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Abstract

This paper considers the combination of an analytical reference trajectory with

linear state feedback control to allow for autonomous guidance and control of

a spacecraft for coplanar circle-to-circle transfers with a stage-based propulsion

system. Staging of electric propulsion components, such as tanks and thrusters,

could allow small spacecraft to achieve high-∆V capabilities with current propul-

sion technology. In order to utilize these propulsion systems, further develop-

ments in guidance and control of such spacecraft are required due to limitations

in computational power and communications. Analytical approximations for

low-thrust trajectories could allow for computationally simple guidance and

control of autonomous spacecraft for circle-to-circle transfers around large cen-

tral bodies. Many trajectories have been developed for conventional propulsion

systems, based either on their shape or input thrust, and applied for prelimi-

nary mission design. A previously developed analytical trajectory is extended

to account for the effects of staging propulsion system components. In order

to stabilize the trajectory in the presence of disturbances, a linear state feed-

back control law is designed with linear quadratic regulator methods. Finally, a

methodology for determining the correct phasing between the spacecraft and a

target object is developed and is practical to implement on power-limited com-

puters. The use of the analytical reference trajectory is simulated on an orbit

transfer from low-Earth orbit to geostationary orbit.
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1. Introduction

Small spacecraft with mass of 50 kg or lower, such as CubeSats, have demon-

strated considerable capabilities for missions in low-Earth orbit [1]. However,

their mission profiles have been limited by the availability of high-performance

propulsion systems compatible with the small form factor. Due to difficulties

with the miniaturization of propulsion systems, very few CubeSat propulsion

systems have flight heritage, and the majority of those that do are cold-gas

systems [2] which cannot be used for high-∆V missions due to their low (∼80

s) specific impulse. Since small spacecraft are typically launched as secondary

payloads, the lack of high-performance propulsion systems means that their op-

erational orbits are limited to the orbit of the primary payload, which places

a significant restriction on the use of small spacecraft for missions beyond low-

Earth orbit as rideshare opportunities are infrequent. To date, the only Cube-

Sats to leave low-Earth orbit are the Mars Cube One spacecraft which were a

secondary payload on the InSight mission to Mars.

The ability to raise and lower orbits will increase the capabilities and po-

tential missions of small spacecraft. Such spacecraft can then continue to be

launched as secondary payloads without restricting their final operating orbit.

However, to enable this capability, high-∆V propulsion systems compatible with

the small form factor need to be developed. Furthermore, cost and user time

limitations on communications between the spacecraft and Earth necessitate the

development of autonomous guidance and control techniques. The use of stag-

ing of propulsion system components, analogous to launch vehicle staging, with

microfabricated electrospray thrusters could deliver high-∆V propulsion with

currently available technology. Analytical approximations for low-thrust tra-

jectories would enable autonomous guidance within the limits of computational

power and memory available on small spacecraft, but cannot capture complex

dynamics such as disturbances from other planets and solar radiation pressure.

In order to stabilize the spacecraft trajectory to the analytical solution in the
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presence of disturbances, linear state feedback control could be used.

This work considers the combination of an analytical reference trajectory

and linear feedback controller for circle-to-circle coplanar orbit transfers with a

propulsion system comprised of a number of stages. Analytical expressions for

the spacecraft’s state and feedforward control as a function of time are developed

by extending a derivation presented by Wiesel [3] to account for the effects of

staging. Linear quadratic regulator methods are used to design a linear feedback

controller in order to stabilize the trajectory and overcome the discrepancy in

boundary conditions. Next, a methodology for determining the required phasing

between the spacecraft and a rendezvous target is developed that is practical

to implement on power-limited computers. Finally, the reference trajectory and

linear controller are simulated for an orbit transfer from low-Earth orbit to

geostationary orbit.

2. Background

The methodologies developed in this work are applicable to any propulsion

system in either a conventional or staging configuration. However, staging with

electrospray propulsion is a promising strategy in order to develop a high-∆V

propulsion systems compatible with small spacecraft, CubeSats included. This

section provides background on electrospray thrusters as well as staging systems

in order to enable miniaturized high-∆V propulsion systems. An overview of

analytical techniques for low-thrust orbit transfers is also provided, along with

limitations of these techniques for use on an autonomous spacecraft using staged

propulsion systems.

2.1. Electrospray Propulsion

Electrospray thrusters produce thrust through electrostatic acceleration of

either positively or negatively charged particles. A specific class of electrospray

thruster is the ionic-liquid ion source where the charged particles are individual

ions evaporated from an ionic liquid propellant [4] by overcoming the internal
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surface tension with a strong electric field [5]. The ionic liquid propellant is

a molten salt at room temperature that is non-reactive, readily available, and

has low toxicity. Electrospray thrusters with ionic liquid propellants hold three

main advantages that make them ideal for main propulsion of small spacecraft.

First, the ionic liquid is “pre-ionized” and does not need an ionization chamber.

Second, ionic liquids have near-zero vapor pressure [6, 7] and therefore do not

need any form of pressurized containment and can be exposed directly to the

vacuum of space. Lastly, propellant is fed to the thrusters by passive, capillary

forces through a porous liner embedded into the fuel tank, thereby eliminating

the need for bulky propellant management systems [8].

Several electrospray thruster designs based on microfabrication techniques

have been proposed [9, 10, 11, 12]. However, the ∆V output of current elec-

trospray thrusters is limited by their operational lifetime. Difficulties with con-

sistent manufacturing and inherent material non-uniformity [13, 14] can lead

to relatively wide emission cones with observed half angles of up to 60 degrees

[12]. The beam can therefore impact the extractor grid and allow propellant

to accumulate on the extractor grid or backspray onto the emitter array. If

enough propellant accumulates, an ionic liquid connection can form between

the emitter array and extractor grid, causing an electrical short on the thruster

and rendering it inoperable [11]. In addition, some emitter tips might have

unstable menisci [15] which can lead to erratic liquid emission and occasional

electrical discharges between the emitter tip and extractor grid [16] degrading

the thruster over time.

The lifetime limitations, and therefore ∆V limitations, prevent the use of

current electrospray thrusters for high-∆V propulsion of small spacecraft. For

example, the Ion Electrospray Propulsion System (IEPS) [12], shown in Figure

1, has a demonstrated lifetime of approximately 500 hours. On a 3U, 4 kg

CubeSat, 32 thrusters can be placed on one of the 10 cm x 10 cm faces in order

to produce 0.64 mN of thrust with a specific impulse of approximately 1000 s.

The total ∆V capability of the propulsion system is therefore 292 m/s, enough

∆V to perform a low-thrust orbit raising around Earth from an orbital radius
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Figure 1: IEPS thruster mounted on a single-thruster fuel tank.

of 7,000 km to 7,575 km. This may be sufficient for some missions. However,

missions that wish to go further to geostationary orbit, the Moon, or even deep

space need significantly greater ∆V capabilities.

2.2. Staging

To bypass the lifetime limitations of electrospray thrusters and improve their

∆V capabilities, two strategies could be taken: improve the lifetime of individual

thrusters through a better understanding and mitigation of the life-limiting

mechanisms, or bypass the lifetime limitations of individual thrusters through

the use of staging. While the former strategy is continuously being explored and

likely will bring lifetime improvements in the future, the latter presents itself

as a strategy that could enable high-∆V capabilities with existing electrospray

technology. Furthermore, the use of staging systems in interplanetary missions

would provide additional redundancy and reliability, even for thrusters with

improved lifetime, as sets of fresh units could replace degraded ones. Efficient

staging of electrospray thrusters is possible due to their small mass and volume,

a unique feature not shared by other types of electric propulsion systems.

In a staged configuration, the propulsion system consists of a series of elec-

trospray thruster arrays, each with their own set of fuel tanks. As each array

reaches its lifetime limit, it is ejected from the spacecraft. This exposes a new

array of thrusters that can then continue the mission. Figure 2 shows a concep-
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Figure 2: Conceptual image of staging on a 3U CubeSat

tual image of an electrospray thruster staging system on a 3U CubeSat. Staging

was originally analyzed in order to reduce the overall transfer time from geosta-

tionary orbit to the Moon [17]. Since the spacecraft drops off structural mass

at each staging event, the acceleration of each stage is increased relative to a

single-stage system. Therefore, mission times can be reduced by a factor of

around 10%. Staging with electrospray thrusters was further analyzed in [18]

for enabling deep-space exploration with CubeSats where the spacecraft inde-

pendently propels itself from Earth orbit and out into deep space. A laboratory

demonstration of an electrospray-thruster-based staging system was conducted

in [19] in order to demonstrate the mechanical and electrical feasibility of such a

configuration. On the theoretical side, [20] analyzes the performance of staging

systems including the overall reduction in mission time relative to a single-stage

system and is consistent with the 10% factor seen in [17]. It is clear from

[17, 18, 20] that the use of a stage-based system can significantly impact the

spacecraft’s trajectory and that trajectories designed under the assumption of

a single-stage system will not be valid for a multi-stage one.

2.3. Analytical Techniques for Low-Thrust Orbit Transfers

With the use of a stage-based electrospray propulsion system, high-∆V

propulsion (>3 km/s) for spacecraft as small as a CubeSat is possible with
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current technology. However, to actually perform these missions, guidance and

control techniques amenable to the limited communication and computational

power of such spacecraft need to be developed. In addition, these techniques

need to be able to account for the effects of staging, specifically the discontinuity

in spacecraft mass at each staging event.

Constraints on the computational power and memory available on CubeSats

[21] limit the use of numerically propagated trajectories as these low-thrust

trajectories can take several months to complete. Simple guidance schemes

[22, 23, 24] have been developed specifically for this purpose and depend only

on a few guidance parameters. However, these methods need to be tuned to a

specific transfer scenario [22], and are therefore not robust to modeling errors,

or control only the geometry of the orbit and not the actual spacecraft state

[23, 24].

The lack of robustness can pose problems for these long-duration transfers

as accurate modeling of the propulsion system performance is difficult. The

SMART-1 mission attempted to use an autonomous open-loop guidance scheme

but saw unacceptable deviation of the spacecraft’s trajectory after only a few

days due to small errors in modeling the propulsion system’s thrust output [25].

Controlling the orbit geometry can be useful for planning flyovers but prevents

the use of the method for rendezvous.

Analytical reference trajectories could solve both of these issues. By provid-

ing an explicit reference trajectory, closed-loop feedback control can be used in

order to stabilize the trajectory in the presence of disturbances. In addition,

since the spacecraft trajectory is an algebraic function of time, such trajecto-

ries can be used for rendezvous. Analytical solutions to low-thrust trajectories

have been developed since the early days of space flight [26, 27, 28, 29] and a

survey of many of the available solutions can be found in [30]. These analyt-

ical solutions have found use in preliminary mission design [31, 32] but their

consideration for use as reference trajectories has so far been unnecessary. The

current paradigm of spacecraft operations for orbit-raising maneuvers on large

spacecraft involves open-loop thrust durations with high-fidelity simulations of
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the spacecraft dynamics with on-Earth resources and frequent ground commu-

nications. In addition, the solutions in [30] have discrepancies in the boundary

conditions between the analytical solution and spacecraft dynamics, meaning

that they cannot be applied as an open-loop guidance scheme as is typically

done. They also assume that any changes in spacecraft mass are due to fuel

mass depletion and therefore cannot account for the effects of staging.

To the authors’ knowledge, none of the available analytical low-thrust trajec-

tories account for discontinuities in the spacecraft mass as would be seen with a

staging system or have been tested as a reference trajectory for orbit transfers.

Therefore, this work aims to extend one of the available analytical solutions

[3] for use with a staging system and simulate its applicability as a reference

trajectory for an orbit transfer. Although this method is developed with stag-

ing systems in mind, all results are applicable to a single-stage, conventional,

system as a special case.

3. Analytical Reference

The analytical trajectory used in this work is an extended version of an

energy-based derivation presented by Wiesel [3]. This particular trajectory is

selected as it assumes a constant propulsive acceleration which will be approx-

imately true for low-thrust spirals. In addition, it assumes that the trajectory

is quasi-circular which will ease stitching of different trajectory segments when

accounting for staging and allow for the use of the Clohessy-Wiltshire frame in

order to design a linear feedback controller. To correct the approximation and

make the trajectory an exact solution of the spacecraft dynamics, the deriva-

tion is extended, in Section 3.1, by fixing the trajectory found from the initial

derivation and then redefining the propulsive acceleration such that the space-

craft exactly follows the derived trajectory - similar to the shape-based deriva-

tions surveyed in [30]. The derivation is then extended again, in Section 3.2,

to account for the effects of using a staging system. The resulting trajectory is

then a piecewise function of time which is dynamically consistent except for the
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boundary conditions between intervals. The role of the trajectory controller in

Section 4 is to correct for these discrepancies.

The specific energy of a spacecraft’s orbit, ε, is given by

ε =
1

2
v2 − µ

r
(1)

where v is the velocity of the spacecraft, µ is the gravitational parameter of the

central body, and r is the radial position of the spacecraft. Assuming that the

orbit is circular, then the specific energy can be written as a function of only

the orbital radius as

ε = −1

2

µ

r
(2)

The time derivative of the specific energy, the specific power, is therefore

dε

dt
=

1

2

µ

r2
dr

dt
(3)

If the spacecraft carries a propulsion system that produces a constant propul-

sive acceleration ap and assuming that the propulsive acceleration is aligned with

the spacecraft’s velocity, then the specific power input to the spacecraft’s orbit

from the propulsion system is

dε

dt
= apv = ap

!
µ

r
(4)

Assuming that the only power input to the spacecraft’s orbit comes from its

propulsion system, then we can equate Eqs. 3 and 4

1

2

µ

r2
dr

dt
= ap

!
µ

r
(5)

which can be rearranged to give an ordinary differential equation for the orbital

radius

dr

dt
=

2ap√
µ
r3/2 (6)

This differential equation can be analytically integrated to give an approxi-

mation for the orbital radius as a function of time

r(t) =
r0"

1− ap

v0
t
#2 (7)
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where r0 is the initial orbital radius and v0 is the initial orbital velocity. The

radial velocity is simply the derivative of the orbital radius

vr(t) =
dr(t)

dt
=

2r0ap/v0"
1− ap

v0
t
#3 (8)

The circumferential velocity can be approximated through the circular orbit

approximation

vθ(t) =

!
µ

r(t)
= v0

$
1− ap

v0
t

%
(9)

Lastly, the angular position can be approximated by integration

θ(t) = θ0 +

& t

0

vθ(τ)

r(τ)
dτ (10)

= θ0 +
1

4

v20
r0ap

'
1−

$
1− ap

v0
t

%4
(

(11)

The trajectory given by this derivation is an approximation of the true space-

craft trajectory for a constant propulsive acceleration aligned with the velocity

vector. The differences between the two trajectories are caused by the assump-

tion that the spacecraft’s orbit is always circular. While the error in the an-

alytical trajectory will be small, especially for low-thrust trajectories, the lack

of consistency between the analytical trajectory and spacecraft dynamics can

cause problems for trajectory stabilization. In addition, the initial and final

radial velocity for the analytical trajectory is not consistent with a circular or-

bit; the radial velocity given by Eq. 8 can not be zero unless the propulsive

acceleration is also zero. This means that at the boundaries of the maneuver,

the radial velocity given by the analytical trajectory will not match that of the

desired initial and final circular orbits.

The problem with consistency between the reference trajectory and the

spacecraft dynamics will be solved in the following section. However, the dis-

crepancy in the initial and final radial velocity will persist. Therefore, a state

feedback controller, discussed in Section 4, will be used to allow the spacecraft

to join the trajectory from an initial circular orbit, and then leave the trajectory

onto a final circular orbit.
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3.1. Correction of Control Input

To correct for the inconsistency between the reference trajectory and the

spacecraft’s dynamics, the input acceleration is redefined. This process is similar

to the shape-based approaches described in [30] where a desired trajectory is

given and the propulsive acceleration is defined in order to allow the spacecraft

to follow the trajectory.

Given the dynamics of the spacecraft’s velocity

v̇r(t) = v2θ(t)/r(t)− µ/r2(t) + ar(t) (12)

v̇θ(t) = −vr(t)vθ(t)/r(t) + aθ(t) (13)

and the velocity derivatives of the trajectory from differentiating Eqs. 8 and 9

v̇r(t) =
6r0a

2
p/v

2
0"

1− ap

v0
t
#4 (14)

v̇θ(t) = −ap (15)

the required ar and aθ to make the analytical trajectory consistent with the

spacecraft’s dynamics can be solved for

ar(t) =
6r0a

2
p/v

2
0"

1− ap

v0
t
#4 (16)

aθ(t) = ap (17)

The required propulsive acceleration is larger than the initial acceleration

used to size the trajectory, ap. However, for low-thrust trajectories, ap ≪ v20/r0

which means that ar ≈ 0 unless t ≈ v0/ap. This will hold for circle-circle

transfers around a large central body since from Eq. 7 as t → v0/ap then r → ∞

so the actual propulsive acceleration of the spacecraft can be used to size the

trajectory with the slow increase in ar being accounted for by the reduction in

spacecraft mass due to fuel mass flow.

3.2. Extension to Staging

Staging impacts the trajectory through discrete drops in the spacecraft’s

mass over time. While the trajectory in Eqs. 7-11 could continue to be followed
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by reducing the propulsion system’s thrust, a trajectory that accounts for the

increased available propulsive acceleration will be faster and more fuel efficient.

To account for the impact of staging, the trajectory is expressed as a piece-

wise function of time where each interval corresponds to an individual stage.

The trajectory in each interval will be given by Eqs. 7-11 and the initial radial

position, r0, and velocity, v0, will need to be correctly defined in order to link

the intervals together. Since all the state variables are defined based on the ra-

dial position, the impact of staging will first be analyzed by defining the radial

position over each interval from which the other state variables will be derived.

Assuming that the propulsion system produces thrust F , the initial space-

craft wet mass is m0, and that the propulsive acceleration is constant for each

stage, then the radial position for the first stage, r1, is given by

r1(t1) =
r0"

1− F
v0m0

t1

#2 (18)

where t1 is the firing time for the first stage. If each stage has lifetime L then

the radial position of the spacecraft at the end of the first stage’s firing will be

r1(L) =
r0"

1− F
v0m0

L
#2 (19)

The second stage then continues the trajectory starting from r1(L). In addition,

the mass of the spacecraft is reduced by the wet mass of the first stage, ms.

Therefore, the radial position of the spacecraft during second stage firing is

given by

r2(t2) =
r1(L)"

1− F
v0,2(m0−ms)

t2

#2 (20)

where the initial velocity, v0,2 is given by

v0,2 =

!
µ

r1(L)
= v0

$
1− F

v0m0
L

%
(21)

Substituting Eqs. 19 and 21 into Eq. 20 gives

r2(t2) =
r0"

1− F
v0m0

L− F
v0(m0−ms)

t2

#2 (22)
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Continuing this argument to a third stage gives

r3(t3) =
r2(L)"

1− F
v0,3(m0−2ms)

t3

#2 (23)

where

r2(L) =
r0"

1− F
v0m0

L− F
v0(m0−ms)

L
#2 (24)

and

v0,3 =

!
µ

r2(L)
(25)

= v0

$
1− F

v0m0
L− F

v0(m0 −ms)
L

%
(26)

which results in

r3(t3) =
r0"

1− F
v0m0

L− F
v0(m0−ms)

L− F
v0(m0−ms)

t3

#2 (27)

In general, for any stage n, the radial position of the spacecraft is given by

rn(tn) =
r0"

1− ∆V1:n−1

v0
− F

v0mn
tn

#2 (28)

where

mn = m0 − (n− 1)ms (29)

∆V1:n−1 =

)
*+

*,

0 n = 1

-n−1
i=1

FL
m0−(i−1)ms

n > 1

(30)

the radial velocity is still given by the derivative of the radial position

vr,n(tn) =
2r0F/v0mn"

1− ∆V1:n−1

v0
− F

v0mn
tn

#3 (31)

and the circumferential velocity is still approximated through the circular orbit

approximation

vθ,n(tn) = v0

$
1− ∆V1:n−1

v0
− F

v0mn
tn

%
(32)
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The angular position of the spacecraft requires extra work. The angular

position during each interval is given by

θn(tn) = θ0,n +

& tn

0

vθ,n(t)

rn(t)
dt (33)

= θ0,n +

& tn

0

v0
r0

$
1− ∆V1:n−1

v0
− F

v0mn
t

%3

dt (34)

Carrying out the integration gives

θn(tn) = θ0,n +
1

4

v20mn

r0F

'
Γ4 −

$
Γ− F

v0mn
tn

%4
(

(35)

where

Γ = 1− ∆V1:n−1

v0
(36)

The initial angular position for each interval can then be defined recursively as

θ0,n =

)
*+

*,

θ0 n = 1

θn−1(L) n > 1

(37)

Finally, in order to ensure that the reference trajectory is consistent with

the spacecraft dynamics, Eqs. 16 and 17 are extended for each stage, n, which

gives a control input during each interval of

ar,n(tn) =
6r0F

2/v20m
2
n"

1− ∆V1:n−1

v0
− F

v0mn
tn

#4 (38)

aθ,n(tn) =
F

mn
(39)

where ar,n = v̇r,n and aθ,n = ap,n which are both consequences of the circular

orbit approximation.

3.3. Numerical Comparison

The analytical reference is compared against a numerical simulation of a

standard velocity-pointing control law. The trajectory of a spacecraft, with

properties given by Table 1, is simulated from an initial 10,000 km circular

orbit until the orbital radius of the spacecraft reaches 20,000 km. Along the
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Table 1: Spacecraft and propulsion system properties

Property Value

Initial mass 4 kg

Stage mass 0.2 kg

Thrust 0.64 mN

Stage lifetime 1000 hr

trajectory, stages are dropped, causing the mass of the spacecraft to decrease

as each stage reaches its lifetime limit. The stage mass in Table 1 accounts for

both the structural mass of the stage as well as the mass of fuel used throughout

the stage’s lifetime assuming a specific impulse of approximately 1500 s.

Figure 3 shows the error in radial position between the analytical reference

in Eq. 28 relative to the numerical simulation for both the entire trajectory and

around the second staging event. The normalized time, t̄, is the trajectory time

normalized by the stage lifetime such that t̄ ∈ {1, 2, 3, . . .} corresponds to staging

events. The error in the analytical reference is oscillatory, centered around zero.

This is due to the circular orbit assumption as the analytical reference does not

capture the effect of eccentricity. However, it gives the average motion of the

spacecraft.

Figure 4 shows the radial velocity for both the numerical simulation and

analytical references near the second staging event (t̄ = 2). Again, time is

normalized by the stage lifetime. Immediately after the staging, the numerical

simulation is continuous, but the center of the oscillations increases slightly. The

analytical reference is discontinuous, but also increases such that the analytical

reference tracks the center of the numerical trajectory.

The analytical reference gives the average motion of the spacecraft for all of

the state variables in the orbital plane if the spacecraft were to use a velocity-

pointing control law. For radial position, angular position, and circumferential

velocity, the analytical reference is continuous and tracks the average change

in each variable. However, for the radial velocity, the analytical reference is
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Figure 3: Error in radial position between the analytical reference and a numerical simulation

versus time normalized by the stage lifetime. Top plot shows the entire trajectory while the

bottom plot shows the error around the second staging event.
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Figure 4: Radial velocity of the numerical simulation and analytical reference versus time

normalized by the stage lifetime around the second staging event.

discontinuous at each staging event. This necessitates a state feedback controller

that can correct for the discontinuity at the beginning of the trajectory, after

each staging event, and at the end of the trajectory. If the discontinuities in

radial velocity were corrected and the spacecraft used Eqs. 38 and 39 for its

control law in each interval, then the analytical reference would exactly match

the numerical simulation.

4. Trajectory Control

The trajectory controller serves to correct the discontinuities in the radial

velocity of the analytical reference and also to reject any disturbances through-

out the trajectory. The controller considered in this work is a continuous-time,

linear feedback controller designed with linear quadratic regulator (LQR) meth-

ods in order to maintain computational simplicity. For the linearized dynamics

model, the Clohessy-Wiltshire frame is used, as the spacecraft’s trajectory is

quasi-circular and the propulsive acceleration is small relative to the local grav-

itational acceleration. It is also assumed that the spacecraft is fully actuated

and can produce thrust in any desired direction. Although attitude control will

not be considered in this work, the use of electrospray thrusters for precise at-
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titude control has been demonstrated previously in a laboratory environment

[33].

The linear dynamics model used to determine the controller gains is therefore
.

//////0

ẋ

ẏ

v̇x

v̇y

1

2222223
=

.

//////0

0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0

1

2222223

.

//////0

x

y

vx

vy

1

2222223
+

.

//////0

0 0

0 0

1 0

0 1

1

2222223

.

0ax
ay

1

3 (40)

where the xy frame is centered on the analytical reference trajectory, x points

in the radial direction, and y is aligned with the circumferential velocity. n is

the angular frequency of the quasi-circular orbit,

n =
4
µ/r3 (41)

ax and ay are control accelerations that are applied in addition to the accel-

erations given by Eqs. 38 and 39 in order to stabilize the spacecraft to the

reference trajectory. Only the states and control accelerations in the orbital

plane are considered here as the dynamics perpendicular to the orbital plane

are decoupled from those in the orbital plane.

A linear feedback controller

ufb = −Kse (42)

is used where se and ufb are the error in the spacecraft state relative to the refer-

ence trajectory and the feedback control accelerations in the Clohessy-Wiltshire

frame respectively

se =

.

//////0

x

y

vx

vy

1

2222223
and ufb =

.

0ax
ay

1

3 (43)

and K is a matrix of control gains calculated in order to minimize the infinite

horizon LQR cost function

J =

& ∞

t0

5
sTe Qse + uT

fbRufb

6
dt (44)

18



where Q and R are weighting matrices.

Since the dynamics matrices in Eq. 40 depend on the spacecraft radial

position, the optimal control gains will also change with radial position. If

the difference in initial and final radius is large, then the control gains can

vary significantly throughout the trajectory. In order to account for this, the

controller gains at a particular orbital radius, r, were calculated through linear

interpolation as

K = K0 + (Kf +K0)
r − r0
rf − r0

(45)

where K0 are the optimal gains at the initial orbital radius, r0, and Kf are the

optimal gains at the final orbital radius, rf . The linear interpolation allows for

smooth transitioning of the controller gains while avoiding the computational

complexity of calculating the optimal gains at each orbital radius. In addition,

the linear interpolation was found to produce comparable results to calculating

the optimal gains at every orbital radius, with errors in the final state being

dominated by any disturbances added to the simulation such as the gravitational

force of the Moon.

5. Implementation

Throughout all tests, the required propulsive acceleration was calculated as

.

0ar(t)

aθ(t)

1

3 =

.

0ar,n(tn)

aθ,n(tn)

1

3−Kse (46)

where ar,n(tn) and aθ,n(tn) are calculated according to Eqs. 38 and 39 and the

linear feedback controller is from Section 4, with gains given by Eq. 45 and

weighting matrices set as

Q =

.

//////0

10 0 0 0

0 10 0 0

0 0 1 0

0 0 0 1

1

2222223
and R =

.

01 0

0 1

1

3 (47)
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The time for a given stage, tn, is calculated as

tn = t− (n− 1)L (48)

The spacecraft has properties given by Table 1 which are representative of

an IEPS-based propulsion system on a 3U CubeSat. The thrust used to size the

reference trajectory is 75% that of the thrust in Table 1. This is to allow for

extra thrust to be applied in order to stabilize the trajectory without saturating

the thrust of the propulsion system. The thrust output of the propulsion system

with the feedback controller is therefore
.

0Fr(t)

Fθ(t)

1

3 = mn

.

0ar(t)

aθ(t)

1

3 (49)

and is saturated such that
7
F 2
r (t) + F 2

θ (t) ≤ Fmax (50)

where Fmax is the thrust given in Table 1.

The spacecraft follows the trajectory defined by Eqs. 28, 31, 32, and 35 from

an initial orbital radius, r0, to a final orbital radius, rf . Once the spacecraft

reaches rf , it is provided with a circular reference trajectory in order to correct

for the excess radial velocity in the transfer reference trajectory from evaluating

Eq. 31 at the final time and stabilize the spacecraft to the desired final orbit.

If the reference trajectory is to be used for rendezvous, then the total angular

position change of the spacecraft needs to be known in order to calculate the

phasing between the spacecraft and the target. Assuming that the number

of stages and total trajectory time are known, then the total angular position

change of the spacecraft can be calculated from Eq. 35 with an assumed initial

angular position at the beginning of the trajectory of zero (θ0 = 0). The number

of stages and trajectory time can be solved based on the radial position. We

know that at the end of each stage’s interval, the radial position will be given

by

rn(L) =
r0"

1− 1
v0

-n
i=1

FL
m0−(i−1)ms

#2 (51)
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Therefore, the required number of stages in order to reach a final orbital radius

of rf can be found by determining the lowest n such that rn(L) ≥ rf . This value

can be calculated numerically or approximated analytically. The summation in

the denominator of Eq. 51 is equal to the ∆V provided by n stages when a

constant propulsive acceleration is used for each stage

∆Vn =

n8

i=1

FL

m0 − (i− 1)ms
(52)

One possible analytical approximation for this ∆V assumes that the total im-

pulse of all n stages is applied to the time-average mass of the spacecraft

∆Vn ≈ nFL

m0 − 1
2 (n− 1)ms

(53)

and is shown to estimate the numerical calculation of the ∆V to within 5%

[20]. Using the analytical approximation for ∆Vn and solving Eq. 51 for the

approximate number of stages in the case that rn(L) = rf gives

n ≈

9
m0 +

1
2ms

: "
1−

4
r0/rf

#

FL/v0 +
1
2ms

"
1−

4
r0/rf

# (54)

The approximation for number of stages permits non-integer values. In this

case, the last stage is only used to some fraction of its lifetime. The actual,

integer, number of stages is found by rounding the output of Eq. 54 up to the

next highest integer.

With the number of required stages calculated numerically or approximated

analytically, the radial position of the spacecraft on the last stage is given by

Eq. 28. The stage time, tn,f , at which the spacecraft reaches the final orbital

radius, rf , can then be calculated by solving Eq. 28 for tn in the case that

rn(tn) = rf . This gives

tn,f =
v0mn

F

$!
r0
rf

+
∆V1:n−1

v0
− 1

%
(55)

The total angular change of the spacecraft, ∆θ1:n, can then be calculated from

Eq. 35 with tn = tn,f . The total angular change of the target, ∆θt, throughout
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the spacecraft’s trajectory is given by

∆θt = [tn,f + (n− 1)L]

;
µ

r3f

which allows the initial phasing between the spacecraft and the target, φ, to be

calculated as

φ = ∆θ1:n −∆θt (56)

Using either a numerical calculation or analytical approximation of the re-

quired number of stages, Eq. 56 can be calculated through a chain of algebraic

operations. This means that calculating the required phasing is practical for im-

plementation on small spacecraft where computational power is limited, which

could enable autonomous rendezvous.

6. Results

For demonstration, the analytical reference trajectory and linear state feed-

back control law are tested on a orbit transfer from low-Earth orbit (7,000 km)

to geostationary orbit (42,164 km) with implementation details described in

Section 5. Figure 5 shows the radial position of the spacecraft during the or-

bit transfer versus time normalized by the stage lifetime. Eq. 54 predicted

8.43 stages required for the transfer and the spacecraft reached the final orbital

radius in 8.28 stages (1.8% error).

Figure 6 shows the angular position error relative to the reference trajectory

during the orbit transfer versus time normalized by the stage lifetime. Due

to the initial discrepancy in the radial velocity, the spacecraft is initially in a

lower orbit than the reference trajectory and as such, the angular position of

the spacecraft moves ahead of the reference trajectory. The error the spacecraft

obtains (∼0.005 degrees) remains constant throughout the transfer trajectory.

Once the spacecraft completes the transfer, it overshoots the final orbital radius

due to the non-zero radial velocity in the reference trajectory. This causes the
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Figure 5: Radial position of the spacecraft during the orbit transfer versus time normalized

by the stage lifetime.

spacecraft’s angular position to drift behind the reference. The resulting nega-

tive error in angular position slowly gets corrected over time as the spacecraft

regulates itself to the final orbit.

Figure 7 shows the error in the radial velocity of the spacecraft relative to

the reference trajectory during the orbit transfer versus time normalized by

the stage lifetime. At each staging event (integer values of time), the error

in the radial velocity spikes due to the discontinuity from Eq. 31. However,

the magnitude of the discontinuity is small (<0.1 m/s) and the state feedback

controller is able to stabilize the trajectory. Another discontinuity occurs at the

end of the transfer trajectory once the spacecraft reaches its final orbital radius.

However, this discontinuity is also small (∼5 m/s) and the feedback controller

is again able to correct for it.

Based on Eq. 56, the required phasing between the spacecraft and a po-

tential rendezvous target is 135.4 degrees, meaning that the spacecraft needs

to start 135.4 degrees behind the target. Figure 8 shows the distance between

the spacecraft and rendezvous target during the orbit transfer versus time nor-

malized by the stage lifetime. Initially the distance oscillates between roughly

35,000 km and 49,000 km, which is expected since the spacecraft is in a 7,000
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Figure 6: Error in angular position of the spacecraft relative to the reference trajectory during

the orbit transfer versus time normalized by the stage lifetime.

Figure 7: Error in radial velocity of the spacecraft relative to the reference trajectory during

the orbit transfer versus time normalized by the stage lifetime.
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Figure 8: Distance between the spacecraft and rendezvous target during the orbit transfer

versus time normalized by the stage lifetime.

km orbit and the target is in a 42,162 km orbit. The oscillations continue to

grow, until on the last leg of the transfer trajectory the spacecraft-target dis-

tance falls to near zero. The distance between the the spacecraft and target at

the end of the simulation is approximately 56 km and is primarily driven by

the error in angular position. However, as seen in Figure 6, the angular posi-

tion error is slowly decreasing at the end of the simulation and over time the

spacecraft-target distance will approach zero.

7. Conclusion

An analytical reference trajectory with linear state feedback controller is

shown in simulation to be able to guide a spacecraft with a stage-based propul-

sion system between two circular coplanar orbits, with application to autonomous

rendezvous. A previously derived analytical approximation for low-thrust spi-

rals is extended to make the trajectory consistent with the spacecraft dynamics

and to account for the effects of staging. The resulting trajectory is piecewise in

time with each interval corresponding to an individual stage. The required phas-

ing between a spacecraft and rendezvous target can be solved for algebraically,

allowing for practical implementation on power-limited computers.
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Use of the analytical reference for rendezvous is simulated for a spacecraft

starting in low-Earth orbit and rendezvousing with a target in geostationary

orbit. The final distance between the spacecraft and target at the end of simu-

lation is 56 km, but is slowly decreasing over time. The final distance is driven

by error in the spacecraft’s angular position, which is a byproduct of the dis-

continuity in radial velocity when joining and leaving the reference trajectory.

However, the spacecraft-target distance is small enough that alternative guid-

ance methods can take over for proximity operations.

Analytical reference trajectories with linear state feedback controllers could

allow for computationally simple guidance and control of autonomous spacecraft

during orbit transfers and rendezvous. While not as accurate as numerically

propagated trajectories, the use of a propulsion system with a continuous range

of thrust levels, such as electrospray thrusters, can be used to correct for the

external disturbances and allow for the use of the simplified trajectory. The

combination of a stage-based electrospray propulsion system, to enable high-∆V

propulsion for small spacecraft, and analytical reference, for computationally

simple guidance, could dramatically increase the capabilities of small spacecraft.
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