+CD4+CD45RA-.

Figure 2-4. t-SNE visualization of CD154+ milk-reactive T-helper cells. Cells are colored by
allergy status and visit (visit 1 = v1, visit 2 = v2) (left), and by patient (right).
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2.3.2. Gene module discovery using sparse PCA

Next, to quantitatively assess what functional states were present among the CD154+ T cells,

we employed our gene module discovery method, using the union of immune and variable

genes as input features (see 'Methods') The method yielded several modules sorted by percent

variance explained, as in PCA, of which we took the top 40 for further analysis based on the

perceived "elbow" in the plot of percent variance explained (Figure 2-5) Of note, the percent

variance explained by each sparse component differs dramatically from that seen in standard

PCA This difference represents features particular to sparse PCA for one, each individual

component, being sparse, explains quite little variance Additionally, sparse PCA being a

numerical (rather than exact) solution, there is some stochasticity in the percent variance

explained by each subsequent component, unlike standard PCA where the percent variance

explained by each subsequent component is always a monotonically decreasing curve As a

result, and based on the fact that the top gene modules represented dominant T cell programs

and other sets of genes that concisely recapitulate known biology, percent variance explained

seemed like an overly conservative way to gate modules in this setting, and so a visual "elbow"

method was chosen instead Thus, we were able to reduce the feature space from hundreds of

input genes to 40 modules, representing a significant benefit for multiple hypothesis testing,

provided the gene modules were meaningful
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To examine whether the gene modules were in fact meaningful, we looked closely at the

top modules for overlap with known gene programs (Figure 2-5) Reassuringly, several modules

corresponded to known T-cell functions, including TH1 function and interferon-induced

activation (Module 3), and TH2 function (Module 8) We also observed modules with less

obvious functions, such as Module 10, representing MHC II genes (the upregulation of which

may indicate potent T-cell activation and signaling24), Module 15, a mix of neuronal and immune

genes, or Module 16, which contains X-chromosome genes and whose expression cleanly

separates cells on the gender of the individual (Figure A2-3)

2.3.3. Tracking longitudinal changes in milk-reactive T cells using gene modules

The gene module discovery method was successful at condensing genes into meaningful,

known gene programs (and some less-known programs) Next, we wanted to see if the gene

modules could improve interpretability in answering clinically focused research questions The

central question of interest in this study was what changes occur over time in milk-specific T

cells as the individuals age, and whether any of the changes are specific to patients who

outgrow their milk allergy For visualizing specific modules, we selected the four modules

corresponding to the major T cell functional states TH1, TH2, TH17, and Treg, and tracked their

frequencies temporally in all patients with sufficient cell numbers (which, unfortunately, was only

about half of the patients in our cohort Patients with no history of milk allergy, for example, did

not have sufficient cells for this analysis) Unsurprisingly, each patient had their own distinct

distribution of T cell states, and inter-patient variability was much higher than intra-patient

variability between time points (Figure 2-6) Interestingly, we observed temporal changes in the

form of TH1 induction in not just the transient patient, but in several of the persistent patients

We speculate that this could be due either to a universal increase in milk-specific TH1 with age,
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or early prognostic changes in a subset of the persistent patients that might develop tolerance

later on. There was insufficient data in this cohort to conclude which factor might be dominant.

B
Module coexpression in all cells

16
15
14

10

Module 4
Treg

Module 21
TH17

* 12. TH1+Treg+TH2+
* 13. TH1+Treg+TH17+
* 14. TH1+TH2+TH17+
* 15. Treg+TH2+TH17+

16. All

Transient

PM078

2

10

3 5

Persistent

PM002

2

PM026 PMO40 PMO71

S 22

15 
4

1 3 3 12

Figure 2-6. Functional T-cell modules identified in milk-reactive T cells and how they vary in
frequency over time. A. Overlays of module scores onto the t-SNE visualization. B. Distribution
of module co-expression in all cells. Module expression in all cells was gated using a Gaussian
mixture model as described in the Methods. Every possible status of module expression in a cell
for the four modules is represented with a different color. C. Distribution of module expression
over time in individual patients, using the same color scheme for module combinations as in B.
Patient samples with at least 100 cells at both time points were included.

To extend the analysis to all gene modules, not just the four major types, we performed

differential expression between the two time-points in persistent milk allergy patients. This
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comparison was done specifically to look for time-specific changes in patients whose milk

allergy status did not change. Differential expression was performed identically in both cases on

all cells, using a nonparametric test since neither the genes nor the gene modules are normally

distributed. Using gene modules, interpretability was aided by the unsupervised grouping of

genes into coexpression patterns (Figure 2-7). We observed, for example, that Module 3

included genes that were almost all individually upregulated, but were easier to interpret when

grouped together as a single program. Additionally, statistical significance (though irrelevantly

significant in this case) was improved by gene modules due to the reduced burden of multiple

hypothesis testing. From this analysis, we observed that the TH1 module is indeed upregulated

at visit 2 in persistent patients, along with activation programs that are enriched at visit 1.
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Figure 2-7. Differential expression analysis over time with genes and modules. A. Cells from the
four persistent milk allergy donors were tested, with genes up at visit 1 on the left of each plot,
and those up at visit 2 on the right. A linear regression was performed with time and patient as
covariates. P-values were adjusted for multiple hypothesis testing using a Bonferroni correction.
B. Same analysis as A, but with gene modules instead of genes. C. Gene loadings of the top-
scoring modules from B.
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2.4. Discussion

In this work, we show how a simple sparse PCA-based method can be applied to single-cell RNA

sequencing data to condense genes into co-expressed gene modules This compression can be

useful for smoothing, biological interpretation, and model parsimony when performing quantitative

analyses of single-cell RNA-Seq data

This method has several features that may make it more or less attractive compared to

other published methods First of all, the fundamental assumption governing any PCA-based

approach is that the principal components (i e , gene modules) are linear combinations of features

(i e , genes) This is both a drawback and an advantage, the assumption of linearity may not be

accurate in all biological settings, but it is often a good approximation and is why PCA-based

methods are transparent and easy to understand

Next, as mentioned previously, this particular method of sparse PCA includes the option

to constrain all loadings to be positive In contexts where genes negatively regulate each other,

allowing negative loadings can more accurately reflect the underlying biology However, having

only positive loadings is sometimes easier to interpret and useful for downstream analyses, as

scores can only be positive, making them interchangeable with normalized gene expression

values in a lot of analyses Having the ability to turn this constraint on or off is a definite benefit

Finally, this method has the option to plug into other PCA-based approaches For

example, contrastive PCA is an intriguing new technique that returns principal components

enriched in a target dataset compared to a control dataset (by subtracting the covariance matrix

of the control from the target and computing PCA on the difference)25 This approach could, for

example, return gene modules only variable in a disease dataset, not a healthy dataset The

implementation of sparse PCA used for this work does not, unfortunately, use the covariance

matrix as input, so this is not yet an option with the current approach But a user-friendly sparse
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PCA algorithm that takes the covariance matrix as input could, in the future, allow for the discovery

of contrastive gene modules

One limitation of this approach is a small bias for highly-expressed genes being included

in the gene modules, since these are more likely to have sufficient correlations with other genes

(Figure A2-4B) While the genes are z-scored prior to running the sparse PCA, this did not entirely

solve the problem of bias towards highly-expressed genes We suspect that this is a problem

common to most dimensionality-reduction methods, and it is certainly most egregious when using

individual genes for differential expression analysis, as highly-expressed genes tend to have

much lower p-values (Figure A2-4A) Nevertheless, this is a source of bias that we were hoping

to address but that was not completely solved with this approach, and that still represents a

challenge in single-cell RNA-Seq analysis
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3. Analysis of multimodal single-cell data to identify a highly

activated, clonotypically distinct subset in antigen-reactive T

cells

Single cells can increasingly be profiled by multiple modalities simultaneously For example, both

spatial and transcriptional information can now be collected on single cells in a tumor or in the

brain' 2 , and gene expression and protein marker expression can be assayed in parallel using

flow sorting and plate-based sequencing3 Measuring multiple modalities of data invites exciting

prospects for uncovering new biology, and significant challenges in integrating and analyzing the

two types of data

A key goal with multimodal datasets is often to quantify the extent of association between

the modalities, e g how much do specific cell types localize to certain spatial areas of a tumor, or

how concordant are transcript and protein expression for a given gene Such analysis has been

done qualitatively to great effect2, but quantitative approaches to assess the degree and statistical

significance of overlap are still lacking In this chapter, we show an analysis workflow for

quantitatively evaluating overlap between two types of measurements using probability-based

metrics
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3.1. Motivation: Probing the relationship between T-cell receptor and

transcriptional state in T-helper cells

Antigen-specific T cells are critically important in a wide variety of immune-mediated diseases,

including infectious diseases, autoimmune disorders, allergy, and cancer T cells function by

mounting a response upon recognition of a specific peptide antigen bound to MHC I or II

molecules This recognition occurs through the T-cell receptor, or TCR, which undergoes VDJ

recombination in a process similar to antibody development The nature of the response can vary

greatly, in T-helper cells, several major functional states have been identified including THI which

is important in antiviral and antibacterial immunity, TH2 in anti-helminth immunity, TH17 in

antifungal immunity, and Treg in maintaining peripheral tolerance to self-antigens Additionally,

almost all of these types have pathogenic functions, for example, TH2 cells play a role in allergy,

TH17 cells in autoimmunity, and Treg cells in subversion of the anti-tumor immune response in

cancer Understanding what causes different T cell phenotypes to arise in vivo, and having the

ability to modulate them, is therefore of immense scientific and clinical importance

T cell differentiation upon priming by an antigen-presenting cell (APC) is influenced by a

combination of cues, including cytokine signaling, engagement between costimulatory receptors

and their ligands on the surface of the APC, and signaling through the interaction between the

TCR and peptide-MHC complex (pMHC) The relative importance of these factors is still being

understood, especially in humans, since most studies are performed in mice The role of soluble

factors such as cytokines in T-helper cell differentiation is relatively well-established, with elevated

IL-12 and IFNa promoting TH1 responses, for example What is less known is to what extent the

TCR-pMHC binding event itself shapes the T-cell response This effect, if it exists, is important to

characterize for understanding basic T cell biology and modulating T cell fates in disease by

selection of epitopes (a strategy that is already under way in some clinical settings4'5)
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Prior work on the effect of epitope on T-helper cell differentiation has been largely limited

to highly-controlled in vitro settings, but the prevailing paradigm is that epitopes causing a higher-

avidity interaction of the TCR-pMHC may lead to a TH1 response, those causing lower avidity

may lead to a TH2 response, and that lowest-avidity interactions may lead to Treg responses6,78'9

Epitopes qualities leading to other functional T cell states are less delineated It has been noted

that these differences in fate could also be due to differences in the density of peptide presented

on the surface of the antigen-presenting cell10 (which could still be a function of epitope, as binding

affinity of the peptide itself for MHC could influence surface density) Thus, various confounders

exist, and moreover, it remains unclear to what extent these phenomena are relevant in humans

in an actual disease response

Studying the link between epitope specificity and T cell fate in humans has seemed

insurmountably difficult, as the fate of individual naive T cells cannot be tracked in vivo, and even

the inference of a clonotype-phenotype relationship using bulk measurements is confounded by

the high degree of T-cell heterogeneity It still remains impossible to track individual cells in vivo,

but as a result of very recent innovations, cells of the same clonotype can now be identified and

their functional states measured in parallel, at scale, using paired gene expression and TCR

sequencing" From this setup, it is possible to identify the phenotypes of cells that likely recognize

the same epitope (computational efforts to directly predict epitope from TCR sequence are still

not usable for most antigens, but recent algorithms can reliably infer which TCR sequences are

directed towards the same antigen12 13 ) This allows for the assessment of whether certain types

of TCR sequences tend to be associated with the same T-cell fate, and the subsequent inference

of the role that epitopes may play in shaping their differentiated state

To extract meaning from this paired T cell data, standardized analysis techniques do not

yet exist An analysis pipeline thus needed to be designed to quantitatively assess overlap We

developed a probability-based approach for the likelihood of cells expressing the same T cell
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functions, given the same or similar TCR sequences This strategy takes advantage of each cell

as a separate probabilistic event Some of the concepts used in creating this analysis workflow

were borrowed from information theory, an aspect of which focuses on assessing shared

information between multiple measurements There are several relevant concepts from

information theory, that with careful adaptation can be used for the analysis of paired single-cell

data and for biological datasets in general

As a case study to investigate the association between TCR sequence and T cell fate in

a well-defined antigen, we isolated CMV-activated memory T-helper cells from humans PBMCs

and performed single-cell RNA sequencing via Seq-Well14, as well as a paired TCR sequencing

approach using TCR transcript pulldown and amplification" (The reason that TCR transcript

sequence could not be gleaned directly from the RNA sequencing data was that most 3' single-

cell RNA-Seq protocols do not sequence enough of the transcript to reach the variable regions of

the TCR ) CMV was chosen as a common recall antigen likely to have a large number of

circulating T cells in some individuals From an in vitro time-course in which T-helper cells were

sorted after stimulation for 3h to 18h, we show a strong and evolving association between TCR

and gene expression state, which suggests that epitope may influence the kinetics of T-cell

responses Additionally, we identified a highly-activated, clonotypically distinct state, which

preferentially contained a subset of the TCR sequences, some of which were biophysically highly

similar, indicating that this state may be the result of encounters with specific epitopes

3.2. Methods

PBMC culture with CMV antigens. Cryopreserved PBMCs from two healthy donors with

ELISPOT-validated responses to CMV were purchased from Cellular Technology Limited (Shaker

Heights, Cleveland, OH) PBMCs were thawed and plated in a 24-well plate at 5M cells/1ml/well
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in AIM-V medium (Gibco) PBMCs were stimulated with CMVpp65 protein at 1 100 (Milteny 130-

091-823), CMVpp65 peptide pool at 1ug/ml per peptide (Miltenyi 130-093-438), or PBS Cultures

were incubated at 37C for Oh, 3h, 6h, 9h, 12h, or 18h before being harvested for staining and flow

sorting 3h before harvesting each culture, PE anti-CD154 antibody (BD, clone TRAP1) was

added at a dilution of 1 50, this step was omitted for the Oh cultures

Flow-based enrichment for CMV-reactive T cells. Cells were washed in PBS and stained for

25min at 4C with Zombie Violet viability dye (Biolegend), then with PacBlue anti-CD8 (clone SK1),

APC anti-CD3 (clone UCHT1), APC-Cy7 anti-CD4 (clone RPA-T4), AF488 anti-CD45RA (clone

Hl100), PE anti-CD154 (clone TRAP1), and BV605 anti-CD137 (clone 4B4-1) All antibodies were

purchased from Biolegend except for PE anti-CD154 which was from BD After staining, cells

were washed with FACS buffer (PBS with 1% BSA and 1mM EDTA) and sorted on a BD FACS

Aria instrument Cells were sequentially gated as lymphocytes, singlets, live cells, CD3+CD4+,

and CD45RA-, and then CD154+ cells were sorted

Single-cell transcriptome sequencing. Sorted cells were immediately processed for single-cell

RNA sequencing via the Seq-Well protocol'4 Briefly, cells were co-loaded into wells at

approximately single-cell occupancy with poly(dT) beads and lysed to allow mRNA to hybridize

onto the beads Beads were then pooled and mRNA was reverse-transcribed, PCR-amplified,

and prepared for sequencing via the Nextera XT kit Libraries were sequenced on the Illumina

Novaseq

Paired single-cell TCR sequencing. Paired TCR sequencing was performed according to Tu et

all' Briefly, following cDNA amplification in the Seq-Well protocol, biotinylated capture probes for

human TRAC and TRBC regions were annealed to cDNA Magnetic streptavidin beads were then

used to enrich the bound TCR sequences, which were then further amplified using human V-

region primers and prepared for sequencing using Nextera sequencing handles Libraries were

sequenced on an Illumina MiSeq using 150bp-length reads
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TCR sequencing data preprocessing. TCR sequencing reads were preprocessed according to

Tu et all' In short, reads were mapped to TCRV and TCRJ IMGT reference sequences via

IgBlast, and V and J calls with "strong plurality" (wherein the ratios of the most frequent V and J

calls to the second most frequent calls were at least 0 6) were retained CDR3 sequences were

called by identifying the 104-cysteine and 118-phenylalanine according to IMGT references and

translating the amino acid sequences in between those residues Processed TCR sequences

were then paired with the single-cell transcriptome data via the cell barcodes

Transcriptome sequencing data preprocessing and visualization. Raw read processing was

performed as in Macosko et a 15 Briefly, sequencing reads were aligned to the hg38 human

genome and counted to obtain a digital gene expression matrix of cells versus genes The matrix

was filtered to exclude any cells with fewer than 500 detected genes or 1000 detected transcripts

(UMIs) Counts were then normalized by cell library size and log2-transformed using the Seurat

package in R, and transcriptomes were visualized using a two-dimensional t-SNE projection

Surprisal analysis. Surprisal was used to determine the tightness of association between a gene

module and certain TCRb CDR3 sequences Surprisal is defined as ln(P/Po), where P was the

probability of two cells, drawn randomly (without replacement) from all cells sharing that TCRb,

both expressing a gene module or state In order to account for different gene modules having

different fractions of cells expressing, the probability is normalized by Po, the probability of two

cells, drawn randomly from all cells, both expressing the gene module Po represents the prior

probability without the constraint of TCRb information Thus the entity ln(P/Po) represents the gain

in probability due to the constraint of shared TCR sequence

TCR similarity. TCRP CDR3 amino acid sequences were clustered based on pairwise distances

generated by the TCRdist method, published by Dash et a 13 Briefly, for two CDR3 sequences of

the same length, each amino acid position was compared and a penalty was assessed for every

mismatch The penalty, defined as min(4 - BLOSUM62[i, j], 4), was between 1 and 4 depending
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on the similarity of the two amino acid residues being compared, i and j The overall distance

between the two CDR3s was calculated as the sum of penalties at all positions In the case of

two CDR3s of unequal length, the sequences were aligned in all possible ways and the minimum

overall penalty was taken (with each gap incurring a penalty of 8) In this way, a pairwise distance

matrix for all CDR3 sequences was generated Highly similar pairs of TCRs were identified and

binned based on their TCRdist distance

3.3. Results

3.3.1. Overview of CMV-reactive T-helper cells

The goal of this study was to understand the kinetics of the T-cell response to a defined antigen

and to observe if there was a clonotype-phenotype relationship at any time To do this, we

stimulated PBMCs from two CMV-reactive donors with whole CMV pp65 protein or peptide pool,

and sorted CD154+ memory CD4 T cells at several time points between Oh and 18h CD154 was

chosen as a sensitive and specific marker for antigen-activated CD4 T cells16 Tables A3-1 and

A3-2 contain donor information on demographics, CMV reactivity, and HLA background The

temporal pattern in CD154 expression, measured by flow cytometry, is shown in Figures 3-1, A3-

1, and A3-2 CD154 expression peaked at very early time points (3h post-stimulation) in both

donors and with both peptide and protein antigen, and declined moderately after that Sorted cells

were processed for single-cell RNA-Seq using Seq-Well and paired TCR sequencing using a TCR

transcript pulldown technique suitable for 3'-barcoded RNA-Seq libraries"
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Figure 3-1. Percent CD154+ cells as a function of stimulation time. PBMCs were stimulated with
CMVpp65 (whole protein or peptide pool) and sorted on the activation marker CD154. The
frequency of CD154+ cells within the CD4 memory T cell compartment is shown.

A t-SNE visualization displays all transcriptomes that were recovered (Figure 3-2A).

Qualitatively, there was a definite segregation of responses with time, and a moderate

segregation of responses by donor. Paired TCR sequence recovery was efficient, with TCRb

sequences recovered for 50% of cells and TCRa sequences recovered for 35%, and recovery

was uniform (except for a small cluster of cells in the center of the plot, present in all samples,

which could be resting, exhausted, or other cells that were not expressing TCR transcripts).

Specific cell clusters were enriched in high clonal size (i.e., the number of cells sharing the same

TCRb sequence). To look at the association between clonal expansion and specific T cell

programs, we created scores for four major T-helper cell functions (TH1, TH2, TH17 and Treg),

overlaid them onto the t-SNE, and observed that TH1 responses peaked early at 3h, and TH2

and TH17 responses peaked much later at 12h (Figure 3-2B, Figure A3-3). Together, these

results qualitatively suggest a strong relationship between TH1 function, high clonal size, and

early responses at 3h (regardless of peptide or protein antigen).
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Figure 3-2. Visualizations of paired single-cell transcriptome and TCR sequence dataset. A) t-
SNE plots of all single-cell transcriptomes, colored by in vitro stimulation time (top left), donor and
stimulation antigen (top right), paired TCR sequence recovery (bottom left), or TCRb clonal size,
defined as the number of cells with the same TRB CDR3 sequence (bottom right). B) Scores for
key functional T-helper states overlaid onto the tSNE plot. Scores were calculated as the sum of
expression levels of core transcriptional factors and cytokines for each state: IFNG, TNF, and
TBX21 for THI; 1L13, IL5, IL9, IL4, and GATA3 for TH2; IL17A, IL17F, and RORC for TH17; and
IL10, TGFB1, TGFB2, TGFB3, and FOXP3 for Treg.
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To further explore and quantify the association between TCRb clonal size and time, we

plotted the distribution of clonal sizes of all cells over time (Figure 3-3A). Mean clonal size was

1.7 cells at Oh, 9.0 at 3h, 5.7 at 6h, 2.9 at 9h, 2.4 at 12h, and 2.2 at 18h - as expected from the

graph, the most expanded cells were found at 3h. This was also confirmed at the individual

clonotype level; top expanded clonotypes were detected at most or all time points, but were at

their highest frequency at 3h (Figure 3-3B). Interestingly, a few clones reached their highest

frequency at 18h, suggesting that the response to CMV could be temporally bimodal, with fast-

and slow-responding cells.

A B

• GO•" -- • • Donor 1, ,\Donor2,
peptide pool x peptide pool

75

U) C)

N 1

F 50- 0-

25 Oh 3h 6h 9h 12h

- CASKRPGQMYGYTFG CASGLLLAGAANTGELFF
• ."v ' •.3 • CASSFSGSEGEQYF CASRPQGQPGTQYF4ij - CASSPDGKAAFF CASSASLGHEQYF

01 CASSQDGGSRSGNTIYF CASSLAGQGAQNTQYF
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Time -CSVVEGRGYTFG CASSYGRGNYGYTFG

Figure 3-3. TCRb clonotypes peak in frequency early and are detected at most time points. A)
Clonal size (defined as the number of cells sharing a TCRb sequence) of all cells detected at
each time point. B) Temporal trajectories of six most expanded TCRb clonotypes within the
peptide stimulation condition for each donor. Frequency of each TCRb clonotype among all cells
with a TCR sequence is plotted on the y-axis. CDR3 sequence is shown in the legend.

3.3.2. Identification of a highly activated subset of cells with distinct TCR usage

Apart from TH1, TH2, TH17 and Treg programs, another transcriptional state was evident in the

data that might support a bimodal paradigm of T cell response: a distinct subset of cells in the

bottom-left of the t-SNE plot that seemed linked to high clonal size (Figure 3-4A; Figure 3-2A).
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Figure 3-4. Identification of a highly-activated, clonotypically distinct subset of peanut-reactive T
cells. A) tSNE visualization of all cells, colored by membership in highly activated cluster. B)
Frequency of the highly activated subset, among all cells (from both donors and stimulation
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conditions), as a function of time D) Plot of top 20 most discriminating genes (using a ROC test)
upregulated inside and outside the activated cluster Analysis was restricted to the same six
donors as before (out of eight) Each dot represents all cells from a donor either inside or outside
the highly activated subset, with the color representing the mean gene expression level and the
size of the dot representing the percent of cells expressing the gene F) GSEA results for top eight
gene sets enriched in cells inside and outside the highly activated subset Adjusted p-value
(adjusted by the GSEA permutation approach) is shown

This subset was absent prior to antigen stimulation and peaked early in frequency, comprising

about 40% of all cells recovered at 3h (Figure 3-4B) We dubbed it a "highly activated subset"

based on its transcriptional signature, which included TCR signaling-induced transcription factor

genes such as REL, NR4A1, NR4A2, and NR4A3, and activation markers CD40LG (i e CD154,

the marker on which the cells were sorted) and IFNG (Figure 3-4D) Most notably, this subset was

also clonotypically distinct, with an average of 65% sharing of TCR sequences between time

points within the subset, but only 20% sharing of TCR sequences between cells inside and outside

the subset, even at the same time point (Figure 3-4C) Gene pathways enriched in the subset

were predominantly metabolic programs, suggesting that these cells might be a distinct set of

fast-responding cells preparing to undergo proliferation

3.3.3. Probability-based metrics of association between clonotype and transcriptional
phenotype

The existence of a previously unknown, highly-activated, clonotypically distinct phenotype in T

cells has significant implications, especially if it represents a universal phenomenon in antigen-

specific T cells We looked at whether the signature was present in response to other stimuli, and

we found that it was in fact detected, but only with stimuli that signal through the TCR (peanut

antigen, CMV, and anti-CD3/CD28 beads, but not PMA/ionomycin) (Figure A3-4) It appears,
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then, that the transcriptional state is TCR-dependent, we speculate that it could represent a fast-

responding subset of cells (perhaps one that is older and closer to senescence)

To understand this state better, and to more deeply probe the relationship between

clonotype and T cell function (e g TH1, TH2, etc), we developed a quantitative framework for

assessing the overlap between the two modalities of data using probability-based metrics A

central question was whether expression of gene modules such as TH1, or overall states such as

the highly activated state, was confined to specific clonotypes, or whether it was expressed

broadly across many clonotypes This would in turn tell us whether the gene program was likely

to represent antigen-specific activation or bystander activation, with the assumption that

bystander activation would be more likelyto result in cells with random, rather than specific, TCRs

To concisely quantify this likelihood, we employed an information theory metric known as

'surprisal', which measures the gain in information in one variable due to the knowledge of another

variable In this case, we calculated the gain in probability that two cells would both score

positively for a state (such as the highly activated subset), given that they both had the same TCR

sequence, as a way to assess the tightness of association between specific TCR sequences and

gene module expression We also calculated the average relative expansion of cells expressing

each module, and we saw that in both donors, expansion and association with specific, not

random, TCR sequences were highest in the highly activated state (Figure 3-4) In donor 1, for

example, the surprisal for cells of the highly activated subset was about 2 8, representing a 16-

fold increase in likelihood of cells both being in the highly activated state if they had the same

TCRb sequence TH1 expression also had a moderate association with expansion and specific

TCR sequences, but none of the other gene expression programs were as obviously associated

with a highly clonal, likely antigen-specific, response
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Figure 3-5. Association between TCRb sequence and various transcriptional states. Top: Relative
clonal expansion of cells expressing each transcriptional program, defined as the z-score of the
TCRb expansion number for all cells that are expressing the gene program, relative to the
expansion number for all cells. Bottom: Surprisal for each program, defined as ln(P/Po) where P
= probability of two cells both expressing a program given that they have the same TCRb, and PO
= probability of any two cells both expressing a program. Whether or not a cell was deemed to
"express" a program was defined using a score for the T-helper programs (details in Methods),
and for the highly activated subset, whether or not they were in the cluster of highly activated
cells. The red dotted line represents a surprisal of In(2), or a two-fold increase in likelihood due to
the constraint of matching TCR sequence.

Having observed and quantified a strong clonotype-phenotype relationship, especially in

the highly activated subset, two main explanatory hypotheses exist: 1) T cell fate is influenced by

epitope, and cells of the same clone and phenotype represent independent priming events that

converged onto the same effector phenotype; or 2) T cell fate may or may not be influenced by
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epitope, and cells of the same clone represent progeny of the same parent cell that expanded in

vivo and retained the same functional phenotype in all of its daughter cells Both explanations are

intrinsically interesting, but converging upon one would allow us to conclude whether or not

epitope has a role in shaping the transcriptional states observed So as a final question, we

attempted to discern between the two hypotheses using similar TCR sequences instead of exact

matches We hypothesized that cells with very similar TCR sequences might be specific for the

same epitope Thus, if we observed that cells with similar TCR sequences were co-localized

inside or outside the highly activated state, we might conclude that the highly activated state

arises from contact with specific epitopes (A positive result would implicate epitope in the

differentiation of the highly activated state However, a negative result would not exclude epitope

from playing a role, as the avidity of the TCR-pMHC link is known to be important, two highly

similar TCR sequences could still have differing avidities for the same epitope, leading to different

classes of responses )

To quantify TCR similarity, we used a published technique called TCRdist13 The

technique assigns every pair of TCR sequences a 'distance' based on amino acid similarity in the

highly variable regions of the TCRs A distance of 1 to 4, for example, typically indicates a single

amino acid mismatch, with the exact value reflecting the similarity of the two amino acids as per

the BLOSUM62 matrix For cell pairs at a given TCR distance, we assessed the probability of

both cells being co-located inside or outside the highly activated subset and averaged this result

across all pairs of cells

The results of this TCR distance analysis by donor is quite striking (Figure 3-6) At a TCR

pairwise distance of zero, which indicates an exact match in CDR3 sequence, cells are 90% and

92% likely to be co-localized in or out of the highly activated subset in Donor 1 and 2, respectively

This reflects the high degree of association observed earlier for cells of the same clonotype

(Figure 3-5) When we extended the analysis to include similar TCRs, we still observed an
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increased likelihood of cells to be co-localized, up to a certain TCR distance (4 in Donor 2, 16 in

Donor 1). This suggests that epitope does indeed play a role in shaping the highly activated state,

as cells likely to target the same epitope were more likely than expected to share the same state.

Donor 1 Donor2
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Figure 3-6. Colocalization of highly similar TCR sequences inside or outside the highly activated
subset. TCRb CDR3 sequences were scored for their biophysical similarity in a pairwise fashion,
using TCRdist (see Methods). Pairs of cells were then binned according to their TCRdist distance.
A distance of 1-4, for example, typically represents a single amino acid substitution, with the value
of the penalty representing the similarity of the amino acids. A distance of 5-8 typically represents
two amino acid substitutions, and so on. The probability of both cells of the pair being co-located
either inside or outside the highly activated subset described in Figure 3-4 was averaged across
all pairs in the bin and plotted. The red dotted line represents the prior, or the probability of any
two cells from the donor being co-located inside or outside the highly activated subset.

3.4. Discussion

Paired measurements in single cells are a powerful new way to interrogate biological samples;

but quantitative analysis pipelines for multimodal single-cell data are needed, specifically those

that harness the single cells as observations. In this study, we present a set of analysis methods

for paired single-cell TCR and transcriptome sequencing data, using probability-based metrics.
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As a case study, we measured CMV-reactive T-helper cells in PBMCs from two adults and

investigated the link between clonotype and phenotype, to understand to what extent epitope

binding might shape the T-cell response We found a highly activated subset of cells that was

clonotypically distinct, and we showed that this state was associated with specific, not random,

TCR sequences Finally, we observed that extremely similar TCR sequences were likely to have

the same status, suggesting that epitope might be playing a role in causing the highly activated

state

An important question is exactly what this activated transcriptional state represents and

whether it aligns with any known phenomena in the literature Two main hypotheses presented

themselves 1) The state represents true TCR-induced activation, as opposed to bystander

activation This explanation is supported with the gene signatures of TCR-activated transcriptional

factors, but it is countered by the fact that highly clonal cells are observed outside the highly

activated state 2) The state represents T-follicular helper (Tfh) cells or another fast-responding

subset of cells This explanation is also plausible, and upon further investigation of relevant gene

signatures, we found that Tfh cells are in fact preferentially enriched by CD154+ selection17 and

that these cells display costimulatory markers such as ICOS, TNFRSF9, TNFRSF4, and

PDCD1 18, which we did observe in the highly activated cells We did not observe the Tfh

transcription factor Bcl6, however, this is in line with what some others have shown for Tfh cells

in the blood (as opposed to in the germinal center)'' 19 Our prevailing hypothesis, then, is that

these highly activated cells may represent blood Tfh cells that are primed to respond to antigen

stimulation with strong TCR signaling, costimulation, and other pathways Regardless of the

hypothesis, the implications of such an activated subset are important for T cell biology and for

modulating T cell fate

In addition to the analysis pipeline presented here, it is worth mentioning that many other

methods are emerging for the purpose of analyzing multimodal single-cell data Given the vast
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diversity in goals and types of data generated in single-cell studies, this is unequivocally a good

thing for single-cell research So far, three main classes of techniques have emerged For sake

of simplicity, assuming a paired single-cell workflow in which the first modality represents high-

dimensional single-cell data such as RNA-Seq or CyToF, most techniques can be categorized as

follows 1) In the case where the second modality represents a categorical feature with few bins

(e g tissue source or methylation status at a single locus), it is often easiest to simply perform

statistical tests with this feature as an independent variable2021 ,2 2 This allows for direct and

intuitive comparison of cell states between bins, however, it is only suitable in the case of one or

a few features, and coarse-grain binning of the features must be an appropriate treatment 2) In

the case where the second modality is continuous (e g spatial information or protein expression),

statistical learning methods like regression are often used2 ,23 Such methods are simple, intuitive,

and powerful, but they tend to ignore even strong associations in subsets of cells, if these cells

are not manually selected 3) In the case where it is desirable that visualization, clustering, and

identification of cell subsets are done using all modalities of data, new techniques are emerging

to successfully integrate the modalities together using dimensionality-reduction and dataset-

weighting strategies2 This approach is still challenging, though, because it can be unclear how

much each modality is weighted, and thus how to interpret the results

The analysis pipeline presented in this chapter is fairly unique among existing methods,

as it uses entities from information theory to measure association using probability, rather than

using correlation or statistical significance The uniqueness of this pipeline resulted in response

to specific challenges in integrating paired gene expression and TCR sequencing data, the latter

of which represents a modality consisting of categorical features with many bins, which is not

easily analyzed by any of the above methods Although this framework was developed for a

specific use case, it should be generalizable to any multimodal single-cell data which can be

discretized into bins Additionally, probabilities can provide highly tangible and quantitative
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interpretations compared to correlations or p-values for example, one can assess how much

more likely it is for a gene to be expressed under condition A than condition B, a feature that can

be particularly desirable in certain settings Overall, this analysis framework should be a useful

contribution to the increasing repertoire of analysis techniques available for multimodal single-cell

studies At the remarkable pace at which new experimental innovations emerge each year,

diverse analysis strategies will continue to be required to maximize the utility of single-cell data
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4. Transient suppression, but not deletion, of distinct subsets of

TH2 clonotypes during peanut oral immunotherapy

This chapter is adapted from B Monian*, A A Tu*, B Ruiter, et al, in prep

Food allergy affects an estimated 8% of children in the US', and its reported prevalence and

severity are increasing globally2 Oral immunotherapy (OIT) is an experimental strategy for

inducing tolerance to food allergens, but it is ineffective at producing truly sustained, rather than

transient, desensitization in most patients 3 Cellular mechanisms that drive therapy-induced

changes, and predictive tools for clinical outcome, remain largely unresolved We assessed how

populations and clonotypes of T-helper cells were altered during peanut OIT and which of these

subsets associated with clinical outcomes in 12 peanut-allergic patients Using single-cell RNA

sequencing and paired TCRot/p sequencing of peanut-reactive CD4 memory T cells, coupled with

an approach for gene module discovery, we observed several distinct functional states among

clonally expanded peanut-reactive T cells, including TH2 cells, TH17 cells, and Treg cells TH2

and TH17 programs were transiently suppressed in individual clonotypes during OIT Additionally,

TH17 expression was upregulated in T cells from patients with poor clinical outcome These

results highlight the impermanence of OIT-induced changes within CD4 T-cell clonotypes, which

may reflect non-durable programming
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4.1. Motivation

Food allergy is an immune hypersensitivity disease characterized by allergen-specific TH2 cells

and (in the case of type I hypersensitivity) the production of allergen-specific IgE antibodies

These antibodies bind to FcsRI receptors on effector cells such as mast cells, basophils, and

eosinophils, and can be cross-linked in the presence of allergen, leading to cellular degranulation

and the systemic release of histamine and other mediators 2 The resulting symptoms can range

from mild to life-threatening

No FDA-approved treatment for food allergy exists, representing a serious unmet need

Allergen-specific immunotherapy is an experimental option with various modalities, the most

common being oral immunotherapy (OIT) OIT consists of daily exposure to allergen (e g , peanut

flour) by the oral route that is gradually increased over time to induce clinical tolerance Compared

to other modalities such as sublingual and epicutaneous immunotherapy, OIT tends to induce

higher maximum tolerated doses but also a higher incidence of adverse events 3 Even so, the

sustained efficacy of OIT is low, while 80-85% of patients can achieve desensitization (a loss in

clinical reactivity with regular consumption of allergen), most food-allergic patients do not attain

sustained unresponsiveness (maintenance of tolerance without the need for continued allergen

consumption)',

It is unclear why this state of desensitization is often transient, and more broadly, how OIT

causes immune tolerance in the first place, but several observations have been made about

immune changes during immunotherapy OIT induces changes in allergen-specific serum IgE

titers - typically a rapid increase upon initial allergen exposure, followed by a slow decrease to

pre-baseline levels - and high baseline levels of IgE are predictive of poor outcome5 Additionally,

allergen-specific IgG4 has been shown to increase over time and may exert a protective function

by competing for allergen binding and disrupting IgE cross-linking and signaling6 These B-cell
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changes may be directed by T-helper cells, which play an important role in the maintenance of B

cells and antibody levels in the periphery Understanding allergen-specific T-helper cell changes,

therefore, is critical to unraveling cellular mechanisms in OIT OIT-induced changes in T-helper

cells, however, are much less widely reported and agreed upon, in part due to the difficulty in

isolating and tracking rare allergen-specific T cells longitudinally Frequencies of circulating

allergen-specific TH2 cells, and their expression of TH2 cytokines, may decrease7 or be

suppressed by anergic gene programs8 , and patients who achieve sustained unresponsiveness

may have a higher frequency of Tregs post-treatment9 Whether T cells are predominantly altered

by clonal anergy, deletion, Treg-based suppression, or other factors, is still unresolved Clarifying

T-cell changes in OIT at high resolution could be important in explaining observations in B cells

and the associated variability in patient outcomes

4.2. Methods

Patients. Peanut-allergic individuals aged 7 and up were enrolled in a peanut OIT trial

(NCT01 750879) at the Food Allergy Center at Massachusetts General Hospital All subjects were

recruited with informed consent, and the study was approved by the Institutional Review Board of

Partners Healthcare (protocol 2012P002153) Subjects were first screened for a diagnosis of

peanut allergy by medical history, evidence of peanut-specific IgE per skin prick test (reaction

wheal 25mm larger than saline) or serum peanut-specific IgE titer (;5 kU/L), and Ara h 2-specific

serum IgE > 0 35 kU/L Subjects then underwent a double-blind, placebo-controlled food

challenge (DBPCFC) up to a maximum dose of 443 mg of peanut protein Patients who reacted

during the challenge, and had passed the prior screening, were eligible for inclusion in the study

Oral immunotherapy (0IT) study. The main objective of this phase 1/11, double-blind placebo-

controlled, interventional study was to provide additional safety and mechanistic data on OIT for
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people with IgE-mediated peanut allergy Enrolled patients were randomized to receive either

treatment (peanut flour) or placebo (roasted oat flour) at a ratio of 3 1 Treatment consisted of a

modified-rush protocol, followed by a build-up phase lasting for 44 weeks or when the patient

reached 4000mg, whichever came first Treatment dose was administered daily, and dosing

escalation was incremental, based on previous OIT studies8, occurring every two weeks After

the buildup phase, patients entered a maintenance phase in which treatment was continued at

the top tolerated dose for each patient for 12 weeks Finally, patients underwent an avoidance

phase, an additional 12 weeks off therapy while strictly avoiding dietary peanut protein, in order

to assess the durability of any desensitization resulting from OIT During each phase of the study,

a blood sample was taken, for four samples total per patient two weeks prior to the start of

treatment at baseline, seven weeks into the buildup phase, eight weeks into the maintenance

phase, and eight weeks into the avoidance phase

Clinical assessments were made by double-blind placebo-controlled food challenge at baseline

(DBPCFC1), at the end of 12 weeks of maintenance therapy (DBPCFC2), and at the end of 12

weeks of avoidance (DBPCFC3) Clinical outcomes were defined as 1) treatment failure (failure

to achieve the minimum maintenance dose (600 mg) of peanut protein by 12 months, or an

eliciting dose less than 1443 mg at DBPCFC2, or less than 443mg at DBPCFC3, OR less than

10-fold more than at DBPCFC1), 2) partial tolerance (eliciting dose less than 4430mg at

DBPCFC3 but at least 430 mg AND more than 10-fold more than at DBPCFC1), and 3) tolerance

(ingestion of 4430 mg of peanut protein at DBPCFC3 without symptoms)

Cell purification and sorting. After a blood sample was collected, PBMCs were immediately

isolated by density gradient centrifugation (Ficoll-Paque Plus, GE Healthcare) and frozen in FBS

with 10% DMSO After the study was completed, PBMCs from a patient at all time points were

simultaneously thawed, washed with PBS, and cultured in AIM-V medium (Gibco) with 100 pg/ml

peanut extract for 20h (Peanut extract was prepared by agitation of defatted peanut flour with
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PBS, centrifugation, and sterile-filtering ) Anti-CD154-PE antibody (BD Biosciences; clone

TRAP1) was added to the cultures at a 1 100 dilution for the last 3h After harvesting, the cells

were labeled with anti-CD3-AF700 (BD Biosciences, UCHT1), anti-CD4-APC-Cy7 (BD

Biosciences, RPA-T4), anti-CD45RA-FITC (BD Biosciences, Hl100), anti-CD154-PE (BD

Biosciences, TRAP1), anti-CD69-AF647 (BioLegend, FN50), anti-CD137 APC (clone 4B4-1), and

Live/Dead Fixable Violet stain (Thermo Fisher, cat no L34955) Cells were then sorted on a

FACS Aria I instrument (BD Biosciences) Cells were gated as live CD3+CD4+CD45RA- and

sorted as either CD154+CD137+/- (referred to as "CD154+"), CD154-CD137+ ("CD137+"), or

CD154-CD137- (referred to as "DblNeg")

Single-cell RNA-Seq. Sorted subsets of CD4 memory T cells were processed for single-cell RNA

sequencing using the Seq-Well platform as previously described12 A portion of each cDNA library

was reserved for paired TCRa/b enrichment. The rest was barcoded and amplified using the

Nextera XT kit and sequenced on the Illumina NovaSeq

Raw read processing was performed as in Macosko et a 18 Briefly, sequencing reads were

aligned to the 'hg38' reference human genome, collapsed by unique molecular identifier (UMI),

and counted to obtain a digital gene expression matrix of cells versus genes These counts were

then filtered to exclude any cells with fewer than 500 genes or 1000 UMIs and normalized by

library size per cell and a log2 transformation

Paired single-cell TCRa/b sequencing. Paired TCR sequencing was performed according to

Tu et al 13 Briefly, following cDNA amplification, biotinylated capture probes for human TRAC and

TRBC regions were annealed to cDNA Magnetic streptavidin beads were used to enrich the

bound TCR sequences, which were then further amplified using human V-region primers and

prepared for sequencing using Nextera sequencing handles Libraries were sequenced on an

Illumina MiSeq using 150bp-length reads
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TCR sequencing reads were preprocessed according to Tu et al13 In short, reads were mapped

to TCRV and TCRJ IMGT reference sequences via IgBlast, and V and J calls with "strong plurality"

(wherein the ratios of the most frequent V and J calls to the second most frequent calls were at

least 0 6) were retained CDR3 sequences were called by identifying the 104-cysteine and 118-

phenylalanine according to IMGT references and translating the amino acid sequences in

between those residues Processed TCR sequences were then paired with the single-cell

transcriptome data via the cell barcodes

Visualization and clustering of single-cell RNA-Seq data. Visualization and clustering were

done with the Python package "scanpy" Prior to visualization, the normalized gene expression

data was transformed using a standard "regress-out" approach to mitigate batch effects A

multiple linear regression was performed on all genes with two covariates that could be batch-

associated numbers of transcripts per cell, and percent of transcripts aligning to the mitochondrial

chromosome The residuals from this regression were taken as the transformed data

Next, a principal components analysis was performed, and the top 10 components were used to

generate a visualization with UMAP (uniform manifold approximation and projection)19 Clustering

was performed on the top 10 principal components using the Louvain graph-clustering method

Gene module discovery. Coexpressed gene modules were generated based on a sparse PCA

approach described by Witten et al14 and implemented in the R package "PMA" This method

employed an Li norm penalty to reduce and eliminate gene loadings that contributed less to each

component Prior to running sparse PCA, the gene expression matrix was randomly

downsampled to have an equal number of cells from the top 70 (out of 109) samples, in order to

prevent the results from being dominated by a few samples and to decrease computational time

Genes were filtered down to the union of immune genes (as defined by the sets of gene lists

available on ImmPort at https //www immport org/shared/genelists) and the variable genes in the

dataset using the 'var genes' command in the R package "Seurat" Finally, the gene expression
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data was scaled with respect to genes, and sparse PCA was run using the command "SPC" (with

"orth" parameter set to TRUE and tuning parameter "sumabsv" set to 1 8) Gene module scores

were calculated as the scaled gene expression input matrix multiplied by the outputted loadings

matrix "v"

Cells were deemed to "express" a module using a gating strategy similar to flow cytometry gating

Module scores of CD154-CD137- cells were used as a negative control, and a gate was set such

that no more than 0 1% of CD154-CD137- cells were in the positive population

Distance analysis of TCR sequences. Pairwise similarity of TCRb CDR3 sequences was

evaluated using an adapted version of the TCRdist method published by Dash et al15 Briefly, for

two TCRb CDR3 amino acid sequences of the same length, each residue position was compared

and a penalty was assessed for every mismatch The penalty for two different amino acid residues

i and j was assessed using the BLOSUM62 matrix and was defined as min(4 - BLOSUM62[i, j],

4) Each substitution thus incurred a penalty between 1 and 4 The overall distance between two

CDR3s was calculated as the sum of penalties at all positions In the case of two CDR3s of

unequal length, the sequences were aligned in all possible ways and the minimum overall penalty

was taken, with each gap incurring a penalty of 8 In this way, a pairwise distance matrix for all

CDR3 sequences was generated To accrue sufficient numbers for comparison, close CDR3 pairs

were binned according to the following distances 0, 1-4, 5-8, 9-12, 13-16, 17-20, and 21-24

Probability-based association between TCR and gene expression. Probability-based

analysis was used to determine the tightness of association between a categorical transcriptional

feature (such as cluster or status of gene module expression) and TCRb CDR3 sequence A

likelihood ratio of association was defined as P/Po, where P was the probability of two cells, drawn

randomly without replacement from all cells sharing a TCRb CDR3 sequence, both expressing a

gene module The probability is normalized by Po, the probability of two cells, drawn randomly

from all cells, both expressing the module or belonging to the cluster Po represents the prior
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probability without the constraint of TCRb information, thus, the ratio P/Po represents the gain in

probability due to the knowledge of TCR sequence A ratio of 1 represents random co-occurrence

of TCR sequence and the transcriptional feature, while a ratio of 2 represents a two-fold increase

in the likelihood of shared transcriptional features given the same TCRb sequence

4.3. Results

4.3.1. CD154+ and CD137+ peanut-reactive T cells have distinct transcriptional states

and TCR repertoires

To examine the dynamics of the T cell response induced by OIT, we profiled peanut-reactive T-

helper cells longitudinally from patients undergoing peanut OIT (Figure 4-1A) The 40-patient trial

(NCT01750879) consisted of daily ingestion of peanut flour or placebo The oral dose increased

every two weeks for 44 weeks (buildup), and was then held at a maximum dose for 12 weeks

(maintenance) This phase was followed by a 12-week period of strict avoidance to assess the

durability of desensitization Clinical outcomes were evaluated by oral food challenges (OFCs) at

the end of the maintenance and avoidance phases, and were defined as "tolerance" (passing both

food challenges), "partial tolerance" (passing the maintenance challenge but failing the avoidance

challenge), and "treatment failure" (failing the maintenance challenge) Peripheral blood samples

were collected longitudinally for single-cell analysis from 12 of the enrolled patients (3 each of

tolerance, partial tolerance, and treatment failure outcomes, as well as 3 placebo patients, all of

whom had treatment failure outcomes)
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Figure 4-1. CD154+ and CD137+ peanut-reactive T cells recovered from oral immunotherapy
patients have distinct transcriptional signatures and TCR repertoires. a, Peanut OIT design and
definition of outcomes. Clinical outcomes were defined as shown based on two oral food
challenges towards the end of the study. Samples from 12 of the patients, three treatment patients
with each outcome plus three placebo patients, were selected for single-cell profiling. b, Peanut-
reactive memory T-helper cells enriched by FACS, following stimulation with peanut antigen (left).
Stimulation with no antigen (right) is shown for comparison. Cells are pre-gated on live singlet
CD3+CD4+CD45RA- cells, and sorted as CD154+CD137+/-, CD154-CD137+, or CD154-CD137-
("DblNeg"). c, Two-dimensional UMAP visualization of all single-cell transcriptomes, colored by
sorted subset and time point. TO (tolerance), PT (partial tolerance), TF (treatment failure), and
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PL (placebo) refer to the four clinical groups d, UMAP visualization colored by patient (each triad
of colors represents a clinical group) e, Differentially expressed genes upregulated in each sorted
subset, identified using a ROC test Rows represent z-scored gene expression values, and
columns represent average expression of all cells in a patient f, Clonal size for every cell, overlaid
onto the UMAP Cells without paired TCRp recovery are colored in gray g, Distribution of clonal
sizes (defined as the number of cells sharing a TCR sequence), within each sorted subset, by
unique TCR3 CDR3 h, Heatmap of the percentage of TCRP shared between conditions, defined
as the number of unique TCRp CDR3 sequences detected in both conditions divided by the
geometric mean of the number of unique sequences in each of the two conditions "Condition"
was defined as a sorted subset at a time point, with sequences from all patients pooled together

PBMCs from four time points were cultured with peanut extract for 22h Peanut-reactive T

cells were then enriched via FACS using CD4 memory markers and the activation markers CD154

(a marker for antigen-stimulated T-helper cells') and CD137 (a recently-reported marker for

isolating activated Tregs") (Figure 4-1B, A4-1) This workflow was chosen in order to elicit

activation of a broad range of peanut-specific T cells with minimal bias for epitopes or HLA types

Because activation-based sorting may contain non-specific bystander cells, additional filtering

was later done using TCR sequences to identify clonally expanded cells, as a proxy for antigen-

specific cells Sorted memory CD4 T cells were processed for single-cell RNA sequencing

(scRNA-Seq) via Seq-Wel112 and paired single-cell TCRax/p sequencing using a new 3'-

sequencing approach13

In total, we recovered high-quality transcriptomes for 134,129 cells (74,646 CD154+,

41,186 CD137+, and 18,297 CD154-CD137-) There was a strong association between

transcriptional state and sorted subset, as well as smaller associations with patient (Figure 4-1C,

4-1D, 4-1E) Despite normalizing for technical factors such as library size and frequency of

mitochondrial genes, these patient associations remained, suggesting inherent biological

differences rather than batch effects (Figure A4-2) Top genes differentiating between CD154+

and CD137+ included (unsurprisingly) CD40LG and actin genes in CD154+ cells, and TNFRSF9

and the regulatory markers FOXP3 and TIGIT in CD137+ cells To see if these striking
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transcriptional differences between CD154+ and CD137+ cells were reflected in TCR usage, we

turned to the paired TCR sequences recovered for each cell Using a new methodology for paired

TCRa/b sequencing, we recovered TCRa sequences for 60% of cells and TCRb sequences for

70% of cells (with both sequences detected in 45% of cells) (Figure A4-2) We identified clonal

cells on the basis of matching TCRb CDR3 sequences - although we note that the vast majority

of expanded TCRb sequences were paired with a single TCRa (Figure A4-3) Clonal size, defined

as the number of cells sharing a TCRb CDR3 sequence, was then plotted for each sorted subset

Compared to two negative controls, clonal sizes of 10+ were exclusively present in CD154+ and

CD137+ cells, confirming a strong selection of expanded clones among peanut-activated cells,

but clonal sizes of the two activated subsets were comparable, indicating that both might be

enriching for comparable frequencies of peanut-specific T cells The expanded clones largely

localized within certain areas of the UMAP, indicating an association between expansion and

transcriptional state (Figure 4-1 F, 4-1G) We then examined if clonotypes were shared across

time points or between the CD154+ and CD137+ compartments 55% of expanded clones were

present at multiple time points, but notably, clones were almost exclusively present in either

CD154+ or CD137+ cells, suggesting fundamental lineage or epitope specificity differences

between the two sorted cell subsets (Figure 4-1H)

4.3.2. Clonally expanded T cells are associated with specific gene expression modules

To observe the finer-grain cell subsets present among peanut-reactive T cells, we developed an

approach to score and visualize narrow gene programs expressed in each cell The approach

combines co-expressed genes into gene modules in an unsupervised manner using sparse

principal component analysis (PCA)14 As a PCA-based approach, it is algorithmically transparent

and easy to implement The sparsity of each principal component (i e , gene module) is tuned by
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a single parameter to limit the number of genes included in each component To further aid

interpretation, we restricted the input genes to the union of immune genes (defined using ImmPort

gene lists) and variable genes in the dataset Using this strategy, we discovered several modules

that recapitulated known functional states of T cells, such as TH2 function, TH17 function, TH1

function, MHC II upregulation, and regulatory T-cell function (Figure 4-2A, A4-4, A4-5) These

diverse functional states of memory T-helper cells were present across most or all patients,

suggesting a role for each in the peanut-specific response

We next wanted to assess the degree of clonality and TCR specificity for each gene

module corresponding to a major functional T-helper state, and whether or not these gene

modules were co-expressed within cells To test this quantitatively, we asked what gene modules

were associated with highly expanded cells and with specific, rather than random, TCR

sequences (Figure 4-2C) We analyzed the relative clonal expansion of module-expressing cells,

and we also calculated the fold-change in likelihood of two cells of the same TCRb both

expressing a gene module, if they had the same TCR The latter metric was used to evaluate the

association with specific, not random, TCRs, which one would hypothesize to be associated with

an antigen-specific, rather than bystander, response As expected, the TH2 module had among

the highest expansion and association with specific TCRs in both CD154+ and CD137+ cells, with

TH1 cells also scoring as highly clonal and TCR-specific (Figure 4-2C) A heatmap of top

expanded clones showed qualitatively that expression of a module was fairly consistent within

each clonotype, with often 100% of cells expressing the module Additionally, a strong overlap

between TH1 and TH17 expression, but not with TH2 or Treg expression, was evident,

highlighting the coexpression of different gene programs within peanut-reactive T cells
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the clonotype was detected b, Average clonal size and association with specific TCR sequences
for each gene module Clonal size, defined as the number of cells with the same TCRb sequence,
was calculated across all cells and then averaged for those expressing the module Association
with specific TCR sequences was defined as the fold-change in likelihood of observing two cells
both expressing a gene module, if they had the same TCRp

4.3.3. Multiple clonotypically distinct subsets of peanut-reactive TH2 cells exist

An interesting observation that emerged from the gene module analysis was that TH2 cells

appeared to consist of multiple distinct cell subsets To probe this further, we selected TH2-

expressing cells and re-visualized them alone We found three distinct clusters (Figure 4-3A),

which were present in most or all patients Based on the differentially expressed genes enriched

in each cluster, these appeared to represent a Tfh-like population (high in costimulatory markers,

CXCR5, and PD-1), a deviated Treg state (identical to FOXP3+ CD137+ cells except for the

additional expression of TH2 cytokines), and a GATA3-high population (with high levels of

GATA3, IL17RB, and CHDH) (Figure 4-3B) All subsets shared similar levels of clonal expansion,

but clonotypes were, surprisingly, highly restricted to a single subset (Figure 4-3C, 4-3D)

To understand whether this restriction was the result of convergence onto certain CDR3

motifs, we performed a TCR distance analysis to see whether highly similar TCRs (not just exact

TCRs) also tended to be of the same subset TCR distance was assessed using a previously

published method 5 , in which an exact CDR3 match scored as 0 and each individual amino acid

substitution added a penalty of 1-4 We found that for extremely similar TCR sequences (distance

< 9), there was an increased likelihood of both cells being Tfh-like (Figure 4-3E) This

phenomenon was not present for highly similar-TCR cells that were GATA3hi or deviated Tregs

Two groups of closely related CDR3s in the Tfh-like subset that resulted from this analysis are

shown (Figure 4-3F) Intriguingly, this result suggests a convergence onto common epitope

recognition motifs only for the Tfh-like cells, which might indicate a relatively narrower set of target

epitopes for that subset
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cells in a given patient c, Heatmap of the percentage of TH2 TCRp CDR3s shared between
conditions, defined as the number of unique CDR3 sequences detected in both conditions divided
by the geometric mean of the number of unique CDR3 sequences in each of the two conditions
"Condition" was defined as a TH2 subset at a particular time point, with sequences from all
patients pooled together d, Distribution of TCRP clonal sizes for cells in each subset, with all cells
(left) or all TH2-scoring cells (right) e, Probability of cells with highly similar TCRs to be in each
subset Pairwise TCR distance using the TCRdist method is plotted on the x-axis On the y-axis
is the probability of two TH2-scoring cells belonging to a subset, given that their TCRp CDR3
sequences are a certain distance apart The dotted line represents the prior probability of any two
TH2 cells belonging to the subset f, Selected TCRb CDR3 motifs present among Tfh-like TH2
cells The probability of each amino acid appearing at each position, among the selected clones
with each motif, is plotted

4.3.4. TH2 and TH17 clonotypes are functionally suppressed, but not deleted, during OT

With a knowledge of the cell subsets present among peanut-reactive cells and their clonotypic

association, our next goal was to track T cell clones from these subsets longitudinally and see

how frequency and function were altered during OIT The objective was to shed light on the

unresolved question of whether OIT predominantly induces deletion, anergy, or another fate in

peanut-specific T cells In TH2-expressing cells, we first observed that the vast majority of

expanded TH2 clonotypes were present at all four time points, with a smaller number that were

missing at later time points (Figure 4-4A) There was a small difference in this pattern with respect

to TH2 subset, with Tfh-like clonotypes being the most likely to be detected at all four time points

Overall, however, this result compellingly suggested that most peanut-reactive TH2 clones were

not deleted from the periphery over time To see if suppression of TH2 clones was present, we

then looked at the longitudinal expression of the TH2 gene module within clonotypes of each

subset, and we observed a strong ablation in TH2 expression during maintenance and a slight

rebound in expression at avoidance This was especially the case in all subsets except for the

Tfh-like subset, which nevertheless was slightly suppressed compared to baseline (Figure 4-4B)

TH2 clonotypes thus appear to be functionally suppressed, rather than deleted, by the treatment,

a finding that agrees with the often-transient nature of the desensitization induced by OIT The
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differential suppression of the different TH2 subsets suggests that OIT might possibly act in a cell-

subset- or epitope-biased manner

To extend this analysis to non-TH2 cells, we looked at the longitudinal expression of all

four major functional gene modules (TH1, TH2, TH17, Treg) within expanded CD154+ clonotypes

We observed a similar suppression in TH17 expression compared to baseline, but not in TH1 or

Treg function (Figure 4-4C) This result again suggested cell-subset-biased effects of OIT, since

only TH2- and TH17-expressing clonotypes were functionally suppressed by treatment Finally,

we looked at the association of the major functional gene modules in expanded CD154+ cells

with clinical outcome, and interestingly, we found that TH17 expression was strongly correlated

with poor clinical outcome even at baseline (Figure 4-4D) TH2 expression, surprisingly, did not

correlate with clinical outcome either based on baseline levels or by longitudinal trends, as TH2

expression of clonotypes from all patients was similarly suppressed The enrichment of TH17

expression among patients with poor clinical outcome suggests a pathogenic role for non-TH2

cell types in food allergy Moreover, the fact that TH17 clonotypes were also only functionally

suppressed, and not deleted, highlights the difficulty in achieving truly persistent, rather than

transient, outcomes following OIT

78



BL BU MN AV
Time point

Tfh-like
P . • 100•

75-

50

81 BU MN 25-

---- . • •0.

BL BU M N AV

GATA3hi

.F•• . 100 -

75 .

50-

251

0-

BL BU MN AV

MHCIlhi

Mq aintand ciicl Wow~

*04 SU0t00 Tu0ee To
e0e TF

Clonal size by ie point

* 10
539

BL BU MN AV

TH2 (Module 7)

BL BU MN AV

100

75 -

50-

25-

0-

TH17 (Module 9)
1000

751

50-

BL BU MN AV

TH1 (Module 22)
•• 100.

75 -

50

BL BU N AV 25-
BL BU MN ;V

Treg (Module 1)

B B N

BL BU MN AV

TH2 TH17

000

S",
Co M
*000

@0e
•

-~--~-~ L,~
-J DZ> -J ~Z >

A

2.

11.

0-

Expanded
TH2 clonotypes

detected at:
Tfh-like

81
,

.

.0

GATA3hi

U
U
U
0

MHCIlhi

BU MN
, ,0

. .

.S

.

S

AV
,

.

.

BL = baseline
BU = buildup
MN = maintenance
AV = avoidance

ES
U
U
U

B

100-

75.-

8D
50

25

0

C

0

100

75.

50-

25 -

0-

D
Treg

SU

TO

TF

Placebo

THI

0

-j Dz >
Ca C

0

0@O
.e 0

0@@@
0ee

ses0

Intensity

%Exprmsae
0

e

0

79



Figure 4-4 TH2 and TH17 clonotypes are functionally suppressed, but not deleted, by OIT a,
Temporal patterns of expanded TH2 clonotypes Clonotypes in treatment patients with at least
eight cells detected were used, of which at least one cell had to score as TH2 Left Stacked area
plot with each colored ribbon representing a temporal pattern The width of each ribbon at each
time point represents the frequency of all cells of that temporal pattern at that time point,
normalized to the number of cells with TCRp recovery at that time point Right Pie charts of
temporal patterns of all cells in each TH2 subset b, TH2 module score, averaged by clonotype,
over time Clonotypes with TH2 expression in at least one cell and detection at two or more time
points were included Each dot represents the average expression for one clonotype at a time
point, with dot size representing number of cells averaged Dot color represents the majority
patient in which the clonotype was detected c, Scores of modules corresponding to major T cell
functions, averaged by clonotype, over time In each plot, CD154+ clonotypes with module
expression in at least one cell and detection at two or more time points were included Dot color
and size legend from b apply d, Single-cell dot plot visualization of gene module expression,
aggregated by patient (row) and time point (column) from all expanded clonotypes used in c Dot
size indicates percent of cells expressing the module, and dot color indicates the mean module
score for all cells in the sample

4.4. Discussion

As an experimental treatment for food allergy, OIT has been shown to induce changes in

circulating allergen-specific IgE and IgG4 titers and variable outcomes in patients, from transient

desensitization to more sustained tolerance There is less concurrence on treatment-induced

changes in allergen-specific T-helper cells, which could be important in directing antibody

changes and patient outcomes In this work, we profiled circulating peanut-reactive T-helper cells

from patients undergoing peanut OIT, with the goals of learning the effects of treatment on the

function and frequency of individual clonotypes, and T-cell correlates of clinical outcome Using

single-cell RNA sequencing and paired TCR sequencing, we found a diversity of transcriptional

modules among peanut-reactive T cells, including TH2, TH17, Treg, TH1, and MHC II expression,

and specific patterns of TCRb clonal expansion associated with each Within the TH2 module,

there were three distinct subsets of TH2 cells (a GATA3hi subset, a Tfh-like subset, and a
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deviated-Treg phenotype) that were clonotypically distinct We then tracked expression within

clonotypes longitudinally, and we found that in all three TH2 subsets, expression of the TH2

module was transiently suppressed, but the clonotypes were not deleted We saw a similar

transient suppression in TH17-expressing clonotypes Finally, we looked for baseline predictors

of clinical outcome and found that higher TH17 expression was associated with treatment-failure,

which could point to pre-defined pathogenicity in the treatment-failure patients contributing to poor

outcome Overall, these results suggest that OIT may induce non-durable reprogramming in a

majority of peanut-reactive T cells

Intriguingly, we observed multiple subsets of TH2 cells that were clonotypically distinct

This segregation of TH2 cells has not been described before, to our knowledge Upon

investigation of whether these two subsets aligned with any TH2 subsets previously described in

the literature (such as TH2A cells7 or Tfh13 cells 16), we saw good concordance between Tfh13

cells and the Tfh-like TH2 cells in our dataset, based on gene expression Reassuringly, although

we did not observe appreciable expression of the Tfh transcription factor Bcl6, the study

describing Tfhl3 cells shows a similarly low expression of Bcl6 We could not determine whether

one or both of the subsets aligned with the pathogenic TH2A phenotype described previously

The distinct TCR usage of the subsets described in our study, and the evidence of TCR

convergence at least in the Tfh-like TH2 cells, suggests that epitope recognition could play a role

in directing these phenotypes to emerge

We did not observe an emergence in peanut-reactive Treg cells over time, as some others

have reported9 Instead, Treg expression levels in both CD137+ and CD154+ clonotypes, and the

number of clonotypes expressing the Treg module, were relatively constant over time This

discrepancy could be due to the fact that we measured gene expression upon peanut stimulation,

which might yield different findings from profiling resting peanut-specific T cells, or that when

peanut-reactive T cells are studied holistically with a diverse antigen pool, the emergence of Tregs
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may not be significant Regardless of the reason, the implications of Treg emergence (or not)

during OIT is important The appearance of Tregs has been extensively described in natural

tolerance and SIT17, but findings thus far are mixed in OIT5 , if peanut-specific Tregs do not in fact

emerge during OIT, it means that different modes of tolerance induction could favor different T-

cell mechanisms

Taken together, these results indicate that the majority of OIT reprogramming appears to

be nondurable, as most TH2-expressing clonotypes are transcriptionally suppressed by the

treatment, but are not deleted, and some regain function after the avoidance phase Importantly,

this finding gives resolution to a general decrease in TH2 function that has been observed in OIT

previously, but whether due to suppression or deletion was impossible to know without

longitudinal tracking of T-cell clonotypes Additionally, clinical outcome is correlated with the

elevated expression of TH17 function at baseline that is mildly supressed by the treatment,

suggesting that outcome may be relatively set at baseline and resistant to being altered Indeed,

innovations to OIT such as anti-IgE have been shown to reduce the incidence of adverse events

but not appreciably increase the rate of sustained unresponsiveness 3 Clinical outcome may be

driven by diverse pathogenic pathways outside of TH2 signaling, that are more difficult to displace

and reprogram
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5. T-cell correlates of clinical reactivity to peanut allergen

Parts of this work appear in A A Tu, T M Gierahn, B Monian, et al, in revision and B Ruiter,

N P Smith, B Monian, et al, in revision

Peanut allergy manifests with a wide range of clinical symptoms and seventies, and the underlying

immune states contributing to this heterogeneity are not well-understood Particularly in T-helper

cells, which are a central component of the food allergic immune response and which have a

diversity of functional states, the combination of cell states contributing to different clinical

phenotypes is not fully known and has been difficult to study at scale Using single-cell RNA

sequencing and paired TCR sequencing, we profiled circulating peanut-reactive T-helper cells

from peanut-allergic patients with high or low clinical reactivity to peanut The goal of the study

was to discover and interpret T cell states correlated with reactivity We found that TH1 and MHC

I gene modules were upregulated in cells from patients with higher sensitivity to peanut, and that,

surprisingly, a TH2 gene module actually had slightly upregulated expression in hyporeactive

patients, suggesting a possible temporal dependency and a non-TH2 component to the severity

of the T-cell immune response in food allergy
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5.1. Motivation

As of 2010, peanut allergy affects more than 1% of Americans and tends to be higher in severity

and more permanent than other food allergies' In addition to the risk for dangerous allergic

reactions, having a food allergy can also induce daily anxiety Knowledge of the severity of an

allergy and the likely risk of a reaction could be useful in decreasing uncertainty and improving an

allergy patient's quality of life Most diagnostic methods for food allergy, while reasonably accurate

at assessing whether an individual has a particular food allergy, do not accurately predict (and

are not designed to test) differences in clinical reactivity, e g , whether 10 or 1000 mg of peanut

is necessary to cause an allergic reaction2 The gold-standard for gauging clinical reactivity is a

double-blind, placebo-controlled oral food challenge and the appearance of allergic symptoms at

a particular dose of allergen, but this test is cumbersome and stress-inducing A rapid and simple

test for allergen reactivity represents an unmet need in the management of food allergy

Perhaps even more importantly, molecular or cellular biomarkers of clinical reactivity could

be useful in understanding mechanisms of severity in food allergy Previous mechanistic work is

scant, but one study identified an increased frequency of circulating peanut-responsive CD154+

memory T-helper cells expressing TH2 cytokines in children with high reactivity3, an observation

supported but not statistically significant in a related study in infants 4 Another study reported that

in symptomatic and asymptomatic patients with low levels of peanut-specific IgE, symptomatic

patients had IgE specific to certain peptide epitopes from the peanut proteins Ara hi and Ara h2,

suggesting that antibody diversity and repertoire, rather than pure titer, may be relevant for clinical

seventy5 These results suggest that complex mechanisms, involving both the intensity of the T-

cell response and the breadth of the B-cell response, might be at play in determining severity in

peanut allergy
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We sought to address whether we could identify T-helper cell correlates of clinical

reactivity in peanut allergy, as T cells represent an important component of the allergic response

that might be influencing the degree and quality of the B-cell response For samples from patients

with differing clinical reactivities, we relied on a clinical trial for peanut oral immunotherapy, for

which several patients were recruited who failed the inclusion criteria by not reacting during a

baseline oral food challenge with peanut These patients were deemed "hyporeactive" to peanut

Additionally, several "reactive" patients did show allergic symptoms during the baseline challenge

with peanut We collected PBMCs from both groups of patients, stimulated the cells with peanut

antigen, sorted activated memory T-helper cells, and performed single-cell RNA sequencing via

Seq-Well6 in order to study peanut-reactive T cells at both high resolution and high throughput

We also employed paired TCR sequencing using a newTCR transcript pulldown and amplification

approach 7, to interpret any relevant cell states in the context of their likely antigen specificity

5.2. Methods

Patient enrollment. Peanut-allergic subjects were screened for participation in a clinical trial for

peanut oral immunotherapy at the Food Allergy Center at Massachusetts General Hospital

(NCT01750879) All subjects were recruited with informed consent, and the study was approved

by the Institutional Review Board of Partners Healthcare (protocol number 2012P002153)

Individuals were screened on the basis of having a previous diagnosis of peanut allergy and

peanut- and Ara h 2-specific serum IgE titers of > 0 35kU/L (ImmunoCAP, Thermo Fisher)

Patients then underwent a double-blind, placebo-controlled oral food challenge of up to a

maximum dose of 300mg of peanut protein Individuals who tolerated up to this dose without

objective symptoms were deemed "hyporeactive", whereas those who did react at this dose or
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lower were deemed "reactive" Two weeks prior to the food challenge, a blood sample was

collected for PBMC isolation

PBMC isolation and culture with peanut antigens. PBMCs were isolated from blood via

density-gradient centrifugation (Ficoll-Paque Plus, GE Healthcare) Cells were frozen in fetal

bovine serum with 10% DMSO At a later date, cryopreserved PBMCs were thawed and plated in

a 24-well plate at 5M cells/1ml/well in AIM-V medium (Gibco) Cells were stimulated with 100ug/ml

delipidated peanut extract (following x protocol), xxx anti-CD3/CD28 beads (Dynabeads, Thermo

Fisher), or PBS Cultures were incubated at 37C for 20h before being harvested for staining and

flow sorting 3h before the end of the culture, PE anti-CD154 antibody (BD, clone TRAP1) was

added at a dilution of 1 50, this step was omitted for the Oh cultures

Flow-based enrichment of peanut-reactive T cells. Cells were washed in PBS and stained for

25min at 4C with Zombie Violet viability dye (Biolegend), then with APC anti-CD3 (clone UCHT1),

APC-Cy7 anti-CD4 (clone RPA-T4), AF488 anti-CD45RA (clone H1100), PE anti-CD154 (clone

TRAP1), and BV605 anti-CD137 (clone 4B4-1) All antibodies were purchased from Biolegend

except for PE anti-CD154, which was from BD After staining, cells were washed with FACS buffer

(PBS with 1% BSA and 1mM EDTA) and sorted on a BD FACS Aria instrument Cells were

sequentially pre-gated as lymphocytes, singlets, live cells, CD3+CD4+, and CD45RA-, and were

then sorted as either CD154+ or CD154-

Single-cell transcriptome sequencing. Sorted cells were immediately processed for single-cell

RNA sequencing via the Seq-Well protocol6 Briefly, cells were co-loaded into wells at

approximately single-cell occupancy with poly(dT) beads and lysed to allow mRNA to hybridize

onto the beads Beads were then pooled and mRNA was reverse-transcribed, PCR-amplified,

and prepared for sequencing via the Nextera XT kit Libraries were sequenced on the Illumina

Novaseq
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Paired single-cell TCR sequencing. Paired TCR sequencing was performed according to Tu et

a17 Briefly, following cDNA amplification in the Seq-Well protocol, biotinylated capture probes for

human TRAC and TRBC regions were annealed to cDNA Magnetic streptavidin beads were then

used to enrich the bound TCR sequences, which were then further amplified using human V-

region primers and prepared for sequencing using Nextera sequencing handles Libraries were

sequenced on an Illumina MiSeq using 150bp-length reads

TCR sequencing data preprocessing. TCR sequencing reads were preprocessed according to

Tu et a17 In short, reads were mapped to TCRV and TCRJ IMGT reference sequences via IgBlast,

and V and J calls with "strong plurality" (wherein the ratios of the most frequent V and J calls to

the second most frequent calls were at least 0 6) were retained CDR3 sequences were called by

identifying the 104-cysteine and 118-phenylalanine according to IMGT references and translating

the amino acid sequences in between those residues Processed TCR sequences were then

paired with the single-cell transcriptome data via the cell barcodes

Transcriptome sequencing data preprocessing and visualization. Raw read processing was

performed as in Macosko et al8 Briefly, sequencing reads were aligned to the hg38 human

genome and counted to obtain a digital gene expression matrix of cells versus genes The matrix

was filtered to exclude any cells with fewer than 500 detected genes or 1000 detected transcripts

(UMIs) Counts were then normalized by cell library size and log2-transformed using the Seurat

package in R, and transcriptomes were visualized using a two-dimensional t-SNE projection

Logistic regression. A classifier was built to discover discriminating features between single-cell

transcriptomes in reactive and hyporeactive patients using logistic regression in the R package

'glmnet' Scores for the top 50 gene modules (sorted on percent variance explained) were

selected as input for the classifier A random subset of 25% of the cells was held out as a test set,

and the remaining 75% was used to train the model Optimal model size was selected using a
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lasso penalty and 10-fold cross-validation. Misclassification rate of the selected model was then

calculated and reported for cells in the test set.

5.3. Results

5.3.1. Survey of peanut-reactive T cells recovered from eight peanut-allergic patients

Using t-SNE, we first visualized the peanut-reactive T cell transcriptomes collected from all eight

patients (Figure 3-1). A strong separation between transcriptomes from clinically reactive and

hyporeactive patients was immediately evident. We also observed that each patient's cells had a

unique transcriptional signature, which we confirmed was not likely to be due to batch effects by

looking at library size and number of genes detected by patient (Figure A5-1). Intriguingly, a

distinct cluster in the top left of the t-SNE was composed of cells from all patients; this cell subset

is the subject of Chapter 3 of this thesis and represents a highly activated state in antigen-

stimulated CD4 T cells (Figure A5-2).
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Figure 5-1. tSNE visualization of transcriptomes of all CD154+ peanut-reactive T cells. Cells
recovered from eight donors are colored by clinical reactivity to peanut (left) or by donor (right).
At right is a key with peanut-specific IgE and clinical reactivity information for each donor.

To uncover transcriptional states associated with the visual differences between reactive

and hyporeactive patients in the t-SNE plot, we ran the gene module discovery method described
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in Chapter 2 of this thesis. This allowed us to group thousands of genes into tens of coexpressed

gene programs, aiding in both biological interpretation and model parsimony. The gene modules

encompassed a wide variety of T cell programs, both known and new (Figure 5-2). For example,

Module 3, 12, and 13 represented TH2 function, Treg function, and TH17 function, respectively.

However, we also saw modules that did not obviously correspond to known T cell programs

(Module 1, 5, 11, and others) which could be pursued in the discovery of new gene networks.
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Figure 5-2. Gene module discovery in peanut-reactive T cells. Using the unsupervised approach
described in Chapter 2 of this thesis, co-expressed gene modules were derived from the entire
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dataset of eight donors The magnitude and direction of each bar represent the weight and its
sign of each gene in each component The top 20 gene modules based on percent variance
explained are shown

5.3.2. Classification of cell states using logistic regression

We ran a logistic regression using the top 50 gene modules to classify cells from reactive and

hyporeactive patients We used individual cells as observations, instead of aggregating together

all cells from each patient, which shifted the analysis question slightly and allowed us to make

use of significantly more data as a result In this vein, we also selected classification instead of

differential expression, since we wanted to identify changes that were conserved across cells

from all patients, not changes that were patient-specific (which could have arisen in differential

expression, given that individual cells from a small number of patients could strongly skew the

analysis) Using ten-fold cross-validation and a lasso penalty (Figure A5-3), we identified an

optimal model size of six gene modules that separated reactive and hyporeactive patient cells

(Figure 5-3) The misclassification rate for cells was 15 1% and was, unsurprisingly, slightly

different by patient, recalling to mind the patient-specific transcriptional signatures in Figure 5-1

To evaluate the performance of the model on an independent cohort, we collected CD154+

peanut-reactive transcriptome data from an additional nine patients (five reactive and four

hyporeactive) one year later and applied the classifier to these cells (Figure A5-4) Unfortunately,

these cells were processed using an updated library preparation strategy, and it appeared that

there were strong global shifts in the classification success of cells from each patient, suggesting

that the model might be very sensitive to changes in library recovery Thus, this was not an entirely

useful way to gauge the accuracy of the classifier, although it did provide some insight into the

classifier's likely lack of robustness across different library preparation techniques and batches

Looking into the components most important to the classification model, the top gene

module, surprisingly, consisted of several MHC I genes (B2M, HLA-B, HLA-A) that were
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upregulated in reactive patient cells (Figure 5-3A). This result suggests that the T cells from the

reactive patients could be preparing for cell division via proliferation or otherwise upregulating

MHC I. A module containing TH1-related genes GBP1, 4, and 5 (Module 7) was also upregulated

in reactive patients. Interestingly, a TH2 gene module (Module 3) was mildly associated with

hyporeactive status, which has several possible intriguing explanations that are explored in

Discussion. To further interpret and understand these results, we next looked into the paired TCR

sequences of these cells to examine their clonality.
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Figure 5-3. Classification of T cells from reactive and hyporeactive patients. A) Coefficients of a
lasso-penalized logistic regression model for classifying the cells. The top 50 gene modules were
selected as features for input into the regression. The size of each bar indices the magnitude of
the relevant coefficient, and the color indicates whether it is upregulated in reactive (red) or
hyporeactive (blue) patients. B) Classification success for all cells in the test set (ordered
randomly on the x-axis). Cells are colored by their observed status (reactive or hyporeactive
patient) and the y-axis shows the predicted probability of being reactive. Cells with a probability
of above 0.5 were classified as "reactive", and below as "hyporeactive". The overall
misclassification rate was 15.1%. C) Misclassification rate for cells in the test set, by donor.

5.3.3. Degree of association between TCR sequence and transcriptome

Once we had identified modules that were associated with high or low clinical reactivity, we next

wanted to determine whether these gene modules represented bystander or antigen-specific

activation, and what their degree of clonality was. To answer this question, we turned to the paired
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TCR sequencing, for which recovery was efficient and uniform across cells (with TCRb sequences

recovered for 55% of cells and TCRa sequences recovered for 32%) To visually assess the

overlap between clonal expansion and gene expression, we overlaid TCRb clonal size (defined

as the number of cells sharing the same TCRb sequence) onto the tSNE plot and compared it to

overlays of the top gene modules of interest (MHC I and TH2) (Figure 5-4) There appeared to be

an association between high clonal size and TH2 expression, but interestingly, not between high

clonal size and MHC I expression However, quantitative confirmation of this trend was needed,

and more specifically, it was important to know whether expression of modules such as MHC I

was confined to specific TCR clonotypes, or whether it was expressed broadly across many

clonotypes This would in turn tell us whether the module was likely to represent antigen-specific,

or bystander, activation, with the assumption that bystander activation would be more likely to

result in cells with random, rather than specific, TCRs
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Figure 5-4. Qualitative association between clonal expansion and gene expression. tSNE
visualization of all cells, colored by: paired TCR sequence recovery for each cell (top left); clonal
size, defined as the number of cells sharing the same TCRB sequence (top right); expression of
module 3, summarizing TH2 function (bottom left); and expression of module 1, summarizing
MHC I and other genes (bottom right).

To concisely quantify the extent of overlap between gene module expression and specific

TCR sequences, we calculated the 'surprisal' metric described in Chapter 3 of this thesis. (This

metric represents the gain in information about a cell's module expression due to its TCRb

sequence; essentially it evaluates the tightness of association between specific TCR sequences

and module expression.) We also assessed the average relative clonal expansion of cells

expressing each module, which is important in inferring the in vivo expansion, and thus degree of

activation to peanut, of each cell subset. From this analysis, we saw intriguing trends in the top

discriminating modules (Figure 5-5). For example, in Module 1 (the module most specific for

reactive-patient cells), we saw no enrichment above average for clonal expansion or for specific



TCRb clonotypes via surprisal. This could indicate an elevated bystander response in reactive

cells due to higher levels of earlier peanut-specific activation. However, in Module 7, the other

module specific for reactive-patient cells representing a TH1-related pathway, we saw average

levels of clonal expansion, but a high degree of surprisal, i.e. a strong association with specific

rather than random TCR sequences. We speculate that cells expressing this module could be

peanut-specific TH1 cells that may be too young to have undergone sufficient exposures to be

highly clonally expanded in vivo. In modules upregulated in hyporeactive patients, we again saw

varied clonotypic features. Unsurprisingly, TH2 cells (Module 3) were both highly expanded and

highly associated with specific TCR sequences. However, the other two modules (Module 4 and

Module 8, representing ribosomal proteins and innate inflammatory pathways, respectively) were

associated with below-average expansion and random association with TCR sequences. These

are interesting discriminators for which there is no obvious hypothesis. Taken together, these

results suggest a myriad of different T-helper functions, including possible pathogenic roles for

TH1 and other non-TH2 cells, that are relevant in clinical reactivity to allergen.
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Figure 5-5. Patterns of TCR association with the top 10 gene modules. Each data point represents
cells from one patient. Left: Relative clonal expansion of cells expressing each module, defined
as the z-score of the TCRb expansion number for all cells within a patient that are expressing the
gene module, relative to the expansion number for all cells within the patient. Right: Surprisal for
each module, defined as ln(P/Po) where P = probability of two cells within a patient both
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expressing a module given that they have the same TCRb, and Po = probability of any two cells
within a patient both expressing a module Surprisal represents the tightness of association
between specific TCRb sequences and module expression Whether or not a cell was deemed to
"express" a module was defined using a distribution-based threshold (details in Methods)
Modules are annotated at the top of each plot with the sign of their coefficient in the classification
model (red triangle = up in reactive patients, blue inverted triangle = up in hyporeactive patients)
Points are missing for the surprisal graph whenever there are no module-scoring expanded cells
in a patient (e g the entire surprisal bar is missing for Module 4 because there were no expanded
cells in any patient expressing Module 4)

5.4. Discussion

In this study, we profiled peanut-reactive T cells from patients with differing clinical reactivities in

order to discover and interpret immune correlates that could classify the patients by reactivity We

observed a variety of T-helper cell states, which we organized into modules using the gene

module discovery approach described previously Upon running a classifier using the module

scores as features, we discovered that MHC I and TH1-related gene programs were elevated in

cells from reactive patients, and that some of these cells were associated with specific, rather

than random, TCRb clonotypes In hyporeactive patients we observed, surprisingly, that TH2

responses were slightly elevated and associated with highly clonal cells, and that other pathways

related to innate inflammation might be upregulated

Elevated TH1 function in cells from reactive patients is an interesting result, because it

suggests a possible pathogenic role for TH1 cells in severity of food allergy TH1 cells have been

proposed as protective and associated with tolerance to milk allergen in children9 , but have also

been described as exacerbating allergic asthma in mice'° These results highlight the complexity

and highly context-dependent results regarding non-TH2 subsets of T-helper cells in allergy

Even more surprising is the higher TH2 function in adults with lower reactivity to peanut

This is counter to previous studies in infants and young children', the discrepancy suggests a

possible time-dependent effect, either in vivo or in vitro While TH2 responses might correlate with

97



or even be causal for clinical reactivity early in life, these early responses may evolve differentially

in patients who remain reactive (perhaps including the emergence of TH1 cells) versus those who

become less reactive Another possible reason for the discrepancy is that TH2 cells from reactive

patients might indeed be present at similar frequencies, but have been activated at a different

stimulation time in vitro In other words, the chosen time point favored a certain collection of cells

and discriminating features that may not be holistically representative of all peanut-specific cells

in vivo This selection bias for T cells that become activated at a certain rate is inherent to the

experimental setup and the time-dependent nature of T-cell responses However, regardless of

the selection in the milieu of peanut-reactive cells due to patient age or in vitro stimulation time,

the classifier presented here is a biomarker of clinical reactivity and a window into the complex

roles of different T-helper types in shaping the severity of a food-allergic immune response
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6. Conclusions and outlook

The emergence of new high-throughput single-cell techniques, and a concomitant decrease in

their cost, represents an exciting new set of directions for biomedical studies In particular,

clinically-applied research now benefits from the ability to deeply profile and track rare cell

subsets, identify intercellular communication events that may be dysregulated in disease, and

discover entirely unknown biomarkers or drug targets But as the use of these techniques grows,

an increasing challenge is how to leverage these data to help rather than hurt statistical power

and biological interpretability While there is some precedent on cleverly utilizing single-cell data

to maximize reproducibility and interpretability, thinking on how best to perform quantitative

analyses of single-cell data is still emerging

In Part I of this thesis, I demonstrated two new bioinformatic approaches for improving the

reproducibility and meaningfulness of single-cell high-throughput data analyses Each approach

was applied to a case study with human samples in order to highlight its advantages, features,

use cases, and limitations The first approach was a method for gene module discovery, which

aimed to reduce the inherent noise, murkiness, and propensity for false-positives of analyses

involving individual genes in single-cell RNA sequencing data, by meaningfully compressing them

into co-expressed genes We demonstrated the usefulness of this approach on longitudinal

samples from pediatric milk allergy patients We observed that several gene modules neatly

recapitulated known T-cell programs such as TH2, TH17, and MHC-Il upregulation, and that in

milk-reactive T cells, TH1 and NF-kB gene modules increased in expression as the individual

aged (regardless of whether they outgrew their allergy or not) This case study highlighted the

usefulness of the modules method, both in compressing the feature space without loss of

information, and in making longitudinal changes easier to interpret The second bioinformatic

approach was a framework for integrating multiple modalities of single-cell data and quantitatively
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assessing their degree of overlap The approach utilized probability-based metrics in a new way

to intuitively capture the association between two modalities of single-cell data We applied this

framework to a dataset of paired single-cell RNA sequences and TCR sequences of CMV-reactive

T cells from two adults, to investigate whether TCR sequence was associated with T cell state

We found that there was in fact a strong, time-dependent association, and that a highly-activated,

TCR-selective state existed at early stimulation times These results suggested that there was in

fact a significant association between epitope specificity and T cell fate, which is an intriguing

finding for modulating T cell fates

In Part II of this thesis, the bioinformatic tools developed in Part I were integrated as part

of a holistic approach for analyzing single-cell data from two larger clinical studies in food allergy,

with the goal of better understanding acquired tolerance and clinical reactivity in peanut allergy

In the first study, we profiled T cells from patients undergoing peanut oral immunotherapy and

discovered two subsets of peanut-reactive TH2 cells with completely distinct TCR repertoires

Both subsets were transiently suppressed, but not deleted, by the treatment, corroborating the

historical impermanence of OIT-induced desensitization In the second study, we profiled T cells

from peanut-allergic patients with high and low clinical reactivity to peanut allergen to discover

correlates of clinical status Using single-cell RNA-Seq and paired TCR sequencing, we

surprisingly noticed a strong upregulation in TH1 and TH17 pathways in more reactive patients

Cells expressing these modules had average levels of clonal expansion and upregulation of

antiviral pathways, suggesting a role for non-TH2 cells in promoting or enhancing pathogenic

responses to allergen In both studies, the combined application of novel experimental and

bioinformatic techniques allowed for new disease-relevant insights

The work described in this thesis hopefully provides precedent and guidelines on how to

make effective use of single-cell data, especially in small clinical studies where low sample

numbers are a concern for achieving reproducible results The aim is that these methods, and the
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results generated from applying them to various cohorts, are broadly useful to the enhanced

understanding of disease through single-cell profiling The methods presented here, however, are

by no means an exhaustive set of solutions to the challenges faced in analyzing high-throughput

single-cell data of clinical samples Numerous hurdles are still to be overcome, including the

following 1) Biases in library recovery and cell state due to batch effects An often-unavoidable

feature of clinical studies, batch effects are inherent whenever experimental factors like user,

sample holding or processing time, or protocol differ even slightly These are especially evident

in transcriptional profiling studies, as mRNA levels are fast-changing and thus sensitive to batch

effects Batch-effect correction algorithms exist for single-cell RNA sequencing data, but are still

imperfect and have the possibility of introducing artifacts into the data 2) A lack of systematic

ways to identify cell types in high-throughput data Highly specific subsets of cells have been well-

described at the protein level using flow cytometry and histology, but these described states do

not always map cleanly to states observed by transcriptional or other profiling techniques

Matching observed states in a dataset with described cell types in the literature is usually an

arduous, manual process that can often still be inconclusive 3) The ubiquitous challenge of

interpreting gene or protein hits that are not well-annotated. Despite the exponentially growing

presence of published gene sets and databases, many genes, proteins, and metabolites are still

not well-annotated and therefore difficult to interpret if they emerge as top hits in an analysis

Additionally, it appears that the function of genes is highly context- and tissue-specific, so findings

are often not generalizable from one study to the next This is an ongoing challenge that will slowly

be addressed with more studies in basic biology as well as more robust analysis techniques for

comparing findings across published datasets
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7. Appendix

Appendix A2. Gene module discovery in single-cell RNA sequencing data
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Figure A2-1. Changes in frequencies of activated T cells from pediatric milk-allergic patients.
Frequencies of CD137+ and CD154+ cells (and the ratio of the two) among CD4 memory T cells
is plotted against time. Each line represents a patient's cells, colored by their status: Resolved
(history of milk allergy but no diagnostics signs of it at either time point); Transient (diagnosis
status changed between visits 1 and 2); Persistent (patient had the same level of milk allergy at
both visits); and No history (patient had no history of milk allergy).
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Figure A2-2. Effect of tuning parameter on gene modules. The tuning parameter, c, is the sum of
the absolute value of all gene weights allowed in each component. The top five gene modules
generated from sparse PCA runs with five different tuning parameter settings are shown. In each
bar graph, the magnitude and direction of each bar represent the weight and sign of the relevant
gene in the module. Scales may not be the same between bar graphs.
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and direction of each bar represent the weight and sign of the relevant gene in the module.
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the four persistent donors, and the statistical comparison being made is between all cells at visit
1 and all cells at visit 2. A) Adjusted p-value versus log-transformed mean expression of every
gene that was used as input to the sparse PCA. B) Mean expression of genes that were, or were
not, present among the loadings of the top 100 gene modules. C) Adjusted p-value versus log-
transformed mean expression of the top 100 gene modules.
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Appendix A3. Analysis of multimodal single-cell data of antigen-reactive T

cells

Table A3-1. Demographic information and CMV reactivity of donors.

Donor CTL ID Age Gender Race ELISPOT with CMV pp65 peptide
pool (Class I/li)

1 LP_58 54 F Hispanic 861
2 LP_335 39 F Hispanic 707

Table A3-2. HLA Class I allele information of CMV-reactive donors.

Donor DRB 1 DRB 34/5 DOA DOB DPA DPB
1 DRB1*04:01 DRB4*01:03 DQA1*03:03 DQB1*03:01 not tested not tested

DRB1*08:02 DQA1*04:01 DQB1*04:02
2 DRB1*01:02 DRB3*02:02 not tested DQB1*03:01 DPA1*01:03 DPB1*02:01G

DRB1*11:02 DQB1*05:01 DPA1*02:01 DPB1*14:01G
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Figure A3-1. Activation markers upregulated on T-helper cells in response to CMV stimulation.
Cells are pre-gated on lymphocytes, singlets, live CD3+ cells, and CD4+CD45RA- cells. On the
x-axis is the MFl of CD137 signal, and on the y-axis is the MFl of CD154 signal. Rows represent
stimulation times, and columns represent stimuli. "Protein" refers to CMVpp65 whole protein,
and "Peptides" refers to an overlapping peptide pool of the CMVpp65 amino acid sequence. The
18h condition was omitted for the peptides as it was expected that activation in response to
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peptides would occur earlier. Each set of two columns represents cells from one healthy, CMV-
reactive donor.
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Figure A3-2. Dynamics of CD154 and CD137 expression in response to CMV stimulation.
Frequency of CD154+ (left) and CD137+ (right) cells among CD4 memory T cells as a function of
stimulation time with CMV antigen. "Peptide" refers to an overlapping peptide pool for CMVpp65
and "protein" refers to CMVpp65 whole protein. (Note that any CD154+CD137+ cells, which are
rare, are counted in both graphs.)
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Figure A3-3. Patterns of T-helper gene expression as a function of time. T-helper expression
levels were assessed for all peptide-stimulated cells, and fold-change of mean score with
respect to Oh is plotted for cells from each donor.
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Appendix A4. Transient suppression of TH2 clonotypes in peanut QIT

Table A4-1. Patient demographics and baseline characteristics.

Treatment Peanut IgE Peanut IgG4 Total IgE Skin prick test,
Patient ID Group Age Gender Race (kU/L) (kU/L) (kU/L) adjusted (mm)

105 Treatment 22 Female White 44.4 0.49 109 28
106 Treatment 32 Female White 4.5 0.29 40.8 10
111 Treatment 22 Female White 20.9 0.16 169 5
33 Treatment 16 Female White 84.1 0.54 216 10
90 Treatment 9 Male White 159 0.85 338 14.5
93 Treatment 11 Male White 40.9 1.86 208 7.5
69 Treatment 15 Male White 11.2 0.16 141 13
95 Treatment 8 Male White 451 1.71 1524 21
97 Treatment 36 Female Asian 2.6 0.62 339 13.5
84 Placebo 22 Male White 61.4 0.09 174 11
96 Placebo 10 Female White 39.1 0.18 151 10

107 Placebo 22 Female White 27.3 0.37 88.1 22

Table A4-2. Clinical outcomes.

Cumulative
dose Cumulative Adverse

Patient Treatment consumed at DBFC2 dose consumed DBFC3 event Therapeutic
ID Group DBFC2 outcome at DBFC3 outcome count outcome

105 Treatment 4443 Pass 4440 Pass 605 Tolerance
106 Treatment 4443 Pass 4440 Pass 269 Tolerance
111 Treatment 4443 Pass 4440 Pass 61 Tolerance
33 Treatment 4443 Pass 4440 Fail 306 Partial tolerance
90 Treatment 4440 Pass 4440 Fail 60 Partial tolerance
93 Treatment 4443 Pass 4440 Fail 177 Partial tolerance
69 Treatment 943 Fail 40 Fail 101 Treatment failure
95 Treatment 4443 Fail 440 Fail 26 Treatment failure
97 Treatment 289.6 Fail 1440 Fail 497 Treatment failure
84 Placebo 443 Fail -- -- 81 Treatment failure
96 Placebo 143 Fail -- -- 42 Treatment failure
107 Placebo 943 Fail -- -- 25 Treatment failure
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Figure A4-1. Summary of flow-based enrichment of CD154+ and CD137+ peanut-reactive T cells.
A) Representative flow plot of CD154 and CD137 expression in cells stimulated with peanut
antigen (left) or no antigen (right). B) Percent of CD4 memory T cells at each time point that are
CD154+ (top) or CD137+ (bottom), within patients of the treatment group (left) or placebo group
(right).
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Figure A4-2. Quality of single-cell libraries recovered. A) Distribution of recoveries of paired TCR
sequences for all cells, grouped by patient. B) Overlay of TCR recovery status of each cell onto
the UMAP visualization. C) Quality control metrics of single-cell RNA sequencing libraries:
number of UMIs per cell (top), number of genes detected per cell (middle), and fraction of genes
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Figure A4-4. Top 25 gene modules identified by unsupervised sparse PCA approach. Modules
are sorted by percent variance explained. The magnitude and direction of each bar represent the
weight and sign of each gene in each component. Gene expression values are scaled.
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Appendix A5. Correlates of clinical reactivity to peanut allergen

I I group
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Figure A5-1. Quality metrics for single-cell RNA sequencing libraries from eight peanut-allergic
patients. Violin plot of number of genes detected per cell (top) and number of transcripts detected
per cell (bottom), by patient, and patients are sorted by mean gene or transcript recovery. Violins
are colored by patient's clinical reactivity to peanut.
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Figure A5-2. Identification of a highly-activated, clonotypically distinct subset of peanut-reactive T
cells. A) tSNE projection of all cells, colored by membership in highly activated cluster. B) Top
TCR B clonotype from each patient for which the majority is present in the highly activated cluster
(top) or the majority is present outside highly activated cluster (bottom). Analysis was restricted
to expanded clonotypes with 3+ cells. C) Fraction of each expanded clonotype (3+ cells) present
in the highly activated cluster. Each clonotype is a circle, with the size of the circle indicating the
number of cells in the clonotype. At right, a density curve shows the distribution of all fractions on

117

Vi

2:

02



a per-cell basis. Analysis was restricted to six of the eight donors, for whom there were at least
20 cells detected in the highly activated subset. D) Plot of top 20 most discriminating genes (using
a ROC test) upregulated inside and outside the activated cluster. Analysis was restricted to the
same six donors as before. Each dot represents all cells from a donor either inside or outside the
highly activated subset, with the color representing the mean gene expression level and the size
representing the percent of cells expressing the gene. E) T-helper function inside and outside the
highly activated cluster. Cells were scored for TH1, TH2, and TH17 function using the sum of
expression levels of the genes IFNG and TNF (THI1), IL13, IL5, IL4 and IL9 (TH2), and IL17A and
IL17F (TH17). Cells were scored as having a function if the score was greater than zero. Each
bar is normalized to sum to 100%, with the cells not expressing any function not shown. F) GSEA
results for top eight gene sets enriched in cells inside and outside the highly activated subset.
Adjusted p-value (adjusted by GSEA's permutation approach) is shown.
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Figure A5-3. Cross-validation of logistic regression model for classifying cells based on clinical
reactivity of the patient. Top 50 gene modules were used as input. Shown is the misclassification
rate of a holdout set of cells using 10-fold cross-validation, at various settings of lambda (tuning
parameter). Across the top are the number of gene modules (or features) retained in the classifier
in each case. The dotted lines denote the recommended selection of lambda based on the
minimum value, and the star indicates the value of lambda that was actually chosen. The reason
for the discrepancy was a desire to produce as parsimonious a model as possible that would not
be vulnerable to overfitting, while tolerating a slight increase in misclassification error.
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- , . Donor Status Misclass rate

1 Reactive 66.6%

- *. •2 Reactive 24.5%

3 Reactive 98.3%

0 4 Reactive 53.3%

5 Reactive 42.5%

C. 6 Hyporeactive 50.1%

7 Hyporeactive 80.1%

t • 8 Hyporeactive 61.8%

9 Hyporeactive 53.7%
Actual status: * Reactive 0 Hyporeactive

Index OVERALL: 54%

Figure A5-4. Testing of classifier in cells from an independent test cohort. Logistic regression
model developed earlier was tested on an independent cohort, profiled by single-cell RNA
sequencing one year later. The cohort consisted of five reactive and four hyporeactive donors.
Left: Classification success for all cells in the test set (ordered by patient on the x-axis). Cells are
colored by their true status (reactive or hyporeactive patient) and the y-axis shows the predicted
probability of the cells coming from a reactive patient. Cells with a probability of above 0.5 were
classified as "reactive", and below as "hyporeactive". The overall misclassification rate was 54%.
Right: Misclassification rates for cells in the independent cohort, by patient.
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