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Abstract

The goal of this research was to gain a better understanding of the effects of a variable
current profile on the dynamics of long cables. Full-scale experimental results have shown
motion amplitude modulation with time and depth. Research was aimed at the development
of a numerical medel capable of predicting motions of this type given a shear current
excitation. The model is based on solution of the taut string equation using a Green’s
function approach with infinite cable boundary conditions. In the method, excitation forces
are correlated over discrete regions and phase shifts between regions are accomplished with
random phase angles.

A spectral analysis of full-scale experimental data was conducted to determine the motion
characteristics of a towed cable in a sheared current. Homomorphic processing and the
so-called "envelope approach” were implemented to aid in the determination of the
strumming and beating frequencies.

The numerical results obtained supported the experimental data as amplitude modulation
was prevalent at discrete points through iime. A dependence on correlation length was
shown while damping also proved to be of importance. Homomorphic processing and the
envelope approach both proved to be effective tools as beating and strumming frequencies
were more readily identified with their use.

Thesis Supervisor: Professor Michael S. Triantafyllou
Title: Associate Professor of Ocean Engineering
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Chapter 1

Introduction

The study of flow induced vibrations of long cables has been the subject of much
interest with the advent of deep ocean towed systems, such as the ARGO/JASON system
developed at the Woods Hole Oceanographic Institute. The basic problem is that without a
thorough understanding of the cable dynamics involved, it is very difficult to accurately
predict the location of the system, relative to the ship, once the system is launched. The
complexity stems from the fact that the exciting forces are predominantly due to nonlinear
drag. The cable motions transverse to the incident flow are of great importance as they tend
to increase the magnitude of the drag force by increasing the appareni projected area of the

cable.

As a viscous fluid passes over a bluff body, the flow will begin to separate or detach
from the body. This separation gives rise to the formation of vortices which, in turn, create
lift forces which act transverse to the flow. The magnitude and frequency of these forces
are related to the component of the incoming flow velocity normal to the body. Therefore,
when considering a velocity profile which varies with depth, i.e. a shear current, the
excitation will vary in magnitude and frequency along the length of the cable. In addition,
the phase of the lift forces are also subject to change along the cable. The net effect on

transverse cable motions is the subject of this research.

Laboratory experiments do not provide a good basis for investigating problems of
this nature. The reason is that it is virtually impossible to adequately model both the flow
environment and the cable system when dealing with the cable length to diameter ratios

desired. The large ratios that are required yield extremely small experimental diameters
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(typically less than one mm). Therefore, numerical predictions and full-scale experiments

are sought. Both avenues have been persued in this research.

Previous full-scale experimental results have shown motion amplitude modulation
with time and depth [2]. This research was aimed at developing a numerical model capable
of predicting how a long cable responds to a shear current  .citation. The model is based
on a Green’s function solution of the damped taut string equation for a constant tension
cable of infinite length. In addition to the thecretical studies, a spectral analysis of full-
scale experimental data was conducted to determine the nature of the measured cable
vibrations. Homomorphic processing and the so-called "envelope approach" were

implemented to aid in the determination of the vibration frequencies.
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Chapter 2

Fundamentals of Flow Induced Vibrations

Flow induced vibrations have been studied extensively in the past. However, the
complexity of the problem has left many questions still unai.,wered. The phenomenon of
vortex shedding gives rise to high frequency lift forces which act transverse to the flow. If
the structure is allowed to move, the resulting transverse motions can act to increase the
in-line drag force by a factor of up to 2.3 times the stationary structure values [9].

Structural failure due to fatigue is also a concern.

2.1 Vortices

In order to study the nature of flow induced cable vibrations it is necessary to
undersiand the excitation forces. When a real fluid flows over a body the viscous effects
are confined to a small region surrounding the body. This region is called the boundary
layer. The flow velocity increases across the boundary layer, with particles on the body
surface remaining motionless. The net effect is that the fluid particles will begin to acquire
some vorticity. As the fluid flows past the body, an inverse pressure gradient will act to
decelerate the flow. For bluff bodies, such as circular cylinders, this deceleration is so
strong that there is not enough time to spread the vorticity out, causing the flow to separate
from the body. This results in the shedding of vortices. The vortex shedding process is

strongly dependent on the Reynolds number, where R, is defined as

R, = -2 (2.1




U, = normal velocity component
D = cable diameter

v = kinematic viscosity

In turbulent flow there is a greater intermixing between fluid layers. This enables the
vorticity to be spread more readily, causing the separation point to move further
downstream on the body. Numerous sources show the flow patterns for various Reynolds
numbers and should be consulted if additional information is sought (see [8]). Reynolds
numbers greater than 10 but below 3x105 are typical of the problem under investigation.

For very low Reynolds numbers, less than 40, symmetric attached vortices are
formed behind the body. However, as the Reynolds numbser is increased, instabilities in the
flow cause an asymmetric shedding pattern to develop. The resulting flow pattern is shown

in figure 2.1. This pattern is known as the Von Karman vortex street.

Figure 2-1: Example of vortex shedding behind a circular cylinder

The frequency of vortex shedding is given by the Strouhal relation. The Strouhal
number S, is defined as
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S = 2.2)

where

[, = vortex shedding frequency

Two vortices, one from each side, are shed during one period. Experiments show
that for a wide range of Reynolds numbers the Strouhal number remains constant at a value

of roughly 0.2 [8].

2.2 Lift and Drag Forces

As the vortices are shed from the body, the higher velocities they create give rise to a
transverse pressure gradient. This pressure gradient results in a lift force which acts in the
direction away from the last shed vortex. The frequency of this lift force is the same as the
shedding frequency. Therefore, the Strouhal relation can be used to determine the

excitation frequency from the fluid velocity.

The magnitude of the lift force is a function of the square of the normal component of
the free stream velocity and is Reynolds number dependent. Experiments have shown that
the magnitude of the lift force decays as the cable displaces a significant distance from its
mean position, dropping to zero when the motion amplitude is greater than one
diameter [8]. Therefore, the transverse motions are self limited in nature. The surface
roughness can also effect the lift force. Higher lift coefficients are associated with

roughened cylinders [8].

In addition to the lift forces, in-line drag forces ai twice the shedding frequency

occur. However the magnitude of the resulting oscillations are relatively small [8]. More
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importantly, the transverse cable motions act to increase the apparent projected area of the
cable, thus increasing the total in-line drag force. An estimate of the maximum drag force
that may occur can be computed using a projected area that is increased by twice the motion
amplitude [3]. This does not mean, however, that such a large drag force is always realized

(frequency, for example, has a significant effect).

2.3 Correlation Length

The spanwise correlation of the vortex sheet can greatly affect the structural
response. The spanwise correlation describes how well the phase angles of the lift forces
are correlated along the length of the cable. Partial spanwise correlation leads to variations
in both the frequency and amplitude of the lift forces [8]. Experiments have shown that for
stationary cylinders, the correlation length is Reynolds number dependeat and is typically
on the order of one diameter for the problem of interest. However, lateral vibrations of the
cable will serve to correlate the phase of the shedding [8]. This is true for even small
transverse oscillations. To what extent the correlation length is increased is not fully
known. In addition, littie or no information is available on correlation lengths in shear

flows.

As the Strouhal frequency approaches the natural frequency of the system, the
characteristics of the shedding process begin to change and the shedding frequency will
collapse or "lock in" to the structural frequency. That is, the resonance vibrations begin to
control the shedding process thereby exciting the structure at its own natural frequency.
This phenomenon, sometimes called lock in, can encompass *25 to 30% of the vortex
shedding frequency and can cause large amplitude motions [8]. Koopman has shown that

lock in can cause an increasc in the correlation length [5]. Why this occurs is not fully
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known. The low-order natural frequencies for long cables are typically much lower than
the vortex shedding frequencies, so it is unlikely that the long cables will experience lock in
over their entire length. However, it is possible to excite higher-order modes, causing lock

in to occur over some localized distance.
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Chapter 3

Investigation of Shear Current Loading

The effect of a nonuniform flow profile has not received nearly the attention given to
the constant velocity case. This is unfortunate as actual ocean current profiles typically
exhibit some shear. Even if the profile is uniform, shear-type excitation will occur if the

cable is curved, as the component of the velocity normal to the cable will vary with depth.

The characteristics of the lift force will change considerably along the cabie if the
velocity profile is nonuniform. The first consequence is to change the magnitude of the
force which, as stated earlier, is a function of the square of the inflow velocity. Secondly,
the frequency of the excitation, given by the Strouhal relation, will also change with depth.

The net effect on the cable motions is the subject of this research.

3.1 Previous Research

The research that has been conducted in the past has mainly been concerned with
determining how shear currents affect the in-line drag. Experimental studies were
conducted by Kim [4] to determine the shear effects on the vibration response of long
cables. The data obtained showed that the average drag coefficient was lower than for a
cable subjected to a uniform current, and was only 25% higher than for a stationary

cylinder.

It is well known that the superposition of two traveling waves of different frequencies
serves to create both slow and fast variations in displacement. The slowly varying

amplitude modulation, sometimes cailed the beat phenomena, is demonstrated in many
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fields of science. Engbretsen [2] demonstrated numerically that the effect of the frequency
variation in shear flows is to create displacement amplitude modulations at discrete points
along the cable. The magnitude of the resulting motions were shown to be smaller than for
similar cases with a uniform current. Engbretsen’s findings were supported by his analysis
of full-scale experimental data, as the time records he presented demonstrated motion

amplitude modulation which was directly attributable to a shear current excitation.

3.2 Analytic Method of Approach

Analytical studies were mainly concerned with the solution of the governing equation
using a Green’s function approach. Green’s functions are commonly employed to solve
linear boundary value problems. The power of the method lies in the fact that the Green’s
function is independent of the nonhomogeneous term in the governing differential equation.
Thus, once the function is determined, the solution of the boundary value problem for

different nonhomogeneous terms is obtained by a single integration.

The Green’s function can be interpreted as the response of the system due to an
applied point load, or Dirac-delta function, of density 8. The two point Green’s function
G(x,y) describes the displacement at a point x due to a force at y. The total displacement of
the system, caused by a loading distributed according to some function, can be determined
at each point by integrating the Green’s function over all possible points in the region of
interest. This method lends itself to solving the problem at hand as the applied loading can

be described as a set of locally acting excitations which are distributed along the cable.
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3.2.1 Governing Equation

The governing equation for the transverse motions of a constant tension cable is
given by equation 3.1.

2
m®4 4 p94 _ 794 (3.1)

or? ot ox?
where
q = cable displacement
m = mass and added mass of the cable
b = damping constant

T = cable tension

This is known as the damped taut string equation and the parameters employed are
more fully described in figure 3-1. As shown in this figure, a harmonic forcing function is
applied at some distance y from the origin. The constant tension assumption greatly
simplifies the analysis and previous findings show that its effects on the overall solution

accuracy are minimal [2].

As the cable is displaced, displacement waves will develop which travel along the
length of the cable. Experiments show that these waves are significantly attenuated due to
hydrodynamic damping. Therefore there is virtually no reflection from the endpoints. For
this reason, infinite cable boundary conditions are employed in this analysis. A segment

within the cable can then be investigated with no interference arising from reflected waves.

3.2.2 Mathematical Model

In order to solve the problem at hand, the characteristics of the excitation forces must

be modeled in some fashion. As stated earlier, the loading is caused by lift forces which
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q 4
Feiot

R ;

Figure 3-1: Definition of problem parameters
arise from vortex shedding. The frequency of these forces can be determined from the

Strouhal relation, which is rewritten here in a slightly different form for completeness.

2rU . (y)S
o) = —”D& 32)

The frequency w and velocity U, are written here as functions of y to reinforce this fact.

The magnitude of the lift force per unit length is determined by the semi-empirical

equation given below.

Fo) = %pC,D ) di (3.3)

where
p = fluid density

C, = coefficient of lift
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For this analysis a constant lift coefficient value of 0.6 was employed. In addition, a
model using a coefficient, based on the displacement amplitude envelope, was also
developed. The later model is used to account for the self limited nature of the cable
vibrations. A linear variation with displacement, as shown in figure 3-2, was assumed for

the coefficient.

0.67

(¢/D) 1.5

Figure 3-2: Variable lift coefficient model

The added mass of the cable was assumed to equal the mass of the fluid displaced by
the cable. The damping was considered to be mainly hydrodynamic, and some

manipuiation of the damping term, as shown in the next section, was performed.

As mentioned earlier, the correlation length plays an important role in the analysis.
To account for this, phase angles were used to correlate the excitation over some
predetermined length. The magnitude of these angles are selected with random number

generator.
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3.2.3 Green’s Function Solution

The first step in the solution process is to eliminate the time dependence in the

response term by assuming a harmonic displacement. This can be written as follows:

q(xt) = g(x)e™ (3.4)

As the cable is displaced at a specific point, displacement waves are generated.
These waves travel away from the excitation. With this in mind, the g(x) function may be
decomposed into two different wave forms, one valid on each side of the loading point.

The form of these functions is shown below.

gx) = Ciei= —o<x<y (3.52)
g,(x) = Cye i ySXx<oo (3.5b)
where
k(y) = Nmaw*(1-Bi)/T
b
B=ia

The damping term has been rewritten in this form to simplify the analysis. The term £ is
known as the wave number and [ is the nondimensional damping parameter. Note that

with damping the wave number £ is complex.

There are two conditions which must be satisfied by equations 3.5a and b. First of
all, the two functions must be equal at the point of excitation. This is to ensure continuity

of the solution. Secondly, for equilibrium, the exciting force must be offset by the
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transverse component of the tension. Ma.hematically the two conditions can be stated as

follows:
g, = g,(x) ar x=y (3.6)
a— el
F=1{% _ %y at x=y 3.7)
ox ox

Solving the governing equation with these two conditions yields the solution for the

displacement of the cable due to a point load, of magnitude F and frequency , located at y.

qxp) = %e"{‘"""‘("‘”} ~o<x<y (3.8a)
Fi itwiia))
q,(x.t) = TRE . ySx<e (3.8b)

The Green’s function solution for a load distributed along the cable can be obtained

by integrating equations 3.8a and b over their appropriate intervals.

q(x.1) = Re{

pC,Di
4

7 (I, +1,)} (3.11)

where

U2
= i{ i—k(x—yy+¢}
I jo T e dy

LU?
I,= Jf k" eilawvkz)o) gy
X

Equations 3.2 and 3.4 were implemented in the calculation of 3.11. The phase angle ¢ is

used to specify the correlation length.

Equation 3.11 provides the basis with which the effects of a shear flow can be
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studied. Further simplifications, as described in the next chapter, can be used to obtain

exact solutions of this equation. For more complex cases, the trapezoidal rule was used to

perform the necessary numerical integration.
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Chapter 4

Numerical Results

The results of an analytic study of cable vibrations due to variable frequency
excitation are presented in this chapter. A simple two-point excitation situation and several
more advanced distributed loading models were investigated. The goal was to determine
how relevant parameters, such as the excitation frequency gradient, effect the overall nature

of the vibrations. Attempts were made to verify solutions when possible.

4.1 Two-Point Excitation

The vibration response of a cable subjected to a harmonic loading at two discrete
points on the cable is discussed in this section. The problem is shown in figure 4-1. A
solution was obtained by superimposing linear solutions of the form 3.8a and b. The
solution is given by equation 4.1, where F; and ; are the excitation magnitude and

frequency at the point y, respectively, and all other variables are as defined previously.

F.i F,i
q(x,t) = Re {_Z_TIT ('@t =k =y + ﬁ(e““‘z‘ M)}y, <x<y, 4.1
1

This expression can be rewritten as shown in equation 4.2. In this case the constants
have been grouped in the term C and the excitation force has been expressed as a function

of the square of the excitation frequency.

. @, . )
q(x,t) = Re{Ciw, e @—*GrD) (1 +m—-2)e‘ Bax + (ky +ig)=C)] | (4.2)
1

where

dw =, - ®,
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—> F = Flei"’l‘

» F = eriW2t

Figure 4-1: Description of two point excitation problem
C =ky + by,

The term in the brackets is known as the amplitude modulation factor and is slowly
varying in both space and time. The difference frequency 8w represents the frequency of
one beat in the time series. For this investigation, the beat frequency ®, corresponds the
time required for two beats to pass. It should be noted that this definition is somewhat
different than the beat frequency denoted in most literature in that typically the difference
frequency is called the beat frequency. To help eliminate confusion, the beat frequency
shown in equation 4.3a will be called the "defined beat frequency”. The strumming
frequency w, describes the high frequency motions and is given as the average of the two
exciting frequencies. Note that changing the locaticn of the excitation forces alters C’,

effectively causing a phase shift in the time series.

o, = 2> (4.33)
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B (0,+,)

o, 5 (4.3b)

Two typical time series records are shown in figures 4-2 and 4-3. Figure 4-2
represents the situation where the two exciting frequencies are the same, namely 8.75n
rad/sec. As readily seen, no amplitude modulation occurs. In contrast, exciting frequencies
of 8.51 and 9.0r rad/sec were used to generate the time series in figure 4-3. This series
clearly demonstrates periodic amplitude variation, or beats. The calculated beat period
(47/3w) of 8.0 sec can be visually confirmed and the frequency of the fast motion is given
by the average of the two exciting frequencies. The visual findings are confirmed by a

spectral analysis of the time series, as presented in Chapter 5.

10~

DISPLACEMENT AMPLITUDE

.10 [ 1 A [} i i i i 2 _J
0 2 3 5
TIME (SEC)

Figure 4-2: Time series for cable excited at two points. Excitation
frequency of 8.75n rad/sec at both points

The effects of damping were investigated and the results showed that including
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12.5
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DISPLACEMENT AMPLITUDE

i
0 4 8
TIME (SEC)

Figure 4-3: Time series for cable excited at two points. Excitation
frequencies of 8.5t and 9x rad/sec.

damping serves to reduce the magnitude of the vibrations, while not altering the relevant
vibration frequencies. These results provide backround with which the more detailed

distributed loading case can be studied.

4.2 Uniform Current Excitation

The effect of a uniform current excitation was studied in two ways. The first method
was by integrating equation 3.11 exactly. The second was with a numerical model called
SCVP (Shear Current Vibration Predictor). This model uses the trapezoidal rule to solve
equation 3.11 and incorporates phase angles 1o correlate the forces along the cable. The

model is discussed in greater detail in section 4.2.2.



-26-
By assuming a constant velocity U,, the problem is greatly simplified as the exciting
frequency @ and the wave number k are no longer functions of distance along the cable.

Solving equation 3.11, with zerc phase angles, yields

q(xf) = Ce™(2 — gt — gteD) (4.4)

This equation shows that in a constant current, no amplitude modulation occurs.
Equation 4.4 is represented by the time series in figure 4-4, for which a fluid velocity of 0.5
ft/sec and a damping coefficient B of 0.1 were used.

A
3o VVVVVVTTVTTVIY

5
TIME (SEC)

Figure 4-4: Time series for cable in a uniform current field

The results obtained from the model SCVP matched the analytic results exactly. This
helped to verify the accuracy of the numerical procedure. Inclusion of the phase angles

tended to alter the magnitude of the excitation as well as shift the time series along the time
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axis. The vibration frequency, however, was not affected. These effects were determined to
be strongly dependent on the magnitude of the phase angles as certain values increased the
excitation while others caused a reduction in the vibration amplitude. Inclusion of damping

reduced the vibrations.

4.3 Shear Current Excitation

The findings of the backround studies presented above provide insight into the
distributed shear current loading problem. The complexity of equation 3.11 makes it very
difficult to obtain closed form solutions. Nonetheless, by assuming a linearly varying
profile, an exact analytic solution was derived. This result is discussed in the next section.
In addition, the more flexibie SCVP model was used to analyze a variety of flow fields.
The effects of a variable lift coefficient, based on the cable displacement, and randomized

lift force iocations were also investigated with modified versions of the SCVP model.

4.3.1 Exact Solution of Analytic Equation

In order to validate the SCVP model, a closed form solution of equation 3.11 was
sought. In the analysis, the random phase angles were eliminated and solutions were
obtained both with and without damping. A linearly varying velocity profile was used to
simplify the problem as much as possible. A considerable degree of algebra was involved
which will not be shown here. The end result is shown in equation 4.4, where fx,0)
represents a complicated function of space and time which is written in this form for

simplicity.

. L .
a00) = f000) + o) [ ey - e3Py + o [ evitesy - w iy (4.4)
x



where o, and oy are functions of x and ¢ and a is a constant, complex if damping is
included. Solutions of the two integrals in equation 4.4 involves use of the complex error

function, as shown below.

J’ *eilayy + 5P dy = FoGet) erf [N=ioy y — % 5 (4.5a)
0 2V-io,
L 2 - o5

[Certasraray = £ erf iy + I; (4.5b)
x 2vio,

The above solution was implemented in a numerical procedure which included a
separate subroutine for calculating the complex error function values. The obtained results
were quite surprising in that the solutions tended to become unbounded with time,
regardless if damping was included. To investigate the stability of the solution, an
asymptotic expansion of the error function in time was performed. The criteria which

dictates the stability of the complex error function of z is [1]

lim erf(z) — 1 iflarg(@)| <§ (4.6)

kA

Expansion of the error functions in equations 4.5a and b shows that the criteria is not
satisfied if damping is not included as arg(z) is identically equal to m/4 for all time.
Unfortunately, the inclusion of damping causes the argument of one of the error functions
listed to increase beyond the limiting value. The degree of damping dictates which error
function becomes unbounded. These findings are quite disheartening as an exact solution
of the analytic equation does not prove useful. At this point in time, reasons for this

behavior are not known.
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4.3.2 Discrete Sclution

The SCVP model orovides a simple forum in which the effects of shear current
excitation may be studied. As mentioned previously, the model implements the trapezoidal
rule to solve equation 3.11. After specification of the system characteristics, i.e. cable
diameter and length, the velocity profile is generated by specifying the profile inflection
points and the associated fluid velocities. The velocity is assumed to vary linearly between
these points and the model generates the velocity magnitude at predetermined points along
the cable. The phase of the lift forces is correlated over a preselected length and the
magnitude of the phase angles is chosen randomly. Output from the model includes both
the cable configuration at specified times and the displacement time records for discrete

points on the cable.

To insure sufficient convergence of the results, limits on the maximum allowable
time step and spacing between discrete points were set. Results showed that satisfactory

convergence was obtained if the two criteria listed below were met.

. 2z
dis < —-Z2— 4.7

M S R (kO))] @7
where
xdis = distance bstween cable nodal points

27
€ —— 4.7b

step S — o0)] (4.7b)

where

tstep = time increment between calculations

The first case studied was a linearly varying current as shown in figure 4-5. To gain

a better understanding of the dynamics involved, no phase angles were used in this case.
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That is, the correlation length spanned the entire cable. A 2000 ft cable was used with a
damping coefficient B=0.1 and displacement time records were determined at three points
on the cable. Specifically, these points correspond to the mid-point, quarter and three-
quarter chord positions. The results are shown in figure 4-6. These results show
conclusively that beating occurs in the continuous case as predicted from the two point
excitation results in section 4.1. An analysis of these time series records shows that the
strumming frequency ®,, or the frequency of the fast motions, is given by the local
excitation frequency. The frequency of oiw.e beat in the time series ,/2 is given by the

difference between the largest (top end) and local excitation frequencies.
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Figure 4-5: Fluid velocity profile for case #1

The dispersion relation given by equation 3.5b suggests that the generated

displacement waves are dispersive in nature. This finding is supported by the numerical
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Figure 4-6: Time series records for case #1 excitation profile.
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results. The clearly defined beats at the 500 ft position shown in figure 4-6 begin to
degenerate with time while beating begins to develop at the 1500 foot position. This
behavior is demonstrated in the longer time series records shown in figure 4-7. The beat
frequency for the 1500 ft position tends to close in on a value that can be determined using
the local and low end excitation frequencies. The dispersive natur: of the waveforms also
serves to effect the amplitude of the overall displacement envelope. That is, the amplitude

of the beats is in general nonuniform as demonstrated in figure 4-6.

The effect of a symmetric velocity prfile, as shown in figure 4-8, was also studied.
Again, no phase angles were used to uncorrelate the excitation. The obtained results were
very similar to those described previously as beating occurred which degenerated with time.
As predicted, the results were symmetric about the cable midpoint and two time series
records are shown in figure 4-9. These records correspond to the quarter chord and
midpoint of the cable. The calculated beat frequencies, based on the exciting frequencies at
the point of interest and the top of the cable correspond very well with those shown in the

time series records.

The fluid velocity profile shown in 4-10 was used to investigate the interaction
between two different excitation cases. The results showed that, for the most part, the
interaction effects were minimal as the top half of the cable exhibited virtualiy no amplitude
modulation with time. On the contrary, the lower cable section behaved in much the same
fashion as in the previously discussed cases. Time series records for the quarter and three-
quarter chord positions are presented in figure 4-11. The beat frequencies shown can be
predicted using the excitation frequencies discused earlier. Degeneration of the beats did
not occur as rapidly in this case. This is due to the fact that the displacement waves

generated over the top end of the cable are nondispersive.
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Figure 4-8: Fluid velocity profile for case #2

As mentioned earlier, excitation forces are generally not well correlated along the
length of the cable. The SCVP model provides an opportunity for studying the effects of
altering the correlation length. This is accomplished by shifting the phase of the excitation
forces along the the length of the cable. The linearly varying velocity profile in figure 4-5
was used to analyze the vibration characteristics of the cable midpoint for correlation
lengths of 20, 100, and 2000 ft. The last case corresponds to complete correlation of the
excitation forces and is used for comparison purposes. The three resulting time series
records are presented in figure 4-12. As readily seen, the beating still occurs. However, the
beat frequency is no longer well defined. This is due to the large degree of randomness
introduced into the problem. The magnitude of the resulting motions also seemed to be
affected by the degree of correlation, with larger displacements occurring, in general, for

decreased correlation lengths.
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Figure 4-9: Time series records for case #2 excitation profile
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Figure 4-10: Fluid velocity profile for case #3

The actual physical process being modeled does not exhibit the degree of order
simulated in the SCVP model. In order to introduce some additional randomness, the
method was modified such that initially discrete points are chosen as before but in addition
a region is constructed bracketing each point. A point is then selected, at random, within
each region and the excitation magnritude and frequency calculated. The determined values
are then applied at the original discrete point in the region. Therefore, in the limit as the
bracket length goes to zero, the results will converge to those previously obtained. An
analysis was completed using the case #1 current profile with total correlation of the
excitation forces. Once again, the motions of the cable midpoint were studied. Results for
various bracket region sizes are shown in figure 4-13. A 100% bracket region corresponds

to a region, centered on the discrete point, of iength equal to the spacing between points,
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while a 0% value equates to using the originally selected discrete points. As readily seen,

an irregular form of beating results which is more prevalent for the increased bracket sizes.

The effect of damping was analyzed by testing a range of values for the damping
coefficient B. Damping was determined to have profound impact on the vibration
characteristics of the cable. Increased damping resulted in decreased amplitude modulation
of the time series. This feature is demonstrated by the time series records presented in
figure 4-14. These records correspond to the vibration of the cable midpoint when the cable
is excited by the current profile in figure 4-5. As the damping is increased, significant
attenuation of the displacement waveforms occurs. As a result, the interaction between
displacement waves of different frequencies is reduced, thereby decreasing the amplitude
modulation in the time series. These findings are encouraging in that previous research
tends to suggest that significant attenuation does occur while the SCVP model appears to be
modeling the process correctly, allowing one to study the effects of attentuation in a simple
way. The numerical procedure was determined to be stable when damping was eliminated

and the resulting time record was very simiiar to the case with B=0.1.

As mentioned in Chapter 3, there was some desire to construct a model which
employs a variable lift coefficient, based on the amplitude of the cable displacement, in
order to account for the self-limiting nature of these vibrations. The model shown in figure
3-2 was implemented along with a procedure for determining an envelope which encloses
the cable shape at preselected intervals. A typical example of a constructed envelope is
shown in figure 4-15. The net effect was a smoothing of the time series as larger motions
were reduced while smaller motions went relatively uneffected. These results are casily

visualized and as such no time series records will be presented depicting these findings.
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Chapter 5

Spectral Analysis of Full-Scale Experimental Data

An analysis of full-scale experimental data was conducted in order to validate the
findings of the analytic studies. In the experiment, a long cable and spherical ball
arrangement was towed and the acceleration measured at discrete points along the cable. A
spectral analysis was performed to determine the vibration frequencies and the determined
values correlated with the known current profile. Pre-processing of the data proved useful

and the methods employed are discussed in this chapter.

5.1 Discussion of Experiment

The data analyzed in this research was obtained in a 1987 experiment conducted at
the U.S. Navy’s Atlantic Undersea Test and Evaluation Center (AUTEC). A detailed
discussion of the experimental apparatus and procedure is presented by Engebretsen [2].
Therefore, only the salient points will be mentioned at this time. The specific data
investigated corresponds to the steady-state portion of the fourth experimental run, in which
a 2200 kg sphere was attached to the end of a 1220 m cable. The characteristics of the

cable are given in table 5-1.

The cable and vehicle were monitored with six acoustic pingers, one fixed to the
ship’s bottom and others spread along the cable. An array of hydrophones fixed to the sea
floor received the acoustic signals. Five instrument packages were also placed on the cable,
in-between the acoustic pingers. These packages were used to measure the iocal cable

attitude and acceleration. Triaxial accelerometers were used so that both transverse and



Diameter 00173 m

Mass per Unit Length (Air) 1.04 kg/m

Mass per Unit Length (Water) 0.77 kg/m
Youngs Modulus 4.75 X 10" N/M?

Table 5-I: Characteristics of cable used in the experiment
in-line motions could be recorded. Figure 5-1 provides an overview of the typical

experimental setup used.

Within the fourth experimental run, the ship was maintained at a constant speed of
0.51 m/sec for 32 min. During this time, a continuous 10 min record of the high frequency
cable accelerations was obtained. A sampling rate of 100 hz was used, vielding 60,000 data
points. The high sampling rate was used to avoid problems with aliasing from higher

harmonics of the cable strumming.

The current profile was measured with bounce pingers and an electromagnetic probe
seven times during the course of the experiment. The dominant current direction was at an
angle to the ships track, as shown in figure 5-2. The long straight track corresponds to
steady-state conditions during which the data was obtained. A typical current profile for

the fourth run is shown in figure 5-3. Note that some shear exists in the profile.
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5.2 Data Analysis Procedure

5.2.1 Characteristics of Raw Data

Prior to the spectral analysis of the acceleration time series data, the form of the data
was investigated to identify possibie problem areas. The shear current profile which was
prevalent during the sea trails suggests that the time series records should exhibit some
form of amplitude modulation. This modulation can be represented as the product of two

cosine functions, as shown below.

a(®) ~ cos(w,t) cos (w,t) 5.1
where
, = strumrming frequency
, = beating frequency

a(t) = cable acceleration

Equation 5.1 can be rewritten as the superposition of two cosine functions.

a(t) ~ cos(w,t)+cos (m,¢) 5.2)
where
W, = 0 -0,
@, = 0+,
The goal of the spectral analysis was to identify the two vibration frequencies so that
they could later be correlated with the known velocity gradient. Characteristically, the beat
frequency is much less than the strumming frequency. Therefore, the two frequencies

given by equation 5.2 will be very close in magnitude. This creates difficulties with the

spectral analysis as the two peaks in the spectrum will lay very close together, appearing as
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one peak if w, is small enough. If the data is not processed in some fashion, extremely high
resolution of the spectrum is required. For a time record of predetermined length, this
means increased variance in the results and, in turn, decreased accuracy. Therefore, the
data must be processed in some form to facilitate the identification of the frequencies. Two
methods were chosen for accomplishing this task, namely homemorphic processing and the

so-called envelope approach. These methods are described in the following sections.

5.2.2 Homomorphic Processing

The term homomorphic systems is used to describe nonlinear systems that obey a
generalized principle of superposition [6]. The gcal of homomorphic processing is to
exploit this characteristic so as to create an associated linear system that can be analyzed
with greater ease. The cable acceleration signal, as written in equation 5.1, is given by the
product of twe component signals and, therefore, obeys a principle of superposition for

multiplication.

Oppenheim, et al [6], present in detail a technique for analyzing multiplicative
homomorphic systems. The method is based on determining a function that will transform
a multiplicative input signal into a signal comprised of ihe summation of two component
signals. The function which has this property is the logarithm function. By performing the

logarithm operation the two frequency components may be separated as shown below.

]

log [a()] = log [cos (w,?) cos (w,1)] (5.3)

log|cos (w,f)| + log|cos (w1 ]
iarg {log[cos (w,n]} + iarg {log[cos (w,0)]}

+

The fact that the acceleration signal takes on negative values necessitates the use of

the complex logarithm. This creates some ambiguity as the imaginary part of the complex
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logarithm is not uniquely defined. Any integer multiple of 2r can be added to the
imaginary part without changing the results. This problem cannot be resolved by replacing
arg[a(p)] by its 3rinciple value as it is not generally true that the principle value of the sum
of two angles is equal to the sum of their principle values. To resolve this ambiguity,
equation 5.4 must hold and arg {a(t)] must be defined such that it is a continuous function

of a(?).

arg[a(®)] = arg{log[cos(®w,)]} + arg{log[cos(w)]} 54)

Once the imaginary part of the signal has been uniquely defined, the signal may be
treated as a simple linear system and operated on as such. After the linear operations, such
as filtering, are performed, the complex exponential function can be used to transform the

signal to its multiplicative form. The canonic representation for this processing is shown in

figure 5-4.

a(n) Complex a(n) | Linear l’:\’(ﬂ) Complex b(n)

Log System Exponential

Figure 5-4: Canonic representation of homomorphic system

For the purposes of this investigation, the spectrum for the real‘part of the processed
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signal is sufficient for identifying the frequencies of interest. This alleviates the problems
associated with the imaginary part as described above. It should be noted that the
frequencies in the real spectrum will lay at twice the defined frequencies because the
absolute value of the signal is used in the logarithm, causing the vibration frequencies to
double. In addition some higher order harmonics are excited because the signal is no longer

sinusoidal in shape.

5.2.3 Envelope Appreach

The second method employed for simplifying the identification of the vibration
frequencies is called the envelope approach. This method is based on elimination of the
high frequency motions of the cable so as to identify the beating frequency. This is
accomplished by constructing an envelope which completely encloses the acceleration time
series. The envelope is determined by locating all positive peaks in the time series and then
assuming a linear variation between these peaks. A spectral analysis is then performed on
the envelope signal. This method has its mathematical basis in that the envelope of the
amplitude modulated signal is close to sinusoidal. The frequency associted with the
envelope is twice the defined beat frequency as each oscillation corresponds to one beat in

the time series.

5.2.4 Power Spectrum Calculation

The central item in analyzing the full-scale experimental data is the estimation of the
acceleration power spectra. The power spectrum relates the power in the signal to its
associated frequency bands. Therefore, the dominant vibration frequencies may be
determined by identifying the frequencies at which peaks in power occur. A wide variety
of methods exist for power spectrum estimation and the one chosen for this analysis is

called the Welch method.
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The statistical quantity know as the periodogram may be used as an estimate of the
spectrum. The periodogram, dznoted by I,(w), is determined from the Fourier transform of

a real sequence x(n), containing N samples, as shown below.

Iu@ = < IX(eo)P (5.5

where X (ei®) represents the Fourier transform of x(n) and can be determined as follows:

N-1
X (e®) = iV 5.6
(e®) = Y x(n)e (5.6)

Unfortunately, the variance of I(w) does not approach zero as N approaches infinity.
Therefore the periodogram is not a consistent estimate of the spectrum. It can be shown
that the variance of the average of K independent periodograms is a consistent as the
variance is a function of 1/K [10]. This would suggest that for a record of fixed length
N=KM, it would be advantageous to choose K as large as possible. However, as K
increases M decreases, subsequently reducing the resolution of the spectrum. Thus there is

a tradeoff between spectrum resolution (bias) and variance.

To further help reduce the spectral variance, overlapping of segments may be
performed. In this method, the length of the time record is effectively increased by
constructing additional segments which overlap existing segments. It turns out to be
optimal to overlap segments by one half their length [7]. This increases the total number of
available segments to K’, where K’=2K-1. The reduction in the variance is not a full factor
of K’ since the segments are not statistically independent. Rather, the variance is reduced

by a factor of about 9K’/11 [7].

As mentioned earlier, the cost of choosing more segments within the time series is
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reduction in the spectral resolution, also termed increased bias. The true power spectrum is
based on a time series of infinite length. Using a finite length series causes energy leakage
into other frequencies. This effect is amplified with decreased record lengths. To
overcome this, smoothing of the periodogram by convolution with an appropriate spectral
window may be used. A wide variety of spectral windows are available for this
purpose [7]. Several windows were implemented in this analysis and the window which

best suited the data is presented in each case.

The Welch method is basically a composite of the techniques discussed above. It
consists of the averaging of modified periodograms. The data is sectioned into K segments,
or K’ if overlapping is employed, of length M. The window w(n) is applied directly to the
data segments before computation of the periodogram. This yields K periodograms

K, - MIUIE XO(n) win) e CrM¥n 2 57
where
M—l
=1L z [w(n)]2

The power spectrum S, may then be estimated by averaging the modified pericdograms.

2 1 X J9 27tK
S K = 0,1,..M-1 .
7 & MG 0 (5.8)

J=l
The FFT (Fast Fourier Transform) method is used to compute the absolute value term
in equation 5.7. The accuracy and ease with which this method may be implemented

dictated its use in this research.
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5.2.5 Example Analysis

An analysis of the two point excitation results shown in section 4.1 is presented to
demonstrate the abilities of the data processing techniques employed. Recall that the
exciting frequencies of 8.5n and 9.0n rad/sec gave rise to visually determined beating and
strumming frequencies of 0.25n (.785) and 8.75r (27.49) rad/sec, respectively. The power
spectrum for the original signal is shown in figure 5-5. The spectrum was generated using
10 original segments of 1200 points. Overlapping was implemented to create 19 dependent
segments and a Tukey window was used for spectral smoothing. The power spectrum
shows two closely spaced peaks occurring at the frequencies given by equation 5.2.
Homomorphic processing was used to separate the peaks and the resulting spectrum is
shown in figure 5-6. This figure clearly demonstrates the accuracy of the methed as energy
peaks were determined at twice the vibration frequencies, as predicted. Specifically, the
peaks occur at 1.571 and 54.978 rad/sec. The smaller energy peaks shown are a by-product
of the method. Results obtained using the envelope approach are shown in figure 5-7. This
figure shows that this method effectively filters the high frequency motions and yields a
correct solution for the beat frequency. Having verified the accuracy of the processing
techniques with a known problem, we may now proceed to analyzing the full-scale

experimental data.

5.3 Presentation of Results

The data analyzed consisted of 9 time series records ¢ 60,000 points, sampled at a
rate of 100 hz. These records included the transverse and in-line motions for each of the
five instrument bottle locations with the exception of the in-line motions of bottle E. This

data was not recorded. All the data was zero-meaned and calibrated prior to processing.
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The long time series records provided a basis with which accurate spectral estimates could

be obtained as requirements for spectral resolution and variance reduction could both be
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met. However, it is possible for the process to become non-stationary over this long period
due to changes, for example, in the ship speed. This point will be discused in more detail
later in this chapter. The high sampling rate helped to avoid problems with aliasing for
higher harmonics of cable strumming.

The first step in the investigation was to verify which data channel on the triaxial
accelerometers recorded the transverse cable motions. In the initial configuration, channels
0 and 1 were set to record the transverse and in-line motions, respectively. The reasoning
behind this study was to ensure that the instrument bottles did not become twisted with
respect to the cable during the experiment. As mentioned in Chapter 2, the frequency of the
transverse cable motions will be given by a value at or near the Strouhal frequency. Some
variation may arise as a result of beating but the vibration frequency will remain in a
relatively small range around this frequency. The frequency of the in-line motions,

however, corresponds to twice the Strouhal frequency. Therefore, the individual data
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channels may be identified by determining which channel yields a stronger spectral peak at

the Strouhal frequency.

The calculated Strouhal frequency for this experiment was around 32 rad/sec. This
value is based on a ship speed of 0.51 m/sec and a Strouhal number of 0.175 as determined
from previous research [2]. The power spectra were constructed for each data set using a
Tukey window for spectral smoothing. The results obtained are presented in figure 5-8 and
the top left plot in figures 5-9 through S-13. Figure 5-8 shows spectra for the four channel
1 data sets. The spectra have been scaled to roughly equal height by the scale factor SF
listed. As readily seen, in figure 5-8 very little energy is located near the Strouhal
frequency while considerable energy is associated at twice this frequency. The linprocessed
spectra for the channel O records, however, all exhibit definite peaks in the Strouhal
frequency range. Therefore, we can conclude that the instrument bottles remained correctly

aligned and that the transverse motions were recorded on channel O.

The spectral peak was determined from each calculated spectra and the
corresponding frequency vaiues are listed in table 5-I. Note that for the spectra
corresponding to the in-line motions, the maximum peak between 50 and 80 rad/sec was
selected. These peak values will later prove useful in determining the strumming
frequencies. The spectra were generated using overlapping of segments and a range

segment lengths was used to confirm the accuracy of the results.

As can be seen in figures 5-9 through 5-13, the spectra are fairly narrow banded near
the Strouhal frequency and multiple bands exist within this range. These pezaks tend to
become more prevalent with increased spectrum resolution. The spectral bands that lie
above this range correspond to higher-order harmonics and motions of the instrument

botties. The time series records were all band-pass filtered between 20 and 45 rad/sec to
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eliminate these peaks. The resulting time series records were visually inspected and beating
did exist. However, no clear pattern was evident. As a result the filtered time series

records did not aid in determining the beat frequencies and therefore will not be presented.

Homomorphic processing was performed on the filtered time series and the spectra
determined are shown in the bottom two plots in figures 5-9 through 5-13. The plot in the
lower left covers a longer frequency range so as to show the high-frequency peak associated
with cable strumming. From these plots, the largest high-frequency peak was selected and
the value is listed as the second value in the homomorphic processing column in table 5-1I.
This value was selected because it should give some indication of the strumming frequency.
The lower right plot focuses in on the low-frequency range to determine the beat frequency.
The spectral resolution or space between data points for these lower plots was 0.052
rad/sec. The first value listed in the homomorphic processing column denotes the most
pronounced low frequency peak. This value gives some indication of the beat frequency.
The appropriate value to choose was not always clear and was sometimes at the discretion
of the analyst. The harmonics generated by this type of processing, the possibility of
multiple beat frequencies, and the large peak at zero frequency created by the non-zero-
meaned process all give rise to this problem. It is not appropriate to always select the
highest peak as this has been proven to be incorrect in cases with a known frequency
response. The correct peak to choose is the most distinct peak separated from the zero
energy peak. Overlapping was not used in conjunction with this type of processing as its

inclusion created totally unrealistic results. The reason for this behavior is not yet known.

After comple.ion of the homomorphic processing, an envelope was constructed from
the filtered time series records as described in section 5.2.3. The spectra determined from

these new time series are shown in wuie upper right plots in figures 5-9 through 5-13. These
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plots focus on the low-frequency range as all high-frequency energy has been eliminated by
the processing technique. The highest and most distinct peak was determined in each plot
and the result is listed in the last column of table 5-I. The smaller peaks are a by-product
of the method and some care must be excercised in determining which peak to select. The
spectrum resolution was 0.052 rad/sec and overlapping proved to be helpful in defining the

peaks.

The values in table 5-II were analyzed to determine the frequency estimates listed in
table 5-III. The strumming frequencies are based primarily on the largest unprocessed peak
and on the high frequency peak determined from homomorphic processing. The difference
between the two largest peaks in the unprocessed spectra also played some role in the
analysis. The most dominant low-frequency peaks determined by the two processing
techniques provided the basis for the beat frequency estimates. The accuracy bounds for

the estimates are discussed in the next section.

5.4 Discussion of Results

The power spectra determined from the 9 time series records confirm that the
transverse cable motions were recorded on channel O for all instrument bottle locations.
The unprocessed spectra for this channel definitely show vibrations in the Strouhal
frequency range. The spectra, although narrow banded in this region, tended to be multiple
peaked. This finding can be attributed to several causes. First of all, the occurrence of
beating will tend to split the spectrum as discussed earlier. Secondly, during the ten minute
time period over which the data was collected, some variation of the inflow velocity most
likely occurred as a result of slight variations in ship speed and current magnitude. For

example, a 0.05 m/sec change in the ship speed corresponds to a 3.2 rad/sec variation of the
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Figure 5-9: Unprocessed and processed power spectra for instrument bottle A
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Figure 5-10: Unprocessed and processed power spectra for instrunzent bottle B
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Figure 5-11: Unprocessed and processed power spectra for instrument bottle C
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Figure 5-12: Unprocessed and processed power spectra for instrument bottle D
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