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Abstract We propose a differential geometric approach for building families of low-rank covariance ma-
trices, via interpolation on low-rank matrix manifolds. In contrast with standard parametric covariance
classes, these families offer significant flexibility for problem-specific tailoring via the choice of “an-
chor” matrices for interpolation, for instance over a grid of relevant conditions describing the underlying
stochastic process. The interpolation is computationally tractable in high dimensions, as it only involves
manipulations of low-rank matrix factors. We also consider the problem of covariance identification, i.e.,
selecting the most representative member of the covariance family given a data set. In this setting, stan-
dard procedures such as maximum likelihood estimation are nontrivial because the covariance family is
rank-deficient; we resolve this issue by casting the identification problem as distance minimization. We
demonstrate the utility of these differential geometric families for interpolation and identification in a
practical application: wind field covariance approximation for unmanned aerial vehicle navigation.

Keywords covariance approximation · interpolation optimization on manifolds · positive-semidefinite
matrices · Riemannian metric · geodesic · low-rank covariance function · maximum likelihood
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1 Introduction

One of the most fundamental problems in multivariate analysis and uncertainty quantification is the con-
struction of covariance matrices. Covariance matrices are an essential tool in climatology, econometrics,
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model order reduction, biostatistics, signal processing, and geostatistics, among other applications. As a
specific example (which we shall revisit in this paper), covariance matrices of wind velocity fields [35,
36,43,8] capture the relationships among wind velocity components at different points in space; model-
ing these relationships is essential to incorporating pointwise measurements of the velocity field into the
overall wind model. These relationships enable recursive approximation or updating of the wind field as
new pointwise measurements become available. Similarly, in oil reservoir modeling [49,50], covariance
matrices allow information from borehole measurements to be propagated into more accurate global es-
timates of the permeability field. In telecommunications [42], covariance matrices and their eigenvectors
are paramount for discerning between signal and noise.

Widely used methods in spatial statistics [14,54,62] include variogram estimation [13,11] (often a
first step in kriging [61,17,25]) or tapering of sample covariance matrices [24,19]. Other regularized
covariance estimation methodologies include sparse covariance and precision matrix estimation [6,18,7]
and many varieties of shrinkage [37,38,59,39]. Many of these methods make rather generic assumptions
on the covariance matrix (e.g., sparsity of the precision, or some structure in the spectrum); others (e.g.,
Matérn covariance kernels or particular variogram models) assume that the covariance is described within
some parametric family. The latter can make the estimation problem quite tractable, even with relatively
limited data, since the number of parameters degrees of freedom in the family may be small.

Unfortunately, standard parametric covariance families (e.g., Matérn) [12,53,56] can be insufficiently
flexible for practical applications. For instance, in wind field modeling, these covariance families are not
expressive enough to capture the non-stationary and multiscale features of the velocity or vorticity [32,
33,34]. Nonparametric approaches such as sparse precision estimation may be less restrictive, but nei-
ther approach easily allows prior knowledge—such as known wind covariances at other conditions—to
be incorporated. Moreover, most of these methods yield full-rank covariance matrices, which are im-
practical for high-dimensional problems. For example, direct manipulation of full-rank covariances in
high-dimensional settings might preclude recursive estimation (i.e., conditioning) from being performed
online. Also, many applications naturally produce covariances that are well approximated by low-rank
matrices; as explained in Section 5, this is the case for the above-mentioned wind field modeling prob-
lem.

In this paper, we build low-rank covariance families using interpolation techniques on matrix mani-
folds, whose development has been an active research topic in the last few years; see, e.g., [5,57,26,31,
9]. We propose to rely on piecewise-Bézier curves and surfaces on manifolds that have been investigated,
e.g., in [2,3,21,47]. As for the space on which to interpolate, an immediate choice would have been the
set of all n× n covariance matrices, namely the set of n× n symmetric positive-semidefinite (PSD) ma-
trices; however this set is not a Riemannian manifold. (Specifically, it is not a submanifold of Rn×n.) The
above-mentioned techniques, which in general rely on successive evaluations of the Riemannian expo-
nential and logarithm, are therefore not applicable. Instead, we will consider the set of n× n covariance
matrices of fixed rank r, which is known to be a manifold; see, e.g., [64]. In the wind field application
and others, truncating the rank of the covariance matrices to some common value, before interpolation,
has no significant impact on the accuracy of the resulting approximations. Hence, throughout this work,
we assume the matrices to belong to the manifold of fixed-rank positive-semidefinite matrices.

Interpolation on positive-(semi)definite matrix manifolds has been pioneered and popularized by,
among others, [52] and [46], who both investigated the full-rank case (r = n). Recently, [48] proposed to
use interpolation on the manifold of positive-definite matrices to generate families of covariance matrices,
in the same spirit as this work. Extension to the low-rank case is challenging, because of the lack of a
preferred metric on the manifold of fixed-rank positive-semidefinite matrices: unlike the full-rank case, to
our knowledge, no metric achieves the desirable property of turning the manifold into a complete metric
space with practical closed-form expressions for the Riemannian exponential and logarithm. Among the
proposed geometries (see [4,64,65]), we resort to the geometry proposed in [28] and further developed
in [44], as it has the crucial advantage of providing a closed-form expression for the endpoint geodesic
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problem (i.e., the Riemannian logarithm), which appears as a pervasive subproblem in Bézier-type inter-
polation techniques on manifolds. We point out that univariate interpolation on the manifold of fixed-rank
PSD matrices has already been applied, e.g., to the wind field approximation problem in [22], to protein
conformation in [41], to computer vision and facial recognition in [29,63], and to parametric model order
reduction in [45]. The present work is, to our knowledge, a first step towards multivariate interpolation
of fixed-rank positive-semidefinite matrices. Although we are restricting the scope to Bézier surfaces on
manifolds, we emphasize that other multivariate interpolation strategies exist, e.g., Gaussian radial basis
function (RBF)-based positive-definite kernels on manifolds in [27], quasi-interpolation operators in a
Riemannian manifold in [23], and geodesic finite elements to obtain spaces of high order approximation
in [58]. Application of these methods to the manifold of fixed-rank positive-semidefinite matrices could
be the focus of future research.

There are three original contributions in this paper. First, we devise new low-rank parameterized
covariance families, by interpolating a set of problem-specific anchor covariance matrices. The rank of
the anchor matrices is assumed (or truncated) to be some value r, usually much smaller than the size
n of the matrices. The resulting covariance families are shown to contain only matrices of rank less
than or equal to r. In high-dimensional applications, this reduces the computational cost of interpolation,
since only low-rank factors of the covariance matrices need to be manipulated. Second, to identify the
most representative member of a covariance family given some data, we minimize an appropriate loss
function, as an alternative to maximum likelihood estimation. Indeed, when the covariance family is
low-rank, maximum likelihood estimation is not trivial, as the probability density of the data (assumed
Gaussian) is degenerate. Observe that both the definition of the covariance family and the identification
problem do not require an appeal to asymptotic statistical properties, which are not investigated here.
Third, we demonstrate the accuracy and efficacy of these covariance families on an application: wind
field velocity characterization for UAV navigation.

The rest of this paper is organized as follows. We summarize the tools needed to work on the manifold
of fixed-rank PSD matrices in Section 2. We introduce our new covariance functions in Section 3, for
both the one- and the multi-parameter cases. In Section 4, we present methods to solve the covariance
identification problem via distance minimization. In Section 5, we illustrate the behaviors of the different
covariance functions on a case study: wind field approximation.

2 The geometry of the set of positive-semidefinite matrices

In this section, we define useful tools to work on the manifold S+(r,n) of positive-semidefinite (PSD)
matrices, with rank r and size n× n, with r < n. The interpolation algorithms used in this paper mostly
rely on expressions for the geodesics, and more precisely, the Riemannian exponential (geodesic with
given initial conditions) and the Riemannian logarithm (endpoint geodesic problem). Before discussing
those, we briefly describe the geometry and metric considered.

Several metrics have been proposed for this manifold but, to our knowledge, none of them manages
to turn it into a complete metric space with a closed-form expression for endpoint geodesics. We use the
metric naturally inherited from the quotient geometry S+(r,n)'Rn×r

∗ /O(r) proposed in [28] and further
developed in [44], with Rn×r

∗ endowed with the Euclidean metric. This geometry relies on the fact that a
matrix A ∈S+(r,n) can be factorized as A = YAY>A , where the factor YA ∈Rn×r

∗ has full column rank. The
decomposition is not unique, as each factor ỸA := YAQ, with Q ∈ O(r) an orthogonal matrix, leads to the
same product. As a consequence, any PSD matrix A is represented by an equivalence class:

[YA] = {YAQ|Q ∈ O(r)},

where YA ∈ Rn×r
∗ is an arbitrary matrix satisfying YAY T

A = A. In our computations, we work with repre-
sentatives of the equivalence classes. For example, the geodesic between two PSD matrices A and B will
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be computed based on two arbitrary representatives YA, YB, of the corresponding equivalence classes. The
geodesic will of course be invariant to the choice of the representatives. Moreover, this approach saves
computational cost as the representatives are of size n× r, instead of n×n.

The recent paper [44] provides, among others, expressions for minimizing geodesics on the quotient
manifold Rn×r

∗ /Or. Since Rn×r
∗ /Or is not complete, we cannot define geodesics between any arbitrarily

chosen pair of points. We therefore make the following assumption throughout the paper:

Hypothesis 1 The data matrices are such that all the geodesic segments to which we refer in the sequel
are well-defined. In the specific case when we refer to a geodesic between two points A,B ∈S+(r,n) with
corresponding equivalence class representatives YA,YB ∈ Rn×r

∗ (i.e., an endpoint geodesic), this holds if
and only if the matrix product Y>A YB is nonsingular.

Hypothesis 1 is typically satisfied when the data matrices are sufficiently close to each other; see [44]
for more information, and is less restrictive for some of the interpolation schemes discussed in this paper
than for others. In particular, for the approaches relying on a section of the manifold (see below), one only
requires the endpoint geodesics joining the data matrices to the reference point of the section to be well-
defined. Hypothesis 1 is obviously more restrictive for the interpolation schemes involving combinations
of geodesic segments (see Section 3.1.2 and Section 3.3.2), though we show numerically in Section 5
that these interpolation schemes work well in applications when no guarantee is known on the validity
of Hypothesis 1, if we allow the geodesic segments to leave temporally the manifold. We finally mention
that [2, §3.2] provides sufficient conditions relating the distance between the data matrices, the curvature,
and the injectivity radius of the manifold, for Hypothesis 1 to hold in the case of the patchwise Bézier
interpolation method described in Section 3.3.2, though these conditions are stricter than required for
many applications.

The minimizing geodesic ϕA1→A2 between two PSD matrices A1, A2 satisfying Hypothesis 1, with
representatives YA1 and YA2 , is given by:

ϕA1→A2(t) = YϕA1→A2 (t)Y
>
ϕA1→A2 (t) with YϕA1→A2 (t) = YA1 + tẎA1→A2 . (2.1)

In this expression, the vector ẎA1→A2 is defined as ẎA1→A2 =YA2Q>−YA1 with Y>A1
YA2 = HQ a polar decom-

position (known to be unique in the case when Y>A1
YA2 is nonsingular, which holds under Hypothesis 1).

This curve has the following properties:

1. ϕA1→A2(0) = A1, and ϕA1→A2(1) = A2.
2. For each t ∈ [0,1], ϕA1→A2(t) ∈S+(r,n); for t ∈ R\[0,1], ϕA1→A2(t) ∈S+(≤ r,n),

where the notation S+(≤ r,n) stands for the set of positive-semidefinite matrices of rank upper-bounded
by r. We finally mention that [44] also contains expressions for the exponential and logarithm maps,
which will allow us to implement the piecewise Bézier curves and surfaces used in this paper.

Instead of working directly on the quotient manifold (which involves the computation of geodesics,
exponential and logarithm maps), a simpler approach consists in working on an affine section of the
quotient, i.e., a submanifold of Rn×r

∗ that intersects each orbit in at most one point, see [60]. Consider an
equivalence class [YA] with YA a representative of the class. We choose the section of the quotient at YA to
be the set of points:

SA :=
{

YA

(
I +(Y>A YA)−1S

)
+YA⊥K

∣∣ S>= S, S�−Y>A YA, K ∈ R(n−r)×r
}

, (2.2)

where the matrix YA⊥ ∈ Rn×(n−r) is any orthonormal basis for the orthogonal complement of YA, i.e.,
Y>A YA⊥ = 0 and Y>A⊥YA⊥ = In−r. The constraint S �−Y>A YA guarantees that there is at most one represen-
tative of each equivalence class [YB] in the section, and exactly one under the generic condition that Y T

A YB
is nonsingular (that holds under Hypothesis 1).
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Consider the section of the quotient at YA1 . The representative in the section of any equivalence class
[YA2 ] (with Y T

A1
YA2 nonsingular) is then ȲA2 = YA2 Q>, where Q is the orthogonal factor of the polar de-

composition of Y>A1
YA2 . Once all the points are projected on the section, we can simply interpolate these

(projected) points using any Euclidean interpolation algorithm.

3 Construction of families of low-rank covariance matrices

The families of covariance matrices that we consider in this paper are the image of some covariance
functions, i.e., multivariate functions defined by interpolation of a set of anchor points. The choice of
these anchor points provides some flexibility in the design of the covariance families, allowing the latter
to be tailored to the problem/dataset considered. More generally, we define a low-rank covariance function
as a mapping from a set of parameters to a low-rank PSD matrix.

Definition 3.1 (Low-rank covariance function and family) A p-parameter low-rank covariance func-
tion is a map ϕ : Rp→∪r

k=0S+(k,n), for r < n; its corresponding covariance family is the image of the
covariance function ϕ .

Remark 3.1 The interpolation methods relying on a section (and not on geodesics) discussed in this paper
may contain matrices of rank strictly lower than r as discussed in the next section.

3.1 First-order covariance functions

In this section, we consider two possible generalizations of multilinear interpolation to manifolds. The
simplest way consists in mapping all the points to a linear approximation of the manifold (here, a section
of the quotient), and applying multilinear interpolation on the section. A second approach resorts to the
geodesics (generalization of straight lines) on the manifold. It is interesting to notice that both reduce to
the interpolating geodesic in the one-parameter case if the reference point of the section belongs to the
geodesic (cf. Remark 3.2 below).

3.1.1 First-order sectional covariance function

The main idea is to consider a section, to project the data matrices to that section as represented in
Figure 3.1, and to perform multilinear interpolation on the section.

Definition 3.2 (The sectional p-parameter covariance function) Given data (i.e., anchor) matrices
A1, . . . ,AN , with N = 2p, the sectional p-parameter covariance function interpolating A1, . . . ,AN at the
corners of the hypercube [0,1]p is obtained as follows:

1. Compute Y1, . . . ,YN , satisfying respectively Y1Y T
1 = A1, . . .YNY T

N = AN .
2. Select a member ȲA1 of the equivalence class [YA1 ].
3. Compute ȲAi , i = 2 . . .N, the intersection of the equivalence classes [Yi], i = 2, . . . ,N, with the section

defined by ȲA1 , as described in Section 2 (these points are well defined under Hypothesis 1).
4. Interpolate the matrices ȲAi , i = 1 . . .N (using classical Euclidean multilinear interpolation). For in-

stance, in the bilinear case (p = 2 and N = 4):

ȲϕA1→···→A4
(t1, t2) = ȲA1(1− t1)(1− t2)+ ȲA2(1− t1)t2 + ȲA3t1(1− t2)+ ȲA4t1t2.

5. Generate (if required) the corresponding PSD matrix:

ϕA1→A2→A3→A4(t1, t2) = ȲϕA1→A2→A3→A4
(t1, t2)Ȳ>ϕA1→A2→A3→A4

(t1, t2).
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[YA1 ] [YA2 ] [YA3 ] [YA4 ]

ȲA2 ȲA3 ȲA4

SA1

ȲA1

YA2

YA3

YA4

Fig. 3.1 Abstract representation of the selection of the equivalence classes representatives, when computing the sectional p-
parameter covariance function. The vertical lines correspond to equivalence classes and the horizontal line is the section into which
the data matrices are projected.

3.1.2 First-order geodesic covariance function

Instead of performing the interpolation on the section, we can also directly interpolate the points on
the manifold, using geodesics. We define the geodesic p-parameter covariance function, represented in
Figure 3.2.

Definition 3.3 (The geodesic p-parameter covariance function) Given data (i.e., anchor) matrices
A1, . . . ,AN , with N = 2p, the geodesic p-parameter covariance function interpolating interpolating A1, . . . ,AN
at the corners of the hypercube [0,1]p is obtained by combining geodesics between pairs of points (the
latter are well defined under Hypothesis 1). For example, in the “bilinear” case (p = 2 and N = 4), the
geodesic two-parameter covariance function is

ϕ(A1→A2)→(A3→A4)(t1, t2) := ϕ(
ϕA1→A2 (t1)

)
→
(

ϕA3→A4 (t1)
)(t2). (3.1)

Recursively, we can construct the geodesic p-parameter covariance function (in an analogous way as
multilinear interpolation generalizes bilinear interpolation in the Euclidean space).

A1
•

A2
•

A4•A3 •

ϕA1→A2 (t1)
•

ϕA3→A4 (t1)•

ϕ(A1→A2)→(A3→A4)(t1, t2)•

t1

t1

t2

Fig. 3.2 The geodesic 2-parameter covariance function, in the specific case when the underlying manifold is a Euclidean space. For
an arbitrary manifold, the construction process remains the same, straight lines becoming geodesics.

Remark 3.2 For the one-parameter case, if the reference point of the section is on the geodesic, the sec-
tional and geodesic families coincide. Indeed, using the relationships from Section 2, notice that the
geodesic (geodesic one-parameter function) can be converted to a sectional one-parameter covariance
function:

YϕA1→A2
(t) = YA1 + tẎA1→A2 = YA1 + t(YA2Q>−YA1) = YA1(1− t)+ tYA2Q>
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= YA1(1− t)+ tȲA2 ,

where ȲA2 = YA2Q> is the projection of YA2 into the section defined by YA1 .

3.2 Piecewise first-order covariance functions

The two p-dimensional interpolation schemes discussed above only use N = 2p data points. In applica-
tions, one often encounters situations where more data are available. This is for example the case of the
wind field application discussed in Section 5: we assume the wind field in the area of interest to depend
on two parameters (the prevailing wind orientation and magnitude), but we have more than four train-
ing points available. A typical way to take all these data into account is to use piecewise (if p = 1) or
patchwise (if p≥ 2) interpolation. Let us consider the 2-dimensional case, without loss of generality. We
assume that we have a collection of data (i.e., “anchor”) matrices (Ai, j), with Ai, j ∈S+(r,n), and with
i ∈ {0, . . . ,N1} and j ∈ {0, . . . ,N2}. The two covariance families proposed in the previous section can be
computed on each patch of the grid, to build patchwise multilinear surfaces. The resulting surfaces will
be denoted ϕLS and ϕLG, where the L stands for Linear (those surfaces were obtained as generalization
of linear interpolation on manifolds), the S for Section, and the G for Geodesic.

Definition 3.4 Let (Ai, j) be a data set, with Ai, j ∈S+(r,n), and with i = 0, . . . ,N1, j = 0, . . . ,N2. The first-
order patchwise surfaces ϕLS : [0,N1]× [0,N2]→S+(≤ r,n) and ϕLG : [0,N1]× [0,N2]→S+(≤ r,n) are
defined on each domain [l, l +1]× [m,m+1], with l = 0, . . . ,N1−1 and m = 0, . . . ,N2−1, as, respectively,
the sectional two-parameter covariance function defined in Definition 3.2 and the geodesic two-parameter
covariance function defined in Definition 3.3, interpolating the points Al,m, Al+1,m, Al,m+1, Al+1,m+1.
When the surfaces computed on two adjacent patches do not coincide on a patch boundary, the value of
the patchwise surface is determined by the patch with the largest indices (i.e., if the patch with indices
l = 0, m = 0 is in the lower right corner of the grid, the value is given by the patch on the right/above the
current patch).

Proposition 3.1 There holds ϕLS(t1, t2) ∈S+(r,n) and ϕLG(t1, t2) ∈S+(r,n).

Proof For ϕLS, this is a consequence of the fact that the multilinear Euclidean interpolation schemes only
involve convex combinations of the data matrices, combined with the fact that the section (2.2) is a convex
set. For ϕLG, this is a consequence of the fact that the interpolation scheme only involve geodesics, whose
image belong to S+(r,n) by definition, and that are well defined by Hypothesis 1.

3.3 Higher-order covariance functions: Bézier surfaces

The previous section presented two covariance families defined as generalizations of multilinear interpo-
lation on the manifold. In this section, we consider higher-order interpolation on the manifold. While the
methods in the previous sections were presented for an arbitrary number of parameters, we focus here
on the two-parameter case (p = 2), as this is the situation encountered in the application of Section 5,
and thus we resort to patchwise Bézier surfaces. Again, we will distinguish two cases: methods resorting
to Euclidean interpolation in a section of the manifold and methods based on successive evaluations of
geodesics.

3.3.1 Higher-order sectional covariance function

This method consists in first projecting all the data matrices on a section of the manifold (cf. Equa-
tion (2.2)), and then applying classical Euclidean Bézier interpolation in the section.
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We focus on patchwise cubic Bézier surfaces. Each patch of those surfaces is a cubic Bézier surface
defined according to a set of control points (bi, j)i, j=0,...,3, with bi, j ∈ Rn×r ∀i, j, as:

β : [0,1]× [0,1]→ Rn×r :

(t1, t2) 7→β (t1, t2;(bi, j)i, j=0,...,3) :=
3

∑
i=0

3

∑
j=0

bi, jBi,3(t1)B j,3(t2),

where Bi,3(t) := ∑3
i=0

(
3
i

)
t i(1− t)3−i, with t ∈ [0,1], is the Bernstein polynomial of order 3.

We define the patchwise cubic Bézier surface on the section, denoted ϕBS, as follows.

Definition 3.5 Let (Ai, j) be a data set, with Ai, j ∈S+(r,n), and with i = 0, . . . ,N1, j = 0, . . . ,N2. Choose a
section of the quotient manifold and compute, for the equivalence class associated to each data matrix Ai, j,
the representative Ȳi, j ∈Rn×r

∗ that belongs to the section, which is well-defined according to Hypothesis 1.
Let YϕBS : [0,N1]× [0,N2]→ Rn×r be the patchwise Bézier surface interpolating the data matrices (Ȳi, j),
and computed as in [2] (in which the manifold is simply the Euclidean space Rn×r). The surface ϕBS is
obtained as follows.

ϕBS : [0,N1]× [0,N2]→S+(≤ r,n) : (t1, t2) 7→ YϕBS(t1, t2)YϕBS(t1, t2)>. (3.2)

Proposition 3.2 Apart from possibly a zero measure set, it holds that ϕBS ∈S+(r,n).

Proof Consider the function f : [0,N1]× [0,N2]→ R : (t1, t2) 7→ det(YϕBS(t1, t2)>YϕBS(t1, t2)). This func-
tion is zero if and only if ϕBS(t1, t2) has rank k < r. The result follows then from the fact that the restriction
of YϕBS(t1, t2) to each patch is a polynomial function of t1 and t2, which is real analytic.

3.3.2 Higher-order covariance function based on the exp and log

In this case, we refer to the Bézier surface interpolation algorithm on manifolds, proposed in [2]. This
algorithm relies on the expressions for the logarithm and the exponential map, provided in [44] for the
manifold S+(r,n). We define the surface ϕBG (patchwise Bézier-like on the manifold) as follows.

Definition 3.6 Let (Ai, j) be a data set, with Ai, j ∈ S+(r,n), and with i = 0, . . . ,N1, j = 0, . . . ,N2. The
surface ϕBG : [0,N1]× [0,N2]→ S+(≤ r,n) is the surface obtained by applying the Bézier surface in-
terpolation algorithm on manifolds proposed in [2] (where the manifold is S+(r,n) endowed with the
Riemannian metric described in Section 2), with type-II reconstruction (cf. [2, Definition 4]), and with
the control points chosen as suggested in [1]. This surface is well-defined according to Hypothesis 1.

Proposition 3.3 There holds ϕBG ∈S+(r,n).

Proof This is a consequence of the fact that the function ϕBG is the image of an exponential map, that is
well defined under Hypothesis 1.

3.4 Interpolation of labeled matrices using covariance functions

Note that all the covariance functions described here are defined by interpolation of a set of data matrices.
Though the data matrices can be chosen by the user in any way, thus providing flexibility for problem-
specific tailoring when the underlying stochastic process is parameter-dependent, they can in particular be
chosen as the covariance matrices associated with a grid of parameter values. In that case, the elements of
the covariance families are simply estimates of the covariance for other (intermediate) parameter values;
i.e., they solve the following problem:
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Problem 3.1 (Interpolation with low-rank covariance functions) Given an arbitrary set of (N1 +
1)× (N2 +1) data matrices Ai, j ∈S+(r,n), associated with parameter values (i, j), for i = 0, . . . ,N1 and
j = 0, . . . ,N2, what is the matrix corresponding to some parameter vector x ∈ [0,N1]× [0,N2]?

We will show in the wind field application (see Section 5) that simply evaluating the covariance functions
defined in this paper answers this problem with a reasonable accuracy.

4 Covariance identification using distance minimization

Having proposed multi-parameter low-rank covariance families in the previous section, we can now de-
scribe identification procedures within such families. That is, given a data set (yi)

q
i=1 (assumed to be

centered, with yi ∈ Rn) from which we construct a sample covariance matrix Ĉ = 1
q ∑i yiy>i , we would

like to find the most representative member of a family.
A widely used methodology for selecting a representative member of a covariance family is max-

imum likelihood estimation. Let ϕA1,...,Am(t) denote the covariance family being considered. In maxi-
mum likelihood estimation, the data are assumed to have a certain probability distribution, e.g., yi ∼
N
(
0,ϕA1,...,Am(t)

)
for all i, and we choose t ∈Rp to maximize the resulting likelihood function p(y1, . . . ,yq|t).

Since the covariance matrices ϕA1,...,Am(t), for each t, are low-rank, the Gaussian distribution of the data
is singular. Thus the associated probability density function is not well-defined for generic yi and maxi-
mizing the likelihood becomes non-trivial. (If the matrices were instead SPD and as q→ ∞, this problem
is equivalent to minimizing the Kullback–Leibler divergence of N(0,Ĉ) from N

(
0,ϕA1,...,Am(t)

)
, known

as reverse information projection [20,10,15].)
Rather than maximizing the likelihood, we propose to minimize the Frobenius distance between the

covariance function and the sample covariance matrix Ĉ.

Problem 4.1 (Minimum Frobenius distance covariance identification)

argmint∈Rp dF
(
ϕA1,...,Am(t),Ĉ

)
,

where dF(A1,A2) = ‖A1−A2‖F is the Frobenius distance.

This is a particular instance of “minimum distance estimation”; such estimators, in general, have a long
history in statistics [66]. Our main motivations for choosing the Frobenius distance, in contrast with, e.g.,
the distance naturally inherited from the Riemannian metric considered on S+(r,n), are the resulting
simplicity of the objective function to minimize, and its applicability to the small data regime. Note that
Problem 4.1 does not make assumptions on the relative values of q and r, and in particular does not
require q to be larger than r (or thus n).

We now discuss solutions to Problem 4.1 given particular constructions of the covariance function
ϕ(t). Since the geodesic and sectional approaches to define covariance functions coincide for the one-
parameter case under some conditions (cf. Remark 3.2), we divide this section in two parts: the one-
parameter case (p = 1) and the multi-parameter case. For the latter, we focus on the case of two parameters
(p = 2).

4.1 One-parameter first-order covariance function

For p = 1, the covariance function t1 7→ ϕ(t1) is simply the geodesic between the two data matrices. The
optimization problem has a closed form solution that is presented below.
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Proposition 4.1 (Solution of the low-rank covariance identification problem) The solutions of Prob-
lem 4.1 for p = 1 are the roots of a third order polynomial at3 +bt2 + ct +d = 0 with:

a = 4tr
(

ẎA1→A2Ẏ>A1→A2
ẎA1→A2Ẏ>A1→A2

)
,

b = 12tr
(

YA1Ẏ>A1→A2
ẎA1→A2Ẏ>A1→A2

)
,

c = 4tr
(

2YA1Y>A1
ẎA1→A2Ẏ

>
A1→A2

+YA1Ẏ>A1→A2
YA1Ẏ>A1→A2

− ẎA1→A2Ẏ>A1→A2
YĈY>

Ĉ

)
,

d = 4tr
(

YA1Y>A1
ẎA1→A2Y

>
A1
− ẎA1→A2Y>A1

YĈY>
Ĉ

)
.

Proof The cost function is:

dF
(
ϕA1→A2(t),Ĉ

)
=
√

tr
(

ϕA1→A2(t)−Ĉ)(ϕA1→A2(t)−Ĉ)>
)
.

The third-order polynomial is obtained after setting the derivative to zero and noting that the optimization
problem is unconstrained.

Proposition 4.1 provides at least one solution. If there are three roots, the minimizer is of course the
one with smallest objective. As with any third order polynomial, the uniqueness condition of this solution
is:

18abcd−4b3d +b2c2−4ac3−27a2d2 ≤ 0.

The computational cost of finding the solution of the low-rank covariance identification problem is
only O(nr). Indeed, roots of the cubic equation have a closed form expression whose evaluation does
not require any meaningful cost. The only computational cost is that associated with computing traces to
obtain the polynomial coefficients. By virtue of the cyclic property of the trace, we can compute these
traces with O(nr) elementary operations.

4.2 Two-parameter first-order covariance functions

Here we focus on Problem 4.1 in the two-parameter case (p = 2) for first-order covariance functions, i.e.,
ϕ = ϕLS or ϕ = ϕLG (cf. Definition 3.4).

Similarly to the previous sections, we assume that data matrices are defined on a grid of points (Ai, j),
with Ai, j ∈S+(r,n,), i = 0, . . . ,N1 and j = 0, . . . ,N2.

4.2.1 First-order sectional covariance function

In the case ϕ = ϕLS (see Definition 3.4), we propose to use a gradient descent on each patch of the surface.
Observe indeed that the surface ϕLS is generally nondifferentiable (actually, even noncontinuous) on the
borders of the patches. The global optimum is then computed as the minimum of the minima obtained on
the patches. Let

f : [0,N1]× [0,N2]→ R : (t1, t2) 7→ f (t1, t2) := dF(ϕLS(t1, t2),Ĉ)2 (4.1)

be the cost function to minimize.
Consider an arbitrary patch (l,m), with l = 0, . . . ,N1−1 and m = 0, . . . ,N2−1. Let f l,m be the restric-

tion of f to the patch (l,m), and let Al,m, Al+1,m, Al,m+1, Al+1,m+1 denote the four corners of the patch
(l,m), and ȲAl,m , ȲAl+1,m , ȲAl,m+1 , ȲAl+1,m+1 their projection on the section. We omit the superscript LS in



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Nature B.V..

Low-rank multi-parametric covariance identification 11

the remainder of this section. The gradient of the restriction of the cost function (4.1) to that patch can be
computed explicitly:

∂ f l,m

∂ t1
(t1, t2) = 2tr

(
∂ϕ
∂ t1

(t1, t2)(ϕ(t1, t2)−Ĉ)>
)

, (4.2)

∂ f l,m

∂ t2
(t1, t2) = 2tr

(
∂ϕ
∂ t2

(t1, t2)(ϕ(t1, t2)−Ĉ)>
)

, (4.3)

with ∂ϕ
∂ t1

(t1, t2) and ∂ϕ
∂ t2

(t1, t2) computed as:

∂ϕ
∂ t1

(t1, t2) =
∂Yϕ

∂ t1
(t1, t2)Y>ϕ +Yϕ

(
∂Yϕ

∂ t1
(t1, t2)

)>
,

∂ϕ
∂ t2

(t1, t2) =
∂Yϕ

∂ t2
(t1, t2)Y>ϕ +Yϕ

(
∂Yϕ

∂ t2
(t1, t2)

)>
.

The factor Yϕ was defined in Definition 3.2:

Yϕ = ȲAl,m(1− t1)(1− t2)+ ȲAl+1,m(1− t1)t2 + ȲAl,m+1t1(1− t2)+ ȲAl+1,m+1t1t2.

So ∂Yϕ
∂ t1

(t1, t2) and ∂Yϕ
∂ t2

(t1, t2) can be easily obtained as:

∂Yϕ

∂ t1
(t1, t2) = t2(ȲAl,m − ȲAl+1,m − ȲAl,m+1 + ȲAl+1,m+1)+ ȲAl,m+1 − ȲAl,m ,

∂Yϕ

∂ t2
(t1, t2) = t1(ȲAl,m − ȲAl+1,m − ȲAl,m+1 + ȲAl+1,m+1)+ ȲAl+1,m − ȲAl,m ,

with the only difference being the parameter t1 vs. t2.

4.2.2 First-order geodesic covariance function

We focus now on Problem 4.1 for p = 2, when the covariance function is the surface ϕLG defined in Def-
inition 3.4. Let

f : [0,N1]× [0,N2]→ R : (t1, t2) 7→ f (t1, t2) := dF(ϕLG(t1, t2),Ĉ)2 (4.4)

be the cost function. The surface ϕLG is generally not differentiable on the borders of the patches. As a
result, similarly to the previous section, we propose to run an optimization algorithm to find the optimum
on each patch, and to compare the optimal values obtained on the patches to obtain the global optimum.

Let f l,m be the restriction of f to the patch (l,m). We propose to minimize f l,m by expressing it as a
one-variable function, replacing t2 by its optimal value:

t∗2 (t1) = argmin
t2∈R

f l,m(t1, t2), (4.5)

and then to apply gradient descent to the problem:

min
t1∈R

f̃ l,m(t1) := f l,m(t1, t∗2 (t1)). (4.6)

The computation of the partial derivatives required by both steps is deferred to Appendix A.
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4.3 Higher-order covariance functions using Bézier curves

We now solve Problem 4.1 for p = 2 when the surface is defined from Bézier interpolating surfaces.

4.3.1 Higher-order sectional covariance function

To solve Problem 4.1 for p = 2 when the surface is a Euclidean Bézier surface built in a given section of
the manifold, we propose again to use steepest descent. The cost function

f : [0,N1]× [0,N2]→ R : (t1, t2) 7→ f (t1, t2) := dF(ϕBS(t1, t2),Ĉ)2, (4.7)

with ϕBS defined in Definition 3.5, is C 1. Moreover, since Bézier curves in the Euclidean space are
weighted sums of Bernstein polynomials, the gradient can be computed explicitly. The computation of
the gradient is similar to Section 4.2.1, except that now Yϕ is obtained as a linear combination of cubic
Bernstein polynomials:

Yϕ(t1, t2) =
3

∑
i=0

3

∑
j=0

bi jBi3(t1)B j3(t2).

The derivatives ∂Yϕ
∂ t1

(t1, t2) and ∂Yϕ
∂ t1

(t1, t2) become:

∂Yϕ

∂ t1
(t1, t2) =

3

∑
i=0

3

∑
j=0

bi jḂi3(t1)B j3(t2),

∂Yϕ

∂ t2
(t1, t2) =

3

∑
i=0

3

∑
j=0

bi jBi3(t1)Ḃ j3(t2).

4.3.2 Higher-order covariance function based on the exponential and logarithm maps

For ϕBG in Definition 3.6, it remains unclear whether the gradient of the cost function:

f : [0,N1]× [0,N2]→ R : (t1, t2) 7→ dF(ϕBG(t1, t2),Ĉ)2. (4.8)

has an analytical expression. Variable projection methods also do not seem applicable in this case. Thus
we have to estimate the gradient numerically, resorting to finite differences.

5 Case study: wind field approximation

Given the increasing popularity of unmanned aerial vehicles (UAVs) in transportation, surveillance, agri-
culture, and beyond, accurate and safe aerial navigation is essential. Achieving these requirements de-
mands expressive models of the UAV’s environment—in particular, the wind field—and the ability to
update these models given new observations, e.g., via Kalman filtering [51,16]. To this end, we wish to
construct and estimate the covariance of spatially distributed wind velocity components.
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5.1 Model problem and data set

Gaussian random field models have previously been used to describe spatially varying wind velocities
([67,35]), in addition to the other applications mentioned in the introduction (e.g, facial recognition [55],
computer vision [40]). A common practice in this setting is to define the covariance matrix of the ve-
locities using some standard covariance kernel, e.g., the squared-exponential kernel, perhaps with some
modifications to allow for non-stationarity [36]. We instead assume to have instances of the covariance
matrix for different values of the prevailing wind heading (angle of incidence) θ and magnitude (norm
of the velocity vector) W ; from these instances, we will build a covariance family for continuous (θ ,W ).
The wind field can change dramatically as function of the prevailing wind, and thus it is useful to consider
a covariance family built from a variety of representative prevailing wind settings.

In general, these instances could be estimated from observational data, or they could be constructed
using offline (and potentially expensive) computational fluid dynamics simulations. Here we use the latter:
we solve the unsteady incompressible Navier–Stokes equations on the two-dimensional domain shown in
Figure 5.1, using direct numerical simulation with a spectral element method [30]. The Reynolds number
in our simulations, defined according to the side-length of the central obstacle, is around 500 for W = 7.0.
For each chosen value of (θ ,W ), we run the simulation until any transients due to the initial condition
have dissipated and then collect 1000 instantaneous velocity fields as “snapshots,” with examples shown
in Figure 5.2. The sample covariance of these snapshots provides the data covariance matrix at that (θ ,W ).

The right plot of Figure 5.1 represents a notional idea of our example domain: flow around a rectan-
gular cuboid in three dimensions. We consider only a horizontal “slice” of this domain, e.g., the wind in
a plane at height h sufficiently far from the ground and from top of the obstacle so that a two-dimensional
approximation is reasonable. The left plot of Figure 5.1 shows the mean value of the velocity on this
plane, at an example value of (θ ,W ). The grid size is 39 × 39, and hence the discretized wind field has
n = 3024 = 2× (392− 9) degrees of freedom: two velocity components at each grid point, subtracting
9 points for the obstacle. The grey contours represent the pointwise variance of the x-velocity plus that
of the y-velocity (i.e., the sum of two diagonal entries of the covariance matrix, at each point in space).
Naturally, the variance is larger downstream of the obstacle, where vortices are shed.

Our data set for the examples below comprises a set of covariance matrices C(θk,Wi), with θk =
(k−1)π/64, k ∈ 1, . . . ,32 and W ∈ {4.0,5.5,7.0,8.5,10.0,11.5,13.0}, as illustrated in Figure 5.6. Using
a truncated singular value decomposition of each matrix, we reduce the rank to r = 20. These covariance
matrices then belong to S+(20,3024).

5.2 One-parameter covariance families

We first consider interpolation and identification with a one-parameter geodesic covariance function
ϕA1→A2(t), where the data matrices A1 and A2 are obtained at the same wind magnitude but at faraway
headings: A1 = C(θ1 = 0,W = 8.5) and A2 = C(θ9 = 23,W = 8.5). (As noted in Remark 3.2, the one-
parameter geodesic and sectional families coincide.) To understand the relationship between the geodesic
parameter t and the true wind heading, we minimize the distance from each of the seven intermediate
data matrices C(θk,8.5), k ∈ 1,2, . . . ,9, to this covariance family (cf. red line in Figure 5.6) and obtain
a value of tk. Figure 5.3 shows the resulting pairs (θk, tk). The relationship between t and θ is monotone
and nearly linear. Similar results can be obtained for other choices of W .

Next we focus on the shape of the objective function used in distance minimization for one-parameter
covariance families. We build a one-parameter covariance function ϕA1→A2(t) with A1 = C(16.9,7) and
A2 = C(22.5,7) and evaluate the distance to A3 = C(19.7,7) as a function of t ∈ [0,1]. (See Figure 5.6,
dashed blue line, to identify the relevant matrices in our data set.) This exercise is shown in Figure 5.4,
where the anchor or data matrices A1,A2 are illustrated via inset plots with a green obstacle. (The matrices
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Fig. 5.1 Representation of the wind field. Left: two-dimensional domain, with wind field around the square obstacle represented
by light blue arrows and the prevailing wind in dark blue; gray contours are the variance field. Right: notional 3-D problem, with a
section of the wind field at an altitude h.

are visualized by their variance fields, as in Figure 5.1 (left).) First, we note that the distance objective
is smooth and convex (on [0,1]), and that its minimum (marked with a blue dot) is close to, though
not exactly, t = 0.5. This offset is a further instance of the difference illustrated in Figure 5.3, between
the minimum-distance points and a perfect linear relationship. The inset plots in Figure 5.4 with white
obstacles show covariances in the one-parameter family at intermediate values of t; we see that these
covariances look physically reasonable, suggesting intermediate wind headings as desired. Nonetheless,
we also note that the minimum Frobenius distance from A3 to this family is roughly 14, about half of the
distance from A3 to the anchor A1. For a more accurate representation of A3, one may thus want a richer
family or more representative data matrices. We will explore these choices below.

5.3 Distances to two-parameter covariance families

Now we illustrate the distance between a given matrix and two different two-parameter covariance fam-
ilies, each constructed from the same four data matrices. The minimizer of this distance is a solution of
Problem 4.1.

First, we consider the first-order sectional covariance function of Section 3.1. We use four data matri-
ces: A1 = C(11.3,4), A2 = C(11.3,10), A3 = C(16.9,4), A4 = C(16.9,10). Figure 5.5 (left) illustrates the
distance from ϕLS

(A1→A2)→(A3→A4)(t1, t2) to A5 = C(14.1,7). The red triangle represents distance mini-
mizer, which lies at t1 = 0.48 and t2 = 0.77 and yields a distance of 5.5 from the target. To define the
section in this case, we use the matrix A1. The four anchor matrices are the edges of the rectangle in
Figure 5.6; other choices would lead to similar results, as analyzed in subsequent subsections.

Next, we repeat the study for the geodesic two-parameter covariance function defined in Section 3.1.2,
with results shown in Figure 5.5 (right). Again, the minimizer is marked with a red triangle, which lies at
t1 = 0.77 and t2 = 0.48 and yields a distance of 5.5 from the target. Note that the inputs to both covariance
functions can in principle be any element of R2; here, both figures show the distance for (t1, t2) ∈ [0,2]×
[−1,1]. The distance contours are shaped slightly differently for the sectional and geodesic cases, though
the minimizer lies in the top left quadrant [0,1]2 of each figure, as expected.
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Fig. 5.2 Instantaneous snapshots of the wind velocity field for θ = 45 and W = 7.

5.4 Benchmarking first-order and higher-order covariance functions

Now we consider the four surfaces defined in Section 3: the first-order covariance functions ϕLS and
ϕLG defined patchwise (see Definition 3.4), and the Bézier-like covariance functions ϕBS and ϕBG (see
Definitions 3.5 and 3.6).

For the surfaces defined on a section of the manifold, we consider several possibilities: for ϕLS, the
section based at one of the data matrices (here, the lower left data matrix of the patch), based at the
arithmetic mean of the data matrices, or based at the inductive mean of the four data matrices of the
patch. The latter, well-known in the literature on positive-definite matrices (see, e.g., [44] and references
therein), is constructed recursively, using successive evaluations of geodesics:

MInd :=
((

(A1#1/2A2)#1/3A3
)
. . .
)

#1/NAN , (5.1)

where the notation A1#tA2 is simply a shorthand for the geodesic ϕA1→A2(t); see (2.1). Note that, in the
Euclidean setting, geodesics become straight lines and the inductive mean coincides with the arithmetic
mean. On (non-flat) manifolds, the inductive mean loses interesting properties such as invariance under
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θ
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1

Fig. 5.3 Minimizing value of t (blue points) for data drawn from a range of wind headings θ , for W = 8.5 (cf. Section 5.2). The red
line represents a “perfect” linear relationship.

Fig. 5.4 Distance from A3 = C(19.7,7) to the one-parameter covariance family built from A1 = C(16.9,7) and A2 = C(22.5,7), as
a function of the input variable t. A1 and A2 are marked with green obstacles to identify them as the data matrices/anchors. The blue
point represents the distance minimizer.

permutations of the data matrices. There exist other notions of means on the manifold of fixed-rank
positive-semidefinite matrices, such as the Riemannian barycenter, but the computation of the latter is
computationally more involved and not considered here. For ϕBS, the section is based at one of the data
matrices (here, the lower left data matrix of the training set), at the arithmetic mean of the data matrices
of the training set, or at the inductive mean of the four data matrices of the training set.

These combinations lead to a total of eight surfaces. The data matrices are split into two sets shown
in Figure 5.6: the blue points and the black points. The blue points are used to construct the surface, and
the accuracy of the methods is evaluated on the black points.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Nature B.V..

Low-rank multi-parametric covariance identification 17

t1

0 0.5 1 1.5 2

t 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10

15

20

25

30

35

40

45

50

55

60

t1

0 0.5 1 1.5 2
t 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10

20

30

40

50

60

70

80

90

Fig. 5.5 Left: Distance from A5 to ϕLS
(A1→A2)→(A3→A4)(t1, t2). Right: Distance from A5 to ϕLG

(A1→A2)→(A3→A4)(t1, t2).
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Fig. 5.6 Data set for the wind field problem; each dot shows the wind magnitude W and heading θ corresponding to a data
covariance matrix. The red (crossed) and blue (dashed) lines represent the data used in Section 5.2. The rectangle illustrates the
operating zone of Section 5.3. The blue nodes comprise the training set and the black nodes the test set for Sections 5.4.1 and 5.4.2.

5.4.1 Interpolation errors

The error
E (C(θ ,W )) :=

∥∥∥C(θ ,W )−ϕmethod(θ ,W )
∥∥∥

2

F

is a measure of the ability of the surface ϕmethod to recover some hidden covariance matrix C(θ ,W ).1 We
will also consider the normalized error (in percentages)

EN (C(θ ,W )) := 100×
∥∥C(θ ,W )−ϕmethod(θ ,W )

∥∥2
F

1
4 ∑4

j=1
∥∥C(θ ,W )−A j

∥∥2
F

,

where normalization is performed with respect to the average squared distance between the target matrix
C(θ ,W ) and the four corners of the patch to which it belongs, according to the grid representation in Fig-
ure 5.6. (The patch is chosen systematically as the one below and to the left of the test point considered.)

Having defined these interpolation errors for arbitrary C(θ ,W ), we now evaluate them for all the
points C(θi,Wi) in the test set—i.e., for each of the data matrices marked with black nodes in Figure 5.6.
We average the errors over the test set and report the resulting values in Table 5.1.

1 Here we write ϕmethod with arguments (θ ,W ) in a slight abuse of notation. More precisely, we mean that the two-parameter
covariance function ϕmethod is evaluated at (t1, t2) corresponding to an affine mapping from the range of (θ ,W ) (here [0,22.5]×
[4,13]) to [0,4]× [0,3], consistent with the 5×4 grid of data matrices.
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Table 5.1 Average (squared) distance separating a given test point C(θi,Wi) from the corresponding interpolation point on the
different surfaces. For the methods defined on a section of the manifold, the subscript of ϕ indicates how the section was chosen:
‘one’ means that we use one of the data matrices (here, the matrix at the lower left corner of the patch) as basis of the section, while
‘arithm’ and ‘inductive’ denote, respectively, the arithmetic and inductive means of the corners of the patch.

avgi [E (C(θi,Wi))] avgi [EN (C(θi,Wi))]

1st-order section ϕLS
one 30.3 7.78

1st-order section ϕLS
arithm 30.4 7.80

1st-order section ϕLS
inductive 30.3 7.77

1st-order geodesic ϕLG 30.3 7.77
Bézier section ϕBS

one 20.8 4.91
Bézier section ϕBS

arithm 20.5 4.87
Bézier section ϕBS

inductive 20.4 4.85
Bézier geodesic ϕBG 20.3 4.79

Some takeaways from this study are as follows. First, the matrix chosen to define the section in either
the first-order sectional covariance function or the higher-order sectional covariance function seems to
have little impact. Moreover, the performance of the geodesic covariance functions is not noticeably better
than that of the sectional functions in this setting. But the interpolation performance of the higher-order
(Bézier) families is significantly better than that of the first-order families.

Based on our experience, normalized errors of less than 10% are impactful for practical applications.
This level means that we can achieve 10× better accuracy (defined in terms of Frobenius distance) by
using the interpolated matrices rather than the nearest anchors. With Bézier families, the error is less than
5%, which implies 20× improved performance.

In terms of computational costs, higher-order interpolation is more intense than first-order. However,
most of the computations for the Bézier curve can be performed offline. In fact, the reconstruction step in
[2] is the only one that needs to be done online.

5.4.2 Identification errors and data compression

We now assess identification errors within the covariance families. In other words, we now use the tech-
niques of Section 4 to minimize the distance from each element of the test set to the covariance family
ϕmethod, built patchwise from the training matrices. From another perspective, this process can be viewed
as data compression: a simple way to perform data compression consists of storing only several matrices
(in our case, the training data) and then storing, for any additional matrix, the coordinates of the closest
point in the surface. We now compare our surfaces for this task. Similarly to the previous section, we use
the following two error measures,

E∗ (C(θi,Wi)) = ‖C(θi,Wi)−ϕ(t∗1 (i), t∗2 (i))‖2
F ,

E∗N (C(θi,Wi)) =
100×‖C(θi,Wi)−ϕ(t∗1 (i), t∗2 (i))‖2

F
1
4 ∑4

j=1
∥∥C(θi,Wi)−A j

∥∥2
F

,

where A j are the four corners of the patch to which C(θi,Wi) belongs and t∗1 (i), t∗2 (i) are the solutions to
the optimization problem discussed in Section 4.

We evaluate these errors for every test matrix and report, in Table 5.2, the average errors for each
surface definition proposed. These are essentially the average distances between an element of our test
set and the closest point on the surface. A key takeaway from this table is that the errors are significantly
lower than those in Table 5.1; this is not surprising, as here we are optimizing to find the best point in
each family. Also, results with the geodesic families in this example appear to be slightly better than with
the sectional families.
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Table 5.2 Average (squared) distance separating a given test point from its closest approximation on the different surfaces. For
methods defined on a section of the manifold, the subscript of ϕ indicates how the section was chosen: ‘one’ means that we use
one of the data matrices (here, the matrix at the lower left corner of the patch) as basis of the section, while ‘arithm’ and ‘inductive’
denote, respectively, the arithmetic and inductive means of the corners of the patch.

avgi [E
∗(C(θi,Wi))] avgi [E

∗
N (C(θi,Wi))]

1st-order section ϕLS
one 21.8 5.30

1st-order section ϕLS
arithm 21.8 5.29

1st-order section ϕLS
inductive 21.8 5.30

1st-order geodesic ϕLG 20.9 5.10
Bézier section ϕBS

one 14.3 3.34
Bézier section ϕBS

arithm 14.0 3.29
Bézier section ϕBS

inductive 14.0 3.29
Bézier geodesic ϕBG 13.8 3.24

It is instructive to see how the normalized errors E∗N (C(θi,Wi)) are distributed over the data set, i.e.,
how the approximation error depends on the parameters of the data matrices C(θi,Wi). We illustrate this
distribution using the stem plot in Figure 5.7, for ϕBG only. Errors are largest for wind field headings
between those of the training set (i.e., θ ∈ {2.8,8.4,14.1,19.7}) and increase strongly with the wind field
magnitude. These trends indicate that it might be useful to generate a denser grid of data matrices in the
θ direction, particularly for large W , and to use a coarser grid in the W direction.

Fig. 5.7 Distribution of the errors obtained with the higher-order geodesic covariance family ϕBG. Crosses are training points,
circles are test points. It is more difficult to recover the data when varying θ , particularly at larger W . Interpolation in the W
direction, on the other hand, yields very small errors.
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6 Conclusions

We have presented a differential geometric framework for constructing parametric low-rank covariance
families, by connecting low-rank covariance matrices obtained at representative problem instances. In this
sense, our framework creates parametric covariance families that can easily incorporate prior knowledge
or empirical information, through the choice of the data matrices/anchors. We have proposed two main
approaches: interpolation is performed either directly on the manifold, or on an affine section thereof. For
each approach, we considered both multilinear, and patchwise cubic Bézier interpolation.

Given some data and the resulting sample covariance matrix (which can be strongly rank-deficient) we
show how to perform minimum-distance covariance identification, that is, how to find the closest element
of a given covariance family. We discuss methods and algorithms to solve this problem for each of the
proposed covariance functions. In a case study involving wind velocity field approximation, we assess
the ability of our covariance families to represent out-of-family covariance matrices. In practice, this
technique can be used for data compression, i.e., storing the parameters representing a particular matrix of
interest in the family, instead of the matrix itself. Moreover, our case study shows that a family constructed
from covariance matrices obtained at very different wind headings contains matrices that match, within
a reasonable accuracy for this problem, intermediate headings. Finally, one of main advantages of the
proposed framework is it reduced computational cost, resulting from the fact that the proposed techniques
only involve manipulations of n× p low-rank factors, instead of the n×n initial matrices. As illustrated
in the case study, though the dimension of the covariance matrices is high (n = 3024), we have truncated
their rank to r = 20 while keeping a reasonable accuracy in our results.

Other interesting questions not addressed in this paper would be the use of different multivariate inter-
polation techniques on manifolds, beyond those considered in this paper, or certain statistical questions,
i.e., statistical properties of the minimum distance estimator as a function of the sample size q, the matrix
dimension n, and the chosen rank r. We defer such investigations to future work.

Implementation code

The code to generate covariance functions and to perform identification and interpolation is available at
https://github.com/EMassart/covariance_fitting.

A Computation of the tools required for the variable projection method

We detail here the computations for the main steps of the variable projection method proposed in Section 4.2.2. Remember that the
corresponding surface, ϕLG(t1, t2) = Yϕ (t1, t2)Yϕ (t1, t2)>, where Yϕ is obtained by composition of two geodesics, respectively along
the t1 and t2 variables:

Yϕ (t1, t2) := (1− t2)Y1−2(t1)+ t2Y3−4(t1)Q(t1)> ,

Y1−2(t1) := (1− t1)Y1 + t1Y2Q>1−2 ,

Y3−4(t1) := (1− t1)Y3 + t1Y4Q>3−4 .

A.1 Computation of the partial derivative with respect to t1

Computing the partial derivative of the function (t1, t2) 7→ ϕLG(t1, t2) with respect to t1 yields:

∂ϕLG

∂ t1
(t1, t2) =

∂Yϕ

∂ t1
(t1, t2) Yϕ (t1, t2)>+Yϕ (t1, t2)

(
∂Yϕ

∂ t1
(t1, t2)

)>
,
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with
∂Yϕ

∂ t1
(t1, t2) = (1− t2)Ẏ1−2(t1)+ t2Ẏ3−4(t1)Q(t1)>+ t2Y3−4(t1)Q̇(t1)>.

The values of Ẏ1−2(t1) and Ẏ3−4(t1) are independent of t1:

Ẏ1−2(t1) =−Y1 +Y2Q>1−2 , Ẏ3−4(t1) =−Y3 +Y4Q>3−4 , ∀t1.

The value of Q̇(t1) can be obtained as follows. Recall from the geodesic definition that Q(t1) is the orthogonal factor of the polar
decomposition of the matrix M(t1) = Y1−2(t1)>Y3−4(t1), which means that there exists a symmetric positive definite matrix H(t1)
such that M(t1) = H(t1)Q(t1). Then,

Ṁ(t1) = Ḣ(t1)Q(t1)+H(t1)Q̇(t1), (A.1)

where Ḣ(t1) is a symmetric matrix, and Q̇(t1) is of the form Q̇(t1) = Ω(t1)Q(t1), with Ω(t1) a skew-symmetric matrix. Right-
multiplying this expression by Q(t1)> yields:

Ṁ(t1)Q(t1)>= Ḣ(t1)+H(t1)Ω(t1), (A.2)

while left-multiplying the transpose of equation (A.1) by −Q(t1) yields:

−Q(t1)Ṁ(t1)>=−Ḣ(t1)+Ω(t1)H(t1). (A.3)

Now, summing equations (A.2) and (A.3) yields:

Ṁ(t1)Q(t1)>−Q(t1)Ṁ(t1)>= H(t1)Ω(t1)+Ω(t1)H(t1).

As a result, the term Q̇1(t1) can be obtained by solving a Sylvester equation. Moreover, since H(t1) is always positive definite
(except in the set of zero measure corresponding to low-rank matrices Y1−2(t1)>Y3−4(t1)), the solution to the Sylvester equation is
unique (H(t1) and -H(t1) have no common eigenvalues).

A.2 Computation of t∗2 (t1)

The first-order optimality condition
∂ f
∂ t2

∣∣∣∣
(t1t∗2 (t1))

= 0

implies that the optimal value t∗2 (t1) corresponding to an arbitrary value t1 is the solution to a cubic equation:

s1(t1)t3
2 (t1)+ s2(t1)t2

2 (t1)+ s3(t1)t2(t1)+ s4(t1) = 0, (A.4)

with

s1(t1) = 2tr
(
R2)= 2∑

i
∑

j
R2

i j,

s2(t1) = 3tr(RS) = 3∑
i

∑
j

Ri jSi j,

s3(t1) = 2tr(RT )+ tr(S) = 2∑
i

∑
j

Ri jTi j +S2
i j,

s4(t1) = 2tr(ST ) = 2∑
i

∑
j

Si jTi j.

The matrices R, S, and T arising in those expressions are defined as:

R = Y1−2Y>1−2+Y3−4Y>3−4−
(

Y1−2QY>3−4+Y3−4Q>Y>1−2

)
,

S =
(

Y1−2QY>3−4+Y3−4Q>Y>1−2

)
−2Y1−2Y>1−2 ,

T = Y1−2Y>1−2−Ĉ,

with all these matrices depending on t1. Observe, however, that for a fixed value of t1, the function t2 → f (t1, t2) might not be
convex; hence, the condition (A.4) might have several (up to three) real solutions. In that case, we compute the value of the cost
function at those solutions, and we choose the one corresponding to the smallest value of f .
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A.3 Gradient descent for the univariate cost function

We are now looking for the derivative of the cost function f̃ (t1) = f (t1, t∗2 (t1)), with respect to the variable t1, in order to be able to
apply a steepest descent method to that problem. Using the notation f̃ = F ◦ ϕ̃LG, with ϕ̃LG(t1) = ϕLG(t1, t∗2 (t1)), we have:

˙̃f (t1) = DF [ ˙̃ϕLG(t1)] = 2tr
(

˙̃ϕLG(t1)(ϕ̃LG(t1)−Ĉ)>
)

.

The derivative ˙̃ϕLG(t1) is given by:
˙̃ϕLG(t1) = Ẏϕ̃ (t1)Yϕ̃ (t1)>+Yϕ̃Ẏϕ̃ (t1)>.

Using the chain rule,

Ẏϕ̃ (t1) =
∂Yϕ

∂ t1
(t1, t∗2 (t1))+

∂Yϕ

∂ t2
(t1, t∗2 (t1))ṫ∗2 (t1).

By the definition of t∗2 (t1), the term ∂Yϕ
∂ t2

(t1, t∗2 (t1)) is equal to zero. As a result, Ẏϕ̃ (t1) = ∂Yϕ
∂ t1

(t1, t∗2 (t1)), which has been computed
earlier.
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