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Biological learning systems are outstanding in their ability to learn from limited training

data compared to the most successful learning machines, i.e., Deep Neural Networks

(DNNs). What are the key aspects that underlie this data efficiency gap is an unresolved

question at the core of biological and artificial intelligence. We hypothesize that one

important aspect is that biological systems rely on mechanisms such as foveations in

order to reduce unnecessary input dimensions for the task at hand, e.g., background

in object recognition, while state-of-the-art DNNs do not. Datasets to train DNNs

often contain such unnecessary input dimensions, and these lead to more trainable

parameters. Yet, it is not clear whether this affects the DNNs’ data efficiency because

DNNs are robust to increasing the number of parameters in the hidden layers, and it

is uncertain whether this holds true for the input layer. In this paper, we investigate

the impact of unnecessary input dimensions on the DNNs data efficiency, namely, the

amount of examples needed to achieve certain generalization performance. Our results

show that unnecessary input dimensions that are task-unrelated substantially degrade

data efficiency. This highlights the need for mechanisms that remove task-unrelated

dimensions, such as foveation for image classification, in order to enable data

efficiency gains.

Keywords: data efficiency, overparameterization, object recognition, object background, unnecessary input

dimensions, deep learning

1. INTRODUCTION

The success of Deep Neural Networks (DNNs) contrasts with the still distant goal of learning with
few training examples as in biological systems, i.e., in a data efficient manner (Hassabis et al., 2017).
Understanding the principles that underlie such differential is a question at the core of both artificial
and biological intelligence. In this paper, we introduce the hypothesis that an important aspect for
data efficiency is that biological systems rely on mechanisms such as foveations in order to reduce
unnecessary input dimensions, e.g., background in object recognition, while state-of-the-art DNNs
do not.

DNNs are usually trained on high dimensional datasets (e.g., images and text), and many input
dimensions of the DNNmay be unnecessary to predict the ground-truth label as they are unrelated
and/or redundant to the task at hand. Machine learning theory for linear and kernel methods
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predicts that unnecessary input dimensions may degrade the
DNN’s data efficiency (Hastie et al., 2009), as the classifier
may overfit to the unnecessary input dimensions if not enough
training examples are provided to learn to discard them.

However, DNNs have challenged classic machine learning
measures of complexity (e.g., VC dimensions, Rademacher
complexity) as they can achieve high test accuracy despite having
a number of trainable parameters much larger than the number
of training examples, i.e., DNNs are overparameterized (Zhang
et al., 2017; Nakkiran et al., 2020). Since unnecessary
input dimensions lead to more overparameterization, it is
unclear in what way DNNs suffer from unnecessary input
dimensions and whether more data is needed to learn to
discard them.

To foreshadow the results, we find that the DNNs’ data
efficiency depends on whether the unnecessary dimensions
are task-unrelated or task-related (redundant with respect
to other input dimensions). Namely, increasing the number
of task-unrelated dimensions leads to a substantial drop
of data efficiency, while increasing the number of task-
related dimensions that are linear combinations of other task-
related dimensions, helps to alleviate the negative impact
of the task-unrelated dimensions. These results suggest that
mechanisms to discard unnecessary input dimensions, such as
foveations for object recognition, are necessary to enable data
efficiency gains.

2. RELATED WORKS

We now relate our work with the effect of background on the
generalization abilities of DNNs in object recognition, and also
with the DNNs generalization abilities depending on the number
of parameters of the network.

2.1. Object’s Background and DNN
Generalization
The data collection process is often biased (Torralba and Efros,
2011). One of the most prominent factors of such dataset bias
is the background, such that some aspects of the background
systematically co-occur with certain objects, e.g., airplanes may
tend to always appear in the sky. This co-occurrence is a
confounding factor for the network, and the network may learn
to associate the background with the object, e.g., the sky may be
regarded as part of the airplane. Previous works have shown that
DNNs for image recognition fail to classify objects in novel and
uncommon backgrounds (Choi et al., 2012; Volokitin et al., 2017;
Beery et al., 2018; Tian et al., 2018). Remarkably, popular object
recognition datasets are biased to such an extent that DNNs can
predict the object category even when the objects are removed
from the image (Zhu et al., 2017; Tian et al., 2018; Xiao et al.,
2021). Barbu et al. (2019) introduced a new benchmark which
addresses the biased co-occurrence of objects and background,
among other types of bias. DNNs exhibit large performance
drops in this benchmark compared to ImageNet (Deng et al.,
2009). Recently, Borji has shown that a large portion of the
performance drop comes from the bias in object’s background,

as classifying the object in isolation substantially alleviates the
performance drop (Borji, 2021).

In contrast to previous works, we analyse the impact of the
object’s background to the DNN’s generalization performance
when the dataset is unbiased, i.e., there is no significant
correlation between the objects and backgrounds and the
statistics of the object’s background are the same between training
and testing times. To the best of our knowledge, our work is the
first to investigate the effects of object’s background on DNNs
when these are unbiased. We show that just the presence of
background, even if it is unbiased, can degrade the data efficiency
of the DNN.

2.2. Overparameterization and Data
Dimensionality
A remarkable characteristic of DNNs is that the test error
follows a double-descend when the DNN’s width is increased by
adding more hidden units. Thus, the test error decreases as the
network’s width is increased in both the underparameterized and
overparameterized regimes, except in a critical region between
these twowhere a substantial error increase can take place (Belkin
et al., 2019; Advani et al., 2020; Nakkiran et al., 2020). The
overparameterized regime has received a lot of attention because
DNNs with many more parameters than training examples can
achieve high test accuracy, and a theoretical understanding of
this phenomenon is an active area of research. Robustness to
overparametrization relates to unnecessary input dimensions
because unnecessary input dimensions also increase the number
of parameters of the network, albeit in the input layer rather
than in the intermediate layers. As we show in the sequel,
increasing the number of unnecessary input dimensions can have
the opposite effect of increasing the number of hidden units in the
test error.

A theoretical understanding of this phenomenon using
mathematical tools is an open question. The PAC Bayes theory
appears as a promising approach to describe the generalization
capacity of DNNs [e.g., (Dziugaite and Roy, 2017; De Palma et al.,
2019; Bernstein and Yue, 2021)]. While these theoretical results
provide insights about the trends of the behaviour of the DNN,
an empirical, quantitative assessment of the effect of unnecessary
dimensions to the DNN’s data efficiency is missing. Our analysis
derives from theoretical insights of the exact solution of a linear
network in a regression task. In this way, we can relate and
compare empirical results for DNNs with cases that are well
understood theoretically.

Another strand of research relates the structure of the dataset
with the generalization ability of the network. Several works in
statistical learning theory for kernel machines relate the spectrum
of the dataset with the generalization performance (Zhang, 2005).
For neural networks, Ansuini et al. (2019), Recanatesi et al. (2019)
define the intrinsic dimensionality based on the dimension of the
data manifold. These works analyze how the network reduces
the intrinsic dimension across layers. Yet, these metrics based
on manifolds do not provide insights about how specific aspects
of the dataset, e.g., unnecessary dimensions, contribute to the
intrinsic dimensionality.
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3. UNNECESSARY INPUT DIMENSIONS
AND DATA EFFICIENCY

We aim at analyzing the effect of unnecessary input dimensions
on the data efficiency of DNNs. Let x be a vector representing a
data sample, and let y be the ground-truth label of x. We define
f (x) = y as the target function of the learning problem. Also,
we use [x;u] to denote the data sample x with unnecessary input
dimensions appended to it. The unnecessary dimensions do not
affect the target function of the learning problem, i.e., g([x;u]) =
f (x) = y, where g is the target function of the learning
problem with unnecessary input dimensions. Each sample can
have a different set of dimensions that are unnecessary, e.g., one
sample could be [x1;u1] and another be [u2; x2]. Note that
this variability is present in object recognition because the
dimensions representing the object’s background are unnecessary
and vary across data samples, as the object can be in different
image locations.

We define two types of unnecessary input dimensions: task-
unrelated and task-related. Unnecessary input dimensions are
task-unrelated when they are independent of x, i.e., they can
not be predicted from x, as in unbiased object’s background.
Otherwise, the unnecessary dimensions are task-related, which
are equivalent to redundant dimensions. An example that leads to
more task-related unnecessary dimensions is upscaling the image.

To study the effect of unnecessary input dimensions, we
measure the test accuracy of DNNs trained with different
amounts of unnecessary input dimensions and training
examples. Given a DNN architecture and a dataset with a fixed
amount of unnecessary dimensions, we define the data efficiency
of the DNN as the Area Under the Test Curve (AUTC) for the
DNN trained with different number of training examples. The
curve is monotonically increasing, as more training examples
lead to higher test accuracy, and the AUTC measures the area
under it. We normalize the AUTC to be between 0 and 1, where
1 is the maximum achievable, and it corresponds to 100% test
accuracy for all number of training examples. In the experiments
where the number of training examples spans several orders of
magnitude, we calculate the AUTC by converting the number
of training examples in logarithmic scale, such that all orders of
magnitude are equally taken into account.

4. DATASETS AND NETWORKS

We now introduce the datasets and networks we use in the
experiments (refer to Appendices 1, 2 for additional details).

4.1. Linearly Separable Dataset
We use a linearly separable dataset for binary classification,
as it facilitates relating results of classic machine learning and
DNNs. We generate a binary classification dataset of 30 input
dimensions, which follow a Gaussian distribution with (µ =

0, σ = 1). The ground-truth label is the output of a linear
classifier, such that the dataset is linearly separable with a
hyperplane randomly chosen. Unnecessary input dimensions are
appended to the data samples. Task-unrelated dimensions follow
a Gaussian distribution with (µ = 0, σ = 0.1). The task-related

dimensions are linear combinations of the dimensions of the
original dataset samples.

We evaluate the following linear and Multi-Layer Perceptron
(MLP) networks: linear network trained with square loss
(pseudo-inverse solution), MLP with linear activation functions
trained with either square loss or cross entropy loss, and MLP
with ReLU trained with cross entropy loss.

4.2. Non-linearly Separable Dataset With
Different Noise Distributions
To further evaluate the generality of results on data distributions
that are not linearly separable, we use a mixture of Gaussians to
generate non-linearly separable datasets for binary classification.
Each class consists of three multivariate Gaussians of dimensions
p = 30. We generate a sample by randomly selecting with
the same probability one of the three distribution. To give a
more comprehensive evaluation on the effect of different types
of noise, we generate unnecessary dimensions using Gaussian
distributions with different variance, and we also evaluate two
other noise distributions, namely, Gaussian noise with 6ii =

1, ∀i, with 6ij = 0.5, ∀i 6= j, and salt and pepper noise, where
each vector component can assume value (0, or u), based on a
Bernoullian distribution on {−1, 1}.

We consider the MLP with ReLU and soft-max with cross-
entropy loss because among the different variants it is the only
well suited to fit non-linearly separable data.

4.3. Object Recognition Datasets
We evaluate object recognition datasets based on extensions of
the MNIST dataset (LeCun et al., 1998) and the Stanford Dogs
dataset (Khosla et al., 2011).
Synthetic and Natural MNIST. We generate two datasets based
on MNIST: the synthetic MNIST and the natural MNIST, which
have synthetic and natural background, respectively. In both
datasets, the MNIST digit is always at the center of the image and
normalized between 0 and 1.

In the synthetic MNIST dataset, the task-unrelated
dimensions are sampled from a Gaussian distribution with
(µ = 0, σ = 0.2) and the task-related dimensions are the result
of upscaling the MNIST digit. We also combine task-related
and unrelated dimensions by fixing the size of the image and
changing the ratio of task-related and unrelated dimensions by
upscaling the MNIST digit.

In the natural MNIST dataset, the background is taken from
the Places dataset (Zhou et al., 2014), as in Volokitin et al. (2017).
The size of the image is constant across experiments (256 × 256
pixels), and the size of the MNIST digits determines the amount
of task-related and unrelated dimensions.

We use the MLP with ReLU and cross entropy loss, and
also Convolutional Neural Networks (CNNs). The architecture
of the CNN consists of three convolutional layers each with
max-pooling, followed by two fully connected layers. Since the
receptive field size of the CNN neurons may have an impact
on the data efficiency, we evaluate different receptive field
sizes. We use a factor r to scale the receptive field size, such
that the convolution filter size is (r · 3) × (r · 3) and the
pooling region size is (r · 2) × (r · 2). We experiment by
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either fixing r to a constant value or adapting r to the scale of
the MNIST digit, such that the receptive fields of the neurons
capture the same object region independently of the scale
of the digit.
Stanford Dogs. Recall our analysis focuses on unnecessary
input dimensions that are unbiased. We use the Stanford Dogs
dataset (Khosla et al., 2011) as it is reasonable to assume that
the bias between breeds of dogs and background is negligible.
This dataset contains natural images (227 × 227 pixels) of
dogs at different image positions. The amount of task-unrelated

dimensions is determined by the dog size, which is different
for each image. To evaluate the effect of unnecessary input
dimensions, we introduce the following five versions of the
dataset. Case 1 corresponds to the original image. In case 2, we
multiply by zero the pixels of the background, which reduces
the variability of the task-unrelated dimensions. In case 3, the
dog is centered in the image. In case 4, we fix the ratio of task-
related/unrelated dimensions by centering the dog and scaling it
to half of the image size. In case 5, we remove the background by
cropping and scaling the dog.

FIGURE 1 | Data Efficiency of Linear and Fully Connected Networks Trained on Dataset For Binary Classification. Data efficiency for different amount of unnecessary

input dimensions. Error bars indicate standard deviation across experiment repetitions. (A) Test accuracy of the pseudo-inverse solution as function of different

amount of training examples. Each curve corresponds to a different amount of additional task-unrelated (left plot), task-related (middle plot) and task-related/unrelated

dimensions, as reported in the legend. (B) We report the Area Under the Test Curve (AUTC) of the accuracy for different amount of training examples. We indicate with

the gradient bar on the x-axis the amount of additional task-unrelated dimensions (left and right plot), and additional task-related dimensions, in the middle plot. The

legend indicate the different networks trained and tested on the dataset. (C) AUTC values for an MLP with ReLU activation and cross entropy loss, for different types

of task-unrelated dimensions: Gaussian independent components with increasing variance, Gaussian with non diagonal covariance, and salt and pepper noise. The

gradient on the x-axis indicates the number of task-unrelated dimensions.
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We use a ResNet-18 (He et al., 2016), following the standard
pre-processing of the image used in ImageNet.

5. RESULTS

In this section, we report results, first on the linearly separable
datasets and then, on the object recognition datasets.

5.1. Linearly Separable Dataset
Figure 1A shows the test accuracy of the pseudo-inverse solution
for different number of training examples and unnecessary input
dimensions. Figure 1B reports the data efficiency of all networks
tested for different number of unnecessary input dimensions.
Recall that the data efficiency is measured with the AUTC
and summarizes the test accuracy as a function of the amount
of training examples, e.g., for the pseudo-inverse solution, the
curves in Figure 1A are summarized by the AUTC in Figure 1B.
We observe that increasing the amount of task-unrelated
dimensions harms the data efficiency, i.e., the AUTC drops. Also,
the task-related dimensions alone do not harm data efficiency,
and they alleviate the effect of the task-unrelated dimensions.

These results clarify the difference between robustness
to overparameterization in intermediate layers and
unnecessary input dimensions. Note that the effect on
the test accuracy of increasing the number of hidden
units is the opposite of increasing the number of task-
unrelated input dimensions, i.e., DNNs are not robust to
all kinds of overparameterization.

Analytical results for linear regression using the square loss
predicts an analogous effect of task-unrelated dimensions on
the solution. For sake of clarity, we retrace these results in
the Appendix 3.1, where we outline the effect of additional
task-unrelated dimensions that are Gaussian-distributed on the
pseudo-inverse solution. There, we show that task-unrelated
dimensions lead to the pseudo-inverse, Tihkonov-regularized
solution calculated in the dataset without task-unrelated
dimensions. Since in this case the regularization can not be
tuned or switched off as it is fixed by the number of task-
unrelated dimensions, it is likely to harm the test accuracy, as
we have observed.

The regularizer is beneficial in some specific cases. Following
from regularization theory (Hastie et al., 2009), Appendix 3.2
highlights a noisy regression problem in which certain amounts
of task-unrelated dimensions help to improve generalization.
In a classification problem, Tiknhonov regularization may
also be beneficial in some cases. This can be seen in
Figure 1A, where we observe that for a given number of
training examples, increasing the number of task-unrelated
dimensions improves the test accuracy in some cases. This
specific trend relates to the aforementioned double descend
of DNNs (Belkin et al., 2019; Advani et al., 2020). As shown
in Nakkiran et al. (2020), the location of the critical region
is affected by the number of training examples and the
complexity of the model. Here, the complexity of the model is
affected by the number of task-unrelated dimensions due to its
regularization effect.

5.2. Non-linearly Separable Datasets With
Different Distributions of Task-Unrelated
Dimensions
In Figure 1C, we show the data efficiency of MLP with ReLU
trainedwith cross entropy loss on non-linearly separable datasets.
On the left of the quadrant, we report different distributions
of the task-unrelated dimensions: Gaussian noise with different
σ (corresponding to multiplicative factor applied on the
identical covariance matrix), Gaussian noise with non-diagonal
covariance matrix and salt and pepper noise. The amount of
task-unrelated dimensions is reported through the colored bar
(indicated with a gradient).We observe that, similarly to previous
results in the linearly separable dataset (Figure 1B), task-
unrelated dimensions harm data efficiency. Also, as expected,
data efficiency deteriorates as the variance of Gaussian noise
increases. The combination of task-related/unrelated dimensions
alleviates the detrimental effect of task-unrelated dimensions.
These empirical results on MLPs show a similar trend to the
one predicted for linear networks, with exception of a less
pronounced effect of the double descent behavior.

5.3. Object Recognition Datasets
Figure 2A shows the log-AUTC for the MLP and the CNN
for different amount of unnecessary dimensions (an increasing
amount as we move left to right), for the synthetic MNIST
dataset. InAppendix 4.1, we report the test accuracy for different
number of unnecessary dimensions, which further strengthens
the results of Figure 1. Conclusions are consistent with the
previous results in the linearly separable dataset. Also, we observe
that CNNs are overall muchmore data efficient thanMLPs, which
is expected because of their more adequate inductive bias given
by the weight sharing of the convolutions.

Figure 2B shows results in natural MNIST dataset for
different ratios of task-related/unrelated dimensions. The plots
compare CNNs with different receptive field sizes, represented
by the factor r (see Section 4.3). Since the CNN achieves high
accuracy with few examples, the mean and standard deviation
of the log-AUTC (left plot) hardly show any variation when
computed on more than 20 training examples per class. Yet,
the gap of the testing accuracy is considerable for 20 training
examples per class (right plot). These results confirm that task-
unrelated dimensions degrade data efficiency independently of
the receptive field sizes (see Appendix 4.2 for additional results
further supporting these conclusions).

Figure 2C shows results on the Stanford Dogs dataset, namely
the AUTC score across the five cases of unnecessary dimensions
that we evaluate. This dataset serves to assess a more realistic
scenario, where the objects can appear at different positions and
scales. We observe that the task-unrelated dimensions, which
come from the background, harm the data efficiency (cases 1
to 4 versus case 5). Putting to zero the unnecessary dimensions
improves the data efficiency of models trained on the original
dataset (cases 2 to 4 vs. case 1). This is because the task-unrelated
dimensions become redundant as they all take the same value in
all images. We also observe that removing the variability of the
position and scale of the object hardly affects the data efficiency
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FIGURE 2 | Data Efficiency in Object Recognition Datasets. Results of DNNs’ data efficiency for different amount of unnecessary input dimensions, tasks and

networks. Error bars indicate standard deviation across experiment repetitions. (A) log-AUTC for CNNs and MLPs trained on synthetic MNIST, for different number of

unnecessary dimensions. (B) Left plot: log-AUTC for networks trained on Natural MNIST for larger amount of training examples; Right: test accuracy on the smallest

training set. (C) AUTC on the Stanford Dogs dataset for the five cases shown on the left of the panel.

(case 2 to 4). Thus, learning to discard the background requires
more training examples than learning to handle the variability in
scale and position of the object.

6. CONCLUSIONS

We have analyzed the effect of unnecessary input dimensions
(e.g., object’s background). We found that task-unrelated
dimensions harm the data efficiency, while increasing the
number of task-related dimensions that are linear combinations
of other task-related dimensions help to alleviate the negative
effect of task-unrelated dimensions. These results demonstrate

that the robustness of DNNs to overparameterization is limited,
as increasing the number of task-unrelated input dimensions
is a form of overparameterization that degrades the accuracy.
Also, our results add to the growing body of works in object
recognition that shows that bias in the object’s background can
undermine the reliability of DNNs. Here we have shown that the
problem runs far deeper, as the object’s background negatively
affects the network even when there is no bias.

Taken together, these results suggest that data efficiency gains
could be enabled by mechanisms that remove task-unrelated
dimensions, such as foveation for image classification (Luo et al.,
2016; Akbas and Eckstein, 2017), or also by adapting to DNNs
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regularization techniques that encourage predictions from a
sparse subset of input dimensions (e.g., ℓ1 regularization for
linear regression Hastie et al., 2019). Also, our results can be
extended to other domains, such as natural language processing
and clinical tasks, as the effect of unnecessary dimensions may
have been investigated, e.g., (Laksana et al., 2020), but their
effects in the data efficiency remain largely unexplored.
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