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ABSTRACT

The interaction of angular and linear stimuli produces a complex alignment of spatial
orientation and the vestibulo-ocular reflexes (VOR). This phenomenon was studied by
measuring three dimensional eye movements in six male squirrel monkeys during
centrifugation in the dark. The axis of centrifuge rotation was always aligned with gravity
and with the spinal axis of the upright monkeys. The erect monkeys were placed in one of
four orientations: 1) facing into the motion; 2) facing away from the motion; 3) facing the
center of rotation; 4) facing away from the center of rotation. These different orientations
determined the direction of centripetal acceleration with respect to the monkey. Angular
velocity trapezoids were utilized as the motion stimuli with a ramp acceleration (and
deceleration) of ten degrees per second squared to a constant velocity of 200 degrees per
second. This profile provided a final centripetal acceleration of 1 g, which yielded a gravito-
inertial force which was tilted 45 degrees with respect to earth vertical and which had a
magnitude of 1.4 g.

The orientation of centripetal acceleration dramatically altered the VOR by changing the axis
of eye rotation, the peak value of slow phase eye velocity, and the time constant of per-rotary
decay. The axis of eye rotation always tended to align with gravito-inertial force, the peak
value of slow phase eye velocity was greater when the monkey faced the motion than when it
faced away from the motion, and the time constant of decay was smaller when the monkey
faced the motion than when it faced away from the motion. These findings were statistically
significant (p <0.05) and were very consistent across all monkeys.

As previous research has indicated, further modeling of the data indicates that the VOR may
be separated into two reflexes: a linear reflex and a rotational reflex. The linear reflex decays
as the axis of eye rotation aligns with gravito-inertial force (GIF). These results, along with
other data in the literature, indicate that gravito-inertial force is resolved into two components;
one representing an internal estimate of linear acceleration and one representing an internal
estimate of gravity.

A "sensory conflict" model of spatial orientation is developed. The model is based upon
observer theory, optimal observer theory (Kalman Filtering), and more general nonlinear
concepts. The model hypothesizes that the central nervous system of the squirrel monkey
"knows" the dynamics of the sensory organs and uses this knowledge to create an internal
model of the sensory systems. The internal model receives as input the internal estimate of
linear acceleration and angular velocity. The output of the internal model is the expected
sensory afference. The expected sensory afference is compared to the actual sensory
afference to yield sensory conflict. The sensory conflict information drives the internal
estimate of linear acceleration and angular velocity toward the true values. The predictions of
the model are compared to results from this thesis and from the literature.

Thesis Supervisor: Dr. Laurence R. Young
Title: Professor of Aeronautics and Astronautics

2



ACKNOWLEDGEMENTS

The acknowledgements have proven to be the hardest portion of this thesis to write.
How can I thank those who have played such important roles? Thomas Paine once wrote,

"These are the times that try men's souls. ...in this crisis, (many) shrink
from the service of their country (or friend); but he that stands it now,
deserves the love and thanks of men and women."

Thomas Paine, of course, was not writing about his Ph.D. thesis, but his words seem
appropriate nonetheless. I thank all of those who have put up with me during these trying
times and ask that you accept this mercifully short and simple thanks.

The faculty and staff of the Man-Vehicle Lab have earned my thanks. Professor
Young provided advice and guidance whenever it was required. Dr. Oman planted some of
the seeds which led to this thesis. Dr. Natapoff helped a great deal with experiment design.
Sherry, provided assistance and counseling well beyond the call of duty. Bob R. also
supplied a great deal of advice, some of which I mistakenly ignored. Thanks also to
Marilyn, Barbara, Pat, Kim and Jim.

The rest of my thesis committee (Professors Held, Valavani, and Wall) deserve
special thanks.

Without the Vestibular Research Facility (VRF) and the VRF staff most of this
work would not have been possible. Many thanks to Dr. Tomko who was instrumental in
making sure that this research was completed. The rest of the VRF staff (Shawn, Pat, Tim
0., Tim F., Greg, Jim, Ginny, and Ann) often provided assistance beyond the call of duty.

Dr. Paige developed and performed the surgery. Without this work and his advice
the project couldn't have been successful.

The Center for Space Research has provided a pleasant environment for this work
and has also provided a large number of necessary services. Thank you!

Friends are probably the most significant and necessary part of anyone's life.
Please accept this humble tribute. (Some of my friends have already been mentioned, and
ya' only get acknowledged once.) Mark Twain once wrote,

"There's plenty of boys that will come hankering and gruvvelling around
when you've got an apple, and beg the core off you; but when they've got
one, and you beg for the core and remind them how you give them a core
one time, they make a mouth at you and say thank you 'most to death, but
there ain't-a-going to be no core."

I guess Samuel Clemens wasn't lucky enough to have friends like mine!

Dava proved to be the best officemate, roommate, and soulmate I ever had. Brad is
the best Australian friend I ever had. Dave S. and Ted shared the "most excellent"
adventure I ever had. Mark was the most helpful peer I ever had.

At times when I needed refuge from MIT, a number of friends opened their homes
to me. Thank you Eric and Laura; Ron and Noemi; Aga and Yusuf; the Clark family; and
JoJo.

3



Thanks are also due to Mike M., Rich, Yasmin, Andrew & Aude, Roberta, Mary,
Anthony, Kathy, Jennifer, Amy, Tom, Scott, Mike F., and Bryan.

I also want to recognize my family who have supported me in every possible way.

And finally, I would like to thank Eilis for moral support and so much more during
those times when it was most needed.

To all of those, listed and unlisted, who have helped me survive an often turbulent
trip. Thank you very much.

I would also like to thank those who have provided financial support during my
stay at MIT: various NASA contracts (NASW-3651, NAG2-445, NAS9-16523), the
NASA Graduate Student Researchers Program, the GE Forgivable Loan Fund, PSI, and
the VRF (via the SJSU Foundation). Thanks are also due to Imagine That who provided a
version of "Extend" to the MVL.

4



Biographical Sketch

Dr. Merfeld obtained a Bachelor of Science in Mechanical
Engineering (B.S.M.E.) degree from the University of
Wisconsin - Madison in 1982. He went on to Princeton
University where he obtained his Master of Science in
Engineering (M.S.E.) in 1985. His M.S.E. thesis, entitled
Magnetoplasmadynamic (MPD) Thruster Performance:
Propellant Injection and Species Effects, investigated the
basic physics of MPD propulsion.

Dr. Merfeld has published papers in propulsion and space
physiology and has an interest in human factors in the arctic.

Dr. Merfeld has a number of incredibly boring stories about
trips to China and the Arctic. He also has plans for a
number of boring vacations including trips to Alaska, the
Orient, and the CCCP.

5



TABLE OF CONTENTS

ABSTRACT ........................................................................ 2

ACKNOWLEDGEMENTS ........................................................ 3

LIST OF FIGURES .............................................................. 9

LIST OF TABLES ............................................................... 11

CHAPTER 1. INTRODUCTION ...................................................... 13

1.1 Thesis Organization.................................................. 18

1.2 Coordinate System.................................................... 19

CHAPTER 2. ANALYSIS OF EYE M OVEMENTS ............................. 23

2.0 Introduction.............................................................. 25

2.1 Calculation of Eye Orientation and Eye Velocity......... 26

2.1.1 Bac kground..................................................... 26

2.1.1.1 Eye Kinematics...................................... 26

2.1.1.2 Eye Measurement.................................. 30

2.1.2 Theoretical Derivation......................................... 31

2.1.2.1 Methods and Notation............................. 31

2.1.2.2 Coil Orientation...................................... 33

2.1.2.3 Eye Velocity......................................... 38

2.1.2.4 Eye Orientation...................................... 40

2. 1.3 Practical Considerations........................................ 41

2.2 Fast Phase Detection and Removal............................. 45

2.2.1 Background..................................................... 47

2.2.1.1 Manual Analysis.................................... 48

2.2.1.2 Semi-Automated Analysis......................... 48

2.2.1.3 Automated Analysis................................ 49

2.2. M etho sd , .......................................................... 53

2.2.2.1 Acceleration Detection (1st Pass)......... 54

2.2.2.2 Velocity Detection (2nd Pass).......... 60

2.23. Additional Processing (Low Pass Filtering).............. 61

2.2.4 Conclusions ..................................................... 61

2.3 Parameter Estimation................................................. 69

CHAPTER 3. VOR DURING CENTRIFUGATION............................ 73

3.0 Introduction.............................................................. 75

3.1 Background.............................................................. 76

6



3.2 M ethods...................................................................

3.2.1 General Procedures..............................................

3.2.1.1 Facility.................................................

3.2.1.2 Subjects...............................................

3.2.1.3 Surgical Procedure...................................

3.2.1.4 Monkey Restraint....................................

3.2.1.5 Eye Coil Recording..................................

3.2.2 Centrifug ation ....................................................

3.3 Results.....................................................................

3.4 Controls...................................................................

3.4.1 Static Tilt ..........................................................

3.4.1.1 Methods and Results.................................

3.4.1.2 Conclusions.........................................

3.4.2 Dumping Tests.................................................

3.4.2.1 Methods..............................................

3.4.2.2 Results...............................................

3.4.2.3 Conclusions.........................................

3.5 Discussion..............................................................

3.6 Conclusions............................................................

TER 4. SENSORY CONFLICT M ODEL ..................................

4.0 Introduction............................................................

4.1 Background.............................................................

4..L. Physiological and Psychological M odels...................

4,.L2 Classical Engineering System Models................

4.L1.3 M odem ngineering System Models........................

4.2 Development...........................................................

4.2.1 General Sensory Conflict M odel.......................

4.2.2 One-dimensional Sensoy Conflict M odel..................

4.2. Multi-dimensional Sensory Conflict Model...............

4.3 Predictions..............................................................

4.3.1 "Visual Dumping" Experiment..............................

4.3.2 "Barbecue Spit" Experiment......................

4.3.3 "OVAR" Experiment...........................................

4.3.4 "Dumping" Experiment........................................

4.4 Conclusions............................................................

TER 5. SUMMARY AND CONCLUSIONS..............................

7

84

84

84

84

84

.86

86

87

87

97

97

97

100

100

100

102

102

102

112

113

115

116

116

118

124

127

130

138

144

153

153

154

158

158

162

167

C HAP

CHAP



APPENDIX A. DATA ACQUISITION............................................. 171

APPENDIX B. DATA ANALYSIS (CALCULATION OF SPV)............. 175

B.1 Automation Programs.............................................. 175

B.2 C Analysis Programs............................................... 182

B.3 Matlab Analysis Programs........................................ 205

APPENDIX C. EYE MOVEMENT CALIBRATION............................. 221

APPENDIX D. MODEL CODE ..................................................... 225

R EFER EN CES ........................................................................... 243

8



LIST OF FIGURES

Chapter One

Figure 1.1 Gravito-Inertial Force (GIF) Resolution Hypothesis...................... 17

Figure 1.2 Coordinate System............................................................. 20

Chapter Two

Figure 2.1 Orbital Cavity..................................................................... 27

Figure 2.2 Extraocular Muscles ............................................................ 28

Figure 2.3 Coordinate Rotation ............................................................ 32

Figure 2.4 Calibration Jig.................................................................. 43

Figure 2.5 Test With Calibration Jig...................................................... 44

Figure 2.6 Test With Slow Phase Velocity............................................... 46

Figure 2.7 Slow Horizontal Saccade (with Vertical Saccade).......................... 56
Figure 2.8 Slow Horizontal Saccade (with Blink)....................................... 57

Figure 2.9 Frequency Response of Differentiators....................................... 59

Figure 2.10 Low Pass Filter.................................................................. 62

Figure 2.11 Horizontal SPV Processing (Large Time Scale)............................ 63

Figure 2.12 Vertical SPV Processing (Large Time Scale)............................... 64

Figure 2.13 Torsional SPV Processing (Large Time Scale)............................. 65
Figure 2.14 Horizontal SPV Processing (Small Time Scale)............................ 66

Figure 2.15 Vertical SPV Processing (Small Time Scale)............................... 67

Figure 2.16 Torsional SPV Processing (Small Time Scale)............................. 68

Figure 2.17 Least Squares Fit................................................................ 71

Chapter Three

Figure 3.1 VRF Centrifuge................................................................... 85

Figure 3.2 Centrifuge Orientation......................................................... 88

Figure 3.3 Centrifuge Data (Facing Motion and Back to Motion)..................... 89

Figure 3.4 Calculation of 0v................................................................. 92
Figure 3.5 Centrifuge Data (Facing Center and Back to Center)...................... 96

Figure 3.6 Calculation of &r.................................................................. 98
Figure 3.7 Weak Static Response........................................................... 99

Figure 3.8 Strong Static Response......................................................... 101

Figure 3.9 Dumping (Right Ear Down)................................................... 103

Figure 3.10 Dumping (Nose Down)........................................................ 104

Figure 3.11 Simple VOR Model............................................................. 106

Figure 3.12 Linear VOR (Single Peak)......................................................108

Figure 3.13 Linear VOR (Double Peak) ................................................... 109

9



Chapter Four

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27

Figure 4.28

Figure 4.29

Appendix B

Figure B.1

Figure B.2

Figure B.3

Appendix D
Figure D.1

Von Holst's Model..............................................................

Held's M odel....................................................................

Reason's M odel.................................................................

Robinson's M odel...............................................................

Raphan/Cohen M odel..........................................................

Young's M odel.................................................................

Oman's M odel..................................................................

Oman's Linearized Model.....................................................

Sensory Conflict Model.......................................................

Linearized Sensory Conflict Model..........................................

Sensory Conflict Model (w/o Voluntary Control)..........................

Linearized Sensory Conflict Model (w/o Voluntary Control)..............

M atrix Transfer Function Representation....................................

One Dimensional Linear Model................................................

One Dimensional Velocity Storage Model....................................

"Velocity Storage" - Model Predictions......................................

"Velocity Storage with Adaptation" - Model Predictions...................

Three Dimensional Velocity Storage Model..................................

Three Dimensional Sensory Conflict Model.............................

Error Calculations...............................................................

"Visual Dumping" - Data.......................................................

"Visual Dumping" - Model Predictions..................................

"Barbecue Spit" - Data.....................................................

"Barbecue Spit" - Model Predictions.........................................

"OVAR" - Data...............................................................

"OVAR" - Model Predictions..................................................

"Dumping" - Data...............................................................

"Dumping" - Model Predictions.............................

Proposed Sensory Conflict Model............................................

Global Process Flow...........................................................

"Analyz4l.bat" Process Flow..............................

"Desaccade.m" Process Flow.................................................

Sensory Conflict Model Implementation..................................... 226

10

117

119

120

122

123

125

128

129

131

132

134

135

137

139

140

142

145

146

148

151

155

156

157

159

160

161

163

164

165

176

183

206



LIST OF TABLES

Chapter Three

Table 3.1 Test M atrix....................................................................... 90

Table 3.2 Table of Peak ValuesTable ................................................... 93

Table 3.3 Table of Time Constants.................................................... 95

11



12



INTRODUCTION

LAoandt da Vinci

"Our body is a machine for living. It is organized for that, it is its nature."
Leo Tolstoy

"Not that the story need be long, but it will take a long while to make it short."
Henry David Thoreau

13



14



CHAPTER ONE

INTRODUCTION

Perception of body orientation and perception of motion are among the most

fundamental tasks performed by the central nervous system (CNS). Incorrect

determination of orientation or perception of motion can be inconvenient or even lethal.

When these important perceptual processes are impeded by ambiguous and contradictory

sensory information, they can lead to inappropriate or destructive behavior.

A well known law of physics (equivalence principle) states that no physical device

can detect the difference between gravity and linear acceleration. Gravito-inertial force

(GIF) is the vector sum of gravitational force and the force due to linear acceleration. All

animals on earth live in an environment in which gravity is always present, and in which

they sometimes accelerate themselves linearly. Since the ability to assess self-orientation

and self-motion is critical to posture and other voluntary tasks, many species have

developed a specific sensory modality to detect gravito-inertial force. Since only total GIF

can be sensed, these species must develop some consistent strategy to resolve GIF into

estimates of gravity (or "down") and linear acceleration (or linear motion) and must

produce the appropriate response to each.

From a practical viewpoint, the resolution of gravito-inertial force into its

components is a very important neural process. A pilot performing evasive maneuvers will

rapidly accelerate. The process through which pilots resolve GIF into acceleration and

"down" will affect their sense of orientation, and hence, can be a matter of life or death. In

a rotating space station the process by which the CNS resolves gravito-inertial force into its

components will be more complicated than on earth. Head motion out of the plane of

rotation will result in otolith sensed "coriolis forces" which, at least at first, will be very

disorienting. Understanding the process by which gravito-inertial force is interpreted on

earth is necessary to understand the adaptation process which will occur on a rotating

spacecraft.
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In all mammals, the otolith organs are the sensory organs which transduce changes

in gravito-inertial force. These physiological linear accelerometers, like all linear

accelerometers, respond both to linear accelerations and to changes of orientation with

respect to gravity. This ambiguity is normally resolved by interpreting the signals from the

otoliths in light of other sensory information. For example, a moving visual field could

assure the subject that he was accelerating linearly. Similarly, a semicircular canal signal

indicating rotation could confirm a change in orientation with respect to gravity.

One method used to study the processing methods of the central nervous system is

to provide situations in which the conflicts are not easily resolved. In the case of linear

accelerations, one experimental method often used is that of centrifugation. In this method,

the subjects are rotated about an axis which is displaced by some distance from the subject.

The noncentric rotation results in a centrifugal force which, in the subject's reference

frame, is vectorially added to gravity to yield the total sensed gravito-inertial force. A task

facing the central nervous system of the subject is to determine which vector component of

the gravito-inertial force represents gravity or "down" and which component represents

linear acceleration or linear motion.

The central hypothesis tested in this thesis is that the CNS resolves the gravito-

inertial force into components such that the estimates of gravity and linear acceleration will

sum to the total sensed gravito-inertial force vector (i.e. such that g - a = f). Specifically, I

predict that the CNS uses all available sensory information to make an estimate of "down".

In some manner, the CNS compares this estimate of "down" with the total sensed gravito-

inertial force. The difference between these two quantities, one measured (GIF) and one

computed ("down"), is then attributed to linear acceleration. (See figure 1.1.)

This hypothesis is investigated by measuring the vestibulo-ocular reflex (VOR) in

six male squirrel monkeys during centrifugation. Reflexes are often measured as a tool to

investigate physiological systems. For studies of body orientation and perception of

motion, eye movements are often the most conveniently measured response. In all of the

16



GRAVITO-INERTIAL FORCE (GIF) RESOLUTION HYPOTHESIS

-a

0

g -

-a

Notation:

g is gravitational force.

a is centripetal acceleration.

f is gravito-inertial force (GIF).

9 is the internal estimate of gravitational force.

a is the internal estimate of linear acceleration.

Notes:

g, a, and f are measurable quantities which are determined by the physics of the
situation being experienced.

9 and a are hypothesized to be determined by the CNS to represent internal
estimates of "down" and linear acceleration.

Observe that the internal representation of acceleration ( a ) can have a component
which is parallel to the axis of rotation and another perpendicular to this axis.

Figure 1.1
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experiments presented herein, the reflexive eye movements known as the vestibulo-ocular

reflex (VOR) were recorded as the only physiological measurement.

Previous research has shown that the rotational VOR is sensitive to the presence of

gravity (Raphan et al., 1981; Tomko et al., 1986). Other research has demonstrated the

presence of linear VOR during centrifugation (Young, 1967). In this thesis I study the

relationship between the rotational VOR and the linear VOR during centrifugation and use

these results to support the GIF resolution hypothesis shown in Figure 1.1. I believe that

these experiments are the first to simultaneously examine rotational responses and linear

responses in an effort to track the resolution process.

1.1 Thesis Organization

The major portion of this thesis is included in Chapter 3 and Chapter 4. These

chapters present experimental results and a model which helps explain the results. Chapter

2 presents the methods by which the data was analyzed and may be skipped without any

consequence for those interested only in the physiological conclusions or implications.

Chapter 2, entitled "Analysis of Eye Movements", has three major components. In

Section 2.1, I discuss the implications of eyeball kinematics and develop a method to

calculate the exact eye velocity and the exact eye orientation from a set of non-orthogonal

coils. Section 2.2 presents the method and computer algorithms which were used to

remove fast phase eye movements from the data. Section 2.3 briefly discusses the least

squares algorithm used to estimate the response time constants.

Chapter 3, entitled "VOR During Centrifugation", presents the experimental

findings which support the GIF resolution hypothesis shown in Figure 1.1. In section 3.1

I discuss of a number of background studies. In Section 3.2 and Section 3.3, I present the

experimental methods and the experimental results,respectively. In Section 3.4, two

control studies are discussed. These studies along with the centrifugation study support the

conclusions which are presented in Section 3.5. Finally, the findings and conclusions are

summarized in Section 3.6.

18



Chapter 4, entitled "Sensory Conflict Model", also has three major components.

Section 4.1 presents a historical perspective of sensory models which lead to the sensory

conflict model. In Section 4.2, I develop the general theory underlying the model. In

Section 4.3, the performance of the model is compared to experimental data from the

literature.

Finally, in Chapter 5, evidence supporting the basic hypothesis is reviewed and

suggestions are made for future investigations. The model is also summarized and the

most important suggestions are reviewed.

1.2 Coordinate System

Choice of a single coordinate system helps keep the analysis and presentation

simple. The most widely used coordinate system for vestibular research is that defined by

Hixson et al. (1966). This orthogonal right-handed coordinate system is shown in figure

1.2. The positive x-direction is defined to point in the forward direction, the positive y-

direction is defined to point toward the subject's (or specimen's) left, and the positive z-

direction is defined to point out the top of the head. (See Figure 1.2.)

Oftentimes, eye movements are referenced to a left-handed coordinate system. In

order to avoid the confusion associated with using two different systems, I have

deliberately chosen to reference the eye movements to the right-handed coordinate system

presented in Figure 1.2. This choice of reference frame may prove slightly confusing

when I cite other literature. In those cases, I have attempted to parenthetically refer to the

notation used in the literature. I feel that using a single coordinate system eliminates more

confusion than it creates. If any questions about the reference frame arise, simply refer to

Figure 1.2.

Eye velocity will be discussed throughout this thesis. It is important to remember

that all eye movements are actually the rotation of a sphere-like eyeball. The rate of rotation

of the eye is most accurately represented by a vector aligned with the axis of rotation. The

terms horizontal eye velocity, vertical eye velocity, and torsional eye velocity will have their
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standard meanings and will always be used to refer to eye rotation with respect to a head

fixed reference frame. Horizontal eye velocity corresponds to horizontal motion of the iris.

This angular velocity is represented by a vector with its axis of rotation aligned with the z-

axis of the head (o). Similarly, vertical eye velocity will have its axis of rotation aligned

with the y-axis of the head (coy), and torsional eye velocity will have its axis of rotation

aligned with the x-axis of the head (cox).
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II

ANALYSIS OF EYE MOVEMENTS

M. C. Ear

"There's language in her eye..."
William Shakespeare

"This shows how much easier it is to be critical than to be correct."
Benjamin Disraeli
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CHAPTER TWO

ANALYSIS OF EYE MOVEMENTS

2.0 Introduction

In this chapter I present the methods which were used to analyze eye movements.

Because I am particularly interested in estimating certain parameters (e.g. gains and time

constants) related to slow phase eye velocity, I consider the analysis process to include

three distinct stages:

1. Converting eye measurements to eye orientation and eye velocity.
2. Detecting and removing the fast phases.
3. Determining the gain and time constants of the slow phase eye velocity.

These three stages of processing will be discussed in sections 2.1, 2.2, and 2.3,

respectively.

Conversion of eye measurements to eye orientation and then to eye velocity are

complicated by the kinematics and kinetics of three dimensional rotations. Finite three-

dimensional rotations are n=i commutative (i.e. the order of the rotations is important).

Furthermore, the kinematics of rotation dictate that perpendicular measurements are not, in

general, independent . Usually both of these facts are ignored, and this leads to errors

which are usually small (<5%) but can be much larger as will be shown. In section 2.1 of

this chapter I present a method which uses the measurements made using scleral search

coils to find the exact three dimensional orientation and velocity of the eye. Test results are

presented to confirm the theoretical calculations.

Detection and removal of fast phases from nystagmus is a complicated process

which has been investigated by many researchers. The approach I take accounts for the

three dimensional nature of the measurements. The software works in two sequential

steps. In the first step, a method reminiscent of Michael's (1977)) is used to identify and

remove almost all of the saccades. In the second step, a model fit is determined, and the

residuals are evaluated to indicate the presence of saccades which were undetected in the
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first step. In section 2.2 of this chapter the methods are presented and algorithm

performance is briefly discussed.

Determining the gain and time constants for slow phase eye velocity is inherently a

nonlinear estimation process. In section 2.3 of this chapter, briefly discusses the algorithm

used to estimate the parameters.

2.1 Calculation of Eye Orientation and Eye Velocity

2.1 Background

2.1.1.1 Eye Kinematics

The eyeballs, which are nearly spherical in shape, occupy the two orbital openings

in the skull. (See figure 2.1.) Each eyeball is surrounded by fatty and connective tissue

which allow the eyeball to rotate within the hard walls of the bony skull.

Rotation of the eye occurs when any one of the six extraocular muscles is activated.

These muscles are often divided into three sets of push-pull pairs. One pair is formed by

the superior rectus and the inferior rectus. These muscles insert, respectively, on the top

and bottom of the eyeball and are primarily responsible for vertical eye movements. A

second pair of muscles is formed by the medial rectus and the lateral rectus, which insert,

respectively, medially and laterally. This pair of muscles induces horizontal eye

movements. The final pair of muscles, the superior and inferior obliques, have slightly

more complicated insertions. The inferior oblique passes across the lower half of the

eyeball to insert on the lateral side of the eye. The tendon of the superior oblique muscle

passes through a ring of cartilage called the trochlea, which is firmly attached to the skull.

This tendon then continues on the rear of the eyeball to the the insertion point on the lateral

side of the eye. The inferior and superior obliques are mainly responsible for torsional

rotations of the eye. Figure 2.2 graphically shows the extraocular muscles and their points

of insertion.

Because the eye is neither perfectly spherical nor fixed to rotate about a single point,

the eye can translate and the center of rotation can shift. It is universally accepted that these
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effects are small, so we often assume that the eyeball is spherical, and that it rotates about a

point fixed with respect to the eye and the head. Under these assumptions, eye motion has

three degrees of freedom. Therefore, at least three parameters are required to completely

define the orientation of the eye in the head.

The position and/or the rotation of the eye are not properly discussed unless a

reference frame is assumed. For almost all eye rotations an appropriate reference frame is

the skull since the actuators (extraocular muscles) are all fixed in the skull. This provides a

reference frame which is independent of all exterior disturbances (e.g. head motion).

If the spherical eyeball has three degrees of freedom then, in general, at least three

parameters are required to completely specify eye position and eye velocity. According to

Alpern (1969), early researchers (Donders; Listing; and Helmholtz, 1925) suggested that

eye position could be fully characterized with only two parameters. Invariably, these

researchers constrained eye motion to voluntary control of gaze position which can be

represented with only two parameters.

Three dimensional quantities like force and velocity are often represented by vectors

having three components. It is, therefore, tempting to represent a three dimensional

rotation by a vector. Mathematically, a quantity may be represented by a vector only if it

commutes under addition. In mathematical notation:

Force and velocity can be shown to obey the commutative law of addition, but it is easy to

show that this does not hold for finite three dimensional rotations. The order of rotations is

crucial unless the rotations are constrained to occur about a single axis or are infinitesimally

small. Therefore, vectors cannot be used to represent finite rotations.

The rotation of a reference frame can be represented by a 3 x 3 matrix composed of

direction cosines (called the rotation matrix or the direction cosine matrix), by a 4 parameter

set called a quaternion (also known as Kayley-Hamilton parameters, Pauli spin matrices,

Euler parameters, and the rotation group SU), or by a set of three Fuler angles. Direction
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cosines and Euler angles are more physically intuitive than quaternions, therefore I will use

these parameter sets for the theoretical development which follows. Some of the

calculations are, however, implemented using quaternion theory.

It can easily be shown that angular velocity, representing an infinitesimal rotation

divided by time, does obey the commutative law of addition. Therefore angular velocity

a be represented by a vector. [For further discussion of rotational kinematics of the eye

see Westheimer (1957) or Tweed and Vilis (1987). For a more general view of rotational

kinematics and kinetics, see any analytical dynamics text (such as Hughes, 1986) or any

classical mechanics text (such as Goldstein, 1959).]

2.1.1.2 Eye Measurement

For the experiments presented later in this thesis, scleral search coils (Robinson,

1963) were used to measure the orientation of the eye. Coil placement errors are, of

course, unavoidable during the surgical procedure used to implant the coils. These

placement errors can confound the measurement of eye orientation by introducing cross-

talk between the measurements.

Haddad et al. (1988) evaluated the effect of coil placement errors and determined

that with eye displacements of less than 10 degrees and with coil placement errors of less

than 10 degrees, the eye position error was always less than 10%. By evaluating the

distribution of eye position, they further estimated that the mean error is less than 5%.

For the data presented in the following chapter, the assumption that eye

displacement is less than 10 degrees was often violated leading to large theoretical errors

(approximately 30%) in eye velocity. Therefore, I needed to develop a method which

corrects for coil placement errors to yield exact estimates for eye orientation and eye

velocity. Theoretically, there are =l errors inherent in this method of analysis since it is an

exact solution of the kinematic and kinetic problems. This indicates that the resolution is

limited only by the accuracy of the calibration procedures and by the inherent measurement
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limitations (e.g. measurement noise). Section 2 of Appendix B lists the C programs used

to implement these algorithms.

2.L2 Theoretical Derivation

2.1.2.1 Methods and Notation

Two right handed reference frames will be defined and used for these calculations.

The first reference frame [x y z] is fixed in the head. The second reference frame [x' y' z']

is defined by the orientation of the eye coils. These two coordinate systems share a

common origin which is fixed at the center of rotation of the eye. The orientation of the

coordinate systems are identical when the eye is in the primary position. This orientation is

shown in Figure 1.2.

The rotation matrix will be defined such that it transforms from the head fixed

reference frame [x y z] to the rotated reference frame [x' y' z']. The transformation can be

written as:

c 11  C12  c 13 l rx~
r'= Cr =C21 C22 C23 ry

L c31 c32 c33 irz.

The Euler angle representation will be defined with the first angle (0 ) defined as a

rotation about the z-axis, the second angle (02) defined as a rotation about the new y-axis,

and the third angle (03) defined as a rotation about the new x-axis. The sign convention

used is that all rotations are defined positive when the rotation obeys the right hand rule.

[E) corresponds to Robinson's 0. 02 corresponds to Robinson's -<b. 03 corresponds to

Robinson's -N'.] See Figure 2.3.

Each measurement in a Robinson coil arrangement is proportional to the cosine of

an angle between two unit vectors. The first vector is defined by the direction of the

magnetic field. The second vector is normal to the plane of the search coil. Two spatially

orthogonal magnetic fields in phase quadrature allow us to measure two direction cosines
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[xi yi zi] is the reference frame after a rotation of 01 about z.
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[x3 Y3 z3] is the reference frame following the final rotation of 03 about X2.

The final rotated reference frame [x' y' z'] is equivalent to [x3 Y3 z3]-

Figure 2.3
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with a single search coil. Each measurement will be proportional to the angle between the

normal to the search coil and one of the magnetic fields. A second search coil, which

doesn't overlap with the first, will allow us to measure two additional direction cosines as

defined by the normal to the second coil and each of the magnetic fields. (See Robinson,

(1963) for a more detailed discussion.) As will be shown, in an error-free and noise-free

world, these measurements could be used to determine the four unknowns: the three

directions of eye rotation and the angle between the search coils.

Notation

cij represents the cosine of the angle between the i'th coil with the j'th direction in

the [x y z] coordinate system. Coil 1 is defined to be the coil which encircles the iris of the

right eye. The x-axis would pierce the center of the coil in the absence of coil placement

errors. Coil 2 is the remaining coil which is lateral to the right eye such that, in the absence

of placement errors, the negative y-axis would pierce the center of the coil. Direction 1 is

defined by the x-axis which is fixed in the head, direction 2 is defined by the y-axis, and

direction 3 is defined by the z-axis. With magnetic fields parallel to the y-axis and the z-

axis, the four measurements yield c 12, c 13, c2 2, and c23.

cij represents the cosine of the angle between the i'th direction in the rotated [x' y'

z'] coordinate system with the j'th direction in the [x y z] coordinate system.

The derivations which follow are divided into three parts. First, I will find the

orientation of the coils with respect to the head. I will then use this result to determine the

angular velocity of the eye with respect to the head. Finally, will correct for coil placement

errors to find the orientation of the eye with respect to the head.

2.1.2.2 Coil Orientation

The goal of the following calculations is to determine the Euler angle representation

of coil rotation with respect to the head when the measurement coils are not orthogonal.

When the head is fixed with respect to the field coils, as is usually the case, the problem

can be reduced to two simpler problems. First, use four measurements to determine the
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angle between the two eye coils. Once this angle is known, determine the coil orientation

using three measurements.

First we will determine the orientation of the coils in the head. Using solid

geometry we can show that:

C' + (c'J~ + (c1I3)F=

Because the eye cannot rotate beyond 90 degrees, a further constraint is provided by:

c11 >0.

Therefore:

C'11 =+1-(c'12f - (c'13F

A unit vector pointing from the center of rotation through the center of the first

search coil (c',) can be determined. Mathematically, it is written as:

cii

C1 = c 12

c'1 3 J

where c'1 2 and c 13 are measured and c', 1 is calculated.

Similarly for the second coil we know that:

(c'21) + (c'22J + (c'23) = .
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C'21 = i 1 (C'2 - (C23

Either solution is physically possible depending on the position of the eye.

Therefore more information is required. An additional constraint is that the angle between

the two eye coils is constant. Therefore, the dot product of the vectors representing the

position of the eye coils must be constant. Mathematically this can be written as:

C - c2 = c'C11C2 1 + c12c22 +c 13 c23 =cos()= k

Substituting the previous expression for c 12 , we find that:

cos (Y)= c'12 c22 + c13 c2 3 ± cI I c'21

Since cos(y) is a constant, one solution of this equation will be constant. It can easily be

proven that this equation has only one constant solution. The alternate solution will vary

with eye position. Thus, I can determine the angle between the two eye coils.

Once I have determined the angle between the eye coils, only three measurements

are needed to completely define the orientation of the search coils in the head. The

necessary measurements are those defined by Robinson (1963). The necessary

calculations are shown below.

As before, I begin by determining the unit vector pointing from the origin through

the first coil. If I arbitrarily define this axis to be the x'-axis, then:

_, C12 =1 C12

C13 -.
.C13 -.
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As before, I know that:

(c'21Y + (c'22 + (c'23 =1

and that:

C'1 -c'2 = c1 IIc'21 + cI2c22 +cI3c23 = cos (y)= k

These two equations can be simultaneously solved for tne two unknowns (c1 2 and c22).

Due to the squares which occur in the first equation two solutions are possible. For eye

movements which are limited to rotate less than 90 degrees from the resting position, only

one of the solutions is possible. Therefore:

S 1 c',V-k2 + 2c'13c23k + (c'1 2) + (c 1 Y - (c 2 3 Y + c12k - cc12c 3c23

(C'12 + (c 1 )
2

and:

. k -c 1 2 c 2 2 - c 1 3 c'2 3
C21 -

C11

A unit vector pointing from the center of rotation through the second coil can now

be defined. It can be written as:

C21

C2  C2 2

L c2 3 .
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Next we need to determine the rotation matrix which transforms from the head fixed

coordinate system to the coordinate system defined by the eye coils. Rotation matrices are

easily defined for orthogonal coordinate system, but since the search coils are not

orthogonal, I will develop an orthogonal coordinate system which is fixed with respect to

the search coils.

Any two vectors define a plane. Hence C'j and ' define a plane. A unit vector can

be found which is perpendicular to this plane. This vector is defined to be the z' axis. z' is

found as shown below:

--0 -C31 - 7
zo C32 cl x -C2

C33 - |Cx C2.

Since the coordinate system is defined to be right handed:

SC21

Y' C22 =z' x x'

C23 -.

Therefore we have developed an orthogonal coordinate system [x' y' z'], which is

fixed in the eye and is defined by the orientation of the coils. The orientation of [x' y' z']

with respect to [x, y, z] can be represented by a rotation matrix (Cch) where:

x C1 c C12 C13

Cch = IT =C21 C22 c23
--T .C31 C32 C33.

.z J
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This rotation matrix represents the orientation of the search coils with respect to the

head. If the Euler angle representation is desired, it can be calculated from the following

equations:

02 = sin-1 (-c13)

0,= sin-1 (c2/cos(02)

03 = sin-1 (c23/cos(0 2).

This method exactly determines the orientation of the coils with respect to the head

and will be used to calculate eye velocity.

2.1.2.3 Eye Velocity

The goal of the following calculations is to determine the angular velocity of the eye

with respect to the head. Since the eye coils are fixed to the eye, the angular velocity of the

coils equals the angular velocity of the eye. For reasons of simplicity and accuracy, we

will simply calculate the angular velocity of the eye coils.

A number of possible approaches are available to determine the rate of angular

rotation when angular orientation is known. With additional manipulation, differentiation

of the 9-element rotation matrix, the 4-element quaternion, or the 3-element Euler angle can

yield angular velocity. I have chosen the approach of differentiating the the Euler angle

representation because it requires the least computation and because it offers the most

physically intuitive approach.

Differentiating each of the three previously defined Euler angles we obtain:

-delOtj = -----
dt,

dt

0)3 = d03
dt
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Each of these Euler rates is a vector quantity. co, has a direction which aligned with

the head fixed z-axis, cot is aligned with the yi axis, and C03 is aligned with the x2 axis.

(See figure 2.3)

These non-orthogonal angular velocities can easily be converted to the head fixed

coordinate system [x y z] by the transformation:

= S(0 1,0 2 ) 8 = S()1,(2) 02

03.

where,

S(01,02)

0

0

1

-sin(0 1)

cos(9 1)

0

cos(01)cos(0 2)

sin(0 1)cos(0 2)

-sin(02)

The transformation matrix can also be inverted yielding:

0 = S- 1 (01,02)o

where,

S-1(1,02) =

cos(0 1) sin(82)

cos(0 2)

-sin(61)

cos( 1)

cos(0 2)

sin(0 1) sin(62)

cos(6 2)

cos(8 1 )

sin(01)

cos(0 2)
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This method calculates the angular velocity of the eye given the Euler angle

representation of eye coil orientation.

2.1.2.4 Eye Orientation

The goal of the following calculation is to determine the orientation of the eye with

respect to the head from measurements which represent the orientation of the coils with

respect to the head.

Using rotation matrices we can show that the rotation matrix describing the

orientation of the coils with respect to the head equals the product of the rotation matrix of

the coils with respect to the eye times the rotation matrix of the eye with respect to the head.

This is written as:

Cch = CceCeh

It is easily shown that:

Ceh = CecCch =ceCch,

where the superscript represents the transpose operation.

The orientation of the coils with respect to the eye is constant. Therefore,

experiments may be conducted to yield the rotation matrix which represents the orientation

of the coils with respect to the eye (Cc,) (e.g. have the subject look a point which is directly

in front of the eye). Once this error quantity is experimentally determined, we can easily

calculate the absolute eye orientation with respect to the head.

The basic procedure to determine the orientation of the eye in the head is:

1. Use four measurements to determine the angle between the two eye coils.
2. Use three measurements to find the orientation of the coils in the head (Cch)-
3. Use the error matrix (Cce) to correct for the coil placement errors.
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This simple procedure yields the orientation of the eye with respect to the head.

If an Euler angle (01,02, and 03) representation of eye orientation is desired. It

can easily be determined from the rotation matrix (Ceh):

02 = sin-1 (-c13)

E) = sin- 1 (c12/cos( 2 )

03 = sin-1 (c23/cos(0 2 ).

2.1. Practical Considerations

In the previous section, a procedure which calculates the exact orientation and

velocity of the eye from four error-free measurements was developed. In practice,

measurement noise and calibration difficulties make four error-free measurements

impossible.

As previously discussed, a search coil system measures the direction cosines

between the axis of the coil and the magnetic field. The standard coil configuration sets the

orientation of the search coils such that three of the measurements yield the maximum

possible sensitivity; i.e. such that:

--- (cos(0i)) = -sin(8j)
dOi

is at an extrema. This occurs when 0, is +900. However, if three of the coil measurements

are maximally sensitive to changes in orientation, geometrical considerations show that the

fourth measurement will demonstrate absolute insensitivity to changes is orientation (i.e.

sin(0 4 ) equals zero). In the presence of noise and other measurement errors, this leads to

obvious difficulties.

Therefore, an alternate method is presented to estimate the angle between the eye

coils. Once the angle between the coils is determined, we will use the three maximally

sensitive measurements to exactly estimate eye orientation.
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The basic idea is to apply a controlled rotational stimuli and measure the response.

It is widely known that the response normally aligns with the stimulus (e.g. yaw rotations

yield horizontal eye motion while pitch yields vertical eye motion). By estimating values of

the angle between the eye coils we will effectively change the axis of the response. By

minimizing the difference between the axis of the response and the axis of the stimulus, we

obtain a very good estimate of the angle between the eye coils.

I will use an example to both demonstrate the method and verify its accuracy.

Previous researchers (Haddad et al, 1988) have shown that coil placement errors appear on

the roll measurement during pitch stimulation. Theoretically we predict that the roll velocity

should be zero during pitch. By iteratively estimating a value for the angle between the

coils and minimizing the RMS value of the estimated roll response we can determine the

angle between the coils.

The method was validated using the calibration jig shown in figure 2.4 (Haddad et

al., 1988). Two coils were placed on the jig such that the angle between the coils was

nominally 800 with less than 20 of inaccuracy. Figures 2.5a and 2.5b show the

measurements of pitch and roll during a pitch of the calibration jib before any corrections

were made. Notice the large amount of roll indicated even though the motion doesn't have

a roll component. Now we estimate the value for the angle between the coils and measure

the RMS of the roll channel. This process of estimating the angle between the coils and

determining the RMS error is repeated until the RMS error is minimized. In this example,

the value of the angle which minimized the RMS was 78.50. This accuracy was well

within the range of experimental error. Figure 2.5d shows the estimated roll response

with an estimated angle of 78.50.

This process was repeated with the angle between the coils nominally set at a value

of 900 and 1000. The angle between the coils was estimated to be 89.50 and 98.50,

respectively. This accuracy was judged sufficient.
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CALIBRATION JIG

Figure 2.4
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An identical process was used to estimate the angle between the coils in vivo.

Figure 2.6 shows the uncorrected data and the corrected roll response for specimen F.

This estimation process was carried out every test session for every specimen, and, as

expected, was relatively stable over time for any single specimen.

2.2 Fast Phase Detection and Removal

Conjugate eye movements, the simultaneous motion of both eyes in the same

direction, are an easily accessible physiological response which are often measured by

researchers and clinicians. Large amplitude (> 1 degree) conjugate eye motion can be

broken down into three categories: fast eye movements, slow eye movements, and

nystagmus.

Fast eye movements include saccades and blinks. Saccadic eye movements begin at

rest, accelerate quickly to a high velocity, and then decelerate quickly to a stop. Often the

movement'are completed in less than 100 msec. These eye movements are ballistic in

nature, in that, once begun, they cannot be altered. This type of motion is made while

reading or when fixating stationary objects. Blinking results in a quick upward and then

downward movement of the eye to near its original position. This type of motion generally

is completed in less than 250 msec.

Slow eye movements show much more gradual accelerations. This type of eye

movement can reach high velocities (> 50 degree per second), but they accelerate to these

velocities much more gradually than saccades. Unlike saccades, these motions are not

ballistic, and they are often used to track slowly moving objects.

Nystagmus is a type of eye movement which demonstrates a saw-tooth wave

pattern. These eye movements combine components from both fast eye movements and

slow eye movements. During nystagmus, slow eye movements (slow phases) and

saccades (fast phases) alternate. This results in a saw-tooth appearance of the waveform.

This type of eye movement is made during large whole-body rotations and during large

amplitude motions of the visual field.
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Since both the slow and fast components may contain information of interest to the

researcher or clinician, it is useful to separate these components of nystagmus. Analysis of

nystagmus (i.e. separation of fast and slow components) is a very time consuming manual

task. Since the slow phases and fast phases share a significant band of the frequency

spectrum, simple analog or digital filtering is not adequate to separate these components

(Massoumnia, 1983). Therefore, more advanced digital methods are required to detect the

presence of each of the components and to separate them. Furthermore, it has been shown

that manual analysis of nystagmus leads to large person-to-person variability (Gentles and

Barber, 1973), since human operators have personal biases.

For these reasons, the analysis of nystagmus is an important process. The digital

computer seems particularly well suited to assist in this task.

2.2 Background

Because a large number of people study eye movements for a host of different

purposes, a number of different approaches have been developed to analyze eye

movements. These analysis techniques are difficult to classify because most modem

analysis systems are hybrid systems that combine elements that cross any arbitrary

classification boundaries. Nevertheless, it is helpful to attempt to group the analysis

methods approximately. Hybrid systems that cross the arbitrary boundaries will be

classified into the category which I feel best describes the most important system

characteristics.

The analysis of nystagmus uses three classes of methods manual, semi-

automated, and automated. Manual methods are defined as all analog methods even though

a number of short cuts have been used in the analog methods. Semi-automated methods

are defined as those which, in some way, make use of the data processing capabilities of

the computer, but require frequent interaction with a well-trained human operator.

Automated methods are defined as those in which most, if not all, of the processing is

performed by a computer, with little or no human intervention.
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2.2.1.1 Manual Analysis

The simplest manual method of nystagmus analysis is hand analysis of eye position

records. These methods use hand measurements to find the slope, and thus the velocity, of

the slow or fast component of the nystagmus to yield a beat by beat estimate of the slow or

fast phase of the velocity. In another similar type of method the number of fast phases are

simply counted to yield an estimate of the strength of nystagmus.

The next level of manual methods introduces an analog differentiation of the eye

position record to yield an estimate of eye velocity (Henriksson, 1955). Slow phase eye

velocity can be manually scored from these records for further analysis.

Other simple analog devices are also used. These devices (Guedry et al, 1968;

Voots, 1969) are relatively easy to use, but inflexible. The analysis yielded by these

methods is limited to only one component-of the response, and the methods may lead to

operator dependent errors which, unintentionally lead to biased results.

The manual methods provide quick and and reasonably accurate results, but they

are labor intensive, time consuming, and require highly trained technicians. Before

inexpensive access to computers, however, they were the best choice available.

2.2.1.2 Semi-automated Analysis

The first semi-automated method was actually a hybrid analysis system (Anzaldi et

al, 1975). A simple automated saccade detection algorithm used a difference calculation to

estimate eye velocity. If the estimated eye velocity had a sign opposite that input by an

operator and was larger than a threshold value, a saccade was indicated.

The most interesting feature of this system was that it included algorithms,

particularly graphics packages, which allowed a trained operator to inspect and, if

necessary edit the computer analyzed data.
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The major problem of this algorithm relates to the automated portion of the analysis.

The automated analysis assumed unidirectional nystagmus (i.e. slow phases in one

direction and fast phases in the other). Unidirectional nystagmus is relatively rare and this

severely limits the usefulness of the automated portion of the program. The operator

interaction with the computer output, however, is a very important feature of the procedure.

Another method using a semi-automated approach took advantage of knowledge of

the input stimuli and the types of expected nystagmus responses to perform detection

(Barnes, 1982). It relied on the pattern recognition capabilities of a human operator to

detect fast phases. This system assumes normal linear transfer functions relating a slow

phase velocity output to the input stimulus. Given an input waveform and a system

transfer function, the predicted slow phase velocity output is easily calculated. Using

cursor controls and graphic displays, the operator can set up thresholds on both sides of the

predicted slow phase velocity. Points lying outside of the threshold limits are discarded

and a least squares algorithm is used to interpolate slow phase velocity.

This procedure inherently assumes that the oculomotor response is normal. This

often is not the case and for clinical data, where abnormal data may be the norm, it certainly

is not an acceptable assumption.

Both of the semi-automated methods are labor intensive. However, even automated

methods must allow for rudimentary manual editing.

2.2.13 Automated analysis

Several types of automated systems have been discovered independently by

different groups. One common type of system calculates a difference or digitally

differentiates eye position to obtain an estimate of eye velocity (Tole and Young, 1971;

Baloh et al., 1976; Ni, 1980). Detection is performed by setting velocity thresholds.

Another type of algorithm looks for alternating maxima and minima of the eye position

trace (Honrubia et al., 1971; Tokita et al. 1975; Wall et al., 1981). The data between these

peaks are evaluated to see if it represents a fast or slow component or some other type of
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event. A final type of system performs two digital differentiations to yield an estimate of

eye acceleration (Gentles, 1974; Michaels, 1977; Massoumnia, 1983). Detection is

performed by setting appropriate acceleration thresholds. This section will be organized

with these class boundaries in mind.

Velocity Detection

A group of researchers at an ENT clinic in Sweden were among the first to

recognize the role that computers could play in analyzing nystagmus and to write an

algorithm (Herberts et al, 1968). The method is not precisely defined, but it appears that a

difference calculation is performed and an appropriate threshold is set to detect the fast

phases.

A similar, but more developed set of programs, called MITNYS (Tole and Young,

1971) and MITNYS-II (Allum et al., 1975), were developed by researchers at MIT.

MITNYS-II used digital differentiation to estimate eye velocity. On the basis of the

direction and velocity of eye movements a point was classified as a slow movement or a

fast movement. This algorithm used a closed-loop feedback of the program's current

estimate of the slow phase eye velocity. This sometimes caused instabilities. The

program's output compared reasonably to the analysis performed by an experienced

physician.

During the same period, a similar set of algorithms was developed independently by

a group at UCLA (Baloh et al, 1976; Baloh et al., 1980). This group further specified that

saccades were those eye movements which exceeded a velocity threshold for more than a

minimum duration. In addition, these researchers provided means for manually editing the

computer results.

A later group used similar techniques, but created a type of synthetic data for further

analysis (Hansson et al, 1982). Fast phases were detected with a velocity threshold

method. Once fast phases were detected, linear least square fits were performed on the

slow and fast components of the response. The intersections of these lines indicated the
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turning points of the nystagmus. The linear least square fits were used to form "synthetic"

nystagmus. The synthetic segments were classified as slow or fast phases using velocity

and duration criteria. Finally the synthetic nystagmus is stored for further analysis. The

authors claimed that the synthetic nystagmus fully represented the original nystagmus while

drastically reducing computer memory requirements.

An interesting twist to this approach for saccade detection used a high pass filter to

remove the slow phase components of the eye movement (Ni, 1980). A velocity threshold

test was applied to determine fast phases, and a least squares curve fit interpolated within

the saccadic interval.

Position Detection

The alternating minima and maxima of eye position data for nystagmus analysis

were first used by a group of UCLA researchers (Honrubia et al., 1971; Sills et al., 1975).

They calculated simple differences on the eye position data, and detected points of interest

by changes in sign of that computed difference. These points of interest were then checked

with threshold and minimum duration test to detect saccades.

A similar algorithm was developed independently at nearly the same time (Tokita et

al., 1975). Again points of interest were chosen based upon sign changes of a difference

calculation, and further tests were applied to verify that a saccade had occurred.

Wall and Black (1981) utilized similar methods. Alternating minima and maxima

were detected using a simple difference technique. These points of interest were connected

using straight line segments to yield a form of synthetic nystagmus. Slope and

displacement thresholds are applied to the synthetic data to identify the fast phases. Further

analysis is performed on the original data record where simple interpolation methods are

used to fill the saccadic intervals. It is important to note that the synthetic nystagmus is

used for saccade detection only and is not substituted for the original data record.

Another approach (Baland et al., 1987), like the position methods described

previously, begins by identifying the local maxima and minima of eye position. The
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magnitude of the difference is compared to an ad hoc threshold which is chosen as one half

of the mean value of the derivative calculated for the whole trace. (The authors claim that

this threshold is related to the quality of the signal.) The data between the maxima and

minima are numbered and the duration of the slow or fast component is evaluated. A phase

is assume slow if its duration is long. These slow phases are fit with a sinusoidal curve

having the same frequency as the stimulus. All previously labeled components are

compared to this fit and the errors are evaluated. Components with large errors are

rejected. This iterative process is repeated until no previously accepted phases are rejected.

The major limitation of this approach is that it is limited to sinusoidal data analysis.

Acceleration Detection

Gentles (1974) was the first researcher to use eye acceleration as part of the process

of analyzing nystagmus. A difference operation yielded an estimate of eye velocity, and a

velocity threshold was used to determine the presence of saccades. A second difference

operation yielding eye acceleration was performed, and the acceleration peaks were used to

define the beginning and end of the saccade. A number of ad hoc adaptive features were

used to give greater immunity to errors. The program output agreed fairly well with

manual scoring.

In another approach (Michaels, 1977), the author used FIR filtering to detect fast

phases. Eye position was convolved with a 9 point integer-valued finite impulse response

(FIR) filter, and a threshold test was applied to the output of the filter. Frequency response

of the matched filter showed that at low frequencies (0-7 Hz) the filter acted as a double

differentiator. (The filters could have been modeled as a double differentiator in series with

a low-pass filter.) The program analysis correlated well with the analysis performed by an

experienced physician.

Later, this method was improved by redesigning the digital filters (Massoumnia,

1983) to yield better and less noisy estimates of eye acceleration. Because the eye

acceleration signal has near-zero mean, detection was performed using eye acceleration and
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eye velocity.. The acceleration threshold used was an ad hoc sum of RMS noise and a

value input by the system operator. A careful comparison of human scoring and algorithm

analysis showed that for a slow phase velocity of greater than 20 degrees/sec, the program

detected 100% of human scored saccades. But for slow phase velocity less than 10

degrees/sec, the program only detected 80% of the saccades detected by a trained human.

Perhaps more importantly, these authors (Michaels, 1977; Massoumnia, 1983)

recognized that estimates of peak slow phase velocity or the total number of detected

saccades are not good measures of algorithm performance. Instead, the probability of

event detection, the probability of missing an event, and the probability of false alarms

should be used to evaluate algorithm performance.

2.2.2 Methods

As scientists and engineers, we artificially divide eye movements into the

orthogonal components that we measure (usually horizontal and vertical components and,

sometimes, the torsional component). Of course, as previously discussed, the actual eye

movements are the rotation of a sphere-like eyeball which may have components of motion

along any of the measurement axes. Two or three orthogonal measurements divide the

vector of eye motion up into its Cartesian coordinates. By analyzing each of the

components individually we ignore important information available to us during the

analysis of nystagmus.

The analysis approach used in this thesis attempts to make use of all available

information while analyzing nystagmus. This approach transforms the Cartesian

measurements to a spherical coordinate system. In spherical coordinates the magnitude of

velocity or acceleration is represented by a single parameter and is independent of the

direction in which the vector points. The total magnitude of eye acceleration is compared to

a threshold set by the user. If the acceleration exceeds the threshold a "fast phase" is

detected and removed. This simple process detects almost all of the fast phases in the data

sets which were analyzed. This step is further discussed in section 2.2.2.1.
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After detecting the majority of the fast phases, a second processing step is utilized

to remove most of the saccades missed by the first step of processing. This second pass at

the data is done using a least square parameter estimation process (Ljung, 1987). The

residuals of the model fit are compared to a threshold set by the user. If the residual is

larger than the threshold an "event" is detected and removed. This processing step is

further discussed in section 2.2.2.2.

All of the fast phase detection and removal algorithms were implemented in Matlab

(copyright by Mathworks) using the macro (M-file) capabilities of Matlab. In the entire

data set, a few saccades (< 10) were manually removed.

2.2.2.1 Acceleration Detection (1st Pass)

A literature review and personal inquiry have convinced me that eye acceleration is

the most appropriate domain to detect events if the signal is relatively noise free (like the

search coil measurements analyzed in Chapter 3). Previous users of this approach

(Michaels, 1977; Massoumnia, 1983), digitally differentiated eye position twice to yield an

estimate of eye acceleration. A threshold was set based upon user experience and the

quality of the signal. The major difference between this approach and Massoumnia's

algorithm is that I utilize a spherical coordinate system to calculate the total magnitude of

eye acceleration. All previous approaches, to my knowledge, analyzed each component of

the eye motion separately.

There are a number of advantages of a multi-dimensional approach to the analysis

of eye movements. These are:

1) In contrast to a Cartesian analysis, which is biased toward the detection of"events" aligned with the measurement axes, the analysis in spherical coordinates
is unbiased in direction.

2) Beginnings and endings of "events" are more easily determined (e.g. slow
saccades often occur because a blink or another saccade occur in another axis).

3) Computation time will be reduced if the detection algorithm is run only once
instead of once for each measurement axis.

Each of these advantages is briefly addressed below.
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Advantage # 1

The bias of the Cartesian system of analysis is demonstrated by an oblique saccade

(i.e. any saccade whose direction is not aligned with the measurement axes). This type of

saccade will have components of its acceleration which project onto at least two of the

measurement axes, and each of the projections will always be less than the total magnitude

of the saccade. Another saccade, identical in all respects except that it is aligned with a

measurement axis, will have a larger component along the measurement axis than the

oblique saccade. This saccade will be more easily detectable than an oblique saccade. This

shows that Cartesian analysis is biased toward events which occur along the measurement

axes.

Advantage #2

Figure 2.7 shows a "slow" saccade. If we look only at the horizontal component of

the saccade, the end of the saccade is very difficult to detect. If we also include the vertical

component of the eye movement we observe that the "slowness" of the eye movement is

explained by a nearly simultaneous vertical saccade. The beginning and the end of the

event are more easily detected when both horizontal and vertical signals are utilized.

Figure 2.8 shows another "slow" horizontal saccade. Again, the end of the saccade

is difficult to detect if we ignore the vertical eye movement. And once again, if the vertical

eye movement is included in our analysis, we see that the "slowness" of the eye movement

is explained by a nearly simultaneous blink (Bell's phenomenon). The beginning and the

end of the event are more easily detected when all information is utilized.

Figures 2.7 and 2.8 are not rare occurrences. Both were found in a single data set

along with many other similar events. A very rough estimate for eye movements of

squirrel monkeys indicates that at least 3% of fast phases behave like these "slow" events.

Advantage #3

If more than one component of eye motion is to be analyzed, computational time

can be reduced. It obviously takes less time to run an algorithm once than it would to run
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SLOW HORIZONTAL SACCADE (with Vertical Saccade)
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SLOW HORIZONTAL SACCADE (with Blink)
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the identical algorithm more than once. The additional preprocessing time required to

square and sum the components is much less than that required for event detection.

Therefore, a multi-dimensional approach to nystagmus analysis: 1) is unbiased

with respect to direction. 2) finds beginnings and ends of events more easily. 3) is faster.

For these reasons I have implemented an algorithm similar to Massoumnia's with a

detection scheme based upon the total magnitude of eye acceleration. The programs which

implement this algorithm are called DETECT1.M. (These programs are implemented using

M-files in Matlab and are listed in Section 3 of Appendix B.).

The eye velocity is calculated as discussed in Section 2.1. The three orthogonal

components of eye velocity are digitally differentiated to yield eye acceleration. Finite

impulse response (FIR) filters are used to calculate both eye velocity and eye acceleration.

The differentiation was implemented via a direct convolution of the filter coefficients with

the input signal. A five element filter was used to calculate eye velocity and a nine element

filter was used to calculate eye acceleration. The filter coefficients for the five element filter

are:
B=[-l 1 0 % -l]f 3 = [25 50 0 -50 -25]

8 4 4 8

where f, is the sampling rate (200 Hz). The filter coefficients for the nine element filter are:

B=[-J- 00 0 0 - ] f =[12.5 0 0 0 0 0 0 0 -12.5]
8 8

The frequency response of each of these filters is shown compared to an ideal differentiator

in Figures 2.9a and Figures 2.9c. The actual frequency response can be modelled as an

ideal differentiator in series with a low-pass filter. The equivalent low-pass filters are

shown in Figures 2.9b and 2.9d.

The magnitude of the acceleration is calculated by finding the square root of the sum

of the squares:

a IVx2 + a2+ (X2
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If the magnitude of the eye acceleration exceeds a threshold set by the user (The

acceleration threshold was typically set between 800 and 2000 deg/s2) an "event" is

detected. The end of the saccade is the point where the magnitude of the eye acceleration is

less than a second user set threshold (The end threshold was typically set between 500 and

1000 deg/s2) for at least three points in a row.

The median value of eye velocity for the five points preceding the start of the

saccade is determined. This value is substituted for the true eye velocity during the

saccade. This method was selected over an interpolation approach because the end of the

saccade is much harder to detect the the beginning. The slow phase velocity is resampled at

20 Hz and sent to the second stage of processing.

2.2 2.2 Velocity Detection (2nd Pass)

The second pass at the data is performed by a set of programs called DETECT2.M.

(These programs are implemented using M-files in Matlab and are listed in Section 3 of

Appendix B.) First each of the three components of eye velocity are divided into 10 signals

each sample at 2 Hz. This is accomplished by choosing every tenth point with a starting

point of one through ten, respectively. Each of these thirty signals (3 components of

velocity times 10 signals each) is fit by a least squares model of the form:

y[n+1] = a y[n] + b u[n] + w[n+1]

where,

y[n] is the slow phase eye velocity (yaw, pitch, or roll),
u[n] is the angular acceleration stimulus,
w[n+l] is white noise,
and a and b are the model parameters determined by the model fit.

(See Ljung, 1987 for an exhaustive discussion of this type of parameter estimation.)

The residuals for each of the three components are summed and squared. If the

magnitude of the residuals exceeds a user set threshold (The velocity threshold was

typically between 20 and 50 deg/s) each of the components is replaced by the value

predicted by the best fit model.
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This very simple ad hoc algorithm worked very well at removing nearly all of the

saccades which were missed by the acceleration detection algorithm. As mentioned

previously, the acceleration algorithm is not very good at detecting the end of the saccades.

The end sometimes is declared to be a point or two before the end an intelligent user would

define. This simple algorithm is also very good at finding and removing these points.

2.2. Additional Processing (Low Pass Filtering)

After all of the saccades are removed, the slow phase eye velocity is passed through

a low pass filter. The FIR filter is implemented using direct convolution such that there is

no phase shift at any frequency (zero-phase filter). The filter has 45 coefficients and was

designed to have a frequency cut-off of 2 Hz. Figure 2.10 shows the frequency response

of the filter. The filter coefficients were calculated using the Remez implementation of the

Parks-McClellan algorithm. (See Oppenheim and Schafer, 1975 for further discussion.)

22A Conclusion

Figures 2.11, 2.12, 2.13 show the slow phase eye velocity during the various

stages of processing for a typical run. Figure 2.11 shows the yaw response, figure 2.12

shows the pitch response, and Figure 2.13 shows the roll response. Figures 2.14, 2.15,

and 2.16 show a potion of the same data with a dramatically different time scale.

The overall performance of the algorithm is acceptable for this particular data set.

This performance is similar to that obtained for all of the coil data analyzed. Therefore, this

algorithm appears adequate for analysis of the coil data discussed in Chapter 3.

A few thoughts for future work became very evident while working on this portion

of the data analysis. I feel it is inaccurate to interpolate over the course of a saccade.

Instead, I feel that further analysis should simply ignore the regions of the data stream

which are detected as events.

I think that an iterative least squares approach should replace the least square

parameter estimation discussed in Section 2.2.2.2. The iterative least square approach

would require more computation, but it would increase the algorithm accuracy.
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HORIZONTAL SPV PROCESSING (Large Time Scale)
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VERTICAL SPV PROCESSING (Large Time Scale)
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TORSIONAL SPV PROCESSING (Large Time Scale)
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HORIZONTAL SPV PROCESSING (Small Time Scale)
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VERTICAL SPV PROCESSING (Small Time Scale)
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TORSIONAL SPV PROCESSING (Small Time Scale)
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The three dimensional approach discussed in this chapter is an improvement over

one dimensional analysis when more than one signal is available. It is slightly more

accurate than the one dimensional approach and the amount of computation is dramatically

reduced compared to analyzing two or three components separately.

2.3 Parameter Estimation

Previous research (Oman and Young, 1970) has determined that the transfer

function representing the rotational response to angular velocity has the form:

spv(s) = K S2
CO(s) ('i s + 1) (ta s +)

The time response of this system to a step in angular velocity can be shown to have the

form:

spv(t) = A e4V' + B e-V .

In order to solve for the unknown parameters (A, B, Ti, and ta), we need to solve a

nonlinear estimation problem. This must be solved iteratively.

A number of methods have been developed to perform this type of nonlinear

estimation. Almost all of these methods calculate a parameter which represents "goodness

of fit" and attempt to minimize this parameter. Generally the merit function used is the sum

of squared errors. Minimizing this x2 merit function determines the best fit in the least

squares sense. Since our model is nonlinear, the minimization process proceeds until the

x2 merit function is effectively minimized.

One algorithm which performs this type of iterative fit is the Levenberg-Marquardt

method, also known as the Marquardt algorithm (Press et al., 1986; Marquardt, 1963;

Levenberg, 1944). This algorithm has become accepted as the standard method used to

perform least squares nonlinear parameter estimation. This algorithm has been
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implemented as part of an interactive data analysis package called IGOR (copyright

WaveMetrics, 1989).

Figure 2.17 shows the curvefit obtained to synthetic data of the form:

y(t) = 100 e-t/15 - 20 e-t/80 + n(t)

where n(t) is gaussian noise with a variance of 1. The algorithm calculates a curvefit of:

y(t) = 99.67 e-t/ 14 -94 - 19.66 e-t/ 81.2

This performance is acceptable.
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III

VOR DURING CENTRIFUGATION

M. C. Ehor

"There are three kinds of lies: lies, damned lies, and statistics."
Benjamin Disraeli

"Some circumstantial evidence is very strong, as when you find a trout in the milk."
Henry David Thoreau
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CHAPTER THREE

VOR DURING CENTRIFUGATION

3.0 Introduction

In this chapter I present a set of experiments which investigate spatial orientation in

the squirrel monkey. Specifically, I investigate how squirrel monkeys resolve gravito-

inertial force into components representing "down" and linear motion. The hypothesis

being tested claims that gravito-inertial force as sensed by the otoliths is resolved into two

components. One component represents linear acceleration, while the second component

represents gravity. This hypothesis will be supported by the results that follow and by a

number of studies from the literature.

To investigate this hypothesis, three types of experiments were performed on each

of six squirrel monkeys. Two of these tests were used as control studies to investigate the

effects of gravity on the VOR: static tilt tests and "dumping" tests. The central test used

centrifugation to introduce a gravito-inertial force which did not align with gravity.

The static tilt test is a very simple control designed to investigate spontaneous

nystagmus induced by the force of gravity. With the lights off, the monkeys were

manually positioned with respect to gravity and the eye movements were recorded.

The dumping test is a relatively simple test designed to investigate the effects of

gravity on post rotary VOR. The monkeys were spun at a constant velocity till the

responses were nearly extinguished (80 seconds) and then quickly decelerated to a stop.

As quickly after stopping as possible, while the post rotary VOR was still strong, the

monkeys were tilted with respect to gravity, and the VOR response recorded.

The central experiment of this thesis was designed to investigate how the CNS

would resolve a gravito-inertial force (GIF) composed of gravity and centrifugal force into

components representing gravity and linear acceleration. During centrifugation, the

monkeys were always kept upright with respect to gravity. In this fixed orientation, they

were spun about a non-centric vertical axis such that the centripetal acceleration was
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perpendicular to gravity. The orientation of the monkey with respect to the centripetal

acceleration was varied for different trials.

This chapter is organized around these three experiments. In Section 3.1 a number

of background studies from the literature are discussed. In Section 3.2, I present the

methods used to perform the centrifugation tests, followed by the results in Section 3.3.

Section 3.4 presents the control studies. Finally, sections 3.5 and 3.6, respectively,

contain a discussion of the results and a review of the conclusions.

3.1 Background

The sense of spatial orientation is dependent upon the interaction of many sensory

systems, including the senses of vision, proprioception, touch, audition, as well as the

vestibular labyrinth. The dominant role.for most dynamic tasks is played by the labyrinth.

This set of sense organs dominate the experimental studies conducted in this thesis almost

to the exclusion of the other senses. Therefore a brif word about the importance of the

other senses is necessary.

. Vision dominates the remaining sensory systems and has therefore been studied

most copiously. Vision has long been known to induce strong sensations of motion. Most

of us in our own experience can recall the compelling sense of motion induced by the

movement of a large visual field such as a stream flowing beneath a bridge or the

movement of a train viewed through the window of a stationary train. The conditions

necessary for this illusion have been thoroughly studied and are fairly well understood

(Dichgans and Brandt, 1974; Held et al. 1975; Young, 1981).

The role of tactile cues was demonstrated when a stationary subject touching a

rotating surface experienced a sense of self motion (Brandt et al., 1977). While less

compelling than the sense of motion induced by visual stimulation, the sensation was

strong enough to induce compensatory eye movements in some of the subjects.

The role of proprioceptive cues was demonstrated in a clever experiment performed

by Bles (1979). He designed a simple room that appeared to allow the subjects to walk

76



around in a small circle inside a drum. Actually, the subjects were stationary and the floor

moved beneath them. Eye movements and sensations similar to those obtained during true

circular walking were achieved in the absence of true motion.

Not surprisingly, auditory cues have also been shown to be important to spatial

orientation. At least two studies (Lackner, 1977; Buizza'et al., 1979) have demonstrated

effects of auditory cues upon eye movements and upon motion sensation.

Despite the importance of each of these cues, a number of studies have indicated the

important, if not dominant role, played by the vestibular system. Many of these studies

have used subjects with partial or complete loss of vestibular function (Guedry and Harris,

1963; Graybiel and Clark, 1965; and Miller et al., 1966). Because of the important role

played by the vestibular apparatus, the remainder of this chapter will emphasize the

vestibular component of spatial orientation.

Scientists began to gain an understanding of the vestibular system in the mid 19th

century when it was found that destruction of the vestibular labyrinth of an animal led to

turning in one direction (Flourens, 1842). A later study suggested that the semicircular

canals sense rotation of the head (Goltz, 1870).

Later in the 19th century, the physiology of the semicircular canals began to be

understood. Three independent studies (Mach, 1873; Breuer, 1874; and Crum Brown,

1874) suggested that the parameter sensed during rotation was angular acceleration and that

the vestibular system was the transducing organ.

In the early 20th century, Steinhausen demonstrated the presence of a cupula in

each of the semicircular canals. After studying the characteristics of the vestibular

responses, he developed a second order mechanical model (later developed as the "torsion

pendulum" model) describing the motion of the cupula in response to angular acceleration

(Steinhausen, 1933). Later, investigators (van Egmond et al., 1949; Hallpike and Hood,

1953) applied the model to human responses, including the reflexive eye movements called

the vestibulo-ocular reflex (VOR).
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The response of peripheral afferents of the semicircular canals were first recorded in

an isolated preparation from a thornback ray (Lowenstein and Sand, 1940). This study and

a later study (Groen, et al., 1952) qualitatively confirmed the theoretical predictions of the

torsion pendulum model.

Later, the peripheral afferents of the semicircular canal were recorded in the intact

squirrel monkey (Goldberg and Fernandez, 1971). These studies showed that intact

afferents had a steady resting discharge, that the change in firing rate was dependent upon

the direction of the angular acceleration, and that the dominant time constant was

approximately six seconds. In addition, these studies showed that first order afferents

could not be represented by a simple torsion pendulum model since rate sensitivity and

neural adaptation were also observed.

A similar set of experiments investigated the afference from squirrel monkey otolith

organs (Fernandez and Goldberg, 1976). Similar 'to the analogous study of the

semicircular canal, these investigators observed that intact otolith afferents have a steady

resting discharge, that the change in firing rate depended upon the direction of linear

acceleration, and that there were two distinct afferent populations, one with regular firing

rates and the other with irregular firing rates.

As mentioned earlier, angular accelerations are known to elicit a reflexive movement

of the eye called the vestibulo-ocular reflex (VOR). This reflex helps stabilize the visual

field on the retina when the head is rotating. A neural signal, transduced by the

semicircular canals, drives the ocular motor neurons to move the eyes within the skull. The

motion of the eyes in the skull is such that they tend to be inertially stabilized. This helps to

compensate for motion of the head. Because of its consistency, the VOR is routinely used

by clinicians to evaluate the vestibular system.

The most direct pathway of the VOR has been known for many years and involves

a simple three neuron arc. The three cell bodies are found in the vestibular ganglion

(Scarpa's ganglion), the vestibular nuclei, and the extra-ocular motor nuclei. There are a
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number of alternate pathways from the vestibular system to the ocular motor neurons.

Among others, these include the cerebellum and the reticular formation.

Measurements obtained during yaw, pitch, and roll have shown that the responses

to rotational stimuli depend upon the axis of rotation. One study (Melvill Jones et. al.,

1964) measured responses to each of these rotational stimuli in normal human subjects and

found that the time constants of nystagmus decay for pitch (6.6 s) and roll (4.0 s) were

much less than that obtained for yaw (15.6 s). Another study (Guedry and Benson, 1970)

found a similar difference in the time constants for constant velocity yaw and pitch

rotations. Some studies (Matsuo et al., 1979; Matsuo and Cohen, 1984) have even

indicated that the time constant for forward pitch (15 s) was greater than that for backward

pitch (8 s). [The previous studies indicated no such asymmetry. The methods used in

these three studies were remarkably similar. The major difference is that human subjects

were investigated in the first two studies while monkeys were studied by Matsuo et al.]

Time-varying linear accelerations also elicit a reflexive response. This reflex, called

the linear VOR (LVOR), was first observed in humans in tests with regular oscillations on

a parallel swing (Jongkees, 1961). The observed eye movements were smooth and

regular. A later study showed that the LVOR could have the nystagmic characteristic

observed in the VOR (McCabe, 1964). Even though the LVOR was observed in humans

over twenty years ago, it is not well understood nor universally accepted (Hain, 1986). A

probable explanation for the confusion is that LVOR, as measured in the dark, is weak and

irregular (Kitchen, 1982).

Researchers claim that, for clinically normal subjects, static tilt within the

gravitational environment of earth does not induce a nystagmus dependent upon the

position of the subject (Stahl, 1958; Jongkee, 1960). But Bergstedt (1961) has asserted

that 27% of a sample of otherwise clinically normal subjects exhibited such positional

nystagmus. Benson (1974) later examined these data and determined that the mean slow
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phase velocity was less than one degree per second. It can safely be claimed that positional

nystagmus is absent in most normal humans, and that, when present, it is very weak.

While fixed and constant 1-g linear acceleration induces, at most, veiy weak

nystagmus, it can have very dramatic effects on rotatory nystagmus and on optokinetic

nystagmus.

It has been claimed (Markaryans, 1969) that Khilov (1929, 1936) was the first to

show that the duration of post-rotatory nystagmus was dependent upon the orientation of

the head with respect to gravity. Similarly, it was shown that postrotational nystagmus had

a smaller horizontal slow phase component when the axis of rotation was horizontal than

when vertical (Correia and Guedry, 1964; Benson and Bodin, 1966a).

The same effect was observed (Benson and Bodin, 1966b) when the subject was

rotated about a vertical axis, and shortly after stopping, moved to one of the four

orthogonal horizontal positions (nose down - ND, nose up - NU, left ear down - LED,

right ear down - RED).

At about the same time, it was pointed out that during the immediate post rotatory

period graviceptors indicate constant orientation with respect to gravity while the

semicircular canals indicate rotation. This sensory information is in conflict unless the

apparent rotation occurs about an axis parallel to gravity (Guedry, 1966a, 1965b). If this

sensory conflict is the cause of a response decrease, then the amount of the decline should

be modulated by the intensity of the competing otolith signal. Benson (1966) later verified

that the fastest response decay occurred when the the subjects were tilted 90 degrees after

rotation. This orientation maximizes the competition between the semicircular canals and

the otoliths by placing the axis of rotation indicated by the semicircular canals perpendicular

to gravity as sensed by the otolith organs.

Perceptual studies also confirmed the effect of constant 1-g linear acceleration on

the sense of rotation. These studies showed that the sensation of rotation was even more

drastically affected than the nystagmic response. Some subjects reported no rotational
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sensations following constant velocity rotation about a horizontal axis (Guedry, 1965a;

Benson and Bodin, 1966a).

Raphan et al. (1981) later verified with squirrel monkeys that the time course of

post-rotatory eye movements was drastically reduced by tilt with respect to gravity.

Furthermore, they demonstrated the presence of a strong vertical nystagmus which decayed

with the horizontal nystagmus.

Harris (1987), who did experiments with cats, also found a strong vertical response

that often built up following off-vertical rotations. When carefully measured, the axis of

the post-rotational eye movements aligned with gravity.

Similar effects were found through observation of visual reflexes. It has long been

known (Ter Braak, 1937) that motion of an entire visual field about an axis parallel to

gravity in an upright subject induces horizontal eye movements called optokinetic

nystagmus (OKN). When the lights are suddenly extinguished, horizontal optokinetic

afternystagmus (OKAN) is often observed (Krieger and Bender, 1956). These responses

have been quantitatively studied (Cohen et al., 1977) and modeled (Raphan et al., 1977).

The OKAN response is generally much stronger in monkeys than in humans.

When a subject is tilted with respect to gravity and the visual stimulus continues

about the yaw axis of the subject, horizontal OKN (in a head fixed reference frame) is

induced. However, when the lights are extinguished, a strong vertical component of

nystagmus is observed(in the monkey, Raphan and Cohen, 1983, 1988; in the cat, Harris,

1987). The direction of the vertical nystagmus was such that the axis of the eye

movements tended to align with gravity.

Eye movements of humans have also been recorded during constant velocity

rotation about an earth horizontal axis (also known as "barbecue spit" rotation). Benson

and Bodin (1966) used rotation rates between 10 and 60 degrees per second. They

discovered that the steady state response demonstrated a "bias" component and a

"sinusoidal" component. Using rotation rates of 60 and 180 degrees per second, Correia
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and Guedry (1966) observed a similar response. Wall (1987) also verified these studies.

Furthermore, he correlated the decay time constant of the horizontal nystagmus with the

gain of the sinusoidal component. This correlation showed that subject who demonstrated

long time constants showed less modulation than those who had short time constants.

Similar experiments with monkeys (Raphan et al., 1981) have indicated that

monkeys demonstrate responses which are similar to those recorded in humans. Both bias

and sinusoidal components are observable, but, unlike humans, the bias component tends

to dominate the response.

Experiments with cats (Harris, 1987) also a show a two component response. The

response is similar to that observed in monkeys with the bias component larger than the

modulation component.

The eye movements of human subjects have also been studied using centrifugation

to provide a change in gravito-inertial force (Benson, 1962; Lansberg et al., 1965;

Crampton, 1966; Steer, 1967). Lansberg (1965) showed that the horizontal nystagmus

generated by vestibular stimulation in an upright subject depended upon the orientation of

the subject with respect to the centripetal acceleration. A later study (Crampton, 1966)

confirmed these results and reported the presence of vertical nystagmus during

centrifugation. A careful review of these data indicates that the vertical component of the

eye movement tends to align the axis of the eye motion with the total gravito-inertial force

vector. (Note: Lansberg's data indicate a slow phase vertical velocity which sometimes

has a direction opposite that required to align the eye movement with gravity.) Using

counter-rotation to eliminate angular acceration stimuli during centrifugation, Steer (1967)

showed the presence of bias and modulation components similar to those observed during

"barbecue spit" rotation.

These data were later analyzed by Young (1967) who found a component of the

horizontal nystagmus which could be correlated with the linear acceleration resulting from

centrifugation. This component was found by assuming that the differences in the
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responses measured with different subject orientations were solely attributable to the

centripetal acceleration. Then, by subtracting the responses obtained in one orientation

from the other, an estimate of the linear component was found.

The slow phase velocity of linear nystagmus rose rapidly with increasing linear

(centripetal) acceleration, but then decayed with a time constant of at least 20 seconds

during the constant velocity phase of the centrifugation.

Subjective orientation was measured under similar conditions (Graybiel and

Brown, 1951). In this study, human subjects were requested to remotely orient a light rod

parallel to their subjective horizontal during centrifugation. Typical finding from this study

showed that the subjective indication of vertical lags behind the actual orientation of the

gravito-inertial force and that the difference between the actual GIF and the subjective

"down" decayed like an exponential with a time constant of approximately twenty to thirty

seconds.

Since gravito-inertial force is a stimulus in the eye movement experiments and the

orientation study, a joint interpretation of these centrifugation studies is illuminating. In the

Graybiel and Brown study, the difference between the actual GIF and subjective orientation

could represent that component of gravito-inertial force interpreted as acceleration. In

Young's analysis of the Lansberg data, the linear eye movements shown are hypothesized

to be related to the acceleration component of the gravito-inertial force. The similarity of

the shape and time course of the two curves provides evidence that the CNS is resolving

the sensory conflict by separating the gravito-inertial force into components representing

linear acceleration and gravity. The component representing horizontal linear acceleration is

indicated by the presence of horizontal linear nystagmus, while the component representing

gravity is indicated by the subjective perception of "down".

These background studies also seem to indicate a number of consistent differences

between human and animal responses. During "barbecue spit" rotation humans generally

have a modulation component which is large and a bias component which is small

83



compared to those responses obtained in monkeys or cats. Monkeys and cats also

demonstrate a very robust axis transformation during tilted OKAN or during dumping. To

my knowledge, no-one has ever reported these responses in humans, but, as previously

discussed, weak vertical eye movements have been reported during centrifugation.

3.2 Methods

321 General Procedures

3.2.1.1 Facility

All of the experimental work presented herein was performed using a centrifuge

located at the Vestibular Research Facility (VRF) at the NASA Ames Research Center. The

VRF centrifuge is designed to provide high fidelity motion stimuli to small animals. This

short arm centrifuge has two specimen test containers (STC) located at a distance of

approximately 31 inches from the main spin axis. The STCs are mounted on a set of

gimbals located at the end of the centrifuge arms. The computer controlled centrifuge can

provide a maximum centripetal acceleration of 1.4 g (240 deg/sec). The main spin axis can

provide a steady maximum angular acceleration of approximately 10 degrees per second.

(See the NASA Ames Brochure entitled Vestibular Research Facility for a more complete

description of the centrifuge capabilities.) Figure 3.1 shows a photograph of the VRF

centrifuge.

3.2.1.2 Subjects

Six young male squirrel monkeys formed the subject pool for these experiments.

Each of the monkeys was tested on at least four separate occasions, with one of the

monkeys tested more than ten times. (Each test session involved approximately 10 to 15

three minute trials.)

3.2.1.3 Surgical Procedure

Two devices were surgically implanted on each of the squirrel monkeys. A head

restraint device, a small stainless steel bolt, was attached on the occiput with dental cement,

and a pair of small search coils were surgically attached to the right sclera. The head
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restraint device stabilized the head of the monkey, while the surgically implanted coils

measured the orientation of the eye using a search coil technique (Robinson, 1963).

All surgical procedures were developed by Dr. Gary Paige (Paige, 1983a and b), a

trained opthalmological surgeon. The surgery, also performed by Dr. Paige, began with a

circular conjunctival incision made in the right eye concentric with the limbus. A

prefabricated coil made of insulated stainless steel wire was sutured to the lateral side of the

right eye, and the twisted coil leads were passed subcutaneously over the cranium where

they were secured to the skull. The leads leave the orbit such that they do not interfere with

normal movements of the eye.

3.2.1.4 Monkey Restraint

Positive reinforcement was used to train the monkeys to sit in the restraint chair and

to train the monkeys to allow their heads to be fixed. This behavior shaping began in the

animal facility and continued in the laboratory. Over a period of time greater than a month,

the animals were introduced first to the restraint chair and then to head restraint. Gradually

the head restraint time was extended to that needed for experimentation (approximately one

hour).

3.2.1.5 Eye Coil Recording

Two orthogonal sets of field coils (Neuro Data Instruments Corporation) were used

to generate spatially orthogonal magnetic fields in phase quadrature (Robinson, 1963). The

y and z-axes of the monkeys head (see figure 1.2) were aligned with the magnetic fields.

Signals induced in the scleral search coils by changes in magnetic flux were amplified and

transmitted via a set of slip ring assemblies to a detection circuit (McElligott, et al., 1979).

The output signals from the detection circuit represent the eye orientation signals discussed

in Chapter 2. These signals were passed to a set of buffer amplifiers. The signals from the

buffer amplifiers were digitally sampled using an AD board installed in a Compaq 386

personal computer. (See Appendix A for further details concerning data acquisition.)
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An elaborate calibration procedure was developed by previous researchers (Haddad

et al., 1988) to accurately calibrate the eye coil system. This procedure is listed in Appendix

C of this thesis.

Eye movements were always recorded in complete darkness. No fixation points

nor visual cues were ever available during any of the experimental trials. To maintain

alertness and cooperation, the lights were always turned on between trials and extinguished

just before the start of the next trial.

3.2.2 Centrifuatn

The centrifugation experiment formed the backbone of this investigation. In the

dark, the upright monkey was spun about a vertical axis displaced approximately 31 inches

from its spine. The orientation of the monkey was controlled such that four primary

positions were used [facing motion, back to motion, facing center, and back toward center

See figure 3.2.]. Each of these four position reoriented the centrifugal force with respect to

the monkey (e.g. centrifugal force out the back while facing the center). The centrifuge was

accelerated as quickly as possible (a = 10 deg/s2) to a constant angular velocity of 200

degrees per second. This constant velocity was maintained for fifty seconds, until a

symmetric deceleration brought the centrifuge to a stop. After one minute the lights were

turned on, and the monkey was positioned for the next trial. Horizontal, vertical, and

torsional eye movements were recorded throughout the trials.

The number of controlled parameters did not allow a complete Latin Square

experiment design to be implemented. Nevertheless, the sessions were organized such that

rotation direction and subject orientation were well controlled and balanced. The order in

which the conditions were presented was alternated both within a given session and across

sessions. Table 3.1 shows the number of trials with each set of conditions.

3.3 Results

Figure 3.3 shows three representative sets of data. The first column shows data

obtained with the monkey's back toward the direction of motion. The second column
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CENTRIFUGE ORIENTATIONS

Back toward Motion

Facing Center Back toward center

Facing Motion

Figure 3.2
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TEST MATRIX

CENTRIFUGE STUDY

CW
FB BF I 0

1 3 3 3

2 3 6 6

2 1 2 2

1 3 2 2

5 3 0 0

2 2 0 0

CCW
FB BF I 0

2 1 2 2

3 1 4 4

2 1 2 2

2 2 2 2

4 4 0 0

2 2 0 0

"DUMPING" STUDY

CW
RED LED NU ND

2 2 2 2

2 2 2 2

2 2 0 0

1 1 1 1

1 1 1 1

0 0 0 0

CCW
RED LED NU ND

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

Notation:
CW is clockwise.
CCW is counterclockwise.
F is facing the direction of motion.
B is back to the direction of motion.
I is facing toward the center of rotation ("in").
0 is facing away from the center of rotation ("out").
RED is right ear down.
LED is left ear down.
NU is nose up.
ND is nose down.

"B F" and "F B" represent the order in which a pair of conditions were run.
Table entries are the number of trials with that condition.

Table 3.1
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shows the "pure" rotational response in the absence of centrifugal force. The third column

shows data obtained with the monkey facing the direction of motion. These orientations of

the monkey are shown in the cartoon at the top of the figure.

The columns of data are organized with the centrifuge angular velocity shown as the

top plot. Horizontal eye velocity is shown in the second row, followed by vertical eye

velocity, and torsional eye velocity. The axis of eye rotation is shown across the bottom

row. (Figure 3.4 shows a cartoon demonstrating how this angle is calculated.)

I believe this figure shows at least thr important results. First, a large vertical eye

velocity is generated whenever centrifugal force is present (first and third columns).

Second, the magnitude of the peak horizontal eye velocity is much larger when the monkey

is facing the direction of motion than when he has his back to the motion. Finally, the

dominant time constant of the horizontal response is longer when the monkey has his back

to the motion than when he is facing the motion.

I observed the strong vertical nystagmus on 100% of the trials when a monkey was

either facing the direction of motion or had his back toward the motion. The vertical

nystagmus sometimes reached a peak velocity of greater than 100 degrees per second and

always exceeded 20 degrees per second.

Furthermore, the axis of eye rotation always moved toward that axis which was

aligned with gravito-inertial force. This result was so dramatic and so repeatable that

statistics are not really necessary to verify the significance. Nonetheless, a paired one-

sided t-test was used to test the hypothesis that 0, (Figure 3.4) was greater than zero when

ef (Figure 3.5) was equal to +450 and less than zero when Ot was equal to -450. These

statistical tests indicated that for each of the six monkeys, the axis of eye rotation tended

toward alignment with gravito-inertial force (p <0.01).

As previously noted, the magnitude of the peak eye velocity was generally greater

when the monkey faced the direction of motion compared to when his back was toward the

motion. (See Table 3.2.) Since this was =lt always true, I decided to test this observation
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TABLE OF PEAK VALUES

A B D E
I TfI I j I I TfI I T I I TfI I -I I fI

90.0

79.8

57.5
48.8

73.9

53.5
57.6

58.0

37.3

57.0

31.7

45.3

54.0

49.6

54.6

29.3

118.7

87.5

77.7
47.9

89.9

57.9

112.6

65.4

76.9

31.0

88.6

52.8

106.3

100.1

93.1

119.5

96.9

107.6

106.8

43.1

94.3

92.5

80.1

75.5

87.4

87.8

25.1 17.6

115.5

105.2

138.9

101.8

100.6

104.8

120.1

94.1

123.8
126.6

105.2

105.3

130.9

135.9

107.4

96.9 97.3

Calculations:

Subject
A
B
D
E
F
G

f I .I iI
9.83
24.9
8.70
25.7
20.6
46.2

a
12.04
19.92
9.62

24.50
22.68
12.00

t

2.00
2.80
2.22
2.77
3.64
10.89

Notation:

| Iis the magnitude of the average peak value when facing the motion.
I Iis the magnitude of the average peak value with back to motion.

|WI -|IIis the average value ofIIminusI I .
a is the standard deviation of the above average.
t is the calculated t-value.
p represents the statistical significance.

Table 3.2
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F

60.2

81.4

80.0

49.9

51.4

65.8

57.8

58.6

66.1

55.8
45.5

48.9

G

74.0

55.5

78.7

53.0
79.1

74.4

78.0

80.0

16.2

20.7

17.2
23.3

24.4

33.1
35.8

32.4

114.8

107.4

69.9

85.9
104.5

105.4

63.3

76.0

81.7
101.2

103.4

82.7
99.1

105.8

93.4

p
0.052
0.050
0.050
0.025
0.005
0.001

p
p
p
p
p
p

7bI IN INI -Pb P-



a

using a paired t-test. (The test sessions were designed such that these conditions were

naturally paired.)

To calculate the t-values, I determined the mean horizontal SPV for one second

before through one second after the constant stimulus velocity was reached. For each pair,

the mean difference was calculated and a one-sided t-test was used to evaluate whether the

magnitude of horizontal SPV while facing the motion was indeed greater than that obtained

with back to motion. Five of the six monkeys indicated (p < 0.05) that the magnitude of

the peak value was greater when facing the motion. The sixth monkey (A) just missed

significance at the .05 level (p < .052). This monkey had fewer trials (N = 6 pairs) than

most of the other monkeys.

As previously observed, the decay time constant of the horizontal SPV was

generally smaller with "face toward the motion" than with "back to motion". (See Table

3.3.) The dominant time constant was calculated using the Levenberg-Marquardt algorithm

to perform a least-squares fit to an adaptation response of the form:

spv(t) = A e-'1 + B e1/6 ,

where A and B are the gains determined as two of the fit parameters, and Td and ra are the

dominant time constant and the adaptation time constant, respectively.

Since the dominant time constant was not always smaller when facing the motion, I

tested this observation statistically using a paired t-test. As before, the statistical

significance was evaluated using a one-sided paired t-test. Five of the six monkeys

indicated (p <0.05) that the time constant was smaller when facing the motion. The sixth

monkey (A), again, just missed statistical significance at the 0.05 level (p <0.055).

Figure 3.5 shows data in a format similar to that discussed for figure 3.3. As

indicated in the cartoon at the top of the'figure, the only difference is the orientation of the

subject. As before, the middle column shows the rotational response in the absence of

centrifugal force. But the first column now shows data obtained when the monkey was

facing toward the center of rotation, while the third column shows data obtained while the
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TABLE OF TIME CONSTANTS

B D E F G
Tf b Tf Tb Tf tb Tf tb Tf tb tf Tb

21.7

13.69

14.14

12.79

15.34

14.41

3.41

4.03

11.84

7.54

5.16

6.36

8.78

10.16

9.83

7.02

11.40

14.25

10.93

14.74

12.51

12.40

9.16

10.16

3.88

10.82

11.02

9.36

7.77

12.25

21.9

16.96

25.4

12.95

21.1

15.66

8.16
10.30
8.09
6.37
8.52
8.01
10.17
10.11

17.00

18.73

18.31

17.42

22.08

17.61

29.8

17.04

11.22

9.49

9.80

8.66

5.61

8.38

10.04

10.06

12.15

6.05

13.57

8.45

13.01

15.63

9.78

11.08

15.79

12.39

25.00

25.00

18.06

10.67

26.9

20.7

14.71

14.82

9.65
9.61

24.5

19.45

10.50

12.97

4.01

4.93

4.65

5.25
7.63

7.09

5.12

6.70

11.50

9.72

8.26

5.15

13.06

5.96
6.20

9.01

Calculations:

Subject

A
B
D
E
F
G

Tb - tf
5.21
4.35
9.36
11.03
6.73
2.94

a
6.47-
3.58
6.38
4.26
6.59
2.94

t

1.97
3.84
3.59
7.32
4.09
3.00

p
p
p
p
p
p

p
0.055
0.010
0.010
0.005
0.005
0.025

Notation:
tf is the decay time constant when facing the motion.
tb is the decay time constant with back to motion.

ib - t f is the average value of cb minus tf .
a is the standard deviation of the above average.
t is the calculated t-value.
p represents the statistical significance.

Table 3.3
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CENTRIFUGE DATA (Facing Center and Back to Center)
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monkey had his back toward the center. The columns of data are the same as figure 3.3

except that the final row shows a different convention for the axis of eye rotation. Figure

3.6 shows how this angle of tilt is calculated.

I feel the most dramatic result shown by this graph is the large torsional eye velocity

induced when centripetal force was influencing the eye movements (columns one and

three). This strong torsional nystagmus was always present under these conditions. The

torsional velocity sometimes reached peak velocities of greater than 50 degrees per second.

Furthermore, as before, I observed that the axis of eye rotation always moved

toward alignment with gravito-inertial force. Again, this result was so dramatic and so

repeatable that statistics were not necessary to verify significance. Nonetheless, a one-

sided paired t-test indicates that for gggh of the four monkeys (A, B, D, E) tested under this

set of conditions, the axis of eye rotation tended to align with gravito-inertial force (p <

0.01).

3.4 Controls

34.1 Static Tilt Tests

3.4.1.1 Methods and Results

Six monkeys were tested for positional nystagmus. Testing was performed by

quickly tilting the monkeys to a desired orientation and holding them at that orientation for

more than a minute.

Three of the monkeys were tested by tilting them 45 degrees or 90 degrees from the

vertical in each of the four primary directions [Nose Down (ND), Nose Up (NU), Right

Ear Down (RED), and Left Ear Down (LED). Each of these monkeys demonstrated some

sustained positional nystagmus in all orientations, including the upright orientation. The

nystagmus was judged to be very weak in ALL cases (slow phase eye velocity never

exceeds 20 degrees/second). Figure 3.7 shows an example of this type of response.

The three remaining monkeys were tested similarly, but the orientations of the

monkeys were extended to include tilts of 135 degrees and 180 degrees (to an inverted
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orientation) from vertical. As with the other experiments, all three monkeys, at most,

exhibited very weak positional nystagmus in almost all orientations including the upright.

In the inverted orientation, all of the- monkeys exhibited very strong (> 50 deg/sec)

nystagmus. Figure 3.8 shows a typical response during inversion. For two of the

monkeys this was the only orientation which resulted in anything but weak nystagmus.

The third monkey, in one out of two tests, exhibited strong nystagmus when tilted 135

degrees from the vertical.

Strong positional nystagmus was observed nine times (eight out of eight inversions

and one out of six tilts at 135 degrees). Every time strong positional nystagmus occurred it

was primarily vertical with the slow phase velocity pitching the eye downward.

3.4.1.2 Conclusions

The central conclusion drawn from this study is that monkeys do not demonstrate

strong positional nystagmus except during inversion or near inversion. For the centrifuge

studies discussed shortly the magnitude of the GIF vector never exceeded 1.4 g and never

tilted more than 45 degrees. I, therefore, suggest that the strong vertical or torsional eye

movements observed during centrifugation are not simply a positional nystagmus due to

reorientation of the gravito-inertial force, but, rather, are induced by an interaction between

the rotational responses and the tilted gravito-inertial force.

34.2 Duping Tests

3.4.2.1 Methods

The second test is called dumping. In the dark, upright monkeys were spun about

an axis parallel to their spine and aligned with gravity. The rotation of the monkeys was

identical to that experienced by humans during a standard rotating chair test. A constant

velocity rotation of 100 degrees per second was maintained for one minute and then quickly

halted. Within three seconds, while the post-rotational response was very strong, the test

container and monkey were manually tilted 45 degrees in one of the four primary directions

(LED, RED, ND, and NU). This orientation was maintained for one minute. The animal
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was then returned to the upright position and the lights were turned on for one minute. The

test was repeated in each primary direction of tilt.

3.4.2.2 Results

Analysis of the data supports three conclusions. First, as demonstrated in figure

3.9, when the monkey was tilted to the left (LED) or to the right (RED) a very strong

vertical nystagmus (in a head fixed reference frame) alwas built up and then decayed with

the horizontal nystagmus. (Similar to results described previously, Raphan and Cohen,

1981; Harris, 1987) Similarly, as demonstrated in figure 3.10, when the monkey was

Li"*Led forward (ND) or backward (NU) a strong torsional nystagmus always built up and

then decayed with the horizontal nystagmus. Finally, in all cases the axis of the eye

movements tended to align with the gravitational field of the earth (Harris, 1987).

As seen in figures 3.9 and 3.10, the shift in the axis of eye rotation occurs very

quickly. Time constants for this shift were estimated to be less than five seconds.

3.4.2.3 Conclusions

The central conclusion drawn from this study is that squirrel monkeys tend to align

the axis of eye rotation with gravity. This alignment occurs very quickly. These facts are

consistent with the notion that the axis of eye rotation provides a reliable measure of

"down" in the squirrel monkey.

These tests confirm the earlier observation that the eye movements observed during

centrifugation are the result of an interaction between the rotational response and the

orientation of the gravito-inertial force. In the following discussion, I will assume that the

axis of eye rotation provides a measure for the perception of gravitational force. This

interpretation is supported by a number of other studies (Raphan et al 1981; Harris, 1987).

3.5 Discussion

I have statistically shown that the squirrel monkey's axis of eye rotation tends to

align with gravito-inertial force during centrifugation. This axis transformation is robust
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and repeatable. Furthermore, this response is a logical way to resolve the sensory conflict

induced by centrifugation.

During centrifugation in the absence of visual information to the contrary, all

sensory systems (otoliths, tactile sensors, proprioceptors) indicate a consistent direction for

the total GIF. Since the only constant gravito-inertial force naturally experienced is

gravitational, it seems logical that the CNS interpret a constant GIF as "down". At the

same time, the semicircular canals respond to angular acceleration and indicate a rotation

about the body's yaw axis. If gravity were truly tilted with respect to rotation, the otoliths

would sense a sinusoidal rotation of gravity which would confirm the rotation sensed by

the semicircular canals.

During centrifugation, however, the orientation of gravito-inertial force is constant.

This results in a sensory conflict. Centrifugation provides a yaw rotation which is sensed

by the semicircular canals, but the otoliths do not confirm that gravito-inertial force is also

rotating. In fact, the otoliths provide a sensory signal which indicates that no rotation is

taking place unless the rotation exactly aligns with gravito-inertial force.

One way to resolve the conflict is to transfer activity representing rotation to an axis

which is aligned with gravito-inertial force. Then the presence of angular rotation and a

constant GIF do not conflict. This is a logical way to resolve the sensory conflict induced

by centrifugation, and this is the resolution process exhibited by squirrel monkeys.

I also have statistically shown that the peak value of SPV is dependent upon the

orientation of the subject. This result can be explained by the LVOR hypothesis first

suggested by Young (1967). If the rotational VOR and the linear VOR are summed to yield

the total VOR (See Figure 3.11.), then the magnitude of the sum will be dependent upon

the orientation of centripetal acceleration. As discussed by Young, the magnitude of this

response should increase when the subject is facing the motion because the responses are

additive. If the subject has his back to the motion the LVOR should decrease the magnitude

of the total response.
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This statistical finding encourages further analysis of the data, and if we are willing

to accept the simple model shown in Figure 3.11, then straightforward calculations yield

the linear and rotational responses. This model states that the total VOR is simply a sum of

the angular component and a linear component. The angular component is independent of

whether the monkey is facing the motion or has his back to the motion, while the sign of

the linear component will be dependent upon the orientation of the centripetal acceleration

with respect to the subject. Therefore, by subtracting the eye movements obtained with the

monkey's back to the motion from those obtained while facing the motion, we can estimate

the linear component (Young 1967).

This type of analysis was performed for each pair of conditions. Figure 3.12c

shows one typical type of response. The peak velocity of this response occurs very near

the time at which a constant velocity is obtained. This response quickly decays to zero.

This response is qualitatively similar to that observed in humans (Lansberg et al, 1965;

Young, 1967).

A second type of response was also observed. Figure 3.13c shows an example of

this type of response. As before, the peak linear velocity occurs very near the time at

which a constant velocity is reached. Again the response decays toward zero, but then

significantly overshoots and gradually settles back to zero.

Both types of response were well represented in the data. The simple decay

occurred approximately 25% of the time, while the overshooting response accounted for

most of the remaining responses. The dominant time constant for decay was estimated to

be approximately 6.51 seconds. This time constant appears to be independent of the type

of response.

In the previous section I used statistics to demonstrate that the decay time constant

was dependent upon the orientation of centripetal acceleration. This result may also be

explained by the simple VOR model shown in figure 3.11. Since the linear dynamics were

observed to be fast relative to the rotational dynamics, the linear VOR will quickly decay
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LINEAR VOR (Double Peak)
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leaving only the rotational VOR. The decay will be faster when it starts from a higher value

(rotational VOR + linear VOR) than when it starts from a lower value (rotational VOR -

linear VOR).

The statistical results found for the magnitude of the peak SPV and the decay time

constants strongly support the hypothesis that the total VOR is the sum of two components;

the linear VOR and the rotational VOR. This in turn supports the calculations used to

determine the linear VOR.

A reasonably simple model also explains the difference between the two types of

linear responses. The internal estimate of gravity (or the perception of "down") always

lags slightly behind the changing gravito-inertial force. The difference between the sensed

gravito-inertial force and the internal estimate of gravity is interpreted as linear acceleration.

Shortly after the rotation of the gravito-inertial force stops, the internal estimate of gravity

aligns with gravito-inertial force. At this point, no linear acceleration is sensed. Therefore,

the linear acceleration is only interpreted as such while the perception of down is not

aligned with GIF.

A single peak decay will result when the internal representation of gravity lags

behind GIF during the rotation of GIF and then slowly settles into alignment with GIF in

the steady state. A double peak response will result when the rotation of GIF induces a

sense of whole body rotation. When GIF and the internal gravity state are aligned, the

inertia of the internal sense of rotation drives the internal state past the measured gravito-

inertial force. The difference between the internal gravitational state and GIF now has a

sign opposite to the previous sense of linear acceleration. Therefore, the reflexive response

should also reverse. This will result in an overshoot which will then decay to a steady

state.

Monkey OVAR data strongly supports this hypothesis. As previously discussed

constant rotation of gravity can induce a large bias component in the compensatory

response. Presumably, this bias component represents a sense of constant rotation which
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is induced by the otolith organs. This provides strong evidence that rotation of gravito-

inertial force does induce a sense of rotation which could be compelling enough to the

rotate the internal estimate of gravity past the measured GIF.

As previously discussed, humans do not show as pronounced a bias component as

that demonstrated by monkeys. This is consistent with the fact that humans do not

demonstrate an overshoot in their LVOR during centrifugation (Young, 1967). A weak

bias component represents a weak sense of rotation induced by the otolith, and a weak

sense of otolith mediated rotation would suggest little, if any, overshoot in the linear

response.

The fast decay of linear VOR in the squirrel monkey indicates that the internal

representation of gravity quickly aligns with gravito-inertial force. The axis of eye rotation

quickly changes toward alignment with GIF.

Humans exhibit a much slower change in the axis of eye rotation. The data of

Lansberg et al. (1965) and Crampton (1966) do not indicate vertical nystagmus until well

into the motion profile. This is consistent with a slow change in the LVOR as estimated by

Young (1967).

All of these differences between humans and monkeys support the original

hypothesis: that GIF is resolved into a component representing gravity and a component

representing linear acceleration.

The monkey data indicate that monkeys quickly align their perception of down with

gravito-inertial force. This explains a large bias and a small modulation during OVAR, it

explains the rapid axis transformations observed during centrifugation and dumping, and it

explains the fast dynamics of the LVOR measured during centrifugation.

The human data indicate that humans are much less likely to align their perception

of down with GIF. This explains the small bias and large modulation observed during

OVAR, it explains the slow axis transformations observed during centrifugation, and it

explains the relatively slow dynamics of the LVOR measured during centrifugation.
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Experience provides a plausible explanation for these differences. Humans in the

modem world are often exposed to somewhat unnatural constant accelerations (cars, trains,

airplanes, elevators, etc.). This experience teaches us that constant gravito-inertial force

does not always indicate gravitation. On the other hand, few animals are regularly exposed

to such linear accelerations. Without this experience, monkeys and other animals, are

easily tricked into interpreting any constant GIF as "down." This simple hypothesis could

explain some of the previously discussed differences between humans and monkeys.

3.6 Summary and Conclusions

Statistical analysis of the centrifuge data supports three conclusions. First, the axis

of eye rotation moved toward alignment with gravito-inertial force. Second, the magnitude

of the slow phase eye velocity was larger when the monkey was facing the motion than

when the monkey had his back toward the motion. Finally, the dominant time constant of

decay was larger when the monkey was facing the direction of motion than when his back

was toward the motion.

The control studies, static tilt tests and dumping test, suggest that the responses are

due to an interaction of rotational and linear responses and that the axis of eye rotation

provides, in the absence of any other information, an estimate of "down."

Further analysis of the centrifuge data indicates that a linear component of the

response may be extracted. The time course of the linear component indicates a very fast

dynamic process. Humans show a similar linear component, but the dynamics are much

slower.

The data also indicate that monkeys quickly align their perception of down with the

gravito-inertial force. Humans, also, eventually align their perception of down with GIF,

but the alignment process is more gradual.

All of these results and observations are consistent with the GIF resolution

hypothesis, and therefore, provide evidence supporting this hypothesis.
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CHAPTER 4

SENSORY CONFLICT MODEL

4.0 Introduction

In this chapter I present a model of spatial orientation. Specifically, the model

predicts how the squirrel monkey estimates gravitational "down", linear motion, and

rotational motion in the presence of conflicting sensory information. The model is called a

"sensory conflict model" since explicit calculations are performed which compare sensory

afference with expected sensory afference. "Sensory conflict" is defined to be the

difference between these quantities. The sensory conflict vector is used in a feedback

schema similar to that used in optimal observer theory (Kalman-Bucy filtering; Kalman and

Bucy, 1961) to drive the internal estimate of spatial orientation toward the true state of

orientation.

The model is presented in four sections. In section 4.1, I present historical

perspectives which lead to the model formulation. In section 4.2, I theoretically develop

the model and use some simple examples to illuminate some central concepts underlying the

model. In section 4.3, I model a variety of experimental data from the literature while

emphasizing the qualitative similarity between the model's predictions and the experimental

data. Finally in section 4.4, 1 discuss some of the problems associated with the model and

suggest a number of improvements and/or additions.

Since this model is formulated using engineering system theory and since the

language of system theory is the block diagram, a large number of figures are distributed

throughout the chapter. Simultaneously, in the text, the necessary equations and/or

descriptions are presented. These approaches should complement one another, though an

understanding of either approach is sufficient.
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4.1 Background

4 1 .1 Physiological and Psychological Models

In 1954, von Holst proposed a model that has come to be known as the "efference

copy" hypothesis. This hypothesis sprung from a set of experiments carried out in

collaboration with Mittelstaedt (von Holst and Mittelstaedt; 1950). These experiments

investigated how the CNS distinguishes sensory information due to self-generated motion

from the sensory information due to external disturbances. Specifically, they investigated

how the CNS distinguishes visual afference due to self-generated motion from visual

afference generated by movements of the entire visual field. They concluded that sensory

systems can be stimulated in two different ways, thus resulting in different types of

afference. Muscular activity leading to self motion induces "re-afference" while all external

motion produces "ex-afference."

Later von Holst proposed the model schematically shown in Figure 4.1. He

proposed that motor commands leave an image of themselves somewhere in the CNS.

This image is then compared to the reafference generated by the movement. He claimed

that the "efference copy" and the reafference would cancel each other, and thus result in the

perception of constancy of the external world. Von Holst stated that a motor command,

"leaves an image of itself somewhere in the CNS, to which the re-afference of
this movement compares as the negative of a photograph compares to the print;
so that, when superimposed, the image disappears. A motor impulse, a
'command' from a higher centre causes a specific activation in a lower centre,
which...(gives) rise to a specific efference to the effector (i.e. a muscle, a joint,
or the whole organism). This central stimulus...'the image' of the efference,
may be called 'efference copy'. The effector, activated by the efference,
produces a re-afference which -returns to the lower centre, nullifying the
efference copy by superposition."

An adjustment was later made to this model when physiologists and psychologists

learned that the CNS could adapt to consistent forms of sensory rearrangement. Held and

some of his associates (Held, 1961; Hein and Held, 1961) showed the importance of active

movements during the adaptation process. Held recognized that the efference copy and the

re-afference generated by self motion could not simply be compared since one is a motor
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command and the other is sensory afference. He also found that the von Holst model didn't

allow for adaptation. Therefore, he proposed a scheme whereby a copy of the efferent signal

is sent to a hypothetical structure called the "correlation storage." A "comparator" was also

proposed to compare the output of correlation storage and the re-afferent signal. Figure 4.2

shows a representation of Held's model. As Held said,

"...we assume that the re-afferent signal is compared (in the Comparator) with
a signal selected from the Correlation Storage by the monitored efferent
signal. The Correlation Storage acts as a kind of memory which retains traces
of previous combination of concurrent efferent and re-afferent signals. The
currently monitored efferent signal is presumed to select the trace combination
containing the identical efferent part, and to activate the re-afferent trace
combined with it. The resulting revived re-afferent signal is sent to the
Comparator for comparison with the current re-afferent signal. The outcome
of this comparison determines further performance."

The correlation storage model solved two difficulties associated with the von Holst model.

First, this model allowed for sensory adaptation to occur to consistent forms of sensory

rearrangement. Second, this model allowed for a conversion of muscle commands to the

expected re-afference.

Reason (1977,1978) further developed Held's correlation storage model when he

noted that earlier hypotheses had looked at sensory conflict as an incompatible difference

which existed between sensory afferents. He emphasized that conflict is only defined

when current sensory inputs differ from the sensory patterns which we expect based upon

the previous exposure history. Figure 4.3 shows the basic structure of Reason's model.

Reason cogently argued that the,

"conflict is between the present sensory information and that retained from the
immediate past, or what Held called 'exposure history'....It is this crucial
temporal comparison between present and past patterns of spatial stimulation
that provides the necessary explanatory link between the sensory
rearrangement notion and protective adaptation."

4.12 Classical Engineering Systems Models

"Velocity storage" is a concept which is used as a central component in almost all of

the current classical control models of spatial orientation. This element was developed

when it was observed that per and post rotatory nystagmus last well beyond the activity of
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the first order afferents from the semicircular canals. At nearly the same time OKAN was

noted as another response which lasted beyond the visual stimulation. Furthermore, it

seemed that the time course of these responses were similar. The velocity storage

hypothesis proposed that a single neural element was responsible for the extension of

vestibular nystagmus and for OKAN. Two somewhat different models achieve this effect.

One model (Robinson, 1977) uses feedback, while another (Raphan et al., 1977) uses

feedforward.

One form of Robinson's model is shown schematically in Figure 4.4. Robinson

created this model in an attempt to explain OKAN and the time course of the VOR. But,

more importantly, Robinson attempted to implicitly implement Newton's second law of

motion. As discussed by Robinson, -

"The internal positive feedback loop L ... has an interesting general
interpretation. ... its main feature is perseveration. That is, once a positive
feedback loop is set into activity, it tends to feed itself by self-excitation and
prolong that activity. Now this is just a restatement of Newton's second
law of motion. Whenever a body (you) is set into motion, it is presumed
that you will continue in that motion until you are acted upon by another
force, at which time your canals will tell you. The perseveration, or
holding, or integrating, or accumulating action of the loop L, is simply a
demonstration of the recognition by the brain of this law of physics."

A schematic view of the model proposed by Raphan, Cohen, and their associates

(Raphan et al., 1978; Raphan et al., 1979) is shown in figure 4.5. This model

accomplishes velocity storage through parallel processing of the sensory afferents. The

direct path mainly induces rapid changes in eye velocity. The indirect path includes a low-

pass filter (called a "leaky integrator" by Raphan et al.) which stores activity and induces

slow changes in eye velocity. These authors coined the term "velocity storage" to label the

process by which neural activity is extended beyond the sensory afference.

Raphan and Cohen (1986) have generalized their model to include more than a

single dimension of rotation. The model was extended by including three velocity storage

elements: one for each direction in 3-space. The model incorporates feedback parameters

which are modified by otolith afferents (and hence by the orientation of gravito-inertial
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force). By input-output standards, this model successfully models a number of

experimental observations, but it doesn't provide insight into the mechanism by which the

otoliths control the critical parameters or an explanation for the observations.

This multi-dimensional model has also been extended (Sturm and Raphan, 1988).

The new model proposes that the eigenvalues and eigenvectors of the nystagmic response

are dependent upon the gravitational field. This model mathematically captures some of the

observed transformations, but, at this point, provides little insight into causes or

mechanisms.

Robinson's feedback mechanism has also been included in a multidimensional

model (Hain, 1986). In this model otolith signals modify particular feedback parameters

such that the velocity storage time constants are reduced in the presence of tilt. In addition,

the model passes otolith afference through the velocity storage mechanism. This model

proposes a number of thought provoking hypotheses (e.g. LVOR is a residual effect), but

it does not model most of the observed cross-axis transformations.

4.1.L Modem Engineering System Models

Optimal control theory and optimal estimation theory have also been used in

attempts to model spatial orientation. Young (1970) proposed that spatial orientation might

be solved as an optimal mixing problem. (Figure 4.6.) In this model the estimated state is

found by minimizing some unknown cost function. As Young described the model,

"Consider first the sensors that are stimulated by the "true state" or actual
motion of the subject. Each of the sensors measures one or more of the
state variables with characteristic uncertainty and dynamic performance.
For example, the semicircular canals measure the angular velocity of the
subject with respect to inertial space, and their dynamic response may be
described by the adaptation model. ... Similarly, the otoliths measure
specific force; tactile sensation also measures specific force; and the visual
channel measures angular velocity, direction of net specific force, and
angular orientation.

The outputs of all these sensors may be combined to make an optimum
estimate of the true state."
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In addition, Young recognized that expectations could also be included as part of

the optimal mixing model. It had long been recognized by experimenters that a subject's

expectations were very important to perceptions and reflexes. Young's model provided a

natural mathematical method to model "expectations".

Zacharias (1977) and Zacharias and Young (1981) extended this model when they

proposed a nonlinear cue blending model. This model proposed that each sensory signal is

weighted dependent upon the perceived conflict between the senses.

Borah, Young, and Curry (1978) also explored optimal estimation when they

implemented a model which could mimic a number of experimental findings. For example,

by the proper choice of noise parameters, they were able to model the sensations associated

with vection, vestibular velocity storage, and the gradual tilt perceived during sustained

linear acceleration.

At approximately the same time as Young was proposing the optimal mixing

problem, Kleinman, Boran, and Levinson (1970) developed an optimal control model

which characterized the manual control capabilities of humans. Their quantitative model

predicted human performance for a few §imple compensatory tracking tasks.

Curry, Hoffman, and Young (1976) extended this manual control model by

including representations of the dynamics of the semicircular canals and the otolith organs.

The extended model was used to describe the performance of a pilot "flying" a light

simulator and was validated by a number of experiments.

In yet another approach applying optimal estimation theory to spatial orientation,

Ormsby (1974) and Ormsby and Young (1977) used estimation theory to calculate

"optimal" estimates for each of the individual canal and otolith signals. These optimal

estimates were then fed to a somewhat ad hoc schema to determine a state representing

spatial orientation.

Oman (1982, 1988) formalized the optimal estimation approach toward spatial

orientation while attempting to retain the spirit of the physiological models of Reason,
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Held, and Von Holst. Oman (1988) clearly attempted to mate the two different viewpoints

by stating,

"There is a direct analogy between the 'expected' feedback sensor
measurement and 'internal dynamic model' concepts in control engineering
Observer Theory, and the 'efference copy' and 'neural store' concepts
which have emerged in physiology and psychology. From the perspective
of control engineering, the 'orientation' brain must 'know' the natural
behavior of the body, i.e. have an 'internal model' of the dynamics of the
body, and maintain a continuous estimate of the spatial orientation of all of
its parts. Incoming sensory inputs would be evaluated by subtraction of an
"efference copy" signal, and the resulting 'sensory conflict' signal used to
maintain a correct spatial orientation estimate."

Oman posed the solution in terms of observer theory. In this formulation the

observer contains a dynamic model of the controlled system and of the sensors (See Figure

4.7). These internal models calculate what the sensor measurements should be. Errors

between the expected sensory afference and the actual sensory afference are used to drive

the internal state towards reality.

By formulating the problem in terms of observer theory, Oman implicitly proposed

a specific mathematical structure which underlies the block diagram shown in Figure 4.7.

Explicitly, he attempted to represent the estimation process by a linearized set of differential

equations. Figure 4.8 shows a block diagram of the linearized system represented in terms

of state space notation.

4.2 Development

The approach which I present on the following pages is derived from the

discussions in the background section. Specifically, I develop the internal model approach

suggested by Young using the observer theory approach championed by Oman. I will

begin developing the model using a very general non-mathematical description. I will then

make a series of simplifying assumptions that will reduce the model to a 1-dimensional

linear model. This simple version of the sensory conflict model will be investigated using

two examples. I will then generalize until the model again includes 3 dimensions and some

inherent nonlinearities.
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I will use small letters to represent scalars (k), small letters with arrows (g) to

represent vectors, and capital letters (K) to represent two dimensional matrices.

4.2.1 General Sensory Conflict Model

Figure 4.9 shows a very general block diagram which presents the philosophy

underlying the development of the entire model. "Desired orientation", the primary system

input, is compared to the "estimate of orientation" to yield an orientation error. A "control

strategy" is applied to the orientation error to yield a "motor command." The motor

command is relayed to the muscles which are represented as part of "body dynamics" to

yield the "actual orientation." The actual orientation is measured by the sensory organs

with the physiological output being sensory afference. A copy of the efferent signal

("efferent copy") is sent to an internal model of body dynamics (including muscle

dynamics) to yield "estimated orientation." This estimate of orientation is sent to a model

of sensory dynamics to give an "expected sensory afference." A difference between

sensory afference and expected sensory afference indicates "sensory conflict." The

sensory conflict returns to the internal model of body dynamics to drive the estimated

orientation toward the true orientation.

-Figure 4.10 shows the same model, but the model has been linearized, and state

space notation is used. In this model, the desired orientation is represented by a vector

whose elements represent the "states" of orientation. (Examples of possible states include

linear velocity, angular velocity, tilt, etc.) The desired state vector (Xd) is compared to the

current state estimate (R). The difference generates a motor command (iii) via a control

strategy (M). The motor command is sent to the body dynamics (Ox= A i + B iii) to

generate an actual state (i). This state is sensed via the sensory dynamics

(= H y' + C 1) and with the addition of sensory noise (v) yields the sensory afference

(y = '+V).

A copy of the motor command is also sent to the model of body dynamics

(i= A i-+ B iii). The current estimate of orientation (x) is then sent to the model of the
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sensory dynamics (Y = H y + C i) to yield the expected afference (y). Sensory conflict

(e) is represented by the difference between the sensory afference and the expected sensory

afference. The sensory conflict is returned as an input to the internal model of body

dynamics through the Kalman-Bucy gain matrix (K) to drive the estimated state toward the

true system state.

[Figures 4.9 and 4.10 are nearly identical to those presented by Oman. The major

difference is merely cosmetic. The blocks have been rearranged to emphasize that the

internal dynamic models, shown on the bottom half of the figure, are similar in form to the

actual dynamics, shown on the top half.]

If the external disturbances are represented by W, the entire model may be

represented by the following set of equations:

x = A RE+ B M-' + -Wv", -

x=Ax+Bm+KCj- ),

' = H y' + Cx (Y=+'+V),

y'= Hy' + Cx.

To simplify the model I will only investigate passive motion with this structure.

This simple assumption, which applies to a majority of the literature, greatly simplifies the

estimation process by removing the feedback loop dealing with motor control and control

of orientation. Figures 4.11 and 4.12 show the block diagram for this simplified model.

This simplified model applies only. to the passive condition and is similar to the model

shown in figures 4.9 and 4.10 except for removal of the control feedback loop. The only

remaining system input is the external disturbance. This input corresponds to the passively

controlled orientation of the subject.
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Most experiments which measure eye movements and/or the perception of

orientation are designed to be passive. The subject or specimen is generally strapped into a

chair or some other experimental devic.e, and the orientation of the subject is controlled.

Therefore, this simplified control model can be used to represent a majority of the

experiments described in the literature, including all those which don't involve self control

of spatial orientation.

With this assumption, the model can be represented by a simplified set of equations:

x=A-x+w ,

H F+ x (Y + V)

x= H + C x

The linear system shown in figure 4.12 may also be represented in terms of matrix

transfer functions as shown in figure 4.13. The matrix transfer functions are defined by

the equations:

D(s) = (s I - A)-1,

D(s) = (s I - A
D(s)=(sI-A) ,
S(s) = C (s I - H)-I

S(s)=C(sI- H)

The system equations may then be written as:

i(s) = D(s) iv(s)

i(s) = D(s) K (i(s) - y(s))

(s) = S(s) i(s) Y(s) = 5'(s) + '(s)

(s) = S(s) i(s) .
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422 One-dimensional Sensory Conflict Model

In Figure 4.14 the model is simplified by developing a one dimensional linear

observer. The matrix transfer functions of Figure 4.13 have been reduced to a single

transfer function. Furthermore, by choosing the actual state (o) to be identical to the

disturbance (also o), the body dynamics and the internal model of body dynamics simplify

to unity.

As an example, assume that the sensory dynamics (scc(s)) may be represented by a

high pass filter with a cut-off frequency equal to the inverse of the dominant time constant

of the sensory afference:

scc(s) = T s
ts+1

Also assume that the internal model of sensory dynamics has a similar form. Therefore:

scc(s) =5-
t s+l

Figure 4.15 show a block diagram representing this model.

Using algebra, we can easily find the transfer function between the internal estimate

of angular velocity (4,) and the actual angular velocity (coz). The transfer function has the

form:

(o(s) kt s (^t s + 1)

0(s) ((k+1)^ ts + 1)(r s + 1)

Goldberg and Fernandez (1971b) estimated that the dominant time constant of the

semicircular canals was 5.7 seconds. If we model the afferent response with a time

constant of 5.7 seconds and also model the internal model with a time constant of 5.7

seconds, a pole zero cancellation is obtained. This yields the transfer function:

Co(s) kr s
o(s) ((k+1)t s + 1)
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Figure 4.16a shows the response of this system to a trapezoidal step in angular velocity.

The response is observed to have a dominant time constant of:

T' = (k+1)r s .

This model exhibits the same velocity storage characteristic which has been exhibited by

other models (Robinson, 1977, Raphan et al. 1977). In this case the velocity storage is

accomplished by having an internal model of the sensory dynamics as part of a negative

feedback loop.

This observer model of velocity storage is robust to relatively large errors in the

sensory model parameters. Figures 4.16b and 4.16c show the model response for 20%

errors in the model estimate of the dominant sensory time constant. The data illustrates that

relatively large errors in model parameters have relatively small effects on the overall

system response.

The data of Goldberg and Fernandez (197 1b) will be used. as an aid in choosing the

sensory dynamics. They measured the first-order semicircular afferents in the squirrel

monkey and deduced an average transfer function of:

y(s) 80 S2 1 + .049s
co(s) 1 + 80 s (1 + 5.7 s)(1 + .003 s)

This transfer function was estimated using data which spanned a frequency range between

0.0125 Hz and 8 Hz.

[Note: The transfer function originally deduced by Goldberg &Fernandez was with respect

to acceleration whereas this transfer function is with respect to velocity. This difference

results in an additional s in the numerator.]

There are some problems with this curve fit. First, the model predicts that the

system response will increase as the frequency is increased from 3.25 Hz

[f = 1/(2 ic 0.049)] to 50 Hz. Second, the model predicts that the system response will be

constant for all frequencies greater than approximately 50 Hz [f = 1/(2 n 0.003)]. Neither
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of these predictions is likely. Therefore; a modified transfer function will be implemented

to represent the semicircular canals.

[Note: The probable cause of the error is that the frequency range of the data being fit was

limited, but the parameters were not limited in any way. (e.g. The maximum frequency

tested was 8 Hz, but a pole was fit with a frequency of 50 Hz.)]

For purposes of simplicity and accuracy, all high frequency effects will be ignored,

and the model inputs will be limited to low frequency disturbances (< 1 Hz). With this

limitation, the semicircular canal may be represented with a transfer function of the form:

y(s) = scc(s) = taS s2
Co(s) (1+ ta S) (1 +T1 s)

where,
ta = 80 s and tl = 5.7 s

This form of the transfer function still suffers from one of the problems with the Fernandez

and Goldberg model. It predicts a constant response beyond approximately 0.03 Hz, but

the response will never increase as the frequency exceeds 0.03 Hz.

For the above stated reasons, I have chosen to represent the dynamics of the

semicircular canals with the simplified transfer function shown above. However, this

simple model may not be used to make predictions beyond 1 Hz.

I will try to choose the simplest form of the internal model of sensory dynamics as

possible. There are a number of reasons for this approach. Most importantly, the internal

knowledge of sensory dynamics will predominantly be a knowledge of the dominant

characteristics of the sensors. It is unreasonable to suspect that the internal system will

have a detailed knowledge of all aspects of the sensory dynamics. Second, the additional

parameters associated with more complicated forms of the internal model will, of course,

allow better fits of the data. But the goal of this model is not to fit the data, but rather to

provide a framework with which predictions might be made and experiments suggested.
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More parameters would confuse the situation by allowing better (in a least mean squares

sense), but not necessarily more realistic fits.

For these reasons I choose to greatly simplify the internal model of sensory

dynamics by assuming the form:

sc(s) =TI s
(1 + 'ti s),

with
ti = 5.7 s .

With this model of the internal sensory dynamics and the model for the actual

sensory dynamics presented on the previous page, we can easily determine the transfer

function relating the internal state estimate of angular velocity () to the actual angular

velocity (Q~:

co(s) Kta ti s2 (tis+ 1)

(O(s) (TI s + 1) (Ta S + 1) ((k+1)^tir s + 1).

With,

ti = tI ,

the transfer function reduces to:

Co(s) Ktatli S2

0o(s) (ta s + 1) ((k+1)^ti s + 1)

The system response of this velocity storage model is shown in Figure 4.17.

4.2 Multi-dimensional Sensory Conflict Model

I will extend this model to a three dimensional representation by replacing all scalar

values (oz, Coz, y, y, and e) with vectors having three components (co, co, y, y , and e),

by replacing the unity operators of the scalar model with 3x3 identity matrices (I), and by

replacing the transfer function of the semicircular canal with a 3x3 matrix transfer function.

(Figure 4.18 shows a block diagram representation.) For simplicity, let:

scc(s) 0 0
S=(s) s0 scc(s) 0

0 0 sc(s) ,
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"VELOCITY STORAGE WITH ADAPTATION" - MODEL PREDICTIONS
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with,

scc(s)= ta tI S2

(1+ta S) (1 +rs) .

In a similar manner:

sdc(s) 0 0 ~

SSM(s) = 0 sc(s) 0

. 0 0 SCC(s)_

with,

s2c(s) = Is
(1+' s)

Through use of this diagonal matrix transfer function, it is implicitly assumed that

the semicircular canals are mutually orthogonal and that they are aligned with the axes of

the coordinate system. As a first approximation, the canals may be treated as orthogonal,

and the coordinate system may be chosen to align with that defined by the semicircular

canals. Anatomical accuracy may easily be provided by changing the transfer function

matrix from the diagonal form shown above to one which truly represents the geometry of

the semicircular canals. [See Robinson (1982) for further details.] The feedback gain

matrix (K) will require analogous changes to represent the change in the sensory matrix.

From an input/output perspective, however, these additions are transparent, and therefore

were avoided. Since simplicity is gained without any cost in terms of performance, I have

chosen the simplest possible representation. This will ease further model development and

will allow more insight to be derived from the model.

Three dimensional rotation will, in general, constantly change the orientation of the

gravitational force. If we know the current position of gravity (bg), and we have an

imposed angular disturbance (co), we can easily keep track of the orientation of gravity.

This physical effect is represented as part of the body dynamics shown in Figure 4.19.
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The block labeled "rotate g" performs these calculations. The actual calculation are

implemented via a quaternion integrator.

Analogously, if there is a current internal estimate of gravity (Cg), and there is an

internal estimate of angular velocity (co), we can keep track of an estimate of the orientation

of gravity (g) through the same calculations as discussed above. The block "rotate g" is

also used to perform these calculations. .

By arguments similar to those used when choosing the transfer function

representing the semicircular canals, the otolith organs will be represented with a diagonal

transfer function:

oto(s) 0 0 ~
Soto(s) = 0 oto(s) 0

0 0 oto(s)..

[This representation of the otolith organs assumes that the sensory afference from the two

otolith organs, the utricle and the saccule, is integrated to yield a three dimensional

representation of gravito-inertial force.]

Fernandez and Goldberg (1976 a,b, and c) investigated the dynamics response of

first order otolith afferents. They found that the frequency response of the regular units is

approximately constant from DC to approximately 2 Hz. Since inputs have already limited

to less than 1 Hz, the otolith transfer function may be approximated as unity:

oto(s) = 1.

Therefore:

1 0 01
Soto(s)= 0 1 0 =I

00 1-

Data at higher frequencies would be required to determine a more accurate transfer function

representation.
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Analogously, I chose to represent the internal model of the otolith dynamics by the

identity matrix:

Soto(s) = I

The quaternion integration which keeps track of the orientation of gravity is,

obviously, a nonlinear calculation. Therefore, error estimation should not be limited to

subtraction as previously exhibited for linear systems.

Figure 4.20 shows the equations which determine the 6-component vector (e). The

linear portion of the process is estimated using subtraction:

ew= (o - o.

The estimation of the nonlinear error is a little more complicated. The magnitude of the

error equals the angle between the specific force vector () and the current internal estimate

of gravity (g). Mathematically, this is written:

The direction of the gravitational error vector is given by the direction of the rotation needed

to align the total gravito-inertial force (f) with the internal estimate of gravity (g).

Alternatively, we may consider this direction as the direction of the rotation which could

yield the discrepancy between gravito-inertial force and the internal estimate of gravity.

With either interpretation, this direction may be written as:

e. f _fxg
e. fxg

The total error vector () is formed by summing the the two error vectors such that

the angular velocity error (eco) fills the first three components of the error vector, and the
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gravitational error (eg) completes the bottom three elements of the error vector. This may

be written:

e= +

The 6 x 6 Kalman gain matrix (K) is chosen to have just nine non-zero elements as shown

below:

~koM 0 0

0 ko 0 0

K= 0 0 ka

kg) 0 0 kg, 0 O

0 kgOY 0 0 kg, 0

0 0 kgs 0 0 kg,

The angular velocity error feedback gains (kw., ka0 ,, and kw.) are set such that the

appropriate velocity storage is obtained for each independent axis of rotation. For

simplicity, I have assumed that all of velocity feedback gains are equal and have the value

of two [(deg/sec)/(deg/sec)]. By previous calculations this yields a dominant time constant

of 17.1 seconds for each of the rotational responses. For the simulations which are shown

on the following pages all of the gravity error gains (kg., kg,,, and kg.) are set equal to zero.

Small values (.01 to 1 [(deg/sec)/deg] were also implemented in a number of trials and had

only minor effects on the system dynamics. The remaining set of feedback gains

(kgmx, kg.,, and kgw,) were all set to the relatively high value of 100 [(deg/sec)/deg]. This

high gain was required to yield steady estimates of the rotation rate during constant velocity

barbecue spit rotation and to yield rapid axis transformation effects.

From physics we know that gravito-inertial force is the vector difference formed by

subtracting acceleration from gravity:

f=g-a.
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If an animal (or human) has an internal representation of gravity and a sensory

measurement of gravito-inertial force, it is consistent that acceleration might be calculated as

the vector difference between these quantities:

a=g-f.

I will assume that this is the case. Evidence from the previous chapter supports this

assumption.

4.3 Predictions

Five types of experiments have been simulated using this model. The

"experimental" conditions include:

a) upright yaw in the dark
b) visual "dumping" of the post rotary VOR
c) barbecue spit rotation
d) OVAR at a 30 degree tilt from vertical
e) post rotary "dumping" of the VOR

The upright yaw response has already been investigated as part of the model

development (Figure 4.17). As previously discussed, the model exhibits "velocity storage"

as observed experimentally and as modelled by other researchers (Robinson, 1977; Raphan

et al., 1977).

The remaining experimental conditions will be presented by showing the

experimental data followed by the model predictions. A brief description of the

experimental conditions and a summary of the results will be provided. Please see the cited

works for the complete description of the experimental procedures and for the results. All

of the model parameters are fixed at the values discussed previously.

4.3.1 "Visual Dumping" Experiment

The "visual dumping" experiment which will be modelled was first performed in

the early 1960's (Guedry et al. 1961). Horizontal eye measurements were recorded using

EOG techniques. In total darkness, subjects were accelerated to a constant angular velocity
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of 73.2 deg/s. This velocity was maintained for ninety seconds. During the next five

seconds, the subject was decelerated to a stop. In some trials the subjects' post rotary

responses were recorded in total darkness. In the other trials the lights were turned on for a

period of five seconds and then extinguished.

The results of this study are shown in figure 4.21. Note that the experimental data

show that the response decreases when the lights are turned on and the the response

increases when the lights are turned off again. However, note that the response never fully

recovers.

Since the model does not include visual effects the study was modelled by

maintaining the angular velocity state at zero until after the subject reached a stop. After a

predetermined time delay the state was released, simulating "lights off', and the responses

recorded for various values of the time delay.

Figure 4.22 shows the modelled responses for a series of different time delays.

Note that the responses for delay of 2.5 seconds and 7.5 seconds show a qualitative

similarity to the experimental data. With time delays of 12.5 seconds and 17.5 seconds,

the model shows a very small response, and interestingly, with a time delay of 17.5

seconds, the model predicts Qnly a negative response.

4.3.2 "Barbecue Spit" Experiment

Experiments performed using a horizontal rotation axis which yaw the experimental

subject (barbecue spit rotation) will also be modeled. Goldberg and Fernandez (1982)

measured the horizontal eye movements of squirrel monkeys during this type of stimulation

while rotating the monkey at a constant velocity of 30 degrees per second. Figure 4.23

shows the measured response for rightward (A) and leftward (B) rotations.

Note that the eye movement response extends well beyond that which would be

elicited with a vertical axis of rotation. Also note that the response seems to indicate the

presence of the steady state component with a superimposed sine wave.
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"VISUAL DUMPING" - DATA

30 -- DARK
-- LIGHT

40-

" 30-

S 20 -

140 DARK
-- LIGHT

120- -

IQo -

60 -

40 -

20

-2 0 2 4 1 6 10 12
TIME IN SECONDS

From: Guedry, Collins, and Sheffey (1961)

Average slow-phase nystagmic response in degrees per 1-sec interval for all S's except DD

Figure 4.21
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"VISUAL DUMPING" - MODEL PREDICTIONS

Val [dog/sJ
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Figure 4.22

156



"BARBECUE SPIT" - DATA

A a

i I a A ii I I I I I

From: Goldberg and Fernandez (1982)

Horizontal eye movements during barbecue -spit rotations in the dark. All recordings

are derived from a single session in one animal. Each panel consists of an eye-position

trace (middle), and the tachometer signal and superimposed calibration pulses (bottom).

The pulses occur at the start of each period of the velocity trapezoid (T1-T5) and whenever

the animal passes through the nose-down position during the constant-velocity (T3) period.

A is a rightward rotation of 30 degrees/second. B is a leftward rotation of 30 degrees/second.

The 15 degree calibration in the middle refers to the eye-position traces, the 90 degrees/second

calibration to the eye-velocity traces. Rightward eye position and eye velocity are signified

by upward deflections, rightward table velocity by a downward tachometer deflection.

Figure 4.23
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Figure 4.24 show the internal states predicted by the model. Note that the model

predicts a response which lasts as long the rotational stimulus, and that the model predicts a

sinusoidal modulation via a state representing linear acceleration.

The most important observation to be derived from this data set is that the model

predicts that gravitational error (eg) can stimulate a prolonged sense of rotation even when

in conflict with the semicircular canal afference.

413. "OVAR" Experiment

In a similar study, Raphan and Cohen (1981) recorded horizontal and vertical eye

movements while rotating monkeys about an axis tilted 30 degrees from vertical. See

figure 4.25 for the published data. Notice a prolonged response similar to that recorded by

Goldberg and Fernandez during barbecue spit rotation. Also note the sinusoidal

modulation which dominates the vertical response. Upon deceleration the monkey

develops horizontal and vertical nystagmus even though the the stimulus to the semicircular

canals would only indicate a yaw rotation.

The model qualitatively demonstrates all of these characteristics and even makes

some additional predictions. Figure 4.26 shows the response of the model to the same

OVAR stimulation. Note that the yaw rotation state (CWz) shows prolonged activity. Also

notice that a sinusoidal pitch (coy) response builds up as the yaw response decays to a

steady state level. Furthermore, the model predicts a sinusoidal roll response (COx) which

lags behind the pitch response by 90 degrees. The model also predicts an oscillating sense

of linear acceleration. Doubly integrating the sinusoidal acceleration yields a circular

trajectory similar to that traversed at the edge of a Ferris wheel. The model also correctly

predicts a vertical response following deceleration.

4.34 "Dumping" Experiment

The dumping paradigm was described in the previous chapter. Briefly, the

stimulus is a constant velocity rotation about a vertical axis. After approximately a minute

of constant velocity rotation (after the VOR has decayed to near zero), the monkey is
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"BARBECUE SPIT" - MODEL PREDICTIONS

Val [deg/9]
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Figure 4.24

159



"OVAR" - DATA

A PR WrAT7NW

H EOG
V EOGLJJ11, 4

H SP VEL i

PWT RMAT

~~bIJ(~ 60 %ec

imp IS.~~$y O 788 T
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10 sec

From: Raphan and Cohen (1981)

Per- and postrotatory nystagmus induced by a step in velocity of 90deg/sec.
The upper trace is horizontal EOG, the second trace is vertical EOG, and the third
trace is slow phase eye velocity. In A, the animal had vertical axis rotation. In B, it
had vertical axis rotation but was tilted 30 degrees. In C, the animal was rotated
about an off-vertical axis tilted 30 degrees from the vertical. It was stopped in the
same right-side-down position as in B. Note the slow decline in nystagmus after
vertical axis rotation and the rapid decline after off-vertical rotation.

Figure 4.25
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"OVAR" - MODEL PREDICTIONS
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decelerated to a stop. In the example shown in figure 4.27, the monkey is tilted 45 degrees

to the right immediately after stopping. This tilt is indicated by the roll response shown in

D. Observe the sudden build up in vertical eye velocity (C) immediately following the tilt.

Figure 4.28 show the modelled response. Once again, the model, qualitatively,

demonstrates the characteristics of the experimental responses.

4.4 Conclusions

The sensory conflict model appears to explain a great deal of experimental data.

There are, however, a number of obvious improvements which can be made.

This version of the model was developed to investigate and model spatial

orientation in the squirrel monkey. It is well known that humans and squirrel monkeys

differ dramatically in some of their responses to gravito-inertial force. Changing this model

to represent more closely the human sense of spatial orientation is a trivial exercise. The

main changes will be in the values of the nine non-zero feedback gains.

Furthermore, a great deal of work, experimental and theoretical, needs to be done in

order to more accurately represent the sensation of linear motion. The process by which

gravito-inertial force is resolved into gravity and linear acceleration is not completely

understood and is a problem which needs to be further investigated. Figure 4.29 shows a

block diagram which could provide a framework for future work on this topic.

Vision was completely excluded from playing any role in this model. The

importance of vision is, however, very well known, and, therefore, represents an error in

the model which needs to be corrected.

One relatively simply change can be made at the level of the sensory dynamics. In

the present model both the semicircular canals and the otoliths have frequency responses

which are constant no matter how much the frequency exceeds 1 Hz. For the otoliths this

may be remedied by adding a low pass filter with a cut-off frequency of approximately 5

Hz. The semicircular canals may be altered in a similar manner. These changes will not
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"DUMPING" - DATA
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Figure 4.27
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"DUMPING" - MODEL PREDICTIONS
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affect the system responses already modelled, but will provide a more stable model and a

more realistic model particularly at high frequencies (> 1 Hz).

The roll played by tactile and proprioceptive cues in determining spatial orientation

has been investigated (Bles et al. 1983). Adding these sensory modalities to the model may

prove fruitful.

A great deal of work could be done to implement the motor system as part of the

sensory conflict model. For simplicity, this portion of the model was discarded as the first

step of development. This does not indicate that I feel that the motor system is

superfluous. Rather, I feel that this portion of the model may be the must important

contribution of this type of model. Extensions of this portion of the model are applicable to

models of posture control and to models of voluntary movement.
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CHAPTER 5

'SUMMARY AND CONCLUSIONS

The GIF resolution hypothesis, as stated in Chapter 1, claims that gravito-inertial

force is resolved into two components: one representing gravity and one representing

linear acceleration. Furthermore, the hypothesis states that the CNS uses all available

information to create an internal estimate of "down". This estimate is compared to the

measured GIF to determine linear acceleration.

In the experiments presented in Chapter 3, I showed that the axis of eye rotation,

the peak value of SPV, and the SPV decay time constant were all dependent upon subject

orientation during centrifugation. Further processing of the data indicated the presence of a

linear VOR. As discussed in Chapter 3, all of these findings are consistent with the GIF

resolution hypothesis, and therefore provide evidence supporting it. In addition, a number

of results from the literature (OVAR, centrifugation) for both monkeys and humans are

discussed. These results provide additional support for the GIF resolution hypothesis.

In Chapter 4 a model which incorporates the GIF resolution hypothesis was

implemented. This model is based upon observer theory, optimal observer theory (Kalman

Filtering), and general nonlinear concepts. The model is very successful in its ability to

mimic data from this thesis as well as data from the literature.

After developing this sensory conflict model, I felt that improvements could be

made. At the end of Chapter 4, I suggested an improved structure for the sensory conflict

model. This new model presumed that the internal states representing gravity and linear

acceleration sum before passing through an internal model of the otolith dynamics. In this

implementation, the internal states representing gravity and linear acceleration mutually

affect one another other. I think this model more accurately represents the processing

performed by the CNS.

I feel that the GIF resolution hypothesis should be altered to be congruent with the

suggested structure of the model. The new hypothesis states that the CNS resolves
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gravito-inertial force into two components: one representing gravity and one representing

linear acceleration. These states will mutually and interactively sum to yield the total

measured gravito-inertial force under most conditions.
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APPENDIX A

DATA ACQUISITION

Data was sampled at 200 Hz using a Metrabyte data acquisition board (DAS 16)

installed on a Compaq 386/20 computer. A program called Notebook (copyright by

LabTech) was used to interface with the Metrabyte board.

Notebook is an easy to use menu-driven program which allows flexible top level

management of data acquistion hardware without forcing the user to write any source code.

Users must create a file containing the parameters required by Notebook. Once created, this

file only needs to be changed when the users requirements change.

In order to automate the process of data acquisition, I wrote a C program which is

automatically called every time Notebook is run. The program asks the user for the name of

the previously stored set-up file and asks for the data code which the user wants to use.

After receiving and verifying this information, the program automatically catalogs the data

using the information provided by the user. This program is called autorun.c and is listed

on the following pages.
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/* PROGRAM autorun.c
Programmer: Dan Merfeld
Date: 6/15/88

This program helps to automate data acquisition as performed with LABTECH
Notebook. The program is automatically called when notebook is run. The
program queries the user for the desired set up file and the desired output
file data code. The program then automatically takes care of bookkeeping
by creating a sequence of data files. */

#include <c:&stdio.h>
#include <C:cmath.h>
#include <C:'cWstring.h>
#include <C:'&io.h>
#include <C:\c\fcntl.h>
maino
I

int count, chan, counter,
char ans,dummy[2],name[5],seLup[10],dataout[25],out[50],kount[5];
char kounter, variablel [10],variable2[15],variable3[l5];
FILE *fopenO, *fdl;
int ji,length[8];

char string[15];
char offset[15][8],scale[15][8],channame[10][8],number[8];
ans='!'; /* ! is a dummy character */
while(ans != 'N' && ans != 'n' && ans !='Y' && ans != 'y')

printf("Recall a previously stored set-up (Y/N)?\n");
scanf("%s",dummy);
ans=dummy[O];

I
if(ans = "Y' 1 ans == 'y')

while(ans == Y' II ans == 'y')

printf("Enter the set-up name.\n");
scanf("%s",set.up);

printf("Enter three letter data code (e.g. D2A)M");
scanf("%3s",name);

printf("Enter the initial three digit sequence code.\n");
scanf("%3d",&count);
count=count+1000;

printf("The set-up file name is ");
printf("%s\n",setjup);
sprintf(kount,"%d",count);
sprintf(datanut,"%3sc%c%c",name,kount[1],kount[2],kount[3]);
printf("The data file code is %sCx\n",dataout);
printf("Do you want to make any changes (Y/N)?\n");
scanf("%s",dummy);
ans=dummy[O];

I
sprintf(out,"copy setup\\%s",setup);
printf("%s\n",out);
system(out);
printf("Do you want to convert data to matlab format (Y/N)7\n");
scanf("%s",dummy);
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ans=dummy[0];
if(ans=='Y 1 ans=='y')
(

fdl=fopen("junk.dat","r");
chan=O;
fscanf(fdl,"%s",string);
while((strcmp(string,'N'eof\"') != 0) && (chan!=8))

if(strcmp(string,"block\"')==0)

fscanf(fdl,"%s",string);
length[chan]=strlen(string)-2;
for(i=0O;i<10;i++) chan_name[i][chan]='\W;
for(i=0;i<(length[chan]);i++)

chanjname[i][chan]=string[i+1];
for(i=0;i<3;i++) fscanf(fdl,"%s",string);
if(strcmp(string,"O")==0)

for(i=O;i<5;i++) fscanf(fdl,"%s",string);
number[chan]=string[O];
for(i=0;i<8;i++) fscanf(fdl,"%s",string);
i=O;

while((offset[i] [chan]=string[i])!=NO')
i++;

for(i=0;i<3;i++) fscanf(fdl,"%s",string);
i=O;

while((scale~i][chan]=string[i])!='5')
i++;

chan=chan+1;
)

fscanf(fd1,"%s",string);
}

fclose(fd);
ans='n';
while(ans !='N' && ans !='n')

counter=O;
sprintf(kount,"%d",count);
sprintf(dataout,"%3sc%c%cCx",namekount[1],kount[2]kount[3]);
printf("i\n\nnThe data code is %s.\n",dataout);
printf("GO'n");
system("GO");
while (counter < chan)
I

sprintf(out,"Rename temp%d.prn temp.prn",counter+1);
/* +1 added to make the first channel number one since #0 is bad */
printf("%s\n",out);
system(out);
for(i=0;i<8;i++) variablel[i]='\O';
variable2[12]='WO';
variable3[12]='O';
for(i=0i<length[counter];i++) variablel[i]=channame[i] [counter];
for(i=O;i<12;i++)
{ variable2[i]=offset[i](counter];

variable3[i]=scale[i][counter];
%

sprintf(out,"convert %s %s %s",variablel ,variable2,variable3);
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printf("%s\n",out);
system(out);

sprintf(dataout,"%3s%c%c%cC%c",namekount[1],kount[2],kount[3,number[counter]+ 1);
/* +1 added to compensate for fact that channel #0 is broken */
sprintf(out,"Rename temp.prn %s.dat\n",dataout);
printf("%s",out);
system(out);
sprintf(out,"Rename temp.mat %s.mat\n",dataout);

printf("%s",out);
system(out);
counter++;

printf("Do you want to start another run (Y/N)Y\n");
scanf("%s",ans);
ans=dummy[O];
count++;
}
}
else

Printf("How many data channels do you have?\n");
scanf("%d",&chan);
printf("Do you want to start a run (Y/N)?\n");
scanf("%s",dummy);
ans=dummy[0];
while(ans !='N' && ans != 'n')

counter=0;
sprintf(kount,"%d",count);
sprintf(dataout," %.3s%c%c%cC",namekount[l]kount[2],kount[3]);
printf("The data code is%sX.\n",dataout);
printf("GO\n");
system("GO");
while (counter < chan)
I

sprintf(out,"Rename temp%d.prn%s%d.dat",counter+ 1,dataoutcounter+ 1);
/* +1 added (two places) to compensate for a/d # 0 not working */
printf("%s\n",out);
system(out);
counter++;
}

printf("Do you want to start another run (Y/N)?\n");
scanf("%s",dummy);
ans=dummy[O];
count++;
}
}
}

}
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APPENDIX B

DATA ANALYSIS (CALCULATION OF SPV)

B.1 Automation Programs

WARNING: Be careful when running "spv.m" (discussed below). This set of programs
was set up to analyze a very specific set of files. This program deletes all of the *.mat and
*.dat files in the directory in which you are running the program. Make sure that you are
running the program from a subdirectory that doesn't contain my of these files.

A set of programs was developed to automate the process by which this specific set

of raw data was converted to an estimate of slow phase eye velocity. Figure B. 1 shows a

block diagram which represents the basic structure of the program.

The auto4 programs (auto4.m and auto4.c) automate the process by asking the user

for information such as the threshold values that she wants to use and by asking the user

which files she wants to analyze. The programs take this information and store it in various

files. The most important of these files is called "spv.m" and contains the list of commands

that the user would need to type in order to analyze the data. By typing "spv", after running

auto4, this process is activated.

Three programs (analyz4l.bat, desaccade.m, and analyz42.bat) are called in the

spv.m file for each of the data files analyzed. Analyz4l.bat in turn calls a series of

programs that convert the measurements of eye position to eye velocity and eye acceleration.

Desaccade.m takes the eye velocity and eye acceleration files and calculates an estimate of

slow phase eye velocity. Analyz42.bat renames the output file with the same name as the

original data code and deletes all of the files created while processing.

To run the automated process, the user needs to enter Matlab by typing "matlab" and

then type "auto4". This command starts running the program "auto4.m". This program

will ask a set of self explanatory questions that require either yes/no answers or numbers.

Before stopping, this program calls the program "auto4.c" which further
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i

queries the user about scale factors and the data files that the user wants to analyze. After all

of the questions are answered the program creates an m-file called "spv.m"

The auto4 programs are only a preprocessing step. The actual data analysis begins

when the "spv" program is activated.

The source code for auto4.m and auto4.c is shown on the following pages.
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% m-file auto4.m
% Programmer Dan Merfeld
% Date: 9/15/89

% This m-file queries the user to enter the acceleration thresholds to
% be used and the velocity thresholds to be used. It then calls the program
% auto4.c to load the scale factors, the bias values, and the angle between
% coils. The output files are called "thresh.mat" and "thresh2.mat"

load c:\data\thresh1

thresh_acc
thresh_end

ans=input('Are these threshold values the ones you want to use in detecti? ','s');
if(ans ==' Y')

ans='y';
end

while( ans -='y')

threshacc=input('Enter the value for thresh_acc ');
threshend=input('Enter the value for thresh_end ');
threshacc
threshend
ans=input('Are these threshold values the ones you want to use in detecti? ','s');
if(ans == Y')

ans='y';
end

end

save c:ldata\thresh thresh acc thresh-end

load c:ata\thresh2

veltest

ans=input('Is this threshold value the one you want to use in detect2? ','s);
if(ans == Y')

ans='y';
end

while( ans ~= 'y')

veltest=input('Enter the value for veltest ');
vel_test
ans=input('Is this threshold value the one you want to use in detect2? ','s');
if(ans == Y')

ans='y';
end

save c:\data\thresh2 vel_test
clearall

!auto4 %call auto4.c
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/* PROGRAM auto4.c
Programmer: Dan Merfeld
Date: 9/15/89

This program completely automates the automated analysis process described
in my thesis. This program is called by auto4.m as the first step
of the process. The program queries the user for scale factors,
bias values, the angle between the coils, and for the data files
to be analyzed. The program then creates a set of files
which automate the analysis process. The parameters entered by the user
are stored in a file called "data.con". The product in an m-file
called "spv.m" which contains the list of commands needed to analyze all
of the data. */

#include <c:Nc\stdio.h>
#include <C:Mc\math.h>
#include <C:'c\string.h>
#include <C:\c\io.h>
#include <C:\c\fcntl.h>
mainO

int ij;
unsigned long int dlength;
float blength;
int fil,bias[3],nwritenread,rtotal;
float scale[3],dotangle;
FILE *fd1,*fd2,*fd3;
char string[45],fname[45],file[12];
char length[45],ans;

loop:
if((fil=open("c:\\data\Ndata.con",ORDONLYIO-BINARY))==-1)

(ans='y';)
else

(nread=read(fil,bias,12);
rtotal=nread;
nread=read(fil,scale,12);
rtotal=rtotal+nread;
nread=read(fil,&dot,4);
rtotal=rtotal+nread;
i=close(fil);
if(rtotal != 28)

{ans='y';}
else

(printf("The bias values are %d (H), %d (V), %d (T)\n",bias[0],bias[1],bias[2]);
printf("The scale factors are %e (H), %e (V), %e (T)\n",scale[O],scale[1],scale[2]);
angle=(180.-180/3.1415*acos(dot));
printf("(The angle between the coils is %5.lf degrees)\n",angle);
printf("Do you want to change these values?\n");
scanf("%s",string);
ans=string[O];
if(ans = 'N') ans='n'; })

if(ans 1='n')
(printf("Enter the value of the horizontal A/D bias:\n");
scanf(%d",&bias[0]);
printf("Enter the value of the vertical A/D bias:\n");
scanf("%d",&bias[1]);
printf("Enter the value of the torsional A/D bias:\n");
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scanf("%d",&bias[2]);
printf("Enter the value of the horizontal scale factor:\n");
scanf("%e",&scale[0]);
printf("Enter the value of the vertical scale factor:\n");
scanf("%e",&scalel1]);
printf("Enter the value of the torsional scale factor:\n");
scanf("%e",&scale[2]);
printf("Enter the value of the angle between the eye coils [deg]:\n");

scanf("%f",&angle);
dot= 180-angle;
dot=cos(dot*3.141592654/180.);
sprintf(string,"attrib -r data.con");
i=system(string);
sprintf(string,"del data.con\O");
i=system(string);
fil=open("data.con",OCREATIO_EXCLIO_WRONLYOBINARY);
nwrite=write(fil,bias,12);
nwrite=write(fil,scale,12);
nwrite=write(fil,&dot,4);
i=close(fil);
sprintf(string,"attrib -r data.con\");
i=systemn(string);
sprintf(string,"copy data.con c:\Ndata\data.conY");
i=system(string);
goto loop;)

else
(sprintf(string,"copy c:\data\\data.con c:\\matlab\\dan\\analyzeN0");
i=system(string);}

printf("Enter the file code which you wish to analyze\n");
scanf("%s",file);
sprintf(string,"dir c:\dmata\\%s.dat >dir.lst",file);
printf("%s\n",string);
i=system(string);
sprintf(string,"del spv.m");
printf("%s\n",string);
i=system(string);
sprintf(string,"attrib -r log\n");
printf("%s\n",string);
i=system(string);
sprintf(string,"del log");
printf("%s\n",string);
i=system(string);
sprintf(string,"attrib -r file*.nam");
printf("%s\n",string);
i=system(string);
sprintf(string,"del file*.nam");
Printf("%s\n",string);
i=system(string);

fdl=fopen("dir.lst","r");
fd2=fopen("spv.m","w");
sprintf(string,"!attrib -r temp.*\n");
j=fputs(stringfd2);
sprintf(string,"!del temp.*\n");
j=fputs(stringfd2);
sprintf(string,"!attrib -r *.mat\n");
j=fputs(string,fd2);
sprintf(string,"!del *.maf\n");
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j=fputs(string,fd2);
sprintf(string,"!attrib -r *.daM");
j=fputs(string,fd2);
sprintf(string,"! del *.dat\n");
j=fputs(strng,fd2);
sprintf(string,"diary log\n\n");
j=fputs(string,fd2);
for(i=O;i<10;i++)(fscanf(fdl,"%s",string);)

for(i=O;i<100;i++)
{ fscanf(fdl,"%s",fname);

fscanf(fd1,"%s",string);
fscanf(fdl,"%s",length);
if(strcmp(string,"DAT")==O)
{ blength=atof(length);

dlength=blength/2;
/* sprintf(string,"fprintf(analyzing %.6s\\n')\n",fname);

j=fputs(string,fd2); */
sprintf(file,"file%.3d.nam\O",i+100);
fd3=fopen(file,"w");
sprintf(string,"%.6s",fname);
j=fputs(string,fd3);
j=fclose(fd3);

sprintf(string,"!analyz4l %.6s %s %u\n",fname,file,dlength);
j=fputs(string,fd2);
sprintf(string,"desaccade\n");
j=fputs(string,fd2);
sprintf(string,"!analyz42 %.6s\n\n",fname);
j=fputs(string,fd2);

/* sprintf(string,"fprintf('%.6s analyzed\\n\\n\\n\\n')\nn",fname);
j=fputs(string,fd2); */
for(j=O;j<17j++) fscanf(fdl,"%s",string);

sprintf(string,"diary off\n");
j=fputs(stringfd2);
sprintf(string,"clearall\n");
j=fputs(stringfd2);

sprintf(string,"!print log\n");
j=fputs(stringfd2); */
sprintf(string,"!c:.\\util\\park\n");
j=fputs(string,Wd);
i=fclose(fdl);
i=fclose(fd2);

}

181



B.2 C Analysis Programs

This appendix contain a number of C programs which were written as part of the

data analysis project discussed in chapter 2 of this thesis. There are seven c programs in

this appendix and each is called from the analyz4l.bat file previously discussed. A flow

diagram of analyz4l.bat is shown on the following page (Figure B.2) followed by the actual

analyz4l.bat file. (The analyz42.bat file is also included at this point.) The programs are

described in the order that they are called by analyz4l.bat.

Euler3f.c calculates an euler angle representation of the coil system with respect to

the axis system defined by the magnetic field coils. The program implements the equations

of section 2.1.1.2.

Filter5.c differentiates the euler angles to determine the euler rates. A five element

digital filter is implemented to perform the differentiation.

Inertial.c calculates the inertial rates from angular rotation from the euler angles and

euler rates. The program implements the equations developed in section 2.1.1.3.

Filter9.c differentiates the inertial rates to determine the rates of angular acceleration.

A nine element digital filter is implemented to perform the differentiation.

Acc-mag.c calculates the magnitude of the angular acceleration vector from the

components of angular acceleration calculated by Filter9.c.

F_convert converts floating point data files to the Matlab format. The program is

used to creat Matlab files of angular velocity and the magnitude of angular acceleration.

I_convert converts short integer data files to Matlab format. The program is used to

create a Matlab file of the stimulus velocity.
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rem Analyz4l.bat
rem Programmer: Dan Merfeld
rem Date: 9/15/89

rem This file helps to automate the analysis of eye movements by
rem taking care of some simply bookkeeping and calling the programs
rem in the proper order.

copy %2 file.nam

copy c:data\%1C1.dat c12.pm
copy c:\data\%1C2.dat c13.pm
copy c:data\%1C3.dat c23.pm

copy c:\data\%1C4.dat omega.pm

euler3f %3

filter5 %3

inertial %3

filter9 %3

accjmag %3

rename hvel.dat temp.dat
f_convert hvel %3
rename temp.dat hvel.dat
rename temp.mat h_vel.mat

rename v_vel.dat temp.dat
f_convert v_vel %3
rename temp.dat v_vel.dat
rename temp.mat v_vel.mat

rename rvel.dat temp.dat
f_convert r_vel %3
rename temp.dat r_vel.dat
rename temp.mat rvel.mat

rename m_acc.dat temp.dat
f_convert m_acc %3
rename temp.dat m._acc.dat
rename temp.mat macc.mat

rename omega.prn temp.prn
i_convert omega %3
rename temp.prn omega.prn
rename temp.mat omegamat

del*.prn

del*.dat
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rem Analyz42.bat
rem Programmer: Dan Merfeld
rem Date: 9/15/89

rem This batch file simply stores the matlab file which contains the output
rem data with a filecode similar to the original data files. It also deletes
rem some of the intermediate files.

copy temp.mat c:\matlab\dan\%1.mat

del *.mat
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/* PROGRAM euler3f.c
Programmer Dan Merfeld
Date: 9/15/89

This program reads from four input files and writes to three output files.

File "c12.prn" should be the direction cosines between the 1st coil and
the y magnetic field. (Horizontal eye position)
File "c13.prn" should be the direction cosines between the 1st coil and
the z magnetic field. (Vertical eye position)
File "c23.prn" should be the direction cosines between the 2nd coil and
the z magnetic field. (Torsional eye position)
File "data.con" should contain bias values for each of the three data
channels. It also should contain scale factors for the data channels.
Finally, the file should contain the cosine of the angle between the coils.

The program will correct for the fact that the eye coils are not orthogonal
and determine an euler angle representation of the coil system with respect
to the axis system defined by the magnetic fields.

The output files are "thetal.dat", "theta2.dat", and "theta3.dat". The time
series represented in each of these files are represented in radians.

The program should be called by the sequence "euler3f XXX", where XXX is the
number of points in each of the input data files. */

#include <c:Astdio.h>
#include <c:'Aio.h>
#include <c:Nc\fcntl.h>
#include <c:'cNrnath.h>
#include <c:'c\errno.h>
#include <c:'c\stdlib.h>
#define BLOCK 1024 /* Bytes to read and write each time */

short int c13 [BLOCK],c23 [BLOCK],c12[BLOCK]; /*2 bytes per integer*/
float thetal[BLOCK],theta2[BLOCK],theta3[BLOCK]; /* 4 bytes per output */
float C[9]; /* equivalent to a 3 by 3 matrix */

main(argc,argv)
int argc;
char *argv[;
I

extern int errno;
unsigned long int dlength,wtotal;
float blength;
int ijk,filfi2,fi3,fi4,fol,fo2,fo3,nread,nwrite;
int bias[3]junk;
float scale[3],pi;
float truedotangle;
char out[40];

pi=3.1415926536;
if(argc!=2)
( printf("\n\7Error - file length not specified");

exit(-3);)
blength=atof(argv[1]);
dlength=blength;
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l.

printf("Finding euler angles for %u values\n",dlength);
if((fil=open("Cl2.PRN",ORDONLYIOBINARY))=-l) /* Open the input files */

(printf("\n\7Error opening C12.PRN");
exit(-l);)

if((fi2=open("C13.PRN",QRDONLYIOQBINARY))==-1)
(printf("\n\7Error opening C13.PRN");
exit(-1);)

if((fi3=open("C23.PRN",RDONLYOBINARY))==-l)
(printf("\n\7Error opening C23.PRN");
exit(-1);)

fol=open("THETAlDAT",OCREATIOEXCLIOWRONLYIOBINARY); /* Open the output */
if(fol=-1)

(printf("\n\7Error opening THETA l.DAT for output");
if(errno==EEXIST)printf("\nTHETAl.DAT already existsmust delete it");
exit(-2);)

fo2=open("THETA2.DAT",_CREATIO_EXCLIOWRONLYO_BINARY);
if(fo2=-1)

{printf("\n\7Error opening THETA2.DAT for output");
if(errno==EEXIST)printf("\nTHETA2.DAT already existsmust delete it");
exit(-2);)

fo3=open("THETA3.DAT",CREATOEXCLIOWRONLYO_BINARY);
if(fo3=-)

{printf("\n\7Error opening THETA3.DAT for output");
if(errno==EEXIST)printf("anTHETA3.DAT already existsmust delete it");
exit(-2);)

if((fi4=open("DATA.CON",ORDONLYIO_BINARY))=-1)
(printf("\n\7Error opening DATA.CON");
exit(-');)

nread=read(fi4,bias,12); /* read the bias values */
nreadm-read(fi4,scale,12); /* read the scale values */
nread=read(fi4,&truedot,4); /* read the cos of the angle between the coils */
junk=close(fi4);
if(fabs(truedot) 1.0)

(printf("Enter the value of the angle between the eye coil (in degrees)\n");
junk=scanf("%f",&angle);
angle= 180.-angle;
truedot=cos(angle*3.1415926/180.);)

/*bias=2050;
scale=2.11972873le-04; 20./4096./(4./cos(90.-1O.)); */

printf("Scale factors equal %e (H), %e (V), %e (T)\n",scale[0],scale[1],scale[2]);
printf("The A/D bias are %d (H), %d (V) %d (T)\n",bias[O],bias[1],bias[2]);
angle=180.-18013.1415*acos(truedot);
printf("The angle between the coils is %5.1f)\n",angle);
wtotal=0;
for(j=0;j++)

nread--read(fil,c12,BLOCK*2);
nread-=read(fi2,c13,BLOCK*2);
nread=read(fi3,c23,BLOCK*2);
for(k=0;k<nread/2;k++)

*(C+3)=-(*(c12+k)-(4096-bias[]))*scale[O]; /*1st scale the data*/
*(C+6)=-(*(cl3+k)-(4096-bias[]))*scale[];
*(C+7)=(*(c23+k)-(4096-bias[2]))*scale[2];
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i=correction(truedot); /* performs actual calculations */
if(i!=O) printf("\nError from correction routine\n");

*(theta2+k)=-asin(*(C+6)); /* calculate the output angles */
*(theta3+k)=asin((*(C+3))/(cos(*(theta2+k))));
*(theta3+k)=asin((*(C+7))/(cos(*(theta2+k))));

nwrite write(folthetal,4*(nread/2)); /* 4 bytes per value
nwrite=write(fo2,theta2,4*(nread/2)); /* 4 bytes per value */
nwrite=write(fo3,theta3,4*(nread/2)); /* 4 bytes per value */
wtotal=wtotal+nwrite/4;
if(nwrite!=4*(nread/2)) printf('NnError 7");
if(nread!=BLOCK*2) break;

}
if(dlength!=wtotal) printf('\n\7Error-total data bytes written mismatch");
junk=close(fil);
junk=close(fi2);
junk=close(fi3);
junk=close(fol);
junk=close(fo2);
junk=close(fo3);
sprintf(out,"attrib -r thetal.datN");
j=system(out);
sprintf(out,"attrib -r theta2.datY");
j=system(out);
sprintf(out,"attrib -r theta3.datO");
j=system(out);
}

/* correction: performs the corrections calculations
This subroutine just implements the cross products and other calculations
defined in Section 2.1.1.2 of my thesis. */
int correction(truedot)
float truedot;
I

int j;
float tempplus,minus,m;
temp=(*(C+3))*(*(C+3))+(*(C+6))*(*(C+6));
if(temp>1)

{*(C)=0.00000001;)
else

{*(C)=sqrt(1-temp);)
temp=2*(*(C+6))*(*(C+7))*truedot+(*(C+3))*(*(C+3))+(*C)*(*C)-(*(C+7))*(*(C+7));
temp=temPredottruedot;
if(temp<O)

(printf("ERROR calculating c22 [sqrt(temp<0)] temp=%f\n",temp);
exit;)

else if(temp>1)
(printf("ERROR calculating c22 [sqrt(temp> 1)] temp=%f\n",temp);
exit;)

else
(temp=*(C)*sqrt(temp) + *(C+3)*truedot - *(C+3)*(*(C+6))*(*(C+7));
*(C+4)=temp/(*(C+3)*(*(C+3)) + *(C)*(*(C)));)
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I,

*(C+1)=(truedot - *(C+3)*(*(C+4)) - *(C+6)*(*(C+7)))/(*(C));

*(C+2)=-(*(C+4))*(*(C+6)) + (*(C+3))*(*(C+7));
*(C+5)=-(*(C+7))*(*(C+)) + (*(C+1))*(*(C+6));
*(C+8)=-(*(C+1))*(*(C+3)) + (*(C+4))*(*(C+O));
m=((*(C+2))*(*(C+2)) + (*(C+5))*(*(C+5)) + (*(C+8))*(*(C+8)));
if(m <=1)

m=sqrt(m);
*(C+2)=(*(C+2))/m;
*(C+5)=(*(C+5))/m;
*(C+8)=(*(C+8))/m;)

*(C+1)=(*(C+5))*(*(C+6)) -(*(C+3))*(*(C+8));
*(C+4)=(*(C))*(*(C+8)) -(*(C+2))*(*(C+6));
*(C+7)=(*(C+3))*(*(C+2)) -(*(C))*(*(C+5));
return ;
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/* PROGRAM filter5.c
Programmer: Dan Merfeld
Date: 9/15/89

This program takes the output files from euler3f.c and differentiates
each time series to determine the euler rates.

The input files are "Thetal.dat", "Theta2.dat", and "Theta3.dat".
The output files are "Thlvel.dat", "Th2_vel.dat", and "Th3_vel.dat".

The program should be called with the sequence "filter5 XXX", where XXX
is the number of points in each of the input data files. */

#include <c:N\stdio.h>
#include <c:c\io.h>
#include <c:'c\fcntl.h>
#include <c:'c\math.h>
#include <c:cerrno.h>
#include <c:c\stdlib.h>
#define BLOCK 1024 /* Bytes to read and write each time */

float in[BLOCK]; /* 4 bytes per input */
float out[BLOCK],temp[BLOCK+4];
main(argc,argv)
int argc;
char *argv[];

extern int errno;
int fdlfd2jk;
char string[40];
unsigned long int dlength;
float blength;

if(argc!=2)
( printfC'\n\7Error - file length not specified");

exit(-2);)
blength=atof(argv[1]);
dlength=blength;
printf("Filtering %u values",dlength);

if((fdl=open("THETA1.DAT",CRDONLY)_BINARY))==-1)
(printf("\n\7Error opening THETAL.DAT");
exit(-1);)

fd2=open("TH1_YEL.DATQCREATlO_EXCLIOWRONLY)_BINARY);
if(fd2==-1)

(printf("\n\7Error opening THIVEL.DAT for output");
if(errno==EEXIST) (printf("\nTH1_VEL.DAT already exists, delete it");}
exit(-2);)

j=filt5(fdl,fd2,dlength); /* Subroutine performs the actual calculations */
ifG!=O)

(printf("\n\7Error from filter function");
exit(-1);)

close(fdl);
close(fd2);
sprintf(string,"attrib -r thivel.datN)");
k=system(string);
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if((fdl=open("THETA2.DAT",QRDONLYIOBINARY))=-1)
(printf("\n\7Error opening THETA2.DAT");
exit(-1);)

fd2=open("TH2_VEL.DAT",CREATIOEXCLIO_WRONLYO_BINARY);
if(fd2=-1)

{printf("\n\7Error opening TH2_VEL.DAT for output");
if(errno==EEXIST) (printf("\nTH2_VEL.DAT already exists, delete it");)
exit(-2);)

j=filt5(fd1,fd2,dlength); /* Subroutine performs the actual calculations */
if(j!=0)

(printf("\n\7Error from filter function");
exit(-1);)

close(fdl);
close(fd2);
sprintf(string,"attrib -r th2_vel.datNO");
k=system(string);

if((fdl=open('"THETA3.DAT",QRDONLYIO_BINARY))=-l)
(printf("\n\7Error opening TH3.DAT");
exit(-1);)

fd2=open("TH3_VEL.DAT",_CREATIO_EXCLIOWRONLYO_BINARY);
if(fd2==-1)

fprintf("\n\7Error opening TH3_VEL.DAT for output");
if(errno==EEXIST) (printf("\nTH3_VEL.DAT already exists, delete it");}
exit(-2);)

j=filt5(fd1,fd2,dlength); /* Subroutine performs the actual calculations. */
if(j!=O)

(printf("\n\7Error from filter function");
exit(-1);)

close(fdl);
close(fd2);
sprintf(string,"attrib -r th3_vel.datNO");
k=system(string);
I

/* filt5: performs all of the calculations */
int filt5(fd1,fd2,dlength)
int fdlfd2;
unsigned long int dlength;

unsigned long int wtotal;
int j,k,nread,nwrite;
int bias; -
float sample;

sample=200.; /* sampling rate in Hz */
nread=read(fdl,in,8);
*(temp)=*(in);
*(temp+1)=*(in);
*(temp+2)=*(in);
*(temp+3)=*(in+l);
wtotal=0;
for(j=O;j++)

(nread=read(fd1,in,BLOCK*4);
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if(nread!=BLOCK*4)
(*(in+niread/4+1)=*(in+nread/4-1);
*(in+nrad/4)=*(in+nread/4-1);
nmad=nread+8;)

for(k=O;k<nread/4;k++)
(*(temp+4+k)=*(in+k);
*(out+k)=sample*(.125*(*(temp+4+k)-*(temp+k))+.25*(*(temp+3+k)-*(temp+1+k)));) /*

actual filtering equation */
nwrite=write(fd2,out,4*(nread/4)); /* 4 bytes per value */
wtotal=wtotal+nwrite/4;
if(nwrite!=4*(nread/4)) printf('NnError 7");
if(nread!=BLOCK*4)
[break;)
else

(*temp=*(in+1020);
*(temp+l)=*(in+1021);
*(temp+2)=*(in+1022);
*(temp+3)=*(in+1023);}

if(dlength!=wtotal) printf("\n\7Error-total data bytes written mismatch");
return 0;
}
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/* PROGRAM inertial.c
Programmer. Dan Merfeld
Date: 9/15/89

This program opens six input files; 3 euler angle files and 3 euler rate
files. The euler angle files were created by the euler3f program, and the
euler rate files were created by the filter5 program.

The three output files are "h.vel.dat", "vvel.dat", and "rvel.dat". These
files represent the inertial rates about three orthogonal axes. These
calculations are discussed in section 2.1.1.3 of my thesis.

The program is called by the sequence "inertial XXX", where XXX is the
number of data points in each of the input data files. */

#include <c:Ncstdio.h>
#include <c:io.h>
#include <c:'c\fcntl.h>
#include <c:cmath.h>
#include <c:NcMerrno.h>
#include <c:Nc\stdlib.h>
#define BLOCK 1024 /* Bytes to read and write each time */

float thetal [BLOCK],theta2[BLOCK];
float thlvel[BLOCK],th2_vel[BLOCK],th3_ve[BLOCK];
float h.vel[BLOCK],v.vel[BLOCK],ryel[BLOCK]; /* 4 bytes per output */
main(argc,argv)
int argc;
char *argv[;
{
extern int errno;
unsigned long int dlength,wtotal;
float blength;
int jk,fil,fi2,fi3,fi4,fi5,folfo2,fo3,nread,nwrite;
char out[40];
float sin_th1,costh,sinth2,cos-th2;
float pi,scale;

pi=3.1415926536;
if(argc!=2)
( printf("\n\7Error - file length not specified");

exit(-3);)
blength=atof(argv[1]);
dlength=blength;
printf("Finding velocity in inertial coordinates for %u values\n",dlength);

if((fil=openCTHETA1.DAT",_RDONLYILO_BINARY))==-1) /* open all files */
(printf("\n\7Error opening THETA1.DAT");
exit(-1);)

if((fi2=open("THBETA2.DAT",_RDONLYK)_BINARY))==-1)
(printf("\n\7Error opening THETA2.DAT");
exit(-1);)

if((fi3=open("TH1_VEL.DAT",ORDONLYIO_BINARY))==-1)
(printf("\n\7Error opening THLVEL.DAT");
exit(-1);)

if((fi4=open("TH2_VEL.DAT",QRDONLYIO_BINARY))=-1)
(printf("\n\7Error opening TH2_VEL.DAT");
exit(-1);)
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if((fi5=open("TH3_VELDAT",QRDONLYIOBINARY))==-1)
(printf("\n\7Error opening TH3_VEL.DAT");
exit(-1);)

fol=open("HVEL.DAT",CREATIOEXCLIOWRONLYO_BINARY);
if(fol==-1)

(printf('\n\7Error opening HVEL.DAT for output");
if(erno=EEXIST)printf("\nHVEL.DAT already exists, must delete it");
exit(-2);)

fo2=open("VVEL.DAT"',_CREATIOEXCLIOWRONLYO_BINARY);
if(fo2==-l)

{printf("\n\7Error opening VVEL.DAT for output");
if(errno==EEXIST)printf("\nVVEL.DAT already exists, must delete it");
exit(-2);)

fo3=open("RVEL.DAT",CREATO_EXCLIOWRONLYOBINARY);
if(fo3=-l)

(printf("\n\7Error opening RVEL.DAT for output");
if(errno==EEXIST)printf("\nRVEL.DAT already exists, must dzletc it");
exit(-2);)

scale=180./3.1415926536;
wtotal=O;
for(j=O;j++)
{

nread=read(fil,thetal,BLOCK*4);
nread-,read(fi2,theta2,BLOCK*4);
nread=read(fi3,thIvelBLOCK*4);
nread=read(fi4,th2_vel,BLOCK*4);
nread=read(fi5,th3_velBLOCK*4);
for(k=O;k<nread/4;k++) /* the actual calculation are implemented below */

(sinthl=sin(*(thetal+k));
cos -thl=cos(*(thetal+k));
sinjth2=sin(*(theta2+k));
cosjth2=cos(*(theta2+k));
*(hvel+k)=(*(th1_vel+k) - *(th3_Vel+k)*sinfth2)*scale;

/* *(h_vel+k)=(*(thlvel+k))*scale; */
*(vvel+k)=((*(th2_vel+k))*costh+(*(th3_vel+k))*cosfth2*sinthl)*scale;

/* *(v-vel+k)=((*(th2_vel+k)))*scale; */
*(r-vel+k)=((*(th3_vel+k))*costh2*cos_th-(*(th2_vel+k))*sin-thl)*scale;

nwrite=write(folhryel4*(nread/4)); /* 4 bytes per value
nwrite=write(fo2,vvel,4*(nread/4)); /* 4 bytes per value */
nwrite=write(fo3,ryel,4*(nread/4)); /* 4 bytes per value */
wtotal=wtotal+nwrite/4;
if(nwrite!=4*(nread/4)) printf("\nError 7");
if(nread!=BLOCK*4) break;

if(dlength!=wtotal) printf("\n\7Error-total data bytes written mismatch");
close(fil);
close(fi2);
close(fi3);
close(fi4);
close(fi5);
close(fol);
close(fo2);
close(fo3);
sprintf(out,"attrib -r hvel.datO");
j=system(out);
sprintf(out,"attrib -r v_vel.datNO");
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j=system(out);
sprintf(out,"attrib -r rvel.dat'O");
j=system(out);
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/* PROGRAM filter9.c
Programmer Dan Merfeld
Date: 9/15/89

This programs takes the output files from inertial.c and differentiates
each time series to determine the angular acceleration of the eye. This
information is used in the detection software which was implemented in
Matlab.

The output files are "h_acc.dat", "v-acc.dat", and "racc.dat".

The program is called with the sequence "filter9 XXX", where XXX is the
number of points in each of the input data files. */

#include <c:6stdio.h>
#include <c:N\io.h>
#include <c:\fcntl.h>
#include <c:Nmath.h>
#include <c:'c'errno.h>
#include <c:Nc\stdlib.h>
#define BLOCK 1024 /* Bytes to read and write each time */

float in[BLOCK]; /* 4 bytes per input */
float out[BLOCK],temp[BLOCK+8];
main(argc,argv)
int argc;
char *argv];
{
extern int errno;
int fdlfd2jk;
char string[40];
unsigned long int dlength;
float blength;

if(argc!=2)
{ printf("\n\7Error - file length not specified");

exit(-2);)
blength=atof(argv[1]);
dlength=blength;
printf("Filtering %u values",dlength);

if((fd1=open("HVELDAT, RDONLYO_BINARY))==-1)
(printf("\n\7Error opening HVEL.DAT");
exit(-1);)

fd2=open("HACC.DAT,CREAIO_EXCLIOWRONLYO_BINARY);
if(fd2==-1)

(printf("\n\7Error opening H_ACC.DAT for output");
if(errno==EEXIST) (printf("\nH_ACC.DAT already exists, delete it");)
exit(-2);)

j=filt9(fdI,fd2,dlength);
if(j!=O)

(printf("\n\7Error from filter function");
exit(-1);)

close(fdl);
close(fd2);
sprintf(string,"attrib -r h-acc.datOf");
k=system(string);
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if((fd1=open("VVEL.DAT",O_RDONLYIO_BINARY))=-l)
(printf("\n\7Error opening V_VEL.DAT");
exit(-1);)

fd2=open("VACC.DAT",O_CREATIOEXCLIOWRONLYIOBINARY);
if(fd2=-1)

(printf("\n\7Error opening VACC.DAT for output");
if(erno==EEXIST) (printf('\nVACC.DAT already exists, delete it");}
exit(-2);)

j=filt9(fd1,fd2,dlength);
if(j!=O)

{printf("\V\7Error from filter function");
exit(-1);)

close(fdl);
close(fd2);
sprintf(string,"attrib -r vacc.datO");
k=system(string);

if((fdl=open("RVEL.DAT"',QRDONLY -BINARY))=-1)
(printf("\n\7Error opening RVEL.DAT");
exit(-1);)

fd2=open("RACC.DAT",CREATOEXCLIOWRONLYIOBINARY);
if(fd2==-1)

fprintf("\n\7Error opening R.ACC.DAT for output");
if(errno==EEXIST) (printf("\nR_ACC.DAT already exists, delete it");)
exit(-2);)

j=filt9(fd1,fd2,dlength);
if(j!=O)

(printf("\n\7Error from filter function");
exit(-1);)

close(fdl);
close(fd2);
sprintf(string,"attrib -r racc.dafO");
k=system(string);
}

/* filt9: performs all of the calculations */
int filt9(fd1,fd2,dlength)
int fd,fd2;
unsigned long int dlength;
{
unsigned long int wtotal;
int jknreadnwrite;
int bias;
float-sample;

sample=200.;
nread=read(fd1,in,16);
*(temp)=*(in);
*(temp+l)=*(in);
*(temp+2)=*(in);
*(temp+3)=*(in);
*(temp+4)=*(in);
*(temp+5)=*(in+1);
*(temp+6)=*(in+2);
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*(temp+7)=*(in+3);
wtotal=O;
for(j=O;;j++)

(nread=read(fdl,in,BLOCK*4);
if(nread!=BLOCK*4)

(*(in+nread/4+3)=*(in+nread/4-1);
*(in+nread/4+2)=*(in+nread/4-1);
*(in+nread/4+l)=*(in+nread/4-1);
*(in+nread/4)=-*(in+nread/4-l);
nread=nread+16;)

for(k=0;k<nread/4;k++)
(*(temp+8+k)=*(in+k);
*(out+k)=sample*((*(temp+8+k)-*(temp+k))/8);} /* actual filter */

nwrite=write(fd2,out,4*(nread/4)); /* 4 bytes per value */
wtotal=wtotal+nwrite/4;
if(nwrite!-4*(nread/4)) printf("\nError 7");
if(nread!=BLOCK*4)
(break;)
else

(*temp=*(in+1016);
*(temp+)=*(in+1017);
*(temp+2)=*(in+1018);
*(temp+3)=*(in+1019);
*(temp+4)=*(in+1020);
*(temp+5)=*(in+1021);
*(temp+6)=*(in+ 1022);
*(temp+7)=*(in+1023);)

}
if(dlength!=wtotal) printf('\7Effor-total data bytes written mismatch");
return 0;
}
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/* PROGRAM accmag.c
Programmer Dan Merfeld
Date: 9/15/89

This program calculates the magnitude of the acceleration by finding
the square root of the sum of squares of the components.

The input files are the output of filter9.c.

The output file is "m_acc.dat"

The program should be called with the sequence "acc-mag XXX", where XXX is
the number of points in each of the input files. */

#include <c:\stdio.h>
#include <c:cio.h>
#include <c:'1\fcntl.h>
#include <c:Nmath.h>
#include <c:'c\errno.h>
#include <c:N\stdlib.h>
#define BLOCK 1024 /* Bytes to read and write each time */

float macc[BLOCK];
float hacc[BLOCK,v-acc[BLOCK]r_.acc[BLOCK]; /* 4 bytes per output */
main(argc,argv)
int argc;
char *argv[;
I
extern int errno;
unsigned long int dlength,wtotal;
float blength;
int jk,fil,fi2,fi3,folnread,nwrite;
char out[40];
float tempi,temp2,temp3;

if(argc!=2)
( printf("\n\7Error - file length not specified");

exit(-2);)
blength=atof(argv[1]);
dlength=blength;
printf("Finding acceleration magnitude for %u values",dlength);

if((fil=open("HACC.DAT",QRDONLYILO_BINARY))==-1)
(printf("\n\7Error opening HACC.DAT");
exit(-1);)

if((f2=open("VACC.DAT"',ORDONLYO_BINARY))==-1)
(printf("\n\7Error opening VACC.DAT");
exit(-1);)

if((fi3=open("RACC.DAT",QRDONLYOBINARY))=-1)
(printf("\n\7Error opening RACC.DAT");
exit(-1);)

fol=open("MACC.DAT",CREAT10_EXCLIOWRONLYO_BINARY);
if(fol==-1)

(printf("\n\7Error opening MACC.DAT for output");
if(ermo==EEXIST)printf("\nMACC.DAT already exists, must delete it");
exit(-2);)
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wtotal=O;
for(j=O;j++)

nread=read(filhaccBLOCK*4);
nread=read(fi2,v.acc,BLOCK*4);
nread--read(fi3,r.acc,BLOCK*4);
for(k=0k<nread/4;k++)

(temp1=(*(h-acc+k))*(*(hacc+k));/*These four lines calculate */
temp2=(*(v-acc+k))*(*(vacc+k));
temp3=(*(r-acc+k))*(*(r_acc+k));
*(m-acc+k)=sqrt(temp+temp2+temp3);)

nwrite=write(fol,m-acc,4*(nread/4)); /* 4 bytes per value */
wtotal=wtotal+nwrite/4;
if(nwrite!=4*(nread/4)) printf("\nError 7");
if(nread!=BLOCK*4) break;

}
if(dlength!=wtotal) printf('\n\7Error-total data bytes written mismatch");
close(fil);
close(fi2);
close(fi3);
close(fol);
sprintf(out,"attrib -r macc.dat\O");
j=system(out);
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/* PROGRAM f_convert.c
Programmer: Dan Merfeld
Date: 11/17/89

This program opens a data file called "temp.dat" and converts it to Matlab
format and calls the output file "temp.mat". The input file should be an
array of floating values like that created by "euler3f.c", "inertial.c",
"acc-mag.c", etc.

The program should be called with the sequence "fLconvert YYY XXX", where
YYY is the matlab variable name and XXX is the number of data values in
the input file. */

#include <c:Nc\stdio.h>
#include <c:Ncio.h>
#include <c:Nc\fcntl.h>
#include <c:cimath.h>
#include <c:'c'errno.h>
#include <c:WNcstdlib.h>
#define BLOCK 512 /* Bytes to read and write each time */

/* These must be variables to provide pointers for write functions */
long int namlen; /* length of variable name + 1 */
long int type=000; /* matrix, double prec, column-wise */
long int ncols=1; /* number of columns */
long int imagf=O; /* no imaginary part */

float datain[BLOCK]; /* 2 bytes per input integer */
double dataout(BLOCK]; /* 8 bytes per output double */

main(argc,argv)
int argc;
char *argv[];
(
extern int errno;
unsigned long int dlength,wtotal;
float blength;
intj,k,fd1,fd2,nread,nwrite;
char out[40];

if(argc!=3)
(printf("n\7Error - variable name and/or file length not specified");
exi(-3);)

namlen=strIen(argv[1])+ 1;
blength=atof(argv[2]);
dlength=blength;
printf("\nTranslating TEMP.DAT; %u integers",dlength);
if((fdl=openCTEMPDAT",QRDONLYKO_BINARY))==- 1)

(printf("I\7Error opening TEMP.DAT");
exit(-1);)

fd2=open("TEMP.MAT",_CREATOEXCLIO_WRONLYIOQBINARY);
if(fd2==-1)

(printf("\n\7Error opening TEMP.MAT for output");
if(ermo=EEXIST) printf("NnTEMP.MAT already exists, must delete it");
exit(-2);}

nwrite=write(fd2,&type,4); /* write all 5 header values */
if (nwrite!=4) printfC\nError 1");
nwrite=write(fd2,&dlength,4);
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if (nwrite!=4) printf(\nError 2");
nwrite=write(fd2,&ncols,4);
if (nwrite!=4) printf("\nError 3");
nwrite=write(fd2,&imagf,4);
if (nwrite!=4) printf("NError 4");
nwrite=write(fd2,&namIen,4);
if (nwrite!=4) printf("\nError 5");
nwrite=write(fd2argv[1],namlen);
if (nwrite!=namlen) printf('"nError 6");
wtotal=0;
for(j=O;j++)

{
nread=read(fdI,datain,BLOCK*4);
for(k= ;k<nread/4;k++) dataout[k]=datain[k];
nwrite=write(fd2,dataout,8*(nread/4)); /* 8 bytes per value */
wtotal=wtotal+nwrite/8;
if(nwrite!=8*(nread/4)) printf("\nError 7");
if(nread!=BLOCK*4) break;
}

if(dlength!=wtotal) printf("\n\7Error total data bytes written mismatch");
close(fdl);
close(fd2);
sprintf(out,"attrib -r temp.matNO");
j=system(out);
}
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/* PROGRAM iconvert.c
Programmer Dan Merfeld
Date: 11/17/89

This program open a data file called "temp.dat" and converts it to Matlab
format and calls the output file "temp.mat". The input file should be an
array of short integer values.

The program should be called with the sequence "iconvert YYY XXX", where
YYY is the matlab variable name and XXX is the number of data values in the
input file. /*

#include <c:Astdio.h>
#include <c:\c\io.h>
#include <c:'c\fcntl.h>
#include <c:cVmath.h>
#include <c:'c\errno.h>
#include <c:\stdlib.h>
#define BLOCK 512 /* Bytes to read and write each time */

/* These must be variables to provide pointers for write functions */
long int namlen; /* length of variable name + 1 */
long int type=000; /* matrix, double prec, column-wise */
long int ncols=1; /* number of columns */
long int imagf=0; /* no imaginary part */

short int datain[BLOCK]; /* 2 bytes per input integer */
double dataout[BLOCK]; /* 8 bytes per output double */

main(argc,argv)
int argc;
char *argv[];
I
extern int errno;
unsigned long int dlength,wtotal;
float blength;
intj,k,fd1,fd2nread,nwrite;
char out[40];

if(argc!=3)
(printf("\n\7Error - variable name and/or file length not specified");
exit(-3);)

namlen=strlen(argv[1])+1;
blength=atof(argv[2]);
dlength=blength;
printf("\nTransating TEMP.PRN; %u integers",dlength);
if((fdl=open("TEMP.PRN",O_RDONLYIO_BINARY))==-l)

(printf("\n\7Error opening TEMP.RN");
exit(-1);}

fd2=open("TEMP.MAT",_CREATIOEXCLIOWRONLYOBINARY);
if(fd2==-1)

{printf("\n\7Error opening TEMP.MAT for output");
if(errno=EEXIST) printf("\nTEMP.MAT already exists, must delete it");
exit(-2);)

nwrite=write(fd2,&type,4); /* write all 5 header values */
if (nwrite!=4) printf("\nError 1");
nwrite=write(fd2,&dlength,4);
if (nwrite!=4) printfC"\nError 2");
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nwrite=write(fd2,&ncols,4);
if (nwrite!=4) printf("\nError 3");
nwrite=write(fd2,&imagf,4);
if (nwrite!=4) printf("'\nError 4");
nwrite=write(fd2,&namlen,4);
if (nwrite!=4) printf("\nError 5");
nwrite=write(fd2,argv[l],namlen);
if (nwrite!=namlen) printf('\nError 6");
wtotal=O;
for(j=O;;j++)

{
nread=read(fdl,datain,BLOCK*2);
for(k=O;k<nread/2;k++) dataout[k]=datain[k];
nwrite=write(fd2,dataout,8*(nread/2)); /* 8 bytes per value */
wtotal=wtotal+nwrite/8;
if(nwrite!=8*(nread/2)) printf('"nError 7");
if(nread!=BLOCK*2) break;
)

if(dlength!=wtotal) printf("\n\7Error tuial daia bytes written mismatch");
close(fdl);
close(fd2);
sprintf(out,"attrib -r temp.matO");
j=system(out);
I
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B.3 Matlab Analysis Programs

The actual desaccade algorithm is implemented in a set of m-files that can only be

called from within Matlab (copyright MathWorks). Figure B.3 shows the tree structure of

all of the routines which I wrote as part of this analysis process. "Desaccade.m" is called

directly from the "spv.m" program. It's primary function is to call each of the subroutines

which perform the actual calculations.

The first subroutine called is detectl.m. This program and it's subroutines (heart.m,

remove.m and fill.m) performs a 3 dimensional acceleration detection similar, though not

identical, to the 1 dimensional Massoumnia algorithm.

The second subroutine called is decimat.m. This program decimates the data from

the original 200 Hz sampling rate to 20 Hz.

The third subroutine called is beg-end.m It is not important.

The fourth subroutine is detect2.m. This is the part of the program which performs

the parameter estimation and evaluates the residuals to find any missed saccades.

The fifth subroutine is low-pass.m, and, true to its name, it low pass filters the

output data to eliminate some of the high frequency noise.

The final subroutine called is hrdcopy.m. The program plots each of the data

channels and generates a paper copy.

Source code for each of these m-files follows.
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Desaccade.m Process Flow

heart.m

detectl.m

remove~m 1.

dechnat.m ffltzero.ml

beg_end.m

desaccade.m

param.m

detect2.m

remove2.m

low_pass.m fIULtzer.M

hrdcopy.m

Figure B.3
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%DESACCADE This program detects fast phases and removes them. It does
% this in two passes at the data. First, the data is analyzed by a
% program called DETECT1. Then a program called DECIMAT is called to
% decimate the data to 20 Hz. The second pass at the data is performed
% by a program called DETECT2. Another program called BEGEND is also
% called to find the begining and ending of the stimulus acceleration.
%1 A program called LOWPASS is invoked to low pass filter the slow
% phase eye velocity. And, finally, a program called HRDCOPY is used
% to plot the data to the screen and create a hardcopy output of the
% data.

% D.M. Merfeld 7/9/89

fprintf('running detectl\n');
detecti

decimat

load tempi
load templ1
load temp2
load temp1_2
load temp3
load templ_3
load temp4

begend

detect2

low-pass

hrdcopy

h_vell=hyel;
v-vell=v_vel;
r_vell=r vel;
hvel=h.veljf;
v_vel=v_vel_f;
r vel=rveLf;

clear h_vell v_vell r_vell
clear h_v vv r_v
clear h_vel_f v_vel_f r_vel_f
clear h_vel2 v_vel2 r_vel2
clear ans
load flag
save temp

clearall
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%DETECT1 This program uses an acceleration threshold to detect fast
% phases. The actual detection algorithm is in the subroutine HEART.
% The program also calls REMOVE which takes the periods with detected
% fast phases and fills the region with an estimate of slow phase
% velocity.

% D.M. Merfeld 3/30/89
% Edited 7/9/89

load c:Ndata\threshl.mat
load m_acc
thresh_acc
thresh_end

stop=max(size(macc))-151;
m=151;
finish=0,
event=0;
pack

heart
save flag flag thresh-acc threshend

clearall

remove
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%HEART Detects the majority of fast phases using an acceleration threshold
% set by the user. The subroutine finds the start and finish of fast
% phases. The variable [start] marks the last good data point before
% the fast phase, while the variable [finish] marks the last data point
% of the fast phase.

% D.M. Merfeld 3/30/89

while (m <= stop)

if (m acc(m) >= threshacc),
k=1;
while(min(macc(m-k:m-k-2))>thresh end)

k=k+1;
exl
if((m-k-2) > finish),

event=event+1;
start=m-k-1;

end

m=m+5;
while(min(macc(m:m+2))>thresh end)

m=m+1;
end

m=m+2;
finish=m;
flag(event,:)=[start finish];

end
m=m+1;

enid
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%REMOVE Takes the events which have been classified as fast phases and removes
% them to yield slow phase eye velocity. The fast phases which are
% removed are those found by the heart program. The program fill is
% called to perform the actual interpolation.

% D.M. Merfeld 3/30/89

load flag
load hvel
data='h-vel';
len=length(h-vel);
pack
fill
save h vel slo h vel
clearall

load flag
load vvel
data='vyvel';
len=length(v vel);
pack
fill
save v vel slo v vel
clearall

load flag
load rvel
data='r-ve';
len=length(r vel);
pack
fill
save rvelslo r vel

clearall
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%FILL This subroutine estimates the slow phase velocity during a fast phase
% to be equal to the slow phase velocity just before the saccade. This
% estimate of the slow phase velocity is used to fill in the duration of
% the fast phase.

% D.M. Merfeld 3/30/89

fmish=O;
number=max(size(flag));
n=1;
while (n <= number),

start--flag(n,1);
finish=flag(n,2);
eval(rv.beg=median(',data,'(start-4:start));]);
eval([data,'(start+l:finish)=v_beg*ones(fmish-start,1);']);
n=n+1;
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%DECIMAT This program is used to decimate the data stream from
% 200 Hz to 20 Hz. This program was specifically designed
% for the coil measurements that I obtained from squirrel
% monkeys. With this data I didn't need to filter the data
% before decimating. BEWARE of aliasing.

load h_vel
len=length(hvel);
h-v=h-vel(1:10:len);
save templ_1 h-v
clear h_v

load h_velslo
len=length(h-vel);
htvel=hvel(1:10:len);
save tempi hvel
clear hvel

load v_vel
len=length(vvel);
vv=vvel(1:10:len);
save templ_2 v_v
clear v_v

load vvel_slo
len=length(v-vel);
v-ve=v-vel(1: 10:len);
save temp2 v_vel
clear vvel

load rvel
len=length(r-vel);
r_v=r_vel(1:10:len);
save templ_3 r_v
clear r_v

load rvel_slo
len=length(rvel);
rvel=rvel(1: 10:len);
save temp3 r_vel
clear r_vel

load omega
len=length(omega);
x=omega(1:2:.en);
clear omega
B=[1/5 1/5 1/5 1/5 1/5];
A=;
filtzero
len=length(x);
x=x(1:5:len);
B=[1 0 -1];
filtzero
alpha=x;
save temp4 alpha
clearall
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%FILTZERO Performs zero phase shift filtering for FIR filters (ONLY!)
% by padding signal to be filtered with non-zero values at
% beginning and end of data sequence.

% D.M. Merfeld 3/30/89

nx=max(size(x)); %this section of code calculates the eye velocity
nB=max(size(B));
x(nx+1:nx+((nB-1)/2))=x(nx).*ones(((nB-1)/2),1);
[temp,z]=filter(B,A,x(1).*ones(((nB-1)/2),1));
clear temp
x=filter(B,Ax,z);
x=x(((nB-1)/2+1):nx+((nB-1)/2));
clear z nx nB
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%BEGENG This program detects the beginning and ending of acceleration
% and deceleration for trapezoidal profiles. This is not an
% important program and probably can be removed.

len=length(alpha);
count=0;
j=1;
while(j<len-20)

if(abs(mean(alpha(j:j+10)))> 2)
k=j+5;
sgn2=sign(alpha(k));
sgn1=sign(mean(alpha(j:j+10)));
while(sgnl == sgn2)

k=k-1;
if(k < 10)

break;
axi
sgn2=sign(alpha(k));

end
i=j+6;
sgn2=sign(mean(alpha(i:i+10)));
while(sgnl = sgn2)

i=i+1;
if(i > len-10)

break;
ad
sgn2=sign(alpha(i));

end
if((i - k)> 15)

count=count+1;
beg(count)=k + 1;
stop(count)=i - 1;
j=i+1;

end
end
j=j+1;

end
if(count > 0)

alpha(1:beg(1)-1) = zeros(1,beg(1)- 1);
for j=1:(count-1)

alpha(stop(j)+1:beg(j+1)-1)=zeros(1,beg(j+1)-stop(j) - 1);
end
alpha(stop(count)+1:len)=zeros(1,len-stop(count));

clear len count j k ans i sgnI sgn2

214



%DETECT2 This program uses a least squares fit parameter estimation
% algorithm. The program calls two other programs: PARAM and REMOVE2
% PARAM estimates a model for the slow phase eye velocity and
% determines the errors. REMOVE2 eliminates the detected saccades.

len=length(hyel);
h_vel2=h vel;
v vel2=vvel;
r_vel2=r-vel;

load c:\data\&hresh2
vel_test

param %Estimate a model for the SPV and determine the prediction errors

remove2 %Eliminate the detected saccades

clear ans len
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%PARAM This program divides the original data sequence into ten
% sequences each sampled at 2 Hz. The parameter estimation
% is performed on this low frequency rate data. The output of
% the program is a set of residuals which will be compared to
% a threshold set by the user to indicate an "event".

exj(len)=O;
e-yf(len)=O;
ezj(len)=O;
%e -xj(len)=0;
%e-y-b(en)=O;
%ez4b(len)=O;

for index=1:10
u=alpha(20+index: 10:len-20)';
x=hvel(20+index:10:len-20)';
y=v-vel(20+index: 10:len-20)';
z=r...vel(20+index: 10:len-20)';

[thx,r_x]=s(x,u,1,1,1);
[th.y,r.y]=ls(y,u,1,1,1);
[th.z,r.z]=ls(zu,1,1,1);

e_xj(30+index: 10:len-20)=r_x;
eyf(30+index:10:len-20)=r-y;
e._.zf(30+index:10:len-20)=rz;

end

testjf= sqrt(e_x_f.A2 + ey_f.A2 + e.zjf.A2);

clear u ub x x-b y yb z zb thx thxb th-y th-y b thz th_z_b
clear r_x rx.b r-y r_yb rz_z rjz_b index e_xb e_yj e.zb len2
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%REMOVE2 This program evaluates the residual errors determined in the
% PARAM subroutine and interpolates the "bad" data.

number=0;
j=10;
while(j < len-15)

if(min([testf(j) testf(j+10)]) >= vel_test); %Point > threshold
number=number+1;
start=j;
count-=j+1;
while(min([test-f(count) testjf(count+10)]) >= vel-test)

count=count+1;
end
fmish=count;
for index=j:count-1

h-vel2(index)=h-vel2(index)-exf(index);
v-vel2(index)=v-vel2(index)-eyf(index);
rvel2(index)=rvel2(index)-e_zf(index);
testf(j+10)=O;

end
j=count;

end
j=j+1;
end

clear j start count finish index e_x_f e-yf ejzjf
clear test_f
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%LOW_PASS This program low-pass filters the three components of eye velocity
% The filter coefficients come from a file called lpf.mat FILTZERO is
% called to perform the actual zero-phase filtering.

load c:Ndata\lpf

x=h vel2;
filtzero
h_velf=x;

x=v_vel2;
filtzero
vvelf=x;

x=rvel2;
filtzero
ryeLf=x;

clear A B x
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%HRDCOPY This program provides plots of each of the three components of slow
% phase eye velocity during various stages of processing. The first
% plot is eye velocity, the second plot is after running the detecti
% algorithm, the third plot is after running detect2, and the fourth
% plot is the final output data.

len=length(h-vel);
time=0:.05:(len-4l)*.05;
clg

%if(sum(count) < 0)
% !print warning.fil
% pause(10);
%bend

subplot(222),plot(time,hvel(21:len-20))
title('H_VEL AFTER PASS 1')
axis;
subplot(223),plot(time,h-vel2(21:len-20))
title('H_VEL AFTER PASS 2')
subplot(224),plot(time,h..velf(21:len-20))
title('H_VEL AFTER LPF)
subplot(221),plot(time,h_v(21:len-20))
title('HVEL BEFORE')
axis;
prtsc('ff);
!print file.nam
clg

subplot(222),plot(time,vvel(21:len-20))
title('V_VEL AFTER PASS 1')
axis;
subplot(223),plot(time,vvel2(21:len-20))
title('V_VEL AFTER PASS 2')
subplot(224),plot(time,vveLf(21:len-20))
title('VVEL AFTER LPF)
subplot(221),plot(time,v-v(21:len-20))
title('V_VEL BEFORE')
axis;
prtsc(ff);
!print file.nam
clg

subplot(222),plot(time,r.vel(21:len-20))
title('R_VEL AFTER PASS 1')
axis;
subplot(223),plot(time,rvel2(21:len-20))
title('RVEL AFTER PASS 2')
subplot(224),plot(time,r.vel_f(21:len-20))
title('RVEL AFTER LPF)
subplot(221),plot(time,rv(21:len-20))
title('RVEL BEFORE')
axis;
prtsccff);
!print file.nam
clg
clear len ans time
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APPENDIX C

EYE MOVEMENT CALIBRATION

The following calibration procedure is slightly adapted from Appendix A-3 of the

VRF centrifuge standard operating procedures.

Section 1. EYE MOVEMENT DETECTOR

The procedure presented in this section describe the hardware, steps and actions required to
conduct an eye movement recording experiment. Present experiment specific equipent and
dedicated science support equipment consists of the Eye Movement Detectors (EMD1 and
EMD2) and associated preamplifiers, a Haffler two channel 100 watt amplifier, the buffer
amplifier chassis, two EMD Auxilliary chassis (EMD-AC1 and EMD-AC2), test coil
calibration jig, Helmholtz field coils, and single cell unit recording instrumentation. General
purpose science support equipment required includes oscilloscopes, digital volt meters
(DVMs), and a strip chart recorder.

CAUTION
EMD1 and the Haffler amplifier must NOT be activated
unless the field coils are plugged in. DAMAGE TO EMD1
WILL RESULT IF THE SYSTEM IS RUN WITHOUT A
LOAD. Do not activate the EMD preamplifier until the sensor
coils are plugged in.

Part A: Calibration Procedures

MECHANICAL SET-UP

1. Mount calibration jig and field coil assembly on the plastic platform.
2. Screw the eye coil bridge fixture to the top of the field coil assembly.
3. Clamp eye coil lead ends to bridge clamp fixture at the top of the field coil

assembly.
4. Bolt platform onto dovetail.
5. Place dovetail and platform assembly into STC.
6. Tighten dovetail locking screw.
7. Connect all signal wires.
8. Level STC to desired position.

ELECTRICAL SET-UP

1. Connect field coil to amplifier outputs.
___ 2. Connect calibrator to EMD pre-amplifier inputs. (Verify that the polarity of the

leads is correct.)
3. Switch on 1) EMD1

2) Haffler amplifier
3) EMD1 pre-amplifier
4) Buffer amplifers
5) EMD Auxilliary Chassis #1
6) EMD Auxilliary Chassis #2
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NOTE
The EMD system requires 30 to 60 minutes of warm-up for proper operation.

4. Monitor field coil currents for 1 volt amplitude peak to peak at EMD 1 Channel 1
monitor and EMD1 Channel 2 monitor outputs. (Channel 1 should lead channel 2
by about 90 degrees.) To adjust the field coil current amplitudes, use the
potentiometers labelled "AGC adjust H and V" on the EMD1 cards.

5. Check eye coil voltages at EMD1 Channel 1 "front" and EMD1 Channel 2 "side
coil" inputs to signal demodulator (EMD 1). Verify that there are two sinusoids
there. This indicates that the pre-amplifier is functioning. (Phase is not important
at this point.) If periodic maintenance is required or if there are problems with the
system, then perform step 6, 'phase calibration of EMD 1'; otherwise proced to
step 7, 'Cross-bleed adjustment'.

6. Phase calibration of EMD 1

a. Put EMD1 channel 1 "front coil" output on scope and put pulse monitor on a
second channel. Set pulse monitor switch selector on back of EMD1 to
channel 1H.

b. Adjust test coil with pitch and yaw coarse adjustment so that channel 1 output
is zero.

c. Introduce a downward pitch offset on the test coil. Using the EMD 1 "Phase H
adjust" potentiometer on the right eye card, adjust the pulse to be in phase with
channel l's output.

d. Rezero until channel l's output is zero again. Select pulse monitor switch
selector on back of EMD1 to channel 1V. Introduce a rightward yaw on the
test coil. With the EMD1 "Phase V adjust" potentiometer on the right eye card,
adjust the pulse to be in phase with the channel 1 output (see Figure 1). When
finished rezero until channel 1 output is flat.

e. Display channel 2 "side coil" output. Select pulse monitor switch to channel
2H. Adjust the EMD1 "Phase H adjust" potentiometer on the left eye (bottom)
card, so that sine wave positive peak is at the trailing edge of the square wave.

f. IMPORTANT. Reset the pulse monitor switch on the back of the EMD 1 to
channel 2V. Calibration will not be correct unless this step is done.

7. Cross-bleed adjustment

a. Make sure that the outputs of the appropriate buffer amplifiers are connected to
the strip chart recorder. Place the calibration coil into the 'geometric zero'
position.

b. Zero the horizontal, vertical and torsional channels using the position
potentiometer on the front of EMD 1.

c. Pitch the test coil with the horizontal position zeroed, using the coarse
calibration drive, and adjust the phase potentiometers on the front of the
horizontal channel of the EMD 1 until the horizontal trace is flat. At the same
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time, adjust the gain of the torsional channel cross-bleed circuit (EMD-AC2) so
that the torsional channel output is flat.

d. Yaw the test coil with the vertical position zeroed and adjust the phase
potentiometers on the front of the vertical channel on the EMD 1 so that the
vertical trace is flat. If reduced by adjusting the torsional EMD 1 channel phase
potentiometer, and then re-zeroing using the torsional channel position
potentiometer.

e. Rezero the test coil in the jig before continuing.

8. Calibrate the system with the STC covered.

a. With the test coil zeroed, zero everything using the DVMs. Zeroing should be
done using the position potentiometers on the front of EMD 1.

b. Calibrate the pitch, yaw, and roll coil outputs. Place the test coil sequentially
to +10 degrees, 0 degrees, and - 10 degrees in pitch, yaw, and roll. The
outputs on the DVMs should +4V, OV, -4V respectively for pitch and yaw.
(For the roll channel 10 degrees is defined by 7 turns of the vernier.) Any
voltages which require adjustment should be adjusted at this point using the
gain potentiometers on the buffer amplifiers.
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APPENDIX D

MODEL CODE

The sensory conflict model was implemented using the Extend (copyright Imagine

That) simulation program. The program runs on a Macintosh computer. Figure D. 1

shows the block diagram of the model. The icon, connector names, dialog box, and the

script text for each of the blocks are- listed for each of the blocks which I authored. The

remaining blocks are standard Extend features.

The blocks which I authored are: components to vector, error axis, omega g,

vector amplifier, vector differentiator, vector integrator, and vector to components.
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Icon of block components to vector
ccomponentsl

rM
lovector

Connectors of block components to vector
xIn
vector0ut
yIn
zIn

Dialog of block components to vector

Enter gCi I

Enter gain foQcomponent

,Enter gain fob ~opnn

;Enter gain fo1component

:Con5 nts

User messages of block components to vector
<1> OK
<2> Cancet
<3> Help
<4> Comments
<5>
<6> gaini
<7> gain2
<8> gain3
<9>
<10>
<11>

components to uector - 1
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Script of block components to uector
real duaag [];

** This message occurs for each step in the simulation.
on simulate

* put the three components into a vector
dumay[S] a xIn*gainl;
dumaaq1] a gIn*gain2;
dumaa[2] a zIn*gain3;

vectorOut a passArray(duamg);
}

** If the dialog data is inconsistent for slaulation, abort.
on checkdata

)

*
on

Initialize any simulation variables.
initsia

makearray(dusay,

on create8 tock

gainil1.0;
gain21.0;
gain3-1.0;

3);

** User clicked the dialog HELP button.
on help

shouHetpo;

components to uector - 2
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Icon of block error axis
vector error

Error AxisU

scalar error

Connectors of block error axis
UectorlIn
Uector2ln
vectorOut
scalarOut

Dialog of block error axis

User messages of block error axis
<1> OK
(2> Cancel
(3> Comments

(5> hetp

error axis
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Script of block error axis
* cross product */

* totatSteps, curStep, totatTime, curTime, dettaTime */

* are defined by the system */

real tempOut[,mag,magl, mag2,dot ,angle;
real temp1In[3,temp2In[3;

on checkdata

)

on initsim

makearray(tempout,3);
makearray(templIn,3);
makearray(teap21n,3);

** simulation part */
on simulate

GetPassedArray(Uector1In,templIn);
GetPossedArray(Uector21n,temp2In);

tempOut[s] a temp1In[1]*temp2In[2] - temp1In(21*temp2In(11;
tempOutfi] - temp1In(2]*temp2Infg] - temp1In(S]*temp2InE2];
tempOut[22 a templIn(6P*temp2In[1] - temp1InE1]*temp2InCOj;
mag=sqrt(tempOut[9]^2 + tempOut[1]^2 + tempOut[2]^2);
mag1*sqrt(tep1In[^2 + temp1In(1]^2 + toempInC23^2);
mag2-sqrt(temp2In(01^2 + temp2In[1]^2 + temp2In[23^2);

dot-temp1In[]*temp2In[6]+tep1In[1]*teap2In[1]+tep1In[2]*tep2In[2;
angle-180/3.1415927*acos(dot/(magl*mag2));
scalarOut-angle;
I f (mag > 0)

tempOut (SltempOut[ S*angle/mag;
tempOut(1 ]tempOut[1*angie/mag;
tempOut(2] tempOut(2]*angle/mag;

else

tempOut[13-0;
tempOut(1 >6;
tempOut([219;

vectorOut - PassArray(tempOut);

on help

showHelpo;

error axis - 2
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Icon of block omega g

Connectors of block omega g
g-out

Dialog of block omega g

User messages of block omega g
<1> OK
<2> Cancel
<3> Help
(4> Comments
(5>
<6> g.x
<7> g-
<> gz
<9>
<19>
<11>

omega g - 1
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Script of block omega g
real dcos[J,g-body[];
real es,e1,02,03;
real I.xrad,w.yrad, -zrad;
real omega[];
** This message occurs for each step in the simulation.
on simulate

**declare variables

reat red,btue,pink,grey;
reat k,z;

GetPassedfrray(w-inamego);

9.xrad - pi * (osego[O6/180);
w.yrad a pi * (oaegaC11/180);
w.zrad a pi * (oaega[2]/180);

red = -O.5*(e1*w.xrad + e2*w-yrad + e3*.-zrad);
blue- S,5*(e*w.xrad + e2*w..zrad - e3*w.yrad);
pinks S.5*(eG*w-rad + e3*w.xrad - el*w.zrad);
greys 9.5*(eS*w.zrad + e1*.-yrad - e2*w..xrad);

k 6.9*(1/deltatime);
z 1 - (eo^2 + e1^2 + e2^2 + e3^2);

e6 e e* + deltatime*(red + k*z*e0);
*I *I . + dettatiae*(blue + k*z*el);
.2 - 92 + deltatime.(pink + k*z*e2);
e3 - o3 + deltatiae*(grey + k*z*e3);

** Calculate dirn cosines from quarternions
dcas(2 s@^2+el^2-e2^2-e3^2;
dcos[1] -2*(ele2+e6*e3);
dcos[2] -2*(e1*e3-e6*e2);

dcos[3] -2*(e1*e2-e@*e3);
dcos[4se@^2-e1^2+e2^2-e3^2;
dcos[5] 2*(eZ*e3+eO*el);

dcos[63 =2*(eS*e2+e1*e3);
dcos[7]=2*(e2*e3-e*e 1);
dcos[8]me6^2-e1^2-e2^2+e3^2;

** perform the matrix multiplication
g-body[9]udcos[)*g.x + dcos3[]*g-y + dcos[2]*g-z;
g.body[1]Jdcos[3*g.x + dcos[41*g.y + dcos[51*g-z;
g.body[2]jdcos[6]*gx + dcos[7*g..y + dcoe[8]*gz;

** pass the array

g.out a passarray(g-body);

** If the dialog data is inconsistent for simulation, abort.
on checkdata

omega g - 2
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Script of block omega g
(

)

* Initialize any simulation variables.
on initsim
(

* Assume body coordinates line up with inertial coords at
** Initialization.

so
el
e2
.3

* 1.0;
- 60;
* 0.6;
* 0.0;

** allocate the arrays to be passed.
makearray(osega, 3);
makearray(dcos, 9);
makearray(g.body, 3);

** User clicked the dialog HELP button.
on help

sho"Help();
)

omega g - 3
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Icon of block uector amplifier

Connectors of block uector amplifier
UectoriIn
Uector21n
Uector31n
UectorOut

Dialog of block vector amplifier

User messages of block uector amplifier
<1>
<2>
<3>
(4>
<5>
<6>
<7>
(8>
<9>
<19>
<11>
<12>
<13>
(14>
(15>
X 16>

OK
Cancel
TopGain
ITidGain
BotGain
TopInvert
MidInvert
Bot Invert
Ualue
dbs
Comments

help

vector amplifier - 1
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Script of block uector amplifier
* amplifier */
* totalSteps, curStep, totalTime, curTime, deltaTime */

** are defined by the system

real g, g2, g3;
real tespout[];
reat teoplIn[3,temp2In[J,temp3In[3;

on dBs

** check for neg values 5/

if (not novalue(topGain) LL topGain < 0.8)

topinvert - TRUE; ** changes checkbox 5/

topGain - -topGain; ** corrects gain */

if (not novalue(sidGain) L& sidGain 0.8)

midinvert - TRUE;
aidGain a -aidGain;

If (not novalue(botGain) L& botGain < 0.8)

botinvert - TRUE;
botGain - -botGain;

** convert vats to dBs */
topGain a 29.0*tog1(topGain);
midGain a 2S.S*tog18(midGain);
botGain a 29.S*log1S(botGain);
)

on value

** convert to value */

topGain a 10.0^(topGain/20.0);
midGain a 10.0^(aidGain/28.0);
botGain a 1S.0^(botGain/20.8);

on checkdata

if ((UectorlIn L& novalue(topgain)) 5* If connected and no gain entered,
11 (Uector2In L. novalue(aidgain)) ** abortH!
11 (Uector3In LL novalue(botgain)))

abort;

on initsia

oakearray(teopOut,3);
akearray(temp1In,3);

makearray(temp2ln,3);
aakearra9(tep3In,3);

if (dBs)** if in dos onlq */

* convert sia vats to values for simulation 5/

vector amplifier - 2
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Script of block uector amplifier
g1 a 19.0^(topGain/20.9);
g2 a 1S.S^(idGain/29.9);
g3 a 19.S^(botGain/29.S);

* S

g1 a topGain;
g2 - midGain;
g3 - botGain;
)

If (topInvert)
gi a -g;

If (sidlnvert)
g2 - -g2;

If (botlnvert)
g3 - -g3;

If (novalue(gl))
gi 0 8.0;

If (novatue(g2))
g2 a 0.0;

if (novalue(g3))
g3 a 9.9;

o
**

on
simutation part
slautate

*is It Inverted? */

*/

GotPassedRrray(UoctorlIn,templIn);
GotPassedrray(Uector21n,temp2In);
GetPassedArray(UVetor31n, temp3ln);

tempOut[a) a temp1In[0]*gl+teap2In[0]*g2+temp3In[9*g3;
tepOut(1] - toemp1In(1]*g1+temp2In[1)*g2+temp3In(1 *g3;

tespOut[2] a temp1In[2)*g1+temp2In[2]*g2+teap3In[2)*g3;

UectorOut - passrray(teMpOut);
)

on help

showHelp();
)

uector amplifier - 3
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Icon of block uector differentlator

Connectors of block uector differentiator
HewIn
ConOut

Dialog of block uector differentlator

1

lUolts Out _______Uot Otper Ud p er-Second lini

I~onfjn9s

User messages of
(1> OK
<2> Cance
<3> Help
(4> Comments
(5>
(6> gain
<7>

block uector differentiator

uector differentlator - 1
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Script of block vector differentlator
real tempIn[];
real tempout[];
real oldIn[32;

** This message occurs for each stop in the simulation.
on simulate

** call getPassedArray
GetPassedArray(NewIn, tempIn);

** perform the calculations three times

tempOut[9] - gain*(teapln[S]-oldIn(O])/deltaTime;
otdIn[J - tempIn[];
tempOut[1] a gain*(tempIn[l-oldln[1J)/deltaTime;
oldIn[l] - tempIn[1];
tempOut[2J a gain*(tempIn[21-oldln[2J)/deltaTime;
oldIn[2] a tempIn[2J;

** pass the array
ConOut - passArray(tempOut);
)

** If the dialog data is inconsistent for simulation, abort.
on checkdata

if (noUatue(gain))
abort;

** Initialize any simulation variables.
on initsim

makearray(tempIn,3);
aakearray(tempOut,3);
oldIn[] - 6.0; ** initial values are zero
oldIn[2] - 6.6;
otdIn[2] - 9.0;
)

on createBlock

gain a 1.6; ** initial value

** User clicked the dialog HELP buttop.
on help

showielpo;

vector differentiator - 2
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Icon of block uector integrator

Connectors of block uector Integrator
Uectorln
Uectorout

Dialog of block uector integrator

C li I

initial Conns [ zl 1

Inte rati I ethod

o Eul49
O Tra oldal

ICon4 }ntsi

User messages of block uector integrator
<1>)

<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>

OK
Cancel
Conments

Gain

help
euter
trap

InIt2
initl
inIt3

uector integrator - 1
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Script of block uector integrator
reala[42,b[4],c[4];
real toempIn];
rea t tempOut [];

on createmodule

Initl - 8.6;
Init2 w 6.6;
Init3 = 6.0;
Gain * 1.6;
)

on checkdata

If (novalue(init1+galn))
abort;

If (novaLue(Init2+gain))
abort;
If (noualue(init3+gain))
abort;)

on Initaim

makearray(tempIn,3);
makearray(tempOut,3);

IntegrateInit(a, Initl/gain);
IntegrateInit(b, Init2/gain);
Integratelnit(c, 1nit3/gain);)

on simulate

GetPassedArray(Uectorln,tempIn);

If (outer)

tempOut[g] - gain*integrateEuler(a, tempIn(82, deltaTime);
tempOut[1] - gain*integrateEuler(b, tempInEl, deltaTime);
tempOut[2] - gain*integrateEuler(c, tempIn[22, deltaTime);

else
( tempOut[6S - gain*lntegrateTrap(a, tempIn[S), deltaTime);

tempOut[1J * gain*integrateTrap(b, tempIn[12, deltaTime);
tempOut[2] gain*integrateTrap(c, teapIn[2, deltaTime);

)

UectorOut w passArray(tempOut);
)

on help

showHelpo;
)

vector integrator - 2
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Icon of block uector to components

-vector
moonents

Connectors of block vector to components
gx.out
CosIneIn
gg...out
gz..out

uector to components

User messages of block
<1>
<2>
<3>
<4>
<S>

uector to components
OK
Cancet
Help
Comments

uector to components - 1
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Script of block uector to components
real dummy [3;
real g.xout,g.yout,g-zout;

** This message occurs for each step In the simulation.
on simulate

8* call get PassedArray with the connector and the array that it
** will be assigned to.

GetPassedArray(Cosinein,dummy);

** break out the three components
gx-out - dummyS[];
gy.out a dumay[i];
gz.out - duamy(2];

)

8* If the dialog data is inconsistent for simulation, abort.
on checkdata

{

** Initialize any simulation variables.
on initsim

makearray(duamy, 3);

)

** User clicked the dialog HELP button.
on help

showHelpo;

uector to components - 2
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