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Multiphysics Design of Programmable Shape-Memory Alloy-Based Smart
Structures via Topology Optimization

Ziliang Kang, Kai A. James

University of Illinois at Urbana-Champaign, Department of Aerospace Engineering

Urbana, Illinois, United States

Abstract

We present a novel multiphysics and multimaterial computational design framework for shape-
memory alloy-based smart structures. The proposed framework uses topology optimization to
optimally distribute multiple material candidates within the design domain, and leverages a non-
linear phenomenological constitutive model for shape-memory alloys (SMAs), along with a coupled
transient heat conduction model. In most practical scenarios, SMAs are activated by a nonuniform
temperature field or a nonuniform stress field. This framework accurately captures the coupling
between the phase transformation process and the evolution of the local temperature field. Thus,
the resulting design framework is able to optimally tailor the two-way shape memory effect and
the superelasticity response of SMAs more precisely than previous algorithms that have relied on
the assumption of a uniform temperature distribution. We present several case studies, includ-
ing the design of a self-actuated bending beam and a gripper mechanism. The results show that
the proposed framework can successfully produce SMA-based designs that exhibit targeted dis-
placement trajectories and output forces. In addition, we present an example in which we enforce
material-specific thermal constraints in a multimaterial design to enhance its thermal performance.
In conclusion, the proposed framework provides a systematic computational approach to consider
the nonlinear thermomechanical response of SMAs, thereby providing enhanced programmability
of the SMA-based structure.

Keywords: shape-memory alloys, multimaterial design, transient heat conduction, two-way shape
memory effects, superelasticity, topology optimization, programmable smart structures

1. Introduction

As the most widely adopted thermoelectrical active materials, shape-memory alloys (SMAs)
have been the subject of extensive research for decades. SMAs are capable of reversible deforma-
tion under a temperature cycle or a loading cycle, referred as the two-way shape memory effect
(TWSME) and superelasticity (or psuedoelasticity) respectively. These two phenomena occur as a
result of the diffusionless phase transformation between the martensite phase and austenite phases.
As a type of metallic material, SMAs have high-pressure and high-temperature resistance [1, 2].
These characteristics distinguish SMAs from most active materials which are polymeric, therefore
SMA can be used in a broad range of applications, including aerospace, automotive, robotics ap-
plications, as well as biomedical devices and integrated rescue equipment [1, 3]. In addition, SMAs
can be actuated by electric stimuli through Joule heating, enabling more choices of activation
approaches for SMA-based smart structures [3].

For years, the design techniques used for SMA-based structures relied on a combination of ex-
periments and simulation, in which the shape and topology of the design was obtained heuristically
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[3, 4, 5]. On the simulation side, finite element analysis is the main tool used in modeling the mate-
rial response of SMAs. Researchers have been developing multiple constitutive models for SMAs in
recent years, mainly categorized into micromechanical models and phenomenological models. Sun
and Hwang developed early micromechanical models [6, 7], which were later built upon by Bhat-
tacharya [8, 9]. These models are preferred in describing the micromechanics behaviors of SMAs
varied with different lattice orientation. Further investigation considering the differences between
lattice structures of SMAs, including twining, detwining, and single crystallization [10, 11], was
conducted as well. Meanwhile, the history of developing phenomenological models has focused on
proposing proper thermodynamic hardening models to capture the latent heat exchange process of
phase transformation. The most popular hardening models include the exponential model [12], the
cosine model [13, 14], the quadratic model [5, 15, 16] and the smooth transformation model [17], On
the experimental side, extensive research has been conducted to enhance the performance of SMAs
by increasing their bandwidth [18, 19], fatigue life [20, 21], and stability [3]. Systematic efforts
have also been directed toward enhancing the attributes of SMAs to allow for a wider range of
operating temperatures by introducing new material compositions, such as Nickel-rich NiTi SMAs,
Ti-ta alloys, and Ni-Mn-Ga alloys [22, 23, 24, 25].

Despite ongoing efforts, limitations of SMAs still exist, including relatively small usable strain,
low actuation frequency, low controllability, and low energy efficiency [3]. The major obstacle, low
operational frequency and narrow bandwidth of SMAs, are results of inefficient heat transfer into
and out of the active materials [1, 3]. While research shows that Joule heating with high electrical
currents can increase the heating rate, SMA-based structures still faces problems of overheating and
damage to the actuator [3, 26, 27]. In addition, low heat conduction efficiency is the most significant
factor limiting bandwidth during the cooling process [3, 28, 29]. With the classical experiment-
simulation design approaches restricting the shape of SMA-based smart structure to rods, plates,
ribbons, springs and wires [1], the lack of geometric design freedom limits the performance of
SMA-based actuators in terms of response time. Researchers have also proposed to enhance the
thermomechanical attributes of SMAs by introducing multimaterial structures [1]. However, it
again requires months of time to conduct experiments and simulations to arrive at a conceptual
design. In response to those challenges, researchers seek to leverage computational design techniques
to shorten the design cycle, and leverage the multi-physics properties of SMAs as much as possible.
The earliest research on topology optimization of thermally-actuated compliant mechanisms was
conducted by Sigmund [30, 31], which considered thermal expansion and multimaterial design.
Later, Li et al. studied topology optimization of compliant mechanisms considering pure thermal
expansion influenced by transient heat transfer [32]. Cho et al. proposed an efficient topology op-
timization scheme for thermoelastic problems using coupled field adjoint sensitivity analysis [33].
Studies in this area were also reported on topology optimization of other thermally-responsive smart
materials including liquid crystal elastomers [34] and shape memory polymers [35, 36]. For SMAs,
Langelaar proposed a topology optimization algorithm considering a piecewise linear constitutive
material model [37]. In addition, the authors’ previous work studied topology optimization of single-
material SMA structures, using an inelastic model that accounts for the phase transformation of
SMAs and assumes uniform temperature distribution [38]. However, multi-material design of SMA-
based smart structures that enables complex motion with less active materials, as well as nonlinear
thermal-responsive behaviors of smart materials coupled with transient heat conduction have yet
to be rigorously explored.

In this paper, we propose a systematic computational design framework for multimaterial de-
sign of SMA-based smart structures, via the technique of topology optimization. We consider an
accurate phenomenological model for SMAs [5], coupled with transient heat conduction. No as-
sumptions of the topology or shape of the smart structures are made before the implementation of
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topology optimization. On the contrary, the topology of the structure is determined by distributing
material candidates accordingly to obtain optimal multiphysical responses of the structure, creat-
ing a design that can be manufactured through 3D printing. To the best of our knowledge, this is
the first topology optimization framework for SMA-based structures that allows for multimaterial
design. Further, this is also the first topology optimization framework for thermally-responsive
smart materials that considers transient heat conduction. The novel features of the framework can
be summarized as follows: 1) the proposed algorithm captures the interaction between the inelastic
behaviors of SMAs and transient thermal conduction 2) consideration of evolution of transformation
temperature and stress in terms of various environmental conditions are embedded in the topology
optimization algorithm 3) a novel SIMP-based scheme is used for interpolating the thermal and
mechanical properties of material candidates, which enables an efficient multimaterial design, and
4) the proposed algorithm is able to consider material-specific thermal constraints to enhance the
thermomechanical attributes of SMA-based smart structures, to address the major challenge of heat
conduction problems in designing SMA-based structures. In short, the proposed algorithm provides
an efficient design pathway to utilize the inelastic behaviours of SMAs, while simultaneously ac-
counting for the multimaterial composition and heat conduction performance of the structures. The
proposed framework is expected to be a promising tool to enhance the structural programmability
and thermomechanical attributes of SMA-based structures.

2. Methodology

2.1. Phenomenological Constitutive Relationship of SMAs

In this paper, we use the phenomenological constitutive model proposed by Boyd and Lagoudas
[15] and later described by Lagoudas in 2008 [5] to define the diffusionless phase transformation
of SMAs from martensite (M) to austenite (A). Note that this model assumes small deformations.
Lagoudas uses the Gibbs-free energy in Equation 1 to define the thermodynamic potential of SMAs,
since it contains the essential internal state variables of stress tensor σ and temperature T to build
the constitutive relationship.

G = u− 1

ρ
σ : ε− sT (1)

Here, ε, u and s refer to the total strain tensor, specific internal energy, and specific entropy,
respectively. The variable ρ represents the material density and the operator ”:” denotes double
dot product of tensors. For isotropic polycrystalline SMAs, the Gibbs-free energy is a function of
the transformation strain (εt), and the martensite volume fraction (ξ) tracks the evolution of the
phase transformation. This function can be represented as the sum of the bulk (Gb) and mixing
(Gm) energies such that

G = Gb +Gm (2)

where

Gb(σ, T, ξ) =− 1

2ρ
σ : S : σ − 1

ρ
σ : α(T − T0) + c

[
(T − T0)− T ln

T

T0

]
− s0T + u0 (3)

and

Gm(σ, T, ξ, εt) =− 1

ρ
σ : εt +

1

ρ
f(ξ) (4)

In the above equations, T0 refers to the reference temperature for thermal expansion, f(ξ) is the
transformation hardening function that depicts the transformation energy, and S and α are the
compliance tensor and thermal expansion tensor respectively. The transformation strain εt captures
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the inelastic behavior of the phenomenological model. The compliance tensor S for isotropic SMAs
is defined via the compliance modulus S and Poisson’s ratio υ as follows, where S is the reciprocal
of Young’s modulus (S = 1/E).

S = S : C

C =



1 −υ −υ 0 0 0
−υ 1 −υ 0 0 0
−υ −υ 1 0 0 0
0 0 0 2(1 + υ) 0 0
0 0 0 0 2(1 + υ) 0
0 0 0 0 0 2(1 + υ)


(5)

The thermal expansion tensor α, which leads to purely hydrostatic thermal expansion, is defined
by the thermal expansion parameter α in Equation 6. In the equation,

α = α · diag
(

1, 1, 1, 0, 0, 0
)

(6)

In addition, the symbols c, s0, and u0 in Equation 3 represent the effective specific heat, effective
specific entropy, and effective specific internal energy, respectively. These parameters are functions
of their values in the martensite (M) and austenite (A) phases, and the martensite volume fraction
ξ, shown in Equation 7. 1

S = SA + ξ(SM − SA) = SA + ξ∆S

α = αA = αM

c = cA = cM

s0 = sA0 + ξ(sM0 − sA0 ) = sA0 + ξ∆s0

u0 = uA0 + ξ(uM0 − uA0 ) = uA0 + ξ∆u0

(7)

The admissible total strain tensor of SMAs ε should follow the second law of thermodynamics
[39].

1

ρ
σ : ε̇− (u̇+ ṡT ) ≥ 0 (8)

where (˙) denotes differentiation with respect to time.
By substituting Equation 1 and Equation 2 into the second law of thermodynamics via the

Coleman Noll procedure [40], the definition of the total strain tensor of SMAs ε can be decomposed
into three parts.

ε = εe + εth + εt (9)

where εe = S : σ and εth = α(T −T0) refer to the elastic strain and pure thermal expansion strain,
respectively. Furthermore, the second law, also referred as the Clausius-Planck inequality can be
simplified to

σ : ε̇t − ρ∂G
∂ξ

ξ̇ ≥ 0 (10)

1Note that it is generally assumed that the thermal expansion parameter α and specific heat c of SMAs in the
martensite and austenite phases are the same [5], as their relative differences could be smaller than 5%. Further,
the pure thermal expansion effect contributes only a small portion of the total strain, compared with the inelastic
deformation. However, this work is adaptable to assumptions of different thermal expansion parameters and specific
heat in the martensite and austenite phases.

4
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To further simplify the inequality, an evolution relation (flow rule) in Equation 11 is proposed to
link the transformation strain εt and the martensite volume fraction ξ through the transformation
tensor Λ. In this paper, we use the relationship proposed by Boyd and Lagoudas [15].

ε̇t = Λξ̇

Λ =


3
2H

σs
σeffs

ξ̇ > 0

H εt−r
εefft−r

ξ̇ < 0

(11)

where H is the maximum transformation strain. For the forward transformation (i.e. ξ̇ > 0), σs
is the deviatoric stress tensor and σeffs is its associated effective (von Mises) stress. In the reverse

transformation (i.e. ξ̇ < 0), εt−r is the transformation strain tensor at the reversal point, and εefft−r
is its associated effective strain. By substituting the flow rule into Equation 10, the Clausius-Planck
inequality can be rewritten as

Πξ̇ ≥ 0, (12)

where

Π(σ, T, ξ) =σ : Λ +
1

2
σ : ∆S : σ + σ : ∆α(T − T0)

− ρ∆c

[
(T − T0)− T ln

T

T0

]
+ ρ∆s0T − ρ∆u0 −

∂f(ξ)

∂ξ

(13)

The Clausius-Planck inequality stated in Equation 12 must be satisfied for all admissible ther-
momechanical loading paths ξ̇. These thermomechanical loading paths can be described by a
Kuhn-Tucker condition in Equation 14, where Φ = |Π| − Y is a type of yield function and Y is
a type of yield strength (transformation threshold) determined by the transformation hardening
function [5]. There are two possibilities when Φ = 0. If Π − Y = 0 then to satisfy Equation 12,
ξ̇ > 0, indicating the forward transformation; otherwise if −Π − Y = 0 then ξ̇ < 0, indicating
the inverse transformation. For all other cases of thermoelastic behaviors, i.e. for Φ < 0, we have
ξ̇ = 0. [5]

Φ


= Π− Y = 0 ξ̇ > 0 (A→ M)

= −Π− Y = 0 ξ̇ < 0 (M→ A)

< 0 ξ̇ = 0

(14)

In addition, a consistency condition is defined to ensure the stress and temperature remain
continuous at the transformation surface throughout the evolution process. [41]

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂T
: Ṫ +

∂Φ

∂ξ
: ξ̇ (15)

By satisfying the Kuhn-Tucker condition and the consistency condition, the inelastic constitutive
relationship can be obtained. In equation 16, ⊗ refers to the tensor product operator, L and Θ are
the continuum tangent stiffness and tangent moduli. The symbols ∂σ and ∂ξ denote partial dif-
ferentiation with respect to the stress tensor σ and the martensite volume fraction ξ, respectively.

dσ = L : dε+ Θ : dT

L =

 S−1 − S−1:∂σΦ⊗S−1:∂σΦ
∂σΦ:S−1:∂σΦ−∂ξΦ

ξ̇ > 0

S−1 − S−1:∂σΦ⊗S−1:∂σΦ
∂σΦ:S−1:∂σΦ+∂ξΦ

ξ̇ < 0

Θ =

 −L : α− ∂TΦ S−1:∂σΦ
∂σΦ:S−1:∂σΦ−∂ξΦ

ξ̇ > 0

−L : α− ∂TΦ S−1:∂σΦ
∂σΦ:S−1:∂σΦ+∂ξΦ

ξ̇ < 0

(16)

5
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2.2. Thermomechanical Coupled Model of SMAs

For the constitutive model, we consider the coupling effect between inelasticity and transient
thermal conduction of SMAs. The necessity of including transient thermal conduction in the
framework is related to the accuracy of the finite element model used in the optimization process.
First, the phenomenological model (cf. Equation 14) is a transient, path-dependent functional of the
derivatives of temperature with respect to time. As a result, a steady-heat model, which assumes
the derivative of temperature is uniformly zero, is not suitable for our framework. Moreover, in the
context of multimaterial design for nonlinear thermal actuation, the cooling and heating rate of the
different materials may vary significantly for each material candidate due to their different thermal
conductivity. Such differences will influence the transient thermal behavior of the materials.

The governing equations of the model are stated in Equation 17, with the natural boundary
conditions specified in Figure 1.

Global level : Force equilibrium
∫

Ω ε(δd)σ(d, ξ)dΩ−
∫

Γp
δdpdΓp = 0 ∀ δd

Thermal conduction
∫

Ω[1
2 5 T : K : 5T − (Q− ρc∂T∂t )T ]dΩ
−
∫

Γq
qTdΓq = 0

Local level : KKT− condition Φ ≤ 0 in Ω

ξ̇Φ = 0 in Ω

Consistency Φ̇ = ∂Φ
∂σ : σ̇ + ∂Φ

∂T : Ṫ + ∂Φ
∂ξ : ξ̇ in Ω

Flow rule ε̇t = Λξ̇

(17)

where d and T refer to the displacement and temperature fields, respectively. K = diag(κx, κy, κz)
is the conduction matrix and κ refers to the thermal conductivity. Q is the heat source/sink. The
parameter t refers to the time step and the symbol 5 represents the gradient operator.

Figure 1: Example representation of the boundary conditions of the coupled thermomechanical problem

On the boundary of the design domain Ω, ΓD and ΓT are Dirichlet boundary conditions referring
to region with fixed displacement vector and temperature fields, respectively. ΓN is the Neumann
boundary of isolated thermal conduction. The symbols p and q represent Neumann boundary
conditions of prescribed force and heat flux, respectively. Note that the thermomechanical prob-
lem contains one-directional coupling. The temperature field T is solely updated via solving the
transient thermal conduction problem, which does not depend on the solution of the nonlinear
mechanical problem used to update the displacement field d.

2.3. Finite Element Analysis

Discretizing the system via a Backward-Euler scheme with ∂T n
∂t = T n−T n−1

∆t , Equation 17 is
further expressed through the finite element method as three sets of residuals R, G and H.

Global level :Rn+1 =
∧
el

[
∑
GΩ

(wBT
GΩσGΩ,n+1)−

∑
GΓ

($pGΓ,n+1NGΓ)]detJ = 0

6
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Gn+1 = (Kc +
C

∆t
)T n+1 −

C

∆t
T n − qcn+1 = 0 (18)

Local level :


Hn+1 =


Hξ = Φ(σn+1, Tn+1, ξn+1)

Hεt = εtn + Λ(ξn+1 − ξn)− εtn+1

HS = Sn + ∆S(ξn+1 − ξn)− Sn+1

Hσ = S−1
n+1 : [εn+1 −α(Tn+1 − T0)− εtn+1]− σn+1

 = 0 ξ̇ 6= 0

Hn+1 = S−1 : [(εn+1 −α(Tn+1 − T0)− εt)− σn+1 = 0 ξ̇ = 0

where the global force residual R and thermal loading residual G contain the nodal information
of displacement and temperature fields at global degrees of freedom, respectively. The symbol∧

denotes the assembly operator for assembling global matrices, and its corresponding subscript

el, refers to one discrete element. The superscript T refers to the transpose operator. The local
residual H defines the constitutive relationship of SMAs at the local level, i.e. Gauss points. Note
that the total strain εn+1 can be expressed as Bdn+1. In addition, the thermal coefficient matrices
and loading vector in Equation 18 are defined as

Kc =
∧
el

∑
GΩ

wBT
GΩKBGΩdetJ

C =
∧
el

∑
GΩ

wNT
GΩρcNGΩdetJ

qcn+1 =
∧
el

(
∑
GΩ

wQGΩ,n+1NGΩ +
∑
GΓ

$qGΓ,n+1NGΓ)detJ

(19)

In Equations 18 and 19, GΩ, GΓ are Gauss points for integration on the design domain Ω and
the boundary Γ, respectively, with w and $ serving as the corresponding Gaussian weights. detJ
is the determinant of the Jacobian matrix. The matrix B contains the spatial derivatives of the
shape functions, N . The subscripts of B and N indicate evaluation at the corresponding Gauss
points. For the purpose of sensitivity analysis, we further define K̃c = Kc + C

∆t and C̃ = C
∆t .

Then, we uncouple the nonlinear system shown in Equation 18 through a global-local approach,

R(u,ν(u,ω),ω) = 0

H(u,ν(u,ω),ω) = 0

G(ω) = 0

(20)

This system can be solved numerically via a nested Newton-Raphson iteration (return mapping
algorithm [42] or a cross-iterative Newton-Raphson procedure [43]. The tensors u, ν and ω are
thermomechanical state variables. Specifically, the local mechanical state variables ν = [ξ, εt, S,σ],
is a function of the global mechanical state variable u = [F c,df ], and the global thermal state
variable ω = [T d, qp]. Furthermore, each state variable is partitioned based upon which degrees of
freedom are free and fixed. The symbol df is the displacement vector at free degrees of mechanical
freedom and F c is the unknown applied force at constrained degrees of mechanical freedom. Also,
T d refers to the temperature vector at free degrees of thermal freedom, and qp stands for the un-
known heat flux at prescribed degrees of thermal freedom. Figure 2 contains flowcharts illustrating
the flow of data during the finite element analysis procedure at time step n+ 1 based on the return
mapping (left) and parallel projection (right) algorithms.
In Figure 2, k and l are iteration counters of the Newton-Raphson procedures. Note that the
transient thermal conduction problem at each time step is directly solved without an additional

7
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(a) Return Mapping (b) Parallel Projection

Figure 2: Flow charts illustrating the return mapping and parallel projection algorithms for solving inelasticity
analysis coupled with transient thermal conduction

iteration procedure. Note that the time step ∆t is implicitly related to the temperature increment
from Tn to Tn+1. Note that due to that the constitutive law of SMAs is highly nonlinear, the
unconditional stability of the backward Euler method is not always preserved. The choice of ∆t
should lead to a temperature increment with an absolute value generally no larger than 0.6K, which
is around the maximum allowable temperature step for both the return mapping and parallel pro-
jection algorithms [43]. For numerical details of the aforementioned algorithms, please refer to the
authors’ previous research [43].

Figure 3 shows samples of phase diagrams of SMAs, which depict the variation of the transfor-
mation temperature and transformation stress of SMAs based on different thermal and mechanical
conditions. With the proposed thermomechanical coupled model, the complex physical interaction
between the transformation stress and transformation temperature is intrinsically embedded into
the finite element analysis.

2.4. General Topology Optimization Problem

In this paper, we seek an optimization framework that enables us to tailor and maximally
leverage the unique behaviors of SMAs in a multi-material design. To begin, we give the definition
of a general topology optimization problem. For a design domain Ξ subject to Dirichlet ΓDrt
and Neumann boundary ΓNeu conditions (Figure 4), topology optimization provides an optimal
distribution of materials Ω via interpreting the multi-physics performance of the structure. Such a
problem is solved by minimizing an objective functional fobj , while satisfying a set of equality and
inequality constraints ci and cj (Equation 21). Here, η is the design variable used to represent the
presence of material at a given point within the design domain.

8
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(a) Transformation temperature under
TWSME

(b) Transformation stress under supere-
lasticity

Figure 3: Example phase diagrams

Figure 4: Illustration of topology optimization

min
∂Ω

fobj(η,Ω)

s.t ci(η) = 0, i = 1, 2, ..., ni

cj(η) ≥ 0, j = 1, 2, ..., nj

(21)

2.5. Multi-material Design Parameterization

Herein, we select the multi-material structure to be composed by SMAs for actuation, and
inactive materials for programming the direction of actuation. Note that the inactive materials do
not have transformation behaviors but only behave thermoelastically. To optimize the transient
thermomechanial behavior of the structure, we characterize the design materials by their Young’s
modulus E, thermal conductivity κ and mass density ρ. For example, the effective Young’s modulus
of a given element, i, is evaluated as a weighted sum of the actual Young’s modulus, E(j), of the
candidate materials. 2

Ei =
m∑
j=1

µ
(j)
i E(j)

κi =
m∑
j=1

µ
(j)
i κ(j)

ρi =
m∑
j=1

µ
(j)
i ρ(j)

(22)

2For simplicity, we assume that all the material candidates have the same thermal expansion coefficient(α), specific
heat (c) and Poisson ratio v.

9
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where j refers to the numbering of the material candidates.
For a topology optimization problem considering two materials candidates (solid plus void), the

Solid Isotropic Material with Penalisation (SIMP) method is adopted [44]]. As shown in Equation
23, the SIMP method has only one design parameter r ∈ [0, 1] to represent the relative volume
fraction µ of each material candidate within a given element.

µ(1) = rP

µ(2) = (1− r)P
(23)

where P is the penalization constant used to avoid intermediate material states.
In terms of the multi-material case, the material distribution is represented parametrically

using the Shape Functions with Penalization (SFP) method [45, 46]. In the case of four material
candidates for example, the relative volume fraction of a given candidate material, µ(j), j = 1, 2, 3, 4,
can be expressed as 24.

µ(1) = rP1 r
P
2

µ(2) = rP1 (1− r2)P

µ(3) = (1− r1)P rP2

µ(4) = (1− r1)P (1− r2)P

(24)

where r1, r2 ∈ [0, 1] are independent design parameters, and P is the penalization factor. Figure
5 presents the activation functions of the SFP method in the r1 − r2 plane, in the case of P = 1.
When P > 1, the activation functions will become convex and disfavor intermediate values. It can
be observed that the SFP method is similar to the SIMP method in that a higher penalty value
will encourage the removal of intermediate density (i.e. hybrid) materials within an element. Note
also that for the four-material case, the SFP method saves computation cost by requiring only two
design parameters per element, while the SIMP method requires at least three design parameters
[45].

Figure 5: Activation functions of the SFP method for a four-material problem, P = 1.

Now, we discuss the evaluation of transformation status of the SMA-based multi-material struc-
ture at the elemental level. We compute the global internal force using the following relationship

fint =
∧
el

∑
G

σG =
∧
el

∑
G

(σelas
G + σinelas

G ) (25)
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=
∧
el

∑
G


m∑

j=1,j 6=k
µ

(j)
el E

(j) : C : [εG −α(T − T0)] + µ
(k)
el E

∗(k)
G : C : [εG −α(T − T0)− εt]


where k is the index of the SMA material, and E∗ = 1/S is the evolving Young’s modulus of
the SMA at each Gauss point G due to transformation. Noticeably, we consider that the stress
tensor of a multimaterial SMA-based structure is composed of the elastic stress σelas caused by
the inactive materials and the inelastic stress σinelas caused by SMAs. Consequently, we only
evaluate the transformation effects of the SMA material.3 Note that the constitutive law of
the inactive materials does not require to be calculated in a local residual form separately, i.e.
Hn = E : C : (εn −α(Tn − T0))− σn = 0. Instead, the constitutive law can be directly incorpo-
rated into the global residual, such that

Rn =
∧
el

[
∑
GΩ

(wBT
GΩσGΩ,n)−

∑
GΓ

($pGΓ,nNGΓ)]detJ (26)

=
∧
el

{
∑
GΩ

[wBT
GΩ(σelas

GΩ,n + σinelas
GΩ,n)]−

∑
GΓ

($pGΓ,nNGΓ)}detJ

=
∧
el

{
∑
GΩ

[wBT
GΩ(

m∑
j=1,j 6=k

µ
(j)
el E

(j) : C : [εG −α(T − T0)] + σinelas
GΩ,n)]−

∑
GΓ

($pGΓ,nNGΓ)}detJ

2.6. Sensitivity Analysis

2.6.1. The Transient Adjoint Sensitivity Formulation

Building upon on the authors’ previous work on sensitivity analysis of SMA-based structures
with a uniform temperature distribution [38], we again use a transient, path-dependent adjoint
method. Considering the coupled transient thermal conduction problem, the global thermal residual
G must be included into Lagrangian functional in addition to the mechanical residuals R and H,

Π =fint(uNt(r),νNt(r), r) +

Nt∑
n=1

λT
nRn(un(r),un−1(r),νn(r),νn−1(r),ωn(r),ωn−1(r), r)

+

Nt∑
n=1

(∧
el

∑
G

γT
G,nHG,n(un(r),un−1(r),νG,n(r),νG,n−1(r),ωn(r),ωn−1(r), r)

)

+

Nt∑
n=1

ψT
nGn(un(r),un−1(r),νn(r),νn−1(r),ωn(r),ωn−1(r), r)

(27)

where fint represents an arbitrary function of interest (either an objective or constraint functions).
In Equation 27, the coefficient vectors λ, γ and ψ are free parameters whose values can be

chosen to maximize computational expediency. Note that all of the local adjoint vectors γ are
evaluated at the Gauss points, since the local constitutive law H is evaluated at Gauss points.

3Note that one may also treat the multi-material composite within each element as a whole unit having transfor-
mation behavior, i.e. fint =

∧
el

∑
G

∑m
j=1 µ

(j)
el E

(j)[εG − α(T − T0) − εt]. However, extremely strong assumptions
on physical properties of the composite are needed so that the transformation temperature of the composite unit is
identical to that of the SMA, or the transformation temperature of the composite follows a proposed interpolation
rule. One also needs to make the assumption that the transformation behaviors of the physical properties of the
composites still follow Equation 7. To avoid such strong assumptions, we suggest decomposing the stress tensor and
evaluating the transformation behavior only for the portion of each element that contains SMAs.
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Since all residuals R, H and G are zero vectors, the equality dfint
dr = dΠ

dr holds for all values of the
vectors λ, γ and ψ. Taking the first derivative of Π with respect to the design variable vector r
and applying the chain rule, we obtain

dΠ

dr
=
∂fint
∂r

+

Nt∑
n+1

(
∂fint
∂un

dun
dr

+
∑
G

∂fint
∂νG,n

dνG,n
dr

+
∂fint
∂ωn

dωn
dr

)
+

Nt∑
n=1

λT
n

[
∂Rn

∂r
+
∂Rn

∂un

dun
dr

+

∂Rn

∂un−1

dun−1

dr
+
∧
el

∑
G

(
∂Rn

∂νG,n

dνG,n
dr

+
∂Rn

∂νG,n−1

dνG,n−1

dr

)
+
∂Rn

∂ωn

dωn
dr

+
∂Rn

∂ωn−1

dωn−1

dr

]

+

Nt∑
n=1

[∧
el

∑
G

γT
G,n

(
∂HG,n

∂r
+
∂HG,n

∂un

dun
dr

+
∂HG,n

∂un−1

dun−1

dr
+
∂HG,n

∂νG,n

dνG,n
dr

(28)

+
∂HG,n

∂νG,n−1

dνG,n−1

dr
+
∂HG,n

∂ωn

dωn
dr

+
∂HG,n

∂ωn−1

dωn−1

dr

)]
+

Nt∑
n=1

ψT
n

[
∂Gn

∂r
+
∂Gn

∂un

dun
dr

+

∂Gn

∂un−1

dun−1

dr
+
∧
el

∑
G

(
∂Gn

∂νG,n

dνG,n
dr

+
∂Gn

∂νG,n−1

dνG,n−1

dr

)
+
∂Gn

∂ωn

dωn
dr

+
∂Gn

∂ωn−1

dωn−1

dr

]

where d
dr corresponds to implicit derivatives and ∂

∂r are explicit derivatives. Note that the implicit

derivatives ( d
dr ), capture implicit dependence of the state variables u, ν and ω with respect to

the design variables due to the solution of the residual equations. For this reason, the implicit
derivatives are expensive to compute. Hence, the adjoint formulation is used to find a solution for
the free parameters, λn, γG,n and ψn, that causes all implicit terms at every transient time step n
to vanish. Hence, the sum of all terms containing implicit derivatives are set to zero in the following
system of equations.

n = Nt :


( ∂fint∂uNt

+ λT
Nt

∂RNt
∂uNt

+
∧
el

∑
G

γT
G,Nt

∂HG,Nt
∂uNt

+ψT
Nt

∂GNt
∂uNt

)
duNt

dr = 0

( ∂fint
∂νG,Nt

+ λT
Nt

∂RNt
∂νG,Nt

+ γT
G,Nt

∂HG,Nt
∂νG,Nt

+ψT
Nt

∂GNt
∂νG,Nt

)
dνG,Nt

dr = 0, ∀ G

( ∂fint∂ωNt
+ λT

Nt

∂RNt
∂ωNt

+
∧
el

∑
G

γT
G,Nt

∂HG,Nt
∂ωNt

+ψT
Nt

∂GNt
∂ωNt

)
dωNt

dr = 0

(29)

n < Nt :



[
λT
n
∂Rn
∂un

+ λT
n+1

∂Rn+1

∂un
+
∧
el

∑
G

(γT
G,n

∂HG,n

∂un
+ γT

G,n+1
∂HG,n+1

∂un
) +ψT

n
∂Gn
∂un

+ψT
n+1

∂Gn+1

∂un

]
dun
dr = 0

(λT
n
∂Rn
∂νG,n

+ λT
n+1

∂Rn+1

∂νG,n
+ γT

G,n
∂HG,n

∂νG,n
+ γT

G,n+1
∂HG,n+1

∂νG,n
+ψT

n
∂Gn
∂νG,n

+ψT
n+1

∂Gn+1

∂νG,n
)

dνG,n

dr = 0, ∀ G[
λT
n
∂Rn
∂ωn

+ λT
n+1

∂Rn+1

∂ωn
+
∧
el

∑
G

(γT
G,n

∂HG,n

∂ωn
+ γT

G,n+1
∂HG,n+1

∂ωn
) +ψT

n
∂Gn
∂ωn

+ψT
n+1

∂Gn+1

∂ωn

]
dωn
dr = 0

The solution of the above adjoint equations is given in Equation 30, yielding the adjoint vectors.
Note that the adjoint vectors of the global thermal residual G are independent of the mechanical
state variables u and ν, due to the one-directional coupling within governing equations, i.e. Equa-
tion 18. Hence the terms ∂Gn

∂un
, ∂Gn+1

∂un
, ∂Gn
∂νn

and ∂Gn+1

∂νn
are intrinsically zero. Consequently, the

adjoint vectors λn and γG,n only rely on the mechanical residuals R and H. Hence, the two adjoint
vectors have the same formulas as those obtained for sensitivity analysis of SMAs with uniform
temperature distribution [38]. Meanwhile, the adjoint vector ψn, which is related to transient ther-

mal conduction, is influenced by all of the residuals R, H and G. Note also that ∂Rn
∂ωn

and ∂Rn+1

∂ωn
are zero for SMAs, since the coupling between the mechanical and thermal behaviors of SMAs is de-
termined solely via the local residual H, i.e. Hn = Hn(ωn,ωn−1). However, ∂Rn∂ωn

remains nonzero
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for inactive materials (see Equation 26 ), due to the presence of the thermal expansion term in the
global residual R.

n = Nt :



λNt = −

[
∂RNt

∂uNt
−
∧
el

∑
G

∂RNt

∂νG,Nt

(
∂HG,Nt

∂νG,Nt

)−1 ∂HG,Nt

∂uNt

]−T

·

[
∂fint
∂uNt

−
∧
el

∑
G

∂fint
∂νG,Nt

(
∂HG,Nt

∂νG,Nt

)−1 ∂HG,Nt

∂uNt

]T

γG,Nt = −
(
∂HG,Nt

∂νG,Nt

)−T( ∂fint
∂νG,Nt

+ λT
Nt

∂RNt

∂νG,Nt

)T

, ∀ G

ψNt = −
(
∂GNt

∂ωNt

)−T
(
∂fint
∂ωNt

+ λT
Nt

∂RNt

∂ωNt
+
∧
el

∑
G

γT
G,Nt

∂HG,Nt

∂ωNt

)T

(30)

n < Nt :



λn = −

[
∂Rn

∂un
−
∧
el

∑
G

∂Rn

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂un

]−T

·

{
λT
n+1

[
∂Rn+1

∂un
−
∧
el

∑
G

∂Rn+1

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂un

]

+
∧
el

∑
G

γT
G,n+1

[
∂HG,n+1

∂un
− ∂Hn+1

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂un

]}T

γG,n = −
(
∂HG,n

∂νG,n

)−T(
λT
n

∂Rn

∂νG,n
+ λT

n+1

∂Rn+1

∂νG,n
+ γT

G,n+1

∂HG,n+1

∂νG,n

)T

, ∀ G

ψn = −
(
∂Gn

∂ωn

)−T
[
λT
n

∂Rn

∂ωn
+
∧
el

∑
G

(
γT
n

∂HG,n

∂ωn
+ γT

n+1

∂HG,n+1

∂ωn

)
+ψT

n+1

∂Gn+1

∂ωn

]T

Since the adjoint vectors, λNt , γNt and ψNt at the end time step Nt are dependent on the

tangent matrices of the residuals and the explicit derivatives ∂fint
∂uNt

, ∂fint
∂νG,Nt

and ∂fint
∂ωG,Nt

, we begin

the sensitivity analysis by solving for the last adjoint vector in the time sequence starting from
the final time step. For example, every other adjoint vector λn corresponding to the time step
n < Nt, depends on the adjoint vector that follows it in the time sequence, λn+1. Then the solved
global mechanical adjoint vector λn, together with γn+1 and λn+1 are used to solve for the local
adjoint vectors γn. Finally, the global thermal adjoint vector ψn is calculated with the solved
global mechanical adjoint vector λn and local adjoint vector γn, as well as information (λn+1 and
ψn+1) from the later time step n + 1. Therefore, we solve for the remaining adjoint vectors in
reverse chronological order until all adjoint responses are computed. Once all implicit terms have
been eliminated using the above adjoint solution, the total sensitivity expression reduces to the
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following.

dΠ

dr
=
∂fint
∂r

+

Nt∑
n=1

(
λT
n

∂Rn

∂r
+
∧
el

∑
G

γT
G,n

∂HG,n

∂r
+ψT

n

∂Gn

∂r

)

+

[
λT

1

(
∂R1

∂u0

du0

dr
+
∧
el

∑
G

∂R1

∂νG,0

dνG,0
dr

)

+
∧
el

∑
G

γT
G,1

(
∂HG,1

∂u0

du0

dr
+
∂HG,1

∂νG,0

dνG,0
dr

+
∂HG,1

∂ω0

dω0

dr

)
+ψT

1

∂G1

∂ω0

dω0

dr

] (31)

Note that to solve for the sensitivity, the full history of global state variables (i.e. displacement
field d and temperature field T ) and local state variables (i.e. stress tensor σ, martensite volume
fraction ξ, transformation strain tensor εt, the compliance modulus S) are required. However,
tangent matrices such as ∂Rn/∂un, ∂Rn/∂νn and etc. are only related to the current step, or one
later step, or one future step; and can be iteratively stored and updated.

2.6.2. Analytical Solution of the Adjoint Vectors

For brevity, we present only the derivation of the adjoint parameters related to the active
materials in this section. To compute the adjoint vectors λn, γn and ψn, thirteen tangent matri-
ces, ∂Rn/∂un, ∂Rn/∂νn, ∂Hn/∂un, ∂Hn/∂νn, ∂Hn/∂ωn, ∂Gn/∂ωn, ∂Rn+1/∂un, ∂Rn+1/∂νn,
∂Hn+1/∂un, ∂Hn+1/∂νn, ∂Hn+1/∂ωn and ∂Gn+1/∂ωn in Equation 30 need to be evaluated.
Note that the aforementioned matrices have different formulas depending on whether the SMAs
behave elastically or inelastically. If the material exhibits inelastic behavior in the current time
step, the local residual H should refer to the case where ξ̇ 6= 0 in Equation 18, and the form of the
corresponding matrices should be as follows.

∂Rn

∂un
=

 ∂Rcn
∂F cn

∂Rcn
∂dcn

∂Rfn
∂F fn

∂Rfn
∂dfn

 =

[
−Icc 0cf

0fc 0ff

]
∂Rel,n

∂νG,n
=
[

024×8 wBTdetJ
]

∂HG,n

∂uel,n
=

[
08×cel, 08×fel

06×cel S−1
n : Bfel

]
(32)

∂HG,n

∂νG,n
=


∂Hn

Φ
∂ξn

∂Hn
Φ

∂εtn

∂Hn
Φ

∂Sn

∂Hn
Φ

∂σn
∂Hn

εt

∂ξn

∂Hn
εt

∂εtn

∂Hn
εt

∂Sn

∂Hn
εt

∂σn
∂Hn

ξ

∂ξn

∂Hn
ξ

∂εtn

∂Hn
ξ

∂Sn

∂Hn
ξ

∂σn
∂Hn

σ
∂ξn

∂Hn
σ

∂εtn

∂Hn
σ

∂Sn

∂Hn
σ

∂σn



=


∂ξΦn 01×6 0 ∂σΦT

n

Λn −I6×6 06×1 ∂σΛn : ∆ξn
∆S 01×6 −I1×1 01×6

06×1 −S−1
n −S−1

n : σn −I6×6


∂HG,n

∂ωel,n
=

 01×pel ∂TΦn : Ndel

07×pel 07×del

06×pel −S−1
n : α : Ndel



14

14            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

∂Gn

∂ωn
=

[
∂Gp

n

∂qpn

∂Gp
n

∂T pn
∂Gin

n

∂qinn

∂Gin
n

∂T inn

]
=

[
−Ipp K̃c

pd

0dp K̃c
dd

]

Again, the superscripts f and c refer to entries within the vectors that correspond to free and
constrained degrees of freedom for the mechanical problem, while the superscripts d and p refer to
entries within the vector that correspond to free and prescribed degrees of freedom for the thermal
conduction problem, respectively. If the local material is still in an elastic state (ξ̇ = 0), the
derivative of the residual for the current time step with respect to the current state variables will
have a much simpler form.

∂Rn

∂un
=

[
−Icc 0cf

0fc 0ff

]
∂Rel,n

∂νG,n
=
[
wBTdetJ

]
∂Hn

∂uel,n
=
[

06×cel S−1
n : Bfel

]
(33)

∂HG,n

∂νG,n
=
[
−I6×6

]
∂HG,n

∂ωel,n
=
[

06×pel −S−1
n : α : Ndel

]
∂Gn

∂ωn
=

[
−Ipp K̃c

pd

0dp K̃c
dd

]

Next, we discuss the tangent matrices at the n+ 1 time step, shown as below.

∂Rn+1

∂un
= 0

∂Rn+1

∂νn
= 0

∂HG,n+1

∂uel,n
=


[

08×cel 08×fel

06×cel 06×fel

]
ξ̇n+1 6= 0[

014×cel 014×fel

]
ξ̇n+1 = 0

(34)

∂HG,n+1

∂νn
=



[
06×6

]
ξ̇n = 0, ξ̇n+1 = 0[

08×6

06×6

]
ξ̇n = 0, ξ̇n+1 6= 0[

06×8 06×6

]
ξ̇n 6= 0, ξ̇n+1 = 0

0 01×6 0 01×6

−Λn+1 I6×6 06×1 06×6

−∆S 01×6 I1×1 01×6

06×1 06×6 06×1 06×6

 ξ̇n 6= 0, ξ̇n+1 6= 0

∂HG,n+1

∂ωel,n
=

{ [
014×pel 014×del

]
ξ̇n+1 6= 0[

06×pel 06×del

]
ξ̇n+1 = 0

∂Gn+1

∂ωn
=

[
0pp −C̃

pd

0dp −C̃
dd

]
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Directly solving the algebraic equations for the adjoint vectors is computationally expensive.
Moreover, computing the inverse of the matrix ∂Hn/∂νn may result in ill-conditioned matrices, due
to the large magnitude of the off-diagonal entries of the compliance matrix S and the compliance
modulus S in ∂Hn/∂νn. Our previous work [38] has provided the analytical solution for evaluating
the matrix, in the case where we adopt a flow rule that is independent of the stress tensor σ. Herein,
we discuss another case in which the flow rule is a function of stress and ∂Λ is nonzero, as shown
in Equation 35. Note that when SMAs behave elastically, i.e. ξ̇ = 0, no transformation occurs
and thus ∂Λ does not exist (Equation 11). Note also that K =

∧
el

∑
G

BT
GLnB

T
GdetJ refers to the

consistent tangent stiffness matrix in the mechanical problem. In addition, we provide a detailed
derivation of the aforementioned analytical solution in the Appendix A. There we also show that
the consistent tangent stiffness matrix K and the consistent tangent stiffness modulus Ln in the
sensitivity analysis are the same as those discussed in the finite element analysis [43].

∂Rn

∂un
−
∧
el

∑
G

∂Rn

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=

[
−Icc Kcf

0cf Kff

]
∂Rel,n

∂νG,n

(
∂HG,n

∂νG,n

)−1

= wBT
[
−ζ

−1
n :∂σΦn

Q Ln Ln : C−1 : σn −Ln : Sn

]
detJ

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=


∂σΦn

T:ζ−1
n

Q
Λ̃n:∂σΦn

T

Q : ζ−1
n + Sn : ζ−1

n − I6×6

∆S:∂σΦn
T

Q : ζ−1
n

−Ln

B (35)

∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1

=

[
A8×8 B8×6

06×8 06×6

]
∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=

 01×6

Λ̃n−Λn+1

Q : ∂σΦn
T : ζ−1

n + Sn : ζ−1
n − I6×6

07×6

B
where

A =

 01×1 01×7

Λ̃n−Λn+1

Q

01×1

a7×7


a =

[
(−Sn − Λ̃n−Λn+1

Q : ∂σΦn
T) : ζ−1

n (− Λ̃n−Λn+1

Q : ∂σΦn
T : ζ−1

n : Sn + Sn : ζ−1
n : ∂σΛn : ∆ξn) : Sn

−1 : σn
01×6 −I1×1

]

B =

 01×6

Λ̃n−Λn+1

Q : ∂σΦn
T : ζ−1

n + Sn : ζ−1
n − I6×6

01×6

 : Sn (36)

Λ̃n = Sn : ζ−1
n : (Λn − ∂σΛn : ∆ξn : S−1

n : σn : ∆S)

In Table 1, we provide a pseudo-code of the algorithmic implementation for evaluating the
sensitivities of SMA-based structure considering thermomechanical coupling effects.

I. Calculate adjoint vectors
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Case A. n = Nt
1. Let n = Nt

2. Mechanical Global Level

1) Let −
∧
el

∑
G

∂RNt
∂νG,Nt

(
∂HG,Nt
∂νG,Nt

)−1 ∂HG,Nt
∂uel,Nt

= KNt , calculate ∂fint
∂uNt

2) Loop over elements, calculate ∂fint
∂νNt

(
∂HNt
∂νG,Nt

)−1 ∂HNt
∂uel,Nt

, ∂fint
∂νG,Nt

(
∂HNt
∂νG,Nt

)−1
and

∂RNt
∂νG,Nt

(
∂HNt
∂νG,Nt

)−1

3) Assemble to get global ∂fint
∂νNt

(
∂HNt
∂νNt

)−1 ∂HNt
∂uNt

4) Calculate λNt
3. Mechanical Local Level

1) Loop over elements, calculate γG,Nt for each Gauss point

4. Thermal Global Level

1) Calculate
∂GNt
∂ωNt

= ∂Gn
∂ωn

, ∂Gn+1

∂ωn
and ∂fint

∂ωNt

2) Loop over elements, calculate γT
G,Nt

∂HG,Nt
∂ωNt

at each Gauss point and λT
el

∂RNt
∂ωel,Nt

for each element

3) Assemble to get global
∧
el

∑
G

γT
G,Nt

∂HG,Nt
∂ωNt

and λT ∂RNt
∂ωNt

, calculate ψNt

4) Let n = n− 1, go to Case B.
Case B. n < Nt

1. Mechanical Global Level

1) Let −
∧
el

∑
G

∂Rn
∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
= Kn, calculate ∂Rn+1

∂un

2) Loop over elements, calculate ∂Rn+1

∂νn

(
∂Hn
∂νn

)−1
∂Hn
∂un

, ∂Hn+1

∂un
, ∂Hn+1

∂νn

(
∂Hn
∂νn

)−1
∂Hn
∂un

∂Rn
∂νn

(
∂Hn
∂νn

)−1
, ∂Rn+1

∂νn

(
∂Hn
∂νn

)−1
, ∂Hn+1

∂νn

(
∂Hn
∂νn

)−1

3) Assemble ∂Rn+1

∂νn

(
∂Hn
∂νn

)−1
∂Hn
∂un

, ∂Hn+1

∂un
,∂Hn+1

∂νn

(
∂Hn
∂νn

)−1
∂Hn
∂un

4) Calculate λn
2. Mechanical Local Level

1) Loop over elements, calculate γG,n for each Gauss point

3. Thermal Global Level

1) Calculate ψT
n+1

∂Gn+1

∂ωn

2) Loop over elements, calculate γT
G,n

∂HG,n

∂ωn
, γT

G,n+1
∂HG,n+1

∂ωn
at each Gauss point, and

λT
el

∂Rn
∂ωel,n

for each element

3) Assemble to get global
∧
el

∑
G

(γT
G,n

∂HG,n

∂ωn
+ γT

G,n+1
∂HG,n+1

∂ωn
) and λT ∂Rn

∂ωn
, calculate ψn

4) Check termination condition
If n > 0

Let n = n− 1, go back to Case B.
else

go to step II.

II. Calculate sensitivity

Calculate sensitivities according to equation 31.

Table 1: Implementation procedure for adjoint sensitivity analysis of SMAs
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Based on our numerical tests, 2D finite element analysis of a bi-material mesh, which contains
SMAs and an inactive material with 1000 quadrilateral elements, takes approximately 2 seconds to
converge for one time step. These tests were implemented via the Matlab software on a platform
that uses an Intel i5 CPU and contains 16GB of ROM. For the adjoint sensitivity analysis, it
takes approximately one-third of the time required by the finite element analysis. Note that the
sensitivity analysis requires storing the full history of state and adjoint variables. This feature
makes the algorithm memory-intensive. However, calculating the adjoint vectors at time step n
only requires the tangent of matrices from the current and subsequent time steps (i.e. ∂Hn+1/∂νn
and ∂Hn/∂νn. Therefore, to save memory, this information can be updated only as needed without
storing the full history. In practice, we generally choose time steps that lead to a 0.1K − 0.5K
temperature increment in the simulation. Based on our numerical tests, such time steps provide
a suitable balance between the stability of the algorithm and the memory requirements for the
storage of the internal state variables. Note that reducing the time step size by half could lead to
a ten-fold increase in the storage requirement, as the full history of the internal state variables and
the adjoint vectors are required to be stored.

Figure 6 shows the relative error e = |ANA−FD|/|FD| between the sensitivity calculated from
a finite difference approach (i.e. FD) and the analytical approach proposed in this work (i.e. ANA).
The results indicate a good match between the two approaches. In addition, we can also observe
that our sensitivity formulations enable the same level of precision when evaluating derivatives of
inelastic behaviors of SMAs (i.e. 0 < ξ < 1) evaluating derivatives of linear thermoelastic behaviors
(i.e. ξ = 0 or ξ = 1). Details of the sensitivity data are presented in Appendix B from Table B.4
to Table B.9.
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Figure 6: Relative error between sensitivity calculated by finite differences and analytical solutions

For the optimization algorithm, we choose the standard method of moving asymptotes (MMA)
[47]. This method allows for solving convex approximations of the nonlinear optimization problems.

3. Example Problems

Herein, we use the quadratic hardening function [5] to model the hardening process due to phase
transformation of SMAs,

Quadratic : f(ξ) =

{
1
2ρb

Mξ2 + (µ1 + µ2)ξ (ξ̇ > 0)
1
2ρb

Aξ2 + (µ1 − µ2)ξ (ξ̇ < 0)
(37)
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Austenite (A) Martensite (M)

Young’s modulus E (Pa) 32.5× 109 23.0× 109

Thermal expansion coefficient α (K−1) 22.0× 10−6 22.0× 10−6

Specific heat c (J/kgK) 400.0 400.0
Transformation start temperature (K) 241 226
Transformation end temperature (K) 290 194
Highest transformation strain H 0.033
Material density ρ (kg/m3) 6500
Reference temperature T0 (K) 300
Entropy difference ρ∆s0 (J/m3K) −11.55× 104

Thermal conductivity κ (W/(m·K) 18
Melting point (K) 1523 ∼ 1553

Table 2: Material properties of NiTi50

where bM , bA, µ1 and µ2, are constants that depend on the intrinsic material properties [5]. Table
2 contains the material properties of nickel titanium (NiTi50) shape-memory alloy that we use for
simulation throughout the paper.

Figure 7a shows 1D TWSME of the quadratic hardening process under a uniform temperature
cycle, i.e. variation of transformation strain (εt) and martensite volume fraction (ξ) in terms of
temperature. Figure 7b presents the key evolution relationships of superelasticity under a uniformly
distributed stress cycle, i.e. variation of transformation stress and martensite volume fraction in
terms of stress. However, nonuniform temperature field and nonuniform stress field, which are
common in real applications, will make the hardening process, i.e. the curves in Figure 7, more
nonlinear. The nonuniform environmental conditions will gradually change the transformation
temperature and stress during the transformation process (see Figure 3). This phenomenon is
common throughout this paper and will be discussed in later results.

Note also that the martensite volume fraction and transformation strain are monotonic functions
throughout the transformation process, which can be observed from Figure 7. Therefore, in the
process of topology optimization, we suggest simulating the structure for a short period of time
steps when most of SMA material begins its transformation (i.e. inelastic behaviors dominate the
thermomechanical responses of the structure) to increase computational efficiency. Another reason
for the suggestion lies in the fact that nonuniform thermomechanical conditions will change the
start and end points of the transformation temperature and transformation stress ranges, as we
have discussed in Figure 3. As a result, it would be difficult to assume the exact transformation
end temperature for a local integration point (i.e. Gauss point), based on the material properties.
Hence, it is necessary to simulate over a duration of time during which the transformation is most
likely to occur. In addition, we apply a constant external load for the design that ensures a requisite
internal stress. This step is necessary for the flow rule of the forward transformation used in this
paper (see Equation 11), which requires a nonzero stress condition to activate the transformation
process. Nevertheless, the proposed framework is generic and applicable to other flow rules that
may work with zero-stress conditions.

Table 3 presents the material properties of the inactive material candidates used in this paper.
For physical properties having a range of values, we adopt its lower bound in designing topology
optimization problems. As noted earlier, we assume that all the inactive materials have the same
thermal expansion coefficient(α), specific heat (c) and Poisson’ ratio v as the NiTi50 for simplicity.
We also assume SAC305 and BC have the same material density as NiTi50, as the relative difference
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(b) Superelasticity

Figure 7: Simulation of the TWSME and pseudoelasticity in NiTi50 [5, 48]

of material density of SAC305 and BC with NiTi50 are within 5% and 15%, respectively.

Material Void SAC305 BC

Young’s modulus E (Pa) 1 51× 109 131× 109

Thermal conductivity κ (W/(m·K)) 0.5 59 105

Material density ρ (kg/m3) 1.15 6500 6500

Melting point (K) - 490 ∼ 491 1138 ∼ 1228

Table 3: Material properties of inactive materials [48]

3.1. Bi-material Active Bending Structure

In this section, we present the design of an active bending cantilevered beam structure composed
of SMA and an inactive material BC. Properties of the two materials are stated in Table 2 and 3.
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The optimization problem is stated in Equation 38

min fobj = −|LTd|,
s.t VSMA ≤ 0.3

(38)

where we want to maximize the vertical displacement at point A triggered by the TWSME, while
constraining the use of SMAs to be 30% of the volume of whole structure. The mechanical and
thermal boundary conditions of the design domain are shown in Figure 8.

(a) Mechanical boundary conditions (b) Thermal boundary conditions

Figure 8: Boundary conditions for topology optimization of an active bending beam

For the mechanical boundary condition, a constant uniform surface traction f = 9× 107N/m is
applied when cooling the beam. Simulation tests show that the transformation start temperature
of the martensite phase (Mσ

s ) is increased to 250K under the applied constant load. Note that
Mσ
s can be different for SMAs at different locations of the structure due to the nonuniform stress

and the nonuniform temperature field. Thus, we set the possible highest transformation start
temperature 250K as the initial and the reference temperature field of the beam. The cooling
process is discretized into 25 time steps. The imposed heat flux is set to increase incrementally
to from zero to q = 2.5 × 103 w/m. In addition, we apply a heat sink throughout the domain of
the structure, which represents the convective heat exchange between the structure’s 2D surface in
the xy-plane with the outside environment. The heat sink is set to decrease to from zero to Q =
−1.25× 105 w/m2 during the cooling process. The temperature T̄ at the left side of the bar is held
at 250K during the cooling process. The volumetric heat generation and heat flux are intended
to mimic the process of immersing the structure into cold liquid or air. Water or air cooling and
heating are a common approaches to activate SMAs and are suitable for building our framework.
The process through which heat is conducted to the SMA structure through its surface in the
xy-plane is mathematically similar to 2D volumetric heat generation.

The mesh used for simulation contains 4000 quadrilateral elements. Each element’s effective
Young’s modulus, thermal conductivity and material density are calculated via Equation 22 and 23.
The penalization factor P is chosen to be 3, and we implement a linear density filter with a radius
equivalent to twice of the minimum distance between the centers of two neighbor elements. The
material distribution of the optimization results, in terms of Young’s modulus, is shown in Figure
9, where the blue region represents the SMA material and the red region represents the inactive
material. B,C,D are three points of interest in observing the variation of inelastic behaviors in
the structure. In this result, we observe a sawtooth-like pattern at the material interface. It is
inconclusive whether this pattern is a mathematical artifact (such as a local minimum) or whether
it confers improved mechanical performance. However, through our numerical tests, we notice that
if the stiffness of the two material candidates are relatively close in value (i.e. NiTi50 and Ti64),
the sawtooth-like layouts will become smoother, suggesting that this pattern enables the structure
to leverage the differences in material properties.

Figure 10 shows the corresponding convergence plot of the topology optimization.
Figure 11 presents the topology optimization results using coarse meshes. Compared with the

fine-mesh design (i.e. Figure 9), we observe that the general material layouts are the same despite
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Figure 9: Material distribution of the optimal bi-material bending beam
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Figure 10: Convergence history during the optimization of the bi-material bending beam

the different mesh sizes. This result indicates that density filter is functioning as intended and the
solution is mesh-independent.

(a) Mesh size = 250 (b) Mesh size = 1000

Figure 11: Mesh-dependency of the bending design

After obtaining the optimal design, we cool the structure for 200 time steps to observe long-
term behaviors of the structure caused by the TWSME. Figure 12 shows the deformation, the
corresponding temperature field, and the tip displace placement in the vertical direction at two
sample time steps. Figure 13 gives details of the displacement history and quantifies the respective
contributions from the thermoelastic and inelastic behaviors. In Figure 13, displacement due to
different thermomechanical behaviors are calculated in accordance with the strain relationship
shown in Equation 9. “Total”, ”Thermoelastic” and ”Transformation” refer to the displacement
related to the total strain (ε), the displacement related to the thermoelastic strain (εe + εth) and
the displacement related to the transformation strain (εt), respectively.

From Figure 13, we observe a plateau of the tip displacement in the vertical direction during
the first 20 time steps. This result indicates that the structural deformation is dominated by the
thermoelastic behaviours of the beam at the early cooling stage, thus the beam only has minimum
bending deformation due to thermoelastic expansion. As the beam is gradually cooled down, the
transformation displacement dominates the tip displacement. Hence, we notice much larger bending
of the beam caused by the TWSME, which cannot be achieved by pure thermoelastic deformation.

Figure 14 shows the nodal temperature, Gauss-point martensite volume fraction (ξ), Gaussian-
point horizontal transformation strain (εtx) and Gaussian-point Young’s modulus of SMA (1/S)
varied in time. We evaluate these relationships at mesh nodes and Gauss points that are closest to

22

22            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

(a) t = 20 (b) t = 200

Figure 12: Deformation of the bimaterial beam during the cooling process
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Figure 13: Contribution of different thermomechanical behaviors to the tip displacement of point A in the y-direction

points B, C and D (cf. Figure 9). Evolution of the martensite volume fraction, vertical transfor-
mation strain and Young’s modulus of SMAs reveal that the forward transformation of the three
points happens sequentially. Hence the quadratic hardening process becomes more nonlinear than
the benchmark results illustrated in Figure 7. In addition, we observe that an inefficient cooling
process with a minimum temperature change will not trigger the transformation (i.e. point C).

In short, the optimal design of the bi-material beam successfully leverages the inelastic behaviors
of SMAs. The optimization algorithm captures the sequential transformation process at different
locations, to maximize the overall inelastic performance of the structure. As a result, we obtain an
optimal design that shows favorable active bending behaviors mainly due to the TWSME.

3.2. Multi-material Gripper Design

In this section, we present the design of a self-actuating SMA-based grippers having both
superelasticity and TWSME. The gripper is composed of multiple material candidates, including
SMA, SAC305 and BC, plus a void material candidate. Properties of the three material candidates
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Figure 14: Variation of state variables as a function of time computed at three points of interest within the structure

(plus void) are stated in Table 2 and 3. The optimization problem is stated in Equation 39

min fobj = −|ksdAy |,
s.t din ≤ 8× 10−4m

g =

 Ne∑
i=1

 4∑
j=2

(µ
(j)
i )η

T
(i)
Nt

T ∗(j)

β


1/β

≤ 1

M =

∑Ne
i=1

∑4
j=2 µ

(j)
i E(j)

Emax ·Ne
≤ 0.15

(39)

where ks is the spring stiffness of the output spring and we want to maximize the vertical output
force of point A triggered by the TWSME and superelasticity (note that we assume symmetry so
we design and simulate only the top half of the mechanism). Here din is the initial (instantaneous)
displacement, which is constrained to 8 × 10−4m. This constraint is used to avoid an overly
compliant design. An overly compliant structure is more susceptible to large deformations and
may cause the finite element model to diverge. It may also lead to a non-convergent design,
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which is characterized by the presence of intermediate materials and blurry material interfaces.
Hence, a stiffness constraint is used to mitigate these issues. The function g is a material-specific
temperature constraint used to prevent melting or viscoelastic creep within the material under the
applied thermal environment, where T ∗(j) is a material-specific temperature limit for each design
material (excluding void). In addition, we defined a constraint representing the relative mass of
the structure M . Here the function M quantifies the amount of non-void material in the structure
as a fraction of to maximum possible material usage. Within this equation, material with larger
stiffness (represented by E), is penalized with increased relative mass. In this problem, the relative
mass limit is set to be 0.15 to save the usage of solid materials especially SMAs to save cost. The
mechanical and thermal boundary conditions of the design domain are shown in Figure 15.

(a) Mechanical boundary conditions (b) Thermal boundary conditions

Figure 15: Boundary conditions for topology optimization of a multimaterial gripper

On the left side of the design domain, a input force F in increasing from zero to 1.25 × 108N
is applied to guarantee the activation of both TWSME and superelasticity. Two springs, with
stiffness ks = 5N/m, are attached to the tips of the gripper. The structure is subjected to an
initial temperature field of 230K, with a reference temperature of 240K. To trigger the TWSME,
a cooling process over 20 time steps is implemented. The outward heat flux of the cooling process
is set to increase incrementally to q = 2.5× 103 w/m, with the heat sink decreasing to a maximum
of Q = −1.25 × 105 w/m2. The temperature T̄ at the left side of the domain remains at 230K
during the cooling process. In addition, the parameter β in the thermal performance constraint g,
c.f. Equation 40, is chosen to be 10. This parameter is used to obtain a smooth approximation of
the maximum elemental temperature. The material-specific temperature constraint T ∗ is set to be
17K for SAC305, 227.6K for SMA, and 304K for BC, which are 10% (SAC305) and 20% (SMA,
BC) of each material’s melting point, cf. Table 2 and 3. The set of material-specific constraints
are based on precept that material creeping point is generally 10 to 30% of the melting point of
the materials (measured in the Kelvin scale) [48]. Note that we choose a lower threshold 10% of
the melting point for the creep constraint of SAC305, since SAC305 has a tendency toward brittle
fracture due to thermal shock [49]. The penalization factor η in the thermal performance constraint
g is selected to be 0.8 to relax the intermediate density at the boundary of the non-void design
domain. More details about sensitivity analysis of the thermal constraint g can be found in our
previous work [46].

During the topology optimization, we use a mesh of 5888 quadrilateral elements for finite ele-
ment analysis. The effective Young’s modulus and thermal conductivity are calculated via Equation
22 and 24. The penalization factor P is chosen to be 3, and the radius of the density filter is twice of
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the minimum distance between the centers of two neighbor elements. The optimization results are
shown in Figure 16, where again B,C,D are three points of interest in sampling the inelastic behav-
iors of SMAs across the structure. Note that though we have three material candidates plus void,
the optimizer only chooses SMA, BC and void to construct the design. The result demonstrates
the effectiveness of the material-specific thermal performance constraint. Since the temperature
constraint of SAC305 (17K) is much lower than the possible transformation temperature of SMAs,
SAC305 is omitted from the design. Note that the material distribution is mainly determined by
the material-specific temperature constraint and possible stress concentration, and also influenced
by the thermal boundary conditions. Figure 17 shows the corresponding convergence plots of the
topology optimization.

Figure 16: Optimized material distribution of a multi-material gripper
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Figure 17: Convergence history of the multi-material gripper optimization

Figure 18 shows the deformation of the structure at two example time steps during the cooling
process. Figure 19 shows the contribution of different thermomechanical behaviors to the displace-
ment of point A in the vertical direction. From the results, we again observe that the transformation
displacement help to increase the total tip displacement. Hence, the deformation is a result of both
TWSME and superelasticity.

Figure 20 shows the variation of essential state variables of the SMA material related to the
TWSME, evaluated at mesh nodes and Gauss points that are closest to sample points B, C and
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(a) t = 0 (b) t = 20

Figure 18: Example deformation of the gripper during the cooling process
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Figure 19: Contribution of different thermomechanical behaviors to the tip displacement of point A in y direction

D (see Figure 16). Again, evolution of the martensite volume fraction, horizontal transformation
strain and stress-strain indicate the sequential transformation behaviors of the three points. In
addition, the hysteresis of the stress-strain relationship also indicates the presence of superelasticity
and TWSME.

3.3. The Impact of Considering Transient Heat Conduction

In this section, we discuss the impact of considering transient heat conduction in the proposed
design framework. For the purpose of comparison, we investigate a multimaterial gripper design
considering transient thermal conduction, and we compare it with a similar design produced while
assuming a spatially uniform, time-varying temperature distribution. We still use the three material
candidates (plus void), whose properties are stated in Tables 2 and 3. In addition, the same design
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Figure 20: Evolution of the SMA state variables at three points in the structure

domain presented in Figure 15 is adopted and the optimization problem is stated in Equation 40

min fobj = −|LTd|,
s.t din < 2× 10−2m

M =

∑Ne
i=1

∑4
j=2 µ

(j)
i E(j)

Emax ·Ne
≤ 0.12

(40)

where we want to maximize the vertical deformation of point A triggered by both the TWSME
and superelasticity (note that we assume symmetry so we design and simulate only the top half
of the mechanism). Similar to the previous problem, we have an initial displacement constraint of
2× 10−2m to avoid an overly compliant design. In addition, the relative mass of the structure M ,
cf. Equation 40, is set to be 0.12.

On the left side of the design domain, an input force increasing from 0 to F in = 1.25 × 108N
is applied in 20 time steps with a constant increment. Two springs, with stiffness ks = 5N/m, are
attached to the tips of the gripper. The structure is subjected to an initial temperature field of
230K, with a reference temperature of 240K.

Again, we use a mesh of 5888 quadrilateral elements for the finite element analysis. For the
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design considering transient thermal conduction, the effective physical properties are calculated via
Equations 22 and 24. To trigger the TWMSE, a cooling process over 20 time steps is implemented.
The outward heat flux of the cooling process is set to increase incrementally to q = 2.5× 103 w/m,
with the heat sink decreasing to a maximum of Q = −1.25 × 105 w/m2. For the case assuming
uniform temperature distribution, we assume the temperature field is uniform across the design
domain and the whole design domain is cooled with a uniform temperature increment of −0.1K.
The effective physical properties representing the presence of material candidates are the Young’s
modulus and material density, which also follow Equation 22. For both problems, the temperature
T̄ at the left side of the domain remains at 230K during the cooling process and the penalization
factor P is chosen to be 3. A density filter with a radius twice of the minimum distance between
the centers of two neighboring elements is applied. The optimization results are shown in Figure
21

(a) Design considering transient heat
conduction

(b) Design assuming uniform tempera-
ture distribution

Figure 21: Gripper designs considering different thermal conduction models

After obtaining the results, we simulate both designs for 20 time steps considering transient
thermal conduction, where the boundary conditions for both cases exactly follow the those used
for the topology design considering transient thermal conduction. Figure 22 compares the con-
tribution of different thermomechanical behaviors under different design strategies to the vertical
displacement of point A. From the results, we can observe that the transformation displacement has
been improved by 186% by considering transient thermal conduction in the design. This suggests
that considering transient thermal conduction not only improves design performance, but is also
more application-oriented in considering influence of multiple material candidates on the overall
thermomechanical behavior of SMA-based structures.

4. Manufacturability and Possible Applications

The designs presented above can be fabricated through the technique of multi-metal 3D print-
ing. Manufacturing metal structures via 3D printing, especially considering multimaterial designs,
is an emerging but promising research domain [50]. Possible 3D printing approaches to realize
the proposed design framework could be laser powder bed fusion (LPBF) and pressure-assisted
sintering, equipped with multimaterial decomposition capabilities [50, 51].

With the proposed framework, one can expand the capability and thermal performance of SMA-
based smart structures to achieve better heating efficiency and bandwidth of the designed mecha-
nisms. In addition, the proposed framework could be extended to many other application scenarios.
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(a) Considering transient heat conduc-
tion
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(b) Assuming uniform temperature dis-
tribution

Figure 22: Boundary conditions for topology optimization of a multimaterial gripper

First, constraints considering active control and manufacturing requirements could be incorporated
into the proposed design framework. Such incorporation could lead to fabrication-compatible SMA-
based smart structures with advanced programmability and less complexity. Second, the proposed
framework could be adopted in designing a number of compliant mechanisms which rely heavily
on SMAs, including smart wings, self-folding and origami mechanisms, intelligent biomedical and
drug-delivery devices, and soft robotics [3].

5. Conclusions

This paper presents a novel computational design framework for SMA-based active structures
with programmable morphology. The merits of the paper can be summarized in the following four
aspects. 1) The proposed framework enables the selection of multiple design materials. It also takes
into account the coupling effect between transient thermal conduction problem and the inelastic
responses of SMAs. 2) The proposed topology optimization algorithm is able to capture changes
in the transformation starting and ending criteria based on environmental conditions, which makes
the design free from assumptions of fixed transformation criteria. 3) We implement a novel SIMP-
like scheme (cf. Equation 24) to interpolate physical properties of the material candidates. 4) We
present examples that incorporate thermal constraints in the design of SMA-based smart structures.
Such constraints can be expanded to deal with various types of concerns related to the thermal
performance of SMA-based structures. Case studies show that our design algorithm is applicable
to both the TWSME and superelastic behaviors. Specifically, the proposed framework is able to
create active bending structure triggered by the TWSME, and a gripping mechanism that utilizes
both superelasticity and TWSME. Ultimately, the framework provide a viable approach to program
SMA-based structures considering both their thermal and mechanical performances.
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Replication of results

Detailed descriptions of the algorithms used to generate all results are provided throughout the
paper. Additionally, we have included all relevant material properties, and all algorithm parameters.
Copies of the code used to generate the results will be made available upon request.

Appendix A. Analytical Derivation of Adjoint Vectors

In this appendix, we present the derivation of an analytical formulation for computing the
tangent matrices described in Equation 35. The motivation behind deriving these formulas is to
avoid directly factorizing the ill-conditioned matrix ∂Hn/∂νn. For conciseness, we focus on the
case where the behaviors of the SMA in the current time step and next step are inelastic. To start,
we first represent the inverse of ∂HG,n/∂νG,n using the Schur complement [52].(

∂Hn

∂νG,n

)−1

=

[
(A + BC)−1 (A + BC)−1B
C(A + BC)−1 −I + C(A + BC)−1B

]
(A.1)

with

∂Hn

∂νG,n
=


∂ξΦn 01×6 01×1

Λn −I6×6 06×1

∆S 01×6 −I1×1

∂σnΦT
n

∂σΛn : ∆ξn
01×6

06×1 − S−1
n − S−1

n : σn −I6×6

 =

[
A B
C D

]
(A.2)

Note that the analytical solution in which we directly factorize ∂Hn/∂νn is not recommended for
calculating the sensitivities. This analytical solution will not change the ill-conditioned character-
istics of the matrix, since (A + BC) is nearly singular due to the fact that the large value S−1 still
appears on the lower triangle. Similarly, ∂Hn+1/∂νn can be defined in block matrix form as

∂Hn+1

∂νG,n
=


01×1 01×6 01×1

−Λn+1 I6×6 06×1

−∆S 01×6 I1×1

01×6

06×6

01×6

06×1 06×6 06×1 06×6

 =

[
Ã B̃
C̃ D̃

]
(A.3)

The five aforementioned matrices then can be represented in a new form shown below.

−
∧
el

∑
G

∂Rn

∂νG,n

(
∂Hn

∂νG,n

)−1 ∂HG,n

∂uel,n
=
∧
el

∑
G

wBT
G[I − C(A + BC)−1B]GS

−1
G,nBGdetJG

∂Rel,n

∂νG,n

(
∂HG,n

∂νG,n

)−1

= wBT
[
C(A + BC)−1 −I + C(A + BC)−1B

]
detJ(

∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=

[
(A + BC)−1B

−I + C(A + BC)−1B

]
B (A.4)

∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1

=

[
Ã(A + BC)−1 Ã(A + BC)−1B

(C̃ + C)(A + BC)−1 −I + (C̃ + C)(A + BC)−1B

]
∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,G,n

)−1 ∂Hn

∂uel,n
=
[
Ã(A + BC)−1B− I

]
S−1
n B
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It can be observed that the key to obtaining an accurate solution of the tangent matrices lies in
solving the inverse of (A + BC). Here we use the Schur formulation again to calculate the inverse
of the matrix.

(A + BC)−1 =

[
(A′ − B′D′−1C′)−1 −(A′ − B′D′−1C′)−1B′D′−1

−D′−1C′(A′ − B′D′−1C′)−1 D′−1 + D′−1C′(A′ − B′D′−1C′)−1B′D′−1

]
(A.5)

with

A + BC =

 ∂ξΦn −∂σΦn : S−1
n −∂σΦn : S−1

n : σn
Λn

∆S
−(Sn + ∂σΛn : ∆ξn) : S−1

n −∂σΛn : ∆ξn : S−1
n : σn

01×6 −I1×1

 =

[
A′ B′
C′ D′

]
(A.6)

Here, D′−1 and (A′ − B′D′−1C′)−1 need to be solved. Note that it can be easily proven that
∂σΛ belongs to the null space of σ, i.e. ∂σΛ:σ = 0, hence ∂σΛ is not invertible. However,
(Sn + ∂σΛn : ∆ξn) is nonsingular. Defining ζ = Sn + ∂σΛn : ∆ξn, D′−1 can be solved using the
Schur form as

D′−1
=

[
−Sn : ζ−1

n Sn : ζ−1
n : ∂σΛn : ∆ξn : S−1

n : σn
01×6 −I1×1

]
(A.7)

With the above information, one can obtain that

B′D′−1
=
[
∂σΦn : ζ−1

n ∂σΦn : ζ−1
n : S−1

n : S−1
n : σn

]
D′−1C′ =

[
−Sn : ζ−1

n : (Λn − ∂σΛn : ∆ξn : S−1
n : σn : ∆S)

−∆S

]
=

[
−Λ̃n

−∆S

]
(A.8)

Then (A′ − B′D′−1C′)−1 is a scalar and can be calculated as Q = −∂σΦn : ζ−1
n : ∂σΦn + ∂ξΦn.

Hence the issue of the ill-conditioned matrix has been solved, and we are able to accurately evaluate
the five matrices as follows.

−
∧
el

∑
G

∂Rn

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=
∧
el

∑
G

wBT
G(ζ−1

G,n −
ζ−1
G,n : ∂σΦG,n ⊗ ζ−1

G,n : ∂σΦG,n

∂σΦG,n : ζ−1
G,n : ∂σΦG,n − ∂ξΦG,n

)BGdetJG

=
∧
el

∑
G

wBT
GLG,nBGdetJG

∂Rel,n

∂νG,n

(
∂HG,n

∂νG,n

)−1

= wBT
[
−ζ

−1
n :∂σΦn

Q Ln Ln : C−1 : σn −Ln : Sn

]
detJ

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=


∂σΦn

T:ζ−1
n

Q
Λ̃n:∂σΦn

T

Q : ζ−1
n + Sn : ζ−1

n − I6×6

∆S:∂σΦn
T

Q : ζ−1
n

−Ln

B (A.9)

∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1

=

[
A8×8 B8×6

06×8 06×6

]
∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=

 01×6

Λ̃n−Λn+1

Q : ∂σΦn
T : ζ−1

n + Sn : ζ−1
n − I6×6

07×6

B
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where

A =

 01×1 01×7

Λ̃n−Λn+1

Q

01×1

a7×7


a =

[
(−Sn − Λ̃n−Λn+1

Q : ∂σΦn
T) : ζ−1

n (− Λ̃n−Λn+1

Q : ∂σΦn
T : ζ−1

n : Sn + Sn : ζ−1
n : ∂σΛn : ∆ξn) : Sn

−1 : σn
01×6 −I1×1

]

B =

 01×6

Λ̃n−Λn+1

Q : ∂σΦn
T : ζ−1

n + Sn : ζ−1
n − I6×6

01×6

 : Sn (A.10)

Λ̃n = Sn : ζ−1
n : (Λn − ∂σΛn : ∆ξn : S−1

n : σn : ∆S)

When ∂σΛ = 0 and ζ = S, the above analytical solutions degenerate as follows

−
∧
el

∑
G

∂Rn

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=
∧
el

∑
G

wBT
G(S−1

G,n −
S−1

G,n : ∂σΦG,n ⊗ S−1
G,n : ∂σΦG,n

∂σΦG,n : S−1
G,n : ∂σΦG,n − ∂ξΦG,n

)BGdetJG

=
∧
el

∑
G

wBT
GLG,nBGdetJG

∂Rel,n

∂νG,n

(
∂HG,n

∂νG,n

)−1

= wBT
[
S−1
n :∂σΦn
Q Ln Ln : C−1 : σn −Ln : Sn

]
detJ

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=


∂σΦn

T:S−1
n

Q Λn

∆S

:∂σΦn
T:S−1

n

Q

−Ln

B (A.11)

∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1

=

[
A8×8 B8×6

06×8 06×6

]
∂HG,n+1

∂νG,n

(
∂HG,n

∂νG,n

)−1 ∂HG,n

∂uel,n
=

 01×6(
Λn−Λn+1

Q : ∂σΦn
T : S−1

n

)
07×6

B
where

A =

 01×1 01×7
Λn−Λn+1

Q

01×1
−I7×7 − Λn−Λn+1

Q : ∂σΦn
T :

[
S−1
n S−1

n : σn
01×6 01×1

] 
B =

 01×6
Λn−Λn+1

Q : ∂σΦn
T

01×6


(A.12)

Note that the first equation in A.9 and A.11 can be recognized as the formulas for calculating the
tangent stiffness matrix, shown in our work [43]. Therefore, in addition to improving the accuracy of
the sensitivity evaluation, we are able to conserve computational resources by re-using the tangent
stiffness matrix already computed during the finite element analysis.
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Appendix B. Comparison between Analytical and Finite Difference Sensitivity Re-
sults

This section validates the adjoint sensitivity formulation by comparing the analytical results
with finite differences. Figures B.23 and B.24 show the geometry and boundary conditions of the
test case used to calculate the sensitivities in Figure 6. Note that in the following tables from Table
B.4 to Table B.9, t refers to the time step; T and ξ refer to the temperature and martensite volume
fraction evaluated at the node and Gauss point that are closest to point A, which is associated with
the function of interest fint. ANA and FD refer to the analytical and finite difference sensitivity
values, respectively.

Appendix B.1. Simulating Two-Way shape Memory Effects

In the first case study we evaluate the sensitivity of the TWSME of a bi-material beam contain-
ing SMA and BC, whose properties are shown in Tables 2 and 3. The material volume fraction r
(cf. Equation 23) is uniformly 0.9 across the structure. The boundary conditions are shown below,

(a) Mechanical boundary conditions (b) Thermal boundary conditions

Figure B.23: Boundary conditions for topology optimization of an active bending beam

where a constant uniform surface traction f = 9× 107N/m is applied when cooling the beam.
The initial and reference temperature of the beam is set to be 250K. In addition, temperature T̄
(cf. Figure B.23b) is fixed at 250K during the cooling process. A heat flux increment dq = 1× 102

w/m per time step, and a heat sink increment dQ = −5 × 103 w/m2 per time step are applied
to cool the beam. The function of interest fint for sensitivity analysis (cf. Equation 31) is the
vertical displacement at point A of the structure, i.e. fint = dAy . We calculate the sensitivity of
the displacement function under different mesh sizes and at different transformation stages. The
numerical results are shown in Tables B.4 to B.6.

Value Mesh size = 4

t 10 50 100 150 170
T 249.6703199013790 243.4108661937840 226.6989523019790 201.2498689099600 188.6956589995470
ξ 0.0384723828813 0.1257331959114 0.3982380590771 0.8550579710711 1.0000000000000
ANA 0.0000742568780 0.0001051655000 0.0001464651100 0.0000242208480 -0.0009959078800
FD 0.0000742567390 0.0001051634100 0.0001464646900 0.0000242194900 -0.0009959392900

Table B.4: Sensitivity analysis when simulating TWSME, mesh size = 4

Value Mesh size = 40

t 10 50 100 120 150
T 249.6788491606810 243.9646147270020 229.9261144923640 222.6420380278410 210.1483510818130
ξ 0.0309148427582 0.1490178737523 0.4948131346680 0.7080530497616 1.0000000000000
ANA -0.0021818071000 -0.0042628965000 -0.0110670770000 -0.0150625560000 -0.0223159050000
FD -0.0021817387000 -0.0042625358000 -0.0110673980000 -0.0150628300000 -0.0223164680000

Table B.5: Sensitivity analysis when simulating TWSME, mesh size = 40
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Value Mesh size = 250

t 10 50 100 120 150
T 249.7196231887840 244.2936841576180 230.3772679138910 222.8385017443770 208.9956210947780
ξ 0.0375538860204 0.1510085675313 0.5003307443236 0.6994255087386 0.9882110911420
ANA -0.0024394635000 -0.0052037250000 -0.0112467850000 -0.0144570200000 -0.0199850280000
FD -0.0024393834000 -0.0052038126000 -0.0112464380000 -0.0144576100000 -0.0199847610000

Table B.6: Sensitivity analysis when simulating TWSME, mesh size = 250

Appendix B.2. Simulating both Two-Way Shape Memory Effects and Superelasticity

The second case study looks at sensitivity analysis of a single-material SMA structure under-
going both TWSME and superelasticity. The material volume fraction r (cf. Equation 23) is
uniformly 0.5 across the structure. The boundary conditions are shown in Figure B.24. An input
force increment dF in = 1×106N per time step is applied to the structure to trigger superelasticity.
Meanwhile, the structure is cooled with a heat flux increment dq = 1×102 w/m per time step, and
a heat sink increment dQ = −5× 103 w/m2 per time step. The initial and reference temperature,
as well as the fixed temperature T̄ for the thermal conduction problem (cf. Figure B.24b) are set to
be 230K. The function of interest fint for sensitivity analysis (cf. Equation 31) is the mechanical
advantage at point A, i.e. fint = −F out/F in. We calculate the sensitivity of the structure, under
different mesh sizes and at different transformation stages. The numerical results are shown in
Tables B.7 to B.9

(a) Mechanical boundary condi-
tions

(b) Thermal boundary condi-
tions

Figure B.24: Boundary conditions for topology optimization of a force inverter

Value Mesh size = 8

t 10 20 30 40 50
T 229.9817293845000 229.1483928459300 227.9873025880070 225.5063204155040 222.0468478279230
ξ 0.0049697403094 0.4315482261951 0.7293862033743 0.9729830835475 1.0000000000000
ANA 0.0069215218000 0.0188556060000 0.0653826710000 0.0623086300000 0.1883299100000
FD 0.0069213230000 0.0188556530000 0.0653823980000 0.0623083090000 0.1883240900000

Table B.7: Sensitivity analysis when simulating both TWSME and superelasticity, mesh size = 8
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Value Mesh size = 100

t 2 4 6 8 10
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ANA 0.0264168500000 0.0689047670000 0.0677846290000 0.0684547530000 0.0680963820000
FD 0.0264168300000 0.0689046710000 0.0677832850000 0.0684545220000 0.0680994980000

Table B.8: Sensitivity analysis when simulating both TWSME and superelasticity, mesh size = 100

Value Mesh size = 400
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