— Room 14-0551 .
— e~ 77 Massachusetts Avenus

. . Cambridge, MA 02139

MITI_|brar|eS _Ph: 617.253.5668 Fax: 617.253.1690
. Email: docs@mit.edu _

Document Services http: //libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible. ‘ ‘

Thank you.

Some pages in the original document contain pictures,
graphics, or text that is illegible.

OPTIMAL REGION COLORING
BY DOING IMAGE CHUNKING

by

Paul Andrew Wagner Sgl-l-lszRlN G-
B.S., Physics PLOUGH LIBRARY
Georgetown University -
(1985)

SUBMITTED TO THE DEPARTMENT OF
BRAIN AND COGNITIVE SCIENCES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE
IN BRAIN AND COGNITIVE SCIENCES
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1990

(© Massachusetts Institute of Technology 1990
All rights reserved.

Signature of author

] Departmgl’('{ of Brain and Cogritive Sciences
February 2, 1990

Certified by
- Fllen Hildreth
Assistant Professor of Vision Science
Thesis Supervisor

Accepted by

&7 William G. Quinn. Jr.
Chairman, Departmental Graduate Committee

MASSACHUSETTS INSTITUTE
1 OF TECHNOLOGY

MAR 0 8 1990
LIBRARIES

HLTH

Optimal Region Coloring by Doing Image Chunking

by
Paul A. Wagner

Submitted on February 2, 1990 in partial fulfillment
of the requirements for the degree of
Master of Science
in Brain and Cognitive Sciences

Abstract

Region coloring is one of a set of elemental operations that can be assembled into
visual routines for the perception of spatial properties and relations [Ullman 83]. This
operation is investigated in light of some basic biological constraints, and some fundamental
computational limitations are established. A set of coloring algorithms based on the idea of
region chunking are designed, implemented and evaluated. Applying the principles learned
yields an optimal algorithm, using square region chunks, that requires a minimal number
of time steps for coloring completion. The flexible, optimal scheme is then compacted
substantially in terms of space requirements, and finally, is extended to handle cases of
broken and moving contours.

Thesis Supervisor: Professor Ellen Hildreth

Department of Brain and Cognitive Sciences

Acknowledgements

I thank Ellen Hildreth for stepping in to be my insightful thesis supervisor;
Shimon Ullman for getting me into this and for his continuing guidance; Whitman
Richards for his thoughtful advice; and Jan Ellertsen for her tireless support.

I am grateful to Jim Ballas for introducing me to Vision and Al; to Jim Mahoney
and Eric Saund for helpful discussions regarding this research; to Mike Villalba,
Waqar Qureshi and Walter Gillett for sharing the graduate experience with me; and
to Jonathan Koch, Ron Chaney, Peter Graham and Jin Oh for their good humor.

I salute Mike Baird, Christian Fortunel, Don Christian and all my friends at the
FMC Corporate Technology Center for their generous attention.

Finally, I thank my family for their love, friendship and typing.

Contents

1 Introduction to the Coloring Operation
1.1 The Problem and the Approach
1.2 OQOutlineof Thesis

2 Computational Theory of Coloring
2.1 Theoretical Requirements of Spatial Analysis
22 Givens,Goals

2.3 General Constraints e e e e e e

3 Representational Issues
3.1 The Image Chunking Representation
3.2 Formal Definition of Coloring Problem
3.3 Region Coloring with Convex Chunks: Not Scale-Invariant
3.4 Use of Parallel Square Region Chunks

4 Background
4.1 Impressive Human Performance at Coloring
4.2 Earlier Approaches using Image Chunking
4.3 Other Representations and Algorithms

5 Learning from Preliminary Algorithms
5.1 Various Networks
5.2 Analysis of the Implementations, ..

6 Optimal Coloring with Parallel Square Modules
6.1 Important Natural Constraints.
6.2 Algorithm
6.3 Proof of Optimality
6.4 Asynchronicity and Stability L L0000
6.5 Optimally Coloring 8-Connected Regions

6.6 Implementation Results

7 Compact Optimal Coloring

11
11
17
21

<

23
23
24
28
33

34
34
36
40

41
43
16

8 Compact Optimal Coloring inside Broken Contours

8.1 Theoretical Motivation
82 Algorithm
8.3 Implementation Results

9 Compact Optimal Coloring inside Moving Contours
9.1 Theoretical Motivation e
9.2 Algorithm

9.3 Implementation Results
10 Conclusion

A Appendix: Retiming Can Reduce Connectivity

93
93
99
104

107
107
116
120

133

134

1 Introduction to the Coloring Operation

The purpose of vision is to tell us what is where by seeing, according to Marr [Marr 82]. Our
interaction with the world is strongly guided by visual judgements about the properties and
spatial relations of objects. Many spatial reasoning tasks require the explicit representation
of regions derived from the image which may be treated as units during the analysis. The
computation of such a representation can be achieved through a process called “bounded
activation” or “region coloring”. Through an iterative process, connected components of a
retinotopic map are labeled with a unique identifier, and then the set of these components
1s used as a part of an even more complex descriptive entity.

Recently, Ullman [Ullman 83] has proposed that the computation of a variety of complex
shape properties and spatial relations can be achieved by assembling a set of elemental
operations into specialized visual routines. Region coloring is one example of such elemental
operations; others include shifting of processing focus, indexing, marking, and boundary
tracing. Ullman’s visual routine paradigm provides a framework for exploring the nature
of basic operations, such as region coloring, and their role in tasks such as spatial reasoning
and recognition.

1.1 The Problem and the Approach

The primary goal of this thesis is to develop efficient and flexible algorithms for performing
the operation of region coloring in light of its computational role. In doing so, we observe
a wide range of biological, psychophysical and computational constraints which impact
the design of the algorithm. Most significant are those which assume simple processors.
limited and largely local connections, and short messages between processors. In addition.
human performance at coloring tasks sets an impressive standard, with speed appearing
to be invariant with respect to figure scale, position, and orientation. Finally, we discover
some fundamental computational properties pertaining to the broad class of models being
considered, which limit the best case performance one could expect from these. With these
constraints in mind, we seek algorithms that are fast, require limited hardware, and vield
sensible solutions for a wide variety of problems.

The contributions of this thesis are as follows. First, we establish the computational
function and limitations of the coloring operation, and show why the representation referre
to as image chunking is well-chosen. Second, we develop an algorithm that embodies this
representation, which we show is optimal in terms of number of steps. Third, we show that

9

this algorithm can be compacted considerably in terms of its spatial requirements, while
still remaining optimal to within a constant factor. Fourth, we extend these algorithms to
handle broken as well as shifting contours. In each case, we demonstrate the performance
of the algorithm for a variety of input data, such as noisy edge data from stereo-based
range images and sequences of edges in motion. Finally, we motivate the computational

work with results from biological and psychophysical studies of natural vision systems.

1.2 Outline of Thesis

The thesis flows through three levels of investigation (see [Marr 82], p. 24). First, Chapter
1 introduces the problem and outlines the general approach taken. Chapter 2 develops the
theory of coloring at an abstract computational level. It establishes the role of coloring
in vision, and demonstrates its appropriateness and adequacy as part of this information
processing task. Coloring is portrayed as a mapping from one kind of information to
another, and important properties that constrain this mapping are shown.

Next, Chapter 3 takes up the issue of representation. It presents formally and mo-
tivates the choice of representation for the input and the output (image chunking), and
determines some important properties associated with the transformation from one to the
other. Chapter 4 is a background section which deepens the scope of the investigation.
It proposes some important constraints suggested by psychophysical results. The chapter
continues the discussion at the same level of understanding as in Chapter 3, for it reviews
earlier approaches that employed image chunking, and then describes other representations
and algorithms.

Chapters 5 through 7 complement the representation question by introducing several
kinds of algorithms to do the transformation. In Chapter 5, we examine a class of algorithms
that embody the image chunking representation and analyze empirically the interaction
between scale and propagation. In Chapter 6, we derive the optimal coloring algorithm
using parallel square modules, and prove its correctness and optimality. We also place the
optimal algorithm in the context of an asynchronous mode and discuss stability. Then in
Chapter 7 we show that the algorithm can be compacted substantially in terms of space and
still be optimal. In addition, each of these chapters concludes with an analytic description
of the related implementation and its results.

Further still, Chapter 8 presents compact optimal coloring inside broken contours and
Chapter 9 presents the same inside moving contours. Each by itself represents a fairly
complete unit of thought from a methodological point of view, by presenting theoretical.

10

Figure 1: The “XIO Problem”: Is X inside any closed figure, or is it outside? A. X is
inside. B. X is outside.

algorithmic and implementational descriptions of its respective topic. Finally, Chapter 10
summarizes the logical flow and emphasizes the important points of the thesis.

2 Computational Theory of Coloring

2.1 Theoretical Requirements of Spatial Analysis

An intelligent system seeks to make judgements about the structure and the nature of the
world around it. To do so by seeing, its vision system must infer abstract shape properties
and spatial relations from the scene. For example, in Figures 1A or B, one might he
required to decide whether the “X” is inside or outside of the closed contour. To recognize
the snowman in Figure 2A, one needs to notice that the three oblong circles are positioned
one above the other. To read the beginning of Beethoven’s Fifth Symphony in Figure 2B.
one must solve for both relative position and inside/outside relations. Finally, recognition
of a face in Figure 2C and not in 2D again involves both position and inside/outside
computations. Region coloring can be used to represent subsets of the image as a single
unit, prior to position estimation. It can also be used to solve inside/outside relations. as
will be shown below.

Solving tasks requiring spatial analysis often seems simple and immediate, but the

11

Figure 2: Visual scenes posing spatial analysis tasks. A. A snowman. B. The first few
measures of Beethoven'’s Fifth Symphony. C. A face. D. A jumbled collection of parts of a

face — not a face.

underlying computations are found to be quite complex. Fortunately, they can often be
decomposed into a set of simpler subtasks. Ullman [Ullman 83] proposed a framework
for computing abstract shape properties and spatial relations, called “visual routines”.
Initially, the vision system has available only early representations of the world, which are
created in a bottom-up fashion, retinotopically. Ullman observed that there is a need to
transform these base representations into incremental representations that meet specific
computational goals. He proposed doing this by using visual routines, which are composed
of sequences of elemental operations. Like computer programs, visual routines could draw
from a fixed set of operations, and nonetheless solve an unbounded variety of tasks. Some
operations which might be useful include:

o shift of processing focus
e indexing

e marking

¢ boundary tracing

e bounded activation

This framework allows a vision system to satisfy three general requirements: (i) abstract-
ness — the capacity to establish abstract spatial properties and relations, (2) open-
endedness — the capacity to establish a large and unbounded variety of properties and
relations, and (iii) complezity — the capacity to deal efficiently with the complexity in-
volved [Ullman 83].

Coloring a region means uniquely labeling every element in the set of connected region
elements. The “Inside/Outside problem” [Shafrir 85] provides a useful application of color-
ing to investigate. One is given a binary image, consisting of free-space and contour pixels.
with one pixel that is initially labeled (call this pixel the “X™). The task is to determine
whether or not the X is inside a closed contour. There are many methods to solve this
problem. One simple procedure is the ray-intersection method. A ray is drawn from the
point in question (i.e., X) to some peripheral area in the visual field (the periphery is said
to consist of “infinity points”). Then the number of intersections the ray makes with any
contour is counted. If this number is odd, X is inside the closed contour. If the number is
even, X is outside the closed contour. Figures 3A and B illustrate this method. U nfortu.
nately, the ray-intersection method encounters difficulty in a number of simple cases. Some
typical problems are illustrated in Figures 4A through D [Ullman 83]. Figure 4A and B

13

Figure 3: Two examples of the ray intersection method at work. A. When the starting
point is inside a closed contour, under simple conditions, a ray drawn from that point to
the periphery crosses the contour an odd number of times. B. When the starting point is
outside, one can expect a even number of intersections (possibly 0).

depict situations where the number of contours crossed does not correspond correctly to
the inside/outside status of the point in question. In Figure 4C, one would have difficulty
using ray-intersection in order to locate a point that is inside all the closed curves. Finally,
in Figure 4D, one would have trouble using the same method to determine whether the

two points are within the same closed curve.

An alternative method that is free of many of the limitations of the ray-intersection
method is that involving region coloring. Starting at X, the X and the adjoining area
is “colored”, and this activation is spread in all directions until a contour boundary or
an infinity point is reached. After all possible activation has occured, some simple test is
performed, according to the task at hand, to complete the determination. For the case
of the “Inside/Outside problem”, the test would be to check whether any of the infinity
points had been activated. If so, X is found to be on the outside of the closed curve. If
not, X is found to be on the inside. Figures 5A and B illustrate the application of this
procedure for cases when X is inside and outside, respectively. In the pages that follow,
the inside/outside task will provide the context within which we employ the region coloring
operation.

Coloring has other more direct uses as well. Coloring can be utilized to represent an

14

Figure 4: Four exemplary difficulties with the ray intersection method [Ullman 83]. A.
& B. One or more extraneous unclosed contours can confound the intersection-counting
method. C. A slightly more complicated context, concentric closed contours, poses addi-
tional obstacles. D. A slightly more complicated task, the determination of co-occupancy.
1s not amenable to this method.

15

Figure 5: Four examples of the coloring method at work, where the ray intersection method
failed. A. - C. If and only if color reaches the periphery, the point in question is outside.
D. If and only if color from one point reaches the other, the points occupy the same region.

16

object as just one or a few labeled units, with the specific spatial relations that are of
interest still intact. In some manner this is what happens in the transformation from
a retinotopic description of a scene to a symbolic description. For example, one might
gaze at a white styrofoam cup and conclude that there is one in view, yet that cup is
presumably represented by a multitude of retinotopic elements in the early levels of one’s
vision system. Furthermore, the contracted description would be sufficient in many cases for
making coordinate transformations, such as from a viewer-centered to an object-centered
reference frame. In addition, coloring serves to define and separate regions, to which
subsequent routines can be applied selectively. The ability to identify and selectively process
a region would be a useful step for recognition or for solving other spatial reasoning tasks.

2.2 Givens, Goals

The abstract computational problem can be stated in brief form. We are given a base
representation consisting of a set of elements arranged on a retinotopic surface, some of
which are deemed “colorable” and the rest deemed “uncolorable.” In addition, one of these
elements is indicated to be the “point of interest”. The goal is to color all those, and only
those, colorable elements that are connected, in a 4-connected sense, either directly or via
other colorable elements, to the point of interest.

The set of elements to be used for coloring can be represented by a graph, where
the elements are represented by nodes and their adjacencies correspond to links. Having
defined the general problem, we can already state the fundamental criteria which govern
the coloring operation, in one concise statement.

THEOREM 1 Each of a set of elements M may be colored if and only if (1) each element
is colorable, and (2) each element is either adjacent to, or connected via a path of other
members of M to, a colored element.

Proof: This theorem is of the form A «= B. We shall prove that B = A and —B = — 1.
These imply that A = B and —A4 = —B.

The result B = A follows directly from our stated goal. At any step in time, all colored
elements are colorable (only colorable elements may ever be colored), and all are connected
to the point of interest via colorable elements. Therefore, we may color any colorable

'An already colored element is considered to be connected to a colored element. This theorem applies
when M consists of only a single element, too, of course.

17

element that is either adjacent to, or connected via other colorable elements to, a colored
element (and therefore to the point of interest).

To prove that —B = —A, we suppose the opposite and show that it would lead to a
contradiction. Namely, we shall first assume that there is an uncolored element of M that
colors itself when condition (1) is not met, and show that this is illegal. Then we shall
assume that there is an uncolored element of M that colors itself when condition (2) is not
met, and show that this is contradictory. The case in which both conditions do not hold
true can be ruled out, too, because the first two cases are completely general.

If condition (1) did not apply, then this would mean that an element which covers a
contour becomes colored. This is illegal, because such a result runs counter to our stated
goal.

If condition (2) did not apply, then this would mean that there exists an uncolored
element, e € M, that is neither adjacent to a colored element, nor connected by a path of
elements of M to a colored element, but that becomes colored. Let us call the set of all
currently colored elements C. Now, without violating our assumption, it could additionally
be the case that our set of elements happened to be such that the complement of elements
MU C (i.e., the set M UC) consisted entirely of uncolorable elements. In this case, all of
the colorable elements on the retinotopic surface are contained entirely within either M or
C. Yet e is neither adjacent to C, nor connected to C by any members of M. There can
be no path of colorable elements connecting the two. Coloring e would violate our stated
goal. Thus, for any M, there exists at least one configuration of elements (and usually
many) which would force an unconnected set of colored elements — hence, a contradiction.
Coloring the elements of M under such conditions would be inappropriate. o

While this result is basic, it is interesting because it embodies a recursive constraint.
It sets up a recursion relation, and as such, implies that any type of coloring algorithm
will have to propagate this constraint along, in some iterative fashion. The nature of the
coloring task imposes the property of essential sequentiality on any type of computation
done for that operation [Ullman 83]. (A number of related tasks are essentially sequential;
in fact, order-limited perceptrons cannot compute some spatial relations in parallel — see
[Minsky & Papert 88].)

Given that our goal is to color a set of colorable elements, what is it that might con-
stitute such a region in vision? In order to certify that this computation is appropriate for
vision, we must show how the base representations are linked to the early stage of vision.

That is, what is represented by the activated region? Later, we shall precompute each

18

element’s colorable/uncolorable state, and represent it as the binary quantity, contour,
where contour= 0 means the element is colorable, and contour= 1 means the element is
uncolorable. But we need to know, how is the activation to be bounded?

We consider three specific questions: what criteria is used, at which stage is it computed,
and what is the form of the result that is used as input to the coloring operation? For
the sake of this work, we choose to use contours precomputed from earlier processes as the
base representation. The input is distributed on a single surface. We shall motivate this
particular choice in light of alternative ones in the discussion below.

The first two questions are intertwined. To understand how the boundaries are imposed,
it is important to review the goals behind them. Although there are a multitude of uses for
the result of the coloring operation, as discussed above, an invariable objective is to identify
and label those regions that share some common property. The first question concerns the
composition of the input for coloring: should the coloring process receive a binary contour
map (whose values mean either “contour is present” or “contour is not present”) which may
be propagated up the network to various scales with logical combination, or a continuous-
valued property field whose values might be combined quantitatively? The former scenario
would use boundaries extracted from the image by some other (earlier) process, whereas
the latter, which had directly detected the relevant property, would still need to compute
region boundaries, perhaps using some local difference measurement for comparison. The
related second issue is whether the homogeneous regions should be computed prior to
activation (i.e., prior to the labeling phase) 2, or during activation, instead. This ties in
with the first issue: rather than precompute boundaries, it could be the case that the
colorable components each have some similar property, such as color, intensity, depth,
surface orientation, texture, motion, or perhaps something more complex; the bounding
process could be based on computing local property differences dynamically, “on the fly.”

However, a strong case has been made for the detection of boundaries prior to the infer-
ence of other properties from the image [Mahoney 87], [Horn 86], [Marr 82], [Ballard & Brown 82,
[Riley 81]. Many object properties simply cannot reliably be extracted directly from the
image. Due to numerous confounding factors in the image formation as well as subse-
quent processes, objects having spatially-uniform properties generally do not yield uniform
regions at the early levels of vision. Another argument in favor of precomputing is that
one must compute these boundaries anyway, for other purposes, such as for recognition: it
would seem quite wasteful to have a second set of all those resources dedicated just for the

*This would be analogous to the “smart” planning / “dumb” execution phases of Planning. in Al
research.

19

coloring operation. In addition, since coloring is computationally so expensive, having an
aspect of sequentially, it would not make much sense to expend additional time computing
discontinuity boundaries in sequence across a given region if it could have been computed
in parallel for those same locations ahead of time. We would like to do as much of the
computation as possible in parallel first, before the sequential processing.

The third point to consider, when considering region coloring in the paradigm of hu-
man vision, is what is the form of the input, in principle? Is it fundamentally a single
2D field (this would include multi-scale descriptions of which each level is derivable from
one common surface); or is it given by multiple surfaces, each containing complementary
information about possibly distinct phenomena obtained through different scales or even
different modes? This last possibility is important, because different boundary information
can exist at different scales. Particularly for subjective contours, boundaries found at one
scale may not correspond to those at another, and vice versa. This, in conjunction with
any boundary information captured via divergent physical modes, creates the possibility of
conflicting indicators that would require a complex coloring process.

So then, fundamentally, do we have a monolithic description on one retinotopic surface,
or a composite description on multiple surfaces? The operation may construct an elaborate
representation for its own use, of course. But how “concise” is the information, in essence,
before it is used? The single level idea (as well as multiple-levels, mapped to a single surface)
is appealing because it implies a simpler, and therefore cheaper, coloring operation. On
the other hand, the heterogeneous multi-level input could be useful when used in either of
two ways. First, results could be computed in separate groups of surfaces. For example,
sometimes only large scale results may be of interest, because they are computed faster. It
might be worthwhile to locate the approximate orange and black pattern of a tiger right
away, and resolve its stripes at some later occasion. Second, the conjunctive interaction
of levels could provide a boundary for useful coloring. This would be the case when two
sets of regions, whose boundaries are found at specific large and small scales, respectively,
happen to form an interesting super-region when linked. (Subjective contours can give rise
to such boundaries.’) One may then want to color this super-region. This example gives
some support to the compute-as-you-go theory. It is possible that some boundaries cannot
be inferred until some coloring has already occurred. There may exist sub jective contours
that consist of colored regions. The viewer may then make an inference that would require

coloring this figure (all this might happen pre-attentively, without intention). This means

3For example, Mahoney distinguishes between “abrupt-change boundaries” and “alignment contours”
in [Mahoney 87).

20

that output of coloring defines the boundaries, and thereby serves as input, for coloring.
So one would need either a smart coloring process, which can change its criteria, or, more
likely, feedback to the preprocessing of the base representations.

Hence, we choose, for our base representation, contours precomputed from earlier pro-
cesses, because it appears to be a much stronger model. Also, our input is, when boiled
down, distributed on a single surface, because the issues raised by a heterogenous or multi-
scale input are much less tractable. However, it is obvious that some questions regarding

biological plausibility remain open.

2.3 General Constraints

Many natural constraints motivate this work. Some are widely known, while others are more
subtle. For instance, psychophysical results suggest difficult standards for both performance
and competence, that we will try to match. A more detailed survey will come later. For
now, we note that some of the more important constraints from psychophysics are that
the coloring operation in humans appears to be very fast, and exhibits approximate scale
invariance with respect to figure size. Other approximate invariances include those of figure
orientation, position, and so on. Also, it is quite robust as well as adaptable (e.g., for broken
contours). These will be factors in our choice of representation and algorithm, below.
Two important, general constraints are to minimize time and minimize hardware. This
could be considered the vision analog to the “least effort” principle in articulated movement.
Time is measured ultimately in some physical sense, although in most representations this
could be replaced by the number of discrete steps. Given that our goal is to label a
constrained subset of the base representations, we would ideally want to color all of them
in one time step, or at least many of them each time step. Labeling one or fewer per
time step would be less desirable. The approach we shall ultimately take, of course. is to
color connected “patches” at a time, using the maximum scale possible. As for hardware.
we could assume that at the algorithmic level, the information processing task would be
handled by a set of processors. “Processor” is used in a completely general sense here. to
mean any information processing unit occupying space. We would like to limit the nu mber
of processors, the power of the processors, and the number of connections between them.
Indeed, a number of biological limitations strongly constrain the algorithms emploved
by the human visual system. The following is a list of some facts and assumptions that
we would like to capture (see [Shafrir 85], [Kandel & Schartz 85]). The input consists of
roughly N x N elements, where N = 1000. The number of connections from each processor

21

varies, but a sensible limit might be 1000 to 10,000 local connections each. This suggests
that an interprocessor connectivity degree of O(NN). We also assume that the time for a
processor to react to a message (a chain of pulses) is on the order of 10 milliseconds. As we
will see later, humans respond to simple Inside/Outside problems in about 500 msecs. If we
suppose that the basic operation requires 100 msecs of that time, then that would permit
computations of only 10 steps or so for simple cases ([Shafrir 85]). Processors should be
simple (and usually similar), and messages should be short. Finally, since the response
time and other quantities vary between processors, an asynchronous communications mode
would be indicated. These kinds of constraints impact the representations and algorithms
that can be used to solve the coloring task.

A number of algorithms perform the coloring operation, but do not satisfy constraints
outlined above. Standard graph-contracting algorithms on Exclusive-Read Exclusive-Write
Parallel Random Access Memory (EREW PRAM) machines can color regions in O(log NV)
time. Unfortunately the PRAM model requires the capability of constructing pointers or
addressing messages to arbitrary locations. That is, any processor is able to communicate
with any other in one time step, and addresses may be passed and utilized. This conflicts
with the properties of neurons that are currently known. Neurons are believed not to have
addresses, nor the capability of sending addressable messages. Our assumptions of rather
simple processors, short messages and largely local connections for biological systems would
seem to rule out the powerful class of algorithms based on the PRAM model. Furthermore,
the biologically feasible model is less costly and simpler to build than shared memory
models [Mahoney 87]. 4

In addition, we can take advantage of an important computational principle to reduce
potential connectivity from O(N?) to O(N). The systolic conversion theorem [Leighton et al. 88]
enables one to formulate solutions to many fundamental graph problems in terms of a sys-
tolic algorithm. It is described and illustrated in the Appendix. This final constraint stems
from a property of the real world — not from the realm of physics or geometry, but from
that of parallel computation — which can be exploited to achieve efficient region coloring

with a legitimate representation.

4Gee also T. Poggio. “Routing Thoughts,” Al Working Paper No. 258, May 1984. S. Ullman contributes
to this internal memo, in part, by proposing that the type of routing scheme employed is an important
issue, and could serve as a basis for useful classification of different types of parallel machines.

22

3 Representational Issues

3.1 The Image Chunking Representation

Image chunking is the result of a set of fast parallel processes which construct the particular
representation from pointwise properties of the image. These are treated as units during
spatial analysis. Image chunking ultimately permits'a. concise, efficient description of the
image. Its general efficacy can be conveyed with a couple of illustrative analogies. Mahoney
offers the analogy of efficient house-building: if one wanted to build a house quickly, one
would use prefabricated parts that could be preassembled in parallel [Mahoney 87]. A more
operational analogy might be that of the “One-Minute Manager Delegation Paradigm™ -
if one can reliably delegate tasks to subordinate processes, being assured that the task can
and will be performed, one can accomplish tasks at a much higher rate.

With this vague motivation, we also need to accommodate some specific concerns. For
one, higher vision must be spatially focused and goal driven. This is partly due to the com-
plex and transitory nature of the incremental representations, given limited computational
resources. It implies that a general ability to decompose the retinotopic representations
into meaningful expressive entities that are in terms of the visual goals would be indis-
pensable. For instance, an indexing task (shift of processing focus) would generally be
given in terms of extended scene entities, so image chunks would be a more appropriate
basis of location than pixels. [Mahoney 87] In addition, we recall some relational tasks are
essentially sequential. Examples include coloring, in particular, contour tracing, and even
some aspects of house-building (laying the foundation precedes the walls, which precede
the roof [Mahoney 87]). It is therefore important to utilize chunks which would minimize
the number of steps to perform these inherently serial operations. Finally, chunks should
be relatively simple, and easily combined. One needs to be able to construct a variety of
useful incremental representations with them.

We shall develop and investigate several coloring algorithms which are based on the
image chunking representation. Figure 6 gives a simple example of region coloring by
this means. We employ a set of modules, each of which describes the property state of a
particular square-shaped area of retinotopic elements from the base representation. \Where
each module is able to get its information from varies from algorithm to algorithm. In
an intuitive view of the complete operation, coloring information flows up from the pixel-
scale level to higher-scale modules, where it is passed around at a high speed (i.e.. large
image distance per step of time) during each cycle. Eventually the pixel-scale modules are

23

themselves updated with color information.

In Figure 6, for instance, the image chunking representation is deployed in the form
of a quadtree. Each module in the lowest level describes the state of its respective base
element, extracted from the image, in terms of (1) presence of a contour and (2) whether
or not that module is colored at the present moment. Modules labeled as X are done so for
illustrative purposes only. They are considered synonymous to a colored module, one that
was colored at “time 0.” In this example, we have passed up contour and X information
during a preprocessing stage, defining that as “time 0.” Each module in a given scale
level covers a unique square-shaped area, which is the union of the areas of four modules
beneath it in the next-lower scale level. During the upward propagation process, each
higher-scale module eventually receives messages from its four “children.” If any sends a
message indicating the presence of a contour, then the module records this presence, and
then also sends such a message during the next step. The higher-scale modules pass up
X information in a similar fashion, although each records and then sends a colored value
subject to the non-presence of the contour. Thus, with repeated steps, all modules come
to describe the contour and starting point properties of the base representation in terms of

those from its subordinate modules.

During the main stage, color information is passed up, over, and down in a similar
iterative way. At each step, each module records and sends color information to all other
modules to which it is connected, but only if it has not recorded the presence of a contour.
We reserve further describing the particulars of the process until the algorithmic sections,
starting with Section 5. This operation description serves to illustrate how, as a general
rule, the image chunking representation yields a multi-scale description of the base repre-
sentation that is often based on a hierarchy of components. As we shall see, using such
a representation can substantially reduce the number of steps required to label connected

components.

3.2 Formal Definition of Coloring Problem

After giving the descriptive overview of the image chunking representation, we now state
formally the coloring problem. We present the task, the general representational model,
and some useful definitions. Then we derive a Corollary to Theorem 1, which is in a
simpler form, and which states the fundamental coloring criteria for any specific algorithm

that employs the image chunking representation.

24

< \\\’a/
\\\\\§ \\§

Figure 6: The quadtree is an example of the region chunking representation.

Given: We are given an N x N-pixel binary image, where each pixel indicates either “free-
space” or “contour.” In addition, one of the pixels is labeled so as to indicate that it is

colored at the start.

Initial Assumptions: For simplicity, yet without loss of generality, we assume that the
generic region-chunking model consists of

1. an N x N array of “pixel-scale” (i.e., unit-size) modules, each mapped to a unique
image pixel, plus

2. a number of “higher-scale” modules, each mapped to a unique subset of 4-connected

image pixels.

We see that one pixel-scale module corresponds with the image pixel that was colored at
the start; let us denote this module as X. Thus it is sufficient, and we shall require, that
coloring proceed only among the modules, a uniform class of region chunks. -

Furthermore, at any step in time during the coloring process, each module has infor-
mation only about

1. whether or not any adjacent modules have been activated, and
2. whether or not any of its constituent pixel(s) is a contour or X. °
Based on this alone, the module makes decisions about whether it should activate (or

deactivate) itself. It does not know, for example, the status of non-constituent pixels.

Goal: Our task is to “color the region containing X.” Let us define this region to be
the maximal set of pixel-scale modules P, such that, for every module p € P, there is a
4-connected path from p to X via the pixel-scale modules, none of which is mapped to a

contour pixel.

We define here a few terms that will facilitate later discussion of chunk-at-a-time region

coloring algorithms.

Definitions: Let P, and P, denote the respective sets of pixels to which modules m,; and

m, map uniquely.

5Later, when we extend the algorithm to handle broken and shifting contours, additional information

will need to be available to the modules.

26

my covers m, iff P, C P,.

m, overlaps m; iff there exists a pixel p such that p € Py, p € P,, and neither
module covers the other. (“m, overlaps m;” <=> “m, overlaps my.”)

my borders m; iff there exists no pixel p such that p € P, and p € P,, and
there exist two pixels p; and p, such that 1 € Py, p; € P, and p; and p, are
4-connected neighbors.

m; is proximate to m, if and only if m, covers, overlaps or borders m,. (A
module is proximate to itself.)

Before making the claims below, we impose some final requirements.

Restrictions on the Model: We narrow the class of canonical models to those which are
e capable of coloring any 4-connected region of pixels, and
e comprised of modules, each of which are mapped to a convex set of pixels.

The first restriction is a trivial one that assures generality. The second restriction limits
our discussion to those modules that have a convex shape; that is, each module corresponds
to a set of pixels which would entirely fill the convex hull of that set.

Now that our general framework is defined, we can state the fundamental criteria which
govern any specific coloring algorithm based on image chunking, in one concise statement.
It is simply a corollary of Theorem 1, simplified for the special case of our chosen repre-
sentation (i.e., image chunking).

COROLLARY 1 An unactivated module may activate itself only if (1) it does not cover

a contour, and (2) it is prozimate to an activated module.

Proof: Like Theorem 1, this corollary is of the form A <= B. We shall prove that B = A4
and —B = —A. These imply that A = B and -4 = —B.

The result B = A follows directly from our defined goal. Since the module in question
is mapped to a set of pixel-scale modules, if premise B is true for the module, then B holds
true for each of its pixel-scale modules too. At any step in time, all colored pixel-scale
modules are colorable (only colorable pixel-scale modules may ever be colored), and all are

27

connected to the point of interest via colorable pixel-scale modules. Therefore, we may
color any colorable pixel-scale module that is either adjacent to, or connected via other
colorable pixel-scale modules to, a colored pixel-scale module (and therefore to the point
of interest).

To prove that —B = —A, we suppose the opposite and show that it would lead to
a contradiction. Namely, we shall first assume that there is an unactivated module that
activates itself when condition (1) is not met, and show that this is illegal. Then we shall
assume that there is an unactivated module which activates itself when condition (2) is not
met, and show that this is contradictory. The case in which both conditions do not hold
true can be ruled out, too, because the first two cases are completely general.

If condition (1) did not apply, then this would mean that a module which covers a
contour becomes activated. This is illegal, by our definition of coloring.

If condition (2) did not apply, then this would mean that a module that neither covers,
nor overlaps, nor is adjacent to an activated module becomes activated. Let us call this
hypothetical module A and the set of all currently activated modules M. Let P, and Py
denote the sets of pixels to which are mapped h and M, respectively. The negation of
condition (2) implies that there exists no pixel p such that p € P and p € Py, and there
exist no two pixels p; and p; such that p; € Py, p» € Pu, and p, and p, are 4-connected
neighbors. That is, P, and Pjs are unconnected sets of pixels.

Now, without violating our assumption, it could additionally be the case that our
contour image happened to be such that the complement of pixels P, U Py (i.e., the set
P, U Py) consisted entirely of contour pixels. In this case, all of the free-space pixels in
the image are contained entirely within either P, or Py. P, and Py are disjoint, non-null
sets. There can be no path of free-space pixels connecting the two. Activating h would
violate our stated goal. Thus, for any such h, there exists at least one contour configuration
(and usually many) which would force an unconnected set of colored modules — hence, a

contradiction. Coloring A under such conditions would be inappropriate. o

3.3 Region Coloring with Convex Chunks: Not Scale-Invariant

An important issue that motivates the development of the algorithms here is scale invari-
ance. In this subsection, we present a theorem that formalizes an important effect of scaling
figures for images. As a figure is reduced in size in one or more dimensions, contour pieces
that were previously represented by several pixels become coalesced into a single pixel
representation. The figure is effectively smoothed, detail is lost, and the figure becomes

28

simpler. Therefore, coloring at two different scales can actually be two different tasks. If
so, the larger scale typically requires more time. The following theorem shows that, for
a convex image chunking scheme, scale invariance is generally unrealizable. The proof is
based upon image geometry and theoretical requirements of image chunking, and does not
depend upon any particular coloring algorithm.

The O(N) connectivity constraint pushes a valuable goal, scale invariance, beyond
reach:

THEOREM 2 Given a bounded activation algorithm that satisfies the criteria defined
above, there ezists a closed contour for which one can specify two sizes and positions with
respect to the image such that coloring the larger region requires more time steps than
coloring the smaller region.

Proof: The proof examines a particular shape at two different scales, and shows that the
coloring must take more time for the larger region, unless the network has high connectivity.
Assume that the image consists of N x N pixels, where N = 2M and M is divisible by
4. ® The shape is drawn in Figure 8A, for the larger choices of size and position. Notice
that it is made up of two parts, each of which can be inscribed in a square. One part of
the region consists of an M x M area of free-space pixels. X is somewhere inside this part.
The second part contains a snake-shaped area of free space of width 1. The rest of the
image pixels are contours. The region’s horizontal position in the image is arbitrary.

To construct the image with the smaller region, we first position the shape such that the
square-shaped part is centered under one of the network’s pixel-scale modules. Then we
simply shrink the shape’s size until its square part is just detectable to the module. The
snake-shaped part is therefore entirely positioned under an adjacent pixel-scale module
which, of course, detects either free-space or contour areas. For appropriate discretization
support functions (see [Fleck 88], Ch. 2), the snake-shaped part, at this scale, is treated
like a contour pixel. None of the network’s modules see it as free space, since there are
contour values inside each of their fields of view. That is, the second image, sketched in

Figure 8B, will consist of 1 free-space pixel and N? — 1 contour pixels. 7 Since the X was

6This proof can be adjusted trivially to cover cases where N is some other value. Note also that we
are not strictly interested in solving the Inside/Outside problem here; to do so for our simple example in
Figure 8A would be boring. Rather, we are interested in the problem of coloring an Xed region.

"One can start with a smaller snake part — ¥ x % (still 1 pixel wide) for instance, joined to the same

T
% X ‘;—’ square part, before shrinking the entire region for the second image. The proof still holds. Now

29

inside the square part, the single free-space pixel is the X. The pixel-scale module that
covers the X activates itself in the first time step. Our canonical network, then, can color
the smaller figure in one step.

To color the larger region in one time step is impossible. Notice that at least (% +
1) x L%J or O(N?) convex modules are required to cover completely the snake-shaped
subregion. So there are O(N?) connected modules that are not proximate to an activated
module or (equivalently) the X at the starting time, and which must be colored sometime.
By Corollary 1, these modules may not activate themselves in the first time step. Hence,
our network will use more time for this larger figure. o

We presented the rather elaborate counter-example above so that we could continue
here with some additional important observations. First, the set of modules that cover
the snake-shaped free-space subregion in Figure 8A can be represented by a graph with
O(N?) elements and connectivity degree of only one; coloring this region takes O(/N?) time.
Second, suppose we relax some of the assumptions about what information is available to
each module, so that Corollary 1 no longer applies. To color the larger region in one time
step, if some way were possible (using the systolic model of computation, as is standard),
we would need O(N?) connections at pixel X. To see why, note that during that single
step, O(IN?) modules must decide whether or not to activate themselves. The modules that
cover the snake-shaped subregion, plus other modules (since, indeed, we can draw many
other shapes within the snake’s square bounds and elsewhere, which would require O(N 2)
modules to become completely covered) must each know whether X is in its region. Since
each of O(N?) modules must have access to X during that step, X and hence, the network,
must have connectivity degree of at least O(/N?) for the network to be scale-invariant.

We have therefore shown that no O(N)-connectivity coloring network with convex mod-
ules is scale-invariant. Strictly speaking, they all have O(/N?) runtime in the worst case. Of
course, one generally can obtain faster speed with increased connections and/or processors.
Nonetheless, the result is somewhat daunting. True scale invariance under the conditions
established at the beginning is impossible. It is true that humans exhibit approximate
scale-invariance in coloring a broad variety of simple closed contours. Our best algorithms
perform this way for simple and particularly convex shapes. However, like our canonical
algorithms, humans require more time for coloring more complez closed contours like that
in Figure 8A. These tasks can vary in complexity as their scale varies. In such cases humans

seemn to suffer the same fate as our theorem dictates. Hence, a worthwhile goal would be

the snake-part covers only ;} of a pixel’s “field of view,” while % of the area is undisputed contour, so the
pixel would be likely to respond as if it sees a contour.

30

7

V/

"

con NN

[AN

,

chh SMa-u S'?MVQ_ s gne P'.\"l W‘.JQ,
B indootes o “plack Pi\ef,“
[indites a “whnite pivel.”

Figure 7: A snake-like figure.

3l

ir A
‘1
"y
7,
L

A. 7 4 !

|

N
P'nte\'fite Squares

[\

(Jvm-m :"3“5 eh‘q.’gd)

Figure 8: A shape whose coloring time varies with its size, given a coloring network with
convex chunks.

32

to design an algorithm whose average runtime for many simpler problems is not only fast,
but matches human performance in terms of near-invariance to scale, position, orientation,

and so on.

3.4 Use of Parallel Square Region Chunks

The initial motivation to investigate hierarchical square-chunk coloring schemes came from
two ideas: regions can be colored faster with larger chunks, and it would be advantageous
to view a region at both coarse and fine scales. The ability to view a region at a particular
scale is inherent to the hierarchical representation. A module is directly connected to other
modules of the same scale, as well as to parent and children modules of the next larger and
smaller scales, while being indirectly connected to all other modules. The intuition is that
a network should view and color a region primarily at coarser, simpler scales, and use the
finer modules to handle the complex details near contours.

The use of parallel square modules is just a special case of the image chunking repre-
sentation described earlier that we choose to pursue. Only the module shape is specified
further. (The specific algorithms, of course, introduce some complexity later on.) \We
have presented the use of image chunks in Section 3.1. Recall that the example given (see
Figure 6) was the based on the quadtree model. It uses a set of modules, each of which
describes the state of a particular square-shaped area of retinotopic elements from the base
representation. We choose squares in part because they yield simple, area-based descrip-
tions. They can be easily combined to give meaningful descriptions in terms of extension
in space of a property. Since squares are roughly symmetric, they need be deployed in only
one orientation to perform well. As far as algorithm design goes, there is nothing inherently
special about the shape — the algorithms below could be modified to account for an v kind
of area coverage, whether it is some other convex-shaped module or not.

Other properties we strive to capture include usefulness and generalizability. It would
be advantageous if the network happened to generate a rich representation of the shape as it
colored it. We shall see that each of the square-chunk coloring algorithms below essentially
views the image at many different scales at the same time, and yields an ordered set of
planar descriptions that can be used by other operations. This feature allows the networks
to be easily extended to be more flexible. In particular, they facilitate the generalization
of our best network to handle moving contours, and broken contours, with only a constant
cost in speed.

33

4 Background

4.1 Impréssive Human Performance at Coloring

In this section we review various results which demonstrate impressive human abilities
relating to coloring, and which suggest why the chunking representation is a valid candidate.
In general, the studies support the idea that coloring proceeds slowly for complex figures,
but is very fast for simpler shapes. The traversal time from one point to another for
different scales varies slightly for the relatively simple figures used. There is persuasive
evidence for a chunk-based operation in human vision, but it would have to be a very fast
routine. So far, there has been little psychophysical inquiry into the nature of the region
coloring operation per se. Usually the focus is on some effect to which coloring might have
contributed.

One revealing study [Jolicoeur et al. 86] looks into the behavior of a related type of
coloring — contour coloring, or curve tracing. In one experiment, subjects were shown
several curves in a visual display with two Xs placed on them, and were asked to determine
as quickly as possible whether the two Xs were on the same curve. In the other experiment,
the task was to judge whether or not a curve joining two Xs had a gap in between the Xs.
In both cases, the decision times increased as the curves between the Xs was lengthened.
The investigators infer from this finding that human tracing often moves at some constant
maximum speed (a substantial average rate of 40° of visual angle per second). However,
this is not a strict gauge of scale invariance (and is not claimed to be): the curves remained
the same size, while the X’s position along the curve varied. So the inter-X distance
was scaled along the 1-dimensional space of the curve itself, but not in regular 2D image
space. Given that the task called for discrimination which possibly involved another curve
not in the space of the first curve, the scaling would not be strictly linear in any relevant
dimension. The experiments demonstrate the relatively high speed of operation in humans,
and provides evidence that the computation of some spatial relations involves a contour
coloring routine.

Some important parallels can be drawn between the underlying processes for region col-
oring and mental scanning. Considerable literature can be found describing the properties
of mental scanning, both along contours and across regions. For example, there is evidence
that suggests that mental images preserve metric distance information. ([Finke & Pinker 82].
[Jolicoeur & Kosslyn 85).) It is an open question whether the scanning mechanism resem-

bles or is possibly even synonymous with the mechanism for coloring. In [Reed et al. 83].

34

the time needed for scanning does not vary strictly with distance under some circumstances.
In [Jolicoeur & Kosslyn 85], more time is required to scan longer distances. Experiments
typically require a human subject to imagine a small black dot moving as quickly as pos-
sibly from one point to another in a mental image. This is problematic: since the process
is a conscious response - the subject’s idea of “moving at high speed” may not depend on
the distance traveled. That is, the subject’s “high speed” may be a roughly constant rate,
leading to possibly unfounded conclusions of scale dependency.

One interesting result in particular ([Reed et al. 83]) lends at least some support to
the psychophysical validity of a chunking-based algorithm. In one experiment, subjects
were directed to scan along various shapes. They found that scanning along square spiral
paths required the most time, while straight-line paths were fastest. That is, the scanning
is constrained to travel between the two contours on either side of the path. This is just
the result we see obtained by coloring: a snake or spiral-shaped figure presents extraneous
contours which force coloring to occur at a small scale in order to avoid them, hindering its
performance. On the other hand, straight-line paths across open areas would present no
obstacles to most higher-scale modules, enabling activation to occur at a large scale and
rate.

Other experiments, on the shifting of attention, affirm the power of contour coloring
in humans. This stems in part from the results of [Shulman et al. 79] and others that the
orienting of attention requires a certain amount of time, and that its locus moves through
intermediate locations ([Shulman et al. 79]). In addition, there is some empirical support
(e.g., in [Remington & Pierce 84]) that the time required to perform a shift of attention
does not vary significantly with the distance traversed during the shift. (There is also
evidence for a time-dependency [Tsal 83]. Much is unknown or in dispute in this area.)
[Jolicoeur et al. 86] postulate that such evidence points to the possibility of a common
mechanism between the processes of attention shifting and curve tracing. To carrv the
speculation one step further, Mahoney describes how contour coloring and region coloring
processes could share common machinery in [Mahoney 87). (See Section 4.2.) These results
would lend additional support to the idea that coloring must be effected by a powerful set
of chunking processes.

One final result of interest concerns determining inside/outside relations for broken
closed contours. For many such tasks, including variations of the “XIO problem”, people
are able to make consistent judgements suggesting that boundaries presented for coloring
do not have to be continuous in some cases ((Ullman 83]). Varanese observed that human
response time for solving XIO-type problems with fragmented boundaries was generaily

35

greater than for those with complete boundaries. The additional time required was modest,
with a mean difference of about 20msec and an average response time of about 540 msec.
([Varanese 83], [Ullman 83].) This suggests that extra processing might occur in order to
handle broken contours, and that it would be quite fast (its time would not grow enormously
for large input).

Hence, we are challenged to find a fast, robust region coloring scheme using image
chunks. The discovery of an optimal scheme, which could color within fragmented contours
at constant additional cost, would be valuable.

4.2 Earlier Approaches using Image Chunking

Several earlier approaches seek to extract meaningful scene components by doing image
chunking. Their goals include labeling boundary elements and labeling region elements.
All generate descriptions based on two stages of processing: the first involves generating a
description of the input in terms of a specific type of image chunking representation, while
the second entails the application of some variation of coloring algorithm.

Edelman’s work on fast boundary coloring in [Edelman 85] relates to the investigation
into human curve tracing by [Jolicoeur et al. 86]. Edelman presents two similar algorithms
for labeling a connected curvilinear component. Both methods consist of a first phase in
which regions of the image containing a single connected curvilinear figure (“OK-regions”)
are detected and propagated up a quadtree-based network. Then in the second phase,
the connected curvilinear component is colored by activating one maximal OK-module per
step. The schemes differ in terms of how the OK-values are computed for each module
during the upward propagation phase (first phase). In one scheme, a module is OK if all
its submodules are OK, if the Euler Number for its region equals 1, and if a test for closed
loops in the region returns null. The second version simply requires that the Euler number
computed over the region be 1 (0 for vacant regions). The former algorithm is provably
correct, while the latter is much faster but may occasionally label as OK a region with
more than one connected component.

The main difficulty with Edelman’s approach as a possible model of the operation in
humans is that it calls for counting of contour junctions and terminations inside entire

module regions,® and then passing these arbitrary numeric values between modules. These

8In our algorithm extension for closing broken contours. we detect the presence of any contour terminus
in the input that is covered by the module, plus whether there are more than one contour termini. This is
a simple logical operation (AND (XOR ...) (IOR ...)) of the inputs in the region, and is not very costly to

36

LA sl lT T Y

L
&
R
N

NN
R =PRI

22222222222222222+»
222222222222222222+
222222222222222222++
1111111111111111112#
3222222222222222223*

» L d

[*

L) ()

[} N

n N~ R

8&)&)”&)»-””””
[l et etetioteied ® lad ol y

R

222
22221222222222222222222 %
| *Q2221222222222222222222
*8222122222222222222233%»
*82212222222222222223
#821222222222222222e4
#RRQ222222222222 % 4»
##8333333333# 00
RRRBRNRBBBRE

Figure 9: Example of Shafrir’s Rectangular Model coloring a circle in three phases.

Processes violate our assumption of simple local processors and messages.

Shafrir presents a region coloring algorithm in [Shafrir 85] that is very fast for many
tasks. He studies three schemes, each of which have a preprocessing phase in which regions
containing no boundaries are detected. Shafrir’s most powerful method is based on a
network he calls the “Rectangular Model.” It consists of modules mapped to a large
assortment of needle-shaped region chunks of varying lengths. Each module connects to a
number of adjacent pixels in a single row or column. (A simple diagram of this coverage
is sketched in 1D in Figure 10.) Each module can be thought of as a “free-space” detector
that can take on one of two values — vacant or non-vacant — depending upon whether
or not all of its constituent pixels are free of contours. The algorithm proceeds in the
following cycle: each colored pixel activates all rectangular modules which cover it. and
then these in turn activate all pixels they cover. To constrain the connectivity degree of
the processors, modules cannot communicate with each other directly, but rather via their
constituent pixels. Even so, Shafrir’s algorithm colors many simple closed contours in onlyv
a few time steps. (See example in Figure 9.)

However, it becomes obvious that the runtime is at least O(N?) when the algorithm 1«

compute.

37

presented a more complicated region for coloring, such as the snake-like one in Figure 7.
Intuitively, this is because coloring advances in overlapping rectangular blocks, and many
such steps would be required to fill Figure 7. Humans exhibit considerable slowdown in the
completion of such tasks, as well, hypothetically because narrow regions hinder coloring at
large scales. [Jolicoeur et al. 86] Furthermore, although the Rectangular Model is one of the
fastest algorithms known, it lacks several important abilities that people possess and which
we hope to capture with the algorithms below. In addition to meeting a number biological
specifications (given above), the algorithms we present below were developed to surpass, in
varying degrees, the Rectangular Model in terms of some additional important properties.
Like the Rectangular Model, all of these networks use modules to represent subsets of the
image elements. Each module maps to a particular square-shaped region of pixels. Each
exhibits approximate scale invariance for simple closed curves. (See Figures 14Bii and Ctj,
for instance.) Finally, it is interesting to note that the complete, parallel, square-based
scheme contains nearly as many modules as the complete, parallel, needle-based scheme.
For example, the former requires exactly N2 modules for a square image of size N, whereas
the latter requires N3 + N? modules.?

The square-based networks developed in this thesis have a number of advantages. First,
the connectivity for the complete needle-based scheme is of degree O(N?) — see Figure 10
— whereas our networks will be shown to have connectivity degree O(N) or O(1). Second,
a needle-based scheme that uses only X- and Y-directed modules is drastically sensitive to
figure orientation for some cases, while some of our square-based schemes achieve approxi-
mate orientation- and scale-invariance for a broad class of problems. Third, an algorithm
that scans areas rather than line segment portions of the base representation possesses
additional properties which are important for handling some common variations of input
in psychophysically plausible ways. Our optimal algorithm can be extended so that its
area-covering modules cover either gaps or subregions to be uncolored, and thereby en-
able broken or shifting contours to handled gracefully. Hence, one challenge faced by the
Rectangular Model is robustness: Shafrir’s algorithm is fast, but is too specialized to be
modified in similar fashion. Likewise, Lim’s graph-contraction algorithm ([Lim 86]) would
fail for noisy input; it is inherently topological, not geometrical. Our square-chunk coloring
scheme possesses such flexibilities. Finally, the intermediate results of the square-based

9For square modules, the number of modules at each scale level is NxN. Hence, the formula is given
by N3.

For needle modules, at scale levels 1,2,3,..., N we need N, ..., 3,2, 1 modules for any given row or column.
For all 2N of the rows and columns, we require a total of (2N)x(N - %ﬂ) or N3 + N? modules.

38

Figure 10: The connectivity for the complete needle-based scheme is of degree O(N?).
Simple Proof: Pixel p is in the %th row and column of the image. Covering it are one

module of length 1-pixel, 2 overlapping modules of length 2-pixels, 3 overlapping modules
of Modules

of length 3-pixels, and so on. This means that |{Connected to Pl =

L+2+43+. + 5+ 5+ +3+2+1)x2=12x (T,)] x 2= o(V?).

We conclude that there are O(N?) modules which must communicate with p = needle-
based scheme has O(N?) connectivity. However, this scheme can be retimed.

networks given below are simpler, more stable, and more predictable in the sense that
coloring proceeds more like people do consciously. It proceeds radially, like an acoustic

wave.

Another important constraint suggested by human biology is that which limits each
processor to having O(N) local connections. It has forced Shafrir to implement a weaker.
and less elegant, version of the ideal Rectangular Model. First, as mentioned before. higher-
scale modules must communicate with each other indirectly, via the pixels. Second, Shafrir
is unable to use all of the modules — of all lengths and positions — that would be found
in the complete Rectangular Model, for the connectivity degree would be far too great
Instead he constrains the use of modules in such a way that the number of modules w hu h

39

communicate with any given pixel is < N. The O(N) connectivity constraint hinders the
performance of our best square-based network as well, by a small factor in the worst case.
That is, we are able to employ every module called for in the ideal square-chunk model,
while suffering only a small constant lag in communication. This is discussed in Section 6.

Mahoney’s region chunking proposal in [Mahoney 87] goes beyond Shafrir’s work in that
he considers the possibility of sharing computational resources between curve and region
chunking processes, and he extends region chunking into a general framework. He presents
several simple curve and region coloring routines which are based on either fixed, limited
extent tesselation or a binary image tree tesselation. He describes how both the curve
chunking and the region chunking processes can be decomposed into two processes, that of
generating a tesselation, and that of checking region validity. He then describes for several
specific cases how curve and region chunking could operationally mesh with one another.
He also shows how the region coloring can be expedited by applying the curve coloring
routine to the input first. For one thing, this reduces the magnitude of the coloring problem
simply in terms of number of elements to color. In addition, it also is equivalent to scaling
down the problem geometrically, insofar as the conditioned problem can be described in
terms of large-scale chunks only, and is equivalent to a description in terms of small-scale
modules of that problem scaled down. So while we later will present the square-chunk
coloring algorithm that is optimal for a given problem, a justifiable method for simplifying
its task would make it “more optimal.” It may be the case that a conjunctive approach
to curve/region coloring yields an approach that is superior for meeting the underlying

perceptual goals.

4.3 Other Representations and Algorithms

Given that our goal is to label connected components in a base representation consist-
ing of colorable and uncolorable elements, it is natural to ask what is the fastest algo-
rithm known for doing this. Obviously, one could be extreme and imagine a constant-time
but high-connectivity algorithm having detectors for regions of every shape, size, position
and orientation. More realistically, Leiserson & Phillips have recently presented a linear-
processor randomized algorithm that with high probability can contract a bounded-degree
planar N-element graph in O(log V') time for EREW PRAM networks [Lim 86]. (Notice
that ¥ = N2. This is important because an algorithm with time complexity O(N?) is
only O(N).) The contraction algorithm can be applied directly to solve the region col-
oring problem on suitable parallel machines. Its time complexity is quite modest, and it

40

is embedded in a fairly weak computational model (although it still depends on shared
memory).

Besides this completely general topological solution, one should consider the way in
which the solution will be used. There may well be tasks for which the complete coloring
solution is not required. In this case, other algorithms and representations may suffice.
For instance, there may be a host of geometric approaches, including such heuristics as the
ray intersection method, which could be selectively applied depending on the situation and
goals at hand.

The underlying motivation for image chunking is to make scene entities distinct quickly
so that they can be subjected to further analysis. [Mahoney 87] Mahoney makes an in-
teresting comparison between image chunking and a variety of image analysis techniques
which seek to articulate a pointwise description of an image, i.e., to generate a new de-
scription whose elements are more meaningful. Region-based image articulation methods
include those loosely categorized as region segmentation and blob detection. The former are
generally non-descriptive, while the latter can be descriptive. Both generally assume that
scene entities yield regions that are homogeneous in some way. Such alternative methods
are intended to yield bases for solving a number of spatial analysis problems.

5 Learning from Preliminary Algorithms

In this section we investigate variations in algorithm structure to see its impact on perfor-
mance. A reasonable first step is to examine four algorithms that have each combination of
the characteristics of Module Sizes: every possible size / powers of two and Mod-
ule Positions: every possible position / no intra-level overlap. We analyze and
compare the performance of each scheme through computer simulations. This allows us to
gain a critical understanding of how each network behaves for typical input, as well as to
test and verify new ideas. This exploration leads to the rejection of two of the algorithms
and provides the basis for the design of new, more efficient algorithms.

Most of the following algorithms have been implemented on the Connection Machine:
the others were deemed unworkable. Each implemented algorithm was made part of com-
mon system, since the implementations have many structures and procedures in common.
For example:

Input: The system receives a square image containing contour elements and “pre-colored”

41

element(s) which could represent X. The image size is 2V x 2V for Algorithms #1 and 4,
and N x N for Algorithms #2 and 3, where N is a positive integer limited only by our
finite hardware. Specifically, we input a square array of two fields: contour and colored.
Each element can have a value of 0 or 1 for its contour field, and for its colored field; 0
indicates absence and 1 indicates presence of that property.

Output: The system yields a colored network of modules, with all appropriate pixel-
scale modules activated. Currently, we require that the coloring not cease until every
legal activation has occurred, including the finer scales. The alternative would be to have
coloring cease as soon as every pixel in the region containing X is covered by at least one
activated module of any size, so that the result may be used sooner by other processes.

Each algorithm can employ many general-purpose operations — such as one to prop-
agate values up or down the network according to a specified function. For example, one
may pass the “minimum time step when colored” value or “maximum colored module size”
value for each module down to their constituent pixel-scale modules. Additionally, the user
may view any number of scale levels of the network, at any step in time. Typically, one
would view only the pixel-scale level, after the final time step.

The program answers the question regarding whether or not X is inside any closed
contour simply by checking whether any border pixel-scale modules have been activated.
If so, then “X is outside,” and otherwise “X is inside.”

Each of the preliminary algorithms uses a network that is a type of tree. A module’s
position is entirely specified by its scale level and the horizontal position of the “center of
mass” of its constituent pixels in the image. Suppose we are given a module m, which has
size M. If M is odd, then m’s horizontal position is simply the position of the pixel-scale
module which is in the center of those covered by M. If M is even, then it’s horizontal
position is that of the SouthEast pixel-scale module, among the four in the center of the
set covered by m. In other words, m covers the NorthWestern-most pixel-scale area which
is still roughly centered below m. (This is the case also for the optimal algorithm, although
it is not a type of tree, but a 3D mesh. See the explanation in Section 6.2.) We define a
few additional terms to facilitate discussion of the implemented algorithms. Let m; and

m, be modules.

NEWS means “north, east, west and/or south,” each being a horizontal direc-

tion within a given scale level.

ms is a sibling of m, iff m; overlaps or borders m;, and is a NEWS-neighbor.

42

my is a child of m;, and m, is a parent of mg, iff m; covers m, and is in
the scale level just above (just larger than) my,’s scale level. (Every module we
discuss in this section — except “root” or “leaf” modules — will have 1 or 4
parent(s], depending on the network, and 4 children.)

my is an ancestor of m, iff it is a parent of a parent ... of m,.

m is a descendant of m, iff it is a child of a child ... of m.

The general algorithm has two phases. The first phase is a preprocessing step, in which
an image is presented to the pixel-scale modules. Each pixel-scale module inputs the two
data fields given above. The values of contour are propagated up the network, updating
all the higher-scale modules. The contour value that a module at scale level M stores for
itself is the OR of the contour values it received from its M x M children. Again, 1 means
it covers a contour, 0 means it covers only free space. This initialization is considered to
occur during time step 0. During the second phase, at successive steps in time, each module
uses similar criteria for assigning its colored value, while also observing Corollary 1. The
entire process ends as soon as activation ceases.

A justification for the pre-activation phase follows from the widely-held notion that
biological systems extract image contours via parallel channels at multiple scales. We
assume that information about contours and the X are available to each scale level at the
start. Actually, only in Algorithm #3 can activation proceed faster than one scale level
at a time, whereas accurate contour information cannot. Thus, for all other algorithms,
including the optimal versions in Sections 6 and 7, contour and color information may
be propagated up from the pixel-scale modules continuously during the activation phase.
We do the preprocessing with contour data because it is faster than propagating up the
information each iteration, especially since it does not change with time (although see
Section 9 about coloring inside moving contours).

5.1 Various Networks

In this section, we study and implement several varieties of a coloring algorithm based
on image chunking. The variation between them consists entirely in the geometry of the
networks. The algorithms have different sets of modules with different sets of connections.
All connections are bi-directional, although messages are at certain times sent in only one
direction. As in Section 3.1, contour and start information is propagated up during the
preprocessing stage. From each module, the contour and colored token values are passed

43

up every vertical connection available to that module. This iterative stage ends when the
highest-scale modules have been updated. Then, color information is propagated about
iteratively. As described in Section 3.1, colored values pass up, out and then down during
each cycle, taking every available path in that direction. These paths and the module
configurations are given below.

Modules of Powers of Two Sizes, No Overlapping Positions (Quadtree Network)
[Algorithm #1]

This is a simple quadtree network [J. Ullman 84]. Module sizes are powers of two.
Modules within any given scale level do not overlap. Each module communicates with its
4 NEWS neighbors and its 4 children, as well as to its single parent. Connectivity is degree
9. (See Figure 6.)

Modules of All Sizes, No Overlapping Positions — Rejected

The modules in this network are of all possible scales (1,2,3,...,N pixels on a side), but
no modules within a given scale level overlap each other. This was investigated but not
implemented: the network was complicated (there were problems with principled inter-
scale module-alignment, messy boundary structures, etc.) and offered few computational
advantages (such as speed or hardware efficiency).

Modules of Powers of Two Sizes, All Positions — Rejected

This is a quadtree-like network, whose modules have sizes that are powers of two and
have every possible position. Unfortunately, such a network has connectivity of O(N?), as
shown in Figure 11. For fully-overlapping modules to be a worthwhile feature, each must
be able to communicate directly with modules above and below it — hence, the high degree
of connectivity.

Actually, a justifiable exception to this claim was found later during this work. By
retiming, one can adapt this as an optimal algorithm which, in fact, uses a compact network.

This is presented in Section 7.

Modules of All Sizes, All Positions (Complete Network) [Algorithm #2]

The modules in this network are of all possible sizes (1,2,3,...,N pixels on a side) and
positions. Each module of a given size M communicates with its M siblings in each
of the NEWS directions, as well as to its 4 children and 4 parents. Each module thereby
communicates with any overlapping or bordering module of its level in < 2 time steps. (We

44

e - - - - — - -

Figure 11: By inspection, any M, x M, module covers exactly (M; — M; + 1)? distinct
smaller M, x M; modules where all amounts of overlap are allowed. So if M, = M, + 1,
then M, covers 4 modules of size M,.

Notice that a network with modules having all sizes that are powers of two and all
positions would face a challenge: those modules at the highest level, which say cover
1024 x 1024 pixels, would have connections to (1024 — 512 + 1)? = 263,169 [i.e., O(.V?)]
distinct 512 x 512 modules — too many connections!

45

would need O(N?) connections to do so in one time step, which is too many.) Connectivity
is degree O(N). (See Figure 12.)

Complete Network with Multiple Vertical Connections [Algorithm #3]

The final preliminary algorithm is based on the principle that fully-dynamic local scaling
is a critical property for fast chunk-based coloring. This network includes all the modules
and connections found in Algorithm #2. It has some additional connections, however.
Each module also can communicate with every module above and below it that is centered
above the same pixel above which it is centered. More precisely, as shown in Figure 13, a
module at scale level M connects directly to the one module at every other level (i.e., levels
oy M —6,M —4, M -2, M+2 M+4,M +6,...) that shares its horizontal position; it also
connects directly to the four most tightly-overlapping modules at every other level (i.e.,
levels M =5, M —3,M —1,M +1,M +3,M +5,... — such a quadruple of neighboring
modules in scale level M’, say, would just fit inside a M’ +1 x M'+1 square) whose centers
vertically project onto the M-scale level and symmetrically (and most closely) surround
the center of the said M-scale module.] Refer to Figure 13. Connectivity is degree O(N).

5.2 Analysis of the Implementations

Evaluating the structures and performances of the above algorithms gives us clues for
building better ones. Algorithms #1 and #2 each have strengths that are elicited by
certain kinds of input. Algorithm #3 incorporates most of the advantages of the first
two. It in turn serves to highlight the fundamentals needed to design the optimal coloring
algorithm, presented in the next section.

Algorithm #1 has two primary advantages. First, it is comprised of modules with sizes
that are powers of two and which do not overlap within scale levels, and therefore uses only
O(N?) modules. In fact, it uses less than twice as many modules as there are pixels. Second,
the coloring process is able to pass quickly from one scale level to another one of a vastly
different size. This results in considerable speed for regions composed of parts of greatly
different diameters. Output for an entire typical run is included in Figure 14Ai.° The
input for the network is an image which has an X inside a square-shaped closed contour,

and a second X outside of the square in the upper lefthand corner. Algorithm #2 is

10Ty algorithms with powers of two-sized modules only, module sizes are given in terms of the power. So
pixel-scale modules are represented as 0’s, 2-scale modules as 1’s, 4 scale modules as 2’s, ..., and N-scale
modules as log, N.

46

pixels

Figure 12: Network for Algorithm #2. Each M-scale module sends messages to its \/
siblings in each of the NEWS directions, as well as to its 4 children (not shown) and 1
parents (not shown). Each covers an M x M area of pixels.

47

EJ e of scale—/eve|

(f"l!'e&c h0+ one O‘F Sy 4

orMeYS
A"J W.+ l+, iﬂﬁr.’,y) ’

{-f-‘ju.d- Jevel i3
& +‘1q+ u‘lag modules

“l | ace of the ens
H \\‘ N
¥ l \“ i f Hoe (ecel — ()ZJ or ¥
2 g . 4y b Mod aies here, (2 -
w —5 1) h" ca e‘)
= & \ s
N | \:\
g $ ¥ |
- : o «— Leve/ M1
y 1% ;
s % \
3 ¢ 3 /
S g id il
— 34° _/ e Level M.
¥ o v)
£353 3 a |
y 7<% 4 | |
p— b't Ty i o !
\a %'ﬁ b U e Levgf N'-_l
3 r:: ;
N é ’
v9
EEAN i
i a_ ¥ .

&—"'LC\.Q, 2
5“\ 0 ‘s a W“OJu’e,
& P-«e(— S-cql.e LG\.Q‘_ i

cr Y Moda'es here,

(Lf " ths taﬂ.)

Figure 13: Connections for an arbitrary module in the network for Algorithm #3. Only the
vertical ones are drawn — the horizontal connections are exactly like those for Algorithm
#2, as shown in Figure 12. Each module is depicted in terms of the pixel area it covers.

hindered by the fact that activation ascends and descends scale levels relatively slowly.
Sample results from it are given in Figure 14Aii.!' Its sluggishness relative to Algorithm
#1 can be seen by comparing Figures 14Ai and 5. The part of the image that illustrates
our point is the region outside the square, particularly where the region changes widths at
the square’s northeast and southwest corners. Comparing the coloring that occurs around
these points for Algorithms #1 and #2, one sees that the coloring of new areas by the latter
halts for a while (until activation has passed to a sufficiently low scale level), while coloring
by the former proceeds steadily, without any perceptible interruption (because activation
descends to a low scale level quickly).

On the other hand, we can see Algorithm #2’s advantage inside the square: with
modules at every position, coloring does not need to descend in scale much to reach the
last remaining pixels, at least for reasonably smooth contours. Algorithm #1’s coloring is
required to descend all the way to the pixel level if none of its higher scale modules happen
to be perfectly positioned such that they border the contour. This occurs in F igure 14A1.
In summary, it would be nice if we could construct a network like that for Algorithm #2,
yet which allows the coloring to adjust quickly in scale according to the situation.

Fortunately, we can incorporate single-step vertical activation into Algorithm #2, yield-
ing Algorithm #3, while not increasing network connectivity to greater than O(N). The
two algorithms use identical sets of modules, which number O(N?®). The improvement in
performance of Algorithm #3 over #2 can be seen by comparing Figure 14Aiii versus ii.
Coloring by #3 is much faster than by #2 inside the square, because the coloring can
quickly ascend scales. Coloring the region outside the square by #3 is slightly faster. but
still suffers a long delay near the corners where the activation must descend scales. This is
an important limitation of Algorithm #3: after activation passes downward from a large
to a small scale level, it must propagate horizontally from the center of the area covered
and already colored by the large module (often taking several time steps) before reaching
modules not yet colored. Nevertheless, Algorithm #3 will generally be faster than #?
because its network is actually #2’s network plus additional connections.

Algorithm #3 is generally stronger than #1 as well. The coloring of the region outside
the square is one case where Algorithm #1 happens to be just as fast as #3. However.
#1 is generally slower and has other weaknesses which lead us to choose Algorithm #3
as the best-performing square-chunk coloring algorithm that we have presented so far.
We can see that Algorithm #3 is faster than #1 for many simple regions by examining

"In algorithms with modules of all sizes, module sizes are specified as SIZE — 1. So pixel-scale modules
are represented as 0’s, 2-scale modules as 1’s, 3-scale modules as 2’s, ..., and N-scale modules as v - |

49

three pairs of sample runs. Compare the number of steps required by Algorithms #1 and
#3 for coloring the insides of the identical squares in Figures 14A: and iz, and identical
circles in Figures 14Bi and ii. Indeed, one might expect #3 to be faster than #1, since
it contains all of #1’s modules and essentially most of its connections. Another problem
with Algorithm #1 is that it is more sensitive to figure scale than is #3. This we see
exemplified in Figures 14C¢ and i1, and Figures 14B: and ii. Algorithm #3’s coloring time
for circles of diameter 11 and 44 pixels is 3 and 4 steps, respectively, while Algorithm #1’s
time for the same input increases from 7 to 12 steps, respectively. Finally, Algorithm #1
can be very sensitive to the position of the figure in the image, whereas #3 is inherently
invariant to this. Figures 14A¢and Di demonstrate how coloring time can increase markedly
with changing contour position for Algorithm #1, while Figures 14Aii and Dii show #3’s

position invariance.

50

., where the
Figure 14A:

,9,A,B,C,.

number or letter indicates the step during which the pixel was colored. Boxed numbers

Figure 14: This is the first of several pages of output from the preliminary algorithms. It
BOUNDED ACTIVATION USING QUADTREE NETWORK

consists of coloring results from Algorithms #1, #2 and #3. Figure 14Ai gives a complete
sample run, which includes also the original image and a view of the network itself following

coloring completion. The numbering system goes from 0, 1, 2, ..

indicate starting points for coloring.

Algorithm #1

O NNHFUNOMNONO NP ONONO
0.1234567891111111111222222222233

00000000000000000000000000000000 ..
[olelolelolelolololelalole R
OO0 O0OOCOOOOHHHHHHr{Hr—HH v A A —H1—HO O -
OO0O0OO0OO0OO0O0OO0O0OHHHHH - v A v v A OO -+

[elolelelolololololelolalalelololololololololalololelolel) lolo XE

[elolelelolalelelololyleolelolalololelalololeloalelolal] lolo XY

000000

OO0 0QCOOCOHrHrHrirrrirr A A A~ O O -
COO0O0Q0OOOOHHHHHH HHHH H = HA = =HOO -

####8% Activation completed.
Wait for final results below...

TIME-STEP = 18 -- status of modules (bit 0 = contour, bit 1 = colored)

O NNHUNOMN OO HNNPNOMNDONO
O NN PO 00 O v 4 v v = H = H A NN AN NN NN MM

HOO0O060E000600000000000E0000O0

ANANNNNNNNANNNHHANNNANNANNNNANNNNANN AN
ANNNNNNNNNNNH=HANNANNANNANNANNNNNN AN
ANANNNANNNANNNHHANNNANNNNNNNN NN - NN
NANNNNNANNNNNH AN
ANANNNNNNNNNNHANANNNNNANNONN
ANANNNNNNNNNNHHANNNNNNANNNNNANNNN AN
ANNNNNNNNANNNHHHANNNANNNNNNANNANNNN NN
ANANNNNANNANNNANHHAINANNNNNNNNNNNNN =N
NANNNNNNNANNN A ANNANNNANNNNANANNANN NN
ANANNNNNANNNNHAHANNANNNNNANNANNNNNN = -ANN
ANNNANNNNANNNNH HANNNNNANNNNANNNNNN SN
ANANNANNNNANANNN = A ANNANNNANNNNANNANN NN - ONN
NANNANNNNNNNNHANNNNNNNNNNNNN NN SO
ANANANNNNANNNN S ANNNANNANNNNNNNNNN H SN
NNNNNNNNANNN AN NN NNNANNNNANN HHONN
ANANNANNNANNANNN A A A A A e v e e S e e e = =IO

ANANNANNNNNNNN A e A A A v A et vt e e e - O -

NANNNNNNNANNNNNNNNANNNNNNANANNANN NN
ANANANNNNANNNNNNNNNANNANNNNANNNNANNNNNN
NANNANNANNNANNANNNNNNINANN NI IO
NANNNNNNNANNNNNNNNANNNANNANNNNNNANNANANIN
NANNNNANNANNNNNNNANNNNNANNANNNNNNANNNNN
ANANNANNNNNNNANNNNNANNANNNANNNNANNNNNNANN
ANANNANNNNNNNANNNANNNNNNNANNNNANNNNNNANN

ANANNNNANNANNANNANNNANNANNNANNNNANNNNINNNAN -

ANANNANNANN
AANNANNANANNANN AN I NN

o]
()
~
-
o O = ANMFNOMNON O —HANNHNOMNDONO
QO ONMHUNW N DD v vy v v v = v = H AN AN N NN ANNM
S NN 00NN L<MMO O QA2 [£.OOTHTIOON
IF I IH I Y 00000 < <MAOOAA L OOT Lo O
Fe e il £ 2 2 2 2.2 3 2 2. 2 T 2 2 5 % JONCH
BYYY I U < k.2 2. 2. 2.2 2 2.2 .2 32 2 2 3% 2 2 2 1 NN
A i b MNOBEROOOPFHFEHINMNNONNNNNE 3 [2](]
Dul LYY l S MOBBHOQOOLIIFTONOMNONNNNNE 3 (2]x]
[£305 L5 A5 S L > W”““%%MI M nb%”ﬂ‘iinn““ww
[S o s s N NS o
mﬁ ME) OO0 HONNMNOWDNDD Y 3%%33##CC
iR ST R e
3 3 6 I NN LY
FENOMOMONM GO0 R # DO FI PN H HME
MO MMM MO O 00 3 <O OO LONLOLWD BB
T33333333668*#M885555555¢~1 S e s]
MO NN MMMIOLO00 #F <O ONWLWLIYIIIHITOD
) NN OO 00 33 #: <L 00 W LOLD NN OO P BHON
22222222557*#399%88877776666##88
BEANNANANNANNNLINON #3000 000000 MMM N0 W 0O # #0000
HANNNANANNNNNWNMS R OMNM NN NN 000 3 36NN
HONNANANNANNANDUOMRERHEEERE SRS
ANNNNNNNNGTORBERBUERRAERBREREREIER RS ROO
BN o FLO) LD DD DN O O OO O OO O MM MM N (OO
ANANNANNNNNO NN P H P PO DO

A A A A A A A O OO OO0 OO0 OHHHH H—H == ANNNANAN NN

52

Projected maximum LEVEL with colored module

3333333333333333333333333333333
3333333333333333333333333333333
3333333333333333333333333333333
3333333333333333333333333333333
333333333333333333333333333333
33333333333333333333333333333

333333333

O - ANMNHUONONO NN HUNONONO v+
01234567891111111111222222222233

33333333111111111111111111111111
NN N O vt v v v v v v v v vl v v v v v v v v v v v v v

X)
33
33
11
11
00
##
#
#
##
[.1.]
#t
#e
##
#
#
i
e
#
#*
"
#
L]
(3.
1]
11
11

N1 OB BOAMMNMNMMNTMMNNNNI i
MNHAOHR B Ot v i S S
Nr-=H—HOHRBO - rvririvivriv vttt v 3 S v
[yizlalel 1 Jeoleleleleleleleolelelolelalelat T 2ol
[plalalel £ 2 2 1 2 2. 3.2 L. 2. 2.2 2.2 2 2 2 2 2ol
[wialalel 2 2. 2. 2. 2. 2. 2. 2. 2.2 3.3 2. 2. 2. 2. 2. 2 20

3333333

The X is inside a closed contour.

53

-]
&
5

Projected minimum

0
0
0
0
0
0
0
0
0

[elelelololalalololeloTe)
HBOOOOOOOOOO
H$HBOOOOOOOODO
e e b b A A
e b e e e Y e e e e o e)

#
*
~

HER
£ 1 1]
~~~
~~~N
NN N ND NN o o 0 b b b b b b b

BOVIOINH R AP R R R e e e s [T
b NOTONEE 3N N NN NINNNNNN)
IO N NNNINNNINNN

NN T 2 0 b b b b b b 2
WNNNNN WGP TOTOIIE S 0 2 0 1 b o b e

e ded
*
(02002
(0212

*
2]

NI NONH O
W DB TR TN NININININNININNIN

NN = 2 =2 DO G0 GO i s TOTAN 3 3N NIDINININININI NN

DWW P PR PRNNINRREL AR R R R)

DR CIININ DN NN Tt 2 o d o b b b b

N
ww
w

6
5
5
5
5
5
S
5

Oupp
N
N
w
N

2
4443322

HARBBARBRRBEUY
HRBUBRURBNRARB ALY

#
#
#
#
#
#
#
#
#

N e N e e s e sl ol leleoleololaleloloolalolololeloYe)
NNHRRRRRRRARRRERREROO00O00000000000000

NN R R R R R R R R OO00000

U NNRHRRRRRRRREREREO000000000000000000
CORRUARBURHULRRE

O NNRERRRERRERRREEOO00O00000000O0O0O00000

00
00
00
00
00
00
00
00
00
11
11
11
11
11
11
11
11
11
11
11
22
22
roj

o}
E

um LEVE
AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
A AAAAAAAAAAAAAAAAAAAAAAAAAAAAA:

AAAAAAAAAAAAAAAAAAAAAAAAAAAA:

AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAA###################11:
AAAAAAAAAA #I###############li:
EEEEEEEEEE##11:
'----LEEEEEEEE##iiz
AAAAAAAAAAA##';L:"EEEEEEEEE##liz

AAAAAAAAAAA##
AAAAAAAAAAARY

l

AAAAAAAAAAABREEEEEEEEEEEEEEE##
AAAAAAAAAAA#SEEEEEEEEEEEEEEE#
AAAAAAAAAAA##EEEEE,"LELLLEE#
AAAAAAAAAAARREEEE EEE

AAAAAAAAAAA##EEEEEEEEEEFEEEES
AAAAAAAAAAA#REEEEEEEEEEEEEEER
AAAAAAAAAAA#REEEEEEEEEEEREEE##
AAAAAAAAAAA#NEEEEEEEEEEEREEE##
AAAAAAAAAAA#REEEEEEEEEEEREEE##
AAAAAAAAAAA##EEEEEEEEEEEEEEE##
AAAAAAAAAAA##EEEEEFEEEEEEEEE##
AAAARARARARSESRERRERRRNENLA LY

1

1

AAAAAAAAAAARRRRRRRBURRRRANNAN
AAAAAAAAAAA11111111111111111)
AAAAAAAAAAA1I11111111111111111

MNMMNMNMHHHHHHHHHHO@ﬂ&&;bb;a

NN
OONOHNP W OVONROULBRWNRO

II:
9AABBCCDDEEFFGGHHIII :
9AABBCCDDEEFFGGHHIIJ:

UOMNNMMNNNNNHHHHHHHHHHO@QQM#@MHO

= OWONONPRWNHOWORNATIBWNFO

colored

(]
(o]

31

L with colored module

Figure 14A 4

Algorithm #2

Projected minimum TIME-
0000000000000
00000000000
00000000

TEP when colored Figure 14 A
Algorithm #3

T
1
1
1
1
1
1
1
1
1
1
1

P Ll el el el =T = P
A A A e
AR AL b b b b e [11
A A A A e S e e

11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111

P b e e b b b b

[elelelelololalelele]
[elelelelololololole)

2 :
HERRURRRUBHBRARBHRBRTT

O#%#333333322202002##88 -
0##3333333252595254488 :

22##99:

o
®
®
e
*
g
*
*
*
*®
®
*
**
®*
®
ol
*
#
#*
*
~
q

[elele]
HER
3.3]
W
wWww
wWhw
W
Www
Whw
W

N

*
#*
8
w
W
w
w
MMMNMHHH»—H—AH.—A:—-»—H;..Dm;IacmthHO

PWNFROOVONONKRWNRO

22
33222
222
222
222
111
111
111
111
111
111
111
111

w
NRNNNNDNNINN
e e e = = = R N NN
HHHHHHHHMMM

###############t##FF:28
BRARVARBRBRBURRBRAGG : 29
778899AABBCCDDEEFFGGG: 30
2778899AABBCCDDEEFFGGH: 31

Projected maximum LEVEL with colored module
AAARAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AR@AAAAAAAAAAAAAAAAAAAAAAAAAAAAA:

NNRRRERRR R R E R OO0O0000O00000000000
NP R R R R R R RO

NNRRPRRPRRERRERRPEREOQ0000000000

NN R R R e B R 2 OO0 0000

AANAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
AARAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:

0

1

2

3

4

5

6

7

g
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA: 1O
AAAAAAAAAAARRRRRRR R B UURRRNEN11:11
AAAAAAAAAAA#################ﬁ#11:12
AAAAAAAAAAARREEEE EEE##11:13
AAAAAAAAAAA##EEE=LE-- EEEEEE##11: 14
AAAAAAAAAAARBEEEEEEE EEEEE##11:15
AAAAAAAAAAAMREEEEEEEEEEEEEEE##11:16
AAAAAAAAAAARREEE EEEE EEEEE##11:17
AAAAAAAAAAARSEEEEEEEEEEEEEEE##11:18
AAAAAAAAAAAMREEEEEEEEEEEEEEE##11:19
AAAAAAAAAAAMREEEEEEEEEEEEEEE##11:20
AAAAAAAAAAA##EEEE"FT“ EEEEEE##11:21
AAAAAAAAAAARMEEEEEEEEEEEEEEE##11 : 22
AAAAAAAAAAARSEEEEEEEEEEE E##11:23
AAAAAAAAAAABBEEEEEEEEEE FE##11:24
AAAAAAAAAAAR#EEEEEEEEEEEEEEE##11:25
AAAAAAAAAAA## EEEEEE EEEEEE #%11:26
AAAAAAAAAAARYEEEEEEEEEEEEEEE##11: 27
AAAAAAAAAAA##################311:28
AAAAAAAAAAARBRBRRRRRRUB AR BRAAR11 .29
AAAAAAAAAAALI11111111111111111111:30
AAAAAAAAAAATI1111111111111111111:31

55

Figure 14B:

e R R AR AR AR R AR R RRRBRE R — ——— — e _____.

Projected minimum TIME-STEP when colored

Algorithm #1

O ANMNHNWOMN O NO = ANMFHNDWOMDONHO ~ANM
0123456789111111111122222222223333

ONONOHANM
OO WO

7A####------------_--
TTARE B - ———— e
27777A###$-----———_-___-_

|
1
|
|
|
|
|
1
|
[
|
1
[}
1
|
®
®»
*
®
[o2]

4
#RBB—mm e e
Y
ORBRY~ === ——— = ——————

TTTARBBR -~ —m o e e e

TTTARBRE = e e e

MM O

688888####----------_----
68888BARAR - ~-—-—-—ooooom:
68888####---------___----
668888####----------_-___-

11
11
11
(|
(I}
|1
1
1
(I}
[
(I}
(|
(I}
UL
*3
%%
*3%
*
mm
[+ 070 o]
[s o] o]
[s o1+ o]
2 0]+ o]
[{elle}

TTTTARRRE == m
STTTTARBRR—————— === :
STTTTARRIR - ———— === —— .
L ——

|
|
|
|
|
1
|
1
|
|
]
|
|
|
|
|
|
®*
®
*
®*
[o2]
[22]

CARRR BN - —— - —m e

6
699
699
699
699
699
577
577

7
57
5

626#####------—----—-----—-
6
6
6
6
6
6
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6

OQARRERE = — == —— - — e mm e |
888888AA#$###------_---___-_-_:34

8666666665555555566666666888
00 €0 €0 (OO OO O O LOLO LN LD LOLN LN (O O OO O OO O T 00 0000
(a2l TelVelVelToIVolVe Vo] < << OWOWWWO
[t el o ol Vo Vo TolVelTe Ve TolVels I

88BBAAAARRRER - -~ ——— e 137
6888BAACH KRR~ ————— - - - - - : 38
66666668888 AARMRE RS —— =~~~ ——— —————————— 1 39
7788888888AAAACHRRRER - == -~ ———————————————: 40

888899 RURMMM —— -~~~ —— === — = o]
- REREREO99999777 7T 7788388888 AAAARRRERR— -~ —— ==~ o141

OOBBA#MS# MM - ———— -~
78888 AR RRRE ———— — == — e oo
78888 BAR R ER——— -~ =~

9
<

666666
666666
666666
666666
666666
666666
666666

N

VYUY
L~
< vﬁuﬁuﬁvﬁvﬂ)<
FHF NN MMM
IPf'Y J3223333
LI OONNNNM MY
Qvﬁuﬂn‘li””%%/
uuﬁ)Y N
NN <
NN NN M) P LD DWIDWION
[l vy v_kv—._.v_.c_.:-._v—huﬁ OO WWOWOPWODN
LD DO LOLN OO OO DWW
OLOLO LD DO LOLN OO OO DD WO ODN
LDILDLOLO LD LD OO OO O OO
O LOLODLOLOLD OO OO WD WO WO DN

IIIIIIII
2444441

7
7
7
7
5
5
5
5
5
5
5
5
4444447

6
6
6
6
6
6
6
6

lllllll//

4A4444444444444A41

-
IO
!
7
2444

OO DO

5
5
5
5
5
5
5
5

4444444
44444444444444414

.V,

444444A444444441
4444444444444 44
llll/[/l//l/l//

6555555
55555
555655
55555
55555
55555
55555
55555
77777

444433334

OO OO 9
Y11
O IS { |
-/
]

W
ss
_ _
[
[
11
11
1)
1
11
[
[
[
(I}
11
[
[
[}
i
(I}
[
11
[
[}
(I}
(I}
(I}
[
[}
t
11
11
[
1
11
[
1
(I}
"1
11
[|
11
[
11
11
11
[
[
1
1
[
[
1
11!
(I}
[
1
11
[
[
It
11
11
11
[
11

==== === R RS O000 AAAAB BB BB BRI — — — — —— - o=

——— - RRRE R AHERT 7778888999999 OHRR MMM MR ——— ===~ == e

———— R # R BRRBBOO7 777 777788888888 BCARMRRRE — —— == = e 142
—mm e R R RRRRAIOTTTTTT T 78888EEEEU MMM IR R~~~ —— = — e o= 143
—m e R#RRRURRAAAAAAAABBBBBBHR# MR MR~~~ - oo 14]
e R AR AR R AR R AR B R RERRERRRRRR — — —— o oo eeee o145
e R R RN R AR AR RO — —— — e 14§
Bt 1 2 3 3 Ty T ¥ ¢
e R AR R R R RN — - e ____!48

——=HRRANRAD

56

Projected maximum LEVEL with colored module

--------- RURBARERRBRBRRARRRRRBR BB RGBS — - -~~~ 1 0
-------- ########00000000000000########-—-----—----—-—-—-——-—-——-;1
------ H#ERARARR11111111111 11111118 R8RSBRB—-————~——— e . D
----- #ERARR#001111111111111111 11008888 #ER—---———— e : 3
——=—RRENRVN112222222222222222222222 2 28 ¥ MM —— - — - —m e e e, 4
—==#RRBR#01122222222222222222222222204 88 # 8- ——-— =~ e 5
--HRARAN11112222222222222222222222221 188888 -~ = - e e 16
--#8###01111222222222222222222222222 1 1 0% ## R ——~—— - . 7
-#####1133333333333333333333333333333333¢ M- —————~——-cco_:8
#####011333333333333333333333333333333330# M #M - —————~—— e 9
####11113333333333333333333333333333333311####————————cmmemeee 10
####1111333333333333333333333333333333331 18488 -~ -————cmmmmee ;. 11
###0222233333333333333333333333333333333110#### ———————c——cmec 12
###02222333333333333333333333333333333331 10### - ———~— ;. 13
##112222333333333333333333333333333333331111#### ----------------- 14
##112222333333333333333333333333333333331 11 1#8##—— -~ : 15
#01122223333333344444444444444443333333322220# 888 - ———— -~ —c e 16
#01122223333333344444444444444443333333322220% 88 - - - —cc e ; 17
#0112222333333334 444444 3333333322220%# ¥R - —-———————————- 118
#01122223333333344 4444444443333333322220# 88 ~-~-——--——————= :19
#01122223333333344444444444444443333333322220# 888 - - - — - 120
#011222233333333444444444444444433333333222208 888 ~————c - 121
#011222233333333444444444444444433333333222208### - — - mc e e 122
#01122223333333344444444444444443333333322220# 88 ~ -~ m e 123
#011222233333333444444444444444433333333222208 888 - -~ — - c e ee 124
#011222233333333 44444444444443333333322220#8#8--—-—-—=-—-—=—-: 25
#01122223333333344444444444444443333333322220# 8 #8 - -~ e e e 126
#011222233333333444444444444444433333333222208 888 -~ — e cmccmeea e 127
#011222233333333444444444444444433333333222208# 8 # 8 ——— -~ -~ cme e 128
#011222233333333444444444444444433333333222208#8#-—-————mmmm e :29
##112222333333334444444444444444333333332222# 8% - - ————cmmem : 30
##11222233333333444444444444 333333332222# - - : 31
###02222333333333333333333333333222222221 108 #8# 8- -—-—--—=—-me -:32
###02222333333333333333333333333222222221 1088 R - -~ — e : 33
####22223333333333333333333333332222222211##### ----------------- : 34
#EN$2222333333333333333333333333222222221 18 -~----------cce-:35
##2##011333333333333333333333333222211110## 888 - - - -~ ————-————ceen : 36
-#4###21133333333333333333333333322221 11 1## %888 - -—- -~ mme e 37
-=-#####03333333333333333333333332222110## M- -~ —————c e
--#2####3333333333333333333333332°222 1 18408 # - — - ——————c e 39
~—=3#R###8011111122222222222222221 11108 %888 -- - e 40
———=RRARNN11111122222222222222221 11 1848 # R~ - ;. 41
----- HURBURK0011222222222222222200R ¥R # 8 R W - - —-— -~ 1 4D
------ HERURUUN1122222222222222 2 2R AR RN AR - ———~————ccemeeeeeee 143
-------- #RAARRXR00000000000000 R R RN RN -~~~ ———— -~ - eeee- 1 44
--------- RRBRRBRARBRRRBRRBBRRR R ER R - - - -~ e 1 45
----------- RRRRRRRBRBARRRRRRURRYR R - — - -~~~ eeeeeeee 1 46
------------- RRRRRRUBRRRBRA AR AR - — - - - - ——m e e e a1 47
---------------- ##############--—----------------——---—---—----—:gg
-- :50
-- :51
-- :52
-- :53
-- :54
-- :55
-- :56
e ettt i D L e ittt T S Y 4
-- :58
el bl b e bl bl e e e -1
-- 160
-- :61
-- :62
-- :63
0000000000111111111122222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

Projected minimum TIME-STEP when colored

Figure 14Bi:

Algorithm #3

O ANMFUNWN 00 NO NN FUOWM O NO =N FUNON
O NN WM O v v A = = H AN NN NN NN NN M M)) N N (D)

RN HURRRBSSSSS SIS PP S PSR RN

*
w%
*2222222222222222222233333
*2222222222222222222222333M“w

33333##
33333##
33333%4%%
333333##R#%4%--:40
333333##2R8N---:41

333NNt~
33333333333333333333###ANRR——--:42

€N () ON v v w4 v=d v={ v v vt v v v et v v v v e v A e = =S SN NN NN N D
[l lela la lal ol o e e L e e L b L e T L e e e D Ta [a [T [a [Ta Ta Tt T[4 5]
NN OO ON v vt v v v vt v v vt vl vl e = v v v v = = e = =S NI NN NN NN
0NN N NN ON v v w4 v=d vt v v vd v v v o = v v v = A = =S H NN NN NN NI NN
MO v v v v v v v v v v v e v A A A A S =SSN NN NN N NN NN
[l I Il I b e e D e e L L L e L e e L L L e e e e e L P la [a [N A (A [N A A IS [a 8]
AN ON v v v v vl v vt vt vl v vl e v v v v A e e = S =S N NN NN NN NN NN
[Ll [Ia e L R D e R L L L e e L g L D e L e L e e L L la [a' et [a Tal [a [a e Ta Ta Te]
)N OO CN OV v v v w4 v vt v vt vt v e g v e e v v e e e S S NN NI NI NN Y
) O OO CNON v v vt vt vt w4 vt vd vt e v e v et e v v e e e e = S NN N NN NI NN NN Y
)OOV v v v v v v v v v v e v v e A e S EH AN NN NN NN NN
332222111.1111.11.11@1111.1.1.11111122222222222
[l la I a Ia B b e e e e e L e L L e e e D e L e e e e P Lo T e [a (o (et e [a T Ta e T (o]
[e (e Tat Ta Lo R D e R L e L L e D e D e e L e L e e L L L Lo b Ta [a ot [[a (e Ta (e [a Ta [o']

|
[}
|
|
|
|
=
®
*
*
*
*
*
®*
o)
m

) ONON NN v v v v v vt vl v v vt v e v v v v v e e = = S NN NI NN AN AN O
CYONONONON v vt v v v v vl v vt vl v v v v v v v e e e = = S NN NN N NN AN
FH AN v v v v v e A e e e S e e e SN NN N NN NN NN M
B ONONOION v v vt v v vt v v v v v v v e e v A e e e A S SN NN NN N NN N NN D
E I T (e b R e e D e L L L L L L L e L R Lo R L e e la [a [a la Ia' [a Ta Ta' Ta [a F -
L Il Ta R L e D L R e L L e e e L L L L e L Lo L Pl e [a A s N A [a s [a [al]
FHEBANN = e e v e e e e e e e SN NN NN NN N S
E X e L D L e L L L e D e e e e e e L L R L Lo e [T (a [a [a (e Ta [Ta £
HPE A A e e e S NN NI
HEFEANANANNNANNNNNANNNANNN AN ANINN NN MMM

=== =RRRRRARBRBRRRBBRBRRBRER R LR DR -~ —————-
—--——-#H#R##R#333333333333333333##ARAANN-——-—-:43

*®
®*
®
®
HE
H*1
®H¥#
"t
|3
| %
[
[]
(|
11
11
[|

bod
b bl
*R
28
13
11
[|
11
(I}

bt 1.3 1.2

®

e
b ed $H®
® B
= $HE
= #3 |
[} ®1
[} [|
] LI I |

*
*#
#*
®
]
]

RERHII
#4433
#2243
13210
et 2 5.2.2]

5678901234

—o=-————RARARRAN44444444444444RRRRR NN - —————- 44

58

Projected maximum LEVEL with colored module

--------- RUBBBBBRBRBRBRARBBBRRBRUBREN — - —————-:
-------- ###8##22DDDD
------ #R AR R AR R HHHHHHHHHHHHHHHHHH# # 8 # 8 4 # 8- — - - - :
----- #unadad LLLLLLLI LLLLLLLLLLL######%#-——-:
--—-## 242 4PPPPPPPPPPPPPPPPPPPPPPPPPPR### ### -~ :
---######RRRRRRRRRRRRRRRRRRRRRRRRRRRR# ### ## - - :
=R T T T T T T ITTITTITTTTTTTTITITIT T TT######~:
~=-####BVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVRE RS-
-####ATVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTR## R
#####RTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTR#### :
####PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVV :
####PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRP###
##LPRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPL##:
LPRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPL##:
##HLPRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLH#:
##}_PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLH#:
#DHLPRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD :
#DHLPRTVVVVVVVVVVVNVVVVVVVVVVVVVVVVVVVVTRPLHD :
#DHLPRIVVVVVVVVVV VVVVVVVVVVVVVVVVVVVTRPLHD :
#DHL PR'VVVVVVVVVV VVVVVVVVVVVVVVVVVVVVTRPLHD:
PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD:
PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD:
PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD:
DRTVVVVVVVVVVVVVVV VVVVVVVVVVVVVVV LHD:
PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD :
VVVVVVVVV VVVVVVV

R] VVVVVVVVVVVVVVVVVVY :
#DHLPRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD :
#DHLPRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRPLHD:
#DHLPRTVVVVVVVVVVVVVVV YV VY YWV U TRELED:

O

*

o

T
l.ll.[ll.

####PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRP###:
####PRTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRP### :
#####RTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTR####:
~##BARTVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTRR###
—=##ARAVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVRR R -
=~ #RURAR T I TT T T IITTTTTTTTTTTTTITTTTT T T THERR NS~
-=--######RRRRRRRRRRRRRRRRRRRRRRRRRRRR# # ## ##- - :
—==-## 244 #PPPPPPPPPPPPPPPPPPPPPPPPPPR R RR# -~ :

00000011111111112222222222333333333344444
45678901234567890123456789012345678901234

wo

39

wwwbwwmwwwmwwm»—-Hn-u-»-n—u—n—u—n-toooﬂmcn.hwm

w
> WNF O WO TR WNIHOWOWONOUIRWNFO

DDDDDDDDD######## ------- 11

35

Figure 14C:
Algorithm #1

OHANMPLD
O NN OMNOO) v i vl vt v v

11223333#--
223333%#--

p

#42210123333#-~

Projected minimum TIME-STEP when colored
#533

s 4.3, 2 Sl bl
--##44556##----
-##4223344##---
-#442233446#---
#422

#53322223333#%#--
#64433335566#--
-#443333557#-~--
-##6333367#8#---
--##333364#-—--
- #HRRR-—————

O-HANMPLD
O NN NOMN O vt vivivd

Figure 14Ci:
Algorithm #3

OHNmID
O AN N OMNORD v vt

ected maximum LEVEL with colored module

--##444448%-—--

-##66666664%---
-#666626666#---

6

6

g
-##66666660%---

--##44444%%----

Proj

Projected minimum TIME-STEP when colored

O-HANMYD
O —HANMPLNWON OO v rdvivivrivd
| T O T T T O O T T Y I | 0
REREEEEEEEEE R
[N I U L I I I B B o)
EEE 3.3 1. 3 RN o
I I HBANNNNORE DL 1)
1 HBANNNNNOHE®E I 1 L 1 - 4O
| HANANNONNNNOR I L] O
BOHHAAAAANNNHE) 1) - S0
HANHAAHAAAAANNNE 1 1 S
HNHAHAHAAAASNNNE | L1 .S
HNHAPOHAANNNR T 1| - S0
HBAHAHAAAHSNNNRE L) S
I A AAANNR L)] e 5M
| B A-HAAAANER® T L)] - SN
I T HRBONNNOER T 1 L] S
Tt TR L1111 -S5O

60

Projected minimum TIME-STEP when colored Figure 14D:

_________________________________ 0
B ettt bbbt % Algorithm #1
_________________________________ 3
_________________________________ 4
_________________________________ 5
_________________________________ 6
_________________________________ 7
_________________________________ 8
_________________________________ 9
_________________________________ 10
_________________________________ 11
_________________________________ 12
---------------------------- 113
##################:14
RuARAARBRRRARADER . 15
44444444444444:16
4444444444441 17
##4444444444444444:18
##44 4444 4:19
##/// V. V.V, -20
##44444444447 ‘21
#ﬁl& ‘AAIA 11111:22
##4444 444444AAA44'23
##4444444433333333:24
##4444 1533333333:25
#$#4444444433332233: 26
##4444444433321233:27
##4444444433210122: 28
##4444444433221122:29
444 : 30
444 :31
Projected maximum LEVEL with colored module
i1
2
:3
14
:5
:6
17
:8
:9
110
111
112
113
-------------- #RERBARRRABRRRBUZNER . 14
-------------- ## ###9############:%2
44 :17
444 118
444 119
44444444 : 20
44444444 :21
44444444 :22
44444444 :23
44444444 : 24
444444444 : 25
14444444 : 26
44444444 : 27
1444 128
14444444 29

61

Projected minimum TIME-STEP when colored Figure 14D

--------------------------------- o
"""""'""“"""“"""':% Algorithm #3
_________________________________ 3
_________________________________ 4
--------------------------------- 5
————————————————————————————————— 6
-------------------------------- 17
_________________________________ 8
--------------------------------- 9
_________________________________ 10
_________________________________ 11
--------------------------------- 2
-------------- RERBRRURBABRBRRBUAR: 14
-------------- RERBARBRBABBBRRURS : 15
-------------- ##3333333322222222:16
-------------- ##3333333322222222: 17
-------------- ##3333333322222222:18
-------------- ##3333333322222222:19
-------------- ##3333333322222222:20
-------------- ##3333333322222222:21
-------------- 333333322222222:22
-------------- ##3333333222222222:23
-------------- #1#2222222211111111:24
-------------- ##2222222211111111:25
-------------- ##2222222211111111:26
-------------- #1#2222222211114111:27
-------------- ##2222222211110111:28
-------------- ##2222222211111111:29
-------------- ##2222222211111111:30
------------- ##2222222211111111:31
Projected maximum LEVEL with cologed module
-------------------------------- 11
S |
-------------------------------- :3
-------------------------------- 4
S
S
-------------------------------- 17
-------------------------------- : 8
-------------------------------- :9
-------------------------------- :10
-------------------------------- :11
-------------------------------- %%
-------------- AREARRRRERRAURARNS - 14
-------------- e A 15
-------------- ##FFFFFFFFFFFFFFFF: 16
-------------- #8FFFFF FFFFFF <17
—————————————— '*F‘..‘.'----""':ls
—————————————— "F'.-.r---.--r- .:19
—————————————— ‘* ---F JISIA D :20
______________ '* R F' FFEFFF 3 :21
______________ #RFFFFF n--n-u--an:zz
______________ ##FFFFFFFFFFFFFFFF : 23
—————————————— *#.‘ -..‘.-.".-‘:24
______________ #RFFFFFFFFFFFFFFE :25
-------------- ##".-I.‘-..-- “':26
-------------- BRFFFFFFFFFFFE ---:27
—————————————— ##ln nFn-----l- nn-:28
______________ ##FFFFFFF FEFFRF 29
—————————————— #RFFFFFFF --------:30
-------------- ##--ln--- 1-¢u1~--:31

62

One important observation we can make from comparing Algorithms #1 and #3 is that
it is useful for a coloring network to have complete sets of overlapping modules within its
scale levels. First, of course, it renders the network invariant to figure position. Second,
it enables us to color a region completely in many cases without descending to fine-scale
modules. Each module can activate all of its valid siblings (those which do not cover
a contour) in one or two steps; groups of sibling modules having relatively large scales
frequently are sufficient to cover all free-space pixels that are near particular segments
of contours. Thus we can often color entire regions, including areas near contours, very
quickly. (We demonstrate this for real edge data in the remaining sections.) Furthermore,
this suggests that we may not need every fine scale level, and likewise could do away
with some coarser scale levels as well. We are assured that the modules in the remaining
scale levels (including the pixel-scale modules, which we leave intact) will completely color
the region with a graceful (slight) degradation in performance. We shall further discuss
reducing the O(N?) cardinality requirement in the next two sections.

Algorithm #3 seems to be a good model. Like the Rectangular Model, it colors simple
closed figures in only a few steps. Shafrir’s version of the Rectangular Model appears to be
slightly faster than #3 for some shapes (although not for bent, elongated figures, such as
snakes); however, both are fundamentally O(N?) in time complexity. In the next section. we
investigate a way to improve the average performance of Algorithm #3in a way that enables
single-step downward propagation to finer scale modules, especially those located near the
periphery of already-colored and yet-to-be-colored modules. Furthermore, there are some
other desirable properties that such area-based multi-scale level chunking schemes possess.
These include various flexibilities, a few of which we utilize for some useful applications in
Sections 8 and 9. Also, as mentioned before, the algorithm constructs a number of planar
representations of the image that can be used by other operations. The components of
these representations are entirely connected via horizontal connections between modules:
these sets (scale levels) in turn are linked via vertical connections. Neither Lim’s algorithm
nor Shafrir’s Rectangular Model generates such a readily-accessible group of descriptions.

6 Optimal Coloring with Parallel Square Modules

We can apply some of the principles that we have investigated before to design the optimal
coloring algorithm for parallel square modules, while also preserving O(N) connectivity.
The optimal coloring network using parallel square chunks is one which is the fastest

63

possible, to within a constant factor, which does not violate Corollary 1. It would be
sufficient for it to have (1) parallel square modules of every possible size and position, and
(2) connections that would allow every unactivated module which does not cover a contour,
and which is proximate to an activated module, to activate itself in one time-step (or some
constant number of steps). To construct such a network (or the complete Rectangular
Model, for that matter) using direct connections would require O(N3) connectivity. 12
Fortunately, this proposed network can be retimed so that all nodes are reduced to degree
O(N) while communication is lagged by a factor of 7.

6.1 Important Natural Constraints

From the preliminary implementations, we gained some important additional constraints
that impinge in our design of an final algorithm. First, activation must ascend and descend
from fine to coarse scale levels quickly. Second, we observed that overlapping modules
are a powerful means of coloring. In fact, as we will see in the next section, it is a valid
substitute for numerous scale levels. Densely-overlapping higher-scale modules can color
inside of relatively smooth contours in just a few iterations. Where they cannot quite reach
to the contour, we would then like a quick descent to smaller-scale modules to finish the
operation. These results actually support the psychophysical objectives we have in mind.
The full-size models (Algorithm #3 and especially the one below) yield performance which
is invariant to figure position, as well as near invariance to orientation due to the module’s
shape. Of particular interest, they exhibit approximate scale invariance for simple shapes.
Being able to conduct the coloring operation at all scales at the same time is a powerful
way to achieve this goal.

Given our earlier theory for coloring, we intend to develop an algorithm which embodies
as well the biological constraints discussed above. The principle of indirection discussed in
the Appendix, and our restrictions and assumptions for our chosen representation, further

serve to constrain our work below.

6.2 Algorithm

The overall process of the optimal coloring algorithm is quite simple. At each step, we
would like to color every square-shaped region of pixel-scale modules that is proximate to a

12For example, the single module that comprises the highest scale level (level N) must communicate
with all Ef;’ll i2 modules on scale levels 1,2,..., N — I, = O(N3) connectivity.

64

colored pixel-scale module. To do this, we first color every module that satisfies Corollary
1 at each of the scale levels. That is, every module at scale level M (M =1,...,N) which is
proximate to a colored pixel-scale module, but does not cover a contour, is colored. Then
we update the pixel-scale modules, by activating every pixel-scale (scale level 1) module
which is covered by a colored higher-scale module. (It is guaranteed that neither will cover
a contour.)

To enable these upward and downward propagation processes, the following network
configuration is used. We have a 3D NEWS grid of N x N x N modules, and axes z, y and
z, whose values increase in the upward, Southern and Eastern directions, respectively. 13
Recall that the earlier algorithms were imbedded in trees, whereas now we employ a 3D
mesh. Along the z dimension are scale levels z = 1, ..., N, where each scale level consists
of N x N modules. Each pixel-scale module is at scale level 1, and has position (1,y,).
Each module at some higher level M, M € [2,..., N], has position (M,y,z), and covers
M x M pixel-scale modules. In addition, each pixel-scale module has exactly one superior
module in each higher scale level, which has z and y coordinates that are identical to its
own r and y coordinates. Conversely, each higher scale module has a single subordinate
pixel-scale module that has z and y coordinates that are identical to its own. The network
configuration is illustrated in Figure 15 below.

The many-to-many mapping between pixel- and higher-scale modules is a key factor
that makes the algorithm optimal. Simply stated, each higher-scale module at level A
covers a square M x M region of pixel-scale modules, and its single subordinate pixel-scale
module is positioned roughly in the center of that region. Precisely stated,

any higher-scale module m at position (M, y, z) covers a set of pixel-scale mod-
ules {(0,5,a)|b € [y—[%] O TR TR S [#J], a € [z— I_%_], ey T, ,z+|_#]]},
m has exactly one subordinate module p, which has position 0,y,z).

So p is positioned such that the M x M region spanned by [%J pixel-scale modules to the
North and to the West of p, and [# | pixel-scale modules to the South and to the East of
p are properly covered by m. We see that a neighbor of m, whose position would be that of
m shifted by 1 in either the y or z direction, would have a subordinate pixel-scale module
and a covered pixel-scale region whose positions correspond to those of m, but shifted hy
1 in the same direction. In addition, when M is an odd number, p is perfectly centered in
the region covered by m. When M is even, there are four pixels in the M x M pixel-scale

13We use the terms “up,” “down,” “North,” “South,” “East,” and “West” only for the sake of conve.

nience; the data structure is completely general.

65

LM e«

Scale

Modwles

P?\dvuk '
waduies

Figure 15: The network configuration for the optimal algorithm. Here the modules are
portrayed as squares on a grid, with their vertical connections given as well. The areas
covered by the higher-scale modules are sketched in dashed lines. Notice that some of the

higher-scale modules only partly cover the pixels.

66

region covered by m that are equally close to the center of the region. Of the four, m’s
subordinate pixel-scale module p shall be the one with the SouthEast position (i.e., with
the larger y and = values). In addition,

any pixel-scale module p at position (0,y,z) is covered by a set of M-scale
modules {(M,b,a)|b € [y— [#J, ...,y,...,y+|_%]],a € [z— [%J,...,z,...,x+
L5

p has exactly one superior module m, which has position (M,y,z).

Finally, we note that some higher-scale modules, having y or z values near 1 or N, do
not cover a set of pixel-scale modules that belong entirely to level 1, but which project
somewhat beyond the periphery. However, every image element is mapped to a module in
level 1, and each of these has superior modules at all higher levels.

Now that the module positions and a few more terms have been defined, it will be easy
to describe the connections between the modules. First, each pixel-scale module will have
one connection to each of its superior modules. Next, every module, including pixel-scale
modules will have one or more horizontal connections to its one or more closest siblings.
To be precise, a module m in scale level M (for all valuesof M =1,.... N) has individual
connections to its L%J North, West, South and East siblings. Every connection is bi-
directional; that is, we need to be able to pass information between two connected modules
in both directions during the same time step. Each pixel-scale module sends message(s) in
the z- and y-direction, or upward, depending upon from which of these directions it received
the last message(s). All other modules send message(s) in the z-direction, y-direction, or
downward, depending upon from which of these directions it received the last message(s).
The network’s local connections are illustrated below in Figure 16. Connectivity degree is
O(N).

It is thereby possible for any given pixel-scale module to send a message to every
proximate higher-scale module, in four steps. Similarly, any given higher-scale module can
send a message to precisely all pixel-scale modules which it covers, in three steps. We shall
examine both of these assertions below. First, we present the three main components of the
basic algorithm, each in a sequence decomposed into time steps. Then we show the results
of applying each process, thereby proving our assertions. Later, we state the algorithm as
a whole, make our optimality claim, and in the proof that follows, show that effecting these
results in a certain cycle makes for a coloring algorithm which is optimal.

We begin with a simple process. Any given pixel-scale module p can pass a message .\
to its 4 neighbors, by doing the following:

67

N
W

5—% 5 W\aJul&S —_—

P'I\(e_{—SCaje, modules ——?
7

cpixels” (base"ﬂ-a (2

‘ .}—DgPresleo:J'Tm) /ﬁ /Q ! ,

VAV AVava

Figure 16: During the Upward Propagation process, each pixel-scale module sends a mes-
sage M to its superior module at scale-level 5. Then this 5-scale module passes M to its
two North and two South siblings, all of whom then pass M to their two West and two
East siblings. The pixel-scale module can thereby send M to each of the 5% = 25 5-scale
modules that cover it, within 3 steps, and via a unique path. This minimizes the number

of connections needed. The Downward Propagation is essentially this in reverse.
68

Pixel-Level Propagation

i. psends M to the closest pixel-scale module in each of the North, South,
West and East directions.

Result of Pixel-Level Propagation: Coming from p, M arrives at each of p’s 4 NEWS
neighbors in the network in 1 time step. That this is so can be seen by inspection.

Next, any pixel-scale module p can pass a message M to precisely the M? modules in
scale level M that cover it, and would do so in the following way:

Upward Propagation

i. psends M to each of its superior modules, one at each scale.

ii. Upon sending up or receiving a message from below, module m passes M
to its [#=2| North siblings and to its (%] South siblings.

iii. After sending or receiving a message to/from the North or South, these
M M-scale siblings (including m) pass M to their [#=1]| West siblings and to
their %] East siblings.

Result of Upward Propagation: Coming from p, M arrives at each of the M? M-scale
modules in the network that cover p within 3 time steps. (Generally, we will send a message
from some pixel-scale module p to every module in all higher-scale levels that cover p.)
To see that this is so, suppose that a message M is sent up from p, where p has
coordinates (0,y,z). Let us examine the results in one arbitrary level, M. At the com-
pletion of step i., module (M,y, z) has received M. After step ii., modules {(M,b.r)/b ¢
ly — [#J, N TR T L%J]} have each received M. (Recall our convention that South
and East are each positive directions.) Then, after step iii., modules {(M, b.a)b <
[y — [#J,...,y,...,y + [¥)),a € [z - (M=t .., z,...,z + %]} all have received .M.
From the description of the network structure given above, we know that these are exactly
the coordinates of the set of M-scale modules which cover a module at position (0.y. r).

namely, p. Hence, every module that covers p receives M.

69

Result of Pixel-Level and then Upward Propagation: Coming from p, M arrives at
each of the (M + 2)2 — 4 M-scale modules in the network that are proximate to p within
3 time steps. (Generally, we will send a message from some pixel-scale module p to every
module in all higher-scale levels which are proximate to p.)

To prove this, we shall examine this conjunctive operation initially after the Pixel-Level
Propagation has occurred but before the Upward Propagation. At this stage, we apply
the Upward Propagation process separately to each of the 5 modules which would possess
message M at the conclusion of the Pixel-Level Propagation process. Since messages are
coalesced in a “non-destructive” way if they ever collide (typically via an INCLUSIVE-
OR), each instance of the Propagation process works independently at the local level. We
can thus look at the union of the results of these 5 instances of Upward Propagation when
considering the effect of Pixel-Level and then Upward Propagation from p. This effect is
illustrated in Figure 17.

The set of all modules that are proximate to p consists of modules that cover, overlap
or border p. First of all, since p is a module of size 1, there exist no modules that overlap
it. (Recall from our definition of “overlap” that “m, overlaps m,” <= “m; overlaps m,;”
p cannot overlap any module because it has unit-size.) Second, Upward Propagation from
p ensures that all modules which cover p receive M, as we have just seen above. What
remains is to show that all of the M-scale modules that border p receive M. If a higher-
scale module borders p, then, again from one of our preliminary definitions, it must cover
point pxn, ps, pw or pg. Fortunately, Upward Propagation from each of these 4 pixel-scale
modules ensures that all of the M-scale modules that cover them, including those which
border p, receive M.

In a reverse manner, any given M-scale module m can pass a message M to precisely
the M? pixel-scale modules which it covers, and would do so in the following way:

Downward Propagation

i. Module m sends M to its || North siblings and to its |#=L] South
siblings.

ii. After sending or receiving a message to/from the North or South, these M
M-scale siblings (including m) pass M to their ¥ | West siblings and to their
[MT‘I-J East siblings.

70

A.
e g .
|
| 5 | :
floor|(M-1)/2] | RS View at
o - M-Scale Level
L
........ ~] Jj M
§ [(R
I (I
: | |
floor[M/2] | I
: | |
I I
I ! North
....... 1 _—— e =
I M : West East
B. : :
........ Fm———mmmm - —— 4
r T South
I } '
| |
| | .
I | View at
I | M-Scale Level
| |
| |
M+2 : I M
|
| |
| |
| |
| |
| |
l i ettt R e — 1- —
L I N A
................................... M+2

Figure 17: This diagram shows why there are (M +2)? — 4 M-scale modules that have
received M after a Pixel-Level and then Upward Propagation. Part A. shows the resnlt of
an Upward Propagation: one pixel-scale module (in bold outline) sends M to all modics
in each scale level M within a distance of [@J to the North or West or within a distunce
of |#] to the South or East. It thereby reaches M? modules, including itself. If 1.~ s
preceded by a Pixel-Level Propagation, illustrated in part B., five pixel-scale modules .y
in bold outline) send M to five over- 71 lapping sets of M2 modules each |

a total of (M + 2)? — 4 M-scale modules receive M.

iii. After sending or receiving a message to/from the East or West, each of
these M? M-scale modules (including m) pass M to its respective subordinate
pixel-scale module p:

Result of Downward Propagation: Coming from m, M arrives at the M? pixel-scale

modules in the network which are covered by m within 3 time steps.

To see that this is so, suppose that a message M is sent down from m, where m has
coordinates (M,y,z). Let us examine the results in level 1. At the completion of step
i., modules {(M,b,z)|b € [y — |¥],....,y,...y + [¥52]]} have each received M. After
step ii., modules {(M,b,a)|b € [y — L%"—J,...,y,...,y + LMT‘I-J],a € [z - [%_],...,a:,...,x +
| 2=1]]} all have received M. (Recall our convention that South and East are each positive
directions.) Then, after step iii., modules {(0,b,a)lb € [y — L%J, U TR VI [@J],a €
[z— ¥],..z,..,z + I_M—;lj]} all have received M. From the description of the network
structure given above, we know that these are exactly the coordinates of the set of pixel-
scale modules which are covered by a module at position (M,y,z), namely, m. Hence,
every pixel-scale module that is covered by m receives M.

Each type of message we shall use is a binary associative type such that any collisions
between incoming messages at a module may be resolved by an INCLUSIVE-OR operation.
Our two basic processes, then, are (1) to send a message from some set of pixel-scale
modules to every module in all higher scale levels which is proximate to at least one
element of that set, and (2) to send a message from some set of higher-scale modules to
every pixel-scale module which is covered by at least one element of that set. The “some
set,” in both cases, typically might be “all those that are colored.” Again, they require 4
and 3 time steps, respectively.

Finally, we can construct the optimal algorithm, which meets the requirements enumer-
ated in the first paragraph of this section. The procedure starts each time an image frame
is presented to the pixel-scale modules. The input contains information about contours and
initially-colored areas. The network then sends messages, and each message M consists of

simply one or more of the following tokens:

Message Tokens

72

Basic Algorithm

e contour

e colored

Each token can have a value of 0 or 1, indicating the absence or presence of that prop-
erty, respectively, for the module in question. Modules assign to their internal value the
INCLUSIVE-OR of the values received most recently for that token, subject to Corollary
1.

The manner of arrival of a message can cue the recipient module as well as can the
message’s content. Each module can utilize information based on whether it has received
a message token recently (since some other event), which type the token is (colored,
contour, etc.), which value the token has (0 or 1), from which direction the message came
(from above, from below, from North or South, and from West or East), and a history of
past messages in terms of these items. If the network is globally (externally) synchronized,
then all that is needed is the value of the token; the synchronization will specify the context
for action. However, if the additional information is available, then a much less expensive
model may be used (see Section 6.4). Hence, there are two correctness issues: the first is
whether the presented sequence of actions results in coloring at an optimal speed; the sccond
issue, introduced here, is whether the available cues can be used as proposed to guarantce
that the presented sequence of actions occurs (as well as fault tolerance — stability) in the
absence of global synchronization. We present the optimal algorithm below with the proper
cues to use if they are accessible. If not, then the steps are simply performed in the given
sequence. In the Connection Machine implementations, we use global synchronization.

Let p denote any pixel-scale module, and m denote any higher-scale module.

The Optimal Algorithm

1. When the p’s receive a new image frame, they each perform an Upward
Propagation with contour to initialize the m’s so as to be consistent with the
new image. In addition, the p's and m’s can optionally reconstruct broken
contours and update all modules accordingly ([generates the in-gap token] see
Section 8) and/or uncolor those previously-colored modules which are no longer
enclosed by a contour due to contour motion ([clears some values of the colored
token] see Section 9).

73

2. Until the p’s receive a new image frame, loop through the following steps:
(a) after receiving a color message from any m during the previous cycle, each
p [unless its in-gap=1] performs a Pixel-Scale Propagation with the colored
token; each p that receives a “colored=1" message updates its internal value
accordingly, unless its internal contour=1; (b) after receiving a color message
from one of its 4 neighbors, each p [unless its in-gap=1] performs an Upward
Propagation with colored; each m that receives a “colored=1" message up-
dates its internal value accordingly, unless its internal contour=1; (c) after
receiving a colored message from an East or West sibling, each m performs
a Downward Propagation with colored; each p that receives a “colored=1"
message from above updates its internal value accordingly (none would have

contour=1 — i.e., none covers a contour).

We see that part 2 captures all of our requirements for an optimal algorithm. At the
start of part 2, the maximum extent of the coloring so far is represented by the pixel-
scale level. This is because either a new image frame has just been received, or else the
Downward Propagation process had occurred at the end of the last iteration of part 2.
The Downward Propagation process updates the pixel-scale modules by coloring all those
which are covered by a colored module; put another way, the result represents the union of
all colored square regions of various scales projected onto level 1. Therefore, at the start of
the first iteration, and for all subsequent iterations, we must color every uncolored module
which is proximate to a colored pixel-scale module, but which does not cover a contour, in
some constant number of time steps. We have shown above that the result of the Pixel-
Level Propagation process followed by the Upward Propagation process — processes 2.(a)
and (b), respectively — is just this. We perform these processes at a cost of one step for
Pixel-Level Propagation, and an additional 3 steps for the Upward Propagation. Again,
Downward Propagation — process 2.(c) — updates the pixel-scale modules for the next
iteration, so that they again entirely capture the extent to which the image has been colored
so far. Figure 18 shows the maximum possible result of a complete coloring iteration at
one scale level, starting with one colored pixel-scale module; it is a maximum result in the
sense that no contours impede the coloring process at that scale. As a result, these three
processes are sufficient to ensure optimality for all succeeding iterations. Since Downward
Propagation takes 3 steps, our algorithm is optimal to within a factor of 7. The derivations

needed to support this optimality claim are unified and further developed in the proofs

74

F.---_--1 e - e - .- -

1
-l

View at
Pixel-Scale Level

e —_———
R I P,

M + 1

-l e er o> o o - L-------

Figure 18: The effect of the M-scale level during a coloring interaction, in the absence
of contours, is that the pixel-scale modules in all M x M areas that cover or border the
initially-colored pixel-scale module (in bold outline) become colored. The result is that a
total of (2M +1)* — 4 = 4M? + 4M — 3 pixel square modules are colored via that level.

below.

Besides having optimal speed for chunk-based networks of its kind, our algorithm has
some additional nice properties. Most importantly, connectivity degree is only O(N). \We
still have NV ordered representations of the image at different scales. Also, as mentioned
before, notice that there is a well-defined chain of contingent operations at a local level -
for each module — which ensures that events are sequenced correctly within the compoun
cycles. Furthermore, the retiming technique can be applied to other related networks to
minimize hardware or maximize speed. Due to the power of having modules of all positions
within scale levels, the hardware of our optimal network can be considerably reduced i
other ways with only a slight degradation in performance. One possibility is to use only
those modules (and the relevant connections) whose scale is a power of two; this vields
the network for Algorithm #5, which requires only O(N?logN) modules. Another network
that could benefit from this retiming method is the one implemented by Shafrir; Shafrir
could use the complete Rectangular Model, while limiting network connectivity to O(.\

75

6.3 Proof of Optimality

We would like to find an algorithm for this model which is the fastest possible (to within
a constant factor). At the same time, we would like to preserve O(N) connectivity and
contain our use of space. The optimal algorithm developed here preserves O(/N) connec-
tivity, but uses O(N3) space. (A compact version of the optimal algorithm requires only
O(N?log N) space, and is presented later. The image by itself occupies O(N?) space.) The
basic principle here is retiming: using direct connections would imply O(N?) connectivity,
but the network can be retimed so as to have O(N) connectivity and communication lagged
by a factor of 7.

OPTIMALITY CLAIM For the class of computational models given above (simple,
local interconnections, parallel square chunks, and observance of Corollary 1), our algorithm
requires the minimum number of time steps, to within a constant factor, to complete any

given coloring task.

Our algorithm colors regions optimally because it can proceed optimally at every loca-
tion during every cycle. That is, the total number of steps it requires to complete a coloring
task is the fewest possible (to within a constant factor) because, in every cycle, the maxi-
mal legitimate set of uncolored modules — those that meet the criteria in Corollary 1 —
become colored. Each cycle requires 7 time steps; this introduces our lag factor of 7. To
prove optimality, we must show that (1) during each cycle, all eligible uncolored modules
become colored, and that (2) coloring the maximal set of legitimate modules from each

location in every cycle yields the shortest possible total coloring time.

LEMMA 1 During each cycle, every uncolored, free-space module that is prozimate to a

colored module becomes colored.

Proof: The main point of this proof is that, given any colored module, then for every
proximate module that is uncolored, there exists a colored pixel-scale module such that the
uncolored module is proximate to it as well, and which will cause the uncolored module
to be colored during that cycle. From our preliminary definitions, we know that if one
module m, is proximate to another ma, then there exists at least one pixel-scale module

76

p1 covered by m; such that m, is proximate to p;. We also know from our more recent
discussion that, at the beginning of each cycle, any higher-scale module that is colored
covers a set of pixel-scale modules all of which are colored as well. That is, p1 is colored
at the beginning of the cycle. Finally, it was shown that the result of Pixel-Level and then
Upward Propagation is that every module (of scale-levels 1,2, ..., N) that is proximate to a
colored pixel-scale module receives the message M. In this context, M is “colored= 1";
at the conclusion of step 2.(b), each recipient of such a message colors itself if it does not
cover a contour. Therefore, during that cycle, every uncolored, free-space module that is

proximate to a colored module becomes colored.

This is equivalent to saying that, in each cycle, every square-shaped region of pixel-scale
modules of every size that covers or borders a colored pixel-scale module, and that does
not cover a contour, becomes colored. Next, we show that doing so for every cycle yields
an algorithm which is optimal.

LEMMA 2 Coloring the mazimal set of legitimate uncolored modules in each cycle yields
the shortest possible total coloring time.

Proof: By “legitimate” we mean those that are proximate to a colored module and that
do not cover a contour.

We can represent the complete network of modules and their prozimity as an undirected
graph. Here we are not concerned with actual connections between modules in any par-
ticular algorithm. (Recall that the complete network contains the set of all parallel square
modules — every size and position — that have subordinate pixel-scale modules mapped to
an image element.) Each module can be represented by a vertex; each association between
a pair of distinct, proximate modules can be represented by an adjacency edge. For an
arbitrary contour map, let us define the graph G to be the colorable subset of that graph:
let G consist of V and E, such that (1) V is the set of vertices which are mapped to the
union of s — the starting module — and all other 4-connected free-space modules, and (2)
E is the set of all edges which represent proximity between pairs of these modules. (Fvery
edge has a length of 1.)

We have shown that our algorithm is one in which, for each succeeding cycle, cach
colored module passes coloring to every uncolored, proximate, free-space module. with
arbitrary resolution of collisions. This recursion can be mapped directly onto our proxitmity
graph G. The coloring process then exactly embodies that for finding the breadth-first

77

spanning tree of G from s. That is, G is searched breadth-first from s, and a breadth-first
spanning tree is constructed with s as the root. We can assign to each vertex v a number
equal to the distance from root s to vertex v in the spanning tree. Since the spanning tree
is breadth-first, the depth number of vertex v indicates the length of the shortest path from
stovin G. Thus, the spanning tree is of minimum depth from s, and the number of cycles
required for propagation is a minimum. e

Our algorithm is unique because it is able to conduct a breadth-first search on the
entire proximity graph G, whereas previous algorithms conduct breadth-first searches on
particular subgraphs of G.

6.4 Asynchronicity and Stability

In order for the optimal algorithms to serve as a biologically plausible model, it would be
preferable that its computation exhibit asynchronicity and stability. It is not clear whether
in nature there could be a clocking mechanism which could coordinate the actions of the
processors. Also problematic is how to respond when a processor becomes aberrant, and
behaves in a pathologic way, due to common noise or a specific malfuntion. It might be
indicated by its sending the wrong type of messages (at the wrong time step during the
iteration), or the wrong value (one that always differs from those of its neighbors). In both
cases we would like for the coloring process not to degrade completely. This might entail
either identifying and ignoring modules when they become “defective” or else continually

performing some type of local averaging or smoothing of the incoming values.

The investigation of issues at this level is beyond the scope of this thesis. However,
attention was given such that in each of the optimal algorithms and their extensions, the
processing units follow a locally defined sequence. This means that from the type of message
that it receives from each of its neighbors, in conjunction with the direction of transmussion,
the module has enough information to determine at which stage in the computation its
neighboring modules are. Given this local information, and a clarified set of goals, one
could develop a unified theory as well as an algorithm for tackling this essential modeling

problem.

6.5 Optimally Coloring 8-Connected Regions

One can optimally color 8-connected regions by making a couple of simple modifications to
the optimal algorithm. First, step 2. (a) is removed. Then, the Upward Propagation
process is altered by adding 1 to each of the quantities of siblings to whom messages are
sent. For example, “... module m passes M to its I_#_I North siblings ...” becomes *
[M;_IJ +1...” Likewise, 1 is added to the numbers of South, West and East siblings to
whom messages are sent.

These modifications simplify the optimal algorithm to some degree, and reduce the
number of steps per iteration from 7 to 6. However, the 8-connected algorithm is not as
attractive from a practical point of view. Contours are commonly represented as edges of
single pixel widths. 8-connected activation unfortunately passes through contours of this
kind wherever local sections are oriented diagonally, rather than vertically or horizontally.
Nonetheless, the 8-connected version was implemented for completeness’ sake, and the
results can be seen below in Section 6.6.

6.6 Implementation Results

Two simple examples are given first, and then the optimal algorithm is run using real cdge
maps. The scheme colors convex areas in just one or a couple of iterations. In Figure 19A.
the large modules that are centered near the periphery of the image enable one to color
the exterior of regions very quickly, in the absence of other contours. Figures 19A and B3
can be compared against the corresponding results for the preliminary algorithms, therehy
demonstrating the relative power of the optimal algorithm.

Finally, for real data, we take an image of objects arranged on a desk. We would like
to label all elements in the image that correspond to the light-colored spiral notebook in
the upper righthand part of the image. See the “warped” righthand imagé of a sterco pair
in Figure 20. (Its unwarped counterpart will be used as well in the section on moving
contours.) Applying the Canny edge-finder yields a completely closed contour in which to
color, shown in Figure 21. We then choose one pixel to be the starting point, and apply
the optimal coloring algorithm. The result is given in F igures 22 and 23.

79

Figure 19: On the following pages are results from the full-size optimal algorithm.

30

Figure 14A

Projected minimum TIME-STEP when colored

Full-Size Optimal Algorithm

O ANNHUNOMD DO AHNNIFHUNOMNONO
O —HNMHUNWOMN OO v v v v v = —H AN NN A NN N NN M

NANNANNNANNNN NN P HLOLO LN O OO M M M 00 00 00 H 0 0
NANNNNNNANNNNON) HILOLO DO OO M M 100 00 00 300 O
ANANNNNNNNANNNEHBEERHEBERBRBIREIRBIRERITR000
ANANNNNNNNNNNEHEHEEHBE RSN E B N
ANANANNNNNANNNNRE R A A A A A A A A A A S R N N
NANNNNNANANNNNRH B A A A A At A A v 1 R R N N
ANANANNANANANANNNNH B A A A A v A v A A A A - 3 31 OO
et e A A A A R R A A S v e A A A O A 3 3OO
v v v v v e e e e 3 R v e v v v v A v A e e e e - 3 3 OO
Rl e e e e D e e L e D D L L D R T P R P P R -+ 4+
A A v e e 3 T v e e e A e e e e e S LW
Rl D e e D e D R e ek 1 R D D B R o Lo PU P PPN PR D + 4 ¢4
L L D e Rl D D D D B T P R P S U4
R e el - R L e Dl e b b b L L Lo L pup-29
Rl L e e el D e e D e L L b b L Lo PRI+ 4
Rl e e Dl D e D e e D LoD Lo L P parp 44
A A A A A S R v s A A A A e e e e e R
L L e e e Ll e L L e e D D L L b Lo Lo [i p o4 4

7

#uRe#
3334445

Projected maximum LEVEL with colo

vt v = v v v A e e e e e e e e e e e e - - O
Anlal ol ol ol el e e el e e L D e e e L e e D e b Lo Lo R P N
et A A A e v e e e e e e e A A A e e e e e - O
vy v v v v v ey A e e e e e e e e e e e e e e - O
Rl e el e D e D e e b b D D e e D D e D D D L D R e P PR PR RPN
A A A A A O H A A A v e v A A e A A e e - - - O
ha il el e D e D E e L D D D e D e D L D D D B R P R R e R P |
Rm il D D e D D e D D L e D e D D D e D e D e B L Do D T v P IR PR RPN

red module

O —NMNHNON DO —HANNHN OO DO

HANMHNWOMNOD ™ H At A A A A A S AN NN N NN NN)
NN NNANNNNNNNNNNNNNN NN

ANANANANANNANNNANNIINNNNININININ NN

b B i i idididrdididedididrdiiid i b . N

1

]

1
1]
Dt et

HEBEBERARERERERRE NN
(5] [TS A TS ST TS ST TATA

2] (2] fx] £ € (x

Exlfe]fx]f2]fe
[£2

FE
2222

[x]£x] (2] [x]fa]

x1Ex)Ex]0] (2

b

FEFEEEEEE
FEEEEEEEEE

FEEEEEEFFFEERE

RARRRRBARBUBRUBURY
RERRRABARABBUBURYY
##EEEEEE
RURRRBRBURUB U RYB
RURRBRARRARR A BB BRI B
22222222222222222
222222

##EEEEEEEEEEEEEE
##EEEEE 2
##EEEEE.‘:‘?E‘:‘ EEE
##.-
#UE

2
222222222

L[

81

Figure 14B:

Projected minimum TIME-STEP when colored

Full-Size
Ogtlmal
Algorithm

OHANMNHUOM O NO —HANM PO~ 00D
OO U OM 00O v v v v v v v = A A NN NN NI NN Y

0
:39

O
(14214]
[
11
11
[
Vi
[]
[|
11
1
1
11
[
[|
[
[3]
) 1
e
=it
* 1
b

|
|
1
]
|
|
|
|
|
|
|
|
|
1
|
b
*
=*®
®*
N

Pt 2 1 2 B
28— - -
P £ 1.1 B

}
[}
|
|
|
|
|
|
|
|
|
1
|
|
*
®
*
I*
N

I T
1T
BB — =
1T T R —
1T

w0
o
I
1
1
]
|
|
|
|
1
1
|
1
|
|
!
[}
[}
|
*
=
b od
Lo d

2HRRB = e
2OUBRR ~—— o
bt Y 3 S S
Pyt 1T R ——
LT
<
.
< 1

[}
|
|
|
|
|
|
|
!
1
|
!
|
|
|
*
*
+*
®
N
N

AR -~ - ——mmm e
pg .t e
20— - -

ANANANANNANANNANANANN®

Amialalal ol ol P el l b Rl t e b L R R R R P Rk
Apl ol ol ol ol el el e R bl ol o el el L e e e L R L R R R Rt Y

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
#

~
o
1
1
1
1
|
]
]
[}
]
1
1
1
I
1
]
]
[}
1
1
*
=
®
*

|
|
|
|
|
|
|
1
|
]
|
]
[}
1
|
1
!
*
=®
*
=*®
i

32 3 2 e
R -

1)
121
|
|
|
1
]
1
1
I
|
)
|
|
1
|
|
1
|
|
|
|
"
*
®
®

|
|
|
|
]
|
1
|
|
|
|
|
|
1
1
|
}
|
b ed
*
*
*
*

#EBRI === == m e e

Aplalal ool ol l ol b Pl e b b b L e L e L e L L e P R P P BT -
inlalol ol ol ol ol ol ol o Lo Ro ol ool ol ol e e el b R R R R L L Rt
alolalalal ol ol lal ol ol o P Rl L Rl e R e el e L L e e e R L P L R P P T
Aplalolol ol ol ol ol ol ol ol e Rl e D e e e Dl L L e e R L e e e]
Aainlinialal ool ol ol ol ool o bbbl ol ool ol e Rl el R R e e R R R e e e e]
Aalalal ol ol el ol e e D D Bl D e D L e e L D e e L e L L e e e L P]

O
<
|
[
[
1
1
1
)
[
[
)
'
1
1
)
|
|
1
]
|
1
|
*
*
fed
*
*®

'
]
|
|
|
|
|
|
|
|
|
|
|
[}
[}
[}
|
[}
|
*
*
b od
*
*
=

#RUBBY - -~ - _

Ll

<

|
| 1
I]
| 1
| 1
H |
| 1
! |
!]
I 1
| 1
| 1
| 1
! i
|]
! |
|]
! |
[]
!)
! '
| |
pig ®
® *
pad *
= ®
® ®
* *
-~

3 3 T T LT
T 2 2 T R i e T Te—

Eednhmial ol o el e e D e e R L e e e e e D D e e e R L D L L R e b L L8]
FHEN A A A A A A A A e e v e e e e A v v e e OO
HAN A A A A A e St e A A e S e e A A e e A e e e - - NN
FHN—HA A A A A A A A A e e e e A A e e A e e e - = NN
L dShmialalal ol ol e e L e e e D L e e e D L e D e e e L L L D L L R B D B TN T |
L dnimiaiaialalal ol ol o e s e g R R e e e L e L L e e e L e e e L L LT [a]
Eoanhadalalal el ol o e L T e e e e e e e e e R e e e e L L e e L o (o]
LA hmimia e o D e e L e D e L L e e e T (]

badaialalalalalal ol ol ol el ol ol ol ol ol bl el e e el e e e L e e e Ll
bedniaaialalal ol ol ol ol ol ol ol bl ol ol ol l bl el e e e e e e e e]
Lo dniaialalal ol ol ol ol ol ol ol o lal bl ol ol e e Lol el L L e D L e L D P Lt
bedndniainialalalal ol ol il ol ol el bl e L e e e e P et - 3
bl aniahainialalalalal ol ol ol ol el bl e e D L e e P Tt
Lidnhnanhaialalal olal ol el el el el el o Lol el e e e L e L e Ll
branhninialal ol ol ol ol ol o il ol ool el ol e e e e et .
Eeanhnhmbalalalalalol ol ol ba ol e e e Dbt

HridrdrdA A A A A A A A A A R
FH I AANANNNANNNNNNNANNE R
ﬂ#!#aﬁ#iﬁﬂiﬁ#ﬂ##ﬁw#an#ﬂﬂ#ﬁ»ﬂinﬂ

#
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
ettt 1332222) 2
—— == RURBRRRN 2222222222222 2 R U AR AR - - -~ - - -~ -~ m e o1 44

--—-—-#R#N{AN

*
*
*
*
*3
*
* |
1
[
[

i 1.2.2
-####

*
®i
b didid

HENITR
HEEHERR
HEBHER
HERI I

e R AR AR AR AR BB AR R R IR G Y — ——— - o e e e __ 145

Tt 1 3 L L L R Py

et 1 1 L T Y4

e R R R R R R~~~ — e ______148

PR PRR ittt SIS

B B B B U ¥

bt -31

B T -V

OO MR -

e e e 5

Ry -

S RS

5

NOOO=HNM
WWNWOWO

3334444444444
7890123456789

0O

3
6

82

Finally, we see the problems that the 8-connected version of the optimal algorithm has
on Canny edge data in Figure 25. This came from the image in Figure 24. It may offer a
solution of interest in other theoretical domains (e.g., with a different type of boundary),
but it does not seem applicable here.

7 Compact Optimal Coloring

An important weakness of the approach given above is that, while it is optimal in terms
of speed for the defined class of computational models, it requires a lot of space. It uses
O(N?®)space for an image that occupies O(N?) space. We can easily show that a similar
algorithm employing a more compact network — requiring O(N?log N) space — is still
optimal, lagged by an additional factor of less than 2.

By looking at the implementation results, one can see that the optimal algorifhm gains
considerable power from the fact that its modules overlap very densely in each level. It
utilizes image chunks of every size and position: at every scale level M, there is one module
centered over each pixel-scale module that covers an M x M area. This means NV x N
modules per level, x N levels = N3 modules. If we could eliminate all levels except those
whose scale is a power of 2, we would have a network with only (1+log, N) x N? modules.

Let us consider, just in principle, what loss in performance any optimal coloring algo-
rithm would suffer if it used modules having all positions but only sizes that are powers of
2. The specific question we would like to answer is, given any colored pixel-scale module
and the fact that an arbitrary scale level M causes (2M + 1)? — 4 pixel-scale modules to
be colored (see Figure 18), subject to the presence of contours, how many iterations would
be required to match its result using only our power-of-two levels? To answer this. wo
observe that we cannot count on using a scale level larger than M to achieve M’s coloring
result, because there may exist a contour just beyond this result that would prevent us
from activating such a large module. We can use the largest power-of-two level that is
< M, calling it M,, as long as its area of coverage is within M’s coloring result.

Now we have to get into the details. In Figure 26, we have sketched the coloring range
of the M, level so that it is concentric with that of the M level. Refer also to Figure IX.
To achieve the coloring result of the M level, it would be adequate for the M, level to color
the central pixel plus the next M modules in each direction. We will focus on coloring
the Northeastern part of M’s region, since our coloring range is symmetric in each of the
four directions. It will help to discuss the pixel-scale configuration in terms of integer

83

Figure 20: A grey-scale image of objects on a desk top.

Figure 22: Result of coloring with full-size optimal algorithm. The projected minimum
TIME-STEP when colored is indicated by inverse brightness.

In the natural edge maps, an inverse brightness scale indicates the time when colored
and maximum module level for each element, rather than the system of numbers we nse
for smaller synthetic maps. That is, brighter locations mean a smaller numeric value. and

vice versa. A small white X indicates starting points for coloring.

85

Figure 23: Result of coloring with full-size optimal algorithm. The projected maximum

LEVEL with colored module is indicated by inverse brightness.

coordinates, where the central pixel has coordinates (0,0). Our goal then is to color all
pixels in the (z,y) range (0... M,0... M) using only the M, scale level. Referring again to
Figure 18, we recall that from p; we can color all modules in the range (0... M>—1,0... M;).
In the Figure p, is at position (M2 — 1, M;). We could also color all modules in the range
(0...M3,0... M; — 1) from the starting point (0,0). We choose instead to add this latter
range to the result of applying the former range to p;. Thus, by coloring twice successively,
we are assured of coloring all modules in the range (0... M; — 1+ M3,0... My + M; — 1),
plus several others that we are not accounting for here. Note that from p; we are able to
reach the last row and column of M’s coloring result. That is because the corner piece
(which actually is missing) has coordinate (M, M); since M < 2M,, this point is within the
range (0...2M; —1,0...2M; — 1). Therefore, every non-power-of-two level in the full-size
optimal network can be simulated for coloring purposes by the power-of-two level whose
size is less than or equal to it, in at most twice the time. Our compact optimal algorithm
is as least half as fast as our full-size version, with substantial savings in space.

The compact optimal approach was implemented on the Connection Machine. We
present some implementation results below to show that the scheme works, and in fact

almost as quickly as the full-size algorithm. See Figure 27.

Figure 24: Graphics rendering of a city skyline.

87

Figure 25: Edges from city image. Unfortunately 8-connected coloring goes through most
edges, although not through horizontal or vertical sections of them. The projected minimum
TIME-STEP when colored is indicated by inverse brightness. (Edge pixels are in black.)

88

View at
Pixel-Scale Level

N v L
|
: M2-1

M |
|
| {
| i
M2 : I M2

! :
|
_______ R i

Figure 26: The compact optimal algorithm can color at least half as fast as the {ull ~ize
scheme. That is because scale level My, M, a power of two, can color any region that an
arbitrary scale level M, My, < M < 2M;, could do in at most twice the time.

89

Figure 27: On the following pages are results from the compact optimal algorithm.

90

Compact
GEtlmal
Algorithm

AN FUDONORNO NM

O ANMHNOMNODNO —NNFHNOMNONOHNMNFUNONONO N
555555556666

Figure 27

Projected minimum TIME-STEP when colored

0123456789111111111.122222222223333333333444

——— e e T - — - = - - - — - -

™
4
.
|
[}
|
[}
|
}
|
}
|
|
*
*

¥ S
T

[|
11
11
1
[]
11
[
[
UL
b ded
i
(301 .4

]}
k1 T
11 T —
17 T ——
e

}
1
}
)
|
|
1
!
1
»*
*
o)

Y e —

1
[}
|
}
|
]
[}
|
[}
|
-
ANANANNANNNNANNNNN
ANNANANNANNNANANANNANNNANN

'Y T

<
4.
_
]
[}
[}
[}
I
}
[}
}
[}
!
1
b
*

|
1
|
|
1
I
|
1
}
|
*®»
*
*»

¥ R ———

|
I
I
[}
}
|
}
[}
|
}
U
*
*®
®»

fd——— !

[«9}
4.
.
[}
[}
[}
}
|
]
|
}
|
}
|
|
|
!
*
*

#lh=mmmmmommo]
4 S

[¢2]
4.
_
[}
]
[}
[}

!
|
[}
!
[}
|
[}
!
[}
|
|
*
*

I
I

FHANNNANANNNANANANNANANNANNANNANNNNN®
FHANNANANANANANANNANANNANANANANNNNANNNNN
E R e D L e R e D D e e e L D L e L L b b b b L 18 (8 (8 Lo (e}
HBrirdrrHrd Al e S e e A A H NN S
AN rH A S A Al A A A e A A = H =S NN
(o b R R e D e L L e e e L D e L L D L P e P R o (ot (o [\ [a o]
(o e e e e e D R L L e e e e L L e e L T e (e (8 (e (o]
(A ol lal ol o Bl bbbl e e L D e e e e Lo Ta (ot (ot (o (o o' T3 s)
[R R D D e e L e R e R D D D e L L D D D R D T [a [N Ta [at [a [1s)
[lalalal ol o R b bl e Ll el e e L e e e P L Lo Ta o' (o' Ta [o' [15}
(e la Rl D e e e D e L e e e L L L e L L D R T (o' [t Ta [et (2]
(o [B R e D e D L e e e R L L L b L L e R P Lo Tat o et o (o' o [s2)
OO v v v v v A v v v v A A A A A A S NN IO
(o e bl D e e D e e D e e e L L e e L e P P D Te (o (o Ta (ot [Ts s
E I R R L e e e e L D D e e e e e e D L L e e e T [a (e (e o [F . 3
E-Ja lal ol Lol e P R Rl e R R L e L e D e L e R e Lo o (ot (o (ot (o' ']
[R R D D D R e L e e D D e L e e L e e L R R e (o o [8 8]
Hrirdrr—drrd A A A A A A A A A A A H A - NN S
Lohaialal, foX aba ol ol el ool e e L L L Lo e (o (o [o]
Lababa R L L D R e D D e L L e e L L Ta (o (o o F
abmha L L D e e e L L e P P T [(o k -]

o
5
_
}
|
|
]
}
]
[}
]
}
!
)
[}
)
]
|
|
»
*
*

BRBBRR - —— e 5

e RN R R AR R R RN - - !

pppyE U —
e L s

3 v v v v v v v A - NN R
L ke b b L L D e b b b A i e em IS L)
E R e b e e e L b D e e e e it .]
HANANANANNANNANANNN®
HEANNANNANNNHE

e AR R R~ —————— = -
e R R AR R RO — =~ = —— e

Y

R ™
™ 21
S 1.

®
®
[}
}
|
[}
[}
]
[}
}
|
}
]
J
[}
[}
}
|
|
|
]
[}
[}
|
|

MO

s
WOV £+

b od
*®
1
|
|
|
]
[}
|
|
I
[}
|
[}
|
[}
|
[}
[}
[}
|
}
|

N ——”
R —
e .1

R T U
a2+

O — 34
R —
PR S ¢
N ——
N
S
M —
S 1
Sy

ey
e —

¥
3

R+
Mt

533333333334444444444

3
0

123456789012345678

2
9

=N

91

Projected minimum TIME-STEP when colored

-------------------------------- L L
----------------------------- BERRRRBRRRREOR ——— = - e
--------------------------- HRRRBRDDD 222 DR MMRR — —— == - e
####3333333333333% %4 :
443244244488

V: 444 #
14244 4
44444444444444044 888
AAAAAA 4444 A
14444 4444
A a4 A444444A44A4
1444444444444
44444 A444444 a
EJ XX N1 L ENEREEEXED
/1
AAAAAAAAL anal
AAAAAAAAAAAAAQAL 4
a4 4444444444440
.Y.Y.V.V. 4444 V. V.W.V.V.
aa44 24444444441
.. V.V.V.V.V.V.V.V. 444448
WV V.V.V.V.V.V.V.V.V.V.V.V.V.V.
A V.Y, V.V.V.V.V.V.V. Y. |
1444444
Y, a4 4444444444
KX - & & - h & &
y. V.1 V.V.V.V. y.V. V.
4444444444444
Vs y. V.V, A‘III a444A4A
44444 AA444444 V.
AAAAAAAAAAAAAAAAAL
V.. V.V V.V.V.V.V.V.V.V.V.V.V.V.V.
V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.
Y .V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.
14 4
AAAAAAAAANAAAAAL
244444244444 444444
Y. 4 AAAAAAQAAAL
V. 4 444 a4 #
3
44444444444441440%8
-------------------------- 3333333333333444# ;
--------------------------- RRERRE 222202 MR MMM — e e e
----------------------------- T T T T T -

92

8 Compact Optimal Coloring inside Broken Contours

An important requirement for intermediate visual processes, such as coloring, is that they be
robust. The early visual processes encounter a rich variety of input, and according to Marr’s
proposal [Marr 82], generate from these the primal sketch and the 2%-D sketch. These
base representations change with time (often not smoothly), and are generally somewhat
degraded in quality. They nonetheless are used as input by our coloring operation. The
coloring must yield a solution that is generally stable, and which is abstract enough to be
useful for later processes. The linked multi-scale property of the algorithms given above
allows for adept handling of real world data with several common difficultjes.

We can view the advantages of the compact scheme in the results below. In practice,
it does not seem to require much more time than full-size optimal scheme. It does save
considerable space. Whereas we were limited to an square image size of 128 with the
full-size algorithm with our current Connection Machine configuration of 8192 physical
processors, the compact version makes possible use of images of size 1024.

8.1 Theoretical Motivation

One common problem is the appearance of gaps between edges that correspond to a real.
physically-defined boundary. Generally such undesired gaps are caused by some distortion
in the imaging process; other times, they are the result of an actual phenomenon in the
scene, such as a line drawing like Figure 30. Hence, by “broken contour” we mean that
the bounding contour has spurious gaps which “ought” to contain a contour segment, but
for some reason the segment is missing. In many cases, such as in Figure 30, the “missing
contour segments” exist only in a “subjective” sense, since there is no principled method
to infer the path of the missing segments a priori. Indeed, the hypothetically completed
contour is often termed a subjective contour. In most natural situations, on the other hand.
there is often an underlying physical discontinuity even where the edges are missing, and
these must be reconstructed by some inferential computation from the image. In either case.
it is often correct to interpret broken edges as meaning there exists a continuous physical
contour. So, for instance, humans perceive Figure 30 as some form of closed curve, with an
enclosed foreground region and a background as well. Notice that the distance spanning
nearest pairs of endpoints varies. An algorithm that is a viable model of the coloring
process in human vision should color a representative portion of the semi-enclosed region.
without coloring any significant portions of the background.

93

Figure 28: City edges colored with compact optimal algorithm. The projected minimum
TIME-STEP when colored is indicated by inverse brightness.

94

Figure 29: City edges colored by compact optimal algorithm. The projected maximum
LEVEL with colored module is indicated by inverse brightness.

95

Figure 30: A broken closed contour, drawn in bold print, with gaps of varying widths.
Subjective contour segments are sketched in fine print. |

How might we color inside broken closed contours? We make the simplifying assumption
here that each endpoint subjectively “joins” to the endpoint(s) nearest to it. Thus there
are numerous figures, such as Figure 31, which we would consider unqualified for coloring
purposes. Since the network represents figures at a variety of scales, we will be able to
locate those modules whose constituent pixels lie within the gap and block their responses
in an appropriate way. Figure 14G illustrates the catastrophic effects of just a single gap for
a naive coloring algorithm (i.e., Algorithm #3). In this case, we would like the pixel-scale
module (identified as a 0 in the second frame of Figure 14G) found in the gap to cease
passing colored messages. The linked hierarchical description helps to make this task fast

and easy to accomplish.

For our constraint to yield success, some preprocessing steps should occur. One gen-
erally would not proceed directly from a raw set of edges. Instead, the appropriate input
would be a set of edges selected from the raw edge set. Also, many of the contour endpoints
(i.e., termini) can be joined or rendered unimportant by either low-level or goal-driven pro-
cesses. For instance, a local scale for thresholding closable gap widths could be determined
locally, possibly based on contour curvature. Then, applying these to the given termini,

96

each terminus is joined to one other one, with matching based on greatest proximity. Al-
though we limit ourselves in this paper to a representation which is isotropic, and which
does not quantify orientation, location, distance or size, we nevertheless can close gaps
for the sake of coloring in a satisfactory way for many situations. Our measured criteria
consists only of surface set membership, and yet with this we can determine maximal prox-
imity. Without any preprocessing, the following algorithm extension gives false positives
in some cases. Its main weakness is that a coloring boundary may be established where it
is not desired.

Certainly, one would need a comprehensive, principled approach to segmentation in
order to adequately delineate regions in nearly all cases. Propounding a possible piece to
this puzzle, Beymer [Beymer 89] examines junctions of three or more regions in an image,
and proposes a method to reconstruct contour junctions in gaps typically left behind by
edge finders. He focuses on junctions that are caused by occlusions, called T junctions.
(The other type of junction results from vertices, points where surfaces intersect.) Utilizing
the gradient of image intensity values, Beymer is able to extend curves despite gradient
direction skew and a vanishing gradient. Meticulously extending the contours, and locating
the juction, is useful for determining how surfaces occlude or intersect one another, for use
in grouping, or as matching tokens. However, for the sake of region segmentation, T
junctions are a place where bounding generally should occur anyway. Indeed, three termini
localized in the input map are joined by the routine below in one compound filled gap.

Foregoing image intensity information, other than an edge map, Ullman and Sha’ashua
[Ullman & Sha’ashua 88] are able to compute a map of structural saliency, and, as a by-
product, smooth contours and fill in gaps. The work is based on linking saliency with low
curvature (or low curvature variation) and large curve length, with these formulated as
an extensible function. One would need to apply a scheme, such as this, to select salient
contours from image primitives before proceeding with bounded activation. Of course. this
scheme by itself would not suffice for closing all appropriate gaps; there might still be a
number of gaps remaining, along sections of contours with high curvature, such as object
corners, or with missing segments. Their algorithm is iterative, and generally requires a
number of iterations that grows in proportion to the number of points missing from the
gap; often this amounts to dozens of iterations, or more. In any case, for present purposes.
we apply our extended algorithm directly to edge maps in the discussion below. It actually
works as one would like most of the time.

Our present goal, then, is to develop a modified version of the optimal network which
will not color beyond contour gaps. The solution can be divided into two phases. First.

97

Figure 31: A broken contour which we deem “unclosable” and therefore uninteresting.

we establish the boundary, which would strictly enclose the activation. Although assigning
inside/outside relations to gap areas is ambiguous, we choose here to assume that both
contour segments and gaps are part of the foreground object and therefore to color the gaps.
The algorithms presented below can be trivially altered to treat the gaps as “uncolorable”
(just like contours) instead of as “colorable.” It will be explained below that all modules
which cover a colorable gap are instructed to receive (and record) but not to send activation
messages. The coloring process is thereby stopped before it can proceed beyond the gap.
The second phase calls for activation to begin, starting at the X as usual. We add the
boundary-construction phase to the optimal algorithm (either full-size or optimal) at step
1. The routine takes constant time, so the altered optimal algorithm’s time complexity

remains the same as before.

Let us define the task more formally. Figure 32 depicts an arbitrary gap that must be
- closed. Points A and B are a pair of contour segment endpoints to be joined. A rectangle
can be drawn, using A and B as opposite corners; the other two corners are positioned so
that the four resulting line segments have the same directions as the X- and Y-directions
implied by the square modules hovering over the image. Let us define such a rectangle —
i.e., rectangle AA”BB" — to “strictly contain the gap.” By this, we mean that, as far as

98

coloring is concerned, the missing contour segment is assumed to lie within the rectangle.
Without loss of generality, we view the rectangle in Figure 32 so that its two longer edges
appear parallel to the longer sides of the page, and that “figure” is to the left and “ground”
is to the right; activation is assumed to start somewhere within the “figure”. Our task then
Is to ensure that activation does not proceed beyond the rectangle into the ground.

8.2 Algorithm

To achieve this effect using the image chunking representation, we make a modest extension
to either the full-size or compact optimal algorithm. The following additional hardware is
needed. First, every module is connected so that 1t can send a message to its one superior
module at the next higher scale level; this amounts to one more link per module (zero for
the highest-scale module). Connectivity degree is again O(N). 1 Second, we require that
each module be able to store and Pass information concerning whether or not it covers a
contour terminus. This token from the primal sketch can be represented by terminus.
The extended list of tokens is as follows:

Message Tokens
Basic Algorithm

° contourq
o colored’

Extension for Broken Contours
e terminus

® terminus-column

® more-than-1-terminus
e paired-below

® near-unpaired-column

) in-gapﬂ

§ = global tokens; the rest are temporary

Terminus enters the network at the pixel-scale modules, along with contour. (Recall
that contour and colored are required for our basic optimal scheme.) Third, it wili

14Each module is connected to one module directly above and below it, < N modules directly Fast ..
West of it, and < N modules directly North or South of it; = O(N) connectivity.

99

ground

A” A’

.....

| " gap

figure

Figure 32: An arbitrary gap. The areas enclosed by squares A'A"BB" and AA"B'B"
(including their sides) represent the leftmost and rightmost modules, respectively, which

are of minimum size but also cover both A and B.

100

prove to be useful to have each module know whether or not it covers two or more ter-
mini. Hence, we introduce more-than-1-terminus. Each module must be able to de-
termine whether it received a “terminus=1" message from only one, or more than one,
connected module during any one of the 3 steps (i.e., during either step 1i. or iii.) of
the upward propagation process. If, during any step, two or more such messages are coa-
lesced into one message, then this would mean the destination module covers two or more
contour termini.!> The message is changed at the end of this step from “terminus=1;
more-than-1-terminus=0" to “terminus=1; more-than-1-terminus=1" in order to
indicate this. Next, we use three temporary tokens,'® which we shall call terminus-
column, paired-below and near-unpaired-column. Terminus-column will be set to
1 in whichever modules have subordinate pixel-scale modules whose terminus=1, forming
columns one module wide. Paired-below will then be set to 1 in the smallest-scale mod-
ule in each of these terminus-column=1 columns that covers more than one terminus.
Near-unpaired-column is set to 1 if the nearby terminus-column has not been paired
below. Finally, we need another token in order to halt activation inside of gaps. In par-
ticular, when in-gap=1, that module will not initiate activation. It will not pass along
“colored=1" messages to other modules, although it may update its own internal colored
value if it receives such a message. Any module whose in-gap=0 will function as usual.
Now we give a precise description of the routine for coloring broken closed contours.
It is included in the optimal algorithm inside of step 1., prior to the optional “uncolor”

routine. Again, let p denote any pixel-scale module, and m denote any higher-scale module.

Reconstruct Broken Contours

1. When the p’s receive a new image frame in Process 1. of the optimal
algorithm, they each perform an Upward Propagation with “terminus” and
“more-than-1-terminus” to initialize the m’s so as to be consistent with
the new image; during this Upward Propagation, we do two special actions:

15The coalescence of two or more messages during one of these three steps is a necessary and sufficient
condition to indicate that two or more source modules (termini) are covered by the messages’ destination
module. First, a message sent from a single terminus — a single pixel-scale module — will never pass
through or arrive at any module more than once during the entire upward activation process. At each step.
messages from this common source move in parallel directions, and there are no redundant connections
Second, messages sent from two nearby termini do activate every higher-scale module which covers them
both. They may merge at some other module first, and then share the last connection.

16We use three for purposes of clarity only; one token could be used three times.

101

after the first (upward) step, set terminus-column=1 wherever terminus=1;
after the second and third (outward) steps, set “more-than-1-terminus=1"
wherever any “terminus=1”" messages have collided. [Four steps.]

2. At each level, each more-than-1-terminus=1 module sends a “ more-
than-1-terminus=1” message to all modules in its neighboring span of that
same level (using the two outward steps — and not the downward step — of
the Downward Propagation routine). Any terminus-column=1 module that
receives such a message sends up “paired-below=1" to its superior module in
the next higher scale level (while affecting neither its own internal more-than-
1-terminus nor paired-below values). Any module receiving a “paired-
below=1" message sets its internal paired-below=1. [Three steps.]

3. At each level, each module whose terminus-column=1 and paired-
below=0 sends a “near-unpaired-column=1" message to all modules in its
neighboring span of that same level (using the two outward steps — and not
the upward step — of the Upward Propagation routine). Any more-than-1-
terminus=1 module receiving the “near-unpaired-column=1" message sets
its in-gap=1. [Two steps.]

4. After receiving an in-gap message, each m performs a Downward Propaga-
tion with in-gap; each p updates its internal value accordingly. [Three steps.]

5. After receiving an in-gap message from above, each p performs an Upward
Propagation with NOT(in-gap); each m that receives a “in-gap” message in-
verts it again — “in-gap” — “NOT(in-gap)” — and then updates its internal
value accordingly. [Four steps.]

The routine works as follows. Step 1. initializes the modules so as to be consistent with

the new image, with terminus=1 for each module which covers a terminus, more-than-
1-terminus=1 for those which cover more than one terminus, and terminus-column=1
for those which have subordinate pixel-scale module whose terminus=1; all other token

values are set to 0.
The result of steps 2. and 3. is that, for each terminus in the image, only the module(s)

in the minimum scale level which barely cover(s) that terminus and some other terminus
will remain with in-gap=1 — all others will have in-gap=0. For example, suppose the
arbitrary gap in Figure 32 is part of an input image. Then, after step 3., only the modules

102

which cover both points A and B and whose constituent pixels fall entirely within (or
include) the edges of rectangle A’A” B’ B" would be labeled as in-gap=1. (They would all
have size WI) Since A and B are each the closest terminus to the other, any module
m which covers A or B and some third terminus must have scale > [A’B™|. However, any
module covering more than one terminus, one of which is A or B, and which is higher than
the JA’B"|-scale level, will have received a paired-below message from the module of the
next-lower level that is in that A or B terminus-column. Hence, only those modules of
minimum scale which join one terminus to a nearest other terminus have set in-gap=1; all
other modules have in-gap=0.

Finally, step 4. causes all pixel-scale modules covered by those higher-scale modules
with in-gap=1 to be labeled likewise. Step 5. results in all higher-scale modules that cover
only pixel-scale modules with in-gap=1 (none =0) being assigned in-gap=1. Hence, after
step 5., every module that is inside rectangle A’A” B’B", including the edges, will not issue
activation instructions during Process 2. of the optimal algorithm.

After executing the reconstruction routine, the network continues with Process 2. of
the optimal algorithm. Now, however, the activation will produce a result different from
before. Our extension establishes that no modules which cover any of the contour, line
segments AA” or A”B, or pixels to the right of this boundary can be colored. All modules
in the vicinity of the gap whose scale are > |A’B™| will function as usual. Some may
overlap the gap and become colored, but activation at such large scale levels cannot pass
beyond the contour endpoints. By Corollary 1, activation would have to be propagated
across this boundary via modules which are entirely inside square A’A"BB". However.
all modules whose scale are < |A’B"| and which are entirely inside rectangle A’A" B’'B"
cannot propagate activation. The modules may themselves be activated, but they cannot
send “colored=1" messages — they cannot extend activation horizontally through the
gap, for instance. At all scale levels, activation which approaches or enters the gap ceases
there.

The gap-closing routine runs in constant time, requiring a total of 16 time steps. It
preserves the network connectivity degree of O(N). Like for the optimal algorithm. an
explicit chain of contingent operations for each module ensures that events are sequencesd
correctly.

103

8.3 Implementation Results

In order to find contour termini, we used a preprocessing routine with a simple criterion:
if among a contour pixel’s eight 8-connected neighbors, there exist fewer than two contour
pixels, or if there are two but they are adjacent, then that pixel is taken to be a terminus.
Some example runs are given in Figure 33.

Using square multi-scale region chunks affords us the opportunity to handle broken con-
tours rather elegantly. The coloring boundary that we construct inside the gap becomes
increasingly refined as the width of the gap — the ambiguity — decreases. The importance
of this scheme is not just that it can handle contrived subjective contours consisting of
dotted or dashed lines, but that it furnishes our optimal algorithm with some robustness
in general. It colors a reasonable-looking area for closed contours with gaps. Generally,
the primal sketch will have contours with gaps, and it is required of intermediate processes
such as coloring that they gracefully (usefully) handle such raw input.

Figure 33: On the following pages are results from both full-size and compact optimal
algorithms in which broken contours are closed. In the first map of this Figure, the num-
bering system is as follows: 1’s and 3’s are original contour elements, while 2’s and 3’s are

additional boundaries established by closing gaps.

104

Figure 33

Current 32-by-32 image, with gaps closed

Full-Size Optimal Algorithm

O v—HANMNHUNOMN O NO —NMFLNONONO
01$£J4:207QX311?111#111?11024202420%&202&3

0000000000 0000000000000000000000
[elelelelelolelelslolalalolololelel el el oMMt 020202l 20 2020
[olelelelololelololololololololololololy) ololelololelololole]
OO0O0O0O000O0O0COOHHHTAHHHMNNMHH=HHHAHA—HO OO
O0000000O0VOOOOOOOONNNOOOOOO OO0
OO000O0O0O00O00O0O0HOOOOOONANNOOOOOOHOOO
[elelelelololololololalel slolololololololololololalolololpolale]
[elelelelololelololelolol lolololololalololelolelalolalelglolele]
[el=isi=leli=lzi=l=l=l=l=lplololololelalolelolololalololodp olelol
OOOO0OOCOOCONNANMNANANNOOOOOO0OO0O0O00O0O OO0
OO0O00O0O00OONNNANANNOOOOOOO0O0O0O00O OO
00000000 ONANNNNNNOOOOOO0O000O00O0O 00O
OOO0OQ0OO0OOONNNMNANNANOOOOOO0000000HOOO
[elelelelololololalololol slolololololelololalolololololelglolole]
[elelelelolelololalololel tloleololalololololololelololololylolalel
[olelelelolololololololol lolololololelololalolololalalolpelale]
[elololelelolololalelelol slolololololalelalolelolelolelern2lol"]
000000000000 HOOOOOOOOOOOOONNMOOO
000000000000 THOOOOOOOOOOOOONNMOOO
000000000000 HHHHHHHHEHHAHHHHNOANNOOO

[eleolelolololololslelelolalolololelololelolelelelalslaininlod=i >N

[eledolelelolololelololelolololololololelele i s d2dodol ol =]
[eleleleleololololoiolololelololololololololololololololalololole]
0000000 [elelelololololelololololololalalololololela]
[elelololololalololololololololelolololololololalololololololelel
[eleleloliololclololololad
[elelelelelololelolololololololololololalolololelolalololololelal
[el=lel=lcl=lelolelololololololelolelolalalelclolecloleolalolalelal
[elelelelaleloleolololololololololololololololololalalololololela]
[eleolelelelelolololelololololololololalololololelololelalololele]
[elolelelelolelelolalelalolalololololalolololololelolololelelolal
[elelololololalolalolololalololololololololololololalolslolelela]

olored

O ANMHNOMNDNO —NNHNOMNDNO
C01234567891111111111222222222233

n111111111111222223333.ﬁ 55555
Dt Ayt A = H =S NN NN) N N) < WOLWOW
At A A A H A - SN NN) OWWOWNLW
Brtrtvrd vl vt i N R HARLOWOLD

At A 3 I OO

it - R |

_
-
A A 1%]|
[e L L b b m il alaial NN
Nt A At | |
| At A % | |
[R L e e e e A I |
Fa e e e e e |
|

|

]

]

i

]

1

[R e it alal alatat N
[B e P R R + o
v A A A A 3)
et A v v |
et A A A A v 3)
Erdvrt vt A v At i - 3 |
vy v v v v)

———— e}
.

———-=-—-—-—----#3
SR
—==—-——-—------#333
-}

SR —— Y.
S |

SRV —— Y. V.

Lalalalal ol e e e b L e D e e D L D L L D R D T o R o
O vt v v v v v = D T v v v v e e v v v e e e e v v e v e e e e e
[l e L D e e e L e e e e e e L L Ll el L]
42 v v v v v e e e e e e e v e v v e v v e ey e e v e e e e e
O v v vt v vl v v v v v v v v e e e v e e e v v e e v e v e e e e
@ v vt v v v vy v v e v v e e e e v e e e v e v e e e v e e e
Hmalbal ol D e D D e e e e e e L L Lk nla il Lo L p]
O v v v v v v v v v v v v v v v v v vy v e e e e v e v e e e e
S vt v v v v v e vy e v e = e e e e e e e e e e e e e e
Ol v v v v v v v v A e ey e e e v v e e e ey e v e v e e e e e

105

Projected maximum LEVEL with colored module

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN: O

5
5
=
=
=
-
5
=
=
=
5
=
=
5
=
:
2

2
5
=
2
=
2
S
= =
2
=
2
=
2
=
2
=

NNNNNNNNNNNN8
NNNNNNNNNNNN8444
NNNNNNNNNNNN844

UWMNMNMMMMNMHHHHHHHHHH(D@NIE)C.;T'&‘(;);\.)H

O WO ~NAUBWNHOOWONAITPWNHO

NNNNNNNNNNNNS# #4222 08
24444

.S
N
b
N
SO NS
N

106

Full-Size Optimal Algorithm

9 Compact Optimal Coloring inside Moving Con-

tours

9.1 Theoretical Motivation

One desirable property of a coloring network is that its performance be stable. In particular,
contours that move are an inevitable part of visual input at some level, and so can pose
a difficult challenge to the design of useful algorithms. Contours can translate, rotate
and/or flex over time. Figure 40 gives an example: the “Old Contour” changes into the
“New Contour” as time advances by some At. Since the modules are stationary, only
those in the “preserved region” should remain colored at both times. At the later time,
the “incoming region” should become colored while the “outgoing region” should become
uncolored. We would like an algorithm which can correctly perform this as quickly as
possible. It is important to minimize redundant work. For instance, we would hope to
avoid generating a whole new description for the latest region, when some of the results of
earlier coloring might be used. In addition, we would not want to miss any pixels which
should be colored, or leave colored any pixels that are now outside of the contour.

Next, we define our problem domain. We shall assume that the moving contours to be
used as input have the following property. Each contour changes position sufficiently slowly
between succeeding frames and/or has sufficiently low curvature such that each point in
an outgoing region is on a “Maximal Proximity Vector (MPV).” (Elements in incoming
regions are not required to be on an MPV. The MPV precondition is precisely stated a
few paragraphs below.) Let us again suppose that there exist only two contours, the old
one and the new one. An MPYV is one which connects a point on one of the contours
to the nearest point that is on the other contour. For sufficiently smooth (and isolated)
contours, as one moves continuously along a segment of one contour, the nearest point
that is on the other contour will move along it continuously. Even if the nearest point on
this second contour “doubles back” for some distance, as long as it shifts continuously, an
area of MPVs will be swept out. Examples of such areas are shown in Figures 40A and B:
“maximal proximity” areas are swept out by moving the point of reference along segments
of the Old and New Contour, respectively. We require a pair of contours such that the
union of these areas completely fills the regions that need to be uncolored.

This restriction is stricter than necessary but is sufficient to ensure that our network will
handle its input correctly. Let us get a precise idea of why it is sufficient and an intuitive
idea of why many contour pairs not meeting this condition would still be uncolored correctly.

107

Figure 34: Walking like an Egyptian for an image.

108

Figure 35: Generally, raw edges from most known edge finding schemes do not completely
enclose many meaningful regions for our purposes. Here we see a useless coloring result
of the Egyptian edges from the basic compact algorithm. The projected minimum TIME.-
STEP when colored is indicated by inverse brightness (with wraparound after every ~

values).

109

Figure 36: Here the Egyptian edges have been closed by the extended compact algorithm
prior to coloring, according to the principles given in the preceding section. This is a
more physically meaningful result than before: the elements corresponding to the poster
stuck on the door have been labeled. The projected minimum TIME-STEP when colored
is indicated by inverse brightness. The small white X’s will indicate locations of contour

termini below, as well as the starting point for coloring.

110

Figure 37: A view of a portion of the Egyptian edges, closed by the extended compact
algorithm. The grey areas depict the additional boundaries established by closing gaps.
Remember that coloring can procede inside but not past gaps, as long as it does not cross

a contour.

Figure 38: An expanded view of a portion of the Egyptian edges, closed by the extenidedd
compact algorithm. The projected minimum TIME-STEP when colored is indicated

inverse brightness.

111

Figure 39: An expanded view of a portion of the Egyptian edges, closed by the extended
compact algorithm. The projected maximum LEVEL with colored module is indicated by
inverse brightness.

Looking toward Figure 41, we see point P,, on one contour, joined to the closest point on
the other contour, P;, by vector P;_I.’l. For the discrete case, imagine also the set of all
squares which are parallel to z and y directions, which have sides of length MAX(d., d,),
and which inscribe points P, and P, (including them). The two outermost such squares are
drawn in the Figure. If we were able to uncolor all modules that cover any pixels contained
by any of these squares (or their boundaries), we would be assured of uncoloring those that
lay along P;_Isl. Fortunately, the algorithm below does just that: it uncolors all modules
of minimum scale that cover P, and P,. Because it uncolors with “excess width,” any
contour pairs that do not meet our strict precondition are generally uncolored sufficiently
in practice. The algorithm extension uncolors all the appropriate modules, plus a few more.
We can afford to be a little sloppy (i.e., excessive) when erasing a color, as the activation
phase will color all legitimate modules; we cannot be sloppy when coloring.

Let us precisely characterize the property of the edge correspondences that we require.
as mentioned above. Figure 42 presents a problematic case of two contour sections whose
Maximal Proximity Vectors do not sweep out the entire region in between. As one moves
along the bottom contour, the maximal proximity point on the top contour shifts along
too, until it reaches the “bump.” Here it virtually stops, even as one continues to move

along the bottom contour, until it suddenly “jumps” across the bump to the other side

112

New Contour

incoming region

preserved region

outgoing region

Old Contour
A. B.

Figure 40: A moving contour. The Old Contour changes into the New Contour during
some time period At. The preserved region is contained by both contours. The outgoiny
region is enclosed only by the Old Contour, and the incoming area is enclosed only Ly the
New Contour. The Maximal Proximity Vectors (MPVs) are indicated with rays. In \.
the MPVs are from points on the Old Contour to the closest respective points on the N\ 4

Contour. In B., the MPVs are from the New to the Old Contour.
113

Figure 41: Uncoloring is guaranteed along Maximal Proximity Vectors. This is because
any module that covers a pixel contained (or included) by the squares inscribed in P; and

P, as shown will be uncolored by the algorithm extension given below.

14

Figure 42: An unerasable pair of contours. There is a discontinuity in the area swept out

by both the upward-facing and downward-facing MPVs.

and continues on again in a normal way. The area swept out by the shifting MPV misses
a wedge-shaped patch in the middle, and even in union with that area from the shifting
MPV of opposite polarity (top to bottom), a diamond shaped patch is missed. In this
paragraph and the next, the bottom-to-top versus top-to-bottom configurations are meant
to be interchangable, as they are completely symmetric in principle.

We now examine the point on the bottom contour where the MPV shifts discontin-
ously. In Figure 43, as s, moves an infinitesmal distance to the right at d, the MP\"s
orientation changes abruptly. The question is, under what (hopefully simple) condition
will this mysterious event occur? The answer is that the (bottom-to-top) MPV's sweer
becomes discontinuous, and a wedge-shaped patch is missed, only if the radius of curvature
of the top contour at a point in between the sides of this wedge betomes less than the
distance from that point to the origin of the MVP in question (on the bottom contour .

Hence,

We require a pair of contour maps C; and C, such that the distance from a
point on C} to the point on C; at which the closest preceeding MPV originates
never exceeds the radius of curvature of C; at that point, and vice versa.

115

To see why this is so, first note in Figure 43 that nearby points on contour C, have MPVs
of nearly equal length. If they were significantly different, then the longer MPV would
simply point to where the shorter MPV points, and the two would again be nearly the
same length. Second, Figure 43 shows an orientation dlSCOIltlIIUIty between consecutive
MPVs that originate near d. No part of C) is between de and df , and also in the circle,
because the two radii are consecutive MPVs. Third, assuming C; is continuous between

e and f (if they are not, uncoloring this subregion would be irrelevant), then there exists

a point ¢ € Cy, between e and f, such that Curvature[Ci(c)] > pr—rmamm: We can
prove this by circumscribing a “great circle” centered at d about all of C; that is between e
and f. C; may or may not run along this circle tangentially for some distance, but at some
point it must turn into the interior of the circle in order to meet at e and f. The radius
of curvature of C; here must be less than the radius of the great circle. Thus, wherever
there is an orientation discontinuity between consecutive MPVs originating from d on C,,
which could possibly result in a patch not being uncolored, there is at least one point ¢ on

C, between these MPVs whose distance from d exceeds the radius of curvature of C; at c.

9.2 Algorithm

The algorithm extension we have derived to do this is essentially the same as that used for
closing broken contours, presented above. Briefly stated, we uncolor every module that is
due to change its colored/uncolored status (e.g., those inside the Incoming and Outgoing
Regions), before continuing with the usual phase of color propagation. As in the last
extension, we start with either the full-size or compact optimal algorithm, and employ the
following additional hardware. Again, each module (except those at the highest-level) has
a single additional connection enabling it to send a message to its one superior module at
the next higher scale level. Connectivity degree is again O(N). Fortunately, we can use
tokens that are analogous to those in the extension for closing broken contours, although we
require two additional tokens. The important reason for this symmetry is that establishing
which modules are to be uncolored is a process virtually identical to that of establishing
which modules are to be considered in a gap. In this case, of course, there happen to be
many edge points in one time frame that are to be joined to a nearest edge point in the
other time frame, and vice versa.

We use the same tokens as in the last extension, except for three things. First, we
substitute “edge” in place of “terminus” in the token names for clarity. That is, whereas

before we had terminus, more-than-1-terminus and terminus-column, we now use

116

Forbidden Zone

Normal Case

Problematic Case

Figure 43: Characterizing the Forbidden Zone. In the Normal Case, Curvature

DI,“““[CII(G)'C?“)]. In the Problematic Case, 3¢ b
such that Curvature[Cy(c)] >

[Ci(a)) =
etween e and f (in the Forbidden 7o

1
Distance[C, (e).C2(d)]"

117

edge, more-than-1-edge!” and edge-column. We also use paired-below and near-
unpaired-column, as before. Second, two more token value are required, old-edge and
old-edge-column, which receive the values of edge and edge-column, respectively, from
the previous run of the extended algorithm. Third, uncolor-me will replace in-gap. So,
the primary variation from the close-gaps routine is that we have old-edge and old-
edge-column tokens, in addition to their current counterparts. However, the two pairs
are used conjunctively in a way that is analogous to terminus and terminus-column,
respectively. We use the term edge to distinguish it from contour, because it receives the
OR of contour and, optionally, in-gap. The extended list of tokens is as follows:

Message Tokens
Basic Algorithm

° contourq[
° colored1l

Extension for Moving Contours

e edge

e old-edge

¢ edge-column

¢ old-edge-column

e more-than-1-edge

e paired-below

¢ near-unpaired-column

¢ uncolor-me
{ = global tokens; the rest are temporary
Now we give a precise description of the routine for erasing modules effected by contour
motion. It is included in the optimal algorithm inside of step 1., after the optional “close

gaps” routine. Again, let p denote any pixel-scale module, and m denote any higher-scale

module.

Uncolor Modules Which Changed Status During Contour Motion

1"More-than-1-edge means “covers at least one edge pixel and at least one old-edge pixel.”

118

0. When the p’s receive a new image frame in Process 1. of the optimal
algorithm, each module’s old-edge receives the old values from edge before
edge is updated. Edge is then updated with the OR of the latest contour
and, optionally, in-gap from the gap-closing routine. [One step.]

1. After the p’s edge is updated, each performs an Upward Propagation with
“old-edge,” “edge” and “more-than-1-edge” to initialize the m’s so as to
be consistent with the new image; during this Upward Propagation, we do two
special actions: after the first (upward) step, set old-edge-column=1 wherever
old-edge=1 and edge-column=1 wherever edge=1; after the third (outward)
step, set “more-than-1-edge=1" for any modules in which “old-edge=1" and
“edge=1". [Four steps.]

2. At each level, each more-than-1-edge=1 module sends a “more-than-
1-edge=1" message to all modules in its neighboring span of that same level
(using the two outward steps — and not the downward step — of the Downward
Propagation routine). Any old-edge-column=1 module or edge-column=1
module that receives such a message sends up “paired-below=1" to its su-
perior module in the next higher scale level (while affecting neither its own
internal more-than-1-edge nor paired-below values). Any module receiv-
ing a “paired-below=1" message sets its internal paired-below=1. [Three

steps.]

3. At each level, each module whose old-edge-column or edge-column=1
and paired-below=0 sends a “near-unpaired-column=1" message to all
modules in its neighboring span of that same level (using the two outward steps
— and not the upward step — of the Upward Propagation routine). Any more-
than-1-edge=1 module receiving the “near-unpaired-column=1” message
sets its uncolor-me=1. [Two steps.]

4. After receiving an uncolor-me message, each m performs a Downwari
Propagation with uncolor-me; each p updates its internal value accordingly.
[Three steps.]

5. After receiving an uncolor-me message from above, each p performs an
Upward Propagation with uncolor-me; each m updates its internal value ac-
cordingly. [Three steps.]

6. After receiving an uncolor-me message from a horizontal direction, each

119

uncolor-me=1 module sets its colored=0. [One step.]

The routine works as follows. Steps 0. and 1. initialize the modules so as to be
consistent with the new image, with edge=1 for each module which covers a edge, more-
than-1-edge=1 for those which cover more than one edge, and edge-column=1 for those
which have subordinate pixel-scale module whose edge=1; all other token values are set
to 0. The old values are stored in old-edge and old-edge-column.

The result of steps 2. and 3. is that, for each edge pixel and for each old-edge pixel in
the image, only the module(s) in the minimum scale level which barely cover(s) that pixel
and an edge/old-edge pixel in the other time frame will remain with uncolor-me=1 —
all others will have uncolor-me=0. For example, suppose Figure 41 is part of an input
image. Then, after step 3., only the modules which cover both points P, and P, and whose
constituent pixels fall entirely within (or include) the edges of all of the inscribed squares
would be labeled as uncolor-me=1. (They would all have size MAX(d;,d,).) Since P,
and P, are each the closest edge to the other, any module m which covers P; or P, and any
other edge/old-edge of the opposite time frame must have scale > MAX (d, d,). However,
any module covering more than one edge (i.e., one from each time frame), one of which
is P, or P,, and which is higher than the MAX(d;, d,)-scale level, will have received a
paired-below message from the module of the next-lower level that is in that P, or P, edge-
column/old-edge-column. Hence, only those modules of minimum scale which join one edge
to a nearest edge of the other time frame have set uncolor-me=1; all other modules have
uncolor-me=0.

Finally, step 4. causes all pixel-scale modules covered by those higher-scale modules
with uncolor-me=1 to be labeled likewise. Step 5. results in all higher-scale modules that
cover any pixel-scale modules with uncolor-me=1 being assigned uncolor-me=1. Hence,
after steps 5. and 6., every module that covers any part of the solid rectangle in Figure 41.
including the edges, is uncolored prior to entering Process 2. of the optimal algorithm.

The uncolor routine runs in constant time, requiring a total of 17 time steps. It preserves
the network connectivity degree of O(/V). Again, an explicit chain of contingent operations

for each module ensures that events are sequenced correctly.

9.3 Implementation Results

Figures 44 to 52 below show the result of applying the coloring operation to two slightly
different image descriptions. The synthetic edge maps present two identical contour figures.

120

shifted a small amount in an arbitrary direction. Given this, and with an absence of
extraneous contours, we are essentially assured that the MPV precondition imposed on the
contour pairs is not violated. The uncoloring extension works as desired here, and preserves
a considerable amount of the previous coloring result, most notably in the snake figure.
The challenge one must confront when applying the routine to real edge data is getting
rid of extraneous nearby contours that are not invalved in the physical correspondence.
This is usually not a problem if one wishes to link pairs of strong edges; by filtering the
image using a large mask size, one can eliminate most nearby contours that could possibly
confound the mapping. The gap-closing routine can then be applied to the result, prior
to uncoloring. Again, recall our disclaimer, which places much of the burden of real world
description generation on other powerful low level processes. These should construct the

base representation appropriate for coloring without needing much additional computation.

Indeed, in lieu of such a process, we rely on smoothing to remove some of the weaker
edges from the desktop image back in Figure 20. We apply the Canny edge finder with
a mask size of 14 to the two stereo images. The result of the first frame, after normal
coloring, is given in Figures 45 and 46. Then a new edge map is presented, which in
this case is the left part of the stereo pair of images. Using the full-size network, the
uncoloring extension is performed on these two frames, followed by the regular coloring
routine. The result from this should be, and is, that the closed contour of the sccound
frame is completely colored and nowhere else is as well. The colored second frame is
shown in Figures 47 and 48. The amount of work saved is given by the black subregion
inside the contour in Figure 49. This preserved area would be larger, except for some of
the internal contours which map to other to-be internal contours. Perhaps some of those
correspondences involving contours that are colored on both sides could be swept away
before uncoloring is performed between the remaining contour pairs. Finally, the original
lefthand contour map is presented again, uncoloring is performed, and minimum projected
TIME-STEP and saved work results are given in Figures 50 and 51. Unfortunately. this
time the algorithm fails, illustrating the importance of our precondition. The failure is i
to the fact that a few extraneous contours in the lower righthand corner of Figure 50. which
paired with some of the “important” contours of the righthand image, caused some colored
modules that should have been erased to be left behind. The problem occurs only i .
small area where the MPV condition is violated, but the result is over-coloring on a g
scale. In addition, the successful co-occurrence of gap-closing and subregion-uncoloring i
demonstrated in Figure 52. The Figures together illustrate the strengths of the work ahone.
and also point to areas where further study is needed.

121

This extension furnishes our algorithm with some stability in the face of time-varying
data. It uncolors a reasonably small yet sufficient area for moving contours. Generally, the
primal sketch will have edge maps that shift with time, and it is required of intermediate
processes such as coloring that they gracefully (usefully) handle such raw input.

The routine itself can be extended to extract potentially useful information for motion
measurement while it runs. Each module with uncolor-me=1 — i.e., the minimal-sized
modules that cover an edge pixel and an old-edge pixel — can propagate down to its con-
stituent modules this value, which indicates its scale. The pixel-scale modules for which
edge=1 — i.e., which contain part of the latest contour map (with gaps filled-in) — thereby
each receive a value from which it can compute how far away in pixels is the nearest point
on the previous contour. This value is the length of the square module which just barely
bounds the pair of points. Then, one could do one of two things. Using local contour orien-
tation measurements (relative to the module directions), found by some other means, the
values stored in the pixel-scale modules could be used in computing estimates for compo-
nents of the velocity field, such as v*(s), at a cellular level [Hildreth 84], [Horn 86]. On the
other hand, if one employed a network having square modules of several orientations, then
the uncolor-me=1 modules would accurately correspond to the local minimum distance
from points on the latest contour map to those on the previous map. Some example runs

are given in Figure 44.

Figure 44: On the following pages are results from both full-size and compact optimal
algorithms in which areas left behind by moving closed contours are erased prior to the
normal coloring routine. In the first map of this Figure, the numbering system is as follows:
I’s and 5’s are previous contour elements, 4’s, 5’s and 6’s are current contour elements, 2's
and 6’s are previously colored and now erased, and A’s are currently (and were previously)
colored, just prior to another coloring cycle.

Notice how much previous coloring has been carried over from the earlier frame. as
indicated by TIME-STEP=0 in the second and third maps of this Figure. A crooked.
elongated region like the snake would be expensive for any chunk-based scheme to have to
completely recolor.

123

Figure 44

Current and previous 64-by-64 images; the parts of the

Full-Size
UEtlmal
Algorithm

OrHANMFNOMNONO HANMNFHNWOM DO HANM LD OMNONOHNMPHNON OO —HANMILNONORNO HNM
OvHAMHOOMNO D A = A H AN NN NN NN OO MM O OOOPH I H I H P HHIF O DD DWW WO OO

=]
FOO0OO0OO0OO0OO0O0O0OO0O0O0O0O0O0000000O00O00OOHHAINANANANANNANANANANANANANNNNHHOOOOOOOO0OO0OOOO0O0O0O0O
OO0000000O00O00O0O00000O0000OOOHHANNANANNANNANANNANNANNNANNNHHOOO0OOO0OOO00O0000000
HOOO0OO0O0O0O00000O0O0000O0000O00OOHHANNNANANNANANNANANANANNANNANNNHHOOOOOOOO0OO0000000
POOO0OO0OO0O0QOO0O00000000O00O00OO HANNANANANNANANNANNANNANNNANANNNNTHHOOOOO0OO00000000
POO0OO0O0OO0O00O0O00O0O0O0O00CO0O0OOO0OCOHANNANNANNANNANNNANANANNANANNANINANINNNNHOOOOOO00000000O
D000 0000V00O000CO0OOOOOOOOHANNANNANNANNANNNW WWWVWVWOVOOANNNNNHOOOCOOOOO0O0OO0O *
0000000000000 O0V0O0O0O0OO0OOOHANNNNANNANNNNWWWOWANNNANNANNOWVWANNNNHOOOOO0O0000O000O -
POOO0O0OO0O0O0O00O00O0OO0OCOOOOOVOOHANNNANNANNNNOONNLLLALLLLLCANODONNNHOOOOO0O0O00000O -
PO0O0O0000000O00000O0O00OOOHNANNANNANNVOONCLCLLACLLLLLLLLILINOON—HOOOO0O0O0000000 -
GOOOOO0OO00O000O0O0O0O0OCO0OOQOHHANNNNNNPOOUNCACLLLLLLLLLLLLLTANNOOA-1O00000000000 -
0000000000000 O0O0O0O0OOO—ANNNNNNOONCCALAALLLLLA LA LLLILLLLLNOOVHOOO0O00000OC00
O00000000O00O00O0O00OOOONANNNNOVONCTCLCCALALCLLLLLLLLLLLLCLCANNONOOO0O0O0000000 -
eoooooooooooooooooo00122222622AAAAAAAAAAAMAAAAAAAAAA?.SOOOOOOOOO00
HOOOOOO0O0OO0O0OO0000O0O0O0O000O—ANNNNONCLLCLCAALCAC LA L LALLALLLLALLLLLCNAFOOO00000000
0000000000000 000O0O0OO-NNNNONC AL LALLCLCLCAL AL ALLLLLLLLLLNNAFOOO0O0000000
oooooooooooooooooooo1222622AAAAAAAMAAAAAAAAAAAAAAA2210 [eledelolelelolole]
POOO0O0O0O0O0O00O000O0O00OO0COONNNONNIKLACALLALL LALLM ILCLLLLLILLLLLNANHOF OO0O00O00000
HOOOOOOO0OO0O0O000O0CO0O0O0OOIHNOONNCLCLCL LA LLLLL L L L L L (L LLLTNNHAAOHIFOOO0000O
POOO0O0O0O0O0O0O000O0O0O000OOOOONIONNCALLCLLALL LA LA (CLLLLLLLLTNNHOOOFOOO00O0000
HOOOOOOOOCOOOOOOO0O0O0O0O0OO T INONNALLALLLC(LALALLLAL L L LLLLTANTHOOOFOOOO0O0O0O00O
HOOOOOOOOOO0OOOO0OO0O0OOO0O0OOONNG < AAAAAAAAAAAAMAAAAAAAAnZ100004.00000000
=lolelelelelololelololololelolololololololele L it L LA LCLLLLLLLLLLLNHOOOOTOO0000000
(elelololelelolelolalololelalelclelolelalalalellla Lty (LG LLLL L LLLLLL L[L LNNHOOOO0OOTOO0O0O00000
0000000000000 O0O0O0OO0OOOUHNNG (L LLLLLLLLLLL L LLILNHHOOOOOFOOOO00000
PO O0O00O0O0O0O00O0000O00O0000O00OOYrrTNAAAIAACA(LLAANLLLLLLLLNAHOOOO0OOOITOO0000O000
fielelelelslololelolololalolalolololelolololololeol g 1122AAAAAAAMAAAAMAAA?.{;IOOOOOO PFOOO0O00000
POO00O000000O0000000O0O00O000OOTOHHANAALLALALLLLLLLLLLNH—HOOO0O0O0O0OOFOOOO0OO0O0000

[sTelelelelelelelolelolololalolelolololololalalelololololololelololeololololololelalolololelalalalololslolololololoalololololololelo RY

60000000001111111111222223332523333333333444444444455555555556666

124

Projected minimum TIME-STEP when colored

e R R~ — =~ — = = oo

Q1 1##=m-mmmmmmm e mmeee e 128

[olelolele
[olelelelels)

001 ##-—=-m—mm=mmmmmmmmmm=m =129

0
0
0
0

0000
00000000
000000000
000000000

0001#=============mmemeee_ 130

00001#-—---------——---22_27:3]

00000#-—~---—--———--ZZ22227:33

000000000000000001#----------===-===---:33

000000000000000001#------=---===v===e-—-:34

000000000000000000##-----=============-:35

™10 000000

00000000000000000001 #-~---~--~-=—----=---:36

00000000000000000001#---------~-==-====-:37
00000000000000000001#~------~-=-=--—----:38

|

!

|
**
A
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

000000000000000001 #-~----=-==-=--===-==:42

0000000000000000##--~------~-=--—-—----:43

000000000000001#~=-=-==-==---=---~--:44

0000000000000 1 #-===============-=--145

000000000000 #====~=======-=-=-==--146

0
0
0
0
1
1

0001 1#--------m--m---------i47

0
0
0

001#f=-m=mm=mmmmmm - e 148

2 .

-1

1##h=mmmmmmmm e 15

Y P

--------153

7

.

0
0
0
1
1
1
#

Y-

OOO it |
OOO it |
OO0t
OO r—Irivivivritt
OO rirriviist

OOOOrriririvrir—itt
OOO ™ rdvriririi—itg
OO0 it

HririrrA Al Al S Al A e A v e A e S
e R L L e e R e R e el R R R R R L R R bl e D Dt

|
1%
[
[
[
11
11
[
|
!

Hrirrdr" A"l A rHl Al A Al el e e el i 3

HrirdrrrrArmA A A A Al el A A e e -t S R

®*
|
1
1
|
)
|
1
1
|
|
|
|
!
|
|
!
|

=*

®
|
1
|
!
|
1
!
|
|
|
|
|
|
|
|
t

Al Al A A A - R
A Al A e e R
Al A A A e - -S|

R ——~

*
|
[}
|
|
[}
|
!
|
|
[}
|
!
|
!
|

®*
!
|
|
{
|
|
|
|
1
|
|
|
1
|

Bt - R |

e ==}

_____________#
-

N

®
}
|
I
|
|
|
|
I
1
!
I
!

NN

#*
[
[
(I
|
|

—mmmm—emee—-#2

. ¥

mmmmmmee——-#2

et /)

Tt

———— e ———=}}

- —— - - - - - — - ——

s -1

OO OGN

M MY -1

RO §

Y -1

MO

ORI -

O OOV -3

33333333333444444444455"'""'

123456789012345678901

- (NG

125

Projected minimum TIME-STEP when colored

##:x:
RRBBBRBRRRRRARBRBRBRLRERERBRBRRBRBBBRBR BB BRBBABBRREREREREBERERLY
RURBARBRBARBBRBRBBRBRERBBRBRRBB BB BB BBV BBRBEBRBRBRBBRERBREREREREY
RURBARRBBRABBRERBBRRBRBBBRBBURBRBBBRBRBBRRBRRRBRBRERREBUBBBER BB
RURBRBBRERERRRBARBURBERARBRRRBRDBRBRBRDRERBERBRRERBRRBRBBRBABLBBYAY
HRBRBRRBERRBBBBRBBRRERERRRRRRBRBEBRBBRBRRBRBRBBRBRRRBRBRRBERERRY
RURBRRBBEBRRBRBBBRBBERRRLRLRRBRBRBRBBRBRBRRBRBRBBRBRBRBBEREBEREY :
HRBARBRBBARBRBRRBBRERBRRRRBBRBRAGBRBRBRRABRRBRBBRBRRBER BB RBR YR UBY
RURBARBRBERBURBBRBRBERBRBBBRBRBBRBBDRBBRBRARRRBERRERBRBRBRRBERYY
##:

HABRBBRBERBRBBRBBBERBRBBRBRBRBRRRBRBRRBERRERERERBRRRRERURBRARY

Compact
Optimal
Algorithm

b
HBOWONHOOVONDUWPWNIFR OV NOULPRWNIFEOWVO~NOOLPBWNHO

RARBARBARBGRBRRBH21001111 RRRBBBRUVUBHHH1001 111 1S RBRBHRERBALY :
##################10011111################10011111##############:
RUBBABARBRBBABRABR 1001 L L LIRRRRRRBBRBRBRRAR1001 1 11122 RERERBRR B} .
RARBRRARBARBRBRRRR1000Q1 1 1B HRBARBRBBRRRRH100001 1 1 RRBRRRBRBRB R .
RUBBRRWABRABBBARBR100001 11 HHARARBHBRRARBH1100001 L 1 RBRRRUBRBRBRUAY
HERBUUBRRAGRRBLURR 100001 L 1RARRRARRANBRARUN 100001 1 1 RRARBHRABBRUHUY .
RUNBARBABABRARBGRR 100001 L1 RHRBRRRBARBRAN100001 1 1 RUBREBBRBBR WGBS .
HARRBRBRBBBARRABRBL00001 1 1 RRHBRABARARBRHHR100001 L 1 # R B7RRAGRUBHUY :
#RAR{ARAE£10000000000001 1 1284 ######10000000000001 1 1 ## 2R R2RBEREHYY
#URHRURALE10000000000001 1 1########10000000000001 1 1 ####2RRBRBUUYY :
RARNBHARRL10000000000001 1 18R #X####10000000000001 1 1 ittt RURY
#Rs##R2##410000000000001 1 12 ######10000000000001 1 1 it #RRRRR##;M
#ARRA2AR#210000000000001 1 14 ######10000000000001 1 1o HRRBRERI;R#
#udnnnnntt$1000011111 1111118488 8884#1000011 1111111110022 28Y
HURHR###2£100001111 111111 1R#R####R#10000111 111111110 RARRREBRERESR
HARRRAARLEN100001111111 111188228 8##100001111 111111 182%%%RRRAGSRNE:
HARRBRARRH100001 L 1BAHHRBRARBARBRRH1000011 1 RRABHHURBREBRBNRBRA IS
HARRBRARERL100001 L1RAHARARRRBRBARRR100001 1 1 RRRARBARBRRBRBRRABRBRUS .
HABRRRRARR100001 L 1RRHRRARBBRAREBUH100001 1 1 RRRARARRBRBBRBUBBBURNUS .
RRBRABABBR100001 1 1 HHARRARRBRRRRAR#100001 1 1 RHRARARBRRRBBBRARBRB 1Y :
RURNARBERA100001 1 1RRLARABARBRRBHNN100001 1 1 RERRRRRBERERBARRURBUNAGY :
HERBRBBABA100001 L IRRARLARARRRARBHR10000 1 1 I RBRBRBRRERERRARRARAARY :
HRRRBRBVARI00001 1 1 RARHRARARBRAR{{H100001 1 1 HRRAARBRBRBERBURRBA RS :
HARRRRBRAL100001 L 1RARHRRBRABABRR{R100001 1 1 RRRRABURERBBRURBBARUUE :
#u#A4R#BBA#100000000001 111 1##22####100000000001 111 1 RBRARBRERAR SIS :
#RRBRVBB/ER100000000001 111 1##222###100000000001 111 1 RERBRNRRBBRNUR :
#unaRRnn2#1110000000011111##42848###111000000001 111 18R%RHRNRERNRRY :
#andRnnn##1110000000000111 #8884 ###111000000000011 188 8ARRRAABAEBRRE :
#unnd#####1110000000000111########11100000000001 1 18R RRAERBANRANW}Y
Rennanadd11111111100001114#######11111111100001118#2#2RRBBRARRY:
RAR{{{{BRR111111111000011 188 #2882 21111111110000111RBRRRABBHBBBASY .
#unndndtd#1111111110000111###88###11111111100001118BRRBRRARAAAAY :
RURBRBRERBRARRBURRL00001 1 18 RHRNBNHNHANURHR100001 1 1 RBRRRRRRARAURY :
RURBRRRBRBBREB{BERRI00001 1 18R #RARAUNUHRBRARR100001 1 1 BRRBRABBABRARARY :
RRRBRBBBRARRBBRRRRL100001 1 1B HRBRBRBRBARRBRR 1000011 1 BRARRBUBRABRNUS .
RURBRBBRBRERBUBRRRL00001 1 1RA#RHRRRRRRRBRRRR 100001 1 1 RRRRBRARARANNS
HARRARABRUABR#RBRR100001 1 1R BB RRURRRERBARR100001 1 1 RARBRABRRARARUAN : 47
URBBRABBERBAB{BBHR 100001 L 1RRRRBHRURBRURRBE100001 1 1 RRRBRARBRARAREY 48
RARBBRARBRBABABR#R 100001 L 1ARRRBRRBURRBRANH100001 1 1 RHBRBARARARARA
BURRBRBRBRBRBB AR AR 1000011 1RRBRURURURUBRAR100001 1 1 RBRRBRABARERANS :
#RRBBRBRRRRRRRRAH£100000000000000000000000000001 1 1 ####RRRRRSRBAY .
st e 22 #4100000000000000000000000000001 1 1 ####RRARRRLARE .
#unnnnsaggatndni111000000000000000000000000001 1 1 #RARRRRARAAURY
fRnssnnnnnnntttns111000000000000000000000000001 1 1###ARRRRARRSM®}
gttt d###111000000000000000000000000001 1 14nnRAARARRRSRY .
RARRARBHRBRBABARNH11111111111111111111111111111111##ERRARARRRERR .
ganssnnnnnnned et ##11111111111111111111111111 11111 18R ##RBRRRBRRES
RARRAARB{BRBBARBRS11111111111111111111111111 11111 18R8BRURRRAUERE:

REBRBBRBBABRABARRRARRBBBRBBERBRBRRRRREBRBRBBRRBRBRBBABRRRRRBUBRAS
HABRBRBBRABRERBRRARRRRRRBBRBRBRBBBRRRERBRRBBBRRABBBRABRERRRBBURAY
RERBRARBRBBBBBRRBRRRBBRRRBBRERBBERERRRBRARBRRBRBRRRBRRRBRBRUBARER -
BERBRRABRBRRBRBBERRBRBBERBRBRARBRRRRBRBBRBABRBRRBERURBRRRRRBRRRE .
RRRRBBRBBBRBBRRBBRBBBRBERBRBERBABARERRRBARBBRBBRBBBRBERBARRBRUBE

..
..

0000000000111111111122222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

126

WNFROOONOULPBRWNHO

Figure 45: We start by coloring the lefthand edge map. The projected minimum TIME-
STEP when colored is indicated by inverse brightness.

Figure 46: Again, we start by coloring the lefthand edge map. The projected maximum
LEVEL with colored module is indicated by inverse brightness.

Figure 47: At the intermediate stage, we color the righthand edge map, after uncoloring
obsolete areas in the previously-colored lefthand contour. The projected minimum TIME-

STEP when colored is indicated by inverse brightness.

Figure 48: Again, at the intermediate stage, we color the righthand edge map, after uncol-
oring obsolete areas in the previously-colored lefthand contour. The projected maximum
LEVEL with colored module is indicated by inverse brightness.

128

Figure 49: Black areas inside the closed contour depict the work (time) we have saved
in reaching the intermediate stage. The projected minimum TIME-STEP when colored

during the second coloring cycle is indicated by inverse brightness.

Figure 50: We finish by coloring again the lefthand edge map, after trying to uncolor all
obsolete areas in the previously-colored righthand contour. The projected minimum TIN .-
STEP when colored is indicated by inverse brightness. This time the color process explole~.

starting from the bottom righthand corner of the frame. (Contours in this [lefthand: fr.:.

are given in black.)

129

Figure 51: Once again, black areas inside the closed contour depict the work (time) we have
saved. Unfortunately, this transition (partly) failed. The projected minimum TIME-STEP
when colored during the third coloring cycle is :ndicated by inverse brightness.

Figure 52: On the following pages are results from the full-size optimal algorithm in which
areas left behind by moving contours whose gaps become closed as well are erased prior to
the normal coloring routine. In the first map of this Figure, the numbering system is as
follows: 1’s and 9’s are previous contour elements, 4’s, 5’s, 6's and T’s are current contour
clements, 1’s, 3's, 4's, 5's and 6’s are gaps, 2's, 3's and 6’s are previously colored and now
erased, and A’s are currently (and were previously) colored, just prior to another coloring
cycle.

Notice how much previous coloring has been carried over from the earlier frame, as
indicated by TIME-STEP=0 in the second map of this Figure.

130

Figure 52

Current and previous 64-by-64 images; the parts of the

ull-Size
Etlmal
gorithm

O<c
O+ ANNFNOMNONOHHNNHUNWOWMNODNO NN HUNWONDNO NN FHUNWMN OO —HANMHLNONDNHO NN
O ANMHUOMNOD —Hrdri v At v A A H S NN NN NN NN N M N M N) 0N D M O O i H g P o gt <3 LD LO LD LD D LD LD DD OO OO

[elolod ol ol ol =il olsizdisd=izdzizizizizizizizizizizi=izl=l=]l=l=dvi=l{=l=l=lelo]lelololelololololololeclelelolalelelelelelololelalale RN
[elelelelelelolelolololeliclizizicioiolclololelolalololaleleslolalolololololololelolololololalololelelelelelololololelalelolelelole X
[elelelelelelodiolodsizisizizizizizizizizizlzisizizlslol=l=lol=ll=l=lololololelalolelelololelololololelololelolelolelelalolelele X
[232020 202020 28 2 b 2d i md dmdmizinizdzizizizici=izizisl=lel=lol=lol=leleolelolololololololololalololololololololololelalelolo el B
[elelelololeliviziciziciziclolololeleleioimdii%dololololclololololalololelololololalalolololololalalolalelelololololololololele)
[l o288 %0 %ol i s zizizdizdzizicl=icl=i=l=lol=lelelolelolololololclolelolololalelololelololelolololololelololalololele X
jolololelolalclclclelelolelelalololololoidoiziziziolzlclcolclololelolalololalelolelololalololololololalolololalolalolelolelololele)
[Heleleleloizdoiodsdvdoivdzizizizizlcizlclzlvlololololololololololalolololololololololololololololalololololeololololololelolalele N
HOOOOQOOOOOOOOO0O0O00O00O0VO00O0VO0O0O0O0V0OO0OO0VO0O0O0000O00O0O00O0O0COO0OO0OOOO0O0OOO0OO0 *
[olelelelololodiolod®iodd®dzid2dizlclolol=lzl=lvl=l=lolololololololololololololalolololololololololalolololololololelololalelelele R
[mlelelelelelelolololololalolelolalololololalolalololelololalolololelololololalolololalalololololalolololololololololalalelololole X
0000000000000 00000000000O00O0O0OCOOOOTHHHHIHHHHHO HHHOOOOOOOOOOOOOOO0O0O0O +
VO0O000000C00000000000000000000OOTHHANANNANANNNHMHHHHOOQOOOOOOOOOOOOOOOO -
HOOO0OO0OO0O0000O00000000O000O000O0OOOOHHANINANNANANANANANNNNMNME-HOOOOOOOOOOOOOOOO0O00O0 -
AO0000000O0000O000O0000O0O0O0OO0OOCOHHAINANAINANINANAINNNANINMMN M H-HO OO O OO OO0OOOOOO0O000 -
O000000000000O0O00O0000O0CO0QOHHAINANANNANANNANANANNANNANANNNTHHOOOOOOOOOOOOOOOO -
HOOOOOOO0O0OO0OO0O0O0O00O0O0O0O0O0O0O0O0OOHHNANNNANNANNANNANNNNANANNANNNHHOOOOOO0OOO0OOOOO OO -
eoo000000000000000000000112222222222222222222666655%/ [elelelelolelolololele N

~
8000000000000001.11.1.111333333332266222222222226666666Cvu.ooooooooo00 .
>OO00O00000CO0O0COOTHHHHHHMMMMMMN MM WOWNNNNN L <L g < <X <L <L N O OO DOOOUNFTOOOOOOO0OO0O0O0 -
GOOO0O0O0O00O0O0O0OOOO v MMMMMMMPONNN NN N < < € <L <€ < LN O OO DWWV ONNOOO0O00O0O00O0O0O -
LHO0O000000O000OO0O At MMM MMM’ NN NN <€ o «f oL L <L < N0 DO OO0 DDV N OO OOO0OO0OO00O0 -
L TNOOWWOWWVVVUNOOO0OO0OO0O0O0O -
LNOWWOVOVDOOVNOOOOO0O0O0O0O000 -
LNOOVOVOVWPVOVUNFOOOOOOO0OOO -
LTNOWWYWVWVWYVONFOOOOOOOOCOO -
SANANNANNNANNNOFOO0O0000000 -
CSANNNNNNNNNAOFOOO0O000000 -
CSANNNNNNNNHAHAOFFOOO000000 -
CSANANNNNNNNHOOOFOOO00000O0 -
FOOOOOOOO
LSANNNNANNHOOOOFOOOO0O0000 -
QL LLLLNAOOOOFOO0O0O0O0O0O00
LLLLLCNNHOOOOOFOOOOOOO0O
MM AA211°0000A100000000.
AA
A

DO0O0000O0000O0000O T ririvivivrivdvMMMM M) NN ONLO (O 1O OO0 O O OO OO O OO WOLNY
0000000000000 T vivd M MMMMM MM NNNNWOWWONNNNNNNWWOWWDWOOO

POOO0OO0O0OOCOO00O00O0O0O0OO0O0O0O0OOOANANNONNN« < <L, <L

AAAAAAAﬁAAAAAAA
2
2
2
2
2
2
2
2
1
0
0
0
a

CANHHOOOOOOFOOO00000 -

00000000001 11111111123353553333333333333444444444455555555556666

131

Projected minimum TIME-STEP when colored

—————-—————-—--————————————————————--—~——-————-———————---—————-——

———____-—__-__——_-—__———.———————--—--————-—-—-—-——-——_---—_—_————

O ANMPFUWOWMNIDNO NN ON O NHO N
012345678911111111112222222222333

- 1
#ommmmmm om0 36
S Y 4
$mmmmmeeeeee—-138
- 1
$mmmmmm o= 140
$ommm e - 14
$ommm e 142

#ommmmmmmmmmeeeeee- 143
O .

mmmmmmmmmmmmmme—eoo-i45
T I ¢
Y | 4
RS 1
mmmmmmmmmmmmmmeeemao- 149
Y -1

Hrdrdvd i3 3% |

™)
3
_
|
|
|
|
|
|
|
|
|
[}
|
|
|
[}
|
|
|
|
1
*
A A v v e e e e e e

S -
-

AT A1 1O OO OOOO Hrivriviviviviviv |
T 1 H 1O OO OO OO v vt vl vt v v vdviv |
THr A —H HHO OO OO OO Hrivivivivd vt viv |
A H A AHO O OO OO O vt v vt vl vl vi i it |

##----—-------—---------
mm e eeo-153

-2 1

#a-----------------------—-
N 1

R A HOOOO0O0OOOOOOOOO i vririvivivivirivistg |
HArHEAHOOOOO0OO0O0O0O0O0OVOOOOHrrivriviviririviviving |
HrHHOOOOOOOOOOOOOOO v rvrivivivivivivivi |
OO OOOOOOOOOOOOOOOHririvrivrivicivivrii—i %
OO QOOOOOOOOOOOOOOO™vririririvivivivivivivitg
HrHHOOQOOOOOO0OO0O0O0O0O0O0OOH M rrivivirivivrivrivivid
HrHOO QOO0 O0O0O0O0O00OOCOOOHHHHHHH vt
OO [el=lol=lelelelelolololololololalalalal JLol abal ol ol
OO [olelelolelolololalolololololalelel alal talalalal ot 3
HHAHO OO O0OO0OO0O0O00O0O00O0O0O0O0O0OOO Hivriririvrivivivitg
HrHAHOOOO0OOOOOO0O0O0O0O0O0O0OO0OOOHHHririvirivrivitt
HrAr A A A A H A A A A A A O OO OO OO i v i 3
Hririr A A H e H EH HO O O OO v vt i v v vl v i3 |
i A A EH A AT A H A A O O v v v vy v v v - - 3 |

1¢#¢-----------------------------

| vttt e e e e e A e -)
| T vt vt v e e e v e v e e e e e S
IR L el e e R L L e e e e e e Lt |
1) B3 vttt e e e e e v e A e e et)
[. 2 Ll e e e L L L L e L taiminl L. D]
IR 3 ol e e e e e ettt T SR
_____##11111111111111111#'._..__
I N E 1 T e e lalatatatisial T A [|
.____....###2222222*##___.._..._
[I I B I | E. 2. 2. £.£. £ -2 £ 1 N [I O T T I I I
_____...__._.__..__...________._
| R R R O O I O O O I e O T T O I I T T O T T T O I |
[T I O Iy O T O A T O O O O O I I |
[DO O I I U R I T O I T T T T O T T T T O I |
L O T T I I O T I o O O I O O T T O T T T O I I |
[T T I O T I I O T T T T T T T O T T O T |
DO I T T U U I O O I O T T O T T I I I |
[T T T T T T T T T O T T O T T T T O O T T O |
| O e I O O O O O O e T T T T T T T O T T T O T I
L T R I T O O I I O T e T T T T T T I
| O T O O I T O T T T T T T A O I |
LI I T Y O O O O O O O O O T T T T T T T T O I |

Y -1

N N

________________________________-______--------_--_-_-_--_-_-_---58

|

Ov(NM
6666

000000000
01234567

132

10 Conclusion

This thesis has sought to develop an understanding of the region coloring operation as an
efficient and flexible component of visual routines [Ullman 83]. We provided theoretical
motivation for the bounded activation computation, and reviewed its role in the perception
of spatial properties and relations. Then, we have investigated it in light of some basic
biological constraints and explained why the image chunking representation is appropriate.
Next, some fundamental computational limitations for this representation were established.
We observed that despite these theoretical bounds the human vision system is able to
perform coloring tasks efficiently in many instances.

One potentially fruitful direction for future work would be to try to revise an O(log/\)-
complexity coloring algorithm based on some version of the PRAM model (such as [Lim 86))
— possibly by retiming, and so on — so as to use only local communication and meet other
biological constraints as well. Meanwhile, we have designed, implemented and evaluated
a set of preliminary coloring algorithms based on the idea of image chunking. Applying
the principles learned yielded the optimal region coloring algorithm, using parallel square
region chunks. Alteration of this algorithm to optimally employ modules of some other
regular given shape, such as “needle-shaped” modules, as well as the proof for its optimal-
ity, is straightforward. Then, the flexible, optimal scheme was compacted substantially in
terms of space requirements, namely, down to O(N?%logN) elements, where the base repre-
sentation is itself O(/N?). Finally, we were able to extend the optimal algorithms to handle
cases of broken and moving contours. This affirmed the basic scheme’s flexibility and the
integratibility of its multi-scale descriptions.

The Connection Machine implementations behave much like human performance. For
simple smooth curves, coloring rates for the optimal algorithms are very fast; for complex
figures, especially in the vicinity of extraneous contours, it can be considerably slower.
Also, there is probably a connection between the effects of motion ambiguity suffered
by our uncoloring extension, in matching the wrong pair of contours according to the
weak “proximity constraint,” and certain psychophysical illusions based on similar causes
(e.g., the wagonwheel turning backwards in a movie) [Hildreth 84]. Due to the network's
configuration, the coloring times are invariant to figure position, and approximately so with
respect to orientation. For many simpler curves, the coloring time does not increase greatly
with increase figure scale. These traits generally coincide with what is understood about
human performance.

These factors together suggest that the compact optimal region coloring model. an

133

possibly one or more of its extensions, comprise a sound model for human vision.

A Appendix: Retiming Can Reduce Connectivity

Sometimes bending the rules pays off. For instance, consider the case in which one would
like a pixel-scale module to update all modules that cover it and yet do not cover a contour.
Rather than passing a message directly to each of these modules and checking for proper
conditions in one step (a proposition implying O(N?)-connectivity), one could envision
passing data through a few modules, checking for correct conditions along the way, then
continuing on to a few more modules from each of these, checking again, and so on, with
limited branching. This would appear to contain our connectivity degree. However, we
know that we would not be able to perform this stream of actions in one time step (or a
constant number of steps).

Fortunately, the systolic conversion theorem [Leighton et al. 88] enables us to convert
such a semisystolic array into an equivalent systolic network through a series of local re-
timing steps. Both types of networks are composed of processors, which in turn consist
of combinatorial logic and registers. Refer to Figure 53. The combinatorial logic compo-
nents perform the calculations, while the registers provide the memory and the timing.
At the beginning of each time step, data passes through the network (including zero or
more combinatorial logic components, which may alter it) until registers are reached. All
data are stored in registers, at the end of the step. The two models of computation differ
because the processors differ as follows. For the systolic processor, all the data that enters
the processor passes through the combinatorial logic component and then is stored in one
of the registers within the processor before the end of the time step. For the semisystolic
processor, the data that enters the processor passes through the combinatorial logic com-
ponent and then may or may not end up in one of the registers within the processor before
leaving the processor. Informally, the major difference is that in a semisystolic array, a
processor may broadcast to any number of other processors at any distance in one time
step, while in a systolic array, only a limited number of local processors can receive the
message. It is easier to design and implement parallel algorithms in terms of semisystolic
arrays, partly because broadcasting is allowed.

Based on the systolic conversion theorem, a method called retiming mechanically trans-
forms semisystolic networks into systolic networks. First, we represent the semisystolic

network as a weighted graph. Each node corresponds to a combinatorial logic component.

134

Systolic Processor Semisystolic Processor
Moore Machine) (Mealy Machine)

outputs

il

logic

Figure 53: Systolic versus semisystolic processors. (Due to [Leighton et al. 88].)

each edge corresponds to a connection between such components, and the weight of the
edge corresponds to the number of registers along that link. The systolic conversion theo-
rem states that “Given a semisystolic network S with graph G, there is an acceptable global
lag function such that the retimed network is systolic <=> the graph G - 1 has no negative-
weight cycles.” The global lag function is defined by lag(v) = weight of least weight path
from v back to the host in G - 1. Retiming then consists of shifting the registers around

so as to eliminate zero-weight edges. Figure 54 shows the two ways of lagging a node.

A rigorous review of semisystolic-to-systolic conversion would be straightforward, but
beyond the scope of this thesis (but see [Leighton et al. 88]), especially since we give com-
plete descriptions of our own algorithms above. However, the important points are illus-
trated in the simple example below: conversion of a network for palindrome recognition.
A palindrome is a string of the form ww”, where w" is just the substring w in reverse order.
We would like an algorithm which inputs the string «,, z, ...,y one element at a time. and
after each element z; is input (1 < i < N), tells us whether Ty, Z2,...,T; is a palindrome.
Figure 55 shows the steps in the algorithm of the Palindrome Recognizer. Figure 56 shows
the weighted graph for the semisystolic network. Figure 57 shows the semisystolic network.
Figure 58 shows the systolic network, resulting from conversion of the semisystolic one. The

135

Lag of +1 Lag of -1

+1 -1 -1 +1
+1 -1 -1 +1
+1 -1 -1 +1
This node receives its input This node receives its input
one step later than before. one step sooner than betore.

Figure 54: Lagging a node. A. We lag a node by +1 by adding a register to each incoming
edge and removing a register from each outgoing edge. B. We lag a node by -1 by removing
a register from each incoming edge and adding a register to each outgoing edge.

136

. x4 x3 x2 x1 Step 0

. x5 x4 x3 x2 Step 1
x1

. x6 x5 x4 x3 | X2 Step 2
x1

. x7 x6 x5 x4 x3 Step 3
x1 x2

. x8 x7 x6 x5 | X4 x3 Step 4
x1 x2

Figure 55: Steps in the recognition of a palindrome.

final network in this case consists of two independent sets of registers. Thus, two problems
may be pipelined (interleaved), each running at half speed. Notice what has happened: in
the semisytolic form, it would be necessary either to pass an accumulating logical result
through several processors in one step, or one would need to read and decode local values
from a number of output pads. Instead, retiming has enabled us to use a limited number
of input/output pads (one in this case), and still proceed about as quickly as other more
obvious algorithms that require more [J. Ullman 84]. In this work, we have formulated an
O(N?3)-degree algorithm in terms of an O(N)-degree semisystolic network, and then, by
retiming, converted this into a lagged, systolic network. The additional registers needed
coincide exactly with the already existing processors.

137

Figure 56: Weighted graph of the semisystolic network of the palindrome recognizer.

Host

Figure 57: Semisystolic network of the palindrome recognizer.

Figure 58: Systolic network of the palindrome recognizer.

138

References

[Ballard & Brown 82] D.H. Ballard, C.M. Brown. Computer Vision. Englewood Cliffs, NJ:
Prentice-Hall, 1982.

[Beymer 89] D. Beymer. “Junctions: Their Detection and Use for Grouping in Images,”
MS Thesis, Department of Electrical Engineering and Computer Science, MIT, May
1989.

[Edelman 85] S. Edelman. “Fast Distributed Boundary Activation,” MSc Thesis in Com-
puter Sciences, Weizmann Institute of Science (Rehovot, Israel), June 1985.

[Finke & Pinker 82] R.A. Finke and S. Pinker. “Spontaneous Imagery Scanning in Mental
Extrapolation,” Journal of Ezperimental Psychology: Learning, Memory, & Cognition,
8, 142 - 147, 1982.

[Fleck 88] M. Fleck. “Boundaries and Topological Algorithms,” PhD Thesis, Department
of Electrical Engineering and Computer Science, MIT, September 1988. 14

[Hildreth 84] E.C. Hildreth. The Measurement of Visual Motion. Cambridge, MA and Lon-
don: The MIT Press, 1984.

[Horn 86] B.K.P. Horn. Robot Vision. Cambridge, MA and London: The MIT Press, 1986.

[Jolicoeur 87] P. Jolicoeur. “A Size Congruency Effect in Memory for Visual Shape,” Mem-
ory & Cognition, 15, 531 - 543, 1987.

[Jolicoeur et al. 86] P. Jolicoeur, S. Ullman and M. Mackay. “Curve Tracing: A Possible
Basic Operation in the Perception of Spatial Relations,” Memory & Cognition. 14.
129 - 140, 1986.

[Jolicoeur & Kosslyn 85] P. Jolicoeur and S.M. Kosslyn. “Is Time to Scan Visual Images
Due to Demand Characteristics?” Memory & Cognition, 13, 320 - 332, 1985.

[Kandel & Schartz 85] E.R. Kandel and J.H. Schwartz. Principles of Neural Science. 2d
ed. New York, NY: Elsevier Science Publishing Co., Inc., 1985.

[Leighton et al. 88] T. Leighton, C.E. Leiserson, B. Maggs, S. Plotkin, J. Wein. “Theviny
of Parallel and VLSI Computation,” Lecture Notes for 18.435/6.848, Laboratory fur
Computer Science, MIT, March 1988.

139

[Lim 86] W. Lim. “Fast Algorithms for Labeling Connected Components in 2-D Arrays,”
Report No. NA86-1, Thinking Machines Corporation (Cambridge, MA), 1986.

[Mahoney 87] J.V. Mahoney. “Image Chunking: Defining Spatial Building Blocks for Scene

Analysis,” MS Thesis, Department of Electrical Engineering and Computer Science,
MIT, January 1987.

[Marr 82] D. Marr. Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. New York: W. H. Freeman and Company, 1982.

[Minsky & Papert 88] M. Minsky and S. Papert. Perceptrons. Expanded ed. Cambridge,
MA and London: The MIT Press, 1988.

[Reed et al. 83] S.K. Reed, H.S. Hock and G.R. Lockhead. “Tacit Knowledge and the Effect
of Pattern Configuration on Mental Scanning,” Memory & Cognition, 11, 137 - 143,
1983.

[Remington & Pierce 84] R.W. Remington and L. Pierce. “Moving Attention: Evidence
for Time-Invariant Shifts of Visual Selective Attention,” Perception & Psychophysics,
35, 393 - 399, 1984.

[Riley 81] M.D. Riley. “The Representation of Image Texture,” SM Thesis, Department of
Electrical Engineering and Computer Science, MIT, 1981.

[Shafrir 85] A. Shafrir. “Fast Region Coloring and the Computation of Inside/Outside Re-
lations,” MS Thesis, Department of Applied Mathematics, Weizmann Institute of
Science (Rehovot, Israel), May 1985.

[Shiloach & Vishkin 1982] Y. Shiloach and U. Vishkin. “An O(logN) Parallel Connectivity
Algorithm,” Journal of Algorithms., 3, 56 - 57, 1982.

[Shulman et al. 79] G.L. Shulman, R.W. Remington and J.P. McLean. “Moving Attention
through Visual Space,” Journal of Ezperimental Psychology: Human Perception and
Performance, 5, 522 - 526, 1979.

[Tsal 83] Y. Tsal. “Movements of Attention across the Visual Field,” Journal of Ezper:-
mental Psychology: Human Perception and Performance, 9, 523 - 530, 1983.

[J. Ullman 84] J. Ullman. Computational Aspects of VLSI. Rockville, MD: Computer Sci-

ence Press, Inc., 1984.

140

[Ullman & Sha’ashua 88] S. Ullman and A. Sha’ashua. “Structural Saliency: The Detec-
tion of Globally Salient Structures Using a Locally Connected Network,” A.I. Memo
No. 1061, Artificial Intelligence Laboratory, MIT, July 1988.

[Ullman 76] S. Ullman. “Filling in the Gaps: The Shape of Subjective Contours and a
Model for their Generation,” Biological Cybernetics, 25, 1 - 6, 1976.

[Ullman 83] S. Ullman. “Visual Routines,” A.I. Memo No. 723, Artificial Intelligence Lab-
oratory, MIT, June 1983.

[Varanese 83] J. Varanese. “Abstracting Spatial Relations from the Visual World,” BSc
Thesis in Neurobiology and Psychology, Harvard University, 1983.

141

