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Abstract 
  

Tissue-clearing methods, light-sheet microscopy, and antibody labeling enable extracting cellular 

and subcellular information, producing large amount of image data needs to be analyzed. Hundreds 

of heterogeneous cell types were detected through the data obtained across species and types of 

tissues. We developed a novel approach that is generally applicable to a wide range of cell types 

in the large-scale 3D brain datasets, using a pipeline that performs accurate detection of cells 

regardless of image resolution, labeling pattern, and tissue processing techniques used. The 

pipeline is compatible with various labeling techniques including IHC, Fluorescence in situ 

hybridization (FISH), and genetic labeling and can be used for cellular level quantification in all 

types of tissues. 
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Chapter 1  

Introduction  

 

Structural and functional mapping of the brain is one of the most popular in various studies 

in neuroscience. A critical prerequisite in brain mapping is the precise identification and 

quantification of cells across the intact brain. Advancement in microscopy and sample preparation 

techniques provide an approach to study the molecular and cellular complexity of the central 

nervous system. State-of-the-art tissue-clearing methods, light-sheet microscopy and antibody 

labeling enable extracting cellular and subcellular information on complex mammalian bodies and 

large human specimens [1]. Such technologies left researchers with a large amount of image data 

which is laborious or impossible to perform manual analysis, creating a high demand for automated 

cell quantification. 

Quantification based on cell body segmentation and classification methods using cell 

markers has been developed, most of which trade-off between flexibility and automation. These 

methods range from fully manual labeling [2], to non-learning-based algorithms [3], to learning-

based algorithms trained for every specific task [4][5], or even as one sub-task in a fully automated 

deep learning approach [6]. Automation reduces the cumbersome human effort to increase the 

scalability in big datasets as well as the efficiency of the analysis. However, most of the existing 

fully automated methods are trained with massive amounts of annotated data. Their application 

has been largely restricted to the specialized data as the training sets.  
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We seek to address this generalization problem by avoiding completely relying on 

learning-based approaches. A non-learning-based algorithm that is generally applicable to 

detecting and categorizing the cells in images from multi-round immunostaining is developed. 

Composed by a nuclei detection module and a cell phenotyping step, our approach is capable to 

perform accurate detection and quantification of cell subtypes based on the corresponding markers, 

regardless of the staining patterns in most of the tissue types, including mouse and human brain 

tissue as well as human brain organoids. 

The main contributions of this thesis are as follows:  

● We introduce the Generalist 3D Cell Phenotyping (GCP) approach, a pipeline 

composed of the nuclei segmentation and an expression level quantification algorithm that detects 

cells with different immunohistochemistry (IHC) subcellular expression patterns, tissue regional 

cell density.  

● Our approach is compatible with FISH and IHC 3D images of different tissue types, 

tissue processing techniques, and image resolutions. 

● GCP is capable of processing TB-size datasets. 

 

 

Roadmap Chapter 2 presents a brief overview of central concepts in cellular and molecular 

profiling of the brain, focusing on its applications in neuroscience. We describe automated 

approaches to image analysis combined with tissue-clearing and light-sheet microscopy that enable 

3D imaging of immunostained intact tissues to perform scalable tissue histology. We also outline 
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previous methods for cell detection, which is one of the most critical steps of cellular and molecular 

profiling of the brain. Chapter 3 introduces GCP, specifying the structure of this pipeline. Chapter 

4 reports three experiments comparing GCP with previous approaches to demonstrate the 

generality, robustness, and scalability of GCP across different subcellular expression patterns, 

tissue regional cell density, tissue types, tissue processing techniques, and image resolutions. 

Finally, we conclude and discuss possible applications in Chapter 5 and suggest the direction for 

future work. 
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Chapter 2 

Related Works/ Background  

 

2.1 Tissue-Clearing and Light-Sheet Microscopy 

Classification/phenotyping cells 

Structural and functional mapping of the brain is crucial in various neuroscience studies, 

especially in understanding brain function and dysfunction. A critical prerequisite in brain 

mapping is the precise quantification of cells by cell identification and classification across the 

whole brain. Scientists obtain plenty of datasets with advanced microscopy and sample preparation 

techniques to study molecular and cellular complexity in the central nervous system. State-of-the-

art tissue-clearing methods, light-sheet microscopy, and antibody labeling enable extracting 

cellular and subcellular information in complex mammalian bodies and large human specimens 

[1]. Such technologies leave researchers with a large amount of image data which is laborious or 

impossible to perform manual analysis, creating a high demand for automated cell quantification.  

2.2 Automated Image Analysis 

Challenge in cell detection and classification 

Quantification methods based on cell body segmentation and classification for cell 

fluorescent images have been developed, most of which trade-off between flexibility and 
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automation. These methods range from fully manual labeling [2] to non-learning-based algorithms 

[3] to learning-based algorithms trained for every specific task [4][5]. Some fully automated deep 

learning approaches are developed for more complicated problems but cover cell detection as one 

sub-task [6]. Fully manual labeling using Corel Draw software or Cell Counter plugin in ImageJ 

[26] is usually used to obtain ground truth for training and evaluation. While retaining the highest 

accuracy, manual labeling is the least time-efficient approach. Aiming to enable fast cell and nuclei 

detection, non-learning-based algorithms include distance transform, morphology operation, 

Laplacian of Gaussian filtering, and radial symmetry-based voting [7] provide seed-seeking 

metrics near the object centroids. While nuclei detection tasks are accomplished with high 

performances, accuracy in cell detection remains relatively low due to the complex nature of cell 

images. Thus, supervised learning methods with both high automation and accuracy have attracted 

much attention recently. SVM, random forests, and deep neural networks have become popular 

approaches to nuclei or cell detection problems [7]. 

Automation reduces cumbersome human efforts to enhance the efficiency of the analysis 

and increase the scalability in big datasets. However, delineate choices of detection approaches are 

demanded to specific datasets. At the same time, the precision of detection results mainly depends 

on the morphology features in the data. For instance, non-learning-based methods usually fail for 

densely packed regions in the IHC images when the cell-type-specific markers located in the cell 

body. Similar problems emerge when dyes only stain the cell cytoplasm due to inaccurate features 

of unstained nuclei areas inside the cells. Fig.1 shows an example of this kind of staining. This 

problem can be relieved by manual adjustment of the parameters, which trades off the automation.  

More and more scientists try to find alternative solutions in learning-based, fully automated 

approaches. Nevertheless, most fully automated methods are trained with massive amounts of 
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specific annotated data. Their application has been restricted mainly to the specialized data used 

as the training sets. These methods fail when the morphology of the objects is significantly 

different from the training data. Furthermore, the enormous quantity of the data generated for large 

tissues becomes a bottleneck [8] with the intensive computation requirement of learning-based 

approaches that expands the processing time for the whole-tissue analysis. 

That is to say, a novel non-learning-based approach needs to be developed in consideration 

of the throughput and the fact that heterogeneous staining patterns hinge the generality of the 

learning-based techniques. 
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Fig. 1 oRGC stained by in human brain organoid tissue 
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Chapter 3 

Generalist 3D cell phenotyping pipeline 

 

In this chapter, we describe GCP, our novel, versatile and generalizable cell detection, and 

classification algorithm. First, we outline the overall components of our pipeline, which performs 

nuclei detection and cell classification to achieve a generalizable cell detection. We then provide 

details about the two core steps and introduce the parameters that need to be decided ahead of the 

whole pipeline. We further show that the automated steps can be manually adjusted as well. Lastly, 

we demonstrate the user interface of the pipeline. 

3.1 Overall components of the pipeline 

Most of the existing fully automated cell detection and classification methods are trained 

with massive amounts of annotated data based on the morphology. Their application has been 

largely restricted to specialized training data. We seek to address this generalization problem by 

avoiding completely relying on learning-based approaches. A non-learning-based algorithm that 

is generally applicable to detecting and categorizing cells in the images from multi-round 

immunostaining is developed.  

In accompany with our available IHC datasets that collect three channels for three specific 

staining, our approach stands on an crucial fact that the existence of membrane segregates each 
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cell. That is to say, the cell components inside an individual cell never cross the boundary of this 

cell. Fig 1-1 shows this concept, in which there is always a shallow shell outside each nucleus that 

only contains its own corresponding cell components, and this rationalize our idea of phenotyping 

cells based on the quantitative measurement of markers inside this region. Fig 1-2 shows the 

schematic of GCP. The generalizable pipeline is composed of 2 objectives:  

Nuclei Detection and Segmentation Algorithm First, we perform nuclei detection to locate 

all cells in the tissue volume. We then use the probability map to segment the accurate edges of 

each nucleus and define regions of interest (ROI) based on the segmentation result. Defining ROI 

based on nuclei detection and segmentation is a crucial part of this pipeline. A seeded watershed 

algorithm based on the geometric morphological properties using curvatures [3] that provides fine 

segmentations even in densely packed regions is used here. 

Cell Classification Algorithm Second, we classify the types of cells according to multi-

channel co-expression in the ROI enabled by the boundary of each segmented nucleus. The cell 

classification is achieved by quantifying the intensity of each voxel inside the ROI based on cell-

type-specific protein/mRNA expression. An automatic thresholding approach is used to classify 

the detected nuclei into specific cell types without laborious training. 
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Fig. 2 Conceptual design of the pipeline 
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Fig. 3 Schematic of GCP 
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3.2 Nuclei detection and segmentation 

Nuclei detection and segmentation algorithms for IHC images have been continuously 

improved in past years. Plenty of learning and non-learning-based nuclei detection and 

segmentation algorithms are practicable for datasets of various types of cells [3][7][9][10][11]. A 

notable advantage in precision for nucleus data is usually observed comparing to the detection and 

segmentation results in cell images.  

We compared available approaches based on accuracy and efficiency and deliberately 

chose one of each from CNNs, supervised learning algorithms, and non-learning-based algorithms: 

(1) Cellpose: Cellpose is a generalist, deep learning-based segmentation method newly developed 

in 2021 [12]. The network trained on a highly varied 2D cell image dataset predicts the spatial 

gradients based on U-Net architecture. To extend the network to 3D segmentation, Cellpose 

predicts and averages the gradient on XY, XZ, and YX slices independently with the trained 2D 

model. The prediction precision of Cellpose outperforms Mask R-CNN, Stardust, and U-Net. (2) 

SVM: Among supervised learning algorithms, the SVM-based methods achieve relatively high 

precision. These approaches detect redundant candidate regions and apply SVM-based supervised 

learning to assess the candidate regions [13][14][15][16]. (3) Curvature-based seeded watershed: 

Atta-Fosu et al. [3] compute eigenvalues of the shape matrix to generate accurate seeds that inherit 

the original shape of their respective cells. Their non-learning-based algorithm outperforms 

popular approaches like MINS [17], SMMF [18], and CellSegm [19] and reaches a Rand Index 

score of 97.05%. 

As the nuclei are usually similar in shape under a specific resolution, both non-learning-

based and learning-based algorithms can be used for nuclei segmentation. In relatively low-
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resolution datasets with more uniform nuclei morphology, non-learning-based algorithms possess 

comparable performance to CNN-based methods. Here in this thesis, we use the curvature-based 

seeded watershed for the datasets collected by 4x objective.  

 

3.3 Cell classification 

The second step of GCP is cell classification based on molecular phenotyping. 

Immunohistochemistry is widely used in research to understand the distribution, localization, and 

morphology of the cells. Under the consideration of the typical morphology of IHC data, we use 

the 1-voxel-thick shell out of the segmented nucleus to define the ROI of the individual cell in 

IHC image data. The average intensity representing the cell-type-specific protein expression level 

of the voxels in the ROI, will be calculated respectively.  

𝐼!"#	 =
%1&	%2&	......&	%
#	()	"(*+,-	./	01%

           (1) 

The automated thresholding method is applied to classify the cells into two groups: Cells 

with high average intensities are classified as positive cells expressing the marker in the channel, 

and cells that do not express this specific marker exhibit low average intensities. We expect to 

automatically find the thresholds to distinct no marker-expressing, low marker-expressing, and 

high marker-expressing groups among cells, so a revised valley-emphasis method [20] is used to 

the statics without a precise bimodal distribution. The Valley-emphasis method is capable of 

handling multi-level thresholding. For M-1 thresholds, the optimal thresholds {𝑡1∗, 𝑡2∗, . . . , 𝑡"#1∗ }are 

given as: 
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{𝑡1∗, 𝑡2∗, . . . , 𝑡"#1∗ } 	= 𝑎𝑟𝑔𝑚𝑎𝑥0$%1$%2$	...$%!"1$(#1-.1− ∑
"#1
)	*	1 ℎ(𝑡))3.∑"+*1 𝑝+𝜇 +

2 36	      (2) 

Where 1−∑"#1)	*	1 ℎ(𝑡)) is the weight of each between-class variance of image term calculated 

by∑"+*1 𝑝+𝜇 +
2  in equation (2). 

Besides the automated approach, a manual adjustment of the threshold is available in the 

pipeline to improve the accuracy. 

While the IHC signal being sensitive and reflective enough of analyte concentrations over 

a broad range [21], Fluorescence in situ hybridization is also widely used as a cytogenetic method 

in tissue profiling. DNA fragments incorporated with fluorophore-coupled nucleotides effectively 

map genes and polymorphic loci onto metaphase chromosomes to construct a physical genome 

map [22][23]. To pursue the generality of our method, we extend the pipeline to be compatible 

with IHC and FISH datasets without tedious parameters adjustment. 

 Image data collected with FISH has the cell-type-specific markers expressed in nuclei. We 

will use a 2-voxel-thick shell covering the 1-voxel-thick part outside the nuclei and a 1-voxel-thick 

part overlapping the nuclei. 

 

3.4 User interface 

 The GCP pipeline is initially written in Python. Users can run their data through the 

pipeline with Jupyter as well as the command line. 
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Chapter 4 

Experiments 

 

4.1 Human brain cell classification with immunohistochemistry 

staining 

4.1.1 Data 

One of the recent image volumes obtained using a customized oblique selective plane 

illumination microscopy (oSPIM) with 2x objective in the Chung Lab is for mELAST (MAP-

ELAST) processed human brain tissue multiplexed with YOYO1, NeuN and Somatostatin. The 

tissue was expanded 2x and resulted in a 4x expanded image dataset. NeuN only stains cytoplasm, 

which results in a varied morphology in the data compared to those markers located in both nuclei 

and cytoplasm. The unstained nuclei located inside the cytoplasm make it difficult for traditional 

non-learning-based algorithm to detect each NeuN+ cells. 

The 4x expanded dataset maintains an even texture inside the nuclei, which results in a 

sufficiency of defining a shell outside the nucleus with non-learning-based nuclei segmentation 

methods. We used the curvature-based seeded watershed to segment nuclei, and the boundary of 

each nucleus helps determine the ROI in step 2 of our pipeline. 
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The data we have for this experiment has a size of 2048x5762x14203. We cropped out a 

sample volume of size 16x256x256 and performed manual labeling to generate ground truth to 

evaluate the precision. 

4.1.2 Baseline Methods 

We choose curvature-based seeded watershed as our benchmark since it is one of the state-

of-the-art non-learning-based algorithms that enable fast and accurate object detection and 

segmentation in biomedical image datasets. The algorithm improves the traditional intensity-based 

watershed and succeeds in most situations, including tissues with closely packed cells [3]. 

4.1.3 Evaluation 

Manual labeling performed in imageJ with the cell counter plugin are used as ground truth 

for cell detection. Fig. 4-1-1,2 and3 visualize the detected result on one of the 2D planes inside the 

3D volume, qualitatively comparing the performance of different approaches. The average 

precision metric (AP) computed from 𝐴𝑃	 = 	 ,-
,-./-./0

 is 0.5 for the test volume processed by 

GCP and 0.4 by curvature-based seeded watershed.                                 

4.1.4 Results 

GCP is capable of performing relatively high accurate cell detection in the human brain 

tissue datasets. The detection result is still reliable even in the dataset with unusual cell morphology, 

which causes the traditional non-learning-based methods to fail. We proved GCP is more 

generalizable in the cell detection task for the data with different staining patterns than other 
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algorithms. Which is to say, it can detect cells in the datasets where the cells are phenotyped by 

the markers located in cytoplasm only, or nucleus only, or both. 
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Fig. 4-1-1 Ground truth for NeuN+ cell detection, manual labeling, number of labeled NeuN+ cells 

(blue ‘o’): 25 
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Fig. 4-1-2 Curvature-based seeded watershed detection results of  NeuN+ cells, threshold of 

probability map: 0.9, number of detected NeuN+ cells  (red ‘x’): 37 
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Fig. 4-1-3 GCP detection results of  NeuN+ cells, threshold of average intensity: 64, number of 

detected NeuN+ cells  (red ‘x’): 23 
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4.2 Fish dataset cell classification for mouse brain  

4.2.1 Data 

The FISH dataset we used to test the compatibility of our pipeline is a mouse brain labeled 

with Avp. Nuclei were labeled by Syto16 and taken under 405 nm channel accompanied with three 

other FISH labeling by oSPIM with 4x objective. 

4.2.2 Evaluation 

Ground truth of the cell detection tasks was generated through manual labeling with the 

cell counter plugin in ImageJ. Fig. 4-2-1,2, and 3 visualize the detected result on one of the 2D 

planes inside the 3D volume. Qualitatively comparing the performance of the approaches, the 

precision is similar between two approaches. 

4.2.3 Results 

Morphology of the FISH labeling is more even compared to some of the IHC datasets. 

Most of the markers are located inside the nuclei and are blob-like. Curvature-based seeded 

watershed generated a similar result as GCP, and the accuracy of both methods are high in the area 

with relatively low cell density area. 
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Fig. 4-2-1 Ground truth for Avp+ cell detection, manual labeling, number of labeled Avp+ cells 

(blue ‘o’): 50 

 



32 

 

Fig. 4-2-2 Curvature-based seeded watershed detection results of  Avp+ cells, threshold of 

probability map: 0.5, number of detected NeuN+ cells (red ‘x’): 43 
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Fig. 4-2-3 GCP detection results of  Avp+ cells, threshold of average intensity: 1324, number of 

detected Avp+ cells (red ‘x’): 46 
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4.3 Microglia detection in mouse brain with immunohistochemistry 

staining 

4.3.1 Data 

To demonstrate the compatibility of GCP to a wide range of tissue and tissue processing 

techniques, we further run our pipeline on an intact mouse brain dataset. Nuclei in this dataset are 

stained by Syto16, the other two channels are for NeuN and IBA1 staining. In the first section of 

the experiment, we already processed the NeuN. We analyzed microglia, which are IBA1+ cells 

in this part. 

4.3.2 Evaluation and results 

The evaluation relies on manual labeling and uses curvature-based seeded watershed 

algorithm as the baseline, which is the same as previous steps. The AP of GCP is 0.42, and 

curvature-based watershed segmentation has an AP of 0.36. Performances of both methods remain 

poor, indicating the challenge in detecting cells with heterogeneous morphology
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Fig. 4-3-1 Ground truth for microglia detection, manual labeling, number of labeled IBA1+ cells 

(blue ‘o’): 33 
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Fig. 4-3-2 Curvature-based seeded watershed detection results of IBA1+ cells (microglia), 

threshold of probability map: 0.8, number of detected NeuN+ cells (red ‘x’): 41 
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Fig. 4-3-3 GCP detection results of IBA1+ cells (microglia), threshold of average intensity: 528, 

number of detected IBA1+ cells (red ‘x’): 38 
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Chapter 5 

Conclusion 

 

We presented the Generalist 3D Cell Phenotyping approach, a novel algorithm for cell 

detection and classification for microscopy image volumes that improves the generality and 

reliability of traditional cell detection methods. We demonstrated our pipeline could accurately 

identify cells in most situations without tedious training and laborious manual adjustment. 

Theoretically, our approach would further aid manual labeling in some cases when most of the 

other methods, even manual detection, failed, for example, when cells are crowded together, and 

the boundary of the cells is difficult to determine. 

In each dataset listed in experiments, we saw that GCP could achieve relatively reliable 

cell detection and classification for most cells even with rare and heterogeneous morphology. 

However, the accuracy still needs further improvement. There are two significant limitations for 

GCP:  

(a) First, ROI in the average intensity calculation heavily relies on the nuclei segmentation 

results. A precise boundary for each nucleus is highly demanded to make sure we classify the cells 

strictly based on the markers located in each individual cell. While a segmentation results larger 

than the actual size of the nucleus results in counting markers inside other cells, a smaller one 

omits the markers in the cytoplasm. Inaccurate segmentation results cause an incorrect 
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identification of the individual cells and harm the automated thresholding based on statistics of the 

whole cell population.  

(b) Second, chromatic aberration while obtaining the image dataset shifts the nuclei 

locations, resulting in inaccurate ROI. Deviation in phase or optical path length from the ideal 

wavefront and optical aberration cause diffractions in imaging [27][28][29]. Based on the types of 

chromatic aberration, the diffractions can be mitigated by shifting and scaling. Introducing 

machine-aided co-registration can be the next step to improve the precision of the pipeline. 

More and more informative but complex data are obtained with the development of tissue 

preparation and imaging technology. The Advancement of a cell detection method is extremely 

important in understanding a large amount of data after acquiring it. As the increasingly 

heterogeneous cell morphology is being observed, it seems likely that generality will continue to 

act as one of the most desired prior in cell phenotyping algorithms. 
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