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Abstract
Quantitative systems pharmacology (QSP) modeling is applied to address essential questions in drug development, such as

the mechanism of action of a therapeutic agent and the progression of disease. Meanwhile, machine learning (ML)

approaches also contribute to answering these questions via the analysis of multi-layer ‘omics’ data such as gene

expression, proteomics, metabolomics, and high-throughput imaging. Furthermore, ML approaches can also be applied to

aspects of QSP modeling. Both approaches are powerful tools and there is considerable interest in integrating QSP

modeling and ML. So far, a few successful implementations have been carried out from which we have learned about how

each approach can overcome unique limitations of the other. The QSP ? ML working group of the International Society of

Pharmacometrics QSP Special Interest Group was convened in September, 2019 to identify and begin realizing new

opportunities in QSP and ML integration. The working group, which comprises 21 members representing 18 academic and

industry organizations, has identified four categories of current research activity which will be described herein together

with case studies of applications to drug development decision making. The working group also concluded that the

integration of QSP and ML is still in its early stages of moving from evaluating available technical tools to building case

studies. This paper reports on this fast-moving field and serves as a foundation for future codification of best practices.
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Rationale

Predictive mathematical modeling has become an estab-

lished element of drug discovery and development due to

the totality of its impact on individual programs predicting,

for example, preclinical-clinical translation, therapeutic

index, optimal dosing, and drug-drug interactions, as well

as reducing the size and number of clinical trials [1, 2].

Awareness of the need for modeling is being driven in

parallel with the establishment of high quality, high

dimensional preclinical and clinical data warehouses [3–5].

Approaches to predictive modeling have been developing

and recently receiving attention from two major directions:

quantitative systems pharmacology (QSP) which describes

hypothesized or assumed mechanistic relationships in a

mathematical formalism, and machine learning (ML),

which applies unbiased algorithms to explore correlations

in experimental data. The question is whether these two

apparently disparate approaches may be integrated, and

what value may arise from such integration (QSP ? ML).

This White Paper describes the current achievements

and possible future directions of early QSP ? ML work

from the perspective of the working group on QSP ? ML

within the ISoP QSP Special Interest Group (SIG). Mem-

bership of the working group reflects the diversity of

backgrounds and expertise in the QSP community, from
Extended author information available on the last page of the article
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academic research in mathematical biology and chemical

engineering to industry pharmacometrics applications.

Discussions of members’ research have covered a broad

range of methods and applications that are represented

here. Integrating QSP ? ML also spans a broad range of

research objectives from increasing physiological under-

standing and predictive power to reducing the computa-

tional burden and complexity of analyzing large QSP

models.

We begin with a brief review of the considerations of

QSP and ML separately. Considerations for integrated

QSP ? ML are organized into four categories of current

activity in the field, followed by illustrating case studies.

We conclude with operational concerns of implementing

ML within an existing pharmacometrics research groups

and end with a future perspective. A glossary of common

ML terms is provided as a quick reference. More special-

ized ML methods, not in common use, are included in the

overview of current methods with references as a guide for

interested readers.

Background

QSP modeling supports all stages of the drug
development pipeline

The term QSP was coined in 2011 in an NIH white paper as

an intersection of mathematical modeling and experimental

approaches focused on drug pharmacology [6]. QSP-based

predictive modeling using QSP has successfully supported

many facets of drug development, including regulatory

decisions [7–10], setting pre-specified goals for program

go/no-go decision points, characterizing physiological /

therapeutic mechanisms of action for single or combina-

torial approaches, treatment optimization, and response to

proposed dosing regimens [11, 12]. Agharmiri et al. [13]

provides a comprehensive overview of QSP models, their

application, and growth across different disease areas over

the last three years (2018 to 2021).

The QSP modeling approaches apply existing knowl-

edge of dynamical and nonlinear molecular mechanisms as

a theoretical framework to test our understanding, con-

textualize new data and predict the outcome of interven-

tion. Several mathematical and computational approaches

have been used to encode QSP models, including ordinary

and partial differential equations (ODE, PDE), logic-based

methods, and constraint-based approaches [14]. It is the

representation of existing knowledge – the crafting of

assumptions – that presents the key challenges of QSP

modeling: the selection of key molecular drivers, the

generalization of mechanisms specific to physiological

context, disease and human sub-populations [15] and the

assignment or derivation of (often unobserved) parameters

with the associated ‘‘curse of dimensionality’’ requiring

more data to cover the parameter space. Furthermore, QSP

modeling is labor-intensive. Model building is still largely

performed by manual distillation of a large volume of

scientific literature, often by one individual. Characterizing

the model (establishing accuracy, sensitivity, reducibility,

reproducibility) also requires manual distillation of avail-

able data and moreover, creates a substantial computational

burden since QSP models typically comprise dozens or

more dynamical variables and even more parameters.

Machine learning allows data driven analysis
as well as dimension reduction

Analyses of high dimensional data commonly leverage ML

approaches such as classification, regression, clustering,

associated rule learning, image processing, and ranking

(for a primer on ML for life scientists see [16]). The ability

to simultaneously observe 1000’s to 10,000’s of properties

of a system across multi-layer data (genes, proteins,

metabolites, etc.) does not require an assumption of key

drivers: all possible molecular players are analyzed. Fur-

thermore, inference or discovery of unknown associations

among observables is possible. Inference has provided

functional annotation for unknown nucleic acid sequences

and characterized networks of associated functions among

observables. However, the identification of testable mech-

anistic hypotheses has been widely recognized as one of

the most significant challenges due to the general ‘‘black-

box’’ nature of ML approaches [17]. The strength of QSP

modeling to address this key weakness of ML, and the

strength of data-driven ML to address the QSP weakness of

manually building assumptions, suggests that integrated

QSP ? ML approaches offer the best of both.

It should be noted that the harmonization of data is one

of the most important considerations in the analysis of high

dimensional and/or integrated data. Preprocessing and

cleaning of data includes imputation of missing data, nor-

malization, handling of categorical variables, and the

detection and handling of multicollinearity and systematic

bias/error. Data harmonization is a central consideration of

ML approaches but is also important in QSP models which

often rely on integrating data from multiple sources.

Another strength of ML is to help reduce the manual

labor, complexity, and execution of QSP modeling and

simulation. Because comprehensive QSP models can be

computationally expensive to solve and to characterize the

multi-dimensional parameter space, surrogate ML models

can be initially developed by training them with sample

input–output combinations from QSP models, and subse-

quently used for further predictions. Surrogate ML models

(or metamodels) have been used in engineering and physics
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to scale up simulations of multiscale models, providing

opportunities for the life sciences field to adapt some of the

methods [18].

Current approaches

The working group has identified four categories of

application for integrated QSP ? ML approaches.

(1) Parameter estimation and extraction. Inferring

parameter values for defined QSP models and

reconciliation of model behavior with published

qualitative and quantitative data

(2) Model Structure. Inferring relationships including

logic networks of large QSP models from a variety of

data types. Related to this are methods enabling the

evaluation of sensitivity and uncertainty of param-

eters and model structures including constraint-based

approaches. These methods also are applied to

extracting conclusions from heterogeneous popula-

tions of QSP models.

(3) Dimension reduction. Methods to extract variables

from high dimensional data, whose behavior most

informs outcome.

(4) Stochasticity and virtual populations. The assessment

of stochastic considerations such as predicting the

impact of genetic variants and mechanistic sources of

variability

Parameter estimation and extraction

Parameter estimation methods for large scale systems of

differential equations are, from a numerical analysis per-

spective, problems of minimization or maximization of a

defined cost function. In general, most ML problems

reduce to optimization problems. Parameter estimation

methods have been reviewed extensively (see for e.g. [19]).

For QSP models, the estimation is chronically under-de-

termined due to limited clinical and preclinical pharma-

cology data [20]. Successful approaches have begun with a

characterization of parameter space [14] using, for exam-

ple, virtual populations [21, 22] to find parameter sets that

generate outputs to be consistent with observed clinical

data. Additional virtual population considerations are

needed for strongly nonlinear models [23].

Successful implementation of ML for the direct analysis

of pharmacometrics data hinges on the robustness of

datasets for training and testing that capture the distribution

of intrinsic and extrinsic factors of interest. Clinical trial

data may not be suitable if the trial is small or has missing

or irregular data. Furthermore, there may be no clear

mechanistic association from clinical events to individual

patient characteristics and/or QSP model parameters. ML

has been applied to identify such associations as described

in the thrombosis prediction case study, below [24]. In this

example, logistic regression was used to generate the

probability of a clinical event for each virtual patient

simulated from the QSP model. Other methods, such as

gradient boosted decision trees, deep neural networks and

multitask deep learning (MDL) may also be used. MDL or

transfer learning can simultaneously use features or

biomarkers as input data and predict multiple clinical

events or outputs. This allows the use of a large dataset to

improve the prediction accuracy of small data sets and has

been used, for example, to classify biological phenotypes

from images [25].

Semi-automated extraction of parameters from the lit-

erature has also been accomplished using natural language

processing, however additional analysis is required to

ensure the extracted data are applicable in a particular QSP

setting. Together with a ML model checking framework

[26], this approach has been applied to a combined of

parameter selection and QSP model selection to model

immune dysregulation in children prone to a specific viral

infection [27].

Model structure

ML methods to identify QSP model structure in a data-

driven manner rather than a manual digest of prior

knowledge is an active area of method development.

Application to drug discovery and development is under-

way with some published exploratory case studies, how-

ever these methods have not yet been widely assessed or

validated.

The ML methods that have generated the most case

studies have focused on identifying the regulatory mecha-

nism logic of gene expression, signaling pathways and cell

fate. These methods pragmatically focus on semi-quanti-

tative data that are typically used to investigate biological

decision pathways and have developed alongside refine-

ments in the generation of experimental data. As experi-

mental perturbations can improve our understanding of

regulatory pathways [28], rich mutliplexed data are being

coupled with ML-based model structure generation to

identify therapeutic approaches, for example, to control

cell fate [29] and to identify personalized cancer therapy

[30]. These approaches offer the opportunity to build a

QSP model supporting the full pipeline of activities starting

with target identification, validation, and model refinement

as questions become more focused later in clinical

development.

Traditional ‘‘black box’’ deep learning approaches like

convolutional and recurrent deep neural networks eschew

prior information for neural network flexibility. In
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comparison, mechanistic models such as QSP models

routinely incorporate prior mechanistic understanding,

such as the prior models themselves as the structural prior

to reduce the data requirements (Fig. 1). The practice is

gaining new momentum when combining with the modern

computational power in the research field of scientific

machine learning (SciML) (also sometimes referred to as

physics-informed machine learning or science-guided

machine learning) and uses several different approaches to

incorporate known mechanism into machine learning

architectures and training processes.

One branch of SciML focuses on Physics-Informed

Neural Networks (PINNs) [31] which has been applied in

systems biology to generate Biologically Informed Neural

Networks [32]. In this approach, mechanistic regularization

is added to the neural network by modeling the neural

network NN(t) as the solution to the QSP model repre-

sented by an ODE u
0 ¼ f ðu; tÞ. These techniques have been

shown to perform well on sparse data by using the model

form to compensate for the unknown quantities. In this

formulation, parameter estimation can be performed

simultaneously to the neural network training process,

making it potentially a tool for identification with small

data. In addition, one can choose neural architectures

which impose constraints that must be satisfied in the

evolution of the system. In fluid dynamics, this has been

shown to improve data efficiency even further [33]. How-

ever, this method is very computationally expensive. A

comparison of standard ODE solver based parameter esti-

mation with the DeepXDE package [34] used in Biologi-

cally-Informed Neural Networks showed local

optimization of parameters was 100 9 to 10,000 9 more

expensive than traditional approaches [35].

Another SciML approach is ‘‘grey box’’ modeling using

the neural network as a universal approximator to represent

unknown portions of models. This is the approach taken in

the universal differential equation framework [36], also

referred to as hybrid models or grey-box models with

universal approximators. Universal ODEs can be simplified

to the form u
0 ¼ f ðu;NN uð Þ; tÞ. For example, a one-com-

partment pharmacokinetics model with unknown nonlinear

feedback can be expressed in the form:

Depot½ �
0
¼ �KaNN Depot½ �; Central½ �½ �ð Þ

Central½ �
0
¼ KaNN Depot½ �; Central½ �½ �ð Þ � CL

V
Central½ �

where the final activation of the neural network could be

chosen to impose positivity of its output. Such a form can

then be used to extend full mechanistic models to find

terms missing from the original description via symbolic

regression. This approach has been demonstrated in other

fields such as battery engineering [37] and climate mod-

eling [38] increasing the prediction accuracy over state-of-

the-art mechanistic models with only mild data require-

ments. This approach has also been extended to Bayesian

probabilistic forms [39] for calculating the probability of

missing or unknown mechanisms. Universal differential

equations do require specialized numerical differential

equation solver implementations like DiffEqFlux in order

to be accurately and efficiently trained.

Recent ML research has focused on addressing com-

putational challenges specific to QSP modeling such as

stiffness. Techniques like PINNs can be susceptible to

training failures on highly stiff models [40] potentially due

to neural networks having a low frequency bias [41]. New

architectures [42, 43] have been developed for stiff bio-

physical models where approaches such as PINNs, recur-

rent neural networks, long short-term memory networks,

and convolutional neural networks can fail due to an ill-

conditioned optimization process. More specialized archi-

tectures will likely be required to reach the accuracy and

robustness for ML applications in QSP.

Dimension reduction

Since the aim of a QSP model is putatively to understand

molecular interactions at the site of action and their impact

on the overall physiology of long-term disease progression

in general and different sub-populations, it is expected that

QSP models operate on multiple time and length scales i.e.

in a high dimensional space. In order to model these

complex systems, dimension reduction methods are often

used [44, 45]. These methods identify a subset of variables

and parameters that describe the mechanisms of interest,

optimally balancing computational performance and com-

plexity [46, 47]. Dimension reduction is helps with inter-

pretability of a model, since an overly complex model may

obscure a decision maker’s ability to establish

Fig. 1 Scientific machine learning is model-based data-efficient

machine learning. How do we simultaneously use both sources of

knowledge? While lack of prior knowledge of mechanism can be

supplemented by machine learning on data, scientific machine

learning methods show that machine learning on small data can be

supplemented by encoding mechanistic principles into the machine

learning architectures. Thus, the important factor for achieving good

predictive power is the total combination of data and mechanistic

information encoded into these hybrid models
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interpretable hypotheses. Thus, trade-offs between perfor-

mance and complexity need to be balanced [46, 48].

Indeed, feature selection (FS) can assist in the identifi-

cation of a maximally informative subset of variables that

capture the essential behavior of a system. FS is a central

problem of ML, where a minimal subset of inputs (fea-

tures) is selected according to a defined criterion (e.g. a

subset of genes whose expression predicts response to a

drug treatment. FS methods are data-driven and can inform

QSP model structure by identifying the minimal physio-

logically meaningful representation to enable mechanistic

interpretation and prediction [49]. The higher efficiency

achieved using FS is clear when comparing a FS ? QSP

strategy with a more traditional QSP model dimension

reduction strategy (Fig. 2).

(a) FS ? QSP. Starting with all measured features, FS is

performed to identify the subset for QSP modeling.

The reduced model is parameterized and checked,

and feature selection is re-evaluated until an optimal

structure is identified.

(b) QSP only. A QSP model is built using the complete

feature set, parameterized, checked, and dimension

reduction techniques are applied. As required,

dimension reduction, parameterization and/or check-

ing are re-evaluated until an optimal model structure

is identified.

This simplified strategy of FS ? QSP considers an

independent FS method. However, it is difficult to decou-

ple FS from other ML approaches that may also be applied

to a specific question or context. It is thus difficult to

propose universal and ubiquitous methods for FS and

dimension reduction. Comprehensive analyses [50] have

helped drive a consensus that univariate FS methods

treating variables independently and one-at-a-time are

suboptimal and should be applied in consideration of the

ML task. Thus, the three broad categories of FS algorithms

– the filter, wrapper and embedded approaches – include

this consideration [51, 52]. Filter methods resemble an

unsupervised approach, where FS is performed indepen-

dently of ML. Wrapper methods resemble more supervised

methods in the sense that feature selection is validated

based on the performance of the subset to specific ML

tasks. Embedded methods perform the ML and FS tasks

simultaneously by incorporating (embedding) the FS

within the learning algorithm. Embedded methods usually

incorporate FS in the form of a set of constraints in an

overall multi-level optimization problem which attempts to

maximize the ML task while simultaneously minimizing

(some metric of) model complexity [53–55].

FS algorithms can be further classified as: (a) methods

that preserve the nature and meaning of the features

resulting in a ‘‘reduced’’ dimensionality representation

composed of a true subset of the original feature set; and

(b) transformation methods whereby ‘‘new’’ features are

created through manipulations; i.e. linear or non-linear

transformations of the original features [56]. Each class has

its own advantages and disadvantages, with the most

obvious being that purely reduction methods preserve the

nature, character, and physical meaning of the features and

as such model development and/or interpretation comes

more naturally. On the other hand, transformation methods

can achieve substantial dimensionality reduction – since

the variables are replaced with complex transformations of

the original features. However, the interpretation of the

transform variables becomes quite challenging: trans-

formed variables become (non)linear functions, or projec-

tion on (non)linear spaces of the original variables and

have, therefore, lost their physical meaning. Interpretation

becomes important as we move towards the development

of, so-called, digital biomarkers able to predict [57].

Fig. 2 Procedure for integrating ML and QSP modeling in two

different ways. Top: ML algorithms could be used to select features,

which then could be used to develop QSP models that include only

the highly relevant features; Bottom: alternatively, comprehensive

QSP models that include most features could be first developed, then

ML algorithms and sensitivity analysis could be used to reduce the

scale of QSP model until smaller, more focused QSP models are

achieved
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The search for quantitative structure–activity relation-

ships (QSAR) is one of the fields that have most benefited

from combined developments in ML and FS. QSAR brings

together a multitude of interesting problems: (1) a rich and

non-uniquely defined input space, since often molecular

features are computationally defined expressing a multi-

tude of structural characteristics and molecular descriptors;

(2) a formidable ML problem since the relations between

structure and activity need to be inferred; and (3) by its

nature the feature space can easily become very high-di-

mensional, thus necessitating the reduction of its dimen-

sions [50, 52, 58].

Stochasticity and virtual populations

There are additional case studies of ML applications in

pharmacometrics that do not yet create their own category

[59–61], including the use of stochastic approaches to

predict the effect of random genetic evolution or small

populations [62, 63]. However, stochastic approaches are

more widely used for the generation of virtual patient

populations.

Achieving increased confidence in QSP model predic-

tions for critical decision-making requires model calibra-

tion, parameter estimation, sensitivity analysis, uncertainty

quantification, and generation of virtual patient popula-

tions. Related to their use in parameter estimation, virtual

patient populations are used to simulate how variability in

patient physiological characteristics explains mechanistic

contributions to the variability in response to drugs or other

clinical outcomes. The use of virtual population modeling

has gained significant attraction over the last decade

[21, 64–66]. Traditional methods employ initial sampling

of a subset of model parameters to construct a large set of

potential virtual patient candidates followed by a filtering/

rejection step based on different constraints to generate the

final population. The method ensures that the final popu-

lation of models comprise physiologically plausible models

constrained by the feature ranges in the observation. ML

methods such as prevalence weighting and other heuristic

methods that use Markov chain Monte Carlo sampling

have been used to construct virtual population that match

the proposed data density [21, 22, 64, 67, 68].

The inverse problem of inferring parameters of the

mechanistic model has often been formulated as a Bayesian

inference problem. Novel generative ML models, such as

flow and generative adversarial network normalization, are

increasingly investigated for parameter inference of

mechanistic models and virtual population constructions

[69–71]. Normalizing flow-based methods are currently

used to infer stochastic model parameters in cases where

experimental data are acquired from a single individual

[71, 72], but they can be readily extended to construct

virtual population QSP models. Novel generative adver-

sarial network (GAN) configurations have been shown to

allow for construction of populations deterministic models

[70] by addressing complex model parameter inference

scenarios involving data from heterogeneous populations.

Sensitivity analysis, uncertainty quantification and vir-

tual population generation requires performing hundreds of

thousands of model simulations, another example of the

need for ML-facilitated dimension reduction.

Case studies

The utility of the integrated QSP ? ML approach is, of

course, to support decision making during drug discovery,

development and registration. Application of a QSP ? ML

approach requires a determination of the key decision to be

addressed, how the model will inform the decision, and

how quickly the decision is needed. This will, in turn,

determine the balance between pragmatism and deep

mechanistic understanding that is required. A number of

case studies are reviewed, illustrating current impact of the

QSP ? ML method.

Prediction of therapeutic window for thrombosis
treatment

QSP modeling in thrombosis can shed light on important

aspects of hemostasis and thrombosis [73, 74]. Mechanistic

models of the coagulation pathway, and more generally

thrombosis, have been used extensively to characterize the

kinetics of coagulation and clot formation [75]. Linking the

mechanistic outputs of such a model to the clinical end-

points that are reflective of the benefit and risk balance of

anti-coagulant therapy should be possible. However, there

is uncertainty regarding the mechanistic relationship

between clot formation and venous thromboembolic events

and bleeding. Because of this uncertainty, machine learn-

ing was used to help quantify those relationships [73, 74].

The suitability of clinical data for ML can be limited.

QSP models can generate data to represent population

uncertainty, such as age, gender, pre-existing conditions,

missing dose, but still give the output in a uniform manner,

which is more suitable for ML. Associations between

simulated patient characteristics and multiple trial events

may provide insight due to the effects of undescribed

biological and physiological mechanisms. Real world event

rate data reported from multiple trials using different drugs

at different doses was used to tune an event prediction

algorithm.

The application of this QSP and ML approach supported

clinical development of anti-coagulants, including com-

paring them to competitor molecules and standards of care,
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informing the design of the venous thromboembolism

(VTE) prevention trials in orthopedic surgery, comparing

the efficacy and safety of the lead vs. backup, evaluating

potential combination therapies, and predicting dosing and

therapeutic window for VTE treatment and prevention.

Prediction of drug induced liver injury from QSP
and gene expression data

Although empirical PK/PD is commonly applied to model

toxicity, QSP modeling of injury at the cellular and tissue

levels – quantitative systems toxicology (QST) – offers

advantages for species translation and understanding

intraindividual differences that could improve toxicity

prediction [76]. The integration of QST with omics data is

the subject of the TransQST consortium [77]. An early case

study of the approach coupled a QSP model of liver

homeostasis with in vitro data to predict in vivo toxicity

[78]. A general theoretical framework to generate QSP

models from curated networks and expression data was

proposed by Kulkarni et al. by focusing on gene regulatory

networks alone [79]. Following this approach, interactions

between genes and known hepatoxicity mechanisms were

identified from the literature using natural language pro-

cessing and used to expand a prebuilt QSP model [80]. The

QSP model described the mechanisms of necrosis, steatosis

and cholestasis comprising 112 coupled differential and

algebraic equations were constructed, including fat,

antioxidant and bile metabolism and transport. Toxicoge-

nomic data was then generated for a specific drug of

interest, and ML used to find the differentially expressed

genes. The gene list was overlaid on the expanded ML ?

QSP network to convert gene-level changes into hypo-

thetical perturbations of the ML ? QSP homeostasis.

Simulations were run to understand the relative impact of

multiple mechanistic perturbations, and to predict

hepatotoxicity.

QSP model structure inference and reduction
of high dimensional data

Reduction of high dimensional data: Boolean networks
and circadian pharmaco-pathomics

Boolean networks model the binary on/off behavior of the

variables (elements of the network) and infer the simplest

structural relationships that describe the overall behavior of

the system, most often applied to describing transcriptomic

network behavior. Recent work developed methods for the

identification of causal relationships within high dimen-

sional data and for complex dynamic behavior such as

circadian rhythms [81].

Regulatory network prediction of T cell differentiation

The immune system has been modeled by a variety of

mathematical approaches, including ODE-based models

[82]. The data generated to investigate mechanisms of

immune cell activation are predominantly semi-quantita-

tive, with the important aspects being the presence or

absence of signaling molecules such as cytokines and the

identity and activation state of immune cells measured, for

example, by the expression of cell surface markers such as

CD4, CD8, CD28 etc. The concentrations of cytokines over

time, frequency of cell counts, and other quantitative

measures over time may also be of interest but are more

difficult to determine.

Modeling the regulatory decision pathways of cell

activation using a logic-based approach is a natural way to

represent available data [83] and allows the prediction of T

cell fate. In particular, proper activation and differentiation

into specialized effector T cells and inducible regulatory T

cells are essential for orchestrating the balance between

protective immunity and undesired inflammation suppres-

sion. Plasticity, the ability to change phenotype and acquire

mixed or alternative fates, is a critical property of T cells,

enabling them to adapt their function and response to

changing environments and contexts. Extracellular cues

regulate T cell plasticity via complex signaling, metabolic,

and epigenetic networks. The ability to design T cell

microenvironments that can elicit specific programming

regimes has translational potential for many diseases (e.g.,

cancer, autoimmune diseases, and transplantation). To

understand better how extracellular cytokine milieu and

signaling drive T cell differentiation, a logical model of

signal transduction networks has been used to compre-

hensively interrogate its dynamics under hundreds of

environmental conditions. ML-based classification of the

dynamic response resulted in new evidence that T cell fates

depend on specific combinations of stimulating cytokines

and quantitative (dosage) and temporal (timing) dynamics

[84, 85] and discovery and characterization of novel

complex (multi-fate) T cell phenotypes [84, 86] as well the

extracellular ‘‘recipes’’ that can potentially regulate the

balance of each phenotype [84].

Reduction of high dimensional data: network inference

Vaccine hyporesponse in the elderly is associated with

chronic inflammation and has been studied using multi-

layer molecular profiling in order to identify mechanisms

to target for therapeutic discovery [87]. In order to design a

new study to meta-genomic profiling of microbiome, a

non-human primate (NHP) study was performed to

understand how changes in host immune system response

to vaccination (or lack of response) was associated with
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changes in microbiome in old versus young animals [88].

The purpose of these studies was to characterize the

behavior of molecular entities that may play a role in

diminished vaccine response in older adults as targets for

vaccine adjuvant discovery. The ML-based analyses

reduced a very large set of data to a small, interpretable set

of interactions to support adjuvant identification, and to be

developed into a QSP model to support adjuvant validation

and the putative clinical development program.

A novel machine learning method was developed with

the above considerations [48]. The method identifies the

subset of entities (e.g. genes, proteins, metabolites, cell

types) that is the most useful for predicting the behavior of

the whole system. It provides important improvements on

similar methods, eliminating the need for the user to adjust

machine learning parameters that is typical for such

methods, and producing a sparse, parsimonious network.

Importantly, the method is independent of the distribution

of the data, allowing the integration of disparate data types

– transcriptomic, proteomic, metabolomic, cell profiling,

and demographic data from each subject. Both human and

NHP vaccine hyporesponse data [87, 88] were analyzed

and the network of entities in common between datasets

was identified. Functional annotation [89] and visualization

was performed manually in collaboration with bench sci-

entists to interpret how sub-networks were connected.

From this process, the structure of interlinked pro-inflam-

matory pathways including IL-6, Il-23, monocyte and

dendritic cell activation, TNF-alpha and T-cell differenti-

ation were identified to influence B cell class switching and

overall response. The relationships between microbial

metabolites and dendritic cell maturation as well as B cell

antibody production were proposed [90]. These hypotheses

are being tested using data from an on-going study.

Conclusions, discussion and future
perspective

Practical considerations: Implementing ML
in a drug discovery & development setting

The adoption of new technologies generally follows the

same lifecycle. At first, there will be a group of innovators

and early adopters, which eventually leads to a majority

group of users (both early and late stage), followed by a

group of late-comers [91]. At the same time, the technol-

ogy itself has a lifecycle as it changes from a new tech-

nology to a growth technology to a mature technology to a

declining technology. ML is an interesting case because it

has been around for decades; it is really only recently, with

the advent of new hardware and algorithm advances, that

ML has seen increased adoption in science and society. ML

overall is probably in the mature stage of development, but

in the growth use phase within society. Within the phar-

maceutical industry, the use of ML is not as advanced as

other industries, and may still be in the early adopter stage,

as companies are starting to identify applications for ML in

both the commercial and development space. Whether ML

succeeds and becomes the transformative technology in the

pharmaceutical industry remains to be seen.

Henstock [92] argues that implementing ML within a

company follows a hierarchical approach, which he refers

to as the ‘‘AI hierarchy of needs’’. Based on Maslow’s

hierarchy of needs for personal growth, lower levels of the

hierarchy must first be satisfied before moving upwards to

the next level (Fig. 3). At the very bottom of the hierarchy,

there must be data, algorithms, and hardware before one

can even think about using ML. Then the company needs

to be aware that ML can be used to solve the problem.

Once aware, companies realize they do not have the

expertise themselves to solve it, so they must contract or

partner with others that can. Over time, the company starts

to build the resources to do ML internally and eventually

starts to do so. With continued effort these capabilities

mature, and the company becomes reliant on ML, capable

of handling most problems with their own internal solu-

tions, before maturing into a full-fledge AI-driven organi-

zation, where the company derives its competitive

advantage from its ML algorithms. Most Pharma compa-

nies are somewhere between the AI Outsourcing and

Collaboration stage and ML-capable stage. No pharma

company is AI-driven, and one could even argue that this

may be impossible for a Pharma company; that Pharma

should target an AI-enabled organization where AI is just

one factor used to derive its competitive advantage.

To start to implement ML within a company requires the

obvious resources like qualified personnel and computer

hardware/software able to process big data. Further, there

are cultural constructs that can improve the adoption of ML

at a company [93]. Below are a few constructs identified

from experience to improve the success of ML at a

company.

ML can be oversold as a magic solution to every

problem, but it is not. The lay press has given the

impression that ML will one day rule the world (as in

science fiction movies). However, ML does have its limits

despite the great strides in the use of ML from self-driving

cars to improving health care that have demonstrated the

vast potential of the approach. The right framework to

think through is how to better understand an organization’s

decisions, how those decisions are currently made, when

are they going to be made in the future, what information

would be helpful to have at the time of the decision being

made, and then, finally, how the data can be collected,

processed, analyzed, and translated into an insight to
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inform that decision (Ryan Moore, personal communica-

tion, 2021). Sell the vision of what ML looks like when

effectively integrated into this framework.

When first starting a ML group, don’t let the first

problem you tackle be a ‘‘moon shot’’. Don’t start with a

big problem. Start small. Look for quick wins and early

successes. First impressions matter. Tackling a hard prob-

lem and producing a less than satisfactory result will tar-

nish the perception of all future work, particularly when

other projects fall short. Start with a smaller problem and

compare results to traditional methods. For example, a

supervised classification problem could compare a neural

network to results from a logistic regression analysis. Once

the group has some successes under their belt, start to

tackle bigger, more ambitious projects, and then move onto

the ‘‘moon shots’’.

Collaboration is mission-critical. Often the data scien-

tists performing the ML do not have the same skill set as

the subject matter experts of the problem at hand, an

example being using ML to classify the presence or

absence of tumors in radiological scans (few radiologists

can program use ML). Whatever projects are started, they

should be done in a collaborative, inter-disciplinary man-

ner. Data scientists should never work in a silo and then

present their results to teams after the analysis is complete.

Working in a collaboration leads to ‘‘buy-in’’ from all team

members and a sense of ownership in the results, which

may lead to greater use adoption in the future. Collabora-

tory teams can also lead to synergies, or identify project

bounds, that a single data scientist may not be aware of. At

the same time, the data scientist should be aware of turf

issues among groups. For example, there has always been

an uneasiness between ML and statistics (and the age-old

question – ‘‘what is the difference between ML and

statistics anyway?), which may translate to how these

groups work together. Going back to the use of logistic

regression for classification, traditional statistics groups

may see that as their purview and may not be happy with

another group doing it, so it’s important to be aware and

delicate in this regard.

Communication is the key to success and there are many

facets to this. First, there must be clear communication and

agreement on the problem to solve. Albert Einstein once

said that ‘‘If I were given one hour to save the planet, I

would spend 59 min defining the problem and one minute

resolving it.’’ A great solution is worthless if it solves the

wrong problem. Second, the importance of hiring data

scientists that can explain what it is they are doing cannot

be overstated. Invariably, ML presentations to non-ML

scientists require at least some level of explanation

regarding the methods being used. Data scientists that

cannot explain their methods in everyday language lower

the chance for a particular model to be accepted and

adopted. Some companies have taken to hire model

translators, who are not involved in the actual modeling

itself, whose job is to translate the problem to the data

scientists and then to help the data scientists explain the

mechanics and modeling results into common language

that everyone can understand it.

Challenges and future perspectives

The current state of the art does not include fully integrated

hybrid QSP ? ML models. The case studies presented are

ML-assisted QSP modeling, using ML to address weak-

nesses of QSP models. ML can be applied to parameterize

Fig. 3 QSP ? ML Hierarchy of

Needs. Based on Maslow’s

Hierarchy of Needs, companies

must satisfy lower levels before

moving to higher levels.

Additionally, QSP models

establish the framework for

identifying the most informative

data for scientific discovery,

requiring an iterative workflow

to generate new data
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QSP models, analyze QSP model simulation, optimize

computational burden and one-time feature selection to

inform QSP model structure. The desired future state is to

use hybrid models to iteratively uncover black box mech-

anisms through rigorous, systematic analysis, linking

therapeutic interventions to the probability of clinical

events.

From our perspective, the success of developing new

drug therapies will be increased if QSP modeling is applied

earlier and deeper. For example, even before data is col-

lected, QSP models serve as a framework for a research

team to align on assumptions, to prioritize the key gaps

where data should be collected, and to design experiments

that maximize the value of the investment into new data

generation. Integrating ML into this process enhances all

aspects of this process.

A continuing challenge is the lack of high-quality, high-

volume clinical data. Advances in the technologies sup-

porting decentralized trials such as smart phones, wearable

and blood self-collection devices, and in the establishment

of collaborative clinical data warehouses, offer new data

resources but are accompanied by new challenges in

bridging and integrating data. ML is used to simulate QSP

models, generating virtual patients that reflect variability of

model parameters. This approach is used to predict distri-

bution of response given, for example, genotypic charac-

teristics of a population. Hybrid QSP ? ML models

improve this surrogate model approach by concurrently

optimizing model structure with simulation, rather than

building the simulations from a fixed QSP model.

The next generation of QSP modeler will be called upon

to cross yet more interdisciplinary boundaries. The suc-

cessful impact of QSP is entirely due to the mathematical

modelers who are also disease biologists and clinical

pharmacologists, delivering analyses. These modelers

successfully addressed key questions during the develop-

ment process, through regulatory agency submissions, that

could not otherwise be answered. The expertise of

numerical analysts is now needed to build the collaborative

expertise necessary for identifying and addressing a new

class of questions. ML expertise conversely promises tools

for automating the modeling process and providing

accessibility for non-modelers and modelers, alike (does

one have to be an auto mechanic to drive a car?).

The integration of QSP and ML is in its early stages of

moving from evaluating available technical tools to

building case studies. Such integration offers multiple

advantages from providing data-driven QSP model

parameterization, to imposing a QSP model framework to

increase interpretability of high dimensional data and fully

data-driven QSP model structure discovery.

Driven by advances in data acquisition and warehousing

technology, as well as the improved understanding of key

questions where QSP ? ML can add significant value, the

field is rapidly moving and we envision that the guidance

for best practices will soon be needed. We hope the current

perspective and review provides a snapshot of the rapidly

developing field and evolves into such guidance with the

continuous contribution of the QSP ? ML community.

Glossary

Black box A model for which the inputs and outputs are

observable but not the internal workings e.g. it

is not possible to determine which features of

an image are used by facial recognition

algorithms

Constraint-based

approaches

Approaches to generate a solution to a mathe-

matical model that impose conditions such as

minimum and maximum values

Deep neural

networks

Neural network inputs and outputs are con-

nected via one or more hidden layers. Deep

neural networks are those with many hidden

layers that allow the neural network to learn

more complex patterns in training data

Digital biomarkers Physiological and behavioral data collected and

measured by means of digital devices such as a

Holter monitor

Feature selection The process of selecting a subset of data to aid

in interpretation

Generative adver-

sarial network

A field of ML that uses an unsupervised

‘‘game’’ to improve a neural network model.

The generator generates neural networks and an

adversarial network compares outputs: both

improve over repeated cycles

Grey box A model that combines known and estimated

(unknown) terms and/or equations

Machine learning

(ML)

The study of computer algorithms that learn

and adapt without following explicit instruc-

tions, to analyze and draw inferences from

patterns in data

Neural network

(NN)

A mathematical function built from layers of

nonlinear transformations. The approach is

inspired by the way neurons are hypothesized

to interact during learning: a network connec-

tion strengthens if is excitatory and weakens if

inhibitory.

Pharmaco-

pathomics

Automated machine learning-based classifica-

tion of pathology images generated in clinical

pharmacology trials

Predictive

Modeling

Modeling that predicts the response of a change

to the system

QSP modelling Modeling to describe quantitative interactions

between a drug and the human system

Rich mutliplexed

data

Multiple datasets generated from a single set of

samples. Implies profiling data such as tran-

scriptomics, proteomics, and metabolomics

Scientific machine

learning

A form of machine learning which incorporates

mechanistic scientific laws into the learning

process or architectures [94]

Surrogate machine

learning models

Machine learning models trained to emulate the

input output behavior of scientific simulations.

Usually, these models are trained as accelerated

oracles for computing how simulations will

perform at new parameters.
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White box A model with known, observable and/or inter-

pretable relationships between variables.
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83. Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J,

Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and

dynamical analysis of cellular networks. Front Genet 7:94

84. Puniya BL, Todd RG, Mohammed A, Brown DM, Barberis M,

Helikar T (2018) A mechanistic computational model reveals that

plasticity of CD4(?) T cell differentiation is a function of cyto-

kine composition and dosage. Front Physiol 9:878. https://doi.

org/10.3389/fphys.2018.00878

85. Barberis M, Helikar T, Verbruggen P (2018) Simulation of

stimulation: cytokine dosage and cell cycle crosstalk driving

timing-dependent T cell differentiation. Front Physiol 9:879

86. Naldi A, Carneiro J, Chaouiya C, Thieffry D (2010) Diversity and

plasticity of Th cell types predicted from regulatory network

modelling. PLoS Comp Bio 6(9):e1000912

87. Fourati S, Cristescu R, Loboda A, Talla A, Filali A, Railkar R,

Schaeffer AK, Favre D, Gagnon D, Peretz Y (2016) Pre-vacci-

nation inflammation and B-cell signalling predict age-related

hyporesponse to hepatitis B vaccination. Nat Commun 7(1):1–12

88. Citron M, Swaminathan G, Maxwell J, Xiao J, Webber T, Freed

D, Liang X, Hannigan G, Maritz J, Norton Jr. J, Kommineni S,

Gutierrez D, Woelk C, Cho C, Hayes S, Knapp W, Douglas C,

Hazuda D, and Espeseth A (2019) Establishing Large and Small

Preclinical Animal Models to Explore the Impact of the Micro-

biome on Vaccine Responses, in Microbiomes: Cold Spring

Harbor

89. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry

JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill

DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson

JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology:

tool for the unification of biology. The Gene Ontology Consor-

tium Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

90. Hayes S, Swaminathan G, White C, Cristescu R, Citron M, Sachs

J, Thakur G, Aliprantis A, and Cho CR. Understanding the Role
of the Microbiome in Vaccine Hyporesponse in the Elderly Using
Machine Learning and Quantitative Systems Pharmacology. in

ASCPT. 2019. Washington DC

91. Rogers EM (1962) Diffusion of Innovations. Free Press of

Glencoe, New York

92. Henstock PV (2019) Infrastructures, people structures, & prob-

lem structures: managing the shift to AI, in 2nd Annual AI-ML
Clinical Development Summit: Boston, MA

Journal of Pharmacokinetics and Pharmacodynamics

123

https://doi.org/10.1021/acs.chemrestox.9b00499
https://doi.org/10.1021/acs.chemrestox.9b00499
https://doi.org/10.3389/fphys.2018.00878
https://doi.org/10.3389/fphys.2018.00878
https://doi.org/10.1038/75556


93. Fountaine T, McCarthy B, Saleh T (2019) Building the AI-

powered organization. Harv Bus Rev 97(4):62–73
Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Tongli Zhang1 • Ioannis P. Androulakis2 • Peter Bonate3 • Limei Cheng4 • Tomáš Helikar5 • Jaimit Parikh6 •
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