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Influence of Viscosity and
Non-Linearities in Predicting
Motions of a Wind Energy
Offshore Platform in Regular
Waves
Motion predictions of floating bodies in extreme waves represent a challenging problem in
naval hydrodynamics. The solution of the seakeeping problem involves the study of complex
non-linear wave-body interactions that require large computational costs. For this reason,
over the years, many seakeeping models have been formulated in order to predict ship
motions using simplified flow theories, usually based on potential flow theories. Neglecting
viscous effects in the wave-induced forces might largely underestimate the energy dissipated
by the system. This problem is particularly relevant for unconventional floating bodies at
resonance. In these operating conditions, the linear assumption is no longer valid, and con-
ventional boundary element methods, based on potential flow, might predict unrealistic
large responses if not corrected with empirical viscous damping coefficients. The applica-
tion considered in this study is an offshore platform to be operated in a wind farm requiring
operability even in extreme meteorological conditions. In this paper, we compare heave and
pitch response amplitude operators predicted for an offshore platform using three different
seakeeping models of increasing complexity, namely, a frequency-domain boundary
element method (BEM), a partly nonlinear time domain BEM, and a non-linear viscous
model based on the solution of the unsteady Reynolds-averaged Navier–Stokes (URANS)
equations. Results are critically compared in terms of accuracy, applicability, and compu-
tational costs. [DOI: 10.1115/1.4047128]

Keywords: computational fluid dynamics, design of offshore structures, floating and
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1 Introduction
Over the last 25 years, there has been an ongoing effort within the

U.N. Framework Convention on Climate Change to mitigate climate
change and greenhouse emissions. The latest example of these efforts
is the Paris Climate Agreement, which was adopted in November of
2015 by consensus at the 21st Conference of Parties of the United
Nations Framework Convention on Climate Change (UNFCCC).
As of May 2019, 194 states and the European Union have ratified
the agreement. These states represent more than 88% of the global
greenhouse gas emissions. The increasing efforts to meet the objec-
tives of international agreements have led to significant

developments of technologies to extract energy from clean renew-
able sources, making them economically viable. Wind energy repre-
sents one of themost promising renewable energy resources, and it is
demonstrated by the increasing design and construction of onshore
and shallow water wind farms, as shown by the Global Wind
Energy Council2 and the European Wind Energy Association.3

This has enabled some countries to produce more than 35% of
their electric demand from wind,4 which proves the opportunities
given by existing onshore and shallow water installations to reduce
the amount of energy dependence on fossil fuels.
Space allocation represents one of the major limitations in the

development of new onshore and shallow water installations.
Regardless of higher installation costs, offshore wind energy

1Corresponding author.
Contributed by the Ocean, Offshore, and Arctic Engineering Division of ASME

for publication in the JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING.
Manuscript received December 10, 2019; final manuscript received April 13, 2020;
published online May 27, 2020. Assoc. Editor: Amy Robertson.

2http://www.gwec.net
3http://www.windeurope.org
4See Note 3.

Journal of Offshore Mechanics and Arctic Engineering DECEMBER 2020, Vol. 142 / 062003-1
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/142/6/062003/6537725/om
ae_142_6_062003.pdf by M

assachusetts Inst O
f Tech. user on 25 January 2022

mailto:jaguila@mit.edu
mailto:bonfi@mit.edu
mailto:ricardo.zamora@upm.es
mailto:chrys@mit.edu
mailto:odd.faltinsen@ntnu.no
mailto:mistetri@mit.edu
http://www.gwec.net
http://www.windeurope.org
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4047128&domain=pdf&date_stamp=2020-05-27


extraction is generally more efficient than it is for onshore installa-
tions. Higher and more sustained wind speeds have led to reduced
operating condition uncertainty and have made offshore wind farms
a very attractive wind energy harvesting alternative. In addition to
higher construction and installation costs, the intricacy in designing
a complex interacting system composed of floating structures and
wind turbines operating in a marine environment has limited the
spread of this promising renewable energy.
Among other problems, the prediction of the seakeeping behavior

of offshore structures in adverse marine environment represents one
of the greatest challenges in the design of offshore wind farms.
Motion predictions of floating platforms in waves have been tradi-
tionally obtained by using potential flow based numerical models.
Most of thesemodels are formulated on the basis of a small amplitude
assumption, which limits their range of applicability in cases of prac-
tical interest. Nevertheless, conventional linear seakeeping methods
formulated in frequency domain still represent the most widely used
seakeeping models. Furthermore, consistent second-order potential-
flow solvers without accounting for current and forward speed repre-
sent state of the art numerical methods for wave-induced response of
ships and other large-volume marine structures. Important viscous
damping effects such as for rolling of ships and slow-drift motions
of moored structures are accounted for by empirical formulas.
Strongly nonlinear wave effects on ships are traditionally highly sim-
plified by only considering Froude–Krylov and hydrostatic restoring
terms. When slamming occurs, it is typically analyzed, for ships, by
strip theory with a high-frequency free surface condition based on
either a vonKarman or a generalizedWagnermethod. The latter sim-
plifications are necessitated due to computational efficiency. The sto-
chastic response in representative sea states each with a duration of
3–5 h has to be considered.
Viscous models such as unsteady Reynolds-averaged Navier–

Stokes (URANS) have been mostly applied to the solution of prob-
lems that have a large economical impact (see Refs. [1–4]) or to
unconventional geometries where conventional potential flow theo-
ries fail (see Refs. [5–8]). A drawback is that URANS depends on
empirical modeling of turbulence. Motion predictions obtained
using viscous models are limited by the massive computational
costs required to even characterize response amplitude operators
(RAOs) of complex geometries in six degrees-of-freedom (6DOFs)
in regular waves. One of the major bottlenecks in the application
of Navier–Stokes models is that they can hardly be used for shape
optimization in the earliest design stages, when there is still large
uncertainty associated with the final shape of the floating body.
Reducing this uncertainty would involve a large number of simula-
tions to cover the design space, which would be extremely costly
and would only be possible because averaging viscosity effects pro-
vides a good approximation in this design problem. However, given
the technological improvements and cost reduction of mainstream
wind energy, the potential economic impact of deepwater offshore
wind energy is high enough to justify the employment of these com-
putationally expensive high-fidelity codes. To this end, research has
been recently focusing on developing computational models to
enable URANS simulations for motion prediction of offshore plat-
forms, considering non-linear effects in viscous flows. The use of
higher fidelity simulations in shape optimization studies will eventu-
ally lead to improved designs capable of reducing motions in waves,
hence having extended operability.
In this paper, we first present a summarized overview of the chal-

lenges related to solving the seakeeping problem and how the capa-
bilities of each type of computational model compare to each other
(Sec. 2). In Sec. 3, we provide a brief theoretical definition of the
flow problem, summarizing for the applied potential flow-based
boundary element method (BEM) codes and the used URANS
code. Given this information and the definition of the hydrodynamic
coefficients in the BEMs, it is possible to solve the motion problem.
The results obtained are presented in Sec. 4, where we provide heave
and pitch RAOs predicted using the frequency-domain and time-
domain potential panel methods, and the high-fidelity viscous
model based on the solution of the unsteady Reynolds averaged

Navier–Stokes equations. The main findings are summarized in
Sec. 5, where we also give an insight of what may enable a wide
application of URANS simulations to motion prediction problems.

2 Challenges in Solving the Seakeeping Problem
The response of a floating body in a marine environment largely

depends on the external forces and moments induced by incoming
waves and on the characteristics of the system such as geometry,
inertia, and mass distribution.
Fluid dynamic forces can be divided into three different catego-

ries according to their nature: inertia, gravity, and viscous phenom-
ena. Model scale experiments can be performed in Froude
similarity, which ensures an accurate representation of gravity
related phenomena [9]. Due to the practical limitations of having
a fluid contemporary allowing Froude and Reynolds similarity,
viscous forces predicted in model experiments might be affected
by scale effects, in particular if flow separation does not occur
from sharp corners. Numerical simulations performed with
viscous solvers, allow to predict platform motions in full scale con-
sidering the effect of viscous dissipations.
Boundary elementmethods are based on potentialflow in a incom-

pressible liquid; hence, they do not solve for viscous dissipations.
Among BEMs, the ones formulated in the frequency domain
usually do not consider non-linear effects such as the variation of
thewet surface of the offshore platform.However, second-order non-
linear frequency domain potential flowmethods without current and
forward speed are state of the art. To this end, time-domain BEMs
have been introduced with the specific goal to improve predictions
in cases of large amplitude motions. Successful examples of time-
domain motion predictions obtained with BEMs that consider
some non-linear effects can be found in the literature (see for instance
Refs. [10–13]). Due to the potential flow assumption, BEMs repre-
sent a valuable method to predict motions in waves with a reasonable
trade-off between computational costs and prediction fidelity [14–
16]. Limitations in BEMs due to their simplified potential flow
formulation are not important away from situations where non-linear
phenomena becomes relevant (e.g., resonance). Therefore, URANS
simulations should only be used when viscous forces are important
since they are at least two orders of magnitudemore computationally
expensive than the potential codes.
Viscous dissipations, in the particular platform geometry consid-

ered, are important for the calculation of cancellation effects in
heave and large amplitude resonant heave and pitch motions.
Cancellation effects occur in semi-submersible platforms when

the resultant forces acting on the underwater pontoons and vertical
pillars tend to cancel each other under linear undamped motions.
Usually, the highest cancellation period is the result of the forces
on the pontoons and the pillars compensating each other. Other can-
cellation periods result from the particular spacing of the vertical
pillars. For the brazeless geometry analyzed in this study, Eq. (6)
gives an accurate prediction of this cancellation period (Fig. 1).
A detailed and instructive explanation of cancellation effects can

be found in Ref. [17]. This analysis is performed for a semisubmers-
ible in beam seas and deep water waves in the frequency domain.
We will generalize the approach so that it is applicable to our
studied platform. An assumption is that the wavelength is

Fig. 1 Sketch of a semisubmersible platform used in Ref. [17] to
show how cancellation effects in heave motions occur
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sufficiently large for phase differences in the vertical hydrodynamic
loads on different structural parts have negligible influence. A con-
sequence is that the wave heading does not matter. The starting
point is the undamped heave (η3) equation of motion in the mass-
force domain:

M + A33( ) d
2η3
dt2

+ ρgAwη3 = F3(t) (1)

Here M, A33, and Aw are the structural mass, heave added mass,
and water plane, respectively. Furthermore, ρ and g are mass
density of water and acceleration of gravity, respectively. The ver-
tical excitation forces, F3(t), by potential flow can be simplified as

F3(t) = ρgζa sinωte
kzm Awe

k zt−zm( ) − k Vp +
A33

ρ

( )( )
(2)

where zt and zm are the z-coordinates of the top and geometric center
of the pontoons, respectively, and Vp is the displaced volume of
the pontoons. The free surface elevation at the center plane is
expressed as ζa sinωt. Since k(zt− zm) is small, we approximate
ek zt−zm( ) as 1+ k(zt+ zm). Furthermore, by using M = ρ(Vp − Awzt),
it follows that

F3(t) = ζa sinωte
kzm ρgAw − ω2 M + A33( )(

−ρω2Awzm
)

(3)

Introducing the result from Eq. (3) in Eq. (1), we can express the
relation between the amplitudes of the vertical motion and the free
surface elevation as

η3
ζa

= sinωtekεm 1 −
kzm

1 −
ω
ωn

( )2

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ (4)

where ωn is the natural circular frequency.

ωn =
ρgAw

M + A33

( )1/2

(5)

By exploring Eq. (4), we can obtain the situations where the ver-
tical heave motion is zero (η3 = 0). This happens when

ω =
ωn

1 − zm| |ω
2
n

g

( )1/2 (6)

In the particular geometry analyzed in this paper, this period would
correspond to Tw= 16.73 s, which is accurately predicted with
Eq. (6). Furthermore, if we would like to change the heave response
characteristics, we can see from Eq. (4) that the parameters to vary
would be ω/ωn and ω2

n zm| |/g.
The previous analysis shows how cancellation effects arise when

the vertical motion of semi-submersible platforms are studied con-
sidering linear undamped motions. This assumptions will not hold
when viscous drag forces, which influence excitation and
damping in a nonlinear manner, have a non-negligible effect. In
the particular geometry analyzed in this paper, the nature of this
damping and viscous drag forces is non-linear as the magnitude
of the shed vortexes can be expected to vary throughout the
motion and also with the amplitude of the motion. In this case,
we will have to resort to viscous models such as URANS. Neverthe-
less, modeling and numerical uncertainty might affect the accuracy
of the prediction of this higher fidelity models.

3 Numerical Methods
In this paper, we employ three different seakeeping models pro-

viding an increasing level of accuracy and a good representation of
the methods available to designers.

3.1 Linear Frequency-Domain Boundary Element
Method. The first code used to obtain the motions of the offshore
platform is ANSYS AQWA a linear BEM formulated in the frequency
domain. Potential flow of incompressible water is assumed.
A basis of a BEM is Green’s theorem that enables the velocity

potential to be represented as a distribution of sources and/or
normal dipoles over boundaries. The chosen linear BEM represents
the velocity potentials due to radiation and scattering as a distribu-
tion of sources and normal dipoles over the mean submerged body
surface. The sources and normal dipoles satisfy the classical linear-
ized free-surface condition and the radiation condition in the fre-
quency domain. Infinite water depth is considered. An integral
equation follows by satisfying the linearized body boundary
conditions.
The mean submerged surface of the platform is represented by a

large number N of small quadrilateral panels. The source strength
and dipole moment are assumed constant on each panel and give
a total of N unknowns and a total of N linear equations for the
unknown source strengths. These equations are solved using
methods from linear algebra. Once the potential is obtained, the
pressure can be computed, and forces and moments can be obtained
to compute body motions.
The commented before is just a brief summary of the theory used

in linear frequency-domain BEMs to compute wave loads on float-
ing bodies. A very good reference for this theory is Ref. [18]. More
information can also be obtained in Refs. [19–22].

3.2 Time-Domain Boundary Element Method. The second
code used, AEGIR, is a boundary element method that solves the
potential flow past a moving or fixed floating body in time
domain. It considers non-linear effects such as wet surface variation
and it performs Taylor expansions of the boundary conditions.
The time domain boundary element method uses spline functions

to represent unknowns and solves the set of equations on the exact
body and free surface boundary for the spline coefficients. The
geometry is represented by a set of surfaces on the outer boundary
of the platform. Moreover, the code is geometrically independent
because both the hydrodynamic and the geometry representations
are separate. The implication of this statement is that the geometry
can be defined in different formats with the only requirement that
the surfaces defined must be twice-differentiable with respect to
the parametric coordinates.
Within the time-domain boundary element method, the platform

is free to sink, trim, and surge. Hydrostatic and hydrodynamic
forces and moments are computed from the platform’s geometry
and the boundary integral equation. During the non-linear calcula-
tions, the intersection between the free surface and the platform is
calculated. Given the wet part of the platform’s surface, a transfor-
mation is made to define the computational space.
Normally, a low-order Rankine BEM obtains a system of linear

equations by discretizing the obtained equation after applying
Green’s second identity to the Laplace equation. In the time
domain boundary element method, the perturbation potential is
approximated as a B-Spline surface in the wet hull parametric
space. Moreover, an adaptive subdivision method is used to inte-
grate in the wet surface space.
In relation to the total time-domain potential, Ψ, it is decomposed

into the sum of the mean base flow potential, Φ, and the time-
dependent wave potential, ϕ. The mean base flow potential is set
to zero since our problem does not involve current and forward
speed.
The dynamic and kinematic free surface conditions are imposed

separately. This is done to seek numerical stability. This way the
kinematic condition is solved explicitly and the dynamic condition
is solved implicitly.
The kinematic and dynamic free surface conditions are both

expanded in a Taylor-series about the base flow.
More details of the theory behind time domain nonlinear bound-

ary element methods can be found in Refs. [10–13].
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3.3 Time-Domain Viscous Model. In this section, a descrip-
tion of the viscous volume of fluid URANS code STAR-CCM+ is pro-
vided. Turbulent flow is implicitly assumed, and a smooth body
surface is considered. The equations solved are the averaged conti-
nuity and momentum equations for incompressible fluids where
there are no body forces in the floating object.

∂(ρui)
∂xi

= 0 (7)

∂(ρui)
∂t

+
∂
∂x j

(ρuiu j + ρu′iu′j) =
∂ p
∂xi

+
∂τij
∂x j

(8)

τij = μ
∂ui
∂x j

+
∂u j

∂xi

( )
(9)

where τij in Eq. (8) are the components of the averaged viscous
force tensor, p is the averaged pressure, and u are the Cartesian
components of the averaged velocity. In Eq. (8), u′iu

′
j are the

Reynolds stresses, ρ is the fluid density, and μ is the dynamic vis-
cosity. To obtain the desired mesh resolution in the boundary
layer, y+-values near the platform surface must remain below a
certain threshold. In Ref. [2], y+-values of around 50 provide a
good approximation. The definition of y+ is y+ = y · v∗/ν, where
y is a coordinate perpendicular to the body surface with y = 0 at
the body surface. v* is the friction velocity and is expressed as
the square root of the ratio between the absolute value of the wall
shear stress and the fluid density. Furthermore, ν = μ/ρ. The
viscous sublayer is assumed to be below the given y+ values.
Given y+ values in the simulations of 55 on average (Table 2),
the discretization of the integral formulation of the Navier–Stokes
equations requires a turbulence model. The two turbulence
models mainly used are k-ϵ and k-ω. The model that has been
used in these simulations is a combination of the two, the SST
k-ω Menter turbulence model [23]. This turbulence model mixes
the two previous models using the k-ϵ in areas away from the
walls and the k-ω when calculating near to the walls, where the
boundary layer develops.
To model the free surface, the time-domain viscous model uses a

volume of fluid (VOF) method [24]. This model assumes that the
same equations governing the physics of one of the phases can be
solved for all phases present in the computational domain (each
cell or finite volume). A good reference for the theory behind this
type of numerical method can also be found in Ref. [25].
In order to simulate the behavior and to obtain realistic platform

motions, a dynamic fluid body interaction (DFBI) model is used.
The platform is allowed to move in three degrees-of-freedom, to
translate in the longitudinal and vertical directions (surge &
heave) and to rotate around the transversal direction (pitch).
It is necessary to identify constraints to define the time-step.

These constraints depend on the physics that have to be simulated.
The objective is to record the following physical phenomena:

(1) Heave, pitch, and surge platform motions.
(2) The waves that travel on the free surface throughout time.

For the heave, pitch, and surge movements, the ITTC recom-
mends at least 100 time-steps per period of encounter with the
waves [1,26,27]. The period of encounter, and wave period,
ranges from 10–30 s, so 0.1–0.3 s is the minimum time-step regard-
ing the motions. Furthermore, the Courant number (CNN) on the
free surface should stay below 0.1. A time-step convergence is per-
formed analyzing both the CNN and the wave elevation at one point
using a wave probe. The resultant time-steps of the 11 cases simu-
lated are presented in Table 1. The wave probe is also used to
perform the mesh convergence (Fig. 2) giving data to compare
with the theoretical wave output. An example of the wave prove
for the final mesh selected is presented in Fig. 3.
The platform, as it can be seen in Fig. 4, is positioned 1 · λw from

the velocity inlet. The platform is positioned with a maximum

distance to the symmetry plane of Bmax/2 to be able to impose a
symmetry condition (Fig. 5).
An hexahedral volume mesh is used for the Background and

Overset regions that are overlapped (Chimera grid). Additionally,
prism layers are introduced in the Overset Region, around the plat-
form surface boundary.
The sizes of the domains Block Region and Overset Region are

chosen using best practices derived from previous seakeeping
studies with STAR-CCM+. Good examples are Refs. [1] and [28].
The dimensions of the platform and waves are used to perform
the necessary proportions. The water depth is 1/2 of the largest
wavelength, which should give negligible finite water depth
errors. The final measures for this particular case, here Lp= 63.5
is the length of the platform, are the following:

(1) Length: 5.6 · λw.
(2) Width: 50 · Lp.
(3) Depth: 11 ·Lp.

A series of volume controls have been applied to generate an
unstructured grid with the necessary refinements to capture the

0 2 4 6 8 10 12 14 16 18

Number of Cells 106

1.45

1.5

1.55

1.6

1.65

1.7

W
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e 
A

m
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itu
de

 A
w

Theoretical Wave AmplitudeTheoretical Wave Amplitude
Wave Amplitude

Fig. 2 Wave probe in the undisturbed region, longitudinally
located at the platform’s center of gravity (without the platform
present), and transversally located at 45 of the width of the compu-
tational domain. For the wave mesh convergence, three levels of
mesh resolution were used. The wave amplitude obtained
through a fast Fourier transform is plotted in the figure above
and compared to the theoretical wave amplitude. The mesh
used in the study is the second which has a 3.5% difference
with the theoretical wave amplitude.

Table 1 The columns indicate wave period (Tw), wave length
(λw), wave amplitude (ξa), and fixed time step (Ts) used in the
URANS solver, respectively

Tw (s) λw (m) ξa (m) Ts (s)

10.00 156.131 2 × 0.3860 0.012
13.00 263.861 2 × 0.6515 0.0155
15.00 351.293 2 × 0.8675 0.0179
16.00 399.702 2 × 0.9855 0.0190
16.73 437.523 2 × 1.0800 0.0199
18.00 505.864 1.2490 0.023
19.00 563.633 1.3915 0.023
19.50 593.688 1.4660 0.023
20.00 624.524 1.5420 0.024
21.00 688.538 1.7000 0.025
30.00 1405.179 3.4695 0.036

Note: The waves are within the linear assumption. A minimum wave
amplitude was needed to keep the quality of meshes and accelerate
convergence.
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different physical scales that characterize the problem studied.
These volume controls are described in the Fig. 6. The mesh refine-
ments in the volume controls have been defined in relation to the
wave dimensions and the estimated boundary layer size. These
dimensions are presented in Table 2. The volume refinements
used are as follows:

(1) Water Ref 1: the main purpose of this refinement is to estab-
lish continuity in the vertical dimension of the mesh while
providing an expansion of the mesh in the horizontal
plane. The expansion is done with the objective of creating
numerical dissipation at the end of the domain before the
Pressure Outlet. The objective is to damp out the waves
that enter the domain to eliminate any possible reflections
in the Pressure Outlet that introduce perturbations in the
solution.

(2) Water Ref 2: this volume control intends to provide an ade-
quate continuum for the wave to propagate uniformly, with
minimal numerical dissipation. Regarding the length of
Water Ref 2 refinement (3.5 · λw), it is advised that this
length is at least equal to twice the length of the wave simu-
lated (Fig. 6).

(3) Platform refinement: the purpose of this volume control is to
provide higher grid resolution in the area near the platform.

The surface control used is the following:

(1) Hull: the surface size control has been created to represent
the platform’s geometry accurately. Moreover, this enables
a good quality prism layer expansion.

The mesh and time convergence has been divided into three
steps:

(1) Convergence of the Block Region mesh, for the monochro-
matic wave. This has proven the most important in the con-
vergence of the results. Best practices from previous
validations have been taken to define the mesh refinements,
such as those found in Ref. [28]. According to this publica-
tion, good results can be obtained with approximately 20
cells per wave height and 100 cells per wavelength. The
results from the performed mesh convergence are presented
in Fig. 2 and Table 3. The final mesh dimensions, relative
to the wave dimensions in the simulations, are exposed in
Table 2. The sharpening factor is left at 0.0, so there is no
term for numerical diffusion in the volume fraction transport
equation.

(2) Convergence of the remaining volume refinements. Addi-
tional volume refinements are created to provide the right
domain dimensions and appropriate refinement for the
Overset Region, and a long enough numerical beach at the
end of the domain.

(3) Convergence of the platform’s surface size and boundary
layer mesh (prism layer). As in the first point, recommenda-
tions from Ref. [28] have again been followed. Ten prism
layers have been used, with a growth rate factor of 1.3 and
y+ values are 55 on average (Tables 2 and 3). Consequently,
wall functions are necessary to perform the simulations.

Boundary conditions have been defined according to the particu-
larities of the problem. Note that multiple boundary conditions can

620 640 660 680 700 720 740 760
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
le

va
tio

n 
 (

m
)

Wave Probe
A sin( t)

Fig. 3 Wave probe in the undisturbed region, longitudinally
located at the platform’s center of gravity (without the platform
present) and transversally located at 45 of the width of the compu-
tational domain. The wave period is 30 s and wave amplitude
1.7 m. The signal obtained is compared to the theoretical
profile of a first-order Stokes wave. Discrepancies are due to
the surface capturing technique and mesh resolution across
the free surface. To account for this, we consider the wave ampli-
tude obtained by applying a Fast Fourier technique (see Fig. 9(b))
to the numerical wave profile (blue line). (Color version online.)

Fig. 4 Representation of the boundary conditions using a color
code. Relative dimensions between the floating body and the
computational domain have been modified to allow for better
visualization (here and in Fig. 5). (Color version online.)

Fig. 5 Representation of the mesh volume controls using a
color code

Fig. 6 Example of the computational domain of the shortest
wave (Tw = 18s, Aw = 1.249m). The mesh expands transversally,
in the y-direction, starting approximately at the lateral mid-length
and in the x-direction creating a numerical beach 2 · λw long.
Further mesh refinements are done near the platform, the
results of these refinements can be seen in Fig. 7. (Color
version online.)
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be right for this same problem. Exploiting the symmetry of the
problem, given by the incoming head wave condition, only half
of the symmetric platform is modeled. The boundary conditions
used are illustrated in Fig. 4, using a color code.
A numerical beach has been created in the area before the Pres-

sure Outlet that is within the range of 2 · λw times the wavelength
used, to avoid numerical wave reflections from the outlet. This
boundary condition reduces the vertical velocity of fluid particles
by applying damping to the movement in that direction. The guide-
lines stated in Ref. [29] have been followed to setup the induced
damping.
Two reference frames are used for the computations. First, the

problem of flow and magnitude of the resultant force over
the body is calculated. Then, forces and moments are translated to
the local reference system of the platform. This reference system
has its origin in the platform’s center of gravity, with the x-axis in
the fore-aft direction. Given these resultant forces, the movement
of the platform is calculated. There is no force restraining the
model to drift (Figs. 7 and 8).

4 Results

In this section, we briefly illustrate the post-processing process
and give a critical overview of the results for each set of simulations.
The end result for each set is the heave and pitch RAOs of the plat-
form. By RAO, we mean the amplitude of heave and pitch at the
incident frequency divided by the incident amplitude in steady-state
oscillatory conditions. Since the calculations by the URANS solve
non-linear effects, the RAOs will depend on the incident wave
amplitude.
Once RAOs are calculated with frequency and time-domain

BEMs, they are examined for areas with large motions and cancel-
lation effects, where viscous phenomena are likely to be significant.
As commented before, viscous forces are probable to be important
when the platform is oscillating near its natural period.
Importance of cancellation effects is given by red, the probability

of occurrence of the wave periods at which it materializes (Tw= 15–
17 s) and the unconventional geometry analyzed, which may not
have a cancellation period as it has been shown in experiments

Table 2 Mesh characteristics for each of the 11 URANS simulations

Overset
Platform
Ref. 1 Water Ref. 1 Water Ref. 2

# of cells total # of cells Overset y+ X Y Z X Y Z X Y Z X Y Z

M1(Tw= 10.00 s) 6,406,710 861,154 45 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M2(Tw= 13.00 s) 8,064,141 1,051,344 46 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M3(Tw= 15.00 s) 4,918,997 654,759 51 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M4(Tw= 16.00 s) 4,022,589 1,536,357 73 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M5(Tw= 16.73 s) 3,269,859 1,952,057 55 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M6(Tw= 18.00 s) 4,147,718 2,703,786 49 λw
85

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M7(Tw= 19.00 s) 7,728,123 2,703,715 50 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M8(Tw= 19.50 s) 4,272,912 1,803,118 48 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M9(Tw= 20.00 s) 4,624,096 1,803,118 46 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M10(Tw= 21.00 s) 4,844,652 1,803,120 40 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

M11(Tw= 30.00 s) 4,022,589 1,727,886 55 λw
255

λw
255

Hw
17

λw
85

λw
85

Hw
17 Expand Expand Hw

17
λw
85

λw
85

Hw
17

Note: The mesh sizes range between 4 and 8 million cells and average y+ values remain below 55, limiting the viscous sublayer along the body surface. The
mesh refinements are defined in relation to the wavelength (λw) and wave height (Hw). The number of cells per wave height and wavelength remains constant
through the different cases. Within some control volumes, the mesh is allowed to expand until otherwise specified, so as to create a numerical beach. There
are a minimum of eight equal sized cell layers per transition.

Table 3 Results of the convergence of the RAOs in a mesh sensitivity analysis considering four levels of refinement

Mesh sensitivity analysis

Tw
18 s 19 s 19.5 s

Mesh eRAO33 eRAO55 # cells y+ eRAO33 eRAO55 # cells y+ eRAO33 eRAO55 # cells y+

MR1 29% 5% 1,986,156 424 9% 11% 1,535,684 377 9% 6% 858,326 356
MR2 30% 4% 2,982,100 317 7% 9% 2,531,821 315 11% 6% 2,030,050 305
MR3 8% 1% 5,791,269 167 4% 1% 6,350,109 157 2% 2% 3,098,014 137
Final 0% 0% 7,169,364 49 0% 0% 7,728,123 50 0% 0% 4,272,912 48

Tw
20 s 21 s 30 s

Mesh eRAO33 eRAO55 # cells y+ eRAO33 eRAO55 # cells y+ eRAO33 eRAO55 # cells y+

MR1 3% 10% 868,428 361 0% 15% 958,777 351 0% 5% 806,101 331
MR2 3% 10% 2,040,152 303 1% 11% 2,130,535 280 1% 2% 1,978,225 160
MR3 2% 3% 3,449,200 131 1% 4% 3,669,770 119 0% 0% 2,727,964 105
Final 0% 0% 4,624,096 46 0% 0% 4,844,652 40 0% 0% 4,022,589 55

Note: Convergence is quickly reached in all wave periods except for Tw= 18 s. For this reason mesh Final is used. eRAO33 and eRAO55 define errors relative to
the finest mesh simulated for each wave period (Tw).
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for other unconventional geometries [30]. They correspond to
severe weather conditions that can have return periods clearly infe-
rior to 50 years in many potential locations for offshore wind
energy. BEMmethods with no viscous dissipations give a particular
misleading picture of this situation. They predict negligible heave
motions. Additional difficulties have been encountered when cor-
recting the potential codes near the cancellation period. Unphysical
amounts of empirical damping would be needed to obtain a good
approximation in the proximity of the cancellation period. There-
fore, the class of functions approximated by potential numerical
methods are not rich enough to fully characterize RAOs of the
studied semi-submersible platform geometry.
In these situations, nonlinear phenomena such as vortex shedding

will affect the motions by modifying pressure loads on the platform
(Fig. 12(b)). For this reason, this type of situations are simulated in
the high-fidelity viscous code. The motions of the platform are cal-
culated for 11 different monochromatic waves (Table 1) that discre-
tize the region around the natural heave, pitch, and heave
cancellation periods of the platform, obtained from the frequency-
domain BEM, time-domain BEM, and analytical relations
(Table 4 and Eq. (6)). The first and last waves are simulated to
ensure that the same RAO is obtained for cases where the viscous
and non-linear phenomena are not significant and all codes used
should output the same result. Table 4 contains a brief summary
of the main dimensions and mass properties of the platform.
The data obtained from the time domain programs needs to

be post-processed in order to be able to compare to the results of
the frequency-domain BEM. These intermediate results are as
follows:

(1) Heave time history: longitudinal displacement along the ver-
tical direction of the platform.

(2) Pitch time history: rotation around the transversal direction
of the platform.

(3) Surface elevation time history (incident wave): distance of
the free surface to the z= 0 plane at a point located in the
undisturbed region, longitudinally located at the platform’s
center of gravity and transversally located at 4

5 of the width
of the computational domain.

To calculate the RAO from the time series of the movement and
wave elevation a Fast Fourier Transform is done. Then, it is just a
matter of obtaining the RAO from the following well-known
formula in spectral analysis:

ϕxi(ω) = RAO2 · ϕξ(ω) (10)

To ensure that the time series is long enough, the convergence of
the RAO is analyzed throughout the length of the time history
recorded (Fig. 9(d )). In Fig. 9, an example of the intermediate
and final outputs of the time histories’ analysis process is provided.
When the post-processing is completed, the results can be com-

pared in a plot, such as in Fig. 10. In this figure, it can be seen that
there is a very good agreement between the frequency-domain
BEM and the time-domain BEM. On the other hand, although the
short (Tw= 18 s) and the long (Tw= 30 s) wave of the URANS simu-
lation set perfectly match (results are within 2%) the predicted RAO
by the potential codes, the latter largely overpredicts the motions,
which take the form of a spike, as you approach the natural period.
The reason for this is that potential codes can only consider potential
flow radiation dampingwhich tends to diminish with the wavelength
and, in the particular case of the geometry simulated, tends to be very
small near the heaveand pitch natural periods (Table 4). In Fig. 11,
the heave and pitch potential damping is represented as a function
of the wave period, showing how small the potential radiation
damping is near the heave and pitch natural periods. Consequently,
when we simulate the platform in wave periods near this
minimum, adding on top the strong coupling between the two
motions, the response is greatly augmented. A possibility to mitigate
this is to add a certain quantity of viscous damping.
An example of the captured vortex shedding in the URANS sim-

ulations is presented in Fig. 12(b). In this figure, the field vorticity
magnitude can be visualized in an xz-plane parallel to one of the
horizontal legs. The consequence of vortex shedding is important
viscous pressure loads.
In the calculation of RAOs, monocromatic waves are used in the

time domain numerical methods. In practice, wave spectra should
be used to capture second difference frequency effects [33–35],
which can have important effects on the resonance responses in
heave and pitch. The choice of using monochromatic waves was
made to have an easier direct comparison of all three numerical
methods, when all predicted responses can be considered as
linear. This is done at the expense of narrowing the range of non-
linear phenomena that time domain solvers could capture.

Table 4 Principal dimensions and mass properties of the
platform

Length (Lp) 63.5 m
Beam (Bp) 36.0 m
Depth (Dp) 44.0 m
Radius of the columns (Rc) 4.0 m
Height of the pontoons (Hp) 6.0 m
Width of the pontoons (Bp) 8.0 m
Length of the pontoons (Lp) 37.0 m
Draft (Tp) 30.0 m
Displacement (Δ) 1.071 · 107 kg
Radius of gyration (rxx) 26.4 m
Radius of gyration (ryy) 26.4 m
Radius of gyration (rzz) 20.5 m
Vertical center of gravity z-coordinate −20.3 m
Heave natural period 19.45 s
Pitch natural period 19.00 s

Note: The natural periods are estimated by: Tii = 2π · ����������������
(Mii + Aii)/Cii

√
.

Fig. 8 Example of a mesh near the platform at a time instant
during the simulation. The overset domain is 1.5 · Lp long, 1.5 ·
Bp wide, and 1.8 · Dp deep. The platform is centered within the
overset domain.

Fig. 7 Second example of a mesh near the platform at a time
instant during the simulation
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In the last step of the analysis, a viscous correction has been intro-
duced in the frequency and time-domain BEMs. Empirical correc-
tions can range 3–10% of the critical damping. In this study, the
best fit, for both frequency and time-domain BEMs, is given by
6.25% and 6.6% of the critical damping, in heave and pitch, respec-
tively. With this correction, it can be said that potential codes
provide a very good motion prediction only requiring URANS
near the resonance period.

4.1 Non-Linear Decoupled Heave EquationWith Empirical
Coefficients. In order to assess viscous drag forces, we will use
experimental [36] and numerical [37] drag coefficients for a
facing square at small Keulegan–Carpenter numbers. Since the con-
sidered Reynolds numbers are relatively small in their studies,
viscous shear forces due to laminar flow are not negligible even
though they are small relative to pressure loads. However, using
empirical formula for shear stress by Ref. [38] with ambient har-
monically oscillating flow along a fixed plane surface with turbulent
boundary layer flow show that the shear stress can be neglected in
full scale relative to pressure drag. This means that an estimate of
the drag coefficient for a facing square at small Keulegan Carpenter
numbers and full-scale conditions will be based on neglecting the

effect of the shear stress in the boundary layer flow. Furthermore,
we assume that the pressure drag are the same in model and full
scale due to the fact that the separation points are the same in
model and full scale. Berthelsen and Faltinsen [37] predict that
the grid-independent drag coefficient is 3.42 for a facing square at
β = 213 and Keulegan-Carpenter number KC= 1.5. Here, β =
B2/(νT) is the ratio between Reynolds number and KC-number
with B and T as the width of the section and oscillation period of
the ambient flow, respectively. We deduct the in-line drag coeffi-
cient associated with the frictional force in phase with the
ambient velocity and get CD= 2.92. The fact that the width to
height ratio 8/6 for the pontoons is higher than for a square
section is likely to cause a higher drag coefficient [39,40]. They
used a single vortex method which suggests a CD value of 3.10
for the rectangular cross section of the pontoons at KC= 1.5.
However, the KC dependence of CD is low at small KC numbers.
The fact that the drag coefficient is KC-dependent will be indirectly
accounted for by considering how reasonable uncertainties in the
estimated drag coefficient affect the heave amplitude. It is difficult
in a simple way to account for the intersections between the pillars
and the pontoons. One consideration is the number of corners where
the flow separates at a cross section of a pontoon. If we consider the
pillars at the ends of the pontoons, then there are four corners until
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Fig. 9 Example of the output of the analysis process of the motion time histories. The time traces correspond to the URANS
motion analysis of the Tw=20 s wave. The data plotted in Figs. 9(a) and 9(b) are used to obtain the RAO through Eq. (10). This
is done as the time simulated increases to check for convergence (Fig. 9(d )). The wave elevation spectra is taken to consider
any mesh effects and small errors in the numeric calculations, as explained in Fig. 3. (a) Spectrum of heave motion H(t) in ampli-
tudes, (b) spectrum of surface elevation ξ(t) in amplitudes, (c) heave time history, and (d) RAO convergence with the increase of
time simulated.
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we are one pillar radius from the end. Two separation corners imply
as a first approximation that the drag coefficient is half of the drag
coefficient with four separation points. Furthermore, we must notice
the effect of different width-to-height ratios of the cross sections at
one pillar radius from the end of the pontoons. This has a small
effect according to Ref. [39]. Then comes 3D effects which is pro-
nounced at the ends. However, since the KC number is small and
the shed vorticity hence stays close to the pontoons, the 3D effect
is expected to be smaller than it for instance is for cross-flow past
a ship in current as discussed in Ref. [17].

We follow a rough approach to account for 3D end effects of pon-
toons and introduce the projected area Ap= 935.1 m2 of the pon-
toons as seen from below. At the intersection between the central
pillar and the pontoons, we use the same drag coefficient as esti-
mated for the rectangular cross sections. At the other intersections
associated with a projected area Apl= 75.40 m2, we reduce the
drag coefficients by using an average value that is half of the
value for the rectangular cross sections. That means the drag coef-
ficient for the platform associated with vertical motions is estimated
as

CD =
0.5 · 3.1 · Apl + 3.1 Ap − Apl

( )
Ap

= 2.99 (11)

Viscous effects matter at resonance and the potential-flow cancel-
lation period. In order to model both effects, we will express the
viscous loads in the terms of the relative velocity between heave
and the vertical incident wave velocity at the pontoon level. The
equation of heave motion is therefore expressed as

M + A33( ) d
2η3
dt2

+ 0.5ρCDAp︸����︷︷����︸
BV

dη3
dt

− w

( )
dη3
dt

− w

∣∣∣∣
∣∣∣∣

+ ρgAW︸�︷︷�︸
C33

η3 = F3(t)
(12)

where

F3(t) = ρgξasin(ωt)e
kzm AWe

k zt−zm( ) − k Vp +
A33

ρ

( )( )
(13)

w = ωξae
kzmcos(ωt) (14)

Equation (12) is integrated with initial values and the heave ampli-
tude in steady-state oscillatory conditions is found for different
wave periods [41–44].
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Fig. 10 Comparison of the RAOs obtained from the frequency-domain BEM, time-domain BEM, corrected frequency-domain BEM,
corrected time-domain BEM and URANS code. The RAOs presented are referred to the COG, and a complete transformation matrix
composed of Euler angles is implemented in the time-domain BEM and URANS simulations. Results from the potential codes above
2 and 4 are discarded, because they are the result of a minimum in the potential radiation damping detailed in Fig. 11. At first,
viscous corrections have not been included in the time-domain or frequency-domain potential flow based predictions; afterward,
additional damping is introduced. It is commonly accepted that heave and pitch viscous damping of semi-submersible platforms
ranges from 3–10% of critical damping, staying around 5% for pitch [31,32]. In this study, the best fit, for both frequency and time-
domain BEMs, is given by 6.25% and 6.6% of the critical damping, in heave and pitch, respectively. So, with this conservative cor-
rection, both potential codes provide a very good prediction for all cases, only requiring URANS near the resonance and the can-
cellation period. (a) Heave motion RAOs and (b) pitch motion RAOs.
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Fig. 11 B33 and B55 radiation damping coefficients obtained
from the frequency-domain BEM. A minimum near the natural
period of oscillation generates unrealistically high motions
(Fig. 10).
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Additionally, the estimated CD value from experimental results is
compared against a CD value calculated from a decay test. We con-
sider the equation of motion ẍ + p1ẋ + p2|ẋ|ẋ + p3x = 0. The decay
tests are performed with the URANS solver. By analyzing Fig. 13,
we can fit Eq. (15) with least mean squares.

2
Tm

log
Xn−1

Xn+1

( )
= p1 +

16Xn

Tm
p2 (15)

where Tm is the mean oscillation period. Between Xn and Xn+1, there
is one half period Tm/2 for any n. The coefficients p1 and p2 are the
linear and quadratic damping terms, respectively. Using the area of
the platform as seen from below, we obtain CD= 2.83 which con-
firms the previous estimations that predict CD∼ 3.00.
To evaluate the performance of this simplified model, the heave

motion predictions are plotted alongside the URANS predictions in
Fig. 14. This comparison has allowed to provide a rough measure of
flow uncertainty which could prevent us from extrapolating results
of available experiments. This is especially useful for analyzing the

flow at heave cancellation and resonance periods, due to linear
waves. Keulegan–Carpenter number in these conditions is 1 induc-
ing high variability in the CD of the platform. While studying the
difference in motion predictions other non-linear phenomena has
been observed, although its overall influence in the platform
motion has not been rigorously quantified. The first observed non-
linear phenomena are vortexes that develop at the edges of the pon-
toons. These vortexes and the movement of the platform are seen to
perturb the wave velocity and pressure fields, potentially making
Eq. (13) inaccurate and requiring an increment of the drag coeffi-
cient to account for a pressure correction. Average pressure has
been recorded on the top and bottom faces of the pontoons and com-
pared to those predicted by potential theory. The recorded pressure
is significantly smaller (probably due to vortex shedding) and
similar between the top and bottom faces at the heave cancellation
period. This has eliminated the cancellation of forces because of the
larger bottom pontoon area. Similarly, the predicted excitation

0 10 20 30 40 50 60 70 80 90

Time (s)

-8

-7

-6

-5

-4

-3

-2

-1

0

H
ea

ve
 M

ot
io

n 
(m

)

Heave Decay Test

Fig. 13 Evolution of the heave motions during the heave decay
test performed in with the URANS solver. Drag coefficient esti-
mated by comparison with experiments (CD=3).
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Fig. 14 Comparison between heave RAO predictions performed
with the decoupled heave differential equation (Eq. (12)) and the
URANS solver. Significant differences can be seen by compari-
son with URANS. Probably due to non-linear phenomena such
as vortex-shedding and perturbation to the velocity and pressure
fields due to platform motions.

Fig. 12 In Fig. 12(a), the wave elevation is plotted and, in Fig. 12(b), non-linear phenomena at platform’s natural period (Tw=19 s) can
be seen. In Fig. 12(b), the color map represents the module of the vorticity field. As it can be observed in the image, the vorticity is
mainly generated by the horizontal legs of the offshore platform. (a) Wave elevation and (b) magnitude of the vorticity field. (Color
version online.)
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forces at the heave resonance period are smaller in the URANS
model than in the simplified non-linear potential method.

5 Conclusions
This paper highlights the major characteristics of three different

computational techniques and the modeling assumptions at the
basis of their formulations. In the performed motion analysis, we
prove the feasibility for designers of combining the information
from three different numerical models. The paper presents an inter-
esting comparison of the existing numerical methods used for pre-
dicting motions of floating objects in waves. Nevertheless,
significant emphasis has been placed in the description of the
viscous flow solution, obtained using complex multi-phase
URANS solver. The paper correctly evidences the limitation of
potential flow models in predicting offshore platform motions for
waves having periods close to the natural frequency of the
system. Corrections coefficients can be included in potential flow
predictions, but their entity can just be estimated according, for
instance, to previous experimental measurements. Here, we used
URANS solver as a virtual replica of the system with the final
aim to calibrate the empirical corrections in order to properly
predict motions at resonance. We demonstrate that the computa-
tional burden of the high-fidelity viscous model with non-linear
free surface is justified only when incoming waves induce
motions at the resonance frequency, being 175 times more expen-
sive than the time-domain BEM and 700,000 times more expensive
than the frequency-domain BEM. For this particular operating con-
dition, both frequency and time domain models largely overesti-
mate the response of the system, leading to large discrepancies if
not corrected with empirical terms. However, where there are rela-
tively small motions (RAO≤ 1), all codes predict the same motions
(Fig. 10) only requiring URANS near the resonance and cancella-
tion periods (Fig. 15).
The large computational burden largely limits the application of

URANS simulations in very important design processes such as
optimization. High-fidelity URANS predictions have been recently
included in the construction of stochastic surrogate models used
together with Bayesian optimization techniques. In particular, the
use of Gaussian processes have allowed to construct accurate
response surfaces by efficiently blending data-sets coming from dif-
ferent fidelity sources (e.g., potential flow and URANS predictions).
These response surfaces (surrogate models) are capable of describ-
ing quantities of interest such as motions in high-dimensional
spaces (for instance operating conditions or designs). Some good
examples of this are Ref. [45] where the fidelity of a URANS
model was tuned by changing the mesh resolution and Ref. [46]
where potential flow and RANSE calm water predictions were

used to optimize the shape of a SWATH vessel. This proves that
it is reasonable to think that such optimization techniques can
make URANS simulations a practical design and optimization tool.
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Nomenclature
g = acceleration of gravity
k = wave number
n = unit normal vector, Cartesian coordinate system
x = position vector, Cartesian coordinate system
B = distance between center planes of the two pontoons
M = platform mass
u = averaged velocity
p = averaged pressure
zm = coordinate of the geometric center of the pontoons
zt = coordinate of the top of the pontoons

A33 = added mass in heave
Aw = waterplane area

Bmax = maximum beam
Bp = beam of the platform
Dp = depth of the platform
Lp = length of the platform
Sb = the platform’s wet surface
Tp = draft of the platform
Ts = URANS time-step
Tw = wave period
Vp = total volume of the pontoons

F3(t) = vertical excitation force
G(x, ξ) = Green function

η3 = heave motion
λw = wavelength
μ = dynamic viscosity

44ξa = incident wave amplitude
ξj = motion amplitude in direction j
τij = components of the averaged viscous force tensor
ρ = fluid density
Φ = mean base flow velocity potential
ϕ = modulus in complex notation of the velocity potential

ϕD = diffraction potential
ϕI = incident wave potential
ϕR = radiation potential
ϕxi = frequency spectra associated with the ith DOF
ϕξ = frequency spectra associated with free surface elevation
Ψ = total time-domain potential
ω = wave circular frequency
ωn = natural circular frequency
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