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Abstract

Explaining and predicting the behavior of ecological systems has been one of the greatest
challenges in ecology. One promising route to accomplish this challenge has been based on
the mathematical modeling of species abundances over time. However, finding a compro-
mise between tractability and realism has not been easy. Functional responses in 2-species
models and higher-order interactions in 3-species systems have been proposed to reconcile
part of this compromise. However, it remains unclear whether this compromise can be
fulfilled and extended to multispecies models. Yet, answering this question is necessary
in order to differentiate whether the explanatory power of a model comes from the gen-
eral form of its polynomial or from a more realistic description of multispecies systems.
Nevertheless, extracting the set of conditions compatible with feasibility (i.e, the necessary
conditions for coexistence or of species, stability and permanence), even at the 2-species
level, remains a big mathematical challenge. Currently, there is no methodology that can
provide us with a full analytical understanding about feasibility for any given model.

Here, we develop a general method to quantify the mathematical consequences of adding
higher-order terms in ecological models based on the number of free-equilibrium points
that can emerge in a system (i.e., equilibria that can be feasible or unfeasible as a func-
tion of model parameters). We characterize complexity by the number of free-equilibrium
points generated by a model, which is a function of the polynomial degree and system’s
dimension. We show that the probability of generating a feasible system in a model is an
increasing function of its complexity, regardless of the specific mechanism invoked. Our
results reveal that conclusions regarding the relevance of mechanisms embedded in complex
models must be evaluated in relation to the expected explanatory power of their polynomial
forms. Then, we propose a general formalism to analytically obtain feasibility conditions
for any population dynamics model of any dimension. From our methodology, we establish
mathematically how two or more model parameters are linked—a task that is impossible
to perform with simulations. By showing how feasibility can be studied as a function of a
given model, we establish the partial conditions for species coexistence, moving us a step
closer to the goal of systematically understanding the behavior of ecological systems.

Thesis Supervisor: Serguei Saavedra
Title: Associate Professor of Civil and Environmental Engineering
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overestimate values and are close to the ones in the expression of E(m). . . 46

3-2 Same as in Figure 3-1 but using a uniform distribution with mean zero.

Specifically, we plot pU(m) and fit it with 1−(1−Ê(m)/m)m, where Ê(m) =
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Chapter 1

Introduction

1.1 Motivations and Overview

One of the long-standing questions in ecology is how can we know whether an observed

set of species (e.g., bacteria, plant, insect, or mammal species) in a given place (e.g., hu-

man host, natural habitat) will coexist with one another across a period of time [1, 2].

The difficulty in answering this question resides in knowing the exact equations govern-

ing the dynamics of ecological systems, together with the high uncertainty regarding the

initial conditions, parameter values, intrinsic randomness, and more importantly, how the

changing external conditions (such as biotic and abiotic factors) will affect the dynamics

[3–7]. This complexity of multidimensional and changing factors has typically taken both

theoretical and empirical studies to choose between understanding and predicting species

coexistence [8, 9].

Theoretical and empirical ecological studies are pushing community ecology into a more

descriptive science. In doing so, modelling changes in species abundances over time has be-

come common practice. With minimal assumptions (i.e., no spatial variety), these models

yields a system of coupled ordinary differential or difference equations [10–12]. In essence,

these equations connect the changes in a species abundance with its overall growth rate

(i.e., difference between its growth and mortality rates). These rates, which are functions

of the species intrinsic growth rate as well as its interaction with the other species in the

community (i.e., its environment), are not uniquely defined. However, they are chosen to

provide tractability (simplicity) and preserve realism (complexity) [11]. Indeed, finding a

15



compromise between tractability and realism has not been easy [13, 14].

It has been debated whether difference (i.e, discrete) or differential (i.e, continuous) mod-

els should be adapted in ecological studies [11, 15]. For instance, in the presence of a

single species (or in the absence of species interactions), the simplest ordinary differential

equation that has been used to model its abundance is the logistic model, whose solution

(i.e., the sigmoid function) is available in closed form [16]. Note, however, that there is

no general solution available for the logistic map, which is the discrete analogue of the

logistic model [15]. Moreover, chaos is observed in the univariate discrete map, unlike its

continuous analogue where chaos is observed in three dimensions and higher [17]. Due to

the apparent high dynamical and mathematical complexity of ecological difference equa-

tions at the univariate level, continuous models have become more popular. As a result,

extensive analytical work with continuous models has been done with two-species systems

and numerical work has been primarily conducted study species coexistence, food-webs

and species invasion with multispecies [18–29].

One of the simplest multispecies systems is the Lotka-Volterra (LV) model [18, 30]. In LV,

the per-capita increase in species abundance is a linear function of all the species in the

ecological system. The LV model has been known for its good predictive and forecasting

capacities; however, it is an approximate model that cannot encapsulate all the complexities

of an ecological system [12, 31–33]. Since the exact equations that govern the dynamics of

ecological systems are unknown, researchers have been modifying the LV model to include

higher-order terms in the hope of increasing realism (i.e., mimicking the observed data as

close as possible). As a result, the linear functions in LV models are replaced by polynomial

functions (i.e., higher-order terms) or polynomial fractions. Hence, polynomial systems

appear almost everywhere in the theoretical ecology literature. They almost certainly take

the form dNi/dt = Nifi(N)/qi(N), where the f ’s and the q’s are polynomials in species

abundances N = (N1, N2, . . . , Nn)T . However, these models have been extensively utilized

blindly and treated as black boxes without any deep understanding on their behavior.

Recent studies have mistakenly perceived that mathematically there is nothing to prevent

the inclusion of higher-order terms in ecological models [34].

Two of the simplest polynomial replacements or ecological concepts used to modify the LV

model is the introduction of functional responses in 2-species models [11, 35] and higher-

order interactions (HOIs) in 3-species systems [36]. Functional responses, which correspond

16



to the number of prey attacked, killed, and consumed per predator, enter the LV equations

as polynomial fractions. These responses appear extensively in predator-prey models and

food-webs, especially after Holling introduced three types of functional responses, which

were successful in reproducing some of the dynamics of many 2-species systems [35]. On

the other hand, HOIs correspond to the ”unseen” effect of one species on the others. That

is, the effect of species A on the per capita growth rate of species B might itself depend

on the abundance of a third species C. These effects are typically translated as addition of

higher-order terms in 3-species LV models [10, 37–40]. However, it remains unclear whether

this compromise can be extended to multispecies models. Yet, answering this question is

necessary in order to differentiate whether the explanatory power of a model comes from the

general form of its polynomial or from a more realistic description of multispecies systems.

In fact, even at the level of two-species systems, we do not have enough mathematical tools

to fully analyze dynamical systems of the form mentioned earlier as closed form solutions.

Therefore, research programs have been mainly focused on solving numerically dynamical

systems. However, conclusions derived from this numerical work are typically specific of

the input parameters (since it is generally impossible to simulate every possible scenario).

The main objective of this thesis is to build a general unifying framework to study an-

alytically systems of the form dNi/dt = Nifi(N)/qi(N) for any dimension and level of

complexity. In particular, this thesis will be focused on understanding the existence of

feasible solutions, which we defined as the existence of steady state abundances whose

components are all real and positive (ecologically, feasibility implies that all species abun-

dances at equilibrium are positive). Importantly, feasibility is a necessary condition for

species coexistence in equilibrium dynamics, persistence, and permanence in dynamical

models of the form mentioned above. In fact, it has been been proven that this type of

models cannot even have bounded orbits in the feasibility domain without a feasible equi-

librium point [41]. While analytic solutions for feasibility are known for simple 2-species

systems, it has been unclear how to perform the same analysis for models with higher

complexity. Thus, this thesis aims to contribute to the ecological literature by unlocking

necessary mathematical tools to study natural ecological systems.
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1.2 Thesis Outline

In this thesis, Chapter 2 examines the effects of adding higher-order terms in ecological

models. In particular, it examines the effect of multiple-equilibrium points on a model’s

capacity to change its behaviour. We show that adding a single free-equilibrium point to

a 2-species system, one can more easily move from feasible to unfeasible solutions, and

vice versa, compared to the LV model. Then, we introduce a general method, based

on Bernshtein’s theorem, to count the number of free-equilibrium points of unrestricted

polynomial dynamical systems. Then, we provide a formal mathematical proof based on

Bernshtein’s theorem to show that the number of free-equilibrium points in LV models

with HOIs increases exponentially with the dimension of the system. Finally, we discuss

how HOIs, not only increase the complexity of a model, but also its capacity to fit any

empirical data, calling for a methodology to properly compare the explanatory capacity of

an ecological model outside of its polynomial form. This will be answered in Chapter 3.

Chapter 3 examines and quantifies the effects of adding complexity into ecological models

as a function of their polynomial form. The chapter expands on the models examined in

Chapter 2, and characterize the complexity of a model by the number of free-equilibrium

points (equilibirum points whose feasibility depend on parameter values) generated by it,

which is a function of the polynomial degree and system’s dimension. First, using a 1-

dimensional model, we show that its probability of feasibility increases as a function of its

polynomial degree when parameter values are arbitrarily chosen from a given probability

distribution. Next, we extend the univariate example into a multidimensional case to show

that the probability of generating a feasible multispecies system is an increasing function

of its complexity. Then, we study modifications to the linear LV model using HOIs and

also functional responses where parameters are restricted. Finally, we discuss how the

probability of feasibility can be used as a null model to assess the explanatory contribution

to feasibility of complex ecological models. This probability analysis is numerical and in

the next chapter we provide a general methodology to move to an analytic understanding.

In Chapter 4, we propose a general framework that can find the feasibility conditions of any

model in any dimensions without the need to solve for the equilibrium locations. We start

the chapter with a methodology that finds the feasibility conditions of a univariate system,

2-species systems, and multispecies systems. There are differences in such cases and we will
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provide examples in each case to demonstrate the methodology and show that the obtained

feasibility conditions are accurate. Also, the chapter includes application examples where

we apply the methodology on the simplest ecological models that are impossible to solve for

the location of equilibrium points analytically. The first example is a 2-species LV model

with type II functional responses while the second example is a 3-species LV system with

higher-order interactions. Specifically, we show how to find the range of parameters that

are compatible with feasibility. Finally, we discuss advantages of our work and limitations

of our formalism.

In Chapter 5, we summarize the thesis’s findings in the conclusion section and discuss

future avenues of research derived from our study. More specifically, we discuss how future

work can focus on finding necessary and sufficient conditions for stability and permanence

for LV models and to general polynomial ecological systems. This is important as these two

conditions are not known, but represent the necessary and sufficient conditions for species

coexistence. Lastly, we close the thesis by discussing the use of non-polynomial ecological

systems, how to characterize their complexities, and how to compare fairly between two

non-polynomial models. This last part has the aim of finding potential extensions of our

work to any type of ecological model without restrictions.
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Chapter 2

Adding Higher-Order Terms in

Ecological Models

2.1 Introduction

Lotka-Volterra (LV) models [18, 30] have provided fundamental insights about ecological

systems for almost a century [10]. Yet, it is known that LV models are parsimonious

approximations [12, 31] and do not capture all the complexities arising from the dynamics

of ecological systems under investigation [32, 33]. Many times, the prediction errors of LV

models have been attributed to the existence of higher-order interactions (HOI) [42]. More

broadly, HOIs can be seen as the “unseen” influences of one species on the others. That is,

the effect of species A on the per capita growth rate of species B might itself depend on the

abundance of a third species C due to either compensatory effects, supra-additivity, trait-

mediated effects, functional effects, meta-community effects, or indirect effects [10, 37–40].

Therefore, HOIs have been typically translated as addition or modifications of higher-order

terms in existing population dynamics models [36].

It has been shown that HOIs can stabilize dynamics in competition systems [43], promote

diversity in ecological communities [44], capture unexplained complexity of LV models

[45, 46], and dominate the functional landscape of microbial communities [47] (but it has

been shown that HOIs play a non-significant role in predicting protozoan populations,

[48]). While it is known that these perceived benefits come from an increasing number

of alternative solutions given by the nature of multivariate polynomials [49], this math-
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ematical “advantage” has not been formally quantified. In fact, it has been perceived

that mathematically there is nothing to prevent the inclusion of higher-order terms in

ecological models [34]. Yet, this formal quantification is important in order to increase

our understanding about how to best investigate the role of higher-order interactions (and

higher-order terms, in general) in shaping ecological dynamics.

In general, it is expected that adding HOIs into population dynamics models, the num-

ber of both solutions and parameters increases, introducing more complex dynamics and

facilitating the capacity of the model to fit experimental data or empirical observations.

While studies have been statistically penalizing for this increase [46, 50], it is still unclear

whether the number of parameters is the main factor controlling the degrees of freedom

of ecological models. For example, the existence of feasible equilibrium solutions is a

crucial condition in the context of species coexistence in ecological dynamics of the form

dNi/dt = Nifi(N )/qi(N ) (i.e., a necessary condition for persistence, permanence, and the

existence of bounded orbits in the feasibility domain, see [41, 51, 52]). Yet, two dynamical

models with the same number of parameters can have different numbers of free-equilibrium

points (i.e., solutions that can be either feasible or unfeasible as a function of model pa-

rameters). Note that it is possible to predict either species coexistence or non-coexistence

by having free-equilibrium points that can turn into feasible or unfeasible solutions, respec-

tively. In the classic LV model, there is only one free-equilibrium point regardless of the

dimension of the system [53]. However, it is unclear exactly how much HOIs can increase

the number of free-equilibrium points and multiply the ways of reaching any ecological

dynamics, which standard statistical methods cannot penalize for [54, 55]. In other words,

is the explanatory power of HOIs a mathematical construct that comes from feeding more

free-equilibrium points into ecological models?

To answer the question above, first we investigate the effect of multiple free-equilibrium

points on the capacity to alter the behavior of ecological systems. Specifically, we illustrate

this effect through a simple example, which shows that by adding a single free-equilibrium

point to a 2-species system, one can more easily move from feasible to unfeasible solutions

compared to the LV model. Then, we introduce a general method, based on Bernshtein’s

theorem [56], to formally count the number of free-equilibrium points of polynomial dy-

namical systems. Then, we apply this method to show that the number of free-equilibrium

points in LV models with HOIs increases exponentially with the dimension of the system.
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Finally, we discuss the implications of our findings in the context of fitting HOIs to empiri-

cal data, comparing the explanatory power of ecological models, and the use of higher-order

terms in general.

2.2 Understanding the Effects of HOIs

To understand the effects of adding HOIs on the dynamics of ecological systems, we con-

sidered the simplest possible LV model with HOI terms. This model involves the classic

2-species LV system with an additional non-additive interaction term per capita N1N2:


dN1

dt
= N1(r1 + a11N1 + a12N2 + b1N1N2)

dN2

dt
= N2(r2 + a21N1 + a22N2 + b2N1N2),

(2.1)

where Ni and ri correspond to the abundance (biomass) and maximum per capita growth

rate of species i, respectively. Additionally, aii corresponds to self-regulation terms, aij

corresponds to interspecific terms, and bi corresponds to HOI terms.

In general, it is known that the equilibrium points of a system like Eqn. (2.1) are given by

the intersection points of the systems’ isoclines, which are obtained by setting the time-

derivatives to zero [12]. We can classify these equilibrium points into either rigid or free.

We defined rigid-equilibrium points to be the ones restricted to particular subsurfaces of

the space regardless of the values that the model parameters can take. Hence, there is

less flexibility in terms of controlling their locations in space. For example, in the classic

2-species LV model (without HOI terms, i.e., b1 = b2 = 0 in Eqn. (2.1), no matter how

we change the model parameters, one equilibrium point will be always at the origin, while

two equilibrium points will lie always along each of the axes. Thus, in the LV model, rigid-

equilibrium points can be defined as the ones which contain at least one zero coordinate

(i.e., boundary-equilibrium points). On the other hand, we defined free-equilibrium points

as the ones whose locations are not restricted in space and are completely dependent

on model parameters. As mentioned before, it has already been proved that LV models

without HOI terms have one single free-equilibrium point [53].

While previous studies [57–59] have focused on estimating numerically the total number of

equilibrium points (i.e., without separating rigid- from free-equilibrium points), only free-
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equilibrium points dictate the dynamics of a feasible system [60]. As we mentioned before,

the existence of a feasible solution is a necessary condition for persistence and permanence

in dynamical models of the form dNi/dt = Nifi(N )/qi(N ) [41, 51]. Similarly, it has

been proved that this type of models cannot have bounded orbits in the feasibility domain

without a feasible free-equilibrium point [41]. In fact, due to the non-revival property of

such models [53], the rigid-equilibrium points are the free-equilibrium points of the same

model after substituting the corresponding zero abundances (of the species that die out)

and deleting the equations which involve their time derivatives (as they will be zero as well).

Therefore, for the purposes of this work, we will focus on the free-equilibrium points of LV

models. Yet, for the interested reader, we have derived an analytic formula that depends

solely on the number of free-equilibrium points to count the total number of equilibrium

points in a LV model with or without HOI terms (see Chapter 2.6).

To obtain the free-equilibrium point(s) of a system and its (their) effect on the dynamics

of a system, we need to obtain the free-isocline equations, which are the classic isocline

equations but considering that no state variable can take a value of zero. For example, the

free-isocline equations for System (2.1) read:

r1 + a11N
∗
1 + a12N

∗
2 + b1N

∗
1N
∗
2 = 0

r2 + a21N
∗
1 + a22N

∗
2 + b2N

∗
1N
∗
2 = 0,

(2.2)

where N∗1 and N∗2 are the steady-state abundances. Then, to provide the number of free-

equilibrium points for this system, we can rewrite Eqns. (2.2) such that each equation is

expressed in terms of a single state variable:

(a11b2 − a21b1)N∗
2

1 + (r1b2 − r2b1 + a22a11 − a21a12)N∗1 + (r1a22 − r2a12) = 0

(a12b2 − a22b1)N∗
2

2 + (r1b2 − r2b1 − a22a11 + a21a12)N∗2 + (r1a21 − r2a11) = 0.
(2.3)

The uncoupled Eqns. (2.3) can be solved independently via the quadratic formula. We

denote the solutions of the first and second equations by N∗
±

1 and by N∗
±

2 respectively.

Note that N∗
±
i are the solutions to the quadratic equation where the sign of the square-root

of the determinant is positive and negative, respectively. It is easy to check that (N∗
+

1 ,

N∗
−

2 ) and (N∗
−

1 , N∗
+

2 ) are the solutions to Eqns. (2.2). Therefore, necessary and sufficient
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conditions for feasibility will be satisfied as long as either (N∗
+

1 , N∗
−

2 ) or (N∗
−

1 , N∗
+

2 ) is

feasible. While closed form solutions of systems with more than two free-equilibrium points

are not known, already the solutions expressed in Eqn. (2.3) reveal that System (2.1) has

2 free-equilibrium points.

Note that if b1 = b2 = 0, the two separate solutions (N∗
+

1 , N∗
−

2 ) and (N∗
−

1 , N∗
+

2 ) collapse

into a single one (i.e., N∗1 , N∗2 ). Under this condition (i.e., the classic 2-species LV model

without HOI terms), species will coexist when the only free-equilibrium point is both fea-

sible (i.e., positive) and stable [61]. However, if b1 and b2 are not zeros, species coexistence

will be attained when at least one free-equilibrium point (out of the 2) is feasible and keeps

the trajectory of the initial condition close to it at all times. Note that the characteristic

equation of Eqns. (2.2) can be written as λ2 − tr(J)λ + det(J) = 0, where J = [ ∂
2Ni

∂t∂Nj
].

Thus, for any 2-dimensional system, the necessary and sufficient conditions for an equilib-

rium point to be asymptotically stable are tr(J) < 0 and det(J) > 0 [12]. These conditions

are, in fact, incorporated into the feasibility conditions, resulting in two sets of conditions

that at least one needs to be fulfilled. That is, the existence of the second free-equilibrium

point gives an additional opportunity to have a feasible system, and potentially stable if

no parameter restrictions are imposed a priori. Of course, the answer to the question of

which of the two free-equilibrium points will be stable completely depends on the choice

of model parameters.

Because of the additional conditions that are introduced via extra free-equilibrium points,

one may be tempted to conclude that HOI terms do promote species coexistence (feasible

and stable solutions). However, it is easy to show that the conditions to achieve non-

coexistence (unfeasible or unstable solutions) also increase by adding HOIs. For instance,

apart from changing the species abundances in the real domain, we can impose that any one

of the following quantities N∗
+

1 , N∗
−

1 , N∗
+

2 , or N∗
−

2 has an imaginary component, making

both solutions (N∗
+

1 , N∗
−

2 ) and (N∗
−

1 , N∗
+

2 ) to be outside of the feasibility domain (due to

the quadratic formulation of the uncoupled Eqns. (2.3)—imposing N∗
+

1 to have an imag-

inary component implies that its complex conjugate in the other solution tuple N∗
−

1 has

an imaginary component as well. Note that reaching imaginary steady-state abundances

from real model parameters is impossible to attain in the classic LV model without HOIs

[53]. Therefore, HOIs increase the capacity of the system to reach either coexistence or

non-coexistence (given that the imaginary domain for abundances has become accessible).
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However, the exact number and identity of the potential locally stable points fully depend

on the model selected: order of the HOI terms, number of species, and the parameter space

under consideration. Note that this choice is typically associated with the specific research

question. For example, if parameters are restricted in a region that yields no feasible free-

equilibrium points, coexistence is impossible. If one restricts model parameters in a LV

model with HOIs to have exactly one feasible free-equilibrium point, the model will be

topologically equivalent to a classic LV model [62]. Similarly, by considering other sets of

model parameters, competitive exclusion or coexistence can be made more or less likely.

Therefore, whether the addition of HOIs makes competitive exclusion or co-existence more

likely is all dependent on the choice of model parameters.

Finally, it is important to notice that the overall flexibility gained by adding extra HOI

terms can further increase depending on the model. For example, by adding quadratic

terms per capita (i.e., N2
1 and N2

2 ) to Eqn. (2.1), it can be shown that the system will

have 4 free-equilibrium points and 4 sets of separate solution tuples, from which at least

one of them has to change to reach coexistence (or non-coexistence). That is, HOIs can

increase the number of free-equilibrium points, and in turn, increase the flexibility of the

system to reach any possible dynamics. In the context of fitting data into models [46], while

the free-equilibrium points can be feasible or unfeasible, without parameter constraints the

equilibrium points can always yield feasible solutions. For example, in the analysis of time-

dependent quantities (such as species abundances), the most typical approach is to use the

initial time points as the initial conditions to fit the dynamics of a system. Unfortunately,

this initialization already biases the solution [63], which is relatively easier to achieve with

higher-order terms. Therefore, the number of free-equilibrium points is a measure of how

easy it is to fit data to a dynamical model (which is not necessarily linked to the number of

parameters or species), but not necessarily about the ecological mechanisms of a system.

This is a key problem we turn our attention in the next section.

2.3 Quantifying the Effects of HOIs

To introduce a general methodology to quantify the number of free-equilibrium points

in ecological models, we used a generic system of polynomial dynamical equations for n

species of the form:
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

dN1

dt
=
N1f1 (N1, . . . , Nn)

q1 (N1, . . . , Nn)
...

dNn

dt
=
Nnfn (N1, . . . , Nn)

qn (N1, . . . , Nn)
,

(2.4)

where f1, f2, ..., fn and q1, q2, ..., qn are multivariate polynomials in species abundances. As

mentioned in the previous section, to find the free-equilibrium points of System (2.4), we

can set all time-derivatives to zero in order to obtain a system of multivariate polynomials

in steady-state abundances N∗1 , . . . , N
∗
n as follows


f1 (N∗1 , . . . , N

∗
n) = 0

...

fn (N∗1 , . . . , N
∗
n) = 0 .

(2.5)

The number of free-equilibrium points of System (2.4) is given by the number of non-zero

roots of System (2.5). While it is not a trivial problem, the number of non-zero roots

can be calculated based on Bernshtein’s theorem [56]: Let us assume that the polynomial

System (2.5) has finitely many roots in (C∗)n. Then the number of these roots is bounded

from above by the mixed volume of its Newton polytopes Pk, 1 ≤ k ≤ n. The upper bound

of the number of non-zero roots is tight and achieved (exactly) for any generic choice

of coefficients inside the polynomials f1, f2, . . . , fn (note that in the LV model, when the

vector of growth rates is not in the column space of the interaction matrix, there will be

no solution and we can neglect such special cases). Therefore, Bernshtein’s theorem is the

multivariate extension to the fact that a single variable polynomial of degree n will have

n-complex roots for any generic coefficients.

To illustrate the quantification of non-zero roots of a polynomial system based on Bern-

shtein’s theorem, we show the details of how to compute Newton’s polytopes, the mixed

volumes, and the evaluation of the number of complex roots using the following hypothet-

ical system of equations (free-isoclines):

f1(N∗1 , N
∗
2 ) = 9N∗1 − 3N∗1N

∗
2 + 9N∗

2

1 + 2N∗
2

2

f2(N∗1 , N
∗
2 ) = 8 + 2N∗1 − 9N∗1N

∗
2 .

(2.6)
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Figure 2-1: Illustration of the quantification of the number of complex roots of a polynomial
system. For the hypothetical 2-species system defined by the set of Eqns. (2.6), the
figure illustrates the construction of the mixed volume of Newton polytopes Pi of fi for
i = 1, 2. Panels (A) and (B) represent the Newton polytopes P1 and P2, respectively.
Note that the coordinates (blue symbols) correspond to the different supports. Panel
(C) represents the Minkowski sum of the first and second polytopes P1 ⊕ P2. Note that
the mixed volume (number of complex roots) of this system is defined by M(P1, P2) =
vol2(P1⊕P2)−vol2(P1)−vol2(P2). The axes are the exponents of the supports’ monomials.

To compute the number of complex roots from Eqns. (2.6), we need to follow four basic

concepts in algebraic geometry [64]. For i = 1, 2 :

1. We need to obtain the support Si of fi, which is defined as the set of exponents

of its monomials eNi’s. In System (2.6), the support S1 of f1 contains the points

(eN1, eN2) in the set {(1,0),(1,1),(2,0),(0,2)}; while the support S2 of f2 contains the

points (eN1, eN2) in the set {(0,0),(1,0),(1,1)}.

2. We need to obtain the Newton polytope Pi of fi, which is defined as the convex hull

of the support Si. Fig. 1 (Panels A and B, respectively) shows the Newton polytopes

P1 and P2 of System (2.6).

3. We need to perform the Minkowski sum Pi⊕ Pj = {pi + pj|pi ∈ Pi and pj ∈ Pj} for

j > i, which is defined as the convex hull of all possible summations of the supports

Si and Sj. Fig. 1 (Panel C) shows P1 ⊕ P2 of System (2.6).

4. We need to obtain the mixed volume of the Newton polytopes M(P1, P2), which is

defined as the difference in area between P1⊕P2 and the sum of the areas of P1 and

P2. The mixed volume corresponds to the exact number of roots that a multivariate

polynomial system has. In System (2.6), the number of roots M(P1, P2) is given by
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M(P1, P2) = vol2(P1 ⊕ P2)− vol2(P1)− vol2(P2) =
11

2
− 1− 1

2
= 4.

The calculation of the non-zero roots in the example above can be generalized to System

(2.5) using the earlier steps and the formula of the mixed volume of P1, . . . , Pn [64] shown

in Eqn. (2.7) below, which only requires computing the volumes of the Minkowski sums

of all possible subsets of P1, . . . , Pn (see [65, 66] for methods and software packages to

compute Eqn. (2.7) efficiently).


M(P1, P2, . . . , Pn) =

n∑
k=1

(−1)n−k
∑

1≤j1<j2<...<jk≤n

volk(Pj1 ⊕ . . .⊕ Pjk),

where Pj1 ⊕ . . .⊕ Pjk = {pj1 + . . .+ pjk |pj1 ∈ Pj1 , . . . , pjk ∈ Pjk}.

(2.7)

Note that if we remove the term −3N∗1N
∗
2 from f1(N∗1 , N

∗
2 ) in Eqn. (2.6), then the number

of non-zero roots of the system will not change. This is because the point (1, 1) in the

support set S1 of f1 is not a corner point of the Newton polytope P1 (as it can be seen

from Fig. 2-1A). Thus, removing that term (and parameter) will not affect the shape

of P1. Importantly, this simple example illustrates that having more parameters in a

multivariate polynomial system does not imply having more non-zero roots (i.e., more free-

equilibrium points). Generally, all terms whose support coordinates are not corner points

of the corresponding Newton polytope do not influence the number of non-zero roots in the

multivariate polynomial system. This makes necessary to separate the problem of adding

parameters to the problem of adding free-equilibrium points.

2.4 Effects of HOIs on LV Models

To investigate the difference in the number of free-equilibrium points between LV models

with and without HOI terms, we followed our general methodology to calculate the number

of non-zero roots in polynomial systems. In particular, we analytically computed the

number of free-equilibrium points from the following 3 commonly used systems:
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System 1:
dNi

dt
= Ni(ri +

n∑
j=1

aijNj),

System 2:
dNi

dt
= Ni(ri +

n∑
j=1

aijNj +
∑

1≤j<k≤n

bijkNjNk),

System 3:
dNi

dt
= Ni(ri +

n∑
j=1

aijNj +
∑

1≤j<k≤n

bijkNjNk +
n∑
j=1

cijN
2
j ),

(2.8)

System 1 corresponds to the classic LV model without HOIs. While it is known that

this system has only one free-equilibrium point [53], using Bernshtein’s theorem [56] we

confirmed the existence of one single non-zero root. In turn, Systems 2 and 3 correspond

to the simplest extensions of LV models with HOI terms. Note that System 3 has an

additional higher-order self-regulation term. We found that Systems 2 and 3 have exactly

2n−n and 2n free-equilibrium points, respectively. Importantly, the increase in the number

of parameters in a polynomial dynamical system does not imply an equal increase in the

number of free-equilibrium points. For example, while System 3 has n2 terms more than

System 2, it only has n free-equilibrium points more. Recall that only the corner terms to

the corresponding Newton polytope determine the number of free-equilibrium points. In

Systems 1 and 2, all the terms inside the brackets are corner terms. Similarly, in System

3, the r′s and the terms associated with the coefficients c′s are corner terms. However, the

terms associated with the coefficients a′s and b′s are non-corner terms (see next section for

the mathematical derivations). This confirms that parameters and free-equilibrium points

are two different descriptors of a dynamical model. More generally, for the system

dNi

dt
= Ni(ri +

m′−1∑
l=1

∑
1≤j1≤j2≤...≤jl≤n

aij1j2...jlNj1Nj2 . . . Njl), i = 1, . . . , n, (2.9)

which represents m′-order interactions in a LV model with HOI terms and n species, we

found that the number of free-equilibrium points is given by (m′−1)n (see next section for

the mathematical derivation). This result reveals that adding HOI terms to the LV model

increases the number of free-equilibrium points exponentially with the dimension n of the

system.
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2.5 Counting the Number of Equilibrium Points

In the previous section, we presented the findings of the number of free-equilibrium points

in three different LV models (one with and two without HOI terms). Here, we present the

formal proof of their derivation. Free-equilibrium points are considered first while the total

number of points are considered after that (free + rigid) for the following studied systems

System 1:
dNi

dt
= Ni(ri +

n∑
j=1

aijNj), i = 1, . . . , n

System 2:
dNi

dt
= Ni(ri +

n∑
j=1

aijNj +
∑

1≤j<k≤n

bijkNjNk), i = 1, . . . , n

System 3:
dNi

dt
= Ni(ri +

n∑
j=1

aijNj +
∑

1≤j<k≤n

bijkNjNk +
n∑
j=1

cijN
2
j ), i = 1, . . . , n.

To find the free-equilibrium points, we set all time-derivatives to zero in the systems above.

We ignore the Ni terms outside the brackets because they produce solutions which have at

least one zero component (rigid-equilibrium points) which will be considered in Part 2 of

this section. Therefore, the equations we need to study are

System 1: ri +
n∑
j=1

aijN
∗
j = 0, i = 1, . . . , n

System 2: ri +
n∑
j=1

aijN
∗
j +

∑
1≤j<k≤n

bijkN
∗
jN
∗
k = 0, i = 1, . . . , n

System 3: ri +
n∑
j=1

aijN
∗
j +

∑
1≤j<k≤n

bijkN
∗
jN
∗
k +

n∑
j=1

cijN
∗2
j = 0, i = 1, . . . , n.

Note that all the equations for each of the 3 systems are functions of the species abundances

and contain the exact same terms. Hence, the support of each equation, and thus the

Newton polytopes, are identical and we will denote them by S(1) and P (S(1)), respectively.

Let S(k) be defined as S(1) ⊕ . . .⊕ S(1)︸ ︷︷ ︸
k times

. Furthermore, let us define ei to be the point in

space with its ith component to be 1 and the rest are all zeros. It is also important to

note that the operations of the Minkowski summation and those of forming convex hulls
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are commuting [67], that is

P (S(k)) = P (S(1))⊕ . . .⊕ P (S(1))︸ ︷︷ ︸
k times

.

Focusing on System 1, it is easy to see that the vertices of P (S(1)) are the origin and

ei for i = 1, . . . , n. Note that all the terms in System 1 are corner points. To perform

the induction step, let us assume that the vertices of P (S(k)) are the origin and kei for

i = 1, . . . , n. P (S(k+1)) = P (S(k)) ⊕ P (S(1)) imply that the vertices of P (S(k+1)) are

contained in the Minkowski sum of the verticies of P (S(k)) and P (S(1)), which are the

origin, ei, kei and kei + ej for i, j = 1, . . . , n. It is useful to isolate the case i = j from the

term kei+ej to the standalone term (k+1)ei. Hence, the Minkowski sum of the verticies of

P (S(k)) and P (S(1)) are the origin, ei, kei, kei+ej and (k+1)ei for i, j = 1, . . . , n and i 6= j.

Note that both ei and kei lie in the line connecting the origin and (k+1)ei for i = 1, . . . , n,

hence, they cannot be vertices of P (S(k+1)). Moreover, kei + ej lie in the line connecting

(k + 1)ei and (k + 1)ej for i, j = 1, . . . , n and i 6= j. Hence, the vertices of P (S(k+1)) are

the origin and (k + 1)ei for i = 1, . . . , n. Thus, induction is complete. Therefore for all,

positive integers k, the vertices of P (S(k)) are the origin and kei for i = 1, . . . , n.

The computation of the volume of P (S(k)) is simply equivalent to finding the volume of the

generalized-tetrahedron that is bounded by the coordinate hyperplanes and the hyperplane

eN1 + · · ·+ eNn = k, which is

voln(P (S(k))) =

∫ k

0

∫ k−N1

0

. . .

∫ k−N1−N2−···−Nn−1

0

dNn . . . dN2 dN1

=

∫ k

0

∫ N1

0

. . .

∫ Nn−1

0

dNn . . . dN2 dN1 =
kn

n!

under a change of variables to the upper limits of the integrands. To find the number of

non-zero roots, we just need to compute the mixed volume, which is

M(P, . . . , P︸ ︷︷ ︸
k times

) =
n∑
k=1

(−1)n−k
(
n

k

)
voln(P (S(k))) =

n∑
k=1

(−1)n−k
(
n

k

)
kn

n!
= 1.

Thus, we have provided an alternative proof to confirm that the classic LV model has only

1 free-equilibrium point.
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Coordinates Starting points Ending points

[0] - -
[ei] 0 (k + 1)ei
[ei + ej] 0 (k + 1)ei + (k + 1)ej
[kei] 0 (k + 1)ei
[kei] + [ej] (k + 1)ei (k + 1)ej
(k + 1)ei - -
[ei + ej] + [kel] (k + 1)ei + (k + 1)ej (k + 1)el
(k + 1)ei + ej (k + 1)ei (k + 1)ei + (k + 1)ej
[kei + kej] 0 (k + 1)ei + (k + 1)ej
[kei + kej] + [el] (k + 1)ei + (k + 1)ej (k + 1)el
(k + 1)ei + kej (k + 1)ei (k + 1)ei + (k + 1)ej
[kei + kej] + [el + em] (k + 1)ei + (k + 1)ej (k + 1)el + (k + 1)em
(k + 1)ei + kej + el (k + 1)ei + (k + 1)ej (k + 1)ei + (k + 1)el
(k + 1)ei + (k + 1)ej - -

Table 2.1: The table shows the Minkowski sum between the vertices of P (S(k)) (which are
the origin, kei, and kei + kej) and the vertices of P (S(1)) (which are the origin, ei, and
ei + ej for i, j, l,m = 1, . . . , n where i 6= j 6= l 6= m). All single bracketed terms are the
result of the Minkowski sum of these terms with the origin. Double bracketed terms are
the Minkowski sum of the expression in the first bracket with that in the second one. All
coordinates which contain (k+1) are special cases of the latter double bracketed expression
in the table when a term in the second bracket combines with one in the first bracket. Note
that in the 8th line (k+ 1)ei + ej is mentioned without any mentioning to ei + (k+ 1)ej as
the entire set of coordinates generated by both expressions are identical for i, j = 1, . . . , n
and i 6= j.

,

Focusing on System 2, the vertices of P (S(1)) are the origin, ei, and ei+ej for i, j = 1, . . . , n

and i < j. Note that all the terms in System 2 are corner points. To perform an induction

step, let us assume that the vertices of P (S(k)) are the origin, kei, and kei + kej for

i, j = 1, . . . , n and i < j. Again, since P (S(k+1)) = P (S(k)) ⊕ P (S(1)), then the vertices

of P (S(k+1)) are contained in the Minkowski sum of the verticies of P (S(k)) and P (S(1)),

which are shown in Table 2.1. Note that for the points that are not corner points, their

starting and ending points are also included in the table. From Table 2.1, it is easy to

see that the vertices of P (S(k+1)) are the origin, (k + 1)ei and (k + 1)ei + (k + 1)ej for

i, j = 1, . . . , n and i < j. Thus, induction is complete. Therefore, for all positive integers

k, the vertices of P (S(k)) are the origin, kei, and kei + kej for i, j = 1, . . . , n and i < j.

To compute the mixed volume (hence the number of non-zero roots), let us define S ′(2k) as

the union of the verticies of P (S(k)) as well as 2kei for i = 1, . . . , n. Note that the vertices

of P (S ′(2k)) are simply the origin and 2kei for i = 1, . . . , n. This is true given that kei lies
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eN1eN2eN1
(A) (B)

(k)P(S  )

eN2

eN3

Figure 2-2: Illustration of the difference in volumes between P (S ′(2k)) (which are the cyan

plus white regions) and P (S(k)) (which are the white regions) for two and three species
equations is shown in panels (A) and (B) respectively. The blue dots are vertices of
P (S(k)), which are spaced uniformly by k units along the axes, while the red and the origin
are vertices of P (S ′(2k)). The axes are the exponents of the supports’ monomials.

in the interior of the line connecting the origin and 2kei, whereas kei + kej lies in the line

connecting 2kei and 2kej for i, j = 1, . . . , n and i < j. Also note that P (S(k)) is contained

in P (S ′(2k)) and the difference in their volumes is the sum of the individual volumes of

the generalized-tetrahedroni for i = 1, . . . , n—whose vertices are kei, kei + kej, and 2kei

(we just exclude the origin) for j = 1, . . . , n and j 6= i (see Figure 2-2). These volumes

are all identical and there are n of them. To help to visualize this, we can shift each of

these coordinates of the generalized-tetrahedroni by kei to get the shifted structure, whose

vertices are the origin and kei for i = 1, . . . , n—which is exactly P (S ′(k)). Thus, the volume

of P (S(k)) is

voln(P (S(k))) = voln(P (S ′(2k)))− n voln(P (S ′(k))) =
(2k)n

n!
− nkn

n!
=

(2n − n)kn

n!
.

To find the number of non-zero roots, we just need to compute the mixed volume which is
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M(P, . . . , P︸ ︷︷ ︸
k times

) =
n∑
k=1

(−1)n−k
(
n

k

)
voln(P (S(k))) = (2n − n)

n∑
k=1

(−1)n−k
(
n

k

)
kn

n!︸ ︷︷ ︸
=1

= 2n − n.

Focusing on System 3, the support S(1) contains the origin, ei, ei + ej, and 2ei for i, j =

1, . . . , n and i < j. Therefore, the vertices of P (S(1)) are the origin and 2ei for i = 1, . . . , n.

This is true given that ei and ei + ej are not corner points of P (S(1)) for i, j = 1, . . . , n

and i < j. That is in System 3, the r′s and the terms associated with the coefficients

c′s are corner terms. However, the terms associated with the coefficients a′s and b′s are

non-corner terms. To perform an induction step, let us assume that the vertices of P (S(k))

are the origin and 2kei for i = 1, . . . , n. P (S(k+1)) = P (S(k)) ⊕ P (S(1)) imply that the

vertices of P (S(k+1)) are contained in the Minkowski sum of the verticies of P (S(k)) and

P (S(1))—which are the origin, 2ei, 2kei and 2kei + 2ej for i, j = 1, . . . , n. It is useful

to isolate the case i = j from the term 2kei + 2ej to the standalone term 2(k + 1)ei.

Hence, the Minkowski sum of the verticies of P (S(k)) and P (S(1)) are the origin, 2ei, 2kei,

2kei + 2ej, and 2(k + 1)ei for i, j = 1, . . . , n and i 6= j. Note that both 2ei and 2kei

lie in the line connecting the origin and 2(k + 1)ei for i = 1, . . . , n, hence, they cannot

be vertices of P (S(k+1)). Moreover, 2kei + 2ej lies in the line connecting 2(k + 1)ei and

2(k + 1)ej for i, j = 1, . . . , n and i 6= j. Hence, the vertices of P (S(k+1)) are the origin and

2(k+ 1)ei for i = 1, . . . , n. Thus, induction is complete. Therefore, for all positive integers

k, the vertices of P (S(k)) are the origin and 2kei for i = 1, . . . , n. From the derivation in

System 1, we already know that the volume of P (S(k)) is (2k)n/n! (it is the volume of the

generalized-tetrahedron that is bounded by the coordinate hyperplanes and the hyperplane

eN1+· · ·+eNn = 2k). Then, to find the number of non-zero roots, we just need to compute

the mixed volume which is

M(P, . . . , P︸ ︷︷ ︸
k times

) =
n∑
k=1

(−1)n−k
(
n

k

)
voln(P (S(k))) = 2n

n∑
k=1

(−1)n−k
(
n

k

)
kn

n!︸ ︷︷ ︸
=1

= 2n.

Here, we calculate MT—the total number of equilibrium-points for any of the 3 systems

under investigation, including their rigid-equilibrium points (the ones which have one or

more zero-components). Note that rigid-equilibrium points of LV model with or with-

35



out HOI terms are the free-equilibrium points of the same model after substituting the

corresponding zero abundances in them and deleting the lines which involve their time

derivative as they will be zero as well. To see this, we can always start with an LV model

with or without higher-order interaction terms and focus on the rigid-equilibrium point

Om in which species m dies out. That is, Nm = 0 in Om. Note that these models do not

allow revival of species. Therefore, when a species dies out, the value Nm = 0 will stay the

same forever (i.e., dNm/dt = 0). Upon substituting Nm = 0 into the original dynamical

system and deleting the line dNm/dt = 0 from it, we get a model which is one species

less for which Om but with the point/coordinate Nm = 0 is deleted from it to be its free-

equilibrium point. The remaining n − 1 equations will have identical polytopes but with

all the terms involving Nm being removed. Therefore, the new systems will have exactly

Mn−1 free-equilibrium points, providing n ways to eliminate a single species. Under the

same logic, by letting k species go extinct, the new systems will have Mn−k free-equilibrium

points with nCk ways to do it. Hence,

MT =
n∑
k=0

(
n

k

)
Mn−k,

Recall that from Part 1 we already know that for k species, the number of free-equilibrium

points for systems 1, 2, and 3 are 1, 2k − k, and 2k, respectively. Therefore,

System 1: MT =
n∑
k=0

(
n

k

)
(1) = 2n,

System 2: MT =
n∑
k=0

(
n

k

)
(2n−k − (n− k)) = 3n − n2n−1,

System 3: MT =
n∑
k=0

(
n

k

)
(2n−k) = 3n.

The results above confirm that the LV model has a total of 2n equilibrium points (i.e., free-

equilibrium points + rigid-equilibrium points) [53]. Importantly, we can also clearly see

that adding higher-order terms makes the total number of equilibrium points jump from

2n to 3n−n2n−1 when we add non-additive pairwise interactions terms per capita (System

2), furthermore, these number jumps to 3n when we include the non-additive quadratic

terms per capita (System 3). Next, for the general system shown below:
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dNi

dt
= Ni(ri +

m′−1∑
l=1

∑
1≤j1≤j2≤...≤jl≤n

aij1j2...jlNj1Nj2 . . . Njl), i = 1, . . . , n,

The support S(1) contains the origin, ei1 , ei1 + ei2 , . . . and ei1 + ei2 + . . . + eim′−1
for

i1, i2, . . . , im′−1 = 1, 2, . . . , n. All these coordinates are bounded by the coordinate hy-

perplanes and the hyperplane eN1 + . . .+ eNn = (m′−1). Hence, the origin and (m′−1)ei

for i = 1, . . . , n are the vertices of P (S(1)) where the term (m′− 1)ei is obtained by setting

i1 = i2 = . . . = im′−1 ≡ i in ei1 + ei2 + . . . + eim′−1
. To perform an induction step, let us

assume that the vertices of P (S(k)) are the origin and (m′ − 1)kei1 for i = 1, . . . , n. Since

P (S(k+1)) = P (S(k))⊕P (S(1)), then the vertices of P (S(k+1)) are contained in the Minkowski

sum of the verticies of P (S(k)) and P (S(1))—which are the origin, (m′ − 1)ei, (m′ − 1)kei

and (m′ − 1)kei + (m′ − 1)ej for i, j = 1, . . . , n. It is useful to isolate the case i = j from

the term (m′− 1)kei + (m′− 1)ej to the standalone term (m′− 1)(k+ 1)ei. Therefore, the

vertices of P (S(k+1)) are the origin, (m′ − 1)ei, (m′ − 1)kei, (m′ − 1)kei + (m′ − 1)ej, and

(m′−1)(k+ 1)ei for i, j = 1, . . . , n and i 6= j. Note that both (m′−1)ei and (m′−1)kei lie

in the line connecting the origin and (m′ − 1)(k + 1)ei for i = 1, . . . , n, hence, they cannot

be vertices of P (S(k+1)). Moreover, (m′ − 1)kei + (m′ − 1)ej lies in the line connecting

(m′− 1)(k+ 1)ei and (m′− 1)(k+ 1)ej for i, j = 1, . . . , n and i 6= j. Hence, the vertices of

P (S(k+1)) are the origin and (m′−1)(k+1)ei for i = 1, . . . , n. Thus, induction is complete.

Therefore, for all positive integers k, the vertices of P (S(k)) are the origin and (m′ − 1)kei

for i = 1, . . . , n. From the derivation in System 1, we already know that the volume of

P (S(k)) is ((m′− 1)k)n/n! (it is the volume of the generalized-tetrahedron that is bounded

by the coordinate hyperplanes and the hyperplane eN1 + · · · + eNn = (m′ − 1)k). Then,

to find the number of non-zero roots, we just need to compute the mixed volume which is

M(P, . . . , P︸ ︷︷ ︸
k times

) =
n∑
k=1

(−1)n−k
(
n

k

)
voln(P (S(k))) = (m′− 1)n

n∑
k=1

(−1)n−k
(
n

k

)
kn

n!︸ ︷︷ ︸
=1

= (m′− 1)n.

It is worth noting that this result matches the upper bound of Bezout’s inequality which

states that the number of common zeros is less than or equals to the product of the degree

of each polynomial [68]. Also, unlike corner terms, if non-corner terms are removed from
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the generalized model (non-corner points of the generalized-tetrahedron that is bounded

by the coordinate hyperplanes and the hyperplane eN1 + · · ·+ eNn = m′− 1), the number

of free-equilibrium points will not be affected. However, removing corner points will reduce

that number as we have seen in System 2 which is essentially System 3 but with some of

its corner points being removed. Regards to the number of total (rigid+free) equilibrium

points for this general system, it is given by

MT =
n∑
k=0

(
n

k

)
Mn−k =

n∑
k=0

(
n

k

)
(m′ − 1)n−k = (m′)n,

2.6 Is the Addition of HOIs Increasing the Under-

standing of Ecological Dynamics?

Recent work has shown that higher-order interactions can increase the stability [43], pro-

mote the diversity [44], and better explain the dynamics of ecological communities [45, 46].

While it is known that these perceived benefits come from an increasing number of alterna-

tive solutions given by the nature of multivariate polynomials, this mathematical advantage

has not been formally quantified. In fact, it has been perceived that mathematically there

is nothing to prevent the inclusion of higher-order terms in ecological models [34].

Here, we have shown analytically that by adding HOI terms to ecological models, the num-

ber of free-equilibrium points increases exponentially with the dimension of the system.

Recall that the classic LV model without HOI terms has a single free-equilibrium point,

regardless of the number of parameters [53]. Importantly, we have shown that the more

free-equilibrium points present in an ecological dynamical system, the more flexibility the

system has to reach any type of dynamics. This reveals that HOI terms cannot provide ad-

ditional explanatory power of ecological dynamics if model parameters are not ecologically

restricted.

The mathematical advantages coming from adding HOI terms into LV models can be

easily seen in the mapping from the free-equilibrium point space of these systems (i.e., the

steady-state species abundances). This mapping is one-to-one for the classic LV model,

i.e., from Rθ(n) (where θ(n) is the number of parameters in the model with n species) to

Rn. However, when HOI terms are added to LV models, the mapping becomes from Rθ′(n)
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to Cn, where θ′(n) ≥ θ(n). Thus, the mapping becomes one to exponentially many when

HOI terms are included. Also, the co-domains for both mappings are different, it is Rn for

the classic LV model and Cn for LV model with HOI terms. These explain why the number

of both feasible and unfeasible solutions of a system increases when HOI terms are added.

Note that even if studies penalize for the increase in the number of parameters θ′(n)−θ(n)

between these models (e.g., using AIC, [54]), the mappings for HOI terms will continue to

be from one to exponentially many, and the mathematical advantages will continue to be

present. This reveals that models with and without HOI terms are fundamentally different

and direct comparisons between them (e.g., dynamical properties or explanatory power)

cannot be made without parameter restrictions.

It is also expected that adding HOIs into ecological models can lead to an enrichment of

dynamics. To see this, we can consider the following 1-dimensional system with m-order

HOIs terms: dN1/dt = N1f(N1), where f(N1) is a univariate polynomial of degree m− 1.

Importantly, this 1-dimensional system is a special case of the general System (2.9), which

has (m′ − 1)n free-equilibrium points and whose parameters (coefficients of the N ’s) are

all zero except for some of the terms in the first line (involving dN1/dt). The univariate

system has one rigid-equilibrium point (the origin) and m − 1 free-equilibrium points. If

f is quadratic, the system is known to have a pitchfork bifurcation diagram with a single

feasible branch. Instead, if f is cubic, the system is known to have a hysteresis loop with

multiple locally stable free-equilibrium points in the feasibility domain [12]. In fact, more

dynamical phenomena are observed for higher degrees of f . For instance, in the presence of

k feasible free-equilibrium points, without multiple or complex roots, a stable feasible free-

equilibrium point is followed by an unstable one, making the number of feasible and stable

free-equilibrium points in this case to be either floor or ceil k/2 for k = 0, 1, . . . ,m − 1.

This suggests that for higher dimensions, when parameters are restricted in regions with

more feasible free-equilibrium points, this will imply an inherited increase in the likelihood

of stability. These phenomena, which are associated with systems having multiple free-

equilibrium points, cannot occur in classical LV models (without HOIs) regardless of the

number of species [12]. In fact, any LV model with HOI terms is a special case of another LV

model with HOI (with more species and/or higher order). Hence, the dynamics observed

in a model with HOIs can also be observed in a more complex version of the model. This

reveals that the explanatory power of models should only be compared when their number
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of free-equilibrium points have been made comparable through parameter restrictions.

To illustrate the point above on a practical setting, one can focus on the problem of fitting

data to ecological models [34, 46]. In this process, both parameters and initial conditions

need to be tuned, introducing a bias. If a model has exponentially many free-equilibrium

points, it is easier to reach a feasible solution, especially without parameter restrictions.

Thus fitting will be facilitated in models with higher-order terms (mainly due to the number

of free-equilibrium points and not necessarily due to the number of parameters) and one

may be tempted to conclude that feasibility is an ecological mechanism derived from higher-

order interactions (while this is just a mathematical construct).

In general, one should address the problems above and reach explanatory power by ex-

ploring parameter values restricted within key ecological quantities. Yet, this is often an

overlooked or difficult task within ecological research. For example, parameters are of-

ten changed randomly [69], are not changed so that certain ecological quantities that are

fully descriptive of a certain dynamics of interest are greater than unity [70, 71], are freely

changed in order to fit data [46], or are chosen such that ecological quantities derived from

a simpler model are used as the descriptive quantities of a more complicated model [72].

Moreover, the parameter space should be restricted to physical or ecological cases only

(recall that by adding HOI terms it is possible to have imaginary equilibrium points but

this is not possible in the classic LV model). In fact, although there are many ecologi-

cal quantities that exist in the literature and they are typically associated with different

research questions [60, 73], those ecological quantities generally increase in number and

change along with the dimension of the system. Indeed, for systems with more than two

free-equilibrium points, given that closed form solutions of steady state abundances for this

type of systems are not known yet, it is unclear which specific quantities are ecologically

the most important to deduce feasibility. Hence, if the aim is to add more complexity

in ecological models, we hope this study can serve as a call for more work on parameter

restrictions.
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Chapter 3

Adding Mechanisms and Complexity

into Ecological Models

3.1 Introduction

Understanding and predicting the behavior of ecological systems has been one of the great-

est challenges in ecological research [3, 4, 74, 75]. One promising route to accomplish this

challenge has been based on the mathematical modeling of species abundances over time

by assuming different functions of species interactions, growth and decline rates [10]. How-

ever, these terms are not uniquely represented, they are either arbitrarily or specifically

chosen to provide tractability (such as the ability to analytically understand the effect of a

change in a parameter) and preserve realism (such as mimicking as much as possible eco-

logical mechanisms) [11]. Indeed, in principle, a tractable, realistic, mathematical model

of a system can allow us to apply conventional methods to deduce and have a mechanistic

knowledge about the behavior of real-world systems [12, 76]. Yet, finding a compromise

between tractability and realism has not been easy [77–79].

Importantly, it has already been shown that in order to explain complex dynamics, it is

not always necessary to have complex models [14]. For example, complex behavior, such as

transitions from point attractors to chaotic behavior can already emerge from population

dynamics models with low-order polynomials (e.g., the 1-dimensional deterministic logistic

model) [13]. In fact, one of the best examples of simple tractable models in ecology is the

well known linear Lotka-Volterra (LV) model [18, 30]. Yet, this model must be understood
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just as a first-order approximation to how complex ecological systems behave [12]. As a

consequence, many modifications have been done to the linear LV model in the hope of

adding realism and increasing their explanatory power [10]. In general, these modifications

yield models of the form dNi/dt = Nifi(N )/qi(N ) for i = 1, 2, . . . , n, where the f ’s and q’s

are multivariate polynomials (in general with higher-order terms) in species abundances

N = (N1, N2, . . . , Nn)T [14].

A clear example of complexity added to the linear LV model, as discussed in the previous

chapter, is the incorporation of higher-order interactions (HOIs) that involve more than

two variables [49]. The introduction of these higher-order terms has been justified in

order to account for the possibility that the effect of a species i on the per capita growth

rate of a species j might itself depend on the abundance of a third species k due to

either compensatory effects or supra-additivity [10, 80]. The addition of HOIs has been

shown to stabilize dynamics in competition systems [43], promote diversity in ecological

communities [44], and capture unexplained dynamics of linear LV models [46]. However,

it has been debatable whether these terms are derived from fundamental principles [42],

whether mathematically there is anything to prevent their inclusion into ecological models

[81], or whether they are indeed useful to explain observed ecological dynamics [48].

Another example of complexity is the addition of functional responses, which have been one

of the most studied and ecologically motivated polynomial fraction forms added to linear

LV models [10, 11, 35, 48]. Typically, functional responses correspond to the mechanistic

(or phenomenological) description of how predators (consumers) search, attack, and handle

their prey (resources). Although the name of functional response was first introduced by

Solomon [82], functional responses were broadly adopted after Holling [35] identified three

types of responses: linear (Type I - linear LV model), hyperbolic (Type II), and sigmoid

(Type III). For instance, the Beddington-DeAngelis functional response [83, 84], which is a

variation of Type II, has been one of the most widely used responses for modeling food webs

[85]. Importantly, the introduction of functional responses has appeared to reconcile part of

the compromise between tractability and realism across a variety of ecological models [10].

Yet, most of the analytical (tractable) work incorporating nonlinear functional responses

(Types II and III) has been limited to 2-species systems [10, 11, 35], remaining unclear

whether this compromise can be extended to larger multispecies cases [72, 81].

In general, one of the big questions derived from the addition of complexity (e.g., either
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HOIs or functional responses) is whether the explanatory power of a modified model comes

from the general form of its polynomial or from a more realistic description of multispecies

systems. To answer this question, we study the probability of feasibility in complex mod-

els (i.e., modifications to the linear LV model using multivariate polynomials) under an

arbitrary choice of parameter values. Note that the observability or adaptability of an

ecological system is associated with how much its structure can change while retaining its

feasibility [86, 87]. Thus, it is important to distinguish the minimum amount of information

necessary in a model to explain such observability. Specifically, we study the probability of

feasibility as a function of three key properties of these complex models: their polynomial

degree (interaction order), dimension (number of species), and parameter restrictions (sign

restrictions). We define the probability of feasibility as the frequency of finding in a model

at least one feasible solution (i.e., a feasible free-equilibrium point where all its coordinates

are real and positive) by randomly choosing parameter values under a given distribution

[88]. Note that the existence of feasible equilibrium solutions is a crucial condition in

the context of species coexistence in equilibrium dynamics, i.e., a necessary condition for

persistence, permanence, and the existence of bounded orbits in the feasibility domain [41].

We start illustrating our study using a 1-dimensional toy model and demonstrating that its

probability of feasibility increases as a function of its polynomial degree (and consequently

its number of parameters) when parameter values are arbitrarily chosen from a given

probability distribution. Next, we extend the toy example into a multidimensional case

to show that the probability of generating a feasible multispecies system is an increasing

function of its complexity. Specifically, we characterize complexity by the number of free-

equilibrium points generated by a model, which is a function of the polynomial degree and

system’s dimension. Then, to illustrate the expected behavior of complex models across

different dimensions and parameter restrictions, we study modifications to the linear LV

model using HOIs and functional responses. Finally, we discuss the implications of our

results for the explanatory contribution to feasibility of complex ecological models.

3.2 Univariate Complex Models

To investigate the probability of feasibility of ecological systems using complex models, we

start illustrating our methodology in 1-dimensional (univariate) systems. For this purpose,
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let us consider the following 1-dimensional dynamical system characterized by the state

variable N as shown below

dN

dt
=
Nf(N)

q(N)
, (3.1)

where f(N) = amN
m + am−1N

m−1 + . . .+ a1N + a0 is a polynomial of degree m and q(N)

can be any other polynomial that shares no common factor with Nf(N). Note that in the

case when f(N) is linear and q(N) = 1, we recover the 1-dimensional version of the linear

LV model (i.e., logistic growth model when a1 < 0, [10]).

As mentioned before, we study the feasibility of a system as defined by its capacity to have

at least one feasible equilibrium point (the equilibrium point is both real and positive) under

an arbitrary choice of parameter values. This implies that the feasibility problem of Model

(3.1) is identical to the feasibility problem of the system defined by the model dN/dt =

Nf(N), as they both involve analyzing the real and positive roots of the polynomial f(N).

Therefore, we can think of the feasibility problem in Model (3.1) as the same as the

feasibility problem of the modified 1-dimensional linear LV model with higher-order terms.

Note that the dynamical stability criteria can be relaxed in this case, as it is linked to

the feasibility problem [89]. That is, when Model (3.1) has k positive equilibrium points

(without multiple or complex roots), a stable feasible free-equilibrium point is followed by

an unstable one, making the number of positive stable equilibrium points to be either floor

or ceil k/2 for k = 0, 1, . . . ,m [81]. This implies that one can derive the stability problem

from the feasibility one.

It is well known that the feasibility of any system depends on the specifics given by the

model parameterization and constraints [90]. However, in the absence of information about

the exact parameter values, as in most of the ecological research, these values are randomly

chosen from a probability distribution [79, 91]. This parameter uncertainty transfers the

feasibility problem to the probability of having at least one feasible equilibrium point

by randomly choosing parameter values under given conditions [61, 88]. For illustration

purposes, let us consider the case when the a’s are all Gaussians i.i.d. centered on zero

(mean zero), and let us denote pG(m) the probability that at least one root of f(N) is

positive (i.e., feasible). Note that pG(m) is independent of the distribution’s variance

simply because f(N) and cf(N) have identical roots for any constant c 6= 0. Under this
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Gaussian case, it has been demonstrated [92] that the expected number of positive real

roots E(m) as m→∞ is given by

E(m) =
R(m)

2
,where (3.2)

R(m) =
2

π
log(m) + 0.6257358072 . . .+O(1/m). (3.3)

Note that R(m) corresponds to the expected number of real roots, while E(m) assumes no

a priori tendency for positive or negative roots in R(m). That is, the density of real zeros

is an even function [92].

Next, let us try to find how Eqn. (3.2) can be inserted into the expression of the probability

of feasibility pG(m). To provide a numerical approximation, let us assume that the location

of the m roots of f(N) are independent of each other and positive with probability pi for

i = 1, 2, . . . ,m. Therefore, the probability of feasibility (to have at least one positive and

real root) becomes pG(m) = 1−(1−p1)(1−p2) . . . (1−pm). By applying Jensen’s inequality

(i.e., f(p1) + f(p2) + . . . + f(pm) ≥ mf((p1 + p2 + . . . + pm)/m)) to the convex function

f(x) = −log(1− x), we obtain pG(m) ≥ 1− (1− E(m)/m)m, where the expected number

of positive roots E(m) = p1 +p2 + . . .+pm. From the formula of pG(m), one can derive the

upper bound pG(m) ≤ 1− (1−max(p1, p2, . . . , pm))m. Assuming that pG(m) is continuous

for any m ≥ 1 implies the existence of Ê(m) such that the probability of feasibility can be

written as

pG(m) = 1− (1− Ê(m)/m)m, (3.4)

where Ê(m) is an overestimate of the expected number of positive roots (that is, E(m) ≤

Ê(m) ≤ mmax(p1, p2, . . . , pm)). This allows us to infer the mathematical form of E(m) by

finding Ê(m) such that pG(m) is the best fit of 1− (1− Ê(m)/m)m.

Figure 3-1 provides a numerical confirmation of the positive relationship between the prob-

ability of feasibility pG(m) and the degree m of the polynomial f(N) under an arbitrary

choice of parameter values (no parameter restrictions). The probability is calculated nu-

merically over 104 simulations using i.i.d. parameters from a Gaussian distribution with

mean zero and standard deviation one. The figure shows the best fit to the data using

Eqn. (3.4), where Ê(m) = alog(m) + b + c/m, a = 0.391, b = 0.356 and c = 0.141. Note

that these values are close (still an overestimate) to 1/π and to the constant term in Eqn
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Figure 3-1: Probability of feasibility increases as a function of the polynomial degree in
1-dimensional systems. The figure shows the probability that at least one root is feasible
pG(m) in Model (3.1) as a function of the degree m ≥ 1 of the polynomial f(N) (using 104

trial points for each polynomial degree m). Note that parameters are all i.i.d. Gaussian
with mean zero and standard deviation one. The probability pG(n) is independent of the
distribution’s variance. By plotting (solid line) pG(m) and fitting it with 1−(1−Ê(m)/m)m

(where Ê(m) = alog(m) + b+ c/m), we find that the best-fit parameters (R2 = 0.9966) are
a = 0.391± 0.004 (an overestimate value that is close to 1/π in the expression of E(m) in
Eqns. (2-3)), b = 0.356 ± 0.013 (an overestimate value that is close to the constant term
in the expression of E(m) in Eqns. (2-3)) and c = 0.141 ± 0.016. The term c/m, which
is present in both E(m) (as an order quantity O(1/m)) and Ê(m), is not significant for
large polynomial degrees m (as it is small compared to either the log or the constant term
in both Ê(m) and E(m)). However, the best fit of c takes care of fitting the probability of
feasibility with low polynomial degrees without altering the fact that the values of a and
b in Ê(m) are overestimate values and are close to the ones in the expression of E(m).

(3.2). Also, notice the sharp increase in the probability of feasibility for small m’s. That

is, when the polynomial degree m is relatively small, only a few extra terms are needed to

add a noticeable increase in the probability of feasibility. Once m is large enough, the rate

of increase in the probability of feasibility diminishes sharply even if considerably more

extra terms are added.

Importantly, the example above illustrating a monotonic and saturating behavior of the

probability of feasibility as a function of the polynomial degree is robust to the choice

of the probability distribution (see next section). This is true as long as the addition of
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parameters does not decrease the probability of obtaining an odd sign sequence in the

coefficients of f(N) (i.e., the number of consecutive sign changes in am, am−1, . . . , a1, a0 is

an odd integer—see next section).

3.3 Robustness Properties of the Probability of Fea-

sibility

In the previous section, we found that there is an increasing relationship between the

probability of feasibility pG(m) and the polynomial degree m in 1-dimensional systems by

using i.i.d. parameters drawn from a Gaussian distribution with mean zero. Here, we show

that this result is robust to the choice of the probability distribution of parameter values.

To support our statement above, we start by repeating the same analysis with a uniform

distribution with mean zero and computing the probability of feasibility pU(m) (note that

we use pG(m) and pU(m) for Gaussian and uniform, respectively). Figure 3-2 shows that

the monoticity pattern remains as shown in Figure 3-1. Furthermore, let us suppose that

a0, a1, ..., am are independent normally distributed, and the distribution has a mean that is

uniformly distributed between −c and c (i.e., centered on zero) with a standard deviation

that is uniform between 0 and d. Figure 3-3 confirms numerically that the expected number

of positive roots still has the form alog(m) + b+O(1/m), and the probability of feasibility

behaves similarly to Figures 3-1 and 3-2 for any value of c and d (as c decreases or d

increases, the coefficient of the log increases implying that the expected number of positive

roots increases).

In the previous examples, we have illustrated probability distributions with some underly-

ing centrality around zero. Next, let us discuss distributions that center somewhere else. It

has been demonstrated [92] that when all parameters have an i.i.d. Gaussian distribution

with non-zero mean and variance, the expected number of positive roots is asymptotic to

a constant which depends on a single quantity λ. This quantity λ is the mean divided by

the standard deviation, yielding

E(m) =
1

2
− 1

2
erf2(

|λ|√
2

) +
1

π
Γ[0, λ2] +O(1/m). (3.5)
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Figure 3-2: Same as in Figure 3-1 but using a uniform distribution with mean zero. Specif-
ically, we plot pU(m) and fit it with 1− (1− Ê(m)/m)m, where Ê(m) = alog(m)+ b+ c/m.
We find that the best-fit parameters (R2 = 0.9968) are a = 0.384 ± 0.003 (close to 1/π),
b = 0.326± 0.012 (close to the constant term in the expression of E(m) in Eqns. (3.2-3.3))
and c = 0.170± 0.015.

This implies that the new probability of feasibility pGs of this 1-dimensional system will

asymptote to a constant smaller than 1. Figure 3-4 shows the probability of feasibility

pGs and its fit using the function 1 − (1 − Ê(m)/m)m, where Ê(m) = a + b/m and b < 0

to ensure that Ê(m) is increasing with m. The best-fit parameter is a = 0.585, which is

an overestimate yet close to the theoretical value of 0.536515 that is obtained by plugging

λ = 5/7 in the expression of E(m). Also, Eqn. (3.5) demonstrates that the probability

of feasibility is maximized when parameters are randomized around a mean zero (i.e.,

λ = 0) in the case of parameters that are i.i.d. That is, the probability of feasibility can

be increased by reducing the absolute value of the mean and/or increasing the standard

deviation given that E(m) is a decreasing function of |λ|. Additionally, let us suppose

that am, am−1, ..., a1, a0 are independent and each parameter is normally distributed with

a mean that is uniformly distributed between c1 and c2 and standard deviation that is

uniform between 0 and d. Figure 3-5 shows numerical simulations confirming that the

probability of feasibility behaves similarly to the previous cases and also asymptotes to a

value less than 1. This result is robust even if each of am, am−1, ..., a1, a0 is not normal and
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(A) (B)

(C) (D)

(E)

Figure 3-3: Similar to Figure 3-1 but parameters are normally distributed with a mean that
is uniformly distributed between −c and c (i.e., centered on 0) with a standard deviation
that is uniform between 0 and d: Panel A (c = 1, d = 1), Panel B (c = 1, d = 0.01),
Panel C (c = 1, d = 100), Panel D (c = 0.01, d = 1), and Panel E (c = 100, d = 1). All
probabilities were fit with 1− (1− Ê(m)/m)m, where Ê(m) = alog(m) + b+ c/m. We find
that the best-fit parameters are a = 0.398± 0.004, b = 0.320± 0.016 and c = 0.184± 0.019
for Panel A, a = 0.389 ± 0.005, b = 0.304 ± 0.017 and c = 0.193 ± 0.021 for Panel B,
a = 0.408± 0.004, b = 0.388± 0.015 and c = 0.115± 0.018 for Panel C, a = 0.409± 0.005,
b = 0.386± 0.016 and c = 0.114± 0.019 for Panel D, a = 0.387± 0.004, b = 0.318± 0.014
and c = 0.181± 0.018 for Panel E. The fit in all panels has R2 > 0.996. As c decreases or
d increases, the coefficient of the log increases (i.e a) implying that the expected number
of positive roots increases.

each have a specific PDF. In addition, fixing a few a’s to fixed values (including zero) will

not change the monoticity (simulations not shown).
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Figure 3-4: Similar to Figure 3-1 but parameters are all i.i.d. uniformly distributed with
mean 5 and standard deviation 7. The probability of feasibility increases as m increases,
and asymptotes to a constant smaller than 0.5. The probability of feasibility was fit with
1 − (1 − Ê(m)/m)m, where Ê(m) = a + b/m. We find that the best-fit parameters are
a = 0.585± 0.002 and b = −0.237± 0.010. Notice that Ê(m) is an increasing function of
m which is evident from the negative b. If we include the term log(m) in the expression of
Ê(m), we find that the best-fit parameter for the coefficient of log(m) to be of order 10−4,
which is close to zero. This rules out the dependence of Ê(m) on log(m).

Finally, we can see that the probability of feasibility is not sensitive to the formula of

the parameter distribution and is dependent on their centrality. Indeed, according to

Descartes’s rule of sign, the number of positive roots of the polynomial f(N) equals to or

is less than (by an even number) the number of consecutive sign changes of the coefficients

of f(N). That is, if for example f(N) = 3N2 + 5N − 4, then there is only one consecutive

sign change from 5 to −4 and this polynomial has exactly one positive root. Alternatively,

if for example f(N) = −3N2 + 5N − 4, then there are two consecutive sign changes and

the polynomial has either two or zero positive roots (in this case, it has zero roots). Hence,

from Descartes’s rule of signs, we can conclude that if the number of consecutive sign

changes is an odd integer, then it must have a positive root irrelevant of the distribution

formula. This illustrates that if a distribution increases the likelihood of odd numbers of

consecutive sign changes, the probability of feasibility increases as well.

For instance, if a distribution only allows for odd sign sequences, the probability of feasibil-
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Figure 3-5: Similar to Figure 3-1 but parameters are normally distributed with a mean
that is uniformly distributed between c1 = −7.5 and c2 = 17.5 and standard deviation that
is uniform between 0 and d = 14 (as an illustrative example). The probability of feasibility
pGs(m) increases as m increases, and asymptotes to a constant smaller than 0.6. The
probability of feasibility was fit with 1− (1− Ê(m)/m)m, where Ê(m) = a+ b/m+ c/m2.
The 1/m2 term is the next leading term after 1/m in the expression of Ê(m) which does
not influence the value of Ê(m) for higher polynomial degrees. We added it to fit the
lower data points better. We find that the best-fit parameters are a = 0.9189 ± 0.003,
b = −0.868 ± 0.042 and c = 0.392 ± 0.043. Notice that Ê(m) is an increasing function of
m for all m ≥ 1. Also, if we include the term log(m) in the expression of Ê(m), the best
fit parameter for its coefficient is of order 10−3 which is close to zero. This rules out the
dependence of Ê(m) on log(m).

ity is guaranteed to be 1. Therefore, in order to explain the reduction in the probability of

feasibility in the previous examples (centered vs non-centered distributions around zero),

we need to remember that in the case of symmetric distributions, the probability of an odd

number of consecutive sign sequence is 0.5 for all polynomial degrees given that there are

an equal number of sign sequences with even or odd numbers of consecutive sign changes.

However, in the example where all parameters are i.i.d. with non-zero mean, that probabil-

ity becomes 2p(1− p) for all polynomial degrees where p is the fraction of the PDF of that

distribution that is positive (i.e., p = P (X > 0) where X is the parameters’ distribution)—

see the proof at the end of this section. This quantity is maximized at p = 0.5 (distributions

centered on zero) and decreases as we move farther away from it. The probability of an

odd number of consecutive sign changes behaves similarly with the behaviour of λ in E(m)
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that is displayed in Eqn. (3.5) (i.e., E(m) decreases as |λ| increases).

This simple example above explains the reduction in the probability of feasibility when we

deviate from centered distributions without the need to know the formula nor the shape

of the distribution. Thus, we can see that if we fix a polynomial degree in a model, the

more a parameter distribution injects odd sign sequences, the higher the increase in the

probability of feasibility. Similarly, as the polynomial degree increases in a model, if the

new parameters do not decrease the process of injecting odd sign sequences to f(N), then

the probability of feasibility increases. As an example, let us focus on am, am−1, ..., a1, a0,

if the parameters with even and odd indices are i.i.d. normal with standard deviation of

1 and mean of −100 and 100, respectively, then the probability of feasibility will be 1 if

the polynomial degree is odd and zero if the polynomial degree is even. This oscillatory

behavior is due to the same oscillation in the probability of odd sign sequences which is 1

for an odd polynomial degree and zero for an even.

3.3.1 Effect of Consecutive Sign Changes on The Probability of

Feasibility

Theorem: Let f(N) = amN
m + am−1N

m−1 + . . . + a1N + a0, whose parameters are in-

dependent and identically distributed. Let X be the parameters’ distribution and p =

P (X > 0). The probability that the number of consecutive sign changes in the sequence

am, am−1, ..., a1, a0 is an odd integer is 2p(1− p).

Proof: Let us consider a a linear polynomial f(N) = a1N + a0. We have consecutive

sign changes when (a1, a0) = (−,+) or (+,−). With p = P (X > 0), the probability of

obtaining those two sign sequences is (1− p)p+ p(1− p) = 2p(1− p). In the general case,

consider a polynomial of degree k − 1 whose coefficients are represented by the sequence

ak = (ak−1, ak−2, ..., a1, a0). Let s(ak) = (sign(ak−1), sign(ak−2), . . ., sign(a1),sign(a0)) be

the ’symbolic’ sign sequence of ak and let c(ak) be the number of consecutive sign changes

in ak. Assign binary numbers 0 and 1 if sign(ak) is negative or positive, respectively,

in s(ak) and let b(ak) be the resulting binary number. Finally, let d(ak) be the decimal

representation of b(ak). For example, the coefficients of the quadratic polynomial f(N) =

N2 − 2N + 3 is represented by the sequence a3 = (1,−2, 3) whose related quantities are

given by s(a3) = (+,−,+), c(a3) = 2, b(a3) = 101 and d(a3) = 5.

52



Lemma 1: c(ak) is odd if and only if d(ak) is odd when it is less than or equals to 2k−1− 1

and even when it is greater than or equals to 2k−1.

Proof of Lemma 1: With a linear function f(N), we only have the four sign sequences

(−,−), (−,+), (+,−), (+,+) whose decimal representation are the numbers 0,1,2,3 respec-

tively. Only sequences with decimal numbers 1 (odd number ≤ 21 − 1 = 1) and 2 (even

number ≥ 21 = 2) have odd number of consecutive sign changes. Before carrying out with

induction, let AO↓
k be all sequences ak with an odd c(ak) and with a d(ak) that is less than

or equals to 2k−1−1. When E instead of O is used, it indicates an even c instead of an odd

one. Also, when the up arrow is used instead of the lower one it indicates that d is greater

than or equals to 2k−1. Hence, for a fixed k, any sequence ak must belong to either AO↓
k ,

AE↓
k , AO↑

k or AE↑
k . Note that for k+1, any sequence ak+1 will have ak leading the sequence

followed by a sequence that belongs to either AO↓
k , AE↓

k , AO↑
k or AE↑

k . Also, note that the

leading sign of any sequence that belongs to either AO↓
k or AE↓

k is negative (i.e., ak−1 has

negative sign or binary digit 0) as d is less than or equals to 2k−1− 1. The opposite is true

(i.e., ak−1 has positive sign or binary digit 1) when the up arrow is used. For example, when

ak < 0 then the sequences a−k ; AO↓
k , which stacks the negative ak in front of all sequences

AO↓
k , will start with two consecutive minus signs implying c(a−k ; AO↓

k ) = c(AO↓
k ) which is

odd. Also since the leading sign is negative, then d(a−k ; AO↓
k ) ≤ 2k − 1 which both imply

that the sequences a−k ; AO↓
k ⊆ AO↓

k+1. Another example, when ak > 0 then the sequences

a+
k ; AO↓

k will start with a consecutive sign change (i.e., a + followed by a −) followed by

an odd number of consecutive sign changes which results in c(a+
k ; AO↓

k ) being even. Also

since the leading sign is positive, then d(a+
k ; AO↓

k ) ≥ 2k and the sequences a+
k ; AO↓

k ⊆ AE↑
k+1.

With the same procedure,

1. AO↓
k+1 is the union of both a−k ; AO↓

k and a−k ; AE↑
k .

2. AO↑
k+1 is the union of both a+

k ; AO↑
k and a+

k ; AE↓
k .

3. AE↓
k+1 is the union of both a−k ; AO↑

k and a−k ; AE↓
k .

4. AE↑
k+1 is the union of both a+

k ; AO↓
k and a+

k ; AE↑
k .

For induction, let us assume that d(AO↓
k ) is odd, d(AO↑

k ) is even, d(AE↓
k ) is even and d(AE↑

k )

is odd. Looking at (1) since d(a−k ; AO↓
k ) = d(AO↓

k ) is odd and d(a−k ; AE↑
k ) = d(AE↑

k ) is odd,

then d(AO↓
k+1) is odd. Similarly looking at (2), since d(a+

k ; AO↑
k ) = 2k + d(AO↑

k ) is even and
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d(a+
k ; AE↓

k ) = 2k + d(AE↓
k ) is even, then d(AO↑

k+1) is even. With the same procedure, then

for (3) and (4) d(AE↓
k+1) is even while d(AE↑

k+1) is odd. This completes the inductive step

and the proof is complete.

Lemma 2: The probability that d(ak) is odd when d(ak) ≤ 2k−1 − 1 is (1− p)p. Also, the

probability that d(ak) is even when d(ak) ≥ 2k−1 is (1− p)p.

Proof of Lemma 2: For the first part, since d(ak) is odd, then the sign of the trailing term

(i.e., a0) is positive which has a binary representation of 1. Also, since d(ak) ≤ 2k−1−1 then

the sign of the leading term (i.e., ak−1) is negative which has a binary representation of 0.

All intermediate terms can be either positive or negative. The probability of obtaining a

sequence that leads with a minus sign and ends up with a plus sign is precisely (1−p)p. For

the second part, since d(ak) is even, then the sign of the trailing term (i.e., a0) is negative

which has a binary representation of 0. Also, since d(ak) ≥ 2k−1 then the sign of the leading

term (i.e., ak−1) is positive which has a binary representation of 1. All intermediate terms

can be either positive or negative. The probability of obtaining a sequence that leads with

a plus sign and ends up with a minus sign is precisely (1− p)p. This completes the proof.

From Lemma 1 and 2, the probability that c(ak) is odd is precisely the sum of the proba-

bility that d(ak) is odd when d(ak) ≤ 2k−1 − 1 and the the probability that d(ak) is even

when d(ak) ≥ 2k−1, which is 2p(1− p) and the proof is complete.

3.4 Complex Multispecies Models

To investigate whether the probability of feasibility in complex multispecies models has

similar patterns to those shown in 1-dimensional models, we focus on the multivariate

generalization of Model (3.1):

dNi

dt
=
Nifi(N)

qi(N)
, i = 1, . . . , n, (3.6)

where N is a vector of species abundances. Model (3.6) can be characterized by two

quantities: its number of free-equilibrium points and the joint distribution of its parameters.

Equilibrium points (known as N∗i ) are the solutions to all Ni in Eqn. (3.6) when the left-

hand side (LHS) of the equation is equal to zero. These equilibrium points, as mentioned
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in the previous chapter, can be classified as free or rigid [81]. Free-equilibrium points

have non-zero components (can be complex) and can move freely within the state space

as a function of parameter values, while rigid-equilibrium points are restricted in space

such that they contain at least one zero (i.e., N∗i = 0). That is, rigid-equilibrium points

are restricted to particular regions of the state space regardless of the values that model

parameters can take and contain at least one zero coordinate (i.e., boundary-equilibrium

points). Instead, the location of free-equilibrium points are not restricted in space and are

completely dependent on model parameters. This implies that only free-equilibrium points

can lead to feasible systems (i.e., N∗i > 0 for i = 1, . . . , n). These definitions further reveal

that the number of free-equilibrium points (Θ) is, in fact, the multivariate generalization

of the polynomial degree m seen in the 1-dimensional case.

Following the definitions above, we use Θ as the measure of complexity of a model. When

parameters of fi(N) are independent and unrestricted for all i, Θ can be analytically

obtained by computing the number of complex roots of Eqn. (3.6) [64, 81]. However,

when parameters are not independent or restricted, that Θ becomes an upper bound and

the exact value can be computed using the software PHClab package [93]. Note that

other measures of complexity have been used in the literature [11, 94]. However, these

other measures are either at the level of system complexity (such as dimensionality or

connectivity) or at the level of assumed mechanisms in a model (e.g., Type I vs Type II

functional responses). Instead our measure of complexity makes no prior assumption about

the complexity of a model, but integrates all this information to provide a measure of the

enrichment in dynamics that can be derived from a model [81].

Assuming Eqn. (3.4) as the expression for the probability of feasibility in multidimen-

sional systems where m is replaced by Θ, p(Θ) can be further simplified under two key

observations: (i) The number of free-equilibrium points Θ is expected to be large in mul-

tidimensional systems. This observation has been shown for LV models with HOIs under

an arbitrary choice of parameter values, where Θ increases exponentially with the dimen-

sion of the system [81]. (ii) The overestimate Ê(Θ) is very small compared to Θ (i.e.,

Ê(Θ)/Θ << 1). This second observation has been shown for 1-dimensional systems with

standard Gaussian distributions (see Chapter 3.2). Specifically, E(m) ≈ log(m)/π, which

is much smaller than m for large m. Building on these two observations, we can rewrite
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the expected probability of feasibility in multidimensional systems as

p(Θ) ≈ 1− exp(−Ê(Θ)). (3.7)

The goodness in the approximation of Eqn. (3.7) to Eqn. (3.4) can be shown by sampling

over the Θ-Ê space. For example, setting Θ = 1000 and Ê = 1, the evaluated expression

1 − (1 − Ê(Θ)/Θ)Θ = 0.632305 is close to the evaluated expression 1 − exp(−Ê(Θ)) =

0.63212. Importantly, the joint distribution of parameters in Model (3.6) affects how

Ê is related to Θ. As we have shown, in 1-dimensional systems with i.i.d. probability

distributions, Ê increases with the polynomial degree m. Thus, following Eqn.(3.7), the

assumption Ê(Θ1) > Ê(Θ2) when Θ1 > Θ2 implies that p(Θ1) > p(Θ2). That is, we

expect that p(Θ) increases with Θ in multidimensional systems as well. However, as in

the univariate case, there are also exceptions to this pattern. Specifically, when Θ > 1

is small, the relationship Ê(Θ) > Ê(1) can be violated. This is because models with

Θ = 1 and Θ > 1 are fundamentally different. Using arbitrary model parameters with

the LV model (i.e., Θ = 1), the solo free-equilibrium point must have real coordinates.

Instead, for complex models (i.e.,Θ > 1) free-equilibrium points are generally complex

[81]. Thus, when Θ is small but Θ > 1, the comparison between Ê(Θ) and Ê(1) is unclear

and becomes dependent on the distribution. However, Ê(Θ) > Ê(1) is expected to hold

with the increase of free-equilibrium points. These results show that the complexity of

a model can be characterized by its number of free-equilibrium points (Θ), which are a

function of the polynomial degree and system’s dimension.

As in the univariate case, stability in the multivariate case is related to the feasibility

problem [89]. In multidimensional systems, we do not necessarily need an asymptotically

stable free equilibrium point for the existence of species coexistence [41, 95]. For example,

species coexistence can be possible when there exists both a trajectory from the initial

condition towards any of the feasible free-equilibria and if after some sufficiently large time,

the maximum distance between the feasible equilibrium and the trajectory is bounded [96].

That is, in the presence of an attracting direction in any of the feasible free-equilibrium

points, species coexistence is possible given an appropriate initial condition [81]. Thus,

as we have discussed for the 1-dimensional case (where a stable equilibrium is typically

followed by an unstable one), increasing the number of feasible free-equilibrium points alone
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increases on average the probability of the existence of at least one trajectory compatible

with such points. For example, let us assume a scenario where we have all repealing feasible

free-equilibrium points (i.e., given an unstable system), then adding an extra feasible free-

equilibrium point increases the probability of the existence of a non-repelling direction and

consequently attaining coexistence. In the next sections, we test our hypotheses above by

illustrating the expected behavior of specific multidimensional models using modifications

to the linear LV model with HOIs and nonlinear functional responses.

3.4.1 Revisiting Higher-Order Interactions

The multidimensional model with HOIs can be generally written as [48]:

dNi

dt
= Ni(ri +

m′−1∑
l=1

∑
1≤j1≤j2≤...≤jl≤n

aij1j2,...,jlNj1Nj2 . . . Njl), i = 1, . . . , n, (3.8)

where the r’s represent species growth rates, m′ is the interaction order (with m′ = 2

we recover the linear LV model), double indexed a’s represent pairwise species interaction

coefficients, and the remaining a’s correspond to HOIs. Note that the feasibility problem in

Model (3.8) is identical to the feasibility problem of dNi/dt = Nifi(N)—which is the same

as the feasibility problem studied in Model (3.6). That is, in both cases, the feasibility

problem involves solving the multivariate polynomial system fi(N
∗) = 0 for i = 1, 2, . . . , n.

Hence, without loss of generalization, we can think of the feasibility problem of a general

fractional polynomial system as that of an LV model with HOIs.

Following our analysis of 1-dimensional systems, let us assume that in Model (3.8), the

r’s and the a’s are all Gaussians i.i.d. with mean zero (the variance does not affect the

probability of feasibility or the location of free-equilibrium points since for any constants

c 6= 0, the roots of the multivariate polynomial system cfi(N
∗) = 0 for i = 1, 2, . . . , n do

not change). For illustration purposes, let us consider multispecies systems of dimension

two, three, and four (i.e., n = 2, 3, 4) with interaction order given by m′ = 2, 3, 4, 5, 6.

Then, we define pG(n,m′) as the probability of feasibility with n species and interaction

order m′. The probability of feasibility is calculated using the PHClab package [93], which

numerically solves the polynomial system defined by Eqns. (3.8) after setting dNi/dt = 0

and deleting Ni from the right-hand side (RHS). Under a generic choice of parameter values,
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Figure 3-6: Probability of feasibility increases as a function of systems’ dimension and
polynomial degree. Panel (A) shows the probability of feasibility (i.e., p(n,m′)) as a
function of system size n and interaction order m′ in the linear Lotka-Volterra (LV) model
(i.e., p(n,m′ = 2)) and modifications with higher-order interactions (i.e., p(n,m′ > 2)). In
general, probabilities decrease with system size, but increase as a function of interaction
order. Panel (B) shows the relative increase in the probability of feasibility of modified
models compared to the linear LV model (i.e., p(n,m′)/p(n, 2)). The higher the system
size and interaction order, the higher the relative increase. Panel (C) shows the relative
increase in the probability of feasibility of modified models compared to lower degree models
(i.e., p(n,m′)/p(n,m′ − 1)) for n = 2, 3, 4 species communities. The higher the interaction
order, the higher the saturation and, in turn, the lower the relative increase. Note that
parameters (r’s and the a’s) in Eqn. (3.8) are all assumed to be standard Gaussians i.i.d.
with zero mean and unit variance.

we showed [81] that the number of free-equilibrium points is given by Θ = (m′ − 1)n. It

is also well known that in the case of the linear LV model (i.e., m′ = 2,Θ = 1) under

an arbitrary choice of parameter values (distribution centered on zero), the probability of

feasibility is given by pG(n, 2) = 1/2n for all n [97, 98]. However, as in the 1-dimensional

case, Figure 3-6A shows that when HOIs are added, the probability of feasibility increases

as a function of the polynomial degree m′. The figure also shows that if two multispecies

models have the same polynomial degree m′, the one with the lower dimension n exhibits

a higher probability of feasibility (i.e., pG(n1,m
′) > pG(n2,m

′) for all m′ if and only if

n1 < n2). This result can be expected from the fact that the probability of feasibility in a

system decreases on average as the number of species increases [98, 99]. Note that if two

multispecies models have the same interaction order m′, but different dimension n, they

also differ in the number of model parameters and free-equilibrium points Θ.

Next, we use the results above to study how the explanatory power of feasibility with com-

plex models change relative to the linear LV model. Figure 3-6B shows that multispecies
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models with the same interaction order m′ > 2 exhibit a relative increase in the probability

of feasibility compared to the linear LV model (i.e., pG(n,m′)/pG(n, 2)) as a function of

their dimension n. For example, adding up to quadratic terms (i.e., m′ = 3), the relative

probability of feasibility increases by a factor of 1.5, 2, and 2.6 for 2, 3, and 4 species,

respectively. Note that increasing the interaction order substantially increases the number

of model parameters in a high dimensional system, which turns into high amplifications in

probability. Nevertheless, Figure 3-6C shows that this relative increase in the probability

of feasibility reduces as more parameters are added (i.e., pG(n,m′)/pG(n,m′−1)). That is,

adding extra parameters to a multispecies model, that is already defined by a large number

of parameters, increases the relative probability of feasibility less than in a multispecies

model with fewer number of parameters. This implies that the largest relative increase in

the probability of feasibility will happen when adding HOIs to the linear LV model with a

large number of species.

3.4.2 Functional Responses and Parameter Restrictions

The cases above did not consider any sort of parameter restrictions, hence we now shift

our focus to study how the probability of feasibility with complex multispecies models

changes as a function of sign restrictions. Typically, these restrictions are imposed into

models to specify particular structures and dynamics, such as antagonistic, competitive,

and mutualistic [10]. In particular, these dynamics are expressed and modified through a

variety of nonlinear functional responses [11, 35]. Hence, to explicitly incorporate functional

responses into our general multidimensional model (Eqn. 3.6), we use the form:

dNi

dt
= Ni(ri + aiiNi −

∑
1≤j≤n
j 6=i

aijNjφij), i = 1, . . . , n,where (3.9)

φij =
Nm′′−2
p(i,j)

1 +
∑

k∈I′
q(i,j)
hk,q(i,j)N

m′′−1
k

, m′′ = 2, 3, . . . (3.10)

Define φij = 1 when m′ = 1. Functional responses (i.e., φ’s), which are quotients of two

polynomials determined by the abundances of the prey, are dependent on the parameters:

m′′, p’s, q’s, I ′’s, and h’s. The parameter m′′ in Eqn. (3.10) indicates the type of the

functional response (i.e., Type I, Type II, and Type III functional responses are represented

59



by m′′ = 1, m′′ = 2, and m′′ = 3, respectively). For any pair of species (i,j), the functions

p(i, j) and q(i, j) represent the indices of the prey (or resource) and predator (or consumer),

respectively (i.e., if i is the prey of j then p(i, j) = i and q(i, j) = j). For each species

k, we define Ik to be the set of indices that represent all their prey. By defining Ik for

each species, all connections between species are known. To allow for different responses

within the same species, for every predator q(i, j), we define I ′q(i,j) to be a subset of Iq(i,j)

which contains the index of the prey p(i, j) (i.e., that is p(i, j) ∈ I ′q(i,j) ⊆ Iq(i,j)). The

h’s in Eqn. (3.10) are constants and represent prey handling time in Type II functional

responses. Note that the r’s and the a’s continue to represent species’ growth rates and

interaction coefficients, respectively.

It has been common to use forms of functional responses where the φ’s are functions of

the abundance of a single prey for which p(i, j) is the only element in I ′q(i,j) [11]. Never-

theless, the φ’s can also be functions of the abundances of all prey, making I ′q(i,j) = Iq(i,j).

Here, we consider four commonly used cases: Type I, Type II with I ′q(i,j) = Iq(i,j) (i.e.,

BeddingtonâDeAngelis functional response), Type II with I ′q(i,j) = {p(i, j)}, and Type III

with I ′q(i,j) = {p(i, j)}. We denote these responses by T1, T2m, T2s, and T3s, respectively.

Note that in Eqn. (3.10) φij = φji, however, this symmetry can be broken to allow for

more generalized types of functional responses by replacing the double subscript constant

hk,q(i,j) with a triple subscript constant hk,i,j in Eqn. (3.10).

In Model (3.9) the a’s are not necessarily restricted to any particular value or sign. However,

in predator-prey models, aij and aji have opposite signs for every i 6= j. Moreover, the

ratio |aq(i,j),p(i,j)|/|ap(i,j),q(i,j)|, which is denoted by εij, is usually a constant between 0 and

1, and reflects the fraction of prey that is converted into a predator’s abundance. This

implies that the probability of feasibility with functional responses (or higher-order terms

in general) can be different when adding or not parameter restrictions (e.g., sign restrictions

defining who eats whom). Thus, to study the effect of sign restrictions in the coefficients

of a’s, we rewrite Model (3.9) as

dNi

dt
= Ni(ri + aiiNi −

∑
j∈Si\Ii

aijNjφij +
∑
j∈Ii

εjiajiNjφij), i = 1, . . . , n, (3.11)

where Si = {1, 2, . . . , n}\{i} (backslash symbol means set difference) and all aij’s are

non-negative except when i = j (unrestricted in sign).
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Additionally, it is worth noticing that the feasibility in Model (3.9) is dependent on the

common numerator of its RHS, and the solution becomes similar to the previous case of

an LV model with HOIs, where parameters are linked. That is, the higher the diversity

and order of functional responses added into a model, the higher the order of terms added

to the numerator of the RHS of Eqn. (3.9). To show this, let us write all φij’s as quotients

of two polynomials φij = φUij/φ
D
ij . Thus, Eqn. (3.9) has a common denominator given by

Φi = Πk∈Si
φDik, whose number of terms and leading order depend on the specified functional

responses. Then, let us define Φij = Φiφ
U
ij/φ

D
ij , where Φij is the same as Φi but with the

term φDij replaced by φUij—which also depends on the specified functional responses. This

process implies that the common numerator of the RHS of Eqn. (3.9) (after deleting Ni

outside the bracket) is a multivariate polynomial expressed in terms of species abundances

given by the following expression:

riΦi + aiiNiΦi −
∑

1≤j≤n
j 6=i

aijNjΦij, i = 1, 2, . . . , n.
(3.12)

Therefore, the roots of Eqns. (3.12) determine the free-equilibrium points of Eqns. (3.9),

allowing the common numerator of the RHS of Eqn. (3.11) to be written in a form similar

to Eqn. (3.12). Note that when moving from Type T1 to T2s and then to T3s, the order

of added terms increases. Moreover, when T2m functional responses are used, which are

functions of all prey abundances of a specific predator, there will be less distinct denomi-

nators in each line of Eqn. (3.9). This is because all prey of a specific predator will have

the identical denominator of Eqn. (3.10), and, in return, it will have fewer higher-order

terms added to the numerator in Eqn. (3.12) than what would be added by T2s.

To numerically compute the probability of feasibility for different types of functional re-

sponses (i.e., T1, T2m, T2s and T3s), we consider the following models and parameter dis-

tributions. Unrestricted Model (MU): Model (3.9) is used to represent species dynamics

(the parameters are a’s, h’s and r’s) and the distribution of parameters is given by (i) all

a’s are uniform in [−
√

3,
√

3], (ii) all r’s are uniform in [−
√

3,
√

3] except for r1 (uniform

in [0, 2
√

3]) and rn (uniform in [−2
√

3, 0], and (iii) all h’s are uniform in [0, 2
√

3] (notice

that all these parameters have a unit variance). Restricted Model (MR): Model (3.11) is

used to represent species dynamics (the parameters are a’s, h’s, r’s and the ε’s) and the

distribution of parameters is given by (i) all aij’s are uniform in [0, 2
√

3] except when i = j
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2*Type / Size n=2 n=3 n=4
Θ pU pR Θ pU pR Θ pU pR

T1 1 0.2543 0.5378 1 0.1256 0.2299 1 0.0662 0.0923

T2m 3 0.2661 0.3248 10 0.1391 0.1817 23 0.0760 0.0957

T2s Same as T2m 12 0.1457 0.2031 62 0.0920 0.1226

T3s 5 0.2842 0.3486 33 0.1807 0.2802 289 0.1347 0.2422

Table 3.1: Probability of feasibility and number of free-equilibrium points as a function of
system’s size and polynomial degree (functional response). For n = 2, 3, 4 species systems
(columns) and four different types of functional responses T1, T2m, T2s, T3s (rows), the table
shows the probability of feasibility for sign-unrestricted models (pU ≡ p(n, type,MU)) and
sign-restricted models (pR ≡ p(n, type,MR)). For each of these combinations, the table
also shows the average number of free-equilibrium points (Θ) computed using the solver
PHCLab. Note that Θ can numerically fluctuate due to either parameters yield less roots or
because the solver eliminates leading terms with small coefficients (which do not affect the
existence of a feasible root). Probabilities decrease with systems size. Both probabilities
and free-equilibrium points tend to increase with polynomial degree. For each system size,
pU increases with the value of Θ. Similarly, for Θ > 1, pR increases with the value of Θ.

(aii’s are uniform between [−
√

3,
√

3]), (ii) all r’s are uniform in [−
√

3,
√

3] except for r1

(uniform in [0, 2
√

3]) and rn (uniform in [−2
√

3, 0]), (iii) all h’s are uniform in [0, 2
√

3],

and (iv) all ε’s are uniform in [0, 1]. In addition, we assume an interaction network defined

by p(i, j) = min(i, j) for every 1 ≤ i, j ≤ n, where i 6= j (i.e., all species are connected to

each other). This assumption requires that Ik = {1, 2, . . . , k − 1} for all k where I1 is an

empty set (i.e., every species is a predator of all lower indexed species and is a prey to all

higher indexed species). Next, we compute the probability of feasibility p(n, type,model)

for n-species systems (n = 2, 3, 4). Note that p(2, T2m,Mi) = p(2, T2s,Mi) for i = {M,U}

as the solo predator in the network has a single prey. These parameter values are chosen to

simply illustrate the effect of sign restrictions and are not intended to reflects any specific

ecological process.

In general, as the complexity of a model increases (either with dimension or with adding

extra processes), its number of roots (free-equilibrium points) also increases, which leads

to an increase in the computational time needed to solve multivariate polynomials for a

single trial. Thus, any exponential increase in the number of free-equilibrium points makes

computing the probability of feasibility a hard task. Thus, to reasonably compute these

probabilities, we use 25,000 trials for each combination p(n, type,Mi). The results are

presented in Table 3.1. Note that the probability of feasibility agrees with the theoretical

value p(n, T1,MU) = 1/2n up to 2 digits, which is a good indicator for comparison purposes.
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Table 3.1 shows that the number of free-equilibrium points (Θ) of both models (MU and

MR) increases as a function of the polynomial degree, i.e., functional responses T1, T2m,

T2s and T3s in that order. Focusing on the unrestricted model (MU) and controlling for

the number of species n (for any n, columns in table), Table 3.1 shows that the increase in

the probability of feasibility is consistent with the increase in Θ (i.e., complexity). That is,

p(n, T1,MU) < p(n, T2m,MU) < p(n, T2s,MU) < p(n, T3s,MU). These inequalities are also

present in the restricted model (MR), except for n = 2 and n = 3, where p(n, T1,MR) >

p(n, T2m,MR). However, at n = 4 (under a higher Θ when T2m is used) the inequality is

recovered again. It is worth mentioning that unlike the case of the LV model with HOIs,

where both the number of free-equilibrium points and the number of parameters increase

as a function of the polynomial degree, in the case of functional responses T2m, T2s and

T3s, the number of parameters is constant. Nevertheless, the increase in the probability of

feasibility, while not as high as in the LV model with HOIs, is still observed despite fixing

the number of parameters and whether the a’s are restricted in sign or not.

The analysis above allows us to make a distinction between complex models and the linear

LV model. Table 3.1 reveals that the probability of feasibility is a monotonic and saturating

function of complexity when Θ > 1 (e.g., moving from type T2m to T2s to T3s). However,

when we compare cases with Θ = 1 against cases with Θ > 1, the probability of feasibility

of a linear LV model (i.e., Θ = 1) will be exceeded only as soon as a minimum level of

complexity (Θ∗) is reached. For example, under the restricted model MR, the probability

of feasibility will exceed that of the linear LV model when Θ ≥ 23 for n = 2, 3, 4. This

level of complexity (Θ) differs for each distribution. By contrast, under the unrestricted

model MU , this level decreases to Θ ≥ 3 for all n’s regardless of functional response.

The previous results can be explained by noticing the fundamental difference between

complex models and the linear LV model. Under arbitrary model parameters, the solo

free-equilibrium point in LV model must be real (i.e., all its coordinates are real). Instead,

in complex models free-equilibrium points are generally complex [81]. Thus, the initial

entrance to the complex domain represents a handicap for complex models, yet this is

quickly recovered by the increase of free-equilibrium points. These concepts can be verified

analytically: defining the probability of feasibility p(Θ) by the form 1 − (1 − Ê(Θ)/Θ)Θ,

let us assume that p(Θ) < p(1), leading to Ê(Θ) ≤ Θ(1 − (1 − Ê(1))1/Θ. If Θ increases,

the RHS of the inequality will approach −ln(1 − Ê(1)) independently of Θ. However, we
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know already that Ê(Θ) increases with Θ. This implies the existence of a minimum Θ∗ for

which Ê(Θ∗) > −ln(1 − Ê(1)) and subsequently p(Θ∗) > p(1). Because of the expected

drastic increase in Θ as a function of the dimension of the system [81], it can be proved

that no matter the parameter restrictions imposed in a model, Θ∗ can always be exceeded

by increasing either dimensionality or polynomial degree. This increase will yield a higher

probability of feasibility than in the linear LV model regardless of the specific mechanisms

invoked.

Indeed, Table 3.1 shows that the relative increase in the probability of feasibility compared

to the linear LV model (i.e., p(n, type,Mi)/p(n, T1,Mi), for i = {U,R}) is a function of n

for any given functional response. For instance, when T3s is used as functional response,

the probability for models MU and MR increases by a factor of 1.1, 1.4, 2 and 0.6, 1.2, 2.6

for n = 2, 3, 4 species, respectively. This increasing pattern is also consistent using T2m and

T2s. Therefore, adding nonlinear processes to a linear LV model (T1) increases the number

of free-equilibrium points; which, in turn, contributes to the increase in the probability of

feasibility—this is further magnified as the number of species increases. Additionally, note

that the number of parameters is fixed for the functional responses T2m, T2s and T3s, which

differ only by a few terms (the h’s) compared to T1. Therefore, unlike the case of HOIs, the

relative increase in the probability of feasibility is not necessarily larger when moving from

Type I to Type II (either T2m or T2s) than the increase observed when moving from Type

II to Type III. For example, focusing on the model MR with n = 4 species and moving

from T1 to T2s and then from T2s to T3s, the relative increase is 1.3 and 2, respectively.

It is also worth noticing that while functional responses T2m, T2s and T3s are widely used

in the literature, the functional response T2m can be considered a more realistic type [11].

Interestingly, Table 3.1 shows that models with T2m have less free-equilibrium points (less

complexity) than the other types, and their probability of feasibility is the closest to the

linear LV model. This can suggest that realistic models should deviate the least from the

probability of feasibility of the linear LV model. Nevertheless, the difference in its proba-

bility of feasibility compared to the linear LV model will increase with dimensionality. This

is evident by the number of free-equilibrium points, which exceeds that obtained from the

LV model with HOIs at interaction order m′ = 3 (i.e., adding up to quadratic terms to

the linear LV model results in 2n free equilibrium points) at n ≥ 3—implying at least an

exponential increase in Θ with dimensionality. Focusing on T2m, if the symmetry is broken
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in Eqn. (3.10) by replacing a few hk,q(i,j) with hk,i,j (which can differ only slightly from

hk,q(i,j)), the number of free-equilibrium points can go beyond that of T3s, increasing the

probability of feasibility significantly. Furthermore, the probability of feasibility with func-

tional responses (under parameter restrictions) is smaller than in the linear LV model for

n = 2, 3 species except when n = 3 and the functional response T3s is used. However, this

pattern already disappears with 4 species, confirming that one cannot directly extrapolate

our understanding of ecological dynamics from low to high dimensions [61, 100, 101].

3.5 Ecological models: Higher Complexity In, Higher

Feasibility Out

One of the main goals in ecological research is to understand the main factors that con-

tribute to the persistence of multispecies systems [2, 10]. While simple ecological models

(such as the linear LV model) are typically modified for the purpose of adding realism

and dynamical richness, tractability is usually compromised [11, 14]. For example, it is

well known that in the linear LV model (Type I), the number of feasible equilibrium solu-

tions (a crucial condition for the persistence of ecological systems) is always one regardless

of the dimension of the system, making this a limited but tractable model [41, 53]. By

contrast, the addition of higher-order terms (specifically, polynomial fractions such as non-

linear functional responses and higher-order interactions) invariantly increases the number

of free-equilibrium solutions, making these rich but untractable models [81]. This reveals

that without knowing the exact parameter values in a model, it is necessary to study from

a probabilistic point of view the contribution of ecological processes (both mechanistic and

phenomenological) to explaining the dynamics of multispecies systems.

Focusing on the feasibility of ecological systems (defined here as the probability of exhibit-

ing at least one positive real root under an arbitrary choice of parameter values) in complex

models (defined here as modifications to the LV model using multivariate polynomial frac-

tions and with Θ > 1), we have shown that the probability of feasibility is a monotonic

and saturating function of its complexity, regardless of the specific mechanism invoked. We

have characterized this complexity by the number of free-equilibrium points (Θ) generated

by a model, which is a function of the model’s polynomial degree and dimension. We have
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found that the probability of feasibility in a complex model (Θ > 1) will exceed the one

in a linear LV model (Θ = 1) as soon as a minimum level of complexity (Θ∗) is reached.

Importantly, this minimum level is modulated by parameter restrictions, but can always

be exceeded via increasing the polynomial degree or system’s dimension.

It is worth recalling that the number of free-equilibrium points in a model and its number

of parameters are two different descriptors [81]. For example, the LV model with Type

II functional responses has the same number of parameters as that of Type III, yet the

number of free-equilibrium points is different in both models. This difference is important

as we have shown that it is expected that the model with more free-equilibrium points will

have a higher probability of feasibility. These findings could be perceived as a desirable

advantage for complex models, as they can provide a higher probability of generating a

feasible multispecies system (and richer dynamics). Unfortunately, this increase in proba-

bility happens no matter what type of specific mechanism is added, it all depends on its

polynomial form—limiting the capacity to distinguish the actual contribution of a specific

ecological process to the feasibility of a multispecies system.

For example, studies have investigated population dynamics resulting from mutualism by

employing functional responses based on density-dependent benefits and costs [102–104],

i.e., the φ’s in Eqn. (3.9) are replaced with φ − φcost where functional responses are

modified to add a cost term. However, as we have shown, adding cost terms to penalize for

some benefits will not decrease the probability of feasibility, actually they will increase it.

Similarly, in the study of food-web models [85], it is common practice to use multispecies

functional responses (i.e., polynomial fractions of more than a single species) in order to

include the effect of other predators or prey [105]. Note that the Types I, II, III functional

responses are functions of the prey density only—a single species. But, as we have shown,

any of these modifications can only increase the probability of feasibility. As a third

example, the simple and ecologically-motivated idea of introducing carrying capacities

to limit the growth of species (i.e., the total growth rate Gi of species i is replaced by

Gi(1 − Ni/Ki), where Ki is its carrying capacity) [72] also increases the probability of

feasibility. Thus, regardless of whether a higher-order term (nonlinear mechanism) is well-

ecologically motivated, expected to limit or enrich dynamics, or has absolutely no meaning,

it is expected to increase the probability of feasibility in a multispecies model. This suggests

that the explanatory contribution to feasibility of a proposed ecological mechanism must
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be evaluated by its deviation from the expected behavior of its polynomial form.

The contribution of different ecological processes has been studied by showing how addi-

tional terms can help us to fit observed data [103]. Yet, fitting data has the same effect

as introducing parameter restrictions [81]. Hence, under this fitting process, it is only

expected that any additional process will increase on average the probability of explain-

ing the dynamics of the feasible system. Furthermore, under certain cases, adding more

process into a model can leave the probability the same as in the original restricted case

(e.g., a linear LV mutualistic model with no self-regulation: adding negative-density depen-

dence will increase the probability, while adding positive density-dependence will leave the

probability invariant. Yet, this involves modifying an already restricted model rather than

restricting a modified model). Thus, studies using fitting methodologies should contrast

their results by using out-of-sample validations [106].

Our results motivate us to reconsider what constitutes a realistic model, or how much

complexity can be appropriate to add into a model to mimic realistic ecological mechanisms.

Do we need models to fit perfectly data? Or do we need models to explain and predict

dynamics with minimal available information? Because it is virtually impossible to know

the exact form of the equations governing the dynamics of multispecies systems, as well as

the exact value of initial conditions, we believe that a first step towards answering these

questions implies understanding the extent to which the complexity of a model provides

an advantage over other models by virtue of their specific mechanisms invoked and not

simply by their polynomial form. Otherwise, any mechanism can explain equally well

any ecological dynamics, introducing the problem of model or structural unidentifiability

[107]. Thus, in order to advance our causative knowledge of ecological dynamics, we

need to understand the expected outcomes of our proposed models and their alternative

hypotheses.
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Chapter 4

Closed-Form Feasibility Conditions of

Ecological Models

4.1 Introduction

Over more than 100 years, ecological research has been striving to derive the biotic and

abiotic conditions compatible with the coexistence of a given group of interacting species

(also known as an ecological system or community) [3–7]. These conditions can provide

the keys to understand the mechanisms responsible for the maintenance of biodiversity

and the tolerance of ecological systems to external perturbations [108, 109]. Because of the

nature of this question, many efforts have been centered on developing phenomenological

and mechanistic models to represent the dynamics of ecological systems and predict their

behavior [10]. However, even if we had knowledge about the exact equations governing the

dynamics of interacting species, extracting and solving the set of conditions compatible

with the coexistence of such species remains a big mathematical challenge [11, 110]. Indeed,

due to mathematical limitations, most of the analytical work looking at these coexistence

conditions has focused on relatively simple 2-species systems or strictly particular cases of

higher-dimensional systems [10, 12, 111]. In fact, even at the 2-species level, currently there

is no general methodology that can provide us with a full analytical understanding about

coexistence conditions for any given model. Therefore, the majority of work has relied

on numerical simulations, which only provide a partial view of the dynamics conditioned

by the choice of parameter values. Thus, because of the varying complexity of ecological
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models and the arbitrary choice of model parameters, it has been difficult to derive general

knowledge about coexistence conditions [11, 36].

Recent work has started to address the challenge above by focusing on the necessary

conditions for species coexistence in equilibrium dynamics: feasibility [61]. Mathematically,

the feasibility of a generic n-species dynamical system dNi/dt = Nifi(N)/qi(N), where the

f ’s and q’s are multivariate polynomials in species abundances N = (N1, N2, . . . , Nn)T ,

corresponds to the existence of at least one equilibrium point N∗ = (N∗1 , N
∗
2 , . . . , N

∗
n)T > 0

that satisfies dNi/dt = 0 ∀i. Feasibility conditions are typically represented by inequalities

as a function of model parameters. Traditionally, feasibility conditions have been attained

by finding the isocline equations fi(N
∗) = 0 ∀i and then solving for N∗ before finding the

conditions that satisfy N∗ > 0 [12, 61]. For example, let us focus on the Lotka-Volterra

(LV) model of the form dNi/dt = Ni(ri +
∑n

j=1 aijNj), where a’s and r’s represent the

interaction coefficients and the intrinsic growth rates, respectively. In the LV model, the

isocline equations (for any dimension) can be written as r + AN∗ = 0, whose unique root

is given by N∗ = −A−1r. Therefore, feasibility conditions in this case are simply given by

the inequality −A−1r > 0. However, adding nonlinear functional responses or higher-order

terms can increase exponentially the number of roots of the system [81]. Importantly, it

is known from elimination theory (via Grobner basis) and Abel’s impossibility theorem

that it is impossible to solve analytically for N∗ when the number of roots of the system

is five or more [112–114]. Similarly, using numerical approaches, it has been demonstrated

that the probability of feasibility (the probability of finding at least one equilibrium point

whose components are all positive by randomly choosing parameter values) is an increasing

function of the model’s complexity regardless of the invoked mechanism, whether they are

ecologically motivated or have no meaning whatsoever [115]. This implies that traditional

approaches are also unsuitable for finding the necessary conditions for coexistence in generic

systems.

Here, we propose a general formalism to obtain for any population dynamics model the

set of necessary conditions leading to the coexistence of a given ecological system. In

this work, we propose a general framework that can find the feasibility conditions of any

model in any dimensions without the need to solve for the equilibrium locations. In fact, we

can separate those feasibility conditions to find conditions that guarantee exactly k feasible

equilibrium points for any value k. In addition, we propose a methodology to compact these
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conditions into smaller mathematical expressions that allow us analyze complex systems

analytically where it was previously impossible to attain. With these tools in hand, we can

find the range of parameters in any ecological model that are compatible with feasibility.

With these in hand, we start with a methodology that finds the feasibility conditions

of a univariate system, 2-species systems and multispecies systems. In each case, we will

provide examples in each case to demonstrate the methodology and show that the obtained

feasibility conditions are accurate. Also, for two and multispecies systems, we included

application sections where we apply the methodology on the simplest ecological models,

that are impossible to solve for the location of equilibrium points analytically, to find the

range of parameters that are compatible with feasibility. The first example is a 2-species

LV model with type III functional responses while the second example is a 3-species LV

system with higher-order interactions. Finally, we discuss potential applications of our

work, advantages and limitations of our formalism, and future avenues of research derived

from our study.

4.2 One-Dimensional Systems (1 species)

In this section, we focus on univariate polynomial systems. The aim here is to find a closed

form expression for the number of feasible roots in the system F (Ψ), which is a function

of model parameters Ψ. From the expression of F and exploiting its property, we can

deduce feasibility conditions which are sets of polynomial inequalities. For this section,

let us consider the following polynomial dynamical system of a single variable N as shown

below

dN

dt
=
Nf(N)

q(N)
(4.1)

where f(N) is a polynomial of degree n whose coefficients are in Ψ. We already know that

the number of roots of f(N) is n, a consequence of the Fundamental Theorem of Algebra.

In this section, we derive the formula of F (Ψ) and derive feasibility conditions from it.

The procedure involves the following steps:

1. Consider the monomial map m(N) = [1, N,N2, . . . , Nn−1]T which is of length n and

let Q(N) = N . Next, denote the roots of f(N) by η1, η2, . . . , ηn then denote the
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symmetric sums of the roots ηk1 + ηk2 + . . .+ ηkn by Σk for k = 0, 1, 2, . . ..

2. Construct the symmetric matrix S(s1) = W∆W t where Wij = mi(ηj) and ∆ii =

Q(ηi−s1) is a diagonal matrix. Note that all entries of S(s1) contains only symmetric

sums of the η’s (i.e, S(s1) only contains s1’s and Σ’s).

3. Construct the generating function G(N) = f ′(N)/f(N) and evaluate the Laurent

series of G(N) at N = ∞. The purpose of the series is to evaluate the Σ’s from

looking at the coefficients of the Laurent series of G(N), which are functions of model

parameters Ψ (or coefficients of f(N)). Assuming that Σ∗k is the highest symmetric

sum that is needed to be evaluated, the following identity is valid:

G(N) =
Σ0

N
+

Σ1

N2
+

Σ2

N3
+ . . .+

Σk∗

Nk∗+1
+O(N−k

∗−2)

4. After evaluating the Laurent series up to order O(N−k
∗+2), S(s1) is a function of s1

and model parameters only, evaluate the characteristic polynomial of S(s1) and write

it in the form det(S(s1) − λI) = (−1)nλn + vn−1(s1)λn−1 + . . . + v0(s1). After that

consider the sequence v = [vn(s1) = (−1)n, vn−1(s1), . . . , v0(s1)] and let V (s1) be the

number of consecutive sign changes in v.

5. Define the function sign(x) to be 1 when x > 0, 0 when x = 0 and −1 when

x < 0. Before writing down the expression of V (s1), note that in order to determine

whether there is a sign change between two real numbers x and y, we simply evaluate

[1− sign(xy)]/2, which is 0 when x and y have the same sign and 1 otherwise. With

this expression, the formula of V (s1) is

V (s1) =
n−1∑
i=0

1− sign(vi(s1)vi+1(s1))

2
.

6. For any interval (a, b], the number of real roots of f(N) in (a, b] is exactly V (a)−V (b).

Hence, to obtain the analytical expression for F (Ψ), we consider the interval (0,∞)

to obtain F (Ψ) = V (0)− V (∞) or simply

F (Ψ) =
n−1∑
i=0

sign(vi(∞)vi+1(∞))− sign(vi(0)vi+1(0))

2
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7. Call v0(0), . . . , vn−1(0), v0(∞), . . . , vn−1(∞) the feasibility basis. Since each of

the vi’s can take a positive or a negative sign, then there are 22n sign combinations

the feasibility basis can take. Many of those combinations are impossible to occur

(empty) for any choice of real Ψ. To detect the non-empty sign combinations, we

compute the signs of all vi’s as well as F (Ψ) for a range of parameters Ψ, where each

component of Ψ varies independently in a large domain (say uniformly between −100

and 100). This operation is cheaply computed as it is evaluation a few functions and

not solving systems of equations. After that, we extract unique sign combinations of

the vi’s which yield F (Ψ) ≥ 1 and put them in a feasibility table whose rows are the

signs of the vi’s and columns are the individual feasibility conditions. For a cleaner

representation of feasibility conditions, we can investigate all sign combinations of all

the factors of each of the vi’s (feasibility basis) and deleting all perfect square factors

from them (if possible).

8. After we obtain the table, we perform minimization to it by combining the feasibility

conditions (the columns). If two columns with the same value of F (Ψ) differ by a

single sign (in one row), combine the two columns into one and place X in the row

where there is a single sign difference to indicate that that no condition is needed to

be imposed for the quantity associated with that row. We can combine columns with

different values of F (Ψ) if the user does not care about separating the conditions

based on the value of F . Then we iterate through the process until it terminates

(no two columns differ by a single sign). For further minimization, we eliminate

redundant signs where the sign of one or more quantities that constitute the basis

implies the sign of another quantity in the same basis. For example, if the quantities

ac and a2 +b2−3ac are in the basis, then ac < 0 implies a2 +b2−3ac > 0 making the

later inequality redundant. Sometimes, the quantity in the basis is always positive or

negative regardless of the sign of the others (e.g a2 + b2 > 0 is always true). To find

these cases, we go through a single column at a time and iterate through each quantity

in the basis then compute the conditional probability that the quantity in the basis

takes its correspondent sign given that all other remaining quantities in the same

basis have their correspondent signs. If one or more conditional probabilities are 1,

any of those quantities may be replaced by X in the table. We then repeat computing

the same conditional probabilities which were 1 but without the X’ed quantity being
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part of the calculation. Then, we check whether the conditional probabilities are still

1 or not. If any is 1, we delete a redundant sign and keep repeating the process until

no conditional probability is 1. We then go through all columns and repeat the same

process untilit terminates

4.2.1 Illustrative example

Consider the following dynamical system

dN

dt
= N(aN2 + bN + c)

Consider the quadratic polynomial f(N) = aN2 + bN + c in Eqn. (4.1) with Ψ = (a, b, c).

This example has the same mathematical form of a a population model with an Allee

effect [116]. Denote the roots of f(N) by η1 and η2. Let m(N) = [1, N ] be a monomial

map of length n = 2 and Q(N) = N . Now, compute the matrix S(s1) = W∆W t where

Wij = mi(ηj) and ∆ii = Q(ηi − s1) is a diagonal matrix as follows:

S(s1) =

 1 1

η1 η2

η1 − s1 0

0 η2 − s1

1 η1

1 η2

 =

 η1 + η2 − 2s1 η2
1 + η2

2 − s1(η1 + η2)

η2
1 + η2

2 − s1(η1 + η2) η3
1 + η3

2 − s1(η2
1 + η2

2)



Note that we only have symmetric sums of η’s up to power of 2n − 1 = 3 (i.e, ηk1 + ηk2

where k = 1, 2, 3). To evaluate these symmetric sums, we need to evaluate the Laurent

series of the generating function G(N) = f ′(N)/f(N) at N = ∞ up to order O(N−5) as

shown below

G(N) =
2aN + b

aN2 + bN + c
=

2

N
+
−b
aN2

+
b2 − 2ac

a2N3
+
−b3 + 3abc

a3N4
+O(N−5)

Hence, η1 + η2 = −b/a, η2
1 + η2

2 = (b2 − 2ac)/a2 and η3
1 + η3

2 = (−b3 + 3abc)/a3. Denote to

these sums by Σ1,Σ2 and Σ3 respectively. Now, the characteristic equation of S(s1) is

det(S(s1)− λI) =λ2 + λ[−Σ1 − Σ3 + s1(2 + Σ2)]+

[Σ1Σ3 − Σ2
2 + s1(Σ1Σ2 − 2Σ3) + s2

1(2Σ2 − Σ2
1)]
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After constructing the characteristic equation whose coefficients are [v2(s1) = 1, v1(s1), v0(s1)],

we evaluate the signs of v’s at both s1 = 0 and s1 =∞ as follows

sign(v2(0)) = 1, sign(v1(0)) = sign(−Σ1 − Σ3), sign(v0(0)) = sign(Σ1Σ3 − Σ2
2)

sign(v2(∞)) = 1, sign(v1(∞)) = sign(2 + Σ2), sign(v0(∞)) = sign(2Σ2 − Σ2
1).

where vi(0) and vi(∞) are the coefficient of the trailing (constant) and leading term of

vi(s1) respectively. Now, we compute V (0) and V (∞) to have

V (0) =
1− sign(−Σ1 − Σ3)

2
+

1− sign(−Σ1 − Σ3)sign(Σ1Σ3 − Σ2
2)

2

V (∞) =
1− sign(2 + Σ2)

2
+

1− sign(2 + Σ2)sign(2Σ2 − Σ2
1)

2

Next, using the formula F (a, b, c) = V (0) − V (∞) together with two basic properties of

sign functions, namely sign(xy) = sign(x)sign(y) and sign(y) = 1/sign(y) for any non-zero

real numbers x and y, we obtain the expression of F (a, b, c), which is

F (a, b, c) =− sign(ab(a2 + b2 − 3ac))[1 + sign(ac(b2 − 4ac))]

2

+
sign(2a2 + b2 − 2ac)[1 + sign(b2 − 4ac)]

2

The feasibility basis in this case is given by v0(0), v1(0), v0(∞), v1(∞) and we can use it

as our basis in the table. Instead, we use the factors shown in the expression of F (a, b, c)

as our basis in the feasibility table. The five quantities which constitute the basis are

Q1 = ab,Q2 = a2 + b2− 3ac,Q3 = ac,Q4 = b2− 4ac,Q5 = 2a2 + b2− 2ac. Next, randomize

a, b and c uniformly between −100 to 100 and evaluate the signs of the Qi’s as well as

F (a, b, c). We find that there are only 3 sign combinations that yield to F (a, b, c) ≥ 1 are

given by the feasibility conditions C1, C2 and C3 that are shown below

C1 C2 C3

ab + − −

a2 + b2 − 3ac + + +

ac − − +

b2 − 4ac + + +

2a2 + b2 − 2ac + + +

F (a, b, c) 1 1 2
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Once the table is obtained, we start the minimization process. It is clear that from columns

1 and 2 that the sign of Q1 does not matter and thus can be replaced by an X symbol and

that concludes the first minimization step as no two columns differ by a single sign and we

end up with the feasibility conditions C1+2 = {Q2 > 0, Q3 < 0, Q4 > 0, Q5 > 0} and C3 =

{Q1 < 0, Q2 > 0, Q3 > 0, Q4 > 0, Q5 > 0}. For the second minimization step, we follow the

procedure outlined in item 8. For example, for column C1+2, we find that the conditional

probabilities P (Q2 > 0|Q3 < 0, Q4 > 0, Q5 > 0) = 1, P (Q3 < 0|Q2 > 0, Q4 > 0, Q5 > 0) 6=

1, P (Q4 > 0|Q2 > 0, Q3 < 0, Q5 > 0) = 1 and P (Q5 > 0|Q2 > 0, Q3 < 0, Q4 > 0) = 1

concluding that the sign of Q2, Q4 or Q5 can be replaced by X in that column. Let’s

replace the sign of Q2 by X. Then, we repeat computing the conditional properties that

were 1 but without the condition Q2 > 0. We find that P (Q4 > 0|Q3 < 0, Q5 > 0) = 1 and

P (Q5 > 0|Q3 < 0, Q4 > 0) = 1 concluding that we can replace the sign of Q4 or Q5 by X.

Let’s replace the sign of Q4 by X and eliminate it from the latter conditional probability

to find that P (Q5 > 0|Q3 < 0) = 1. Hence, the sign of Q4 can be replaced by X in column

C1+2. We repeat the same process with the column C3 and obtain the feasibility table

including the 2-step minimization that is shown below

C1 C2 C3 C1+2 C3 C1+2 C3

ab + − − X − X −

a2 + b2 − 3ac + + + + + X X

ac − − + −→ − + −→ − +

b2 − 4ac + + + + + X +

2a2 + b2 − 2ac + + + + + X X

F (a, b, c) 1 1 2 1 2 1 2

From the table, we conclude that the condition ac < 0 guarantees exactly 1 feasible equi-

librium point (i.e, F (a, b, c) = 1) while the condition ab < 0, ac > 0, b2−4ac > 0 guarantees

exactly 2 feasible equilibrium points (i.e, F (a, b, c) = 2). A special case of the discussed

illustrative example is the Allee effect model that has the following form [116]:

dN

dt
= N

(
N

A
− 1

)(
1− N

K

)
= N

((
−1

AK

)
N2 +

(
1

K
+

1

A

)
N − 1

)
, 0 < A < N < K

Let a = −1/AK, b = 1/A + 1/K and c = −1. It is clear that the second feasibility

condition is satisfied as ab < 0, ac > 0 and b2 − 4ac = (A−K)2/(A2K2) > 0.
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4.3 Two-Dimensional Systems (2 species)

Let us consider the following dynamical system with two species as shown below

dN1

dt
=
N1f1(N1, N2)

q1(N1, N2)
,

dN2

dt
=
N2f2(N1, N2)

q2(N1, N2)
.

(4.2)

where f1(N1, N2) and f2(N1, N2) are multivariate polynomial in N1 and N2 and whose

coefficients are in the vector Ψ. To describe the feasibility domain analytically, the following

steps are followed:

1. Let d1 and d2 equal to the largest exponent of N1 in f1 and f2 respectively. Write

f1(N1, N2) = ud1N
d1
1 + . . . + u1N1 + u0 and f2(N1, N2) = gd2N

d2
1 + . . . + g1N1 + g0

where the u’s and g’s are functions of N2 and are not functions of N1. Next, find T21

and T22 such that the resultant ResN1(f1, f2) = T21f1 + T22f2 where ResN1(f1, f2) is

a determinant of a square matrix of dimension d1 + d2 as shown below.

ResN1(f1, f2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ud1 ud1−1 . . . u1 u0 0 . . . 0 Nd2−1
1 f1

...
...

. . . . . . . . . . . . . . .
...

...

0 0 . . . ud1 ud1−1 ud1−2 . . . u0 N1f1

0 0 . . . 0 ud1 ud1−1 . . . u1 f1

gd2 gd2−1 . . . g1 g0 0 . . . 0 Nd1−1
1 f2

...
...

. . . . . . . . . . . . . . .
...

...

0 0 . . . gd2 gd2−1 gd2−2 . . . g0 N1f2

0 0 . . . 0 gd2 gd2−1 . . . g1 f2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= T21f1 + T22f2

Note that in the rows where the last entry is f1 or f2, there are no u0 nor g0 there.

To form ResN1(f1, f2), it is better to start with the two rows whose the last entries

are f1 and f2 then construct the matrix up. Now, if f1(N1, N2) = N2N
2
1 + 2N1 + 3N2

and f2(N1, N2) = 4N2N1 + 5, then d1 = 2, d2 = 1 and ResN1(f1, f2) is a determinant

of a 3 by 3 matrix as shown below:
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ResN1(f1, f2) =

∣∣∣∣∣∣∣∣∣
N2 2 f1

4N2 5 N1f2

0 4N2 f2

∣∣∣∣∣∣∣∣∣ = (16N2
2 )︸ ︷︷ ︸

T21

f1 + (−3N2 − 4N1N
2
2 )︸ ︷︷ ︸

T22

f2

2. Let e1 and e2 equal to the largest exponent of N2 in f1 and f2 respectively. Write

f1(N1, N2) = we1N
e1
2 + . . . + w1N2 + w0 and f2(N1, N2) = ze2N

e2
2 + . . . + z1N2 + z0

where the w’s and z’s are functions of N1 and are not functions of N2. Next, find T11

and T12 such that the resultant ResN2(f1, f2) = T11f1 + T12f2 where ResN2(f1, f2) is

a determinant of a square matrix of dimension e1 + e2 as shown below.

ResN2(f1, f2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

we1 we1−1 . . . w1 w0 0 . . . 0 N e2−1
2 f1

...
...

. . . . . . . . . . . . . . .
...

...

0 0 . . . we1 we1−1 we1−2 . . . w0 N2f1

0 0 . . . 0 we1 we1−1 . . . w1 f1

ze2 ze2−1 . . . z1 z0 0 . . . 0 N e1−1
2 f2

...
...

. . . . . . . . . . . . . . .
...

...

0 0 . . . ze2 ze2−1 ze2−2 . . . z0 N2f2

0 0 . . . 0 ze2 ze2−1 . . . z1 f2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= T11f1 + T12f2

Note that in the rows where the last entry is f1 or f2, there are no w0 or z0 there.

Again, if f1(N1, N2) = N2N
2
1 + 2N1 + 3N2 and f2(N1, N2) = 4N2N1 + 5, then e1 = 1,

e2 = 1 and ResN2(f1, f2) is a determinant of a 2 by 2 matrix as shown below:

ResN2(f1, f2) =

∣∣∣∣∣∣N
2
1 + 3 f1

4N1 f2

∣∣∣∣∣∣ = (−4N1)︸ ︷︷ ︸
T11

f1 + (N2
1 + 3)︸ ︷︷ ︸
T12

f2

3. Evaluate the determinant of the eliminating matrix T (f1, f2), whose elements T11,

T12, T21, T22 have been obtained in the earlier two steps, as well as the determinant

of the Jacobian of f1 and f2. Note that the first row of T (f1, f2) corresponds to

the coefficients of f1 and f2 in ResN2(f1, f2) while the second row corresponds to the

coefficients of f1 and f2 in ResN1(f1, f2).
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T (f1, f2) =

∣∣∣∣∣∣T11 T12

T21 T22

∣∣∣∣∣∣ = T11T22 − T12T21

J(f1, f2) =

∣∣∣∣∣∣
∂f1
∂N1

∂f1
∂N2

∂f2
∂N1

∂f2
∂N2

∣∣∣∣∣∣ =
∂f1

∂N1

∂f2

∂N2

− ∂f1

∂N2

∂f2

∂N1

4. Expand the function G(f1(N1, N2), f2(N1, N2)) that is shown below, around N1 =∞

and N2 = ∞ (or perform series expansion of G(f1(1/x, 1/y), f2(1/x, 1/y)) around

x = 0 and y = 0 which gives identical coefficients) to obtain the Σ’s (symmetric

sums of the roots).

G(f1, f2) =
T (f1, f2)J(f1, f2)

ResN1(f1, f2)ResN2(f1, f2)

=
Σ0,0

N1N2

+
Σ1,0

N2
1N2

+
Σ0,1

N1N2
2

+
Σ1,1

N2
1N

2
2

+
Σ2,0

N3
1N2

+
Σ2,1

N3
1N

2
2

+
Σ0,2

N1N3
2

+
Σ1,2

N2
1N

3
2

+
Σ3,0

N4
1N2

+
Σ3,1

N4
1N

2
2

+
Σ0,3

N1N4
2

+
Σ1,3

N2
1N

4
2

+ . . .

Note that f1 and f2 are substituted in both ResN1(f1, f2) and ResN2(f1, f2) to fully

express the resultants in terms of N1, N2 and model parameters Ψ before evaluating

G(f1, f2) and expanding it. For the symmetric sums, denote the roots of f1(N1, N2)

and f2(N1, N2) by ηk = [ηk,1, ηk,2]T for k = 1, . . . ,Θ. The symmetric sum Σm,n for

any m and n is given by Σm,n =
∑Θ

k=1 η
m
k,1η

n
k,2. In particular, note that Θ = Σ0,0 is

the number of complex roots of f1 and f2 with a general coefficients. It is important

to record that number.

5. Choose a map m(N1, N2) = [1,m1,m2, . . . ,mΘ−1]T of length Θ with independent

entries that are functions of N1 and N2. If Θ = 4, we can let m(N1, N2) =

[1, N1, N2, N1N2]T . It does not matter what the m’s are as long as no entry is a

linear combination of the others and step 7 of the procedure does not fail (in step

7 we give more details). Then let Q(N1, N2) = N1N2 and compute the symmetric

matrix S(s1, s2) = W∆W t where Wij = mi(ηj,1, ηj,2) and ∆ii = Q(ηi,1− s1, ηi,2− s2)

is a diagonal matrix.

6. The next task is to evaluate the determinant of S(s1, s2) and write it in the form

det(S(s1, s2)−λI) = (−1)ΘλΘ+vΘ−1(s1, s2)λΘ−1+. . .+v0(s1, s2). After that consider

the sequence v = [vΘ(s1, s2) = (−1)Θ, vΘ−1(s1, s2), . . . , v0(s1, s2)] and let V (s1, s2) be
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the number of consecutive sign changes in v. The formula of V (s1, s2) is

V (s1, s2) =
Θ−1∑
i=0

1− sign(vi(s1, s2)vi+1(s1, s2))

2
.

7. For any interval (a, b]× (c, d], the number of real roots of f1(N1, N2) and f2(N1, N2)

in (a, b]× (c, d] is exactly [V (a, c)− V (a, b) + V (b, d)− V (b, c)]/2. For the feasibility

domain, note that the points {(0, 0), (0,∞), (∞, 0), (∞,∞)} are the vertices of the

”box” that bound it. Hence, the expression of F (Ψ) is simply F (Ψ) = [V (0, 0) −

V (0,∞)− V (∞, 0) + V (∞,∞)]/2. Here, ∞ is a limit; therefore, 0 is evaluated first

before the limit is taken at infinity. For V (∞,∞) where the limit of two quantities

approach infinity, the limit is unique. Therefore, it does not matter along which

direction the limit is taken. To evaluate those V ’s we need to evaluate the v’s at

those limits. Note that for any function p, sign(p(S(0, 0)) = sign of the constant

term in p(S(s1, s2)). For the other cases, note that

• sign(p(S(0,∞)) = sign of the coefficient of the term associated with the highest

power of s2 in p(S(s1, s2)) = sign of the constant term of the common numerator

of p(S(0, 1/y)) = sign of the numerator of p(S(0, 1/y)) evaluated at y = 0

• sign(p(S(∞, 0)) = sign of the coefficient of the term associated with the highest

power of s1 in p(S(s1, s2)) = sign of the constant term of the common numerator

of p(S(1/x, 0)) = sign of the numerator of p(S(1/x, 0)) evaluated at x = 0

• sign(p(S(∞,∞)) = sign of the coefficient of the term associated with the highest

power of s1s2 in p(S(s1, s2)) = sign of the constant term of the common numer-

ator of p(S(1/x, 1/y)) = sign of the numerator of p(S(1/x, 1/y)) evaluated at

x, y = 0

After evaluating the v’s, we assemble F (Ψ). If F (Ψ) or any of the V ’s is not a

non-negative integer, even for a single case where Ψ is randomly chosen, or the

vector v contains zeros, then the map m(N1, N2) must be changed. One remedy to

rectify this is increasing the order of one of the components of m. For example, if

m(N1, N2) = [1, N1, N2, N1N2] fails, then one can try m(N1, N2) = [1, N2
1 , N2, N1N2].
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8. As in the univariate case, call v0(0, 0), . . . , vΘ−1(0, 0), v0(0,∞), . . . , vΘ−1(0,∞),

v0(∞,∞), . . . , vΘ−1(∞,∞), v0(∞, 0), . . . , vΘ−1(∞, 0) the feasibility basis which

involves 4Θ quantities as feasibility conditions are only dependent on those quantities.

Since there are 4Θ quantities and each can take a positive or a negative sign, then

there are 24Θ sign combinations. Many of those combinations are impossible to occur

(empty) for any choice of real Ψ. To detect the non-empty sign combinations, we

compute the signs of all the c’s (the feasibility basis) as well as F (Ψ) for a range of

parameters Ψ, where each component of Ψ varies independently in a large domain

(say uniformly between −100 and 100 or in any suitable domain). This operation

is cheaply computed as it is evaluation a few functions and not solving systems of

equations. After that, we extract unique sign combinations of the v’s which yield

F (Ψ) ≥ 1 and put them in a feasibility table whose rows are the signs of the c’s and

columns are the individual feasibility conditions.

9. After we obtain the feasibility table, we perform minimization to it. If two columns

differ by a single sign (in one row), the two columns are combined into one and an X is

placed in the row where there is a single sign difference. We repeat the same process

until no two columns differ by a single sign. After that we go through a single column

at a time and iterate through each quantity in the basis then compute the conditional

probabilities that the quantity takes its correspondent sign given that all remaining

quantities have their correspondent signs. If one or more conditional probabilities

are 1, the sign of one of those quantities may be replaced by X in the table. We

then repeat computing the same conditional probabilities which were 1 but without

the X’ed quantity being part of the calculation. If any conditional probability is 1

we repeat the process until it terminates. Plotting the signs of the feasibility basis

against F (Ψ) may reveal extra minimization information (see application section).

4.3.1 Illustrative Example

Consider the following LV system with a simple higher-order term N1N2

dN1

dt
= N1(r1 + a11N1 + a12N2 + b1N1N2)

dN2

dt
= N2(r2 + a21N1 + a22N2 + b2N1N2)
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Let f1(N1, N2) = r1+a11N1+a12N2+b1N1N2 and f2(N1, N2) = r2+a21N1+a22N2+b2N1N2

with Ψ = (r1, r2, a11, a12, a21, a22, b1, b2) being the vector of model parameters. The first

task is evaluating the resultants as follows:

ResN1(f1, f2) =

∣∣∣∣∣∣a11 + b1N2 f1

a21 + b2N2 f2

∣∣∣∣∣∣ = −(a21 + b2N2)︸ ︷︷ ︸
T21

f1 + (a11 + b1N2)︸ ︷︷ ︸
T22

f2

= (a22b1 − a12b2)N2
2 + (a11a22 − a12a21 + b1r2 − b2r1)N2 + (a11r2 − a21r1)

ResN2(f1, f2) =

∣∣∣∣∣∣a12 + b1N1 f1

a22 + b2N1 f2

∣∣∣∣∣∣ = −(a22 + b2N1)︸ ︷︷ ︸
T11

f1 + (a12 + b1N1)︸ ︷︷ ︸
T12

f2

= (a21b1 − a11b2)N2
1 + (−a11a22 + a12a21 + b1r2 − b2r1)N1 + (a12r2 − a22r1)

From above, the entries of the eliminating matrix T (f1, f2) are T11 = −(a22 + b2N1),

T12 = (a12 + b1N1), T21 = −(a21 + b2N2) and T22 = (a11 + b1N2). After that we evaluate

the determinant of both eliminating matrix T (f1, f2) and the Jacobian of f1 and f2 as

following.

T (f1, f2) =

∣∣∣∣∣∣−(a22 + b2N1) a12 + b1N1

−(a21 + b2N2) a11 + b1N2

∣∣∣∣∣∣
= a12a21 − a11a22 + (a21b1 − a11b2)N1 + (a12b2 − a22b1)N2

J(f1, f2) =

∣∣∣∣∣∣a11 + b1N2 a12 + b1N1

a21 + b2N2 a22 + b2N1

∣∣∣∣∣∣
= (a11a22 − a12a21) + (a11b2 − a21b1)N1 + (a22b1 − a12b2)N2

Now, we need to expand the generating function G(f1(N1, N2), f2(N1, N2)) around N1 =∞

and N2 =∞ to obtain

G(f1, f2) =
T (f1, f2)J(f1, f2)

ResN1(f1, f2)ResN2(f1, f2)

=
Σ0,0

N1N2

+
Σ1,0

N2
1N2

+
Σ0,1

N1N2
2

+
Σ1,1

N2
1N

2
2

+
Σ2,0

N3
1N2

+
Σ2,1

N3
1N

2
2

+
Σ0,2

N1N3
2

+
Σ1,2

N2
1N

3
2

+
Σ3,0

N4
1N2

+
Σ3,1

N4
1N

2
2

+
Σ0,3

N1N4
2

+
Σ1,3

N2
1N

4
2

+ . . .
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The expression for each of the Σ’s (symmetric power sums of the roots) are shown below

where Σi,j = ΣU
i,j/Σ

D
i,j is written as a fraction of two polynomials.

ΣU
0,0 =2

ΣD
0,0 =1

ΣU
1,0 =a12a21 − a11a22 + b1r2 − b2r1

ΣD
1,0 =(a11b2 − a21b1)

ΣU
0,1 =a11a22 − a12a21 + b1r2 − b2r1

ΣD
0,1 =(a12b2 − a22b1)

ΣU
2,0 =a2

11a
2
22 − 2a11a12a21a22 + 2a11a12b2r2 − 2a11a22b1r2 + a2

12a
2
21 − 2a12a21b2r1

+ 2a21a22b1r1 + b2
1r

2
2 − 2b1b2r1r2 + b2

2r
2
1

ΣD
2,0 =(a11b2 − a21b1)2

ΣU
0,2 =a2

11a
2
22 − 2a11a12a21a22 + 2a11a12b2r2 − 2a11a22b2r1 + a2

12a
2
21 − 2a12a21b1r2

+ 2a21a22b1r1 + b2
1r

2
2 − 2b1b2r1r2 + b2

2r
2
1

ΣD
0,2 =(a12b2 − a22b1)2

ΣU
1,1 =2a11a12a21a22 − a2

12a
2
21 − a2

11a
2
22 − 2a11a12b2r2 + a11a22b1r2 + a11a22b2r1

+ a12a21b1r2 + a12a21b2r1 − 2a21a22b1r1

ΣD
1,1 =(a11b2 − a21b1)(a12b2 − a22b1)

ΣU
2,1 =a3

11a
3
22 − 3a2

11a12a21a
2
22 + 3a2

11a12a22b2r2 − 2a2
11a

2
22b1r2 − a2

11a
2
22b2r1

+ 3a11a
2
12a

2
21a22 − 3a11a

2
12a21b2r2 + a11a12a21a22b1r2 − a11a12a21a22b2r1

− a11a12b1b2r
2
2 + a11a12b

2
2r1r2 + 3a11a21a

2
22b1r1 + a11a22b

2
1r

2
2 − a11a22b1b2r1r2

− a3
12a

3
21 + a2

12a
2
21b1r2 + 2a2

12a
2
21b2r1 − 3a12a

2
21a22b1r1 + a12a21b1b2r1r2

− a12a21b
2
2r

2
1 − a21a22b

2
1r1r2 + a21a22b1b2r

2
1

ΣD
2,1 =(a11b2 − a21b1)2(a12b2 − a22b1)

ΣU
1,2 =− a3

11a
3
22 + 3a2

11a12a21a
2
22 − 3a2

11a12a22b2r2 + a2
11a

2
22b1r2 + 2a2

11a
2
22b2r1

− 3a11a
2
12a

2
21a22 + 3a11a

2
12a21b2r2 + a11a12a21a22b1r2 − a11a12a21a22b2r1

− a11a12b1b2r
2
2 + a11a12b

2
2r1r2 − 3a11a21a

2
22b1r1 + a11a22b1b2r1r2 − a11a22b

2
2r

2
1

+ a3
12a

3
21 − 2a2

12a
2
21b1r2 − a2

12a
2
21b2r1 + 3a12a

2
21a22b1r1 + a12a21b

2
1r

2
2

− a12a21b1b2r1r2 − a21a22b
2
1r1r2 + a21a22b1b2r

2
1

ΣD
1,2 =(a11b2 − a21b1)(a12b2 − a22b1)2
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ΣU
3,0 =− a3

11a
3
22 + 3a2

11a12a21a
2
22 − 3a2

11a12a22b2r2 + 3a2
11a

2
22b1r2 − 3a11a

2
12a

2
21a22

+ 3a11a
2
12a21b2r2 − 3a11a12a21a22b1r2 + 3a11a12a21a22b2r1 + 3a11a12b1b2r

2
2

− 3a11a12b
2
2r1r2 − 3a11a21a

2
22b1r1 − 3a11a22b

2
1r

2
2 + 3a11a22b1b2r1r2

+ a3
12a

3
21 − 3a2

12a
2
21b2r1 + 3a12a

2
21a22b1r1 − 3a12a21b1b2r1r2 + 3a12a21b

2
2r

2
1

+ 3a21a22b
2
1r1r2 − 3a21a22b1b2r

2
1 + b3

1r
3
2 − 3b2

1b2r1r
2
2 + 3b1b

2
2r

2
1r2 − b3

2r
3
1

ΣD
3,0 =(a11b2 − a21b1)3

ΣU
0,3 =a3

11a
3
22 − 3a2

11a12a21a
2
22 + 3a2

11a12a22b2r2 − 3a2
11a

2
22b2r1 + 3a11a

2
12a

2
21a22

− 3a11a
2
12a21b2r2 − 3a11a12a21a22b1r2 + 3a11a12a21a22b2r1 + 3a11a12b1b2r

2
2

− 3a11a12b
2
2r1r2 + 3a11a21a

2
22b1r1 − 3a11a22b1b2r1r2 + 3a11a22b

2
2r

2
1

− a3
12a

3
21 + 3a2

12a
2
21b1r2 − 3a12a

2
21a22b1r1 − 3a12a21b

2
1r

2
2 + 3a12a21b1b2r1r2

+ 3a21a22b
2
1r1r2 − 3a21a22b1b2r

2
1 + b3

1r
3
2 − 3b2

1b2r1r
2
2 + 3b1b

2
2r

2
1r2 − b3

2r
3
1

ΣD
0,3 =(a12b2 − a22b1)3

ΣU
3,1 =− a4

11a
4
22 + 4a3

11a12a21a
3
22 − 4a3

11a12a
2
22b2r2 + 3a3

11a
3
22b1r2 + a3

11a
3
22b2r1

− 6a2
11a

2
12a

2
21a

2
22 + 8a2

11a
2
12a21a22b2r2 − 2a2

11a
2
12b

2
2r

2
2 − 5a2

11a12a21a
2
22b1r2

+ a2
11a12a21a

2
22b2r1 + 5a2

11a12a22b1b2r
2
2 − a2

11a12a22b
2
2r1r2 − 4a2

11a21a
3
22b1r1

− 3a2
11a

2
22b

2
1r

2
2 + a2

11a
2
22b1b2r1r2 + 4a11a

3
12a

3
21a22 − 4a11a

3
12a

2
21b2r2

+ a11a
2
12a

2
21a22b1r2 − 5a11a

2
12a

2
21a22b2r1 − a11a

2
12a21b1b2r

2
2 + 5a11a

2
12a21b

2
2r1r2

+ 8a11a12a
2
21a

2
22b1r1 + a11a12a21a22b

2
1r

2
2 − 10a11a12a21a22b1b2r1r2 + a11a12a21a22b

2
2r

2
1

− a11a12b
2
1b2r

3
2 + 2a11a12b1b

2
2r1r

2
2 − a11a12b

3
2r

2
1r2 + 5a11a21a

2
22b

2
1r1r2

− a11a21a
2
22b1b2r

2
1 + a11a22b

3
1r

3
2 − 2a11a22b

2
1b2r1r

2
2 + a11a22b1b

2
2r

2
1r2 − a4

12a
4
21

+ a3
12a

3
21b1r2 + 3a3

12a
3
21b2r1 − 4a2

12a
3
21a22b1r1 + a2

12a
2
21b1b2r1r2 − 3a2

12a
2
21b

2
2r

2
1

− a12a
2
21a22b

2
1r1r2 + 5a12a

2
21a22b1b2r

2
1 + a12a21b

2
1b2r1r

2
2 − 2a12a21b1b

2
2r

2
1r2

+ a12a21b
3
2r

3
1 − 2a2

21a
2
22b

2
1r

2
1 − a21a22b

3
1r1r

2
2 + 2a21a22b

2
1b2r

2
1r2 − a21a22b1b

2
2r

3
1

ΣD
3,1 =(a11b2 − a21b1)3(a12b2 − a22b1)

ΣU
1,3 =− a4

11a
4
22 + 4a3

11a12a21a
3
22 − 4a3

11a12a
2
22b2r2 + a3

11a
3
22b1r2 + 3a3

11a
3
22b2r1

− 6a2
11a

2
12a

2
21a

2
22 + 8a2

11a
2
12a21a22b2r2 − 2a2

11a
2
12b

2
2r

2
2 + a2

11a12a21a
2
22b1r2

− 5a2
11a12a21a

2
22b2r1 − a2

11a12a22b1b2r
2
2 + 5a2

11a12a22b
2
2r1r2 − 4a2

11a21a
3
22b1r1

+ a2
11a

2
22b1b2r1r2 − 3a2

11a
2
22b

2
2r

2
1 + 4a11a

3
12a

3
21a22 − 4a11a

3
12a

2
21b2r2

− 5a11a
2
12a

2
21a22b1r2 + a11a

2
12a

2
21a22b2r1 + 5a11a

2
12a21b1b2r

2
2 − a11a

2
12a21b

2
2r1r2

+ 8a11a12a
2
21a

2
22b1r1 + a11a12a21a22b

2
1r

2
2 − 10a11a12a21a22b1b2r1r2 + a11a12a21a22b

2
2r

2
1

− a11a12b
2
1b2r

3
2 + 2a11a12b1b

2
2r1r

2
2 − a11a12b

3
2r

2
1r2 − a11a21a

2
22b

2
1r1r2

+ 5a11a21a
2
22b1b2r

2
1 + a11a22b

2
1b2r1r

2
2 − 2a11a22b1b

2
2r

2
1r2 + a11a22b

3
2r

3
1 − a4

12a
4
21

+ 3a3
12a

3
21b1r2 + a3

12a
3
21b2r1 − 4a2

12a
3
21a22b1r1 − 3a2

12a
2
21b

2
1r

2
2 + a2

12a
2
21b1b2r1r2

+ 5a12a
2
21a22b

2
1r1r2 − a12a

2
21a22b1b2r

2
1 + a12a21b

3
1r

3
2 − 2a12a21b

2
1b2r1r

2
2

+ a12a21b1b
2
2r

2
1r2 − 2a2

21a
2
22b

2
1r

2
1 − a21a22b

3
1r1r

2
2 + 2a21a22b

2
1b2r

2
1r2 − a21a22b1b

2
2r

3
1

ΣD
1,3 =(a11b2 − a21b1)(a12b2 − a22b1)3
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ΣU
2,2 =a4

11a
4
22 − 4a3

11a12a21a
3
22 + 4a3

11a12a
2
22b2r2 − 2a3

11a
3
22b1r2 − 2a3

11a
3
22b2r1

+ 6a2
11a

2
12a

2
21a

2
22 − 8a2

11a
2
12a21a22b2r2 + 2a2

11a
2
12b

2
2r

2
2 + 2a2

11a12a21a
2
22b1r2

+ 2a2
11a12a21a

2
22b2r1 − 2a2

11a12a22b1b2r
2
2 − 2a2

11a12a22b
2
2r1r2 + 4a2

11a21a
3
22b1r1

+ a2
11a

2
22b

2
1r

2
2 + a2

11a
2
22b

2
2r

2
1 − 4a11a

3
12a

3
21a22 + 4a11a

3
12a

2
21b2r2 + 2a11a

2
12a

2
21a22b1r2

+ 2a11a
2
12a

2
21a22b2r1 − 2a11a

2
12a21b1b2r

2
2 − 2a11a

2
12a21b

2
2r1r2 − 8a11a12a

2
21a

2
22b1r1

+ 8a11a12a21a22b1b2r1r2 − 2a11a21a
2
22b

2
1r1r2 − 2a11a21a

2
22b1b2r

2
1 + a4

12a
4
21

− 2a3
12a

3
21b1r2 − 2a3

12a
3
21b2r1 + 4a2

12a
3
21a22b1r1 + a2

12a
2
21b

2
1r

2
2 + a2

12a
2
21b

2
2r

2
1

− 2a12a
2
21a22b

2
1r1r2 − 2a12a

2
21a22b1b2r

2
1 + 2a2

21a
2
22b

2
1r

2
1

ΣD
2,2 =(a11b2 − a21b1)2(a12b2 − a22b1)2

Denote the roots of f1(N1, N2) and f2(N1, N2) by η1 = [η1,1, η1,2]T and η2 = [η2,1, η2,2]T .

Choose a monomial map m(N1, N2) = [1, c1N1 + c2N2]T for some constants c1 and c2.

Then, let Q(N1, N2) = N1N2 and compute S(s1, s2) = W∆W t where Wij = mi(η1,j, η2,j)

and ∆ii = Q(η1,i − s1, η2,i − s2) is a diagonal matrix as follows.

W =

[
1 1

c1η1,1 + c2η2,1 c1η1,2 + c2η2,2

]
∆ =

[
(η1,1 − s1)(η2,1 − s2) 0

0 (η1,2 − s1)(η2,2 − s2)

]
S(s1, s2) = W∆W t

Since the symmetric sums of the roots ηk1,1η
m
2,1 + ηk1,2η

m
2,2 equal Σk,m for k,m = 0, 1, 2, . . .,

then the components of the symmetric 2x2 matrix S are shown below:

S1,1(s1, s2) = 2s1s2 − Σ0,1s1 − Σ1,0s2 + Σ1,1

S1,2(s1, s2) = c1(Σ1,0s1s2 − Σ1,1s1 − Σ2,0s2 + Σ2,1)

+ c2(Σ0,1s1s2 − Σ1,1s2 − Σ0,2s1 + Σ1,2) = S2,1(s1, s2)

S2,2(s1, s2) = c2
1(Σ2,0s1s2 − Σ2,1s1 − Σ3,0s2 + Σ3,1)

+ 2c1c2(Σ1,1s1s2 − Σ1,2s1 − Σ2,1s2 + Σ2,2)

+ c2
2(Σ0,2s1s2 − Σ1,2s2 − Σ0,3s1 + Σ1,3)

The characteristic equation of the matrix S is simply λ2 − Tr(S(s1, s2))λ + det(S(s1, s2))

whose coefficients are given by v = [1,−Tr(S(s1, s2)), det(S(s1, s2))]. Hence, the quantities

of interest are −Tr(S(s1, s2)) and det(S(s1, s2)) which are shown next.

85



−Tr(S(s1, s2)) = (−Σ20c
2
1 − 2Σ11c1c2 − Σ02c

2
2 − 2)s1s2 + (Σ21c

2
1 + 2Σ12c1c2 + Σ03c

2
2 + Σ01)s1

+ (Σ30c
2
1 + 2Σ21c1c2 + Σ12c

2
2 + Σ10)s2 + (−Σ31c

2
1 − 2Σ22c1c2 − Σ13c

2
2 − Σ11)

det(S(s1, s2)) = (−Σ2
01c

2
2 − 2Σ01Σ10c1c2 − Σ2

10c
2
1 + 2Σ20c

2
1 + 4Σ11c1c2 + 2Σ02c

2
2)s2

1s
2
2

+ (Σ01Σ02c
2
2 − 2Σ21c

2
1 − 4Σ12c1c2 − 2Σ03c

2
2 − Σ01Σ20c

2
1 + 2Σ10Σ11c

2
1

+ 2Σ02Σ10c1c2)s2
1s2 + (−Σ2

02c
2
2 − 2Σ02Σ11c1c2 − Σ2

11c
2
1 + Σ01Σ21c

2
1

+ 2Σ01Σ12c1c2 + Σ01Σ03c
2
2)s2

1 + (2Σ01Σ11c
2
2 − 2Σ30c

2
1 − 4Σ21c1c2 − 2Σ12c

2
2

− Σ02Σ10c
2
2 + Σ10Σ20c

2
1 + 2Σ01Σ20c1c2)s1s

2
2 + (2Σ13c

2
2 + 2Σ31c

2
1 + 4Σ22c1c2

− Σ01Σ12c
2
2 − Σ02Σ11c

2
2 + Σ03Σ10c

2
2 + Σ01Σ30c

2
1 − Σ10Σ21c

2
1 − Σ11Σ20c

2
1

− 2Σ02Σ20c1c2)s1s2 + (2Σ02Σ12c
2
2 − Σ01Σ13c

2
2 − Σ03Σ11c

2
2 − Σ01Σ31c

2
1

+ Σ11Σ21c
2
1 − 2Σ01Σ22c1c2 + 2Σ02Σ21c1c2)s1 + (−Σ2

11c
2
2 − 2Σ11Σ20c1c2

− Σ2
20c

2
1 + Σ10Σ30c

2
1 + 2Σ10Σ21c1c2 + Σ10Σ12c

2
2)s2

2 + (Σ11Σ12c
2
2 − Σ10Σ13c

2
2

− Σ10Σ31c
2
1 − Σ11Σ30c

2
1 + 2Σ20Σ21c

2
1 − 2Σ10Σ22c1c2 + 2Σ12Σ20c1c2)s2

+ (−Σ2
12c

2
2 − 2Σ12Σ21c1c2 − Σ2

21c
2
1 + Σ11Σ31c

2
1 + 2Σ11Σ22c1c2 + Σ11Σ13c

2
2)

Let V (s1, s2) be the number of consecutive sign changes in v. Since we are interested in

the feasibility domain, note that the points {(0, 0), (0,∞), (∞, 0), (∞,∞)} are the vertices

of the ”box” that bound the feasibility domain. Hence, the expression of F (Ψ) is simply

F (Ψ) = [V (0, 0) − V (0,∞) − V (∞, 0) + V (∞,∞)]/2. Here, ∞ is a limit; therefore, 0 is

evaluated first before the limit is taken at infinity. For V (∞,∞) where the limit of two

quantities approach infinity, the limit is unique. Therefore, it does not matter along which

direction the limit is taken. Now, we need to evaluate −Tr(S) and det(S) at those four

vertices which are the basis to construct the inequalities that describe the feasible domain.

sign(−Tr(S(0, 0))) = sign(−Σ31c
2
1 − 2Σ22c1c2 − Σ13c

2
2 − Σ11)

sign(det(S(0, 0))) = sign(−Σ2
12c

2
2 − 2Σ12Σ21c1c2 − Σ2

21c
2
1 + Σ11Σ31c

2
1 + 2Σ11Σ22c1c2 + Σ11Σ13c

2
2)

sign(−Tr(S(∞, 0))) = sign(Σ21c
2
1 + 2Σ12c1c2 + Σ03c

2
2 + Σ01)

sign(det(S(∞, 0))) = sign(−Σ2
02c

2
2 − 2Σ02Σ11c1c2 − Σ2

11c
2
1 + Σ01Σ21c

2
1 + 2Σ01Σ12c1c2 + Σ01Σ03c

2
2)

sign(−Tr(S(0,∞))) = sign(Σ30c
2
1 + 2Σ21c1c2 + Σ12c

2
2 + Σ10)

sign(det(S(0,∞))) = sign(−Σ2
11c

2
2 − 2Σ11Σ20c1c2 − Σ2

20c
2
1 + Σ10Σ30c

2
1 + 2Σ10Σ21c1c2 + Σ10Σ12c

2
2)

sign(−Tr(S(∞,∞))) = sign(−Σ20c
2
1 − 2Σ11c1c2 − Σ02c

2
2 − 2)

sign(det(S(∞,∞))) = sign(−Σ2
01c

2
2 − 2Σ01Σ10c1c2 − Σ2

10c
2
1 + 2Σ20c

2
1 + 4Σ11c1c2 + 2Σ02c

2
2)

Note that the formula of F (Ψ) is completely independent of c1 and c2 and the property can

be checked with our provided code. Let us set c1 = 1 and c2 = 0 for convenience. Now, the
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feasible domain is the set of all inequalities so that F (Ψ) ≥ 1 and found 13 non-empty ones.

This was done via computing F (Ψ) for a range of parameters (Ψ, with each component

is varied independently and uniformly between −1 and 1. There was no more increase in

the number of non-empty sets (the 13 ones) when the range of each parameter is varied

independently and uniformly between −100 to 100. The 13 sets are shown in the columns

below and satisfying any of those guarantees feasibility. The signs − and + mean that the

quantity on the left-hand most in the table is less than 0 and greater than 0 respectively.

In this table, we care about conditions that satisfy F (Ψ) and we will not separate them

based on whether F takes a value of 1 or 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

−Tr(S(0, 0)) −Σ31 − Σ11 − − − − − − − − − + + + +

det(S(0, 0)) −Σ2
21 + Σ11Σ31 − − − − + + + + + − − − −

−Tr(S(∞, 0)) Σ21 + Σ01 − + + + − − + + + − + + +

det(S(∞, 0)) −Σ2
11 + Σ01Σ21 − − + + − − − − + − − + +

−Tr(S(0,∞)) Σ30 + Σ10 + + − + − + − + + + + − +

det(S(0,∞)) −Σ2
20 + Σ10Σ30 + + − − − − − − + + + − −

−Tr(S(∞,∞)) −Σ20 − 2 − − − − − − − − − − − − −

det(S(∞,∞)) −Σ2
10 + 2Σ20 + + + + + + + + + + + + +

From the table, −Tr(S(∞,∞)) is negative and det(S(∞,∞)) is positive for all 13 condi-

tions. This is because the relations −Σ20−2 < 0 always holds (minus sum of squares minus

a positive number must be negative). Also, the relation −Σ2
10 + 2Σ20 > 0 always holds,

which follows from the AM-GM inequality. Hence, the last two conditions are redundant

and can be eliminated as they are automatically satisfied. In addition, the 13 sets can be

compressed nicely into 4 as follows. Note that columns 1 and 2 (i.e, C1 and C2) differ in

sign in the third row (−Tr(S(∞, 0))). Hence, the two conditions can be combined into one

without caring about the sign of −Tr(S(∞, 0)). The same applies to columns 3 and 4 (i.e,

C3 and C4), 5 and 6 (i.e, C5 and C6), 7 and 8 (i.e, C7 and C8), 10 and 11 (i.e, C10 and

C11) as well as 12 and 13 (i.e, C12 and C13) since these pairs of columns differ by a single

sign only. The reduced table from combining columns (conditions) is shown below where

X denotes to no condition:
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C1+2 C3+4 C5+6 C7+8 C9 C10+11 C12+13

−Tr(S(0, 0)) −Σ31 − Σ11 − − − − − + +

det(S(0, 0)) −Σ2
21 + Σ11Σ31 − − + + + − −

−Tr(S(∞, 0)) Σ21 + Σ01 X + − + + X +

det(S(∞, 0)) −Σ2
11 + Σ01Σ21 − + − − + − +

−Tr(S(0,∞)) Σ30 + Σ10 + X X X + + X

det(S(0,∞)) −Σ2
20 + Σ10Σ30 + − − − + + −

Furthermore, we can combine C1+2 with C10+11, C3+4 with C12+13 and C5+6 with C7+8 to

produce the following table:

C1+2+10+11 C3+4+12+13 C5+6+7+8 C9

−Tr(S(0, 0)) −Σ3,1 − Σ1,1 X X − −

det(S(0, 0)) −Σ2
2,1 + Σ1,1Σ3,1 − − + +

−Tr(S(∞, 0)) Σ2,1 + Σ0,1 X + X +

det(S(∞, 0)) −Σ2
1,1 + Σ0,1Σ2,1 − + − +

−Tr(S(0,∞)) Σ3,0 + Σ1,0 + X X +

det(S(0,∞)) −Σ2
2,0 + Σ1,0Σ3,0 + − − +

So far, we have combined columns but have not investigated whether there are redundant

signs in each column. Upon computing the conditional probability that a sign occurs given

that all other signs occur in the same column and keep deleting signs until there is no

conditional probability of 1, we find the following minimized table that is shown below:

C ′1 C ′2 C ′3 C ′4

−Tr(S(0, 0)) −Σ3,1 − Σ1,1 X X − X

det(S(0, 0)) −Σ2
2,1 + Σ1,1Σ3,1 X X + X

−Tr(S(∞, 0)) Σ2,1 + Σ0,1 X + X +

det(S(∞, 0)) −Σ2
1,1 + Σ0,1Σ2,1 − + − +

−Tr(S(0,∞)) Σ3,0 + Σ1,0 + X X +

det(S(0,∞)) −Σ2
2,0 + Σ1,0Σ3,0 + − X +

Let Qi be the basis quantity in row i. The minimized table above is not unique. For column

C ′1, the user may eliminate either Q2 < 0 or Q4 < 0 in that column but not both. This is

because P (Q2 < 0|Q4 < 0, Q5 > 0, Q6 > 0) = 1 and P (Q4 < 0|Q2 < 0, Q5 > 0, Q6 > 0) = 1

but upon deleting either Q2 < 0 or Q4 < 0 from these conditional probabilities, we find

P (Q2 < 0|Q5 > 0, Q6 > 0) 6= 1 and P (Q4 < 0|Q5 > 0, Q6 > 0) 6= 1 meaning that the

inequalities Q2 < 0 and Q4 < 0 imply one another given that Q5 > 0 and Q6 > 0.

88



4.3.2 Application: 2-Species with Type III Functional Responses

Consider the simplest 2-species LV model with type III functional responses model that is

impossible to solve for the location of the equilibrium points analytically.

dN1

dt
= N1(r1 + a11N1 + a12

N1N2

1 + hN2
1

)

dN2

dt
= N2(r2 + a21

N2
1

1 + hN2
1

+ a22N2)

Let Ψ = (r1, r2, a11, a12, a21, a22, h) be the vector of model parameters. The common nu-

merators of the RHS of the system above, after deleting N1 and N2 outside the brackets,

are given by f1(N1, N2) = r1 + a11N1 + a12N1N2 + r1hN
2
1 + a11hN

3
1 and f2(N1, N2) =

r2 +a22N2 + (a21 + r2h)N2
1 +a22hN

2
1N2 for lines 1 and 2 respectively. Upon eliminating N1

from both f1(N1, N2) and f2(N1, N2) we obtain ResN1(f1, f2) which is a polynomial of de-

gree 5 in N2 which cannot be solved analytically in closed-form. Similarly, upon eliminating

N2 from both f1(N1, N2) and f2(N1, N2) we obtain ResN2(f1, f2) which is a polynomial of

degree 5 in N1. The two resultants, each written in two forms (i.e, polynomial combination

of f1 and f2 or in terms of N ’s) are shown below:

ResN1(f1, f2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11h r1h a11 + a12N2 r1 N1f1

0 a11h r1h a11 + a12N2 f1

a21 + r2h+ a22hN2 0 r2 + a22N2 0 N2
1 f2

0 a21 + r2h+ a22hN2 0 r2 + a22N2 N1f2

0 0 a21 + r2h+ a22hN2 0 f2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= T21f1 + T22f2 =

5∑
l2=0

h(2,l2)N
l2
2 , where

T21 = (a21 + hr2 +N2a22h)2(a21r1 −N1a11a21 −N1N2a12a21 −N1N2a12hr2 −N1N
2
2a12a22h)

T22 = N2
1N

3
2a11a12a

2
22h

3 + 2N2
1N

2
2a11a12a21a22h

2 + 2N2
1N

2
2a11a12a22h

3r2 +N2
1N2a

2
11a21a22h

2

+N2
1N2a11a12a

2
21h+ 2N2

1N2a11a12a21h
2r2 +N2

1N2a11a12h
3r2

2 +N2
1a

2
11a

2
21h+N2

1a
2
11a21h

2r2

+N1N
3
2a12a

2
22h

3r1 + 2N1N
2
2a12a21a22h

2r1 + 2N1N
2
2a12a22h

3r1r2 +N1N2a12a
2
21hr1

+ 2N1N2a12a21h
2r1r2 +N1N2a12h

3r1r
2
2 +N4

2a
2
12a

2
22h

2 + 2N3
2a

2
12a21a22h+ 2N3

2a
2
12a22h

2r2

+ 2N2
2a11a12a21a22h+N2

2a
2
12a

2
21 + 2N2

2a
2
12a21hr2 +N2

2a
2
12h

2r2
2 + 2N2a11a12a

2
21

+ 2N2a11a12a21hr2 −N2a21a22h
2r2

1 + a2
11a

2
21 − a2

21hr
2
1 − a21h

2r2
1r2
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h(2,5) = a2
12a

3
22h

2

h(2,4) = 3r2a
2
12a

2
22h

2 + 2a21a
2
12a

2
22h

h(2,3) = a2
12a

2
21a22 + 4a2

12a21a22hr2 + 3a2
12a22h

2r2
2 + 2a11a12a21a

2
22h

h(2,2) = a2
12a

2
21r2 + 2a2

12a21hr
2
2 + a2

12h
2r3

2 + 2a11a22a12a
2
21 + 4a11a22a12a21hr2

h(2,1) = a22a
2
11a

2
21 + 2a12a11a

2
21r2 + 2a12ha11a21r

2
2 + a22ha

2
21r

2
1

h(2,0) = r2a
2
11a

2
21 + a3

21r
2
1 + hr2a

2
21r

2
1

ResN2(f1, f2) =

∣∣∣∣ a12N1 f1

a22 + a22hN
2
1 f2

∣∣∣∣ = T11f1 + T12f2 =
5∑

l1=0

h(1,l1)N
l1
1 , where

T11 = −a22 − a22hN
2
1

T12 = N1a12

h(1,5) = −a11a22h
2

h(1,4) = −a22h
2r1

h(1,3) = a12a21 − 2a11a22h+ a12hr2

h(1,2) = −2a22hr1

h(1,1) = a12r2 − a11a22

h(1,0) = −a22r1

Observe that ResN1(f1, f2) contains no N1 and is a polynomial of degree 5 in N2 only.

Similarly, ResN2(f1, f2) contains no N2 and is a polynomial of degree 5 in N1 only. This is

an indication that the number of roots of f1(N1, N2) and f2(N1, N2) is 5. Note that the roots

of the univariate polynomials ResN1(f1, f2) and ResN2(f1, f2), upon appropriate pairing of

roots of the first polynomial with the second, are the roots of the system f1(N1, N2) = 0

and f2(N1, N2) = 0. From Abel’s impossibility theorem, since it is impossible to solve

for the roots of a quintic or higher degree polynomials in terms of radicals, then the

roots of either ResN1(f1, f2) or ResN2(f1, f2) are unattainable analytically which implies

that the system f1(N1, N2) = 0 and f2(N1, N2) = 0 cannot be solved. After finding the

resultants in both forms, we evaluate the determinant of the eliminating matrix, which is

T (f1, f2) = T11T22 − T12T21 and the determinant of the Jacobian of f1 and f2 as following

J(f1, f2) =

∣∣∣∣∣∣3a11hN
2
1 + 2hr1N1 + a11 +N2a12 N1a12

2N1a21 + 2N1hr2 + 2N1N2a22h a22hN
2
1 + a22

∣∣∣∣∣∣ = a11a22 +N2a12a22 − 2N2
1a12a21

+ 4N2
1a11a22h− 2N2

1a12hr2 + 3N4
1a11a22h

2 + 2N3
1a22h

2r1 + 2N1a22hr1 −N2
1N2a12a22h
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Now, we need to expand the generating function G(f1(N1, N2), f2(N1, N2)) around N1 =∞

and N2 =∞ (no need to perform a two-variable series expansion). Since ResN1(f1, f2) and

ResN2(f1, f2) are univariate polynomials, we expand their reciprocal individually to get the

series 1/ResN2(f1, f2) =
∑∞

m1=1 p(1,m1)/N
m1+4
1 and 1/ResN1(f1, f2) =

∑∞
m2=1 p(2,m2)/N

m2+4
2 .

The coefficients can be obtained via MATLAB’s ’taylor’ function where N1 and N2 are sub-

stituted by 1/x and 1/y respectively. Alternatively, these p’s can be obtained analytically

as follows. We have already written ResN2(f1, f2) =
∑K1

l1=0 h(1,l1)N
l1
1 and ResN1(f1, f2) =∑K2

l2=0 h(2,l2)N
l2
2 where we have K1 = K2 = 5. After that, construct the following 2 matrices

A1 and A2

Ai =



1 0 0 0 . . .

h(i,Ki) h(i,Ki−1) h(i,Ki−2) h(i,Ki−3) . . .

0 h(i,Ki) h(i,Ki−1) h(i,Ki−2) . . .

0 0 h(i,Ki) h(i,Ki−1) . . .
...

...
...

...
. . .


, i = 1, 2

Next, let Res(N1,N2)/N1(f1, f2) ≡ ResN2(f1, f2) and Res(N1,N2)/N2(f1, f2) ≡ ResN1(f1, f2).

The reciprocal of each resultant is given by

1

Res(N1,N2)/Ni
(f1, f2)

=
1

NKi−1
i

∞∑
mi=1

p(i,mi)

Nmi
i

, p(i,mi) =
(−1)mi+1

hmi

(i,Ki)

det(Ai[1 : mi, 1 : mi]), i = 1, 2

Here, Ai[1 : mi, 1 : mi] is the sub-matrix of Ai that contains its first mi rows and columns.

After obtaining both series expansion of the resultant reciprocal, multiply the result by

T (f1, f2)J(f1, f2) to obtain

G(f1, f2) =
T (f1, f2)J(f1, f2)

ResN1(f1, f2)ResN2(f1, f2)
=

Σ0,0

N1N2

+
Σ1,0

N2
1N2

+
Σ0,1

N1N2
2

+
Σ1,1

N2
1N

2
2

+
Σ2,0

N3
1N2

+
Σ2,1

N3
1N

2
2

+
Σ0,2

N1N3
2

+
Σ1,2

N2
1N

3
2

+
Σ3,0

N4
1N2

+
Σ3,1

N4
1N

2
2

+
Σ0,3

N1N4
2

+
Σ1,3

N2
1N

4
2

+ . . .

The expression for each of the Σ’s (symmetric power sums of the roots) are shown below

where Σi,j = ΣU
i,j/Σ

D
i,j is written as a fraction of two polynomials.
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ΣU
0,0 =5

ΣD
0,0 =1

ΣU
1,0 =− r1

ΣD
1,0 =a11

ΣU
0,1 =− 2a21 − 3hr2

ΣD
0,1 =a22h

ΣU
2,0 =− 4a22a

2
11h+ 2a12r2a11h+ 2a12a21a11 + a22h

2r2
1

ΣD
2,0 =a2

11a22h
2

ΣU
1,1 =r1(a21 + hr2)

ΣD
1,1 =a11a22h

ΣU
0,2 =2a12a

2
21 + 4a12a21hr2 − 4a11a22a21h+ 3a12h

2r2
2

ΣD
0,2 =a12a

2
22h

2

ΣU
3,0 =− r1(a22h

2r2
1 + 3a11a12r2h+ 3a11a12a21)

ΣD
3,0 =a3

11a22h
2

ΣU
2,1 =6a22a

2
11a21h+ 2a22a

2
11h

2r2 − 2a12a11a
2
21 − 4a12a11a21hr2 − 2a12a11h

2r2
2 − a22a21h

2r2
1

−a22h
3r2

1r2

ΣD
2,1 =a2

11a
2
22h

3

ΣU
1,2 =− r1(a12a

2
21 + 2a12a21hr2 + 4a11a22a21h+ a12h

2r2
2)

ΣD
1,2 =a11a12a

2
22h

2

ΣU
0,3 =− 2a12a

3
21 − 6a12a

2
21hr2 + 6a11a22a

2
21h− 6a12a21h

2r2
2 + 6a11a22a21h

2r2 − 3a12h
3r3

2

ΣD
0,3 =a12a

3
22h

3

ΣU
4,0 =4a4

11a
2
22h

2 − 8a3
11a12a21a22h− 4a3

11a12a22h
2r2 + 2a2

11a
2
12a

2
21 + 4a2

11a
2
12a21hr2 + 2a2

11a
2
12h

2r2
2

+4a11a12a21a22h
2r2

1 + 4a11a12a22h
3r2

1r2 + a2
22h

4r4
1

ΣD
4,0 =a4

11a
2
22h

4

ΣU
3,1 =r1(−a22a

2
11a21h+ 3a12a11a

2
21 + 6a12a11a21hr2 + 3a12a11h

2r2
2 + a22a21h

2r2
1 + a22h

3r2
1r2)

ΣD
3,1 =a3

11a
2
22h

3
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ΣU
2,2 =4a3

11a21a
2
22h

2 − 8a2
11a12a

2
21a22h− 10a2

11a12a21a22h
2r2 − 2a2

11a12a22h
3r2

2 + 2a11a
2
12a

3
21

+6a11a
2
12a

2
21hr2 + 6a11a

2
12a21h

2r2
2 + 2a11a

2
12h

3r3
2 + a12a

2
21a22h

2r2
1 + 2a12a21a22h

3r2
1r2

+a12a22h
4r2

1r
2
2

ΣD
2,2 =a2

11a12a
3
22h

4

ΣU
1,3 =r1(a12a

3
21 + 3a12a

2
21hr2 + 5a11a22a

2
21h+ 3a12a21h

2r2
2 + 6a11a22a21h

2r2 + a12h
3r3

2)

ΣD
1,3 =a11a12a

3
22h

3

ΣU
0,4 =4a2

11a
2
21a

2
22h

2 − 8a11a12a
3
21a22h− 16a11a12a

2
21a22h

2r2 − 8a11a12a21a22h
3r2

2 + 2a2
12a

4
21

+8a2
12a

3
21hr2 + 12a2

12a
2
21h

2r2
2 + 8a2

12a21h
3r3

2 + 3a2
12h

4r4
2 − 4a2

21a
2
22h

3r2
1

ΣD
0,4 =a2

12a
4
22h

4

ΣU
5,0 =− r1(−10a3

11a12a21a22h− 5a3
11a12a22h

2r2 + 5a2
11a

2
12a

2
21 + 10a2

11a
2
12a21hr2 + 5a2

11a
2
12h

2r2
2

+5a11a12a21a22h
2r2

1 + 5a11a12a22h
3r2

1r2 + a2
22h

4r4
1)

ΣD
5,0 =a5

11a
2
22h

4

ΣU
4,1 =− 10a4

11a21a
2
22h

2 − 2a4
11a

2
22h

3r2 + 10a3
11a12a

2
21a22h+ 14a3

11a12a21a22h
2r2 − 2a2

11a
2
12a

3
21

+4a3
11a12a22h

3r2
2 − 6a2

11a
2
12a

2
21hr2 − 6a2

11a
2
12a21h

2r2
2 − 2a2

11a
2
12h

3r3
2 − 8a11a12a21a22h

3r2
1r2

−a21a
2
22h

4r4
1 − a2

22h
5r4

1r2 + a2
11a21a

2
22h

3r2
1 − 4a11a12a

2
21a22h

2r2
1 − 4a11a12a22h

4r2
1r

2
2

ΣD
4,1 =a4

11a
3
22h

5

ΣU
3,2 =− r1(−4a3

11a21a
2
22h

2 − 2a2
11a12a

2
21a22h− 2a2

11a12a21a22h
2r2 + 3a11a

2
12a

3
21 + 9a11a

2
12a

2
21hr2

+9a11a
2
12a21h

2r2
2 + 3a11a

2
12h

3r3
2 + a12a

2
21a22h

2r2
1 + 2a12a21a22h

3r2
1r2 + a12a22h

4r2
1r

2
2)

ΣD
3,2 =a3

11a12a
3
22h

4

ΣU
2,3 =− 10a3

11a
2
21a

2
22h

2 − 6a3
11a21a

2
22h

3r2 + 10a2
11a12a

3
21a22h+ 22a2

11a12a
2
21a22h

2r2 − 2a11a
2
12a

4
21

+14a2
11a12a21a22h

3r2
2 + 2a2

11a12a22h
4r3

2 − 8a11a
2
12a

3
21hr2 − 12a11a

2
12a

2
21h

2r2
2 − 8a11a

2
12a21h

3r3
2

−2a11a
2
12h

4r4
2 − a12a

3
21a22h

2r2
1 − 3a12a

2
21a22h

3r2
1r2 − 3a12a21a22h

4r2
1r

2
2 − a12a22h

5r2
1r

3
2

ΣD
2,3 =a2

11a12a
4
22h

5

ΣU
1,4 =− r1(−8a2

11a
2
21a

2
22h

2 + 6a11a12a
3
21a22h+ 13a11a12a

2
21a22h

2r2 + 8a11a12a21a22h
3r2

2 + a2
12a

4
21

+4a2
12a

3
21hr2 + 6a2

12a
2
21h

2r2
2 + 4a2

12a21h
3r3

2 + a2
12h

4r4
2)

ΣD
1,4 =a11a

2
12a

4
22h

4

ΣU
0,5 =− 10a2

11a
3
21a

2
22h

2 − 10a2
11a

2
21a

2
22h

3r2 + 10a11a12a
4
21a22h+ 30a11a12a

3
21a22h

2r2 − 2a2
12a

5
21

+30a11a12a
2
21a22h

3r2
2 + 10a11a12a21a22h

4r3
2 − 10a2

12a
4
21hr2 − 20a2

12a
3
21h

2r2
2 − 20a2

12a
2
21h

3r3
2

−10a2
12a21h

4r4
2 − 3a2

12h
5r5

2 + 5a3
21a

2
22h

3r2
1 + 10a2

21a
2
22h

4r2
1r2

ΣD
0,5 =a2

12a
5
22h

5
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ΣU
5,1 =r1(a4

11a21a
2
22h

2 − 13a3
11a12a

2
21a22h− 18a3

11a12a21a22h
2r2 − 5a3

11a12a22h
3r2

2 + 5a2
11a

2
12a

3
21

+15a2
11a

2
12a

2
21hr2 + 15a2

11a
2
12a21h

2r2
2 + 5a2

11a
2
12h

3r3
2 − a2

11a21a
2
22h

3r2
1 + 5a11a12a

2
21a22h

2r2
1

+10a11a12a21a22h
3r2

1r2 + 5a11a12a22h
4r2

1r
2
2 + a21a

2
22h

4r4
1 + a2

22h
5r4

1r2)

ΣD
5,1 =a5

11a
3
22h

5

ΣU
4,2 =− 4a5

11a21a
3
22h

3 + 18a4
11a12a

2
21a

2
22h

2 + 16a4
11a12a21a

2
22h

3r2 + 2a4
11a12a

2
22h

4r2
2 + 2a2

11a
3
12a

4
21

−12a3
11a

2
12a

3
21a22h− 28a3

11a
2
12a

2
21a22h

2r2 − 4a3
11a

2
12a22h

4r3
2 + 8a2

11a
3
12a

3
21hr2 + 2a2

11a
3
12h

4r4
2

−20a3
11a

2
12a21a22h

3r2
2 + 12a2

11a
3
12a

2
21h

2r2
2 + 8a2

11a
3
12a21h

3r3
2 − 2a2

11a12a
2
21a

2
22h

3r2
1 + a12a

2
22h

6r4
1r

2
2

−2a2
11a12a21a

2
22h

4r2
1r2 + 4a11a

2
12a

3
21a22h

2r2
1 + 12a11a

2
12a

2
21a22h

3r2
1r2 + 12a11a

2
12a21a22h

4r2
1r

2
2

+4a11a
2
12a22h

5r2
1r

3
2 + a12a

2
21a

2
22h

4r4
1 + 2a12a21a

2
22h

5r4
1r2

ΣD
4,2 =a4

11a12a
4
22h

6

ΣU
3,3 =r1(−9a3

11a
2
21a

2
22h

2 − 6a3
11a21a

2
22h

3r2 − 3a2
11a12a

3
21a22h− 6a2

11a12a
2
21a22h

2r2 + a12a22h
5r2

1r
3
2

−3a2
11a12a21a22h

3r2
2 + 3a11a

2
12a

4
21 + 12a11a

2
12a

3
21hr2 + 18a11a

2
12a

2
21h

2r2
2 + 12a11a

2
12a21h

3r3
2

+3a11a
2
12h

4r4
2 + a12a

3
21a22h

2r2
1 + 3a12a

2
21a22h

3r2
1r2 + 3a12a21a22h

4r2
1r

2
2)

ΣD
3,3 =a3

11a12a
4
22h

5

ΣU
2,4 =2a11a

3
12a

5
21 − 4a4

11a
2
21a

3
22h

3 + 18a3
11a12a

3
21a

2
22h

2 + 26a3
11a12a

2
21a

2
22h

3r2 + 8a3
11a12a21a

2
22h

4r2
2

−12a2
11a

2
12a

4
21a22h+ 2a11a

3
12h

5r5
2 + a2

12a
4
21a22h

2r2
1 − 38a2

11a
2
12a

3
21a22h

2r2 − 42a2
11a

2
12a

2
21a22h

3r2
2

−18a2
11a

2
12a21a22h

4r3
2 − 2a2

11a
2
12a22h

5r4
2 + 4a2

11a
2
21a

3
22h

4r2
1 + 10a11a

3
12a

4
21hr2 + 20a11a

3
12a

3
21h

2r2
2

+20a11a
3
12a

2
21h

3r3
2 + 10a11a

3
12a21h

4r4
2 + 4a2

12a
3
21a22h

3r2
1r2 + 6a2

12a
2
21a22h

4r2
1r

2
2 + a2

12a22h
6r2

1r
4
2

+4a2
12a21a22h

5r2
1r

3
2

ΣD
2,4 =a2

11a
2
12a

5
22h

6

ΣU
1,5 =r1(−19a2

11a
3
21a

2
22h

2 − 20a2
11a

2
21a

2
22h

3r2 + 7a11a12a
4
21a22h+ 22a11a12a

3
21a22h

2r2 + a2
12a

5
21

+24a11a12a
2
21a22h

3r2
2 + 10a11a12a21a22h

4r3
2 + 5a2

12a
4
21hr2 + 10a2

12a
3
21h

2r2
2 + 10a2

12a
2
21h

3r3
2

+5a2
12a21h

4r4
2 + a2

12h
5r5

2)

ΣD
1,5 =a11a

2
12a

5
22h

5

Note that if any of the parameters a11, a12, a22, h is zero, the Σ’s will blow up. If one needs

to consider cases where any of the latter parameters is zero, that zero should be first sub-

stituted in f1(N1, N2) and f2(N1, N2) before carrying on with what we have shown already.

Next, denote the roots of f1(N1, N2) and f2(N1, N2) by η1 = [η1,1, η1,2, . . . , η1,5]T and

η2 = [η2,1, η2,2, . . . , η2,5]T . Choose a monomial map m(N1, N2) = [1, N1, N2, N1N2, N
2
1 ]T

then, let Q(N1, N2) = N1N2 and compute S(s1, s2) = W∆W t where Wij = mi(η1,j, η2,j)

and ∆ii = Q(η1,i − s1, η2,i − s2) is a diagonal matrix as follows.
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W =


1 1 1 1 1
η1,1 η1,2 η1,3 η1,4 η1,5
η2,1 η2,2 η2,3 η2,4 η2,5

η1,1η2,1 η1,2η2,2 η1,3η2,3 η1,4η2,4 η1,5η2,5
η2
1,1 η2

1,2 η2
1,3 η2

1,4 η2
1,5


∆ = diag[(η1,1 − s1)(η2,1 − s2), (η1,2 − s1)(η2,2 − s2), (η1,3 − s1)(η2,3 − s2),

(η1,4 − s1)(η2,4 − s2), (η1,5 − s1)(η2,5 − s2)]

S(s1, s2) = W∆W t

Note that Σk,m = ηk1,1η
m
2,1 + ηk1,2η

m
2,2 + . . . + ηk1,5η

m
2,5 for k,m = 0, 1, 2, . . .. Therefore, the

components of the symmetric 5x5 matrix S are shown below:

S1,1(s1, s2) = Σ1,1 − Σ0,1s1 − Σ1,0s2 + 5s1s2

S1,2(s1, s2) = Σ2,1 − Σ1,1s1 − Σ2,0s2 + Σ1,0s1s2 = S2,1(s1, s2)

S1,3(s1, s2) = Σ1,2 − Σ0,2s1 − Σ1,1s2 + Σ0,1s1s2 = S3,1(s1, s2)

S1,4(s1, s2) = Σ2,2 − Σ1,2s1 − Σ2,1s2 + Σ1,1s1s2 = S4,1(s1, s2)

S1,5(s1, s2) = Σ3,1 − Σ2,1s1 − Σ3,0s2 + Σ2,0s1s2 = S5,1(s1, s2)

S2,2(s1, s2) = Σ3,1 − Σ2,1s1 − Σ3,0s2 + Σ2,0s1s2

S2,3(s1, s2) = Σ2,2 − Σ1,2s1 − Σ2,1s2 + Σ1,1s1s2 = S3,2(s1, s2)

S2,4(s1, s2) = Σ3,2 − Σ2,2s1 − Σ3,1s2 + Σ2,1s1s2 = S4,2(s1, s2)

S2,5(s1, s2) = Σ4,1 − Σ3,1s1 − Σ4,0s2 + Σ3,0s1s2 = S5,2(s1, s2)

S3,3(s1, s2) = Σ1,3 − Σ0,3s1 − Σ1,2s2 + Σ0,2s1s2

S3,4(s1, s2) = Σ2,3 − Σ1,3s1 − Σ2,2s2 + Σ1,2s1s2 = S4,3(s1, s2)

S3,5(s1, s2) = Σ3,2 − Σ2,2s1 − Σ3,1s2 + Σ2,1s1s2 = S5,3(s1, s2)

S4,4(s1, s2) = Σ3,3 − Σ2,3s1 − Σ3,2s2 + Σ2,2s1s2

S4,5(s1, s2) = Σ4,2 − Σ3,2s1 − Σ4,1s2 + Σ3,1s1s2 = S5,4(s1, s2)

S5,5(s1, s2) = Σ5,1 − Σ4,1s1 − Σ5,0s2 + Σ4,0s1s2

The characteristic equation of the matrix S is simply det(S(s1, s2)) = λ5 + v4(s1, s2)λ4 +

v3(s1, s2)λ3 + v2(s1, s2)λ2 + v1(s1, s2)λ + v0(s1, s2). The coefficients of the characteristic

equation evaluated at (s1, s2) = {(0, 0), (∞, 0), (0,∞), (∞,∞)} are shown in the following

pages. Note that vi(0, 0),vi(∞, 0),vi(0,∞) and vi(∞,∞) are the coefficients of (s1s2)0,

s5−i
1 s0

2, s0
1s

5−i
2 and (s1s2)5−i of vi(s1, s2) respectively for i = 0, 1, . . . , 5.
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v4(0, 0) =− Σ1,1 − Σ1,3 − Σ3,1 − Σ3,3 − Σ5,1

v3(0, 0) =Σ1,1Σ1,3 + Σ1,1Σ3,1 + Σ1,1Σ3,3 + Σ1,3Σ3,1 + Σ1,3Σ3,3 + Σ1,1Σ5,1 + Σ1,3Σ5,1 + Σ3,1Σ3,3 + Σ3,1Σ5,1

+Σ3,3Σ5,1 − Σ2
1,2 − Σ2

2,1 − 2Σ2
2,2 − Σ2

2,3 − Σ2
3,1 − 2Σ2

3,2 − Σ2
4,1 − Σ2

4,2

v2(0, 0) =Σ1,1Σ2
2,2 + Σ1,1Σ2

2,3 + Σ1,3Σ2
2,1 + Σ1,3Σ2

2,2 + 2Σ1,1Σ2
3,2 + Σ2

1,2Σ3,1 + Σ1,3Σ2
3,1 + Σ1,3Σ2

3,2 + Σ2
1,2Σ3,3

+Σ1,1Σ2
4,1 + Σ1,1Σ2

4,2 + Σ2
2,2Σ3,1 + Σ1,3Σ2

4,1 + Σ2
2,1Σ3,3 + Σ2

2,3Σ3,1 + Σ1,3Σ2
4,2 + Σ2

2,2Σ3,3 + Σ3,1Σ2
3,2

+Σ2
1,2Σ5,1 + Σ2

3,1Σ3,3 + Σ2
3,2Σ3,3 + Σ2

2,1Σ5,1 + Σ3,1Σ2
4,2 + 2Σ2

2,2Σ5,1 + Σ3,3Σ2
4,1 + Σ2

2,3Σ5,1 + Σ2
3,2Σ5,1

+Σ3
3,1 − Σ1,1Σ1,3Σ3,1 − 2Σ1,2Σ2,1Σ2,2 − Σ1,1Σ1,3Σ3,3 − 2Σ1,2Σ2,2Σ2,3 − Σ1,1Σ1,3Σ5,1 − Σ1,1Σ3,1Σ3,3

−2Σ1,2Σ3,1Σ3,2 − 2Σ2,1Σ2,2Σ3,2 − Σ1,3Σ3,1Σ3,3 − 2Σ2,2Σ2,3Σ3,2 − Σ1,1Σ3,1Σ5,1 − 2Σ2,1Σ3,1Σ4,1

−Σ1,1Σ3,3Σ5,1 − Σ1,3Σ3,1Σ5,1 − 2Σ2,2Σ3,1Σ4,2 − 2Σ2,2Σ3,2Σ4,1 − Σ1,3Σ3,3Σ5,1 − 2Σ2,3Σ3,2Σ4,2

−Σ3,1Σ3,3Σ5,1 − 2Σ3,2Σ4,1Σ4,2

v1(0, 0) =− Σ3
3,1Σ3,3 − Σ1,3Σ3

3,1 + Σ4
3,2 + Σ2

1,2Σ2
3,2 + Σ2

2,1Σ2
2,3 + Σ2

1,2Σ2
4,1 + Σ2

2,1Σ2
3,2 + Σ2

2,2Σ2
3,1 + Σ2

1,2Σ2
4,2

+Σ2
2,2Σ2

3,2 + Σ4
2,2 + Σ2

2,3Σ2
3,1 + Σ2

2,1Σ2
4,2 + Σ2

2,2Σ2
4,1 + Σ2

3,1Σ2
3,2 + Σ2

2,2Σ2
4,2 + Σ2

2,3Σ2
4,1 − Σ1,1Σ1,3Σ2

3,2

+2Σ1,1Σ2,2Σ2,3Σ3,2 − Σ1,1Σ2
2,3Σ3,1 − Σ1,1Σ1,3Σ2

4,2 − Σ1,1Σ2
2,2Σ3,3 − 2Σ1,2Σ2

2,2Σ3,2 − Σ1,3Σ2
2,2Σ3,1

−2Σ2,1Σ2
2,2Σ2,3 + 2Σ2,3Σ3,1Σ3,2Σ4,2 − Σ1,1Σ3,1Σ2

3,2 + 2Σ1,2Σ2
3,1Σ3,2 − Σ1,1Σ2

3,2Σ3,3 − Σ2
1,2Σ3,1Σ3,3

−Σ1,3Σ2
3,1Σ3,3 + 2Σ2,2Σ2,3Σ3,2Σ5,1 − Σ1,1Σ2

2,2Σ5,1 − Σ1,1Σ3,3Σ2
4,1 − Σ1,1Σ2

2,3Σ5,1 − Σ1,3Σ2
2,1Σ5,1

−Σ1,3Σ3,1Σ2
4,2 + 2Σ2,2Σ3,2Σ3,3Σ4,1 − Σ1,3Σ3,3Σ2

4,1 − Σ1,1Σ2
3,2Σ5,1 − Σ2

1,2Σ3,1Σ5,1 + 2Σ2,2Σ2
3,1Σ4,2

−Σ1,3Σ2
3,2Σ5,1 − 2Σ2,2Σ2,3Σ4,1Σ4,2 − 2Σ2,3Σ2

3,2Σ4,1 − Σ3,1Σ2
3,2Σ3,3 − Σ2

1,2Σ3,3Σ5,1 − Σ2
2,2Σ3,1Σ5,1

−Σ2
2,1Σ3,3Σ5,1 − Σ1,1Σ1,3Σ2

4,1 − Σ2
2,3Σ3,1Σ5,1 − Σ2

2,2Σ3,3Σ5,1 + Σ1,1Σ1,3Σ3,1Σ3,3 + 2Σ1,2Σ2,1Σ2,2Σ3,3

−2Σ1,2Σ2,1Σ2,3Σ3,2 + 2Σ1,2Σ2,2Σ2,3Σ3,1 + 2Σ1,3Σ2,1Σ2,2Σ3,2 + Σ1,1Σ1,3Σ3,1Σ5,1 + 2Σ1,1Σ2,2Σ3,2Σ4,1

+2Σ1,2Σ2,1Σ2,2Σ5,1 − 2Σ1,2Σ2,1Σ3,2Σ4,1 − 2Σ1,2Σ2,2Σ3,1Σ4,1 + 2Σ1,3Σ2,1Σ3,1Σ4,1 − 2Σ2,1Σ2,2Σ3,1Σ3,2

+Σ1,1Σ1,3Σ3,3Σ5,1 + 2Σ1,1Σ2,3Σ3,2Σ4,2 + 2Σ1,2Σ2,2Σ2,3Σ5,1 − 2Σ1,2Σ2,2Σ3,2Σ4,2 − 2Σ1,2Σ2,3Σ3,1Σ4,2

+2Σ1,2Σ3,1Σ3,2Σ3,3 + 2Σ1,3Σ2,2Σ3,1Σ4,2 − 2Σ2,2Σ2,3Σ3,1Σ3,2 + Σ1,1Σ3,1Σ3,3Σ5,1 + 2Σ1,1Σ3,2Σ4,1Σ4,2

+2Σ2,1Σ2,2Σ3,2Σ5,1 − 2Σ2,1Σ2,2Σ4,1Σ4,2 − 2Σ2,1Σ3,1Σ3,2Σ4,2 + 2Σ2,1Σ3,1Σ3,3Σ4,1 − 2Σ2,2Σ3,1Σ3,2Σ4,1

+Σ1,3Σ3,1Σ3,3Σ5,1 + 2Σ1,3Σ3,2Σ4,1Σ4,2 − Σ1,3Σ2
2,1Σ3,3 − Σ1,3Σ2

2,2Σ5,1 − 2Σ2,2Σ2
3,2Σ4,2 − Σ1,1Σ3,1Σ2

4,2

v0(0, 0) =− Σ2
1,2Σ3,1Σ2

4,2 + Σ3,3Σ5,1Σ2
1,2Σ3,1 − Σ5,1Σ2

1,2Σ2
3,2 + 2Σ2

1,2Σ3,2Σ4,1Σ4,2 − Σ3,3Σ2
1,2Σ2

4,1

+2Σ1,2Σ2,1Σ2,2Σ2
4,2 − 2Σ3,3Σ5,1Σ1,2Σ2,1Σ2,2 + 2Σ5,1Σ1,2Σ2,1Σ2,3Σ3,2 − 2Σ1,2Σ2,1Σ2,3Σ4,1Σ4,2

−2Σ1,2Σ2,1Σ2
3,2Σ4,2 + 2Σ3,3Σ1,2Σ2,1Σ3,2Σ4,1 + 2Σ5,1Σ1,2Σ2

2,2Σ3,2 − 2Σ1,2Σ2
2,2Σ4,1Σ4,2

−2Σ5,1Σ1,2Σ2,2Σ2,3Σ3,1 + 2Σ1,2Σ2,2Σ2,3Σ2
4,1 + 2Σ3,3Σ1,2Σ2,2Σ3,1Σ4,1 − 2Σ1,2Σ2,2Σ2

3,2Σ4,1

+2Σ1,2Σ2,3Σ2
3,1Σ4,2 − 2Σ1,2Σ2,3Σ3,1Σ3,2Σ4,1 − 2Σ3,3Σ1,2Σ2

3,1Σ3,2 + 2Σ1,2Σ3,1Σ3
3,2 − Σ5,1Σ2

2,1Σ2
2,3

+2Σ2
2,1Σ2,3Σ3,2Σ4,2 − Σ3,3Σ2

2,1Σ2
3,2 − Σ1,3Σ2

2,1Σ2
4,2 + Σ1,3Σ3,3Σ5,1Σ2

2,1 + 2Σ5,1Σ2,1Σ2
2,2Σ2,3

−2Σ2,1Σ2
2,2Σ3,2Σ4,2 − 2Σ2,1Σ2,2Σ2,3Σ3,1Σ4,2 − 2Σ2,1Σ2,2Σ2,3Σ3,2Σ4,1 + 2Σ3,3Σ2,1Σ2,2Σ3,1Σ3,2

+2Σ2,1Σ2,2Σ3
3,2 − 2Σ1,3Σ5,1Σ2,1Σ2,2Σ3,2 + 2Σ1,3Σ2,1Σ2,2Σ4,1Σ4,2 + 2Σ2,1Σ2

2,3Σ3,1Σ4,1

−2Σ2,1Σ2,3Σ3,1Σ2
3,2 + 2Σ1,3Σ2,1Σ3,1Σ3,2Σ4,2 − 2Σ1,3Σ3,3Σ2,1Σ3,1Σ4,1 − Σ5,1Σ4

2,2 + 2Σ3
2,2Σ3,1Σ4,2

+2Σ3
2,2Σ3,2Σ4,1 − 2Σ2

2,2Σ2,3Σ3,1Σ4,1 − Σ3,3Σ2
2,2Σ2

3,1 − 3Σ2
2,2Σ3,1Σ2

3,2 + Σ1,3Σ5,1Σ2
2,2Σ3,1

−Σ1,3Σ2
2,2Σ2

4,1 − Σ1,1Σ2
2,2Σ2

4,2 + Σ1,1Σ3,3Σ5,1Σ2
2,2 + 4Σ2,2Σ2,3Σ2

3,1Σ3,2 − 2Σ1,1Σ5,1Σ2,2Σ2,3Σ3,2

+2Σ1,1Σ2,2Σ2,3Σ4,1Σ4,2 − 2Σ1,3Σ2,2Σ2
3,1Σ4,2 + 2Σ1,3Σ2,2Σ3,1Σ3,2Σ4,1 + 2Σ1,1Σ2,2Σ2

3,2Σ4,2

−2Σ1,1Σ3,3Σ2,2Σ3,2Σ4,1 − Σ2
2,3Σ3

3,1 + Σ1,1Σ5,1Σ2
2,3Σ3,1 − Σ1,1Σ2

2,3Σ2
4,1 − 2Σ1,1Σ2,3Σ3,1Σ3,2Σ4,2

+2Σ1,1Σ2,3Σ2
3,2Σ4,1 + Σ1,3Σ3,3Σ3

3,1 − Σ1,3Σ2
3,1Σ2

3,2 + Σ1,1Σ3,3Σ3,1Σ2
3,2 + Σ1,1Σ1,3Σ3,1Σ2

4,2

−Σ1,1Σ1,3Σ3,3Σ5,1Σ3,1 − Σ1,1Σ4
3,2 + Σ1,1Σ1,3Σ5,1Σ2

3,2 − 2Σ1,1Σ1,3Σ3,2Σ4,1Σ4,2 + Σ1,1Σ1,3Σ3,3Σ2
4,1
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v4(∞, 0) =Σ0,1 + Σ0,3 + Σ2,1 + Σ2,3 + Σ4,1

v3(∞, 0) =Σ0,1Σ0,3 + Σ0,1Σ2,1 + Σ0,1Σ2,3 + Σ0,3Σ2,1 + Σ0,3Σ2,3 + Σ0,1Σ4,1 + Σ0,3Σ4,1 + Σ2,1Σ2,3 + Σ2,1Σ4,1

+Σ2,3Σ4,1 − Σ2
0,2 − Σ2

1,1 − 2Σ2
1,2 − Σ2

1,3 − Σ2
2,1 − 2Σ2

2,2 − Σ2
3,1 − Σ2

3,2

v2(∞, 0) =− Σ0,1Σ2
1,3 − Σ0,3Σ2

1,1 − Σ0,3Σ2
1,2 − 2Σ0,1Σ2

2,2 − Σ2
0,2Σ2,1 − Σ0,3Σ2

2,1 − Σ0,3Σ2
2,2 − Σ2

0,2Σ2,3 − Σ0,1Σ2
3,1

+Σ0,1Σ0,3Σ2,1 − Σ0,1Σ2
3,2 − Σ2

1,2Σ2,1 − Σ0,3Σ2
3,1 − Σ2

1,1Σ2,3 − Σ2
1,3Σ2,1 − Σ0,3Σ2

3,2 − Σ2
1,2Σ2,3 − Σ2,1Σ2

2,2

−Σ2
0,2Σ4,1 + Σ2,1Σ2,3Σ4,1 − Σ2,3Σ2

3,1 + 2Σ1,1Σ2,1Σ3,1 − Σ2
1,3Σ4,1 − Σ2

2,2Σ4,1 + 2Σ1,3Σ2,2Σ3,2 − 2Σ2
1,2Σ4,1

+2Σ0,2Σ1,1Σ1,2 + 2Σ2,2Σ3,1Σ3,2 + Σ0,1Σ0,3Σ2,3 + 2Σ0,2Σ1,2Σ1,3 + Σ0,1Σ0,3Σ4,1 + Σ0,1Σ2,1Σ2,3 − Σ2
2,2Σ2,3

+2Σ0,2Σ2,1Σ2,2 + 2Σ1,1Σ1,2Σ2,2 + Σ0,3Σ2,1Σ2,3 + 2Σ1,2Σ1,3Σ2,2 + Σ0,3Σ2,3Σ4,1 + Σ0,1Σ2,1Σ4,1 − Σ2
1,1Σ4,1

+Σ0,1Σ2,3Σ4,1 + Σ0,3Σ2,1Σ4,1 + 2Σ1,2Σ2,1Σ3,2 + 2Σ1,2Σ2,2Σ3,1 − Σ0,1Σ2
1,2 − Σ2

2,1Σ2,3 − Σ3
2,1 − Σ2,1Σ2

3,2

v1(∞, 0) =2Σ1,3Σ2,1Σ2,2Σ3,2 + Σ2
1,1Σ2

1,3 + Σ2
0,2Σ2

3,1 + Σ2
1,1Σ2

2,2 + Σ2
1,2Σ2

2,1 + Σ2
0,2Σ2

3,2 + 2Σ1,2Σ2,2Σ2,3Σ3,1

+Σ2
1,2Σ2

2,2 + Σ2
1,3Σ2

2,1 + Σ2
1,1Σ2

3,2 + Σ2
1,2Σ2

3,1 + Σ2
2,1Σ2

2,2 + Σ2
1,2Σ2

3,2 + Σ2
1,3Σ2

3,1 − Σ0,1Σ0,3Σ2
2,2 + Σ4

2,2

−Σ0,1Σ2
1,3Σ2,1 − Σ0,1Σ0,3Σ2

3,2 − Σ0,1Σ2
1,2Σ2,3 − 2Σ0,2Σ2

1,2Σ2,2 − Σ0,3Σ2
1,2Σ2,1 − 2Σ1,1Σ2

1,2Σ1,3 + Σ4
1,2

−Σ0,1Σ2,1Σ2
2,2 + 2Σ0,2Σ2

2,1Σ2,2 − Σ0,1Σ2
2,2Σ2,3 − Σ2

0,2Σ2,1Σ2,3 − Σ0,3Σ2
2,1Σ2,3 − Σ0,1Σ2,1Σ2

3,2 − Σ3
2,1Σ2,3

−Σ0,1Σ2,3Σ2
3,1 − Σ0,1Σ2

1,3Σ4,1 − Σ0,3Σ2
1,1Σ4,1 − Σ0,3Σ2,1Σ2

3,2 − Σ0,3Σ2
1,2Σ4,1 − Σ0,3Σ2,3Σ2

3,1 + Σ2
0,2Σ2

2,2

−Σ2
0,2Σ2,1Σ4,1 + 2Σ1,2Σ2

2,1Σ3,2 − Σ0,3Σ2
2,2Σ4,1 − 2Σ1,2Σ2

2,2Σ3,2 − 2Σ1,3Σ2
2,2Σ3,1 − Σ2,1Σ2

2,2Σ2,3 − Σ0,3Σ3
2,1

−Σ2
1,2Σ2,1Σ4,1 − Σ2

1,1Σ2,3Σ4,1 − Σ2
1,3Σ2,1Σ4,1 − Σ2

1,2Σ2,3Σ4,1 + Σ0,1Σ0,3Σ2,1Σ2,3 + 2Σ0,1Σ1,2Σ1,3Σ2,2

+2Σ0,2Σ1,1Σ1,2Σ2,3 − 2Σ0,2Σ1,1Σ1,3Σ2,2 + 2Σ0,2Σ1,2Σ1,3Σ2,1 + 2Σ0,3Σ1,1Σ1,2Σ2,2 + Σ0,1Σ0,3Σ2,1Σ4,1

+2Σ0,1Σ1,2Σ2,2Σ3,1 + 2Σ0,2Σ1,1Σ1,2Σ4,1 − 2Σ0,2Σ1,1Σ2,2Σ3,1 − 2Σ0,2Σ1,2Σ2,1Σ3,1 + 2Σ0,3Σ1,1Σ2,1Σ3,1

−2Σ1,1Σ1,2Σ2,1Σ2,2 + Σ0,1Σ0,3Σ2,3Σ4,1 + 2Σ0,1Σ1,3Σ2,2Σ3,2 + 2Σ0,2Σ1,2Σ1,3Σ4,1 − 2Σ0,2Σ1,2Σ2,2Σ3,2

−2Σ0,2Σ1,3Σ2,1Σ3,2 + 2Σ0,2Σ2,1Σ2,2Σ2,3 + 2Σ0,3Σ1,2Σ2,1Σ3,2 − 2Σ1,2Σ1,3Σ2,1Σ2,2 + Σ0,1Σ2,1Σ2,3Σ4,1

+2Σ0,1Σ2,2Σ3,1Σ3,2 + 2Σ1,1Σ1,2Σ2,2Σ4,1 − 2Σ1,1Σ1,2Σ3,1Σ3,2 − 2Σ1,1Σ2,1Σ2,2Σ3,2 + 2Σ1,1Σ2,1Σ2,3Σ3,1

−2Σ1,2Σ2,1Σ2,2Σ3,1 + Σ0,3Σ2,1Σ2,3Σ4,1 + 2Σ0,3Σ2,2Σ3,1Σ3,2 + 2Σ1,2Σ1,3Σ2,2Σ4,1 − 2Σ1,2Σ1,3Σ3,1Σ3,2

−Σ0,1Σ0,3Σ2
3,1 − Σ0,3Σ2

1,1Σ2,3 − Σ0,1Σ2
1,2Σ4,1 − Σ0,1Σ2

2,2Σ4,1 − Σ2
0,2Σ2,3Σ4,1

v0(∞, 0) =2Σ0,1Σ0,3Σ2,2Σ3,1Σ3,2 + Σ4,1Σ2
0,2Σ2

2,2 − 2Σ2
0,2Σ2,2Σ3,1Σ3,2 + Σ2,3Σ2

0,2Σ2
3,1 − 2Σ0,2Σ1,1Σ1,2Σ2

3,2

−2Σ4,1Σ0,2Σ1,1Σ1,3Σ2,2 + 2Σ0,2Σ1,1Σ1,3Σ3,1Σ3,2 + 2Σ0,2Σ1,1Σ2
2,2Σ3,2 + Σ0,1Σ0,3Σ2,3Σ4,1Σ2,1

−2Σ2,3Σ0,2Σ1,1Σ2,2Σ3,1 − 2Σ4,1Σ0,2Σ2
1,2Σ2,2 + 2Σ0,2Σ2

1,2Σ3,1Σ3,2 + 2Σ4,1Σ0,2Σ1,2Σ1,3Σ2,1 + Σ0,1Σ4
2,2

−2Σ0,2Σ1,2Σ1,3Σ2
3,1 + Σ2

0,2Σ2,1Σ2
3,2 + 2Σ0,2Σ1,2Σ2

2,2Σ3,1 − 2Σ0,2Σ1,3Σ2
2,1Σ3,2 − Σ0,1Σ0,3Σ2,3Σ2

3,1

+2Σ0,2Σ1,3Σ2,1Σ2,2Σ3,1 + 2Σ2,3Σ0,2Σ2
2,1Σ2,2 − Σ2,3Σ4,1Σ2

0,2Σ2,1 + Σ4,1Σ2
1,1Σ2

1,3 − 2Σ2
1,1Σ1,3Σ2,2Σ3,2

+Σ2,3Σ2
1,1Σ2

2,2 − Σ0,1Σ0,3Σ4,1Σ2
2,2 − Σ0,3Σ2,3Σ4,1Σ2

1,1 − 2Σ4,1Σ1,1Σ2
1,2Σ1,3 + 2Σ1,1Σ2

1,2Σ2,2Σ3,2

+2Σ1,1Σ1,2Σ1,3Σ2,1Σ3,2 + 2Σ1,1Σ1,2Σ1,3Σ2,2Σ3,1 − 2Σ2,3Σ1,1Σ1,2Σ2,1Σ2,2 − 2Σ2,3Σ0,2Σ1,2Σ2,1Σ3,1

+2Σ0,3Σ4,1Σ1,1Σ1,2Σ2,2 − 2Σ0,3Σ1,1Σ1,2Σ3,1Σ3,2 − 2Σ1,1Σ2
1,3Σ2,1Σ3,1 + 2Σ2,3Σ4,1Σ0,2Σ1,1Σ1,2

−2Σ0,3Σ1,1Σ2,1Σ2,2Σ3,2 + 2Σ0,3Σ2,3Σ1,1Σ2,1Σ3,1 + Σ4,1Σ4
1,2 − 2Σ3

1,2Σ2,1Σ3,2 − Σ0,1Σ0,3Σ2,1Σ2
3,2

+2Σ2
1,2Σ1,3Σ2,1Σ3,1 + Σ2,3Σ2

1,2Σ2
2,1 + 3Σ2

1,2Σ2,1Σ2
2,2 − Σ0,3Σ4,1Σ2

1,2Σ2,1 + Σ0,3Σ2
1,2Σ2

3,1 + Σ0,1Σ2
1,2Σ2

3,2

−Σ0,1Σ2,3Σ4,1Σ2
1,2 − 4Σ1,2Σ1,3Σ2

2,1Σ2,2 + Σ0,3Σ2
1,1Σ2

3,2 − 2Σ0,1Σ1,2Σ1,3Σ3,1Σ3,2 + 2Σ0,3Σ1,2Σ2
2,1Σ3,2

−2Σ0,3Σ1,2Σ2,1Σ2,2Σ3,1 − 2Σ0,1Σ1,2Σ2
2,2Σ3,2 + 2Σ0,1Σ2,3Σ1,2Σ2,2Σ3,1 + Σ2

1,3Σ3
2,1 − Σ0,1Σ4,1Σ2

1,3Σ2,1

+Σ0,1Σ2
1,3Σ2

3,1 − 2Σ3
1,2Σ2,2Σ3,1 − 2Σ0,1Σ1,3Σ2

2,2Σ3,1 − Σ0,3Σ2,3Σ3
2,1 + Σ0,3Σ2

2,1Σ2
2,2 − Σ0,1Σ2,3Σ2,1Σ2

2,2

−2Σ0,2Σ2,1Σ3
2,2 − 2Σ1,1Σ1,2Σ3

2,2 + 2Σ1,1Σ1,3Σ2,1Σ2
2,2 + 2Σ0,1Σ1,3Σ2,1Σ2,2Σ3,2 + 2Σ0,1Σ4,1Σ1,2Σ1,3Σ2,2
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v4(0,∞) =Σ1,0 + Σ1,2 + Σ3,0 + Σ3,2 + Σ5,0

v3(0,∞) =Σ1,0Σ1,2 + Σ1,0Σ3,0 + Σ1,0Σ3,2 + Σ1,2Σ3,0 + Σ1,2Σ3,2 + Σ1,0Σ5,0 + Σ1,2Σ5,0 + Σ3,0Σ3,2 + Σ3,0Σ5,0

+Σ3,2Σ5,0 − Σ2
1,1 − Σ2

2,0 − 2Σ2
2,1 − Σ2

2,2 − Σ2
3,0 − 2Σ2

3,1 − Σ2
4,0 − Σ2

4,1

v2(0,∞) =Σ1,0Σ1,2Σ3,0 + Σ3,0Σ3,2Σ5,0 − Σ1,2Σ2
2,1 − 2Σ1,0Σ2

3,1 − Σ2
1,1Σ3,0 − Σ1,2Σ2

3,0 − Σ1,2Σ2
3,1 − Σ2

1,1Σ3,2

−Σ1,0Σ2
4,0 − Σ1,0Σ2

4,1 − Σ2
2,1Σ3,0 − Σ1,2Σ2

4,0 − Σ2
2,0Σ3,2 − Σ2

2,2Σ3,0 − Σ1,2Σ2
4,1 − Σ2

2,1Σ3,2 − Σ3,0Σ2
3,1

−Σ2
1,1Σ5,0 − Σ2

3,0Σ3,2 − Σ2
3,1Σ3,2 − Σ2

2,0Σ5,0 − Σ3,0Σ2
4,1 − 2Σ2

2,1Σ5,0 − Σ3,2Σ2
4,0 − Σ2

2,2Σ5,0 − Σ2
3,1Σ5,0

−Σ1,0Σ2
2,1 + 2Σ3,1Σ4,0Σ4,1 + 2Σ1,1Σ2,0Σ2,1 + Σ1,0Σ1,2Σ3,2 + 2Σ1,1Σ2,1Σ2,2 + Σ1,0Σ1,2Σ5,0 − Σ3

3,0

+2Σ1,1Σ3,0Σ3,1 + 2Σ2,0Σ2,1Σ3,1 + Σ1,2Σ3,0Σ3,2 + 2Σ2,1Σ2,2Σ3,1 + Σ1,0Σ3,0Σ5,0 + 2Σ2,0Σ3,0Σ4,0

+Σ1,0Σ3,2Σ5,0 + Σ1,2Σ3,0Σ5,0 + 2Σ2,1Σ3,0Σ4,1 + 2Σ2,1Σ3,1Σ4,0 + Σ1,2Σ3,2Σ5,0 + 2Σ2,2Σ3,1Σ4,1

−Σ1,0Σ2
2,2 + Σ1,0Σ3,0Σ3,2 − Σ1,2Σ2

2,0

v1(0,∞) =2Σ1,1Σ2
3,0Σ3,1 + 2Σ2,1Σ2

3,0Σ4,1 + Σ2
1,1Σ2

3,1 + Σ2
2,0Σ2

2,2 + Σ2
1,1Σ2

4,0 + Σ2
2,0Σ2

3,1 + Σ2
2,1Σ2

3,0 + Σ2
1,1Σ2

4,1

+Σ2
2,1Σ2

3,1 + Σ2
2,0Σ2

4,1 + Σ2
2,1Σ2

4,0 + Σ2
3,0Σ2

3,1 + Σ2
2,1Σ2

4,1 + Σ2
2,2Σ2

4,0 + 2Σ2,2Σ3,0Σ3,1Σ4,1 − Σ1,0Σ1,2Σ2
4,0

−Σ1,0Σ2
2,2Σ3,0 − Σ3

3,0Σ3,2 − Σ1,0Σ2
2,1Σ3,2 − 2Σ1,1Σ2

2,1Σ3,1 − Σ1,2Σ2
2,1Σ3,0 − 2Σ2,0Σ2

2,1Σ2,2 − Σ1,2Σ2
2,0Σ3,2

−Σ1,0Σ3,0Σ2
3,1 + Σ2

2,2Σ2
3,0 − Σ1,0Σ2

3,1Σ3,2 − Σ2
1,1Σ3,0Σ3,2 − Σ1,2Σ2

3,0Σ3,2 − Σ1,0Σ3,0Σ2
4,1 − Σ1,0Σ2

2,1Σ5,0

−Σ1,0Σ3,2Σ2
4,0 − Σ1,2Σ3

3,0 − Σ1,2Σ2
2,0Σ5,0 − Σ1,2Σ3,0Σ2

4,1 − Σ1,2Σ2
2,1Σ5,0 − Σ1,2Σ3,2Σ2

4,0 − Σ1,0Σ2
3,1Σ5,0

−Σ2
1,1Σ3,0Σ5,0 + Σ4

2,1 − Σ1,2Σ2
3,1Σ5,0 − 2Σ2,1Σ2

3,1Σ4,1 − 2Σ2,2Σ2
3,1Σ4,0 − Σ3,0Σ2

3,1Σ3,2 − Σ2
1,1Σ3,2Σ5,0

−Σ2
2,1Σ3,0Σ5,0 − Σ2

2,0Σ3,2Σ5,0 − Σ2
2,2Σ3,0Σ5,0 − Σ2

2,1Σ3,2Σ5,0 + Σ1,0Σ1,2Σ3,0Σ3,2 + 2Σ1,0Σ2,1Σ2,2Σ3,1

+2Σ1,1Σ2,0Σ2,1Σ3,2 − 2Σ1,1Σ2,0Σ2,2Σ3,1 + 2Σ1,1Σ2,1Σ2,2Σ3,0 + 2Σ1,2Σ2,0Σ2,1Σ3,1 + Σ1,0Σ1,2Σ3,0Σ5,0

+2Σ1,0Σ2,1Σ3,1Σ4,0 + 2Σ1,1Σ2,0Σ2,1Σ5,0 − 2Σ1,1Σ2,0Σ3,1Σ4,0 − 2Σ1,1Σ2,1Σ3,0Σ4,0 + 2Σ1,2Σ2,0Σ3,0Σ4,0

−2Σ2,0Σ2,1Σ3,0Σ3,1 + Σ1,0Σ1,2Σ3,2Σ5,0 + 2Σ1,0Σ2,2Σ3,1Σ4,1 + 2Σ1,1Σ2,1Σ2,2Σ5,0 − 2Σ1,1Σ2,1Σ3,1Σ4,1

−2Σ1,1Σ2,2Σ3,0Σ4,1 + 2Σ1,1Σ3,0Σ3,1Σ3,2 + 2Σ1,2Σ2,1Σ3,0Σ4,1 − 2Σ2,1Σ2,2Σ3,0Σ3,1 + Σ1,0Σ3,0Σ3,2Σ5,0

+2Σ1,0Σ3,1Σ4,0Σ4,1 + 2Σ2,0Σ2,1Σ3,1Σ5,0 − 2Σ2,0Σ2,1Σ4,0Σ4,1 − 2Σ2,0Σ3,0Σ3,1Σ4,1 + 2Σ2,0Σ3,0Σ3,2Σ4,0

−2Σ2,1Σ3,0Σ3,1Σ4,0 + Σ1,2Σ3,0Σ3,2Σ5,0 + 2Σ1,2Σ3,1Σ4,0Σ4,1 + 2Σ2,1Σ2,2Σ3,1Σ5,0 − 2Σ2,1Σ2,2Σ4,0Σ4,1

+2Σ2,1Σ3,1Σ3,2Σ4,0 − Σ1,0Σ1,2Σ2
3,1 − Σ1,0Σ1,2Σ2

4,1 + Σ4
3,1 − Σ1,0Σ2

2,2Σ5,0

v0(0,∞) =Σ2
1,1Σ3,0Σ2

4,1 − Σ3,2Σ5,0Σ2
1,1Σ3,0 + Σ5,0Σ2

1,1Σ2
3,1 − 2Σ2

1,1Σ3,1Σ4,0Σ4,1 − 2Σ1,1Σ2,0Σ2,1Σ2
4,1

+2Σ3,2Σ5,0Σ1,1Σ2,0Σ2,1 − 2Σ5,0Σ1,1Σ2,0Σ2,2Σ3,1 + 2Σ1,1Σ2,0Σ2,2Σ4,0Σ4,1 + 2Σ1,1Σ2,0Σ2
3,1Σ4,1

−2Σ3,2Σ1,1Σ2,0Σ3,1Σ4,0 − 2Σ5,0Σ1,1Σ2
2,1Σ3,1 + 2Σ1,1Σ2

2,1Σ4,0Σ4,1 + 2Σ5,0Σ1,1Σ2,1Σ2,2Σ3,0

−2Σ1,1Σ2,1Σ2,2Σ2
4,0 − 2Σ3,2Σ1,1Σ2,1Σ3,0Σ4,0 + 2Σ1,1Σ2,1Σ2

3,1Σ4,0 − 2Σ1,1Σ2,2Σ2
3,0Σ4,1 + Σ1,0Σ4

3,1

+2Σ1,1Σ2,2Σ3,0Σ3,1Σ4,0 + 2Σ3,2Σ1,1Σ2
3,0Σ3,1 − 2Σ1,1Σ3,0Σ3

3,1 + Σ5,0Σ2
2,0Σ2

2,2 − 2Σ2
2,0Σ2,2Σ3,1Σ4,1

+Σ3,2Σ2
2,0Σ2

3,1 + Σ1,2Σ2
2,0Σ2

4,1 − Σ1,2Σ3,2Σ5,0Σ2
2,0 − 2Σ5,0Σ2,0Σ2

2,1Σ2,2 + 2Σ2,0Σ2
2,1Σ3,1Σ4,1

+2Σ2,0Σ2,1Σ2,2Σ3,0Σ4,1 + 2Σ2,0Σ2,1Σ2,2Σ3,1Σ4,0 − 2Σ3,2Σ2,0Σ2,1Σ3,0Σ3,1 − 2Σ2,0Σ2,1Σ3
3,1

+2Σ1,2Σ5,0Σ2,0Σ2,1Σ3,1 − 2Σ1,2Σ2,0Σ2,1Σ4,0Σ4,1 − 2Σ2,0Σ2
2,2Σ3,0Σ4,0 + 2Σ2,0Σ2,2Σ3,0Σ2

3,1

−2Σ1,2Σ2,0Σ3,0Σ3,1Σ4,1 + 2Σ1,2Σ3,2Σ2,0Σ3,0Σ4,0 + Σ5,0Σ4
2,1 − 2Σ3

2,1Σ3,0Σ4,1 − 2Σ3
2,1Σ3,1Σ4,0

+2Σ2
2,1Σ2,2Σ3,0Σ4,0 + Σ3,2Σ2

2,1Σ2
3,0 + 3Σ2

2,1Σ3,0Σ2
3,1 − Σ1,2Σ5,0Σ2

2,1Σ3,0 + Σ1,2Σ2
2,1Σ2

4,0 + Σ2
2,2Σ3

3,0

−Σ1,0Σ3,2Σ5,0Σ2
2,1 − 4Σ2,1Σ2,2Σ2

3,0Σ3,1 + 2Σ1,0Σ5,0Σ2,1Σ2,2Σ3,1 − 2Σ1,0Σ2,1Σ2,2Σ4,0Σ4,1

+2Σ1,2Σ2,1Σ2
3,0Σ4,1 − 2Σ1,2Σ2,1Σ3,0Σ3,1Σ4,0 − 2Σ1,0Σ2,1Σ2

3,1Σ4,1 + 2Σ1,0Σ3,2Σ2,1Σ3,1Σ4,0

−Σ1,0Σ5,0Σ2
2,2Σ3,0 + Σ1,0Σ2

2,2Σ2
4,0 + 2Σ1,0Σ2,2Σ3,0Σ3,1Σ4,1 − 2Σ1,0Σ2,2Σ2

3,1Σ4,0 − Σ1,2Σ3,2Σ3
3,0

+Σ1,2Σ2
3,0Σ2

3,1 − Σ1,0Σ3,2Σ3,0Σ2
3,1 − Σ1,0Σ1,2Σ3,0Σ2

4,1 + Σ1,0Σ1,2Σ3,2Σ5,0Σ3,0 + Σ3,2Σ2
1,1Σ2

4,0

−Σ1,0Σ1,2Σ5,0Σ2
3,1 + 2Σ1,0Σ1,2Σ3,1Σ4,0Σ4,1 − Σ1,0Σ1,2Σ3,2Σ2

4,0 + Σ1,0Σ2
2,1Σ2

4,1
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v4(∞,∞) =− Σ0,2 − Σ2,0 − Σ2,2 − Σ4,0 − 5

v3(∞,∞) =5Σ0,2 + 5Σ2,0 + 5Σ2,2 + 5Σ4,0 + Σ0,2Σ2,0 + Σ0,2Σ2,2 + Σ0,2Σ4,0 + Σ2,0Σ2,2 + Σ2,0Σ4,0 + Σ2,2Σ4,0

−Σ2
0,1 − Σ2

1,0 − 2Σ2
1,1 − Σ2

1,2 − Σ2
2,0 − 2Σ2

2,1 − Σ2
3,0 − Σ2

3,1

v2(∞,∞) =Σ0,2Σ2
1,0 − 5Σ0,2Σ2,2 − 5Σ0,2Σ4,0 − 5Σ2,0Σ2,2 − 5Σ2,0Σ4,0 − 5Σ2,2Σ4,0 − 5Σ0,2Σ2,0 − 2Σ2,1Σ3,0Σ3,1

+Σ2
0,1Σ2,0 + Σ0,2Σ2

2,0 + Σ0,2Σ2
2,1 + Σ2

0,1Σ2,2 + Σ2
1,1Σ2,0 + Σ0,2Σ2

3,0 + Σ2
1,0Σ2,2 + Σ2

1,2Σ2,0 + Σ0,2Σ2
3,1

+Σ2
1,1Σ2,2 + Σ2,0Σ2

2,1 + Σ2
0,1Σ4,0 + Σ2

2,0Σ2,2 + Σ2
2,1Σ2,2 + Σ2

1,0Σ4,0 + Σ2,0Σ2
3,1 + 2Σ2

1,1Σ4,0 + Σ2,2Σ2
3,0

+Σ2
1,2Σ4,0 + Σ2

2,1Σ4,0 + 5Σ2
1,1 + 5Σ2

1,2 + 10Σ2
2,1 + 5Σ2

3,0 + 5Σ2
3,1 − 2Σ0,1Σ1,0Σ1,1 − 2Σ0,1Σ1,1Σ1,2

−2Σ0,1Σ2,0Σ2,1 − 2Σ1,0Σ1,1Σ2,1 − Σ0,2Σ2,0Σ2,2 − 2Σ1,1Σ1,2Σ2,1 − 2Σ1,0Σ2,0Σ3,0 − Σ0,2Σ2,0Σ4,0

−2Σ1,1Σ2,0Σ3,1 − 2Σ1,1Σ2,1Σ3,0 − Σ0,2Σ2,2Σ4,0 − 2Σ1,2Σ2,1Σ3,1 − Σ2,0Σ2,2Σ4,0 + Σ0,2Σ2
1,1 + Σ3

2,0

v1(∞,∞) =− 5Σ0,2Σ2
2,1 − 5Σ0,2Σ2

3,0 − 5Σ2
1,2Σ2,0 − 5Σ0,2Σ2

3,1 − 5Σ2
1,1Σ2,2 − 5Σ2,0Σ2

2,1 − Σ3
2,0Σ2,2 − 5Σ2

2,1Σ2,2

−5Σ2,0Σ2
3,1 − 5Σ2

1,1Σ4,0 − 5Σ2,2Σ2
3,0 − 5Σ2

1,2Σ4,0 − 5Σ2
2,1Σ4,0 − Σ0,2Σ3

2,0 + Σ4
2,1 + Σ2

0,1Σ2
2,1 + Σ2

1,0Σ2
1,2

+Σ2
0,1Σ2

3,0 + Σ2
1,0Σ2

2,1 + Σ2
1,1Σ2

2,0 + Σ2
0,1Σ2

3,1 + Σ2
1,1Σ2

2,1 + Σ2
1,2Σ2

2,0 + Σ2
1,0Σ2

3,1 + Σ2
1,1Σ2

3,0 + Σ2
2,0Σ2

2,1

+2Σ0,1Σ2
2,0Σ2,1 + 5Σ0,2Σ2,0Σ2,2 + 10Σ1,1Σ1,2Σ2,1 + 5Σ0,2Σ2,0Σ4,0 + 10Σ1,1Σ2,1Σ3,0 + 5Σ0,2Σ2,2Σ4,0

+10Σ1,2Σ2,1Σ3,1 + 5Σ2,0Σ2,2Σ4,0 + 10Σ2,1Σ3,0Σ3,1 − 2Σ0,1Σ2
1,1Σ2,1 − Σ0,2Σ2

1,1Σ2,0 − 2Σ1,0Σ2
1,1Σ1,2

−Σ0,2Σ2
1,0Σ2,2 + 2Σ1,1Σ2,1Σ2,2Σ3,0 − Σ2

0,1Σ2,0Σ2,2 − Σ0,2Σ2
2,0Σ2,2 − Σ0,2Σ2

1,0Σ4,0 − Σ0,2Σ2,0Σ2
3,1

−Σ0,2Σ2
1,1Σ4,0 + Σ4

1,1 − Σ0,2Σ2,2Σ2
3,0 − Σ2

0,1Σ2,0Σ4,0 + 2Σ1,1Σ2
2,0Σ3,1 − Σ0,2Σ2

2,1Σ4,0 − 2Σ1,1Σ2
2,1Σ3,1

−2Σ1,2Σ2
2,1Σ3,0 − Σ2,0Σ2

2,1Σ2,2 + 2Σ1,2Σ2,0Σ2,1Σ3,1 − Σ2
1,1Σ2,0Σ4,0 − Σ2

1,0Σ2,2Σ4,0 − Σ2
1,2Σ2,0Σ4,0

−Σ2
1,1Σ2,2Σ4,0 + Σ2

1,1Σ2
3,1 + Σ2

1,2Σ2
3,0 − 2Σ0,1Σ1,0Σ1,2Σ2,1 + 2Σ0,1Σ1,1Σ1,2Σ2,0 + 2Σ0,2Σ1,0Σ1,1Σ2,1

+2Σ0,1Σ1,0Σ1,1Σ4,0 − 2Σ0,1Σ1,0Σ2,1Σ3,0 − 2Σ0,1Σ1,1Σ2,0Σ3,0 + 2Σ0,2Σ1,0Σ2,0Σ3,0 − 2Σ1,0Σ1,1Σ2,0Σ2,1

+2Σ0,1Σ1,1Σ1,2Σ4,0 − 2Σ0,1Σ1,1Σ2,1Σ3,1 − 2Σ0,1Σ1,2Σ2,0Σ3,1 + 2Σ0,1Σ2,0Σ2,1Σ2,2 + 2Σ0,2Σ1,1Σ2,0Σ3,1

−2Σ1,1Σ1,2Σ2,0Σ2,1 + 2Σ1,0Σ1,1Σ2,1Σ4,0 − 2Σ1,0Σ1,1Σ3,0Σ3,1 − 2Σ1,0Σ2,0Σ2,1Σ3,1 + 2Σ1,0Σ2,0Σ2,2Σ3,0

−2Σ1,1Σ2,0Σ2,1Σ3,0 + Σ0,2Σ2,0Σ2,2Σ4,0 + 2Σ0,2Σ2,1Σ3,0Σ3,1 + 2Σ1,1Σ1,2Σ2,1Σ4,0 − 2Σ1,1Σ1,2Σ3,0Σ3,1

−Σ2
0,1Σ2,2Σ4,0 + 2Σ0,1Σ1,0Σ1,1Σ2,2

v0(∞,∞) =− Σ2
0,1Σ2,0Σ2

3,1 + Σ2,2Σ4,0Σ2
0,1Σ2,0 − Σ4,0Σ2

0,1Σ2
2,1 + 2Σ2

0,1Σ2,1Σ3,0Σ3,1 − Σ2,2Σ2
0,1Σ2

3,0 − 5Σ4
2,1

−2Σ2,2Σ4,0Σ0,1Σ1,0Σ1,1 + 2Σ4,0Σ0,1Σ1,0Σ1,2Σ2,1 − 2Σ0,1Σ1,0Σ1,2Σ3,0Σ3,1 − 2Σ0,1Σ1,0Σ2
2,1Σ3,1

+2Σ2,2Σ0,1Σ1,0Σ2,1Σ3,0 − 10Σ0,2Σ2,1Σ3,0Σ3,1 − 2Σ0,1Σ2
1,1Σ3,0Σ3,1 − 2Σ4,0Σ0,1Σ1,1Σ1,2Σ2,0

+2Σ0,1Σ1,1Σ1,2Σ2
3,0 − 5Σ2

1,2Σ2
3,0 + 2Σ2,2Σ0,1Σ1,1Σ2,0Σ3,0 − 2Σ0,1Σ1,1Σ2

2,1Σ3,0 + 2Σ0,1Σ1,2Σ2
2,0Σ3,1

−2Σ0,1Σ1,2Σ2,0Σ2,1Σ3,0 − 2Σ2,2Σ0,1Σ2
2,0Σ2,1 + 2Σ0,1Σ2,0Σ3

2,1 − Σ4,0Σ2
1,0Σ2

1,2 + 2Σ2
1,0Σ1,2Σ2,1Σ3,1

−Σ2,2Σ2
1,0Σ2

2,1 − Σ0,2Σ2
1,0Σ2

3,1 + Σ0,2Σ2,2Σ4,0Σ2
1,0 + 2Σ4,0Σ1,0Σ2

1,1Σ1,2 − 2Σ1,0Σ2
1,1Σ2,1Σ3,1

−2Σ1,0Σ1,1Σ1,2Σ2,0Σ3,1 − 2Σ1,0Σ1,1Σ1,2Σ2,1Σ3,0 + 2Σ2,2Σ1,0Σ1,1Σ2,0Σ2,1 + 2Σ1,0Σ1,1Σ3
2,1

−2Σ0,2Σ4,0Σ1,0Σ1,1Σ2,1 + 2Σ0,2Σ1,0Σ1,1Σ3,0Σ3,1 + 2Σ1,0Σ2
1,2Σ2,0Σ3,0 − 2Σ1,0Σ1,2Σ2,0Σ2

2,1

+2Σ0,2Σ1,0Σ2,0Σ2,1Σ3,1 − 2Σ0,2Σ2,2Σ1,0Σ2,0Σ3,0 − Σ4,0Σ4
1,1 + 2Σ3

1,1Σ2,0Σ3,1 + 2Σ3
1,1Σ2,1Σ3,0

−2Σ2
1,1Σ1,2Σ2,0Σ3,0 − Σ2,2Σ2

1,1Σ2
2,0 − 3Σ2

1,1Σ2,0Σ2
2,1 + Σ0,2Σ4,0Σ2

1,1Σ2,0 − Σ0,2Σ2
1,1Σ2

3,0 − 5Σ2
1,1Σ2

3,1

+5Σ2,2Σ4,0Σ2
1,1 + 4Σ1,1Σ1,2Σ2

2,0Σ2,1 − 10Σ4,0Σ1,1Σ1,2Σ2,1 + 10Σ1,1Σ1,2Σ3,0Σ3,1 − 2Σ0,2Σ1,1Σ2
2,0Σ3,1

+2Σ0,2Σ1,1Σ2,0Σ2,1Σ3,0 + 10Σ1,1Σ2
2,1Σ3,1 − 10Σ2,2Σ1,1Σ2,1Σ3,0 − Σ2

1,2Σ3
2,0 + 5Σ4,0Σ2

1,2Σ2,0

+10Σ1,2Σ2
2,1Σ3,0 + 5Σ0,2Σ2,2Σ2

3,0 + Σ0,2Σ2,2Σ3
2,0 − Σ0,2Σ2

2,0Σ2
2,1 + 5Σ2,2Σ2,0Σ2

2,1 + 5Σ0,2Σ2,0Σ2
3,1

−5Σ0,2Σ2,2Σ4,0Σ2,0 + 2Σ0,1Σ1,0Σ1,1Σ2
3,1 + 2Σ4,0Σ0,1Σ2

1,1Σ2,1 + 5Σ0,2Σ4,0Σ2
2,1 − 10Σ1,2Σ2,0Σ2,1Σ3,1
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Let V (a, b) be the number of consecutive sign changes in [1, v4(a, b), v3(a, b), v2(a, b), v1(a, b), v0(a, b)]

where a and b are either 0 or ∞. The formula of V (a, b) is shown below

V (a, b) =
1− sign(v4(a, b))

2
+

1− sign(v4(a, b))sign(v3(a, b))

2
+

1− sign(v3(a, b))sign(v2(a, b))

2

+
1− sign(v2(a, b))sign(v1(a, b))

2
+

1− sign(v1(a, b))sign(v0(a, b))

2
where a, b ∈ {0,∞}

From the V ’s, we can find the formula of the number of feasible roots of f1(N1, N2) and

f2(N1, N2) which is given by F (Ψ) = (V (0, 0) − V (∞, 0) − V (0,∞) + V (∞,∞))/2. The

feasibility table for this example is huge and instead of finding the link between all pa-

rameters while maintaining feasibility, we will perform a demo on how to find the link

between the parameters h and a21 while they are in a restricted domain. Let us consider

the parameter vector Ψ = (r1, r2, a11, a12, a21, a22, h) = (0.5,−1.5, 1,−1.5, a21, 1, h) where

the parameters a21 ∈ [−6,−1] and h ∈ [0.5, 4] are restricted, we find that feasibility (i.e,

F (Ψ) ≥ 1) can only be satisfied under the single condition that is shown below:

v4(0, 0) : +, v3(0, 0) : −, v2(0, 0) : +, v1(0, 0) : +, v0(0, 0) : −

v4(∞, 0) : +, v3(∞, 0) : +, v2(∞, 0) : +, v1(∞, 0) : X, v0(∞, 0) : −

v4(0,∞) : −, v3(0,∞) : −, v2(0,∞) : X, v1(0,∞) : +, v0(0,∞) : +

v4(∞,∞) : −, v3(∞,∞) : +, v2(∞,∞) : −, v1(∞,∞) : −, v0(∞,∞) : +

Without the need to compute conditional probabilities, upon plotting the signs of the v’s in

the single condition above, we find that feasibility is maintained if and only if v0(0, 0) < 0.

To check that our finding is correct, we plot both F (Ψ) and sign(v0(0, 0)) in the grid

a21 ∈ [−6,−1] and h ∈ [0.5, 4]. From the two plots, we can see that F (Ψ) > 0 if and only

if v0(0, 0) < 0 and that a21 and h are related. Nevertheless, in other domains, a21 and h

may not be linked. For example, with the same parameter values that were chosen earlier,

if we change r1 from 0.5 to −0.5, the number of feasible roots in the domain a21 ∈ [−6,−1]

and h ∈ [0.5, 4] will be exactly 1 no matter what values a21 and h take. Of course, the demo

that we have illustrated here can be applied to any parameter ranges and combination.

It is true that the expression of v0(0, 0) is huge and messy, however it can compacted by

factoring it after plugging the fixed values into it, which is not needed for this example.
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Figure 4-1: The top figure shows the number of feasible roots F in Lotka-Volterra model
with type III functional responses where (r1, r2, a11, a12, a22) = (0.5,−1.5, 1,−1.5, 1), a21 ∈
[−6,−1] and h ∈ [0.5, 4]. The bottom figure shows the sign of v0(0, 0) with the same
model and parameter values and ranges. Both figures confirm that F > 0 if and only if
v0(0, 0) < 0. Simulations done via solving the isocline equations numerically and checking
for the feasibility of roots match the two figures displayed here.
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4.4 Higher-Dimensional Systems (3 or more species)

Consider the dynamical system that is shown below:

dN1

dt
=
N1f1(N1, . . . , Nn)

q1(N1, . . . , Nn)
...

dNn

dt
=
Nnfn(N1, . . . , Nn)

qn(N1, . . . , Nn)

(4.3)

Here, the f ’s and q’s are multivariate polynomials in species abundances. Let Ψ be the

vector of model parameters that include, for example, species growth rates and species

interaction coefficients. Feasibility conditions are conditions on model parameters Ψ that

guarantee at least one feasible equilibrium point in the system. That is, the number roots of

the system of polynomial equations fi(N1, . . . , Nn) = 0 for i = 1, . . . , n whose components

are all real and positive is at least 1. To find such conditions, we construct an analytical

formula of the number of positive roots of that system of equations fi(N1, . . . , Nn) = 0 for

i = 1, . . . , n and we call that function F (Ψ). We use theoretical work done by Pedersen

which deals with counting real roots of polynomial systems in arbitrary algebraic domains

to derive the formula of F (Ψ) [117]. To derive F (Ψ), we apply Pedersen’s work to count

the number of real roots in an orthotope that lies in the 1st quadrant (i.e, feasible region)

which rests on all the positive axes then we provide a methodology that expands the

orthotope allowing all its vertices (except the origin) to go to infinity to cover the entire

feasible domain. In multi-dimensional systems, given polynomial systems fi(N1, . . . , Nn)

for i = 1, . . . , n, the process of finding feasibility conditions goes as follows:

Finding symmetric sums of the roots

1. Fix i, assume that variableNi is constant, and find the total degree of each polynomial

equation fj(N1, . . . , Nn) = 0 for j = 1, . . . , n. The total degree of fj is the maximum

sum of the variables’ exponents in each term of fj while treating Ni as constant.

Denote the total degree of polynomial fj by di,j for j = 1, . . . , n. Next, homogenize

each term in each of the f ’s with an artificial variable W so that the total degree of

each term in fj is di,j. Denote to the homogenized equation by FNi,j. For example, if

f2(N1, N2, N3) = 1 +N3
1 +N1N2N3 and N1 is assumed to be constant, then d1,2 = 2
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and the homogenized equation is FN1,2 = W 2 +N3
1W

2 +N1N2N3.

2. Let Li = 1+
∑n

j=1(di,j−1) and form the set Hi as a union of n monomial sets, where

Hi = (W di,1 · HLi−di,1
i,1 ) ∪ (∪1≤j≤i−1N

di,j+1

j · HLi−di,j+1

i,j+1 ) ∪ (∪i+1≤j≤nN
di,j
j · HLi−di,j

i,j ).

Define the outer-term of H
Li−di,k
i,k to be the one that is dotted or multiplied by it. For

example W di,1 is the outer-term of H
Li−di,1
i,1 . Here, H

Li−di,k
i,k is the set of all monomials

inW,N1, . . . , Nn not includingNi that are of total degree Li−di,k and does not contain

the outer-terms of any of H
Li−di,1
i,1 , . . . , H

Li−di,k−1

i,k−1 . For example, if d2,1 = 2, d2,2 = 2

and d2,3 = 1, then using variables W,N1, N3 where N2 is constant, we have L2 = 3

and H2 = W 2 · {W,N1, N3} ∪N2
1 · {W,N1, N3} ∪N3 · {N2

3 ,WN1,WN1, N1N3}. Note

that the second curly bracket does not contain W 2 (i.e., outer term of the first curly

bracket) and the third curly bracket does not contain W 2 nor N2
1 (i.e., the outer-terms

of the first and second curly brackets).

3. Form the set Hi,row = ∪1≤j≤nfj · H
Li−di,j
i,j evaluated at W = 1. Note that Hi,row is

simply Hi with outer-term of every H
Li−di,j
i,j being replaced by fj. Next, form the

monomial set Hi,col which is simply Hi evaluated at W = 1. After that, form the

Macaulay matrix MNi
, which is a square matrix whose size is

(
n−1+Li

n−1

)
and whose

(i, j) entry is the coefficient of Hi,col(j) in the expression of Hi,row(i) assuming that

Ni is a constant. Then, find the resultant ResN1,...,Ni−1,Ni+1,...,Nn(f1, . . . , fn) which

equals to the determinant of MNi
. This resultant is a univariate polynomial in Ni

that contains no other N ’s.

4. Next, form the matrix M ′
Ni

, whose first column is Hi,row and its remaining columns

are the remaining columns of the matrix MNi
. Then, compute its determinant (i.e.,

det(M ′
Ni

)), which has the form Ti1f1 + Ti2f2 + . . . + Tinfn to obtain the ith row of

the eliminant matrix. Repeat all previous steps for i = 1, . . . , n to obtain all entries

of the eliminant matrix as well as all resultants. Then, obtain the Jacobian of the

original polynomial system whose (i, j) entry is ∂fi/∂Nj. Next, find the determinant

of both the eliminant matrix T and the determinant of the Jacobian J .

5. If the determinant of MNi
is 0, use the generalized characteristic polynomial formal-

ism [118] to obtain the resultant. In this case, the resultant is the non-vanishing

coefficient of the smallest power of ε in det(MNi
− εI), where I is the identity matrix

of same size as matrix MNi
. To find Tij for j = 1, . . . , n, form the matrix M ′′

Ni
, whose
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first column is Hi,row and its remaining columns are the remaining columns of the

matrix MNi
− εI. Then, compute its determinant and find the first non-zero coeffi-

cient of powers of ε in ascending order, which has the form Ti1f1 +Ti2f2 + . . .+Tinfn

(see the illustrative example in the next section for an example of this scenario).

6. Expand the generating function G(f1(N1, . . . , Nn), . . . , fn(N1, . . . , Nn)) that is shown

below, around N1 =∞, . . . , Nn =∞ to obtain the Σ’s (symmetric sums of the roots).

G(f1, . . . , fn) =
T (f1, . . . , fn)J(f1, . . . , fn)∏n

i=1 ResN1,...,Ni−1,Ni+1,...,Nn(f1, . . . , fn)

=
∞∑

m1=0

∞∑
m2=0

. . .

∞∑
mn=0

Σm1,m2,...,mn

Nm1+1
1 Nm2+1

2 . . . Nmn+1
n

The expansion of G is done via performing series expansion of the reciprocal of

each resultant separately then multiplying them along with T and J . For exam-

ple, the reciprocal of each resultant can be expanded via MATLAB’s “taylor” com-

mand after performing change of variables Ni = 1/xi and expanding around xi =

0. Alternatively, if the resultant is expressed as ResN1,...,Ni−1,Ni+1,...,Nn(f1, . . . , fn) =∑Ki

li=0 h(i,li)N
li
i , then

1

ResN1,...,Ni−1,Ni+1,...,Nn

=
1

NKi−1
i

∞∑
mi=1

p(i,mi)

Nmi
i

, p(i,mi) =
(−1)mi+1

hmi

(i,Ki)

det(Ai[1 : mi, 1 : mi]),

where Ai =



1 0 0 0 . . .

h(i,Ki) h(i,Ki−1) h(i,Ki−2) h(i,Ki−3) . . .

0 h(i,Ki) h(i,Ki−1) h(i,Ki−2) . . .

0 0 h(i,Ki) h(i,Ki−1) . . .
...

...
...

...
. . .


, i = 1, . . . , n.

Finally, denote the roots of fi(N1, . . . , Nn) for i = 1, . . . , n by ηk = [ηk,1, ηk,2, . . . , ηk,n]T

for k = 1, . . . ,Θ. The symmetric sum Σm1,m2,...,mn is given by
∑Θ

k=1 η
m1
k,1η

m2
k,2 . . . η

mn
k,n.

In particular, note that Θ = Σ0,0,...,0 is the number of complex roots of fi(N1, . . . , Nn)

for i = 1, . . . , n with general coefficients. It is important to record that number.

1-dimensional system: In the univariate systems where the roots of f(N) are considered,

the jacobian determinant is simply J = f ′(N), the resultant is f(N) itself as it is the
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only univariate polynomial in the system, and the eliminant determinant is T = 1 as the

resultant when written in the form T11f(N) implies T11 = 1. Thus the generating function

G = f ′(N)/f(N) is consistent with the one mentioned in the univariate section.

2-dimensional systems: In 2-dimensional systems, the two resultants simplify signifi-

cantly and are determinants of Sylvester matrices involving the coefficients of two polyno-

mial inputs. To find the eliminant matrix, a single column in each of the two Sylvester

matrices are modified without changing their determinant to enable us writing the resul-

tants in the form Ti1f1 + Ti2f2 (see the 2-dimensional section).

Assembling F (Ψ) the function that counts the number of feasible roots

1. Choose a mapm(N1, N2, . . . , Nn) of length Θ and with independent monomial entries.

Typically, the first entry of m is the constant 1 such monomials are chosen so that

the coefficients of the characteristic equation shown in the following step do not

vanish. Next, let Q(N1, N2, . . . , Nn) = N1N2 . . . , Nn and compute the symmetric

matrix S(s1, s2, . . . , sn) = W∆W t where Wij = mi(ηj,1, ηj,2, . . . , ηj,n) and ∆ii =

Q(ηi,1 − s1, ηi,2 − s2, . . . , ηi,n − sn) is a diagonal matrix.

2. The next task is to evaluate the determinant of S(s1, s2, . . . , sn) and write it in

the form det(S(s1, s2, . . . , sn) − λI) = (−1)ΘλΘ + vΘ−1(s1, s2, . . . , sn)λΘ−1 + . . . +

v0(s1, s2, . . . , sn). After that consider the sequence v = [vΘ(s1, s2, . . . , sn) = (−1)Θ,

vΘ−1(s1, s2, . . . , sn), . . . , v0(s1, s2, . . . , sn)] and let V (s1, s2, . . . , sn) be the number of

consecutive sign changes in v. The formula of V (s1, s2, . . . , sn) is

V (s1, s2, . . . , sn) =
Θ−1∑
i=0

1− sign(vi(s1, s2, . . . , sn)vi+1(s1, s2, . . . , sn))

2
.

Consider the feasibility domain and think it of it as a box whose 2n vertices compose

of zeros and infinities. Note that vi(m1,m2, . . . ,mn) where m1,m2, . . . ,mn ∈ {0,∞}

is the coefficient of the highest power of sk11 s
k2
2 . . . sknn in vi(s1, s2, . . . , sn) where ki = 0

when mi = 0 and ki = 1 when mi =∞ . Finally, let #(s1, s2, . . . , sn) be the number

of infinities that appear in the string s1, s2, . . . , sn. The the expression of F (Ψ) is

F (Ψ) =
1

2n−1

∑
s1,s2,...,sn∈{0,∞}

(−1)#(s1,s2,...,sn)V (s1, s2, . . . , sn)

105



Obtaining minimized feasibility conditions

1. Call vi(m1,m2, . . . ,mn) where m1,m2, . . . ,mn ∈ {0,∞} and i = 0, 1, . . . ,Θ − 1 the

feasibility basis which involves Θ2n quantities as feasibility conditions are only depen-

dent on those quantities. Since there are Θ2n quantities and each can take a positive

or a negative sign (we neglect the zero case as the values of ecological parameters are

never exact), then there are 2Θ2n sign combinations. Many of those combinations are

impossible to occur (empty) for any choice of real Ψ. To detect the non-empty sign

combinations, we compute the signs of all the v’s (the feasibility basis) as well as

F (Ψ) for a range of parameters Ψ, where each component of Ψ varies independently

in a large domain (say uniformly between −100 and 100 or in any suitable domain)

when parameters are unrestricted. If one or more parameters are restricted, they are

varied in the domains they are defined at. This operation is cheaply computed as it

is evaluation a few functions and not solving systems of equations. After that, we

extract unique sign combinations of the v’s which yield F (Ψ) ≥ 1 and put them in

a feasibility table (i.e, matrix) whose rows are the signs of the v’s and columns are

the individual feasibility conditions.

2. After we obtain the feasibility table, we perform minimization to it. Here we illustrate

a simple minimization technique. If two columns differ by a single sign (in one row),

the two columns are combined into one and an X (or 0) is placed in the row where

there is a single sign difference. We repeat the same process until no two columns

differ by a single sign. After that we go through a single column at a time and iterate

through each quantity in the basis then compute the conditional probabilities that

the quantity takes its correspondent sign given that all remaining quantities have

their correspondent signs. If one or more conditional probabilities are 1, the sign of

one of those quantities may be replaced by X in the table. We then repeat computing

the same conditional probabilities which were 1 but without the X’ed quantity being

part of the calculation. If any conditional probability we repeat the process until no

conditional probability is 1. We then go through all columns and repeat the same

process until it terminates. These are not the only minimization approaches. For

instance, comparing signs of v’s with F (Ψ) may reveal to us redundant quantities in

the system (see examples).
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4.4.1 Illustrative Example

Consider the dynamical system that is shown below

dN1

dt
= N1(r1 + a11N1 + a12N2 + a13N3 + b1N1N2),

dN2

dt
= N2(r2 + a21N1 + a22N2 + a23N3 + b2N1N2),

dN3

dt
= N3(r3 + a31N1 + a32N2 + a33N3 + b3N1N2).

To study feasibility, the polynomials that are needed to be considered are f1(N1, N2, N3) =

r1 +a11N1 +a12N2 +a13N3 +b1N1N2, f2(N1, N2, N3) = r2 +a21N1 +a22N2 +a23N3 +b2N1N2

and f3(N1, N2, N3) = r3+a31N1+a32N2+a33N3+b3N1N2. Next, assume that N1 is constant

and homogenize f1, f2 and f3 with a forth variable W as follows:

FN1,1 = r1W + a11N1W + a12N2 + a13N3 + b1N1N2,

FN1,2 = r2W + a21N1W + a22N2 + a23N3 + b2N1N2,

FN1,3 = r3W + a31N1W + a32N2 + a33N3 + b3N1N2,

Note that the total degree of each of FN1,1, FN1,2 and FN1,3 (or the total degree of f1, f2

and f3 assuming N1 is a constant) is d1,1 = 1, d1,2 = 1 and d1,3 = 1 respectively. From the

d’s, we compute L1 = 1 +
∑3

i=1(d1,i− 1) = 1. Now, we form the monomial set H1, which is

a union of three disjoint monomials H1 = W d1,1 ·HL1−d1,1
1,1 ∪Nd1,2

2 ·HL1−d1,2
1,2 ∪Nd1,3

3 ·HL1−d1,3
1,3

where none of these H’s involve N1 and each is indicated below in curly brackets:

W d1,1 ·HL1−d1,1
1,1 = W · {1},

N
d1,2
2 ·HL1−d1,2

1,2 = N2 · {1},

N
d1,3
3 ·HL1−d1,3

1,3 = N3 · {1}

Next, form the monomial set H1,row = f1 ·H
L1−d1,1
1,1 ∪ f2 ·H

L1−d1,2
1,2 ∪ f3 ·H

L1−d1,3
1,3 evaluated

at W = 1 that is shown below. In addition, form the monomial set H1,col which is simply

H1 evaluated at W = 1 to get

H1,row = {f1, f2, f3}

H1,col = {1, N2, N3}
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After that, form the Macaulay matrix MN1 which is a square matrix whose size is
(
n−1+L1

n−1

)
= 3. The (i, j) entry of the Macaulay matrix is the coefficient of H1,col(j) in the expression

of H1,row(i) assuming that N1 is a constant. For example, the (1, 2) entry in the matrix is

the coefficient of N2 in f1 which is a12 + b1N1. The matrix MN1 is shown below:

1 N2 N3

f1 r1 +N1a11 a12 +N1b1 a13

f2 r2 +N1a21 a22 +N1b2 a23

f3 r3 +N1a31 a32 +N1b3 a33

Next, form the matrix M ′
N1

whose first column is H1,row and its remaining columns are the

remaining columns (i.e, columns 2 to 3) of the matrix MN1 (i.e, replace the first column

of MN1 whose top header is 1 with the leftmost column which contains the f ’s). From

the formula of H1,row = col1(MN1) +
∑3

j=2 colj(MN1)H1,col(j), we can see that H1,row is the

first column of MN1 added to it a multiple of every other column of MN1 , implying that

det(MN1) = det(M ′
N1

). This determinant (i.e, det(M ′
N1

)) can be written as T11f1 +T12f2 +

T13f3 where the formulas of T11, T12 and T13 are shown below.

T11 = a22a33 − a23a32 −N1a23b3 +N1a33b2

T12 = a13a32 − a12a33 +N1a13b3 −N1a33b1

T13 = a12a23 − a13a22 −N1a13b2 +N1a23b1

Upon substituting f1, f2 and f3 into T11f1 + T12f2 + T13f3 and simplifying the expression

(or evaluating the determinant of the matrix MN1 directly), we have the formula of the

resultant ResN2,N3(f1, f2, f3) =
∑2

l1=0 h(1,l1)N
l1
1 which is a polynomial of degree 2 in N1 and

contains no N2’s nor N3’s. The three coefficients of the resultant h(1,2), h(1,1) and h(1,0) are

shown below. Notice that none of the coefficients contain any of the N ’s.

h(1,2) = a13a21b3 − a11a23b3 + a11a33b2 − a13a31b2 − a21a33b1 + a23a31b1

h(1,1) = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31 − a13b2r3

+ a13b3r2 + a23b1r3 − a23b3r1 − a33b1r2 + a33b2r1

h(1,0) = a12a23r3 − a13a22r3 − a12a33r2 + a13a32r2 + a22a33r1 − a23a32r1
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Next, assume that N2 is constant and homogenize f1, f2 and f3 with a forth variable W

as follows:

FN2,1 = r1W + a11N1 + a12N2W + a13N3 + b1N1N2,

FN2,2 = r2W + a21N1 + a22N2W + a23N3 + b2N1N2,

FN2,3 = r3W + a31N1 + a32N2W + a33N3 + b3N1N2,

Note that the total degree of each of FN2,1, FN2,2 and FN2,3 (or the total degree of f1, f2

and f3 assuming N2 is a constant) is d2,1 = 1, d2,2 = 1 and d2,3 = 1 respectively. From the

d’s, we compute L2 = 1 +
∑3

i=1(d2,i− 1) = 1. Now, we form the monomial set H2, which is

a union of three disjoint monomials H2 = W d2,1 ·HL2−d2,1
2,1 ∪Nd2,2

1 ·HL2−d2,2
2,2 ∪Nd2,3

3 ·HL2−d2,3
2,3

where none of these H’s involve N2 and each is indicated below:

W d2,1 ·HL2−d2,1
2,1 = W · {1},

N
d2,2
1 ·HL2−d2,2

2,2 = N1 · {1},

N
d2,3
3 ·HL2−d2,3

2,3 = N3 · {1}

Next, form the monomial set H2,row = f1 ·H
L2−d2,1
2,1 ∪ f2 ·H

L2−d2,2
2,2 ∪ f3 ·H

L2−d2,3
2,3 evaluated

at W = 1 that is shown below. In addition, form the monomial set H2,col which is simply

H2 evaluated at W = 1 to get

H2,row = {f1, f2, f3}

H2,col = {1, N1, N3}

After that, form the Macaulay matrix MN2 which is a square matrix whose size is
(
n−1+L2

n−1

)
= 3. The (i, j) entry of the Macaulay matrix is the coefficient of H2,col(j) in the expression

of H2,row(i) assuming that N2 is a constant. For example, the (1, 2) entry in the matrix is

the coefficient of N1 in f1 which is a11 +N2b1. The matrix MN2 is shown below:

1 N1 N3

f1 r1 +N2a12 a11 +N2b1 a13

f2 r2 +N2a22 a21 +N2b2 a23

f3 r3 +N2a32 a31 +N2b3 a33
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Next, form the matrix M ′
N2

whose first column is H2,row and its remaining columns are

the remaining columns (i.e, columns 2 to 3) of the matrix MN2 (i.e, replace the first

column of MN2 whose top header is 1 with the leftmost column which contains the f ’s).

Again, from the formula of H2,row = col1(MN2) +
∑3

j=2 colj(MN2)H2,col(j), we can see that

H2,row is the first column of MN2 added to it a multiple of every other column of MN2 ,

implying that det(MN2) = det(M ′
N2

). This determinant (i.e, det(M ′
N2

)) can be written as

T21f1 + T22f2 + T23f3 where the formulas of T21, T22 and T23 are shown below.

T21 = a21a33 − a23a31 −N2a23b3 +N2a33b2

T22 = a13a31 − a11a33 +N2a13b3 −N2a33b1

T23 = a11a23 − a13a21 −N2a13b2 +N2a23b1

Upon substituting f1, f2 and f3 into T21f1 + T22f2 + T23f3 and simplifying the expression

(or evaluating the determinant of the matrix MN2 directly), we have the formula of the

resultant ResN1,N3(f1, f2, f3) =
∑2

l2=0 h(2,l2)N
l2
2 which is a polynomial of degree 2 in N2 and

contains no N1’s nor N3’s. The three coefficients of the resultant h(2,2), h(2,1) and h(2,0) are

shown below. Notice that none of the coefficients contain any of the N ’s.

h(2,2) = a13a22b3 − a12a23b3 + a12a33b2 − a13a32b2 − a22a33b1 + a23a32b1

h(2,1) = a11a23a32 − a11a22a33 + a12a21a33 − a12a23a31 − a13a21a32 + a13a22a31 − a13b2r3

+ a13b3r2 + a23b1r3 − a23b3r1 − a33b1r2 + a33b2r1

h(2,0) = a11a23r3 − a13a21r3 − a11a33r2 + a13a31r2 + a21a33r1 − a23a31r1

Next, assume that N3 is constant and homogenize f1, f2 and f3 with a forth variable W

as follows:

FN3,1 = r1W + a11N1W + a12N2W + a13N3W
2 + b1N1N2,

FN3,2 = r2W + a21N1W + a22N2W + a23N3W
2 + b2N1N2,

FN3,3 = r3W + a31N1W + a32N2W + a33N3W
2 + b3N1N2,

Note that the total degree of each of FN3,1, FN3,2 and FN3,3 (or the total degree of f1, f2

and f3 assuming N3 is a constant) is d3,1 = 2, d3,2 = 2 and d3,3 = 2 respectively. From the

d’s, we compute L3 = 1 +
∑3

i=1(d3,i− 1) = 4. Now, we form the monomial set H3, which is
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a union of three disjoint monomials H3 = W d3,1 ·HL3−d3,1
3,1 ∪Nd3,2

1 ·HL3−d3,2
3,2 ∪Nd3,3

2 ·HL3−d3,3
3,3

where none of these H’s involve N3 and each is indicated below in curly brackets:

W d3,1 ·HL3−d3,1
3,1 = W 2 · {W 2,WN1,WN2, N1N2, N

2
1 , N

2
2},

N
d3,2
1 ·HL3−d3,2

3,2 = N2
1 · {WN1,WN2, N1N2, N

2
1 , N

2
2},

N
d3,3
2 ·HL3−d3,3

3,3 = N2
2 · {WN1,WN2, N1N2, N

2
2}

Next, form the monomial set H3,row = f1 ·H
L3−d3,1
3,1 ∪ f2 ·H

L3−d3,2
3,2 ∪ f3 ·H

L3−d3,3
3,3 evaluated

at W = 1 that is shown below. In addition, form the monomial set H3,col which is simply

H3 evaluated at W = 1 to get

H3,row = {f1, N1f1, N2f1, N1N2f1, N
2
1 f1, N

2
2 f1, N1f2, N2f2, N1N2f2, N

2
1 f2, N

2
2 f2, N1f3,

N2f3, N1N2f3, N
2
2 f3}

H3,col = {1, N1, N2, N1N2, N
2
1 , N

2
2 , N

3
1 , N

2
1N2, N

3
1N2, N

4
1 , N

2
1N

2
2 , N1N

2
2 , N

3
2 , N1N

3
2 , N

4
2}

After that, form the Macaulay matrix MN3 which is a square matrix whose size is
(
n−1+L3

n−1

)
= 15. The (i, j) entry of the Macaulay matrix is the coefficient of H3,col(j) in the expression

of H3,row(i) assuming that N3 is a constant. For example, the (1, 2) entry in the matrix is

the coefficient of N1 in f1 which is a11. The matrix MN3 is shown below:

1 N1 N2 N1N2 N2
1 N2

2 N3
1 N2

1N2 N3
1N2 N4

1 N2
1N

2
2 N1N

2
2 N3

2 N1N
3
2 N4

2

f1 r1 +N3a13 a11 a12 b1 0 0 0 0 0 0 0 0 0 0 0

N1f1 0 r1 +N3a13 0 a12 a11 0 0 b1 0 0 0 0 0 0 0

N2f1 0 0 r1 +N3a13 a11 0 a12 0 0 0 0 0 b1 0 0 0

N1N2f1 0 0 0 r1 +N3a13 0 0 0 a11 0 0 b1 a12 0 0 0

N2
1 f1 0 0 0 0 r1 +N3a13 0 a11 a12 b1 0 0 0 0 0 0

N2
2 f1 0 0 0 0 0 r1 +N3a13 0 0 0 0 0 a11 a12 b1 0

N1f2 0 r2 +N3a23 0 a22 a21 0 0 b2 0 0 0 0 0 0 0

N2f2 0 0 r2 +N3a23 a21 0 a22 0 0 0 0 0 b2 0 0 0

N1N2f2 0 0 0 r2 +N3a23 0 0 0 a21 0 0 b2 a22 0 0 0

N2
1 f2 0 0 0 0 r2 +N3a23 0 a21 a22 b2 0 0 0 0 0 0

N2
2 f2 0 0 0 0 0 r2 +N3a23 0 0 0 0 0 a21 a22 b2 0

N1f3 0 r3 +N3a33 0 a32 a31 0 0 b3 0 0 0 0 0 0 0

N2f3 0 0 r3 +N3a33 a31 0 a32 0 0 0 0 0 b3 0 0 0

N1N2f3 0 0 0 r3 +N3a33 0 0 0 a31 0 0 b3 a32 0 0 0

N2
2 f3 0 0 0 0 0 r3 +N3a33 0 0 0 0 0 a31 a32 b3 0

From columns 10 and 15 which are all zeros, we can see that the determinant of the matrix

MN3 is zero. Therefore, the resultant substitution is the non-vanishing coefficient of the
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smallest power of ε in det(MN3 − εI15) where I15 is the identity matrix of size 15. Next,

form the matrix M ′
N3

whose first column is given by
∑15

j=1 colj(MN3 − εI15)HL3,col(j) =

H3,row− εH3,col and its remaining columns are the remaining columns (i.e, columns 2 to 15)

of the matrix MN3 − εI15. From properties of determinants, det(M ′
N3

) = det(MN3 − εI15)

as the first column of M ′
N3

is the first column of MN3 − εI15 added to it a multiple of every

other column of MN3 − εI15 which does not alter the value of the determinant.

1 N1 N2 N1N2 N2
1 N2

2 N3
1 N2

1N2 N3
1N2 N4

1 N2
1N

2
2 N1N

2
2 N3

2 N1N
3
2 N4

2

f1 f1 − ε a11 a12 b1 0 0 0 0 0 0 0 0 0 0 0

N1f1 N1f1 −N1ε r1 +N3a13 − ε 0 a12 a11 0 0 b1 0 0 0 0 0 0 0

N2f1 N2f1 −N2ε 0 r1 +N3a13 − ε a11 0 a12 0 0 0 0 0 b1 0 0 0

N1N2f1 N1N2f1 −N1N2ε 0 0 r1 +N3a13 − ε 0 0 0 a11 0 0 b1 a12 0 0 0

N2
1 f1 N2

1 f1 −N2
1 ε 0 0 0 r1 +N3a13 − ε 0 a11 a12 b1 0 0 0 0 0 0

N2
2 f1 N2

2 f1 −N2
2 ε 0 0 0 0 r1 +N3a13 − ε 0 0 0 0 0 a11 a12 b1 0

N1f2 N1f2 −N3
1 ε r2 +N3a23 0 a22 a21 0 −ε b2 0 0 0 0 0 0 0

N2f2 N2f2 −N2
1N2ε 0 r2 +N3a23 a21 0 a22 0 −ε 0 0 0 b2 0 0 0

N1N2f2 N1N2f2 −N3
1N2ε 0 0 r2 +N3a23 0 0 0 a21 −ε 0 b2 a22 0 0 0

N2
1 f2 N2

1 f2 −N4
1 ε 0 0 0 r2 +N3a23 0 a21 a22 b2 −ε 0 0 0 0 0

N2
2 f2 N2

2 f2 −N2
1N

2
2 ε 0 0 0 0 r2 +N3a23 0 0 0 0 −ε a21 a22 b2 0

N1f3 N1f3 −N1N
2
2 ε r3 +N3a33 0 a32 a31 0 0 b3 0 0 0 −ε 0 0 0

N2f3 N2f3 −N3
2 ε 0 r3 +N3a33 a31 0 a32 0 0 0 0 0 b3 −ε 0 0

N1N2f3 N1N2f3 −N1N
3
2 ε 0 0 r3 +N3a33 0 0 0 a31 0 0 b3 a32 0 −ε 0

N2
2 f3 N2

2 f3 −N4
2 ε 0 0 0 0 r3 +N3a33 0 0 0 0 0 a31 a32 b3 −ε

The determinant of the matrix above can be computed and the coefficient of the low-

est power of ε can be extracted. Alternatively and for easier computation, let M ′′
N3

be

the matrix M ′
N3

but whose first column is H3,row instead of H3,row − εH3,col. Note that

det(M ′
N3

) 6= det(M ′′
N3

), however the first non-zero coefficient of powers of ε in ascending

order ε in det(M ′
N3

) is exactly the first non-zero coefficient of powers of ε in ascending order

in det(M ′′
N3

). This can be proven by expanding det(M ′
N3

) along the first column. After

evaluating det(M ′′
N3

), we find that the first non-zero coefficient of powers of ε in ascending

order is the coefficient of ε3 (i.e, coefficients of ε2, ε1 and ε0 are all zero). This coefficient,

which acts as a substitution to the resultant, can be written as T31f1 +T32f2 +T33f3 where

T31, T32 and T33 have the following form.

T31 = (a12b2 − a22b1)(a11b3 − a31b1)(r1 +N3a13)(t31,1 + t31,N1N1 + t31,N2N2 + t31,N3N3

+ t31,N1N2N1N2 + t31,N1N3N1N3 + t31,N2N3N2N3 + t31,N2
3
N2

3 + t31,N1N2N3N1N2N3)

T32 = (a12b2 − a22b1)(a11b3 − a31b1)(r1 +N3a13)(t32,N1N1 + t32,N2N2 + t32,N1N2N1N2

+ t32,N1N3N1N3 + t32,N2N3N2N3 + t32,N1N2N3N1N2N3)
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T33 = (a12b2 − a22b1)(a11b3 − a31b1)(r1 +N3a13)(t33,N1N1 + t33,N2N2 + t33,N1N2N1N2

+ t33,N1N3N1N3 + t33,N2N3N2N3 + t33,N1N2N3N1N2N3)

The t’s are polynomials in model parameters (i.e, the r’s, a’s and b’s) and their expressions

are too large to display here. However, for illustration purposes, closed form expressions

for t31,N1N2N3 , t32,N1N2N3 and t33,N1N2N3 are shown below

t31,N1N2N3 = a12a21a23b1b
2
3 − a13a21a22b1b

2
3 + a12a31a33b1b

2
2 − a13a31a32b1b

2
2 + a21a22a33b

2
1b3

− a21a23a32b
2
1b3 − a22a31a33b

2
1b2 + a23a31a32b

2
1b2 − a12a21a33b1b2b3 − a12a23a31b1b2b3

+ a13a21a32b1b2b3 + a13a22a31b1b2b3

t32,N1N2N3 = a22a31a33b
3
1 − a23a31a32b

3
1 − a11a12a23b1b

2
3 + a11a13a22b1b

2
3 − a11a22a33b

2
1b3

+ a11a23a32b
2
1b3 + a12a23a31b

2
1b3 − a13a22a31b

2
1b3 − a12a31a33b

2
1b2 + a13a31a32b

2
1b2

+ a11a12a33b1b2b3 − a11a13a32b1b2b3

t33,N1N2N3 = a21a23a32b
3
1 − a21a22a33b

3
1 − a11a12a33b1b

2
2 + a11a13a32b1b

2
2 − a12a21a23b

2
1b3

+ a13a21a22b
2
1b3 + a11a22a33b

2
1b2 − a11a23a32b

2
1b2 + a12a21a33b

2
1b2 − a13a21a32b

2
1b2

+ a11a12a23b1b2b3 − a11a13a22b1b2b3

Upon substituting f1, f2 and f3 into T21f1 + T22f2 + T23f3 and simplifying the expression

(or finding the coefficient of ε3 in the determinant of the matrix MN3 directly), we have

the formula of the resultant ResN1,N2(f1, f2, f3) =
∑4

l3=0 h(3,l3)N
l3
3 which is a polynomial of

degree 4 in N3 and contains no N1’s nor N2’s. The coefficients of the resultant h(3,4), h(3,3),

h(3,2), h(3,1) and h(3,0) are too large to display here and can found via any symbolic toolbox.

After finding the resultants, we evaluate T (f1, f2, f3) (i.e, the determinant of the eliminating

matrix) as well as J(f1, f2, f3) (i.e, the determinant of the Jacobian of f1, f2 and f3) which

are shown below:

T (f1, f2, f3) =

∣∣∣∣∣∣∣∣∣
T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣∣∣ , J(f1, f2, f3) =

∣∣∣∣∣∣∣∣∣
a11 +N2b1 a12 +N1b1 a13

a21 +N2b2 a22 +N1b2 a23

a31 +N2b3 a32 +N1b3 a33

∣∣∣∣∣∣∣∣∣
Let Res(N1,N2,N3)/N1 ≡ ResN2,N3 , Res(N1,N2,N3)/N2 ≡ ResN1,N3 and Res(N1,N2,N3)/N3 ≡ ResN1,N2 .
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Next, expand the generating function G(f1, f2, f3) around N1 =∞, N2 =∞ and N3 =∞.

Since the three resultants are univariate polynomials in a single variable, we can ex-

pand their reciprocal individually using MATLAB’s taylor command upon substituting

N1 = 1/x,N2 = 1/y,N3 = 1/z or via the following expression

1

Res(N1,N2,N3)/Ni

=
1

NKi−1
i

∞∑
mi=1

p(i,mi)

Nmi
i

, p(i,mi) =
(−1)mi+1

hmi

(i,Ki)

det(Ai[1 : mi, 1 : mi]), i = 1, 2, 3

where Ai =



1 0 0 0 . . .

h(i,Ki) h(i,Ki−1) h(i,Ki−2) h(i,Ki−3) . . .

0 h(i,Ki) h(i,Ki−1) h(i,Ki−2) . . .

0 0 h(i,Ki) h(i,Ki−1) . . .
...

...
...

...
. . .


, i = 1, 2, 3

Here, Ai[1 : mi, 1 : mi] is the sub-matrix of Ai that contains its first mi rows and columns.

After obtaining both series expansion of the resultant reciprocal, multiply the result by

T (f1, f2, f3)J(f1, f2, f3) to obtain

G(f1, f2, f3) =
T (f1, f2, f3)J(f1, f2, f3)

ResN1,N2(f1, f2, f3)ResN1,N3(f1, f2, f3)ResN2,N3(f1, f2, f3)
=

Σ0,0,0

N1N2N3

+
Σ1,0,0

N2
1N2N3

+
Σ0,1,0

N1N2
2N3

+ +
Σ0,0,1

N1N2N2
3

+
Σ1,1,0

N2
1N

2
2N3

+
Σ1,0,1

N2
1N2N2

3

+
Σ0,1,1

N1N2
2N

2
3

+
Σ2,0,0

N3
1N2N3

+
Σ0,2,0

N1N3
2N3

+ . . .

Without factorization, expressions of some of the Σ’s can extend to multiple pages. The

expression for some of the lower Σ’s are shown below where Σi,j,k = ΣU
i,j,k/Σ

D
i,j,k is written

as a fraction of two polynomials.

ΣU
0,0,0 =2

ΣD
0,0,0 =1

ΣU
1,0,0 =a11a23a32 − a11a22a33 + a12a21a33 − a12a23a31 − a13a21a32 + a13a22a31 + a13b2r3 − a13b3r2

−a23b1r3 + a23b3r1 + a33b1r2 − a33b2r1

ΣD
1,0,0 =a13a21b3 − a11a23b3 + a11a33b2 − a13a31b2 − a21a33b1 + a23a31b1

ΣU
0,1,0 =a11a23a32 − a11a22a33 + a12a21a33 − a12a23a31 − a13a21a32 + a13a22a31 − a13b2r3 + a13b3r2

+a23b1r3 − a23b3r1 − a33b1r2 + a33b2r1

ΣD
0,1,0 =a12a23b3 − a13a22b3 − a12a33b2 + a13a32b2 + a22a33b1 − a23a32b1
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Since Σ0,0,0 = 2, then the system fi(N1, N2, N3) = 0 for i = 1, 2, 3 has exactly 2 complex

roots. Denote to these roots by η1 = [η1,1, η1,2]T , η2 = [η2,1, η2,2]T and η3 = [η3,1, η3,2]T .

Choose a map m(N1, N2, N3) = [1, N1]T then, let q(N1, N2, N3) = N1N2N3 and compute

S(s1, s2, s3) = W∆W t where Wij = mi(η1,j, η2,j, η3,j) and ∆ii = q(η1,i−s1, η2,i−s2, η3,i−s3)

is a diagonal matrix as follows.

W =

 1 1

η1,1 η1,2


∆ = diag[(η1,1 − s1)(η2,1 − s2)(η3,1 − s3), (η1,2 − s1)(η2,2 − s2)(η3,2 − s3)]

S(s1, s2, s3) = W∆W t

Note that Σk,m,n = ηk1,1η
m
2,1η

n
3,1 + ηk1,2η

m
2,2η

n
3,2 for k,m, n = 0, 1, 2, . . .. The components of

the symmetric 2x2 matrix S are shown below:

S1,1(s1, s2, s3) = Σ111 − Σ011s1 − Σ101s2 − Σ110s3 + Σ001s1s2 + Σ010s1s3 + Σ100s2s3 − 2s1s2s3

S1,2(s1, s2, s3) = Σ211 − Σ111s1 − Σ201s2 − Σ210s3 + Σ101s1s2 + Σ110s1s3 + Σ200s2s3 − Σ100s1s2s3

= S2,1(s1, s2, s3)

S2,2(s1, s2, s3) = Σ311 − Σ211s1 − Σ301s2 − Σ310s3 + Σ201s1s2 + Σ210s1s3 + Σ300s2s3 − Σ200s1s2s3

The characteristic equation of the matrix S is det(S(s1, s2, s3)) = λ2 + v1(s1, s2, s3)λ +

v0(s1, s2, s3). The coefficients of the characteristic equation evaluated at (s1, s2, s3) =

{(0, 0, 0), (∞, 0, 0), (0,∞, 0), (∞,∞, 0), (0, 0,∞), (∞, 0,∞), (0,∞,∞), (∞,∞,∞)} are dis-

played below. Note that vi(m1,m2,m3) where m1,m2,m3 ∈ {0,∞} is the coefficient of

sk11 s
k2
2 s

k3
3 in vi(s1, s2, s3) where kj = 0 if mj = 0 and kj = 2− i if mj =∞ for j = 1, 2, 3.

v1(0, 0, 0) =− Σ1,1,1 − Σ3,1,1, v0(0, 0, 0) =− Σ2
2,1,1 + Σ1,1,1Σ3,1,1

v1(∞, 0, 0) =Σ0,1,1 + Σ2,1,1, v0(∞, 0, 0) =− Σ2
1,1,1 + Σ0,1,1Σ2,1,1

v1(0,∞, 0) =Σ1,0,1 + Σ3,0,1, v0(0,∞, 0) =− Σ2
2,0,1 + Σ1,0,1Σ3,0,1

v1(∞,∞, 0) =− Σ0,0,1 − Σ2,0,1, v0(∞,∞, 0) =− Σ2
1,0,1 + Σ0,0,1Σ2,0,1

v1(0, 0,∞) =Σ1,1,0 + Σ3,1,0, v0(0, 0,∞) =− Σ2
2,1,0 + Σ1,1,0Σ3,1,0

v1(∞, 0,∞) =− Σ0,1,0 − Σ2,1,0, v0(∞, 0,∞) =− Σ2
1,1,0 + Σ0,1,0Σ2,1,0

v1(0,∞,∞) =− Σ1,0,0 − Σ3,0,0, v0(0,∞,∞) =− Σ2
2,0,0 + Σ1,0,0Σ3,0,0

v1(∞,∞,∞) =Σ2,0,0 + 2, v0(∞,∞,∞) =− Σ2
1,0,0 + 2Σ2,0,0
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Let V (a, b, c) be the number of consecutive sign changes in [1, v1(a, b, c), v0(a, b, c)] where

a, b and c are either 0 or ∞. The formula of V (a, b, c) is shown below

V (a, b, c) =
1− sign(v1(a, b, c))

2
+

1− sign(v1(a, b, c))sign(v0(a, b, c))

2
where a, b, c ∈ {0,∞}

From the V ’s, we can find the formula of the number of feasible roots of f1(N1, N2, N3),

f2(N1, N2, N3) and f3(N1, N2, N3) which is given by F (Ψ) = (V (0, 0, 0) − V (∞, 0, 0) −

V (0,∞, 0)− V (0, 0,∞) + V (∞,∞, 0) + V (∞, 0,∞) + V (0,∞,∞)− V (∞,∞,∞))/4. Let

us consider the parameter Ψ = (r1, r2, r3, a11, a12, a13, a21, a22, a23, a31, a32, a33, b1, b2, b3) =

(0.5,−1.5,−0.5, 0.5,−1.5,−0.5, a21, 2.6,−5,−0.5,−10, 1, 0.2,−0.1, b3) where the parame-

ters a21 ∈ [−7,−1] and b3 ∈ [1.5, 5] are restricted, we find that feasibility (i.e, F (Ψ) ≥ 1)

can only be satisfied under the two condition that are shown below:

v1(0, 0, 0) : −, v0(0, 0, 0) : −, v1(∞, 0, 0) : +, v0(∞, 0, 0) : +,

v1(0,∞, 0) : X, v0(0,∞, 0) : −, v1(∞,∞, 0) : −, v0(∞,∞, 0) : +,

v1(0, 0,∞) : +, v0(0, 0,∞) : −, v1(∞, 0,∞) : −, v0(∞, 0,∞) : +,

v1(0,∞,∞) : −, v0(0,∞,∞) : −, v1(∞,∞,∞) : +, v0(∞,∞,∞) : +,

v1(0, 0, 0) : −, v0(0, 0, 0) : −, v1(∞, 0, 0) : +, v0(∞, 0, 0) : +,

v1(0,∞, 0) : +, v0(0,∞, 0) : +, v1(∞,∞, 0) : X, v0(∞,∞, 0) : −,

v1(0, 0,∞) : +, v0(0, 0,∞) : +, v1(∞, 0,∞) : −, v0(∞, 0,∞) : −,

v1(0,∞,∞) : −, v0(0,∞,∞) : −, v1(∞,∞,∞) : +, v0(∞,∞,∞) : +,

When we plot the sign of each of the quantities (i.e, the vi’s) in the two conditions above,

we find that feasibility is satisfied if any of the following four conditions hold: v1(0, 0, 0) <

0,v0(0, 0, 0) < 0, v1(∞, 0, 0) > 0 or v0(∞, 0, 0) > 0 which are equivalent to each other in

the domain prescribed by Ψ. Note that these four inequalities are shared among the two

conditions described above. In addition, note that the simplest inequality among those

(i.e, with lowest symmetric sums) is v1(∞, 0, 0) > 0. In the next plots, we plot the sign of

v1(∞, 0, 0) and verify that it matches the feasibility region given by F (Ψ) which verifies

the correctness of our methodology.
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Figure 4-2: The top figure shows the number of feasible roots F in Lotka-Volterra model
with simple higher-order terms where (r1, r2, r3, a11, a12, a13, a22, a23, a31, a32, a33, b1, b2) =
(0.5,−1.5,−0.5, 0.5,−1.5,−0.5, 2.6,−5,−0.5,−10, 1, 0.2,−0.1, ), a21 ∈ [−7,−1] and b3 ∈
[1.5, 5]. The bottom figure shows the sign of v1(∞, 0, 0) with the same model and parameter
values and ranges. Both figures confirm that F > 0 when v1(∞, 0, 0) > 0. Simulations
done via solving the isocline equations numerically and checking for the feasibility of roots
match the two figures displayed here.
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4.4.2 Application: 3-Species with Higher-Order Interactions

Consider Lotka-Volterra model with higher-order interactions that is shown below:

dN1

dt
= N1(r1 + a11N1 + a12N2 + a13N3 + b1N2N3),

dN2

dt
= N2(r2 + a21N1 + a22N2 + a23N3 + b2N1N3),

dN3

dt
= N3(r3 + a31N1 + a32N2 + a33N3 + b3N1N2).

To study feasibility, the polynomials that are needed to be considered are f1(N1, N2, N3) =

r1 +a11N1 +a12N2 +a13N3 +b1N2N3, f2(N1, N2, N3) = r2 +a21N1 +a22N2 +a23N3 +b2N1N3

and f3(N1, N2, N3) = r3+a31N1+a32N2+a33N3+b3N1N2. Next, assume that N1 is constant

and homogenize f1, f2 and f3 with a forth variable W as follows:

FN1,1 = r1W
2 + a11N1W

2 + a12N2W + a13N3W + b1N2N3,

FN1,2 = r2W + a21N1W + a22N2 + a23N3 + b2N1N3,

FN1,3 = r3W + a31N1W + a32N2 + a33N3 + b3N1N2,

Note that the total degree of each of FN1,1, FN1,2 and FN1,3 (or the total degree of f1, f2

and f3 assuming N1 is a constant) is d1,1 = 2, d1,2 = 1 and d1,3 = 1 respectively. From the

d’s, we compute L1 = 1 +
∑3

i=1(d1,i− 1) = 2. Now, we form the monomial set H1, which is

a union of three disjoint monomials H1 = W d1,1 ·HL1−d1,1
1,1 ∪Nd1,2

2 ·HL1−d1,2
1,2 ∪Nd1,3

3 ·HL1−d1,3
1,3

where none of these H’s involve N1 and each is indicated below in curly brackets:

W d1,1 ·HL1−d1,1
1,1 = W 2 · {1},

N
d1,2
2 ·HL1−d1,2

1,2 = N2 · {W,N2, N3},

N
d1,3
3 ·HL1−d1,3

1,3 = N3 · {W,N3}

Form the monomial set H1,row = f1 · H
L1−d1,1
1,1 ∪ f2 · H

L1−d1,2
1,2 ∪ f3 · H

L1−d1,3
1,3 evaluated at

W = 1 that is shown below. In addition, form the monomial set H1,col which is simply H1

evaluated at W = 1 to get

H1,row = {f1, f2, f2N2, f2N3, f3, f3N3}

H1,col = {1, N2, N
2
2 , N2N3, N3, N

2
3}
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After that, form the Macaulay matrix MN1 which is a square matrix whose size is
(
n−1+L1

n−1

)
= 6. The (i, j) entry of the Macaulay matrix is the coefficient of H1,col(j) in the expression

of H1,row(i) assuming that N1 is a constant. For example, the (3, 2) entry in the matrix is

the coefficient of N2 in N2f2 which is r2 +N1a21. The matrix MN1 is shown below:

1 N2 N2
2 N2N3 N3 N2

3

f1 r1 +N1a11 a12 0 b1 a13 0

f2 r2 +N1a21 a22 0 0 a23 +N1b2 0

f2N2 0 r2 +N1a21 a22 a23 +N1b2 0 0

f2N3 0 0 0 a22 r2 +N1a21 a23 +N1b2

f3 r3 +N1a31 a32 +N1b3 0 0 a33 0

f3N3 0 0 0 a32 +N1b3 r3 +N1a31 a33

Next, form the matrix M ′
N1

whose first column is H1,row and its remaining columns are the

remaining columns (i.e, columns 2 to 6) of the matrix MN1 (i.e, replace the first column

of MN1 whose top header is 1 with the leftmost column which contains the f ’s). From

the formula of H1,row = col1(MN1) +
∑r1

j=2 colj(MN1)H1,col(j), we can see that H1,row is the

first column of MN1 added to it a multiple of every other column of MN1 , implying that

det(MN1) = det(M ′
N1

). This determinant (i.e, det(M ′
N1

)) can be written as T11f1 +T12f2 +

T13f3 which is shown below

T11 =a22(a23a32 − a22a33 + N1a23b3 + N1a32b2 + N2
1 b2b3)2

T12 =a22(a12a23a32a33 − a13a23a
2
32 −N1a13a

2
32b2 −N3a22a

2
33b1 −N2

1a13a23b
2
3 −N3

1a13b2b
2
3 − a12a22a

2
33

+a13a22a32a33 + a23a32b1r3 − a32a33b1r2 + N1a12a23a33b3 + N1a13a22a33b3 − 2N1a13a23a32b3

+N1a12a32a33b2 −N1a21a32a33b1 + N1a23a31a32b1 + N3a23a32a33b1 + N1a23b1b3r3 + N1a32b1b2r3

−N1a33b1b3r2 + N2
1a12a33b2b3 − 2N2

1a13a32b2b3 −N2
1a21a33b1b3 + N2

1a23a31b1b3 + N2
1a31a32b1b2

+N3
1a31b1b2b3 + N2

1 b1b2b3r3 + N1N3a23a33b1b3 + N1N3a32a33b1b2 + N2
1N3a33b1b2b3)

T13 =a22(a12a22a23a33 − a13a
2
22a33 −N1a12a

2
23b3 −N3a

2
23a32b1 −N2

1a12a32b
2
2 −N3

1a12b
2
2b3 − a12a

2
23a32

+a13a22a23a32 − a22a23b1r3 + a22a33b1r2 + N1a13a22a23b3 + N1a12a22a33b2 − 2N1a12a23a32b2

+N1a13a22a32b2 + N1a21a22a33b1 −N1a22a23a31b1 + N3a22a23a33b1 −N1a22b1b2r3 −N1N3a
2
23b1b3

−2N2
1a12a23b2b3 + N2

1a13a22b2b3 −N2
1a22a31b1b2 −N2

1N3a32b1b
2
2 −N3

1N3b1b
2
2b3 + N1N3a22a33b1b2

−2N1N3a23a32b1b2 − 2N2
1N3a23b1b2b3)
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Upon substituting f1, f2 and f3 into T11f1 + T12f2 + T13f3 and simplify the expression, we

have the formula of the resultant ResN2,N3(N1) =
∑5

l1=0 h(1,l1)N
l1
1 which is a polynomial

of degree 5 in N1 and contains no N2’s nor N3’s. The six coefficients of the resultant

h(1,5), h(1,4), . . . , h(1,0) are shown below and none of them contain any of the N ’s.

h(1,5) =a22a11b
2
2b

2
3

h(1,4) =a22b2b3(2a11a23b3 − a13a21b3 + 2a11a32b2 − a12a31b2 + a21a31b1 + b2b3r1)

h(1,3) =a22(a11a
2
23b

2
3 + a11a

2
32b

2
2 − a13a21a23b

2
3 − a12a31a32b

2
2 − a22a

2
31b1b2 − a2

21a33b1b3 − a12b
2
2b3r3

−a13b2b
2
3r2 + 2a23b2b

2
3r1 + 2a32b

2
2b3r1 − 2a11a22a33b2b3 + 4a11a23a32b2b3 + a12a21a33b2b3

−2a12a23a31b2b3 − 2a13a21a32b2b3 + a13a22a31b2b3 + a21a23a31b1b3 + a21a31a32b1b2 + a21b1b2b3r3

+a31b1b2b3r2)

h(1,2) =a22(a2
23b

2
3r1 + a2

32b
2
2r1 + 2a11a23a

2
32b2 − a13a21a

2
32b2 + 2a11a

2
23a32b3 − a12a

2
23a31b3 − a22a23a

2
31b1

−a2
21a32a33b1 − a13a23b

2
3r2 − a12a32b

2
2r3 − 2a11a22a23a33b3 + a12a21a23a33b3 + a13a21a22a33b3

−2a13a21a23a32b3 + a13a22a23a31b3 − 2a11a22a32a33b2 + a12a21a32a33b2 + a12a22a31a33b2

−2a12a23a31a32b2 + a13a22a31a32b2 + a21a22a31a33b1 + a21a23a31a32b1 − 2a12a23b2b3r3

+a13a22b2b3r3 + a21a23b1b3r3 + a12a33b2b3r2 − 2a13a32b2b3r2 + a21a32b1b2r3 − 2a22a31b1b2r3

−2a21a33b1b3r2 + a23a31b1b3r2 − 2a22a33b2b3r1 + 4a23a32b2b3r1 + a31a32b1b2r2 + b1b2b3r2r3)

h(1,1) =a22(a11a
2
22a

2
33 + a11a

2
23a

2
32 − a12a21a22a

2
33 − a13a21a23a

2
32 − a12a

2
23a31a32 − a13a

2
22a31a33

−a12a
2
23b3r3 − a13a

2
32b2r2 + 2a23a

2
32b2r1 + 2a2

23a32b3r1 − a22b1b2r
2
3 − a33b1b3r

2
2 + a32b1b2r2r3

−2a11a22a23a32a33 + a12a21a23a32a33 + a12a22a23a31a33 + a13a21a22a32a33 + a13a22a23a31a32

+a13a22a23b3r3 + a12a22a33b2r3 − 2a12a23a32b2r3 + a13a22a32b2r3 + a12a23a33b3r2 + a13a22a33b3r2

−2a13a23a32b3r2 + a21a22a33b1r3 + a21a23a32b1r3 − 2a22a23a31b1r3 + a12a32a33b2r2 − 2a22a23a33b3r1

−2a21a32a33b1r2 + a22a31a33b1r2 + a23a31a32b1r2 − 2a22a32a33b2r1 + a23b1b3r2r3)

h(1,0) =a22(r1a
2
22a

2
33 − a13a

2
22a33r3 − 2r1a22a23a32a33 + a13a22a23a32r3 + a12a22a23a33r3 − b1a22a23r

2
3

+a13a22a32a33r2 − a12a22a
2
33r2 + b1a22a33r2r3 + r1a

2
23a

2
32 − a12a

2
23a32r3 − a13a23a

2
32r2

+a12a23a32a33r2 + b1a23a32r2r3 − b1a32a33r
2
2)

Next, assume that N2 is constant and homogenize f1, f2 and f3 with a forth variable W

as follows:
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FN2,1 = r1W + a11N1 + a12N2W + a13N3 + b1N2N3,

FN2,2 = r2W
2 + a21N1W + a22N2W

2 + a23N3W + b2N1N3,

FN2,3 = r3W + a31N1 + a32N2W + a33N3 + b3N1N2,

Note that the total degree of each of FN2,1, FN2,2 and FN2,3 (or the total degree of f1, f2

and f3 assuming N2 is a constant) is d2,1 = 1, d2,2 = 2 and d2,3 = 1 respectively. From the

d’s, we compute L2 = 1 +
∑3

i=1(d2,i− 1) = 2. Now, we form the monomial set H2, which is

a union of three disjoint monomials H2 = W d2,1 ·HL2−d2,1
2,1 ∪Nd2,2

1 ·HL2−d2,2
2,2 ∪Nd2,3

3 ·HL2−d2,3
2,3

where none of these H’s involve N2 and each is indicated below:

W d2,1 ·HL2−d2,1
2,1 = W · {W,N1, N3},

N
d2,2
1 ·HL2−d2,2

2,2 = N2
1 · {1},

N
d2,3
3 ·HL2−d2,3

2,3 = N3 · {N1, N3}

Next, form the monomial set H2,row = f1 ·H
L2−d2,1
2,1 ∪ f2 ·H

L2−d2,2
2,2 ∪ f3 ·H

L2−d2,3
2,3 evaluated

at W = 1 that is shown below. In addition, form the monomial set H2,col which is simply

H2 evaluated at W = 1 to get

H2,row = {f1, f1N1, f1N3, f2, f3N1, f3N3}

H2,col = {1, N1, N3, N
2
1 , N1N3, N

2
3}

After that, form the Macaulay matrix MN2 which is a square matrix whose size is
(
n−1+L2

n−1

)
= 6. The (i, j) entry of the Macaulay matrix is the coefficient of H2,col(j) in the expression

of H2,row(i) assuming that N2 is a constant. The matrix MN2 is shown below:

1 N1 N3 N2
1 N1N3 N2

3

f1 r1 +N2a12 a11 a13 +N2b1 0 0 0

f1N1 0 r1 +N2a12 0 a11 a13 +N2b1 0

f1N3 0 0 r1 +N2a12 0 a11 a13 +N2b1

f2 r2 +N2a22 a21 a23 0 b2 0

f3N1 0 r3 +N2a32 0 a31 +N2b3 a33 0

f3N3 0 0 r3 +N2a32 0 a31 +N2b3 a33
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Next, form the matrix M ′
N2

whose first column is H2,row and its remaining columns are

the remaining columns (i.e, columns 2 to 6) of the matrix MN2 (i.e, replace the first

column of MN2 whose top header is 1 with the leftmost column which contains the f ’s).

Again, from the formula of H2,row = col1(MN2) +
∑6

j=2 colj(MN2)H2,col(j), we can see that

H2,row is the first column of MN2 added to it a multiple of every other column of MN2 ,

implying that det(MN2) = det(M ′
N2

). This determinant (i.e, det(M ′
N2

)) can be written as

T21f1 + T22f2 + T23f3. The expressions of T21 and T23 are too large to be displayed here,

however, their forms are shown below:

T21 =t21,1 + t21,N1N1 + t21,N2N2 + t21,N3N3 + t21,N1N2N1N2 + t21,N2
2
N2

2 + t21,N2N3N2N3 + t21,N4
2
N4

2

+t21,N3
2N3

N3
2N3 + t21,N3

2
N3

2 + t21,N2
2N3

N2
2N3 + t21,N1N4

2
N1N

4
2 + t21,N1N3

2
N1N

3
2 + t21,N1N2

2
N1N

2
2

T22 =(r1 +N2a12)(a13a31 − a11a33 +N2a13b3 +N2a31b1 +N2
2 b1b3)(a13a31 − a11a33 +N2a13b3

+N2a31b1 +N2
2 b1b3)

T23 =t23,N1N1 + t23,N3N3 + t23,N1N2N1N2 + t23,N2N3N2N3 + t23,N1N3
2
N1N

3
2 + t23,N1N2

2
N1N

2
2

+t23,N4
2N3

N4
2N3 + t23,N3

2N3
N3

2N3 + t23,N2
2N3

N2
2N3

Again, the t’s are polynomials in model parameters (i.e, the r’s, a’s and b’s). For illustration

purposes, closed form expressions for t21,N1 and t23,N1 are shown below:

t21,N1 =a11a13a23a
2
31 − a2

13a21a
2
31 − a2

11a23a31a33 + a11a13a21a31a33 − a11a13a31b2r3 + a11a31a33b2r1

t23,N1 =a3
11a23a33 + a11a

2
13a21a31 − a2

11a13a21a33 − a2
11a13a23a31 + a2

11a13b2r3 − a2
11a33b2r1

Upon substituting f1, f2 and f3 into T21f1 + T22f2 + T23f3 and simplify the expression, we

have the formula of the resultant ResN1,N3(N2) =
∑6

l2=0 h(2,l2)N
l2
2 which is a polynomial

of degree 6 in N2 and contains no N1’s nor N3’s. The seven coefficients of the resultant

h(2,6), h(2,5), . . . , h(2,0) are shown below and none of them contain any of the N ’s.

h(2,6) =a12a22b
2
1b

2
3

h(2,5) =a12b
2
1b

2
3r2 − a212a23b1b

2
3 + a22b

2
1b

2
3r1 + 2a12a13a22b1b

2
3 − a12a21a32b

2
1b3 + 2a12a22a31b

2
1b3 + a212a32b1b2b3

h(2,4) =a12a
2
13a22b

2
3 − a312a33b2b3 − a212a13a23b

2
3 + a12a22a

2
31b

2
1 + b21b

2
3r1r2 − a12a21a31a32b

2
1 − a11a12a

2
32b1b2

+a212a13a32b2b3 + a212a21a33b1b3 − 2a212a23a31b1b3 + a212a31a32b1b2 + 2a12a13b1b
2
3r2 − a12a21b

2
1b3r3

−2a12a23b1b
2
3r1 + 2a13a22b1b

2
3r1 + 2a12a31b

2
1b3r2 − a21a32b

2
1b3r1 + 2a22a31b

2
1b3r1 + a212b1b2b3r3

−2a11a12a22a33b1b3 + a11a12a23a32b1b3 − 2a12a13a21a32b1b3 + 4a12a13a22a31b1b3 + 2a12a32b1b2b3r1
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h(2,3) =2a12b1b2b3r1r3 − a212a23a
2
31b1 − a312a31a33b2 + a213a22b

2
3r1 + a12a

2
31b

2
1r2 + a22a

2
31b

2
1r1 − a23b1b

2
3r

2
1

−a11a12a13a232b2 + 2a12a13a22a
2
31b1 − a12a

2
13a21a32b3 + 2a12a

2
13a22a31b3 + a11a

2
12a23a33b3

+a212a13a21a33b3 − 2a212a13a23a31b3 + a11a
2
12a32a33b2 + a212a13a31a32b2 + a212a21a31a33b1

−2a12a13a23b
2
3r1 − a12a21a31b

2
1r3 − a21a31a32b

2
1r1 + a212a13b2b3r3 − a11a

2
32b1b2r1 + a212a31b1b2r3

−3a212a33b2b3r1 + a32b1b2b3r
2
1 + 2a13b1b

2
3r1r2 − a21b

2
1b3r1r3 + 2a31b

2
1b3r1r2 − 2a11a12a13a22a33b3

+a11a12a13a23a32b3 + a11a12a21a32a33b1 − 2a11a12a22a31a33b1 + a11a12a23a31a32b1 + a12a
2
13b

2
3r2

−2a12a13a21a31a32b1 + a11a12a23b1b3r3 − 2a12a13a21b1b3r3 − 2a11a12a32b1b2r3 − 2a11a12a33b1b3r2

+4a12a13a31b1b3r2 + 2a12a13a32b2b3r1 − 2a11a22a33b1b3r1 + a11a23a32b1b3r1 + 2a12a21a33b1b3r1

−4a12a23a31b1b3r1 − 2a13a21a32b1b3r1 + 4a13a22a31b1b3r1 + 2a12a31a32b1b2r1

h(2,2) =− a23a
2
11a12a32a33 + a22a

2
11a12a

2
33 + a23a11a

2
12a31a33 − a21a11a

2
12a

2
33 + b2a11a

2
12a33r3 + a21a33b1b3r

2
1

+a23a11a12a13a31a32 − 2a22a11a12a13a31a33 + a21a11a12a13a32a33 − 2b2a11a12a13a32r3 + b2b1b3r
2
1r3

−2r2a11a12a13a33b3 + a23a11a12a13b3r3 − 2r2a11a12a31a33b1 + a23a11a12a31b1r3 + 2b2a11a12a32a33r1

+a21a11a12a33b1r3 + 2a23a11a12a33b3r1 − b2a11a12b1r
2
3 − b2a11a13a

2
32r1 + a23a11a13a32b3r1

−2a22a11a13a33b3r1 + a23a11a31a32b1r1 − 2a22a11a31a33b1r1 + a21a11a32a33b1r1 − 2b2a11a32b1r1r3

−2r2a11a33b1b3r1 + a23a11b1b3r1r3 − a23a
2
12a13a

2
31 + a21a

2
12a13a31a33 + b2a

2
12a13a31r3 − 3b2a

2
12a31a33r1

+a22a12a
2
13a

2
31 − a21a12a

2
13a31a32 + 2r2a12a

2
13a31b3 − a21a12a

2
13b3r3 + 2r2a12a13a

2
31b1 + 2b2a12a13a31a32r1

−2a21a12a13a31b1r3 − 4a23a12a13a31b3r1 + 2a21a12a13a33b3r1 + 2b2a12a13b3r1r3 − 2a23a12a
2
31b1r1

+2a21a12a31a33b1r1 + 2b2a12a31b1r1r3 − 3b2a12a33b3r
2
1 + 2a22a

2
13a31b3r1 − a21a

2
13a32b3r1 + r2a

2
13b

2
3r1

+2a22a13a
2
31b1r1 − 2a21a13a31a32b1r1 + 4r2a13a31b1b3r1 + b2a13a32b3r

2
1 − 2a21a13b1b3r1r3 − a23a13b

2
3r

2
1

+r2a
2
31b

2
1r1 + b2a31a32b1r

2
1 − a21a31b

2
1r1r3 − 2a23a31b1b3r

2
1

h(2,1) =a12a
2
13a

2
31r2 − a33b2b3r

3
1 + a211a12a

2
33r2 + a211a22a

2
33r1 + a213a22a

2
31r1 − a23a

2
31b1r

2
1 − 2a11a12a21a

2
33r1

−2a12a13a23a
2
31r1 − a12a

2
13a21a31r3 − a211a12a23a33r3 − a213a21a31a32r1 − a211a23a32a33r1 − a11a12a13b2r

2
3

+a11a23a33b3r
2
1 + a13a21a33b3r

2
1 − 2a13a23a31b3r

2
1 + a11a32a33b2r

2
1 − 3a12a31a33b2r

2
1 + a13a31a32b2r

2
1

+a21a31a33b1r
2
1 − a213a21b3r1r3 + 2a13a

2
31b1r1r2 + 2a213a31b3r1r2 − a11b1b2r1r

2
3 + a13b2b3r

2
1r3

+a31b1b2r
2
1r3 + a11a12a13a21a33r3 + a11a12a13a23a31r3 − 2a11a12a13a31a33r2 + 2a11a12a23a31a33r1

+a11a13a21a32a33r1 − 2a11a13a22a31a33r1 + a11a13a23a31a32r1 + 2a12a13a21a31a33r1 + a11a13a23b3r1r3

+2a11a12a33b2r1r3 − 2a11a13a32b2r1r3 + 2a12a13a31b2r1r3 − 2a11a13a33b3r1r2 + a11a21a33b1r1r3

+a11a23a31b1r1r3 − 2a13a21a31b1r1r3 − 2a11a31a33b1r1r2

h(2,0) =r2a
2
11a

2
33r1 − a23a

2
11a33r1r3 − 2r2a11a13a31a33r1 + a23a11a13a31r1r3 + a21a11a13a33r1r3

−b2a11a13r1r23 + a23a11a31a33r
2
1 − a21a11a

2
33r

2
1 + b2a11a33r

2
1r3 + r2a

2
13a

2
31r1 − a21a

2
13a31r1r3

−a23a13a231r21 + a21a13a31a33r
2
1 + b2a13a31r

2
1r3 − b2a31a33r

3
1

Next, assume that N3 is constant and homogenize f1, f2 and f3 with a forth variable W :
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FN3,1 = r1W + a11N1 + a12N2 + a13N3W + b1N2N3,

FN3,2 = r2W + a21N1 + a22N2 + a23N3W + b2N1N3,

FN3,3 = r3W
2 + a31N1W + a32N2W + a33N3W

2 + b3N1N2,

Note that the total degree of each of FN3,1, FN3,2 and FN3,3 (or the total degree of f1, f2

and f3 assuming N3 is a constant) is d3,1 = 1, d3,2 = 1 and d3,3 = 2 respectively. From the

d’s, we compute L3 = 1 +
∑3

i=1(d3,i− 1) = 2. Now, we form the monomial set H3, which is

a union of three disjoint monomials H3 = W d3,1 ·HL3−d3,1
3,1 ∪Nd3,2

1 ·HL3−d3,2
3,2 ∪Nd3,3

2 ·HL3−d3,3
3,3

where none of these H’s involve N3 and each is indicated below:

W d3,1 ·HL3−d3,1
3,1 = W · {W,N1, N2},

N
d3,2
1 ·HL3−d3,2

3,2 = N1 · {N1, N2},

N
d3,3
2 ·HL3−d3,3

3,3 = N2
2 · {1}

Next, form the monomial set H3,row = f1 ·H
L3−d3,1
3,1 ∪ f2 ·H

L3−d3,2
3,2 ∪ f3 ·H

L3−d3,3
3,3 evaluated

at W = 1 that is shown below. In addition, form the monomial set H3,col which is simply

H3 evaluated at W = 1 to get

H3,row = {f1, f1N1, f1N2, f2N1, f2N2, f3}

H3,col = {1, N1, N2, N
2
1 , N1N2, N

2
2}

After that, form the Macaulay matrix MN3 which is a square matrix whose size is
(
n−1+L3

n−1

)
= 6. The (i, j) entry of the Macaulay matrix is the coefficient of H3,col(j) in the expression

of H3,row(i) assuming that N3 is a constant. The matrix MN3 is shown below:

1 N1 N2 N2
1 N1N2 N2

2

f1 r1 +N3a13 a11 a12 +N3b1 0 0 0

f1N1 0 r1 +N3a13 0 a11 a12 +N3b1 0

f1N2 0 0 r1 +N3a13 0 a11 a12 +N3b1

f2N1 0 r2 +N3a23 0 a21 +N3b2 a22 0

f2N2 0 0 r2 +N3a23 0 a21 +N3b2 a22

f3 r3 +N3a33 a31 a32 0 b3 0
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Next, form the matrix M ′
N3

whose first column is H3,row and its remaining columns are

the remaining columns (i.e, columns 2 to 6) of the matrix MN3 (i.e, replace the first

column of MN3 whose top header is 1 with the leftmost column which contains the f ’s).

Again, from the formula of H3,row = col1(MN3) +
∑6

j=2 colj(MN3)H3,col(j), we can see that

H3,row is the first column of MN3 added to it a multiple of every other column of MN3 ,

implying that det(MN3) = det(M ′
N3

). This determinant (i.e, det(M ′
N3

)) can be written as

T31f1 + T32f2 + T33f3. The expressions of T21 and T23 are too large to be displayed here,

however, their forms are shown below:

T31 =t31,1 + t31,N1N1 + t31,N2N2 + t31,N3N3 + t31,N1N3N1N3 + t31,N2N3N2N3 + t31,N2
3
N2

3 + t31,N3
3
N3

3

+t31,N1N4
3
N1N

4
3 + t31,N1N3

3
N1N

3
3 + t31,N1N2

3
N1N

2
3 + t31,N2N3

3
N2N

3
3 + t31,N2N2

3
N2N

2
3 + t31,N4

3
N4

3

T32 =t32,N1N1 + t32,N2N2 + t32,N1N3N1N3 + t32,N2N3N2N3 + t32,N1N3
3
N1N

3
3 + t32,N1N2

3
N1N

2
3

+t32,N2N4
3
N2N

4
3 + t32,N2N3

3
N2N

3
3 + t32,N2N2

3
N2N

2
3

T33 =(r1 +N3a13)(a12a21 − a11a22 +N3a12b2 +N3a21b1 +N2
3 b1b2)(a12a21 − a11a22 +N3a12b2

+N3a21b1 +N2
3 b1b2)

Again, the t’s are polynomials in model parameters (i.e, the r’s, a’s and b’s). For illustration

purposes, closed form expressions for t31,N1 and t32,N1 are shown below:

t31,N1 =a11a12a
2
21a32 − a2

12a
2
21a31 − a2

11a21a22a32 + a11a12a21a22a31 − a11a12a21b3r2 + a11a21a22b3r1

t32,N1 =a3
11a22a32 + a11a

2
12a21a31 − a2

11a12a21a32 − a2
11a12a22a31 + a2

11a12b3r2 − a2
11a22b3r1

Upon substituting f1, f2 and f3 into T31f1 + T32f2 + T33f3 and simplifying the expression,

we have the formula of the resultant ResN1,N2(N3) =
∑6

l3=0 h(3,l3)N
l3
3 which is a polynomial

of degree 6 in N3 and contains no N1’s nor N2’s. The seven coefficients are shown below

h(3,6) =a13a33b
2
1b

2
2

h(3,5) =a13b
2
1b

2
2r3 − a213a32b1b

2
2 + a33b

2
1b

2
2r1 + 2a12a13a33b1b

2
2 + 2a13a21a33b

2
1b2 − a13a23a31b

2
1b2 + a213a23b1b2b3

h(3,4) =a212a13a33b
2
2 − a12a

2
13a32b

2
2 − a313a22b2b3 + a13a

2
21a33b

2
1 + b21b

2
2r1r3 − a13a21a23a31b

2
1 − a11a13a

2
23b1b3

+a12a
2
13a23b2b3 + a213a21a23b1b3 − 2a213a21a32b1b2 + a213a22a31b1b2 + 2a12a13b1b

2
2r3 + 2a13a21b

2
1b2r3

+2a12a33b1b
2
2r1 − a13a31b

2
1b2r2 − 2a13a32b1b

2
2r1 + 2a21a33b

2
1b2r1 − a23a31b

2
1b2r1 + a213b1b2b3r2

−2a11a13a22a33b1b2 + a11a13a23a32b1b2 + 4a12a13a21a33b1b2 − 2a12a13a23a31b1b2 + 2a13a23b1b2b3r1
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h(3,3) =a212a13b
2
2r3 − a213a

2
21a32b1 − a313a21a22b3 + a13a

2
21b

2
1r3 + a212a33b

2
2r1 + a221a33b

2
1r1 − a32b1b

2
2r

2
1

−a11a12a13a223b3 + a11a
2
13a22a23b3 + a12a

2
13a21a23b3 + a11a

2
13a22a32b2 + 2a12a13a

2
21a33b1

−2a12a
2
13a21a32b2 + a12a

2
13a22a31b2 + 2a212a13a21a33b2 − a212a13a23a31b2 + a213a21a22a31b1

−2a12a13a32b
2
2r1 − a13a21a31b

2
1r2 − a21a23a31b

2
1r1 + a12a

2
13b2b3r2 − a11a

2
23b1b3r1 + a213a21b1b3r2

−3a213a22b2b3r1 + a23b1b2b3r
2
1 + 2a12b1b

2
2r1r3 + 2a21b

2
1b2r1r3 − a31b

2
1b2r1r2 − 2a11a12a13a22a33b2

+a11a12a13a23a32b2 − 2a11a13a21a22a33b1 + a11a13a21a23a32b1 + a11a13a22a23a31b1 − 2a12a13a21a23a31b1

−2a11a13a22b1b2r3 + 4a12a13a21b1b2r3 − 2a11a13a23b1b3r2 + 2a12a13a23b2b3r1 + a11a13a32b1b2r2

−2a12a13a31b1b2r2 + 2a13a21a23b1b3r1 − 2a11a22a33b1b2r1 + a11a23a32b1b2r1 + 4a12a21a33b1b2r1

−2a12a23a31b1b2r1 − 4a13a21a32b1b2r1 + 2a13a22a31b1b2r1 + 2a13b1b2b3r1r2

h(3,2) =a33a
2
11a13a

2
22 − a32a

2
11a13a22a23 − 2a33a11a12a13a21a22 + a32a11a12a13a21a23 + a31a11a12a13a22a23

−2r3a11a12a13a22b2 − 2b3a11a12a13a23r2 + a32a11a12a13b2r2 − 2a33a11a12a22b2r1 − b3a11a12a
2
23r1

+a32a11a12a23b2r1 + a32a11a
2
13a21a22 − a31a11a

2
13a

2
22 + b3a11a

2
13a22r2 − 2r3a11a13a21a22b1

+a32a11a13a21b1r2 + 2b3a11a13a22a23r1 + a31a11a13a22b1r2 + 2a32a11a13a22b2r1 − b3a11a13b1r
2
2

−2a33a11a21a22b1r1 + a32a11a21a23b1r1 + a31a11a22a23b1r1 − 2r3a11a22b1b2r1 − 2b3a11a23b1r1r2

+a32a11b1b2r1r2 + a33a
2
12a13a

2
21 − a31a

2
12a13a21a23 + 2r3a

2
12a13a21b2 − a31a

2
12a13b2r2 + 2a33a

2
12a21b2r1

−a31a212a23b2r1 + r3a
2
12b

2
2r1 − a32a12a

2
13a

2
21 + a31a12a

2
13a21a22 + b3a12a

2
13a21r2 + 2r3a12a13a

2
21b1

+2b3a12a13a21a23r1 − 2a31a12a13a21b1r2 − 4a32a12a13a21b2r1 + 2a31a12a13a22b2r1 + 2b3a12a13b2r1r2

+2a33a12a
2
21b1r1 − 2a31a12a21a23b1r1 + 4r3a12a21b1b2r1 + b3a12a23b2r

2
1 − 2a31a12b1b2r1r2 − a32a12b

2
2r

2
1

−3b3a
2
13a21a22r1 − 2a32a13a

2
21b1r1 + 2a31a13a21a22b1r1 + 2b3a13a21b1r1r2 − 3b3a13a22b2r

2
1 + r3a

2
21b

2
1r1

+b3a21a23b1r
2
1 − a31a21b

2
1r1r2 − 2a32a21b1b2r

2
1 + a31a22b1b2r

2
1 + b3b1b2r

2
1r2

h(3,1) =a211a13a
2
22r3 − a22b2b3r

3
1 + a212a13a

2
21r3 + a211a

2
22a33r1 + a212a

2
21a33r1 − a221a32b1r

2
1 − 2a11a13a

2
22a31r1

−2a12a13a
2
21a32r1 − a212a13a21a31r2 − a211a13a22a32r2 − a212a21a23a31r1 − a211a22a23a32r1 − a11a12a13b3r

2
2

+a11a22a23b3r
2
1 + a12a21a23b3r

2
1 − 3a13a21a22b3r

2
1 + a11a22a32b2r

2
1 − 2a12a21a32b2r

2
1 + a12a22a31b2r

2
1

+a21a22a31b1r
2
1 + 2a12a

2
21b1r1r3 + 2a212a21b2r1r3 − a212a31b2r1r2 − a11b1b3r1r

2
2 + a12b2b3r

2
1r2

+a21b1b3r
2
1r2 − 2a11a12a13a21a22r3 + a11a12a13a21a32r2 + a11a12a13a22a31r2 − 2a11a12a21a22a33r1

+a11a12a21a23a32r1 + a11a12a22a23a31r1 + 2a11a13a21a22a32r1 + 2a12a13a21a22a31r1 − 2a11a12a22b2r1r3

−2a11a12a23b3r1r2 + 2a11a13a22b3r1r2 + 2a12a13a21b3r1r2 − 2a11a21a22b1r1r3 + a11a12a32b2r1r2

+a11a21a32b1r1r2 + a11a22a31b1r1r2 − 2a12a21a31b1r1r2

h(3,0) =r3a
2
11a

2
22r1 − a32a

2
11a22r1r2 − 2r3a11a12a21a22r1 + a32a11a12a21r1r2 + a31a11a12a22r1r2 − b3a11a12r1r

2
2

+a32a11a21a22r
2
1 − a31a11a

2
22r

2
1 + b3a11a22r

2
1r2 + r3a

2
12a

2
21r1 − a31a

2
12a21r1r2 − a32a12a

2
21r

2
1

+a31a12a21a22r
2
1 + b3a12a21r

2
1r2 − b3a21a22r

3
1
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After finding the resultants, we evaluate T (f1, f2, f3) (i.e, the determinant of the eliminating

matrix) as well as J(f1, f2, f3) (i.e, the determinant of the Jacobian of f1, f2 and f3) which

are shown below:

T (f1, f2, f3) =

∣∣∣∣∣∣∣∣∣
T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣∣∣ , J(f1, f2, f3) =

∣∣∣∣∣∣∣∣∣
a11 a12 +N3b1 a13 +N2b1

a21 +N3b2 a22 a23 +N1b2

a31 +N2b3 a32 +N1b3 a33

∣∣∣∣∣∣∣∣∣
Obtain the series expansion of the reciprocal of each resultant individually then multiply

the results by T (f1, f2, f3)J(f1, f2, f3) to obtain

G(f1, f2, f3) =
T (f1, f2, f3)J(f1, f2, f3)

ResN1,N2(f1, f2, f3)ResN1,N3(f1, f2, f3)ResN2,N3(f1, f2, f3)
=

Σ0,0,0

N1N2N3

+
Σ1,0,0

N2
1N2N3

+
Σ0,1,0

N1N2
2N3

+ +
Σ0,0,1

N1N2N2
3

+
Σ1,1,0

N2
1N

2
2N3

+
Σ1,0,1

N2
1N2N2

3

+
Σ0,1,1

N1N2
2N

2
3

+
Σ2,0,0

N3
1N2N3

+
Σ0,2,0

N1N3
2N3

+ . . .

Without factorization, expressions of some of the Σ’s can extend to multiple pages. The

expression for some of the lower Σ’s are shown below where Σi,j,k = ΣU
i,j,k/Σ

D
i,j,k is written

as a fraction of two polynomials.

ΣU
0,0,0 =5

ΣD
0,0,0 =1

ΣU
1,0,0 =a13a21b3 − 2a11a23b3 − 2a11a32b2 + a12a31b2 − a21a31b1 − b2b3r1

ΣD
1,0,0 =a11b2b3

ΣU
0,1,0 =a12a23b3 − 2a13a22b3 − a12a32b2 + a21a32b1 − 2a22a31b1 − b1b3r2

ΣD
0,1,0 =a22b1b3

ΣU
0,0,1 =a13a32b2 − 2a12a33b2 − a13a23b3 − 2a21a33b1 + a23a31b1 − b1b2r3

ΣD
0,0,1 =a33b1b2

ΣU
1,1,0 =a11a12a

2
32b

2
2 + a21a22a

2
31b

2
1 + a11a13a22a23b

2
3 − a11a21a

2
32b1b2 − a12a22a

2
31b1b2

+2a11a12a22a33b2b3 − a11a12a23a32b2b3 + a11a13a22a32b2b3 + 2a11a21a22a33b1b3

+a11a22a23a31b1b3 − a13a21a22a31b1b3 + 4a11a22a31a32b1b2 − 4a11a22b1b2b3r3

+a11a32b1b2b3r2 + a22a31b1b2b3r1

ΣD
1,1,0 =a11a22b1b2b

2
3

Observe that ResN2,N3(f1, f2, f3) is a polynomial of degree 5 in N1 only and thus cannot be

solved analytically. Similarly, ResN1,N3(f1, f2, f3) and ResN1,N2(f1, f2, f3) are polynomials
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of degree 6 i in N2 and N3. Note that the roots of the three resultants, upon appropriate

pairing of roots of each of them, are the roots of the system fi(N1, N2, N3) = 0 for i = 1, 2, 3.

From Abel’s impossibility theorem, since it is impossible to solve for the roots of a quintic

or higher degree polynomials in terms of radicals, then the roots of any of the resultants are

unattainable analytically which implies that the system fi(N1, N2, N3) = 0 cannot be solved

analytically. Since Σ0,0,0 = 5, then the system fi(N1, N2, N3) = 0 for i = 1, 2, 3 has exactly 5

complex roots. Denote to them by η1 = [η1,1, η1,2, . . . , η1,5]T , η2 = [η2,1, η2,2, . . . , η2,5]T and

η3 = [η3,1, η3,2, . . . , η3,5]T . Choose a map m(N1, N2, N3) = [1, N1, N1N2, N1N3, N1N2N3]T .

Note that if we choose a lower order map such as m(N1, N2, N3) = [1, N1, N2, N3, N1N2]T ,

one or more coefficients of the characteristic equation of S that will be shown in the

following pages will vanish; thus a higher-order map is needed. Next, let Q(N1, N2, N3) =

N1N2N3 and compute S(s1, s2, s3) = W∆W t where Wij = mi(η1,j, η2,j, η3,j) and ∆ii =

Q(η1,i − s1, η2,i − s2, η3,i − s3) is a diagonal matrix as follows.

W =



1 1 1 1 1

η1,1 η1,2 η1,3 η1,4 η1,5

η1,1η2,1 η1,2η2,2 η1,3η2,3 η1,4η2,4 η1,5η2,5

η1,1η3,1 η1,2η3,2 η1,3η3,3 η1,4η3,4 η1,5η3,5

η1,1η2,1η3,1 η1,2η2,2η3,2 η1,3η2,3η3,3 η1,4η2,4η3,4 η1,5η2,5η3,5


∆ = diag[(η1,1 − s1)(η2,1 − s2)(η3,1 − s3), . . . , (η1,5 − s1)(η2,5 − s2)(η3,5 − s3)]

S(s1, s2, s3) = W∆W t

Note that Σk,m,n = ηk1,1η
m
2,1η

n
3,1 + ηk1,2η

m
2,2η

n
3,2 + . . .+ ηk1,5η

m
2,5η

n
3,5 for k,m, n = 0, 1, 2, . . .. The

components of the symmetric 5x5 matrix S are shown below:

S1,1(s1, s2, s3) =(−5)s1s2s3 + Σ001s1s2 + Σ010s1s3 + (−Σ011)s1 + Σ100s2s3 + (−Σ101)s2

+(−Σ110)s3 + Σ111

S1,2(s1, s2, s3) =(−Σ100)s1s2s3 + Σ101s1s2 + Σ110s1s3 + (−Σ111)s1 + Σ200s2s3 + (−Σ201)s2

+(−Σ210)s3 + Σ211 = S2,1(s1, s2, s3)

S1,3(s1, s2, s3) =(−Σ110)s1s2s3 + Σ111s1s2 + Σ120s1s3 + (−Σ121)s1 + Σ210s2s3 + (−Σ211)s2

+(−Σ220)s3 + Σ221 = S3,1(s1, s2, s3)
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S1,4(s1, s2, s3) =(−Σ101)s1s2s3 + Σ102s1s2 + Σ111s1s3 + (−Σ112)s1 + Σ201s2s3 + (−Σ202)s2

+(−Σ211)s3 + Σ212 = S4,1(s1, s2, s3)

S1,5(s1, s2, s3) =(−Σ111)s1s2s3 + Σ112s1s2 + Σ121s1s3 + (−Σ122)s1 + Σ211s2s3 + (−Σ212)s2

+(−Σ221)s3 + Σ222 = S5,1(s1, s2, s3)

S2,2(s1, s2, s3) =(−Σ200)s1s2s3 + Σ201s1s2 + Σ210s1s3 + (−Σ211)s1 + Σ300s2s3 + (−Σ301)s2

+(−Σ310)s3 + Σ311

S2,3(s1, s2, s3) =(−Σ210)s1s2s3 + Σ211s1s2 + Σ220s1s3 + (−Σ221)s1 + Σ310s2s3 + (−Σ311)s2

+(−Σ320)s3 + Σ321 = S3,2(s1, s2, s3)

S2,4(s1, s2, s3) =(−Σ201)s1s2s3 + Σ202s1s2 + Σ211s1s3 + (−Σ212)s1 + Σ301s2s3 + (−Σ302)s2

+(−Σ311)s3 + Σ312 = S4,2(s1, s2, s3)

S2,5(s1, s2, s3) =(−Σ211)s1s2s3 + Σ212s1s2 + Σ221s1s3 + (−Σ222)s1 + Σ311s2s3 + (−Σ312)s2

+(−Σ321)s3 + Σ322 = S5,2(s1, s2, s3)

S3,3(s1, s2, s3) =(−Σ220)s1s2s3 + Σ221s1s2 + Σ230s1s3 + (−Σ231)s1 + Σ320s2s3 + (−Σ321)s2

+(−Σ330)s3 + Σ331

S3,4(s1, s2, s3) =(−Σ211)s1s2s3 + Σ212s1s2 + Σ221s1s3 + (−Σ222)s1 + Σ311s2s3 + (−Σ312)s2

+(−Σ321)s3 + Σ322 = S4,3(s1, s2, s3)

S3,5(s1, s2, s3) =(−Σ221)s1s2s3 + Σ222s1s2 + Σ231s1s3 + (−Σ232)s1 + Σ321s2s3 + (−Σ322)s2

+(−Σ331)s3 + Σ332 = S5,3(s1, s2, s3)

S4,4(s1, s2, s3) =(−Σ202)s1s2s3 + Σ203s1s2 + Σ212s1s3 + (−Σ213)s1 + Σ302s2s3 + (−Σ303)s2

+(−Σ312)s3 + Σ313

S4,5(s1, s2, s3) =(−Σ212)s1s2s3 + Σ213s1s2 + Σ222s1s3 + (−Σ223)s1 + Σ312s2s3 + (−Σ313)s2

+(−Σ322)s3 + Σ323 = S5,4(s1, s2, s3)

S5,5(s1, s2, s3) =(−Σ222)s1s2s3 + Σ223s1s2 + Σ232s1s3 + (−Σ233)s1 + Σ322s2s3 + (−Σ323)s2

+(−Σ332)s3 + Σ333

The characteristic equation of the matrix S is simply det(S(s1, s2, s3)) = λ5+v4(s1, s2, s3)λ4+

v3(s1, s2, s3)λ3 + v2(s1, s2, s3)λ2 + v1(s1, s2, s3)λ + v0(s1, s2, s3). The coefficients of the

characteristic equation need to be evaluated at (s1, s2, s3) = {(0, 0, 0), (∞, 0, 0), (0,∞, 0),
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(∞,∞, 0), (0, 0,∞), (∞, 0,∞), (0,∞,∞), (∞,∞,∞)}. Note that vi(m1,m2,m3) where

m1,m2,m3 ∈ {0,∞} is the coefficient of sk11 s
k2
2 s

k3
3 in vi(s1, s2, s3) where kj = 0 if mj = 0

and kj = 5 − i if mj = ∞ for j = 1, 2, 3. Since some of these 40 quantities are large,

we will omit writing them. Next, let V (a, b, c) be the number of consecutive sign changes

in [1, v1(a, b, c), v0(a, b, c)] where a, b and c are either 0 or ∞. The formula of V (a, b, c) is

shown below

V (a, b, c) =
1− sign(v4(a, b, c))

2
+

1− sign(v4(a, b, c))sign(v3(a, b, c))

2
+

1− sign(v3(a, b, c))sign(v2(a, b, c))

2

+
1− sign(v2(a, b, c))sign(v1(a, b, c))

2
+

1− sign(v1(a, b, c))sign(v0(a, b, c))

2
where a, b, c ∈ {0,∞}

From the V ’s, we can find the formula of the number of feasible roots of f1(N1, N2, N3),

f2(N1, N2, N3) and f3(N1, N2, N3) which is given by F (Ψ) = (V (0, 0, 0) − V (∞, 0, 0) −

V (0,∞, 0)− V (0, 0,∞) + V (∞,∞, 0) + V (∞, 0,∞) + V (0,∞,∞)− V (∞,∞,∞))/4. Let

us consider the parameter Ψ = (r1, r2, r3, a11, a12, a13, a21, a22, a23, a31, a32, a33, b1, b2, b3) =

(1.5,−1.5,−1.5, 2,−1.5,−1.5, a21, 2,−1.5,−1.5,−1, 1, 1,−1, b3) where the parameters a21 ∈

[1, 6] and b3 ∈ [2, 5] are restricted. We find that feasibility (i.e, F (Ψ) ≥ 1) is described

by the signs of the v0’s. In particular, if any of the conditions below is satisfied, feasi-

bility is guaranteed, which is evident from plotting any of the quantities below (except

v0(0, 0, 0) < 0 (see below).

v0(0, 0, 0) < 0 v0(∞, 0, 0) < 0, v0(0,∞, 0) > 0, v0(∞,∞, 0) > 0

v0(0, 0,∞) > 0, v0(∞, 0,∞) > 0, v0(0,∞,∞) < 0, v0(∞,∞,∞) < 0

When we plot F (Ψ), we find that in some regions, some non-integer values between 0

and 2 are output due to numerical error or m(N1, N2, N3) having lower order monomial

maps. However, we rectified the error quickly via assigning non-integer values to their

closest integers. After the rectification process, we obtained a feasibility domain plot that

matches the one obtained from simulations (i.e, counting the number of feasible equilibrium

points via solving the isocline equations numerically). There was no need to perform any

numerical corrections when we plot the sign of v0(0,∞, 0) or any of the 8 inequalities above

(except v0(0, 0, 0) < 0) and we see that it matches the feasibility domain as shown in the

plots in the following page. When we plot v0(0, 0, 0) < 0, its shape has clearly the shape

of the feasibility domain but has errors that are rectifiable.
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Figure 4-3: The top figure shows the number of feasible roots F in Lotka-Volterra model
with higher-order interactions where (r1, r2, r3, a11, a12, a13, a22, a23, a31, a32, a33, b1, b2) =
(1.5,−1.5,−1.5, 2,−1.5,−1.5, 2,−1.5,−1.5,−1, 1, 1,−1), a21 ∈ [1, 6] and b3 ∈ [2, 5]. The
bottom figure shows the sign of v0(0,∞, 0) with the same model and parameter values
and ranges. Both figures confirm that F > 0 when v0(0,∞, 0) > 0. Simulations done via
solving the isocline equations numerically and checking for the feasibility of roots match
the two figures displayed here.
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Figure 4-4: The figure plots the sign of v0(0, 0, 0) in Lotka-Volterra model
with higher-order interactions when (r1, r2, r3, a11, a12, a13, a22, a23, a31, a32, a33, b1, b2) =
(1.5,−1.5,−1.5, 2,−1.5,−1.5, 2,−1.5,−1.5,−1, 1, 1,−1), a21 ∈ [1, 6] and b3 ∈ [2, 5]. The
shape of the figure matches the shape of the feasibility domain, yet suffers from errors.

4.5 Discussion

Feasibility conditions can be obtained analytically by solving the isocline equations for

species abundances N∗ = (N∗1 , N
∗
2 , . . . , N

∗
n)T before imposing the positivity condition

N∗ > 0. This approach works well for LV model, whose isocline equations is the lin-

ear system r+AN∗ = 0 and whose feasibility conditions are given by N∗ = −A−1r > 0

[18, 106, 119]. However, when the isocline equations have five or more complex roots,

the system of polynomial equations cannot be solved analytically. This is a consequence

of Grobner elimination theorem combined with Abel’s impossibility theorem [112–114].

Specifically, from the elimination theorem, in any system of polynomial equations which

has Θ complex roots and n variables, any n−1 variables can be eliminated from the system

to obtain a univariate polynomial with the remaining variable of degree at least Θ. The

roots of this univariate polynomial are all the correspondent coordinates of the roots of

the isocline equations [114]. This is a generalization of Gaussian elimination, which can

eliminate any n− 1 variables from the system leaving a single linear univariate polynomial
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in the remaining variable to be solved [120]. However, from Abel’s impossibility theorem,

it is impossible to solve a univariate polynomial in terms of radicals (i.e., analytically)

[112, 113] if this polynomial has five or more roots. For instance, this number of roots is

quickly reached by adding Type III functional responses to a 2-species LV model or adding

higher-order interactions to a 3-species LV model [81].

In this work, we have proposed a general formalism to analytically obtain the feasibility

conditions for any multivariate, polynomial, population, dynamics model of any dimensions

without the need to solve for the equilibrium locations. We found that feasibility conditions

are entirely functions of symmetric sums of the roots of the isocline equations. Unlike the

location of the roots, which cannot be obtained analytically, symmetric sums of the roots

can be obtained for any polynomial system regardless of order and dimension. We have

also created an analytical formula of the number of feasible roots in the system, which

are functions of signs of Θ2n quantities (i.e., the v’s evaluated at the feasibility box whose

coordinates compose of zeros and infinities). We have shown how to create a feasibility

table (i.e., matrix) whose columns are the individual feasibility conditions of the model.

We have then provided a minimization process that can combine feasibility conditions

into fewer ones and remove redundant quantities. Of course, the expressions involved

in the inequality are complicated, nevertheless, they can be significantly simplified by

sophisticated factorization.

Additionally, we have shown how to provide feasibility conditions under parameter re-

strictions. We have shown that by restricting parameters, the feasibility domain can be

described by a single inequality only. In recent years, the topic of feasibility has been

focused on relationships between parameters while maintaining feasibility [61]. Using sim-

ulations (i.e., solving for the location of the isocline equations numerically then checking

for the feasibility of roots) one can plot the feasibility domain for one, two, or three pa-

rameters at most while fixing the remaining ones. However, it is impossible to generate

a four-dimensional plot that the human eye can capture. Also, it is impossible to find

an analytical expression of the feasibility domain using numerical simulations. Of course,

someone can find an approximate formula of the feasibility domain, nevertheless, there is no

unique formula and different approximations may lead to different interpretations of how

parameters are linked while maintaining feasibility. Following our proposed methodology,

we can determine mathematically how any number of parameters are linked by describ-
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ing polynomial inequalities that are functions of those free-parameters while maintaining

feasibility: a task that is impossible to perform with simulations. This is an important

property to consider in ecological modeling given that mathematical expressions are fre-

quently formed assuming that parameters are independent of each other. However, once

one imposes mechanisms or constraints, such as feasibility, these parameters can be linked

and break the conclusions based on independent parameters [101].

Our methodology provides a fast method for plotting feasibility domains, computing the

number of feasible roots, and displaying feasibility conditions. For example, for our 3-

species example with higher-order interactions, plotting the feasibility domain by solving

the isocline equations numerically using the software package PHCLab [93] took more

than 1.5 hours to compute the number of feasible points with 216 trials. Instead, using

our methodology (and code which involves a naive implementation of our methodology

without parallelization), it took less than 11.5 minutes to run the analysis, and a few

seconds to plot the feasibility domain for different ranges of the free parameters using the

same number of trials. Moreover, when we change the ranges of our free parameters a21

and b3, we only need a few seconds to run our code, whereas we need to repeat the entire

1.5 hours with the traditional numerical technique. With a clever implementation of the

methodology and parallelizing the code (since the entire methodology can be parallelized),

a faster computation of the feasibility domain/conditions and links between parameters

can be achieved.

One significant drawback of the methodology is that it requires the handling of large

symbolic expressions. Thus, careful implementation is required to run a successful code

using the presented methodology. For example, when we created the generating function G,

we did not multiply the determinant of the eliminant T and the determinant of the Jacobian

of the isocline equations J , divided them by the product of all resultants, and took the series

expansion of the final polynomial quotient. Instead, we took the series expansion of each

resultant reciprocal separately, wrote TJ as multivariate polynomial in species abundances,

found the coefficients of each term, and multiplied it by a single appropriate term in

the series expansion of each resultant reciprocal to find the Σ’s. However, it is always

possible to handle such large expressions as the entire methodology can be parallelized.

The second drawback of the methodology is its susceptibility to numerical errors. In our

3-species application example, our code gives as output non-integer values of the number
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of feasible roots in the system. Nevertheless, in our example we rectified it quickly by

assigning non-integer values to their closest integers (see section 4.4.2). Remember that

the methodology requires only checking signs of large symbolic expressions, and we do

not need them to be computed accurately. Nevertheless, such quantities can be computed

more accurately by following several techniques such as increasing precision of numeric

calculations. Similarly, cancellation errors can be reduced by combining positive numbers

and negative ones together, and then performing a single subtraction. Round-off and

truncation errors can also be avoided when ratios are computed. For example, instead of

computing (1090 − 1091)/1090 by computing (1090 − 1091) then dividing the result by 1090,

it is better to add 1090/1090 = 1 with −1091/1090 = −10 as the latter reduces round-off

errors in large computations [121]. Of course, there are other techniques to reduce such

errors, nevertheless, it is important to think about numerical errors in the implementation

process.

In sum, the contribution of this theoretical work is that it provides a foundation for impor-

tant ecological concepts such as species coexistence, stability, and permanence. Indeed, it

has been shown that the existence of a feasible solution is a necessary condition for persis-

tence and permanence in dynamical models of the form dNi/dt = Nifi(N )/qi(N ) [41, 51].

Similarly, it has been proved that this type of models cannot have bounded orbits in the

feasibility domain without a feasible free-equilibrium point [41]. In fact, we cannot talk

about asymptotic or local stability without the existence of a feasible equilibrium point

[115]. Hence, coexistence, stability, or permanence domains are subsets of the feasibil-

ity domain and their conditions are effectively the feasibility conditions obtained in this

work plus some added conditions. Thus, this work unlocks the opportunity to increase our

systematic understanding of multispecies coexistence.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Lotka-Volterra (LV) models have been a pillar in the field of ecology [18, 30]. Yet, these

models are first-order approximations that do not fully encapsulate the complex dynam-

ics of ecological systems, such as the existence of multiple equilibria or alternative states

[33, 49, 81]. This is attributed to the fact that the number of free-equilibrium points of

LV models is always one regardless of the dimension of the system, making it a limited

yet tractable model [53]. Recent work has shown that higher-order terms in population

dynamics models can increase stability, promote diversity, and better explain the dynamics

of ecological systems [43–46]. While it has been speculated that these perceived benefits

come from an increasing number of alternative solutions given by the nature of multivari-

ate polynomials, this mathematical advantage had not been formally quantified. In the

Chapter 2 of this thesis, we have developed a general method to quantify the mathematical

consequences of adding higher-order terms in ecological models based on the number of

free-equilibrium points that can emerge in a system. These equilibria can be feasible or un-

feasible as a function of model parameters. For a generic choice of parameters, the number

of free-equilibrium points is independent of model parameters. Thus, this number (which is

parameter-free) is a suitable measure of modeling complexity and advantages for LV mod-

els with higher-order interactions since higher-order parameters are seldom restricted (or

known). We have applied this method to calculate the number of free-equilibrium points

in LV dynamics analytically. While it is known that LV models without higher-order in-
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teractions have only one free-equilibrium point regardless of the number of parameters

[53], we find that by adding higher-order terms, this number increases exponentially with

the dimension of the system. Hence, we have shown that the number of free-equilibrium

points can be used to compare more fairly between ecological models. Our results suggest

that while adding higher-order interactions in ecological models may be suitable for pre-

diction purposes, they cannot provide additional explanatory power of ecological dynamics

if model parameters are not ecologically restricted or if results are not compared against

random expectations. That is, our results do not invalidate complex models, but provides

a clear roadmap and best practices for ecological modeling.

Due to the simplicity of LV models, studies have embedded more mechanisms into them

for the premise of adding realism and dynamical richness [11]. Nevertheless, finding a

compromise between tractability and realism has not been easy [77–79]. The introduction

of nonlinear functional responses in 2-species models has reconciled part of this compromise

[10, 11, 35, 48]. However, it had remained unclear whether this compromise could be

extended to multispecies models [72, 81]. Yet, answering this question was necessary to

differentiate whether the explanatory power of a model comes from the general form of its

polynomial or a more realistic description of multispecies systems. In the Chapter 3 of this

thesis, we have studied the probability of feasibility (the existence of at least one positive

real equilibrium) in complex models by adding higher-order interactions and nonlinear

functional responses to the linear LV model. We characterize complexity by the number

of free-equilibrium points generated by a model, a function of the polynomial degree, and

the system’s dimension. We have shown that the probability of generating a feasible

system in a model is an increasing function of its complexity, regardless of the specific

mechanism invoked and whether parameters are restricted or not. Furthermore, we find

that the probability of feasibility in a model will exceed that of the linear LV model when

a minimum level of complexity is reached. Significantly, this minimum level is modulated

by parameter restrictions but can always be exceeded via increasing the polynomial degree

or system’s dimension. These results confirm our results from Chapter 2, showing that

conclusions regarding the relevance of mechanisms embedded in complex models must be

evaluated against the expected explanatory power of their polynomial form.

Nevertheless, when an ecological model is constructed, understanding its behavior in full

(e.g., analytically) remains one of the significant challenges in ecological research [10–12].
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Most ecological systems are coupled polynomial ordinary differential equations, which are

generally unsolvable and challenging to analyze, except for particular cases that simplify

the model [122–124]. Without the availability of such solutions, extracting the set of

conditions compatible with the coexistence of such species remains a big mathematical

challenge [49, 61]. Even at the 2-species level, there is currently no general methodology

that can provide us with a complete analytical understanding of feasibility conditions (i.e.,

necessary conditions for species coexistence in equilibrium dynamics) for any given model.

Knowledge of feasibility is essential as feasibility is a necessary condition for coexistence

in equilibrium dynamics, stability, and permanence [41, 119]. Traditionally, feasibility

conditions are found by solving the isocline equations analytically for species abundances

(equilibrium points) before imposing a positivity of at least one equilibrium point [61].

However, solving the location of equilibrium points analytically is impossible if the isocline

equations have five or more roots, which is a consequence of Abel’s impossibility theorem

[112, 113]. In Chapter 4 of this thesis, we have strayed away from this traditional approach

and use tools from algebraic geometry to identify and separate feasibility conditions that

guarantee exactly k feasible equilibrium points for any value k of a model system. We

show that these feasibility conditions are always represented by polynomial inequalities

in species abundances. We demonstrate that feasibility and infeasibility conditions are

represented by identical polynomial expressions, whose signs determine the number of fea-

sible equilibrium points in the system. We have shown a general methodology to express

the derived feasibility conditions into the smallest minimal mathematical expressions to

easily (as much as possible) analyze them. Additionally, we have illustrated the power

of our methodology by showing how it is possible to derive mathematical relationships

between model parameters while maintaining feasibility in modified LV models with func-

tional responses and higher-order interactions (model systems with at least five equilibrium

points)—a task that is impossible to do with simulations. Note that exact relationships

between parameters is a necessary condition to know in order to reach a more mechanistic

or causative knowledge of ecological systems. These results unlock a previous impossible

analytic task towards our understanding of species coexistence. Overall, we hope these

contributions can serve as a guideline for a more comprehensive use of ecological modeling

and the advancement of mathematical ecology in general.
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5.2 Future Work

In this thesis, we borrowed tools from algebraic geometry to study polynomial ecological

dynamical systems. The main goal of this work has been directed towards understanding

the conditions leading to species coexistence. In particular, we have studied the necessary

conditions: feasibility. The necessary and sufficient conditions (feasibility and stability)

have not been addressed in this thesis. Indeed, finding the sets of conditions that guarantee

the stability of at least one free-equilibrium point remains an open problem. For LV mod-

els, as mentioned in the introduction section of Chapter 4, feasibility conditions are known

and can be attained analytically in closed-form. However, for the linear Lotka-Volterra

model with a single free-equilibrium point, necessary and sufficient conditions for asymp-

totic stability are unknown [125]. Since feasibility is a necessary condition for asymptotic

stability, the stability domain must be contained in the feasibility domain. Therefore,

stability conditions only require additional conditions to be placed on top of feasibility

to obtain them. In this line, future work can focus on finding necessary and sufficient

conditions for stability for LV models and extending the techniques to general polynomial

ecological systems. On top of stability, permanence is one of the essential ecological con-

cepts that has been studied in the literature. In permanence, starting from any initial

condition, bounded abundances must be attained after a sufficiently large time, and that

bound is independent of the initial value [126, 127]. However, conditions of permanence in

ecological systems are unknown, and no link between stability and permanence has been

studied either [127]. Therefore, it also remains to investigate conditions of permanence for

the LV system, link it to the asymptotic stability of its unique free-equilibria, and extend

the work for a general polynomial system.

Moreover, this thesis has focused on polynomial ecological dynamical systems with a finite

number of free-equilibrium points. However, non-polynomial systems also appear in the

ecological literature. For instance, stochastic Lotka-Volterra systems have square-root

terms embedded into them, and exponential functions appear in less-popular functional

responses. For example, it was demonstrated that stochasticity can provide a dynamical

model with many marginally stable equilibrium points [128]. Nevertheless, when nonlinear

functions are introduced, such as the exponential or trigonometric function, the number

of free-equilibrium points can be infinite. This is evident by the infinite number of roots
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of the function sin(z) which are given by z = πn where n ∈ Z. This phenomenon of

an infinite number of roots cannot happen in polynomial systems. As a consequence, the

feasibility table derived in Chapter 4 can be infinitely long when nonlinear functions are

incorporated into ecological systems. Hence, the mathematical consequences that we have

shown in this thesis for polynomial systems can be easily surpassed when non-monomials

are added to ecological models. This could help us to rethink when and how this highly

complex functions should be used. However, if such functions are believed to be an integral

part of a model, then as future work, one can ask: how can we characterize the complexity

of non-polynomial ecological systems, and how can we fairly compare between two non-

polynomial models? Will it be possible to obtain the feasibility domains of such models?

Dissecting these systems, which are currently treated as black boxes, will help us to use

ecological models in a more rigorous and informative way.
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