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Abstract

We consider a setting where data buyers compete in a game of incomplete information, about
which a data seller owns some payoff relevant information. We formulate the problem facing
the seller as a joint information and mechanism design problem: deciding which information
to sell, while at the same time eliciting the private value types of the buyers and collecting
payments. We derive the welfare- and revenue-optimal mechanisms for a class of binary
games. Our results reveal some important features of selling information in competitive
environments: (i) the negative externalities arising from competition among buyers increase
the profitability of selling exclusive information to one of the buyers; (ii) in order for the
buyers to follow the seller’s action recommendations, the extent of exclusive sales must be
limited; (iii) these same equilibrium constraints also limit the distortions in the allocation
of information distortion that can be introduced by a monopolist data seller; (iv) the fiercer
the competition across buyers the stronger the previous two limitations, and the weaker the
impact of market power on the equilibrium allocation of information.

Thesis Supervisor: Munther A. Dahleh
Title: William A. Coolidge Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In online and offline markets alike, most sales of information take place in competitive

environments: credit bureaus sell consumer scores to competing lenders; and large digital

platforms sell targeted audiences to competing retailers, e.g., through keyword advertising

slots or sponsored listings.

Settings such as these share two key properties: (i) the marginal profitability of acquiring

information for any buyer is unknown to the seller, and (ii) selling information to a buyer

can have a (negative) impact on other buyers’ profits.

In this work, we study the design of mechanisms for selling information in the presence of

allocative externalities. Our work is directly inspired by [1], in which these externalities were

modeled as intrinsic to the buyers: the negative marginal effect on a given buyer of another

buyer acquiring information was assumed to be part of their privately observed type. In

contrast, we model these externalities as explicitly stemming from the competition in which

the buyers engage.

Our goal is to propose a tractable formulation of this situation and to answer a range of

questions about the allocative and welfare properties of such information selling mechanisms,

including:

• What is the structure of the optimal (revenue maximizing) mechanism? How does it

depend on the form and on the intensity of the downstream competition?

• How does the information being sold affect the equilibrium strategies and payoffs in

7



the downstream game?

• How does the provision of information to competing players translate into revenue for

the seller, and into social welfare? In other words, can we relate the value of data for

the seller to in terms of its added value in the downstream competition?

We formulate the seller’s choice of the optimal mechanism for the sale of information

as an information design problem with elicitation [5]. Specifically, we consider two data

buyers and a data seller. The data buyers compete in a simultaneous-moves, finite game of

incomplete information (the “downstream game”). Loosely, the more information a buyer

has, the better her decisions are in the downstream game, which results in lower payoffs for

the other player.

The seller is informed about a payoff relevant state variable: in our simplest example, the

state identifies which action is dominant for each player in the downstream game. The seller

maximizes revenues by selling this information. However, each buyer also has a private value

type (e.g., a technology parameter) that scales her payoffs in the downstream game linearly.

Thus, each buyer has a private willingness to pay for any additional information the seller

offers. In turn, the seller must first elicit the buyers’ private payoff types, and then send them

informative signals. This is a joint mechanism and information design problem, wherein the

seller’s choice is subject to the buyers’ obedience and truthful reporting constraints.

Our leading example considers the interaction between a digital platform (information

seller) and two merchants (information buyers) who wish to leverage the platform’s informa-

tion to offer (e.g., to advertise) one of their products to a single consumer. We first describe

why this economically relevant setting is indeed one of information trading. We then describe

our mechanism design problem in the context of this example.

Motivating Example Large digital platforms (e.g., Amazon, Facebook, and Google in

the US, Alibaba and JD in China) collect an ever-increasing amount of information on their

users’ online behavior (e.g., browsing, shopping, social media interactions), which allows

them to precisely estimate individual consumers’ tastes for various products.

These platforms typically monetize their proprietary information by selling targeted ad-

vertising campaigns (Facebook, Google) or sponsored marketplace listings (Amazon) to ad-
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vertisers and retailers. Such practices amount to indirect sales of information (see [2] for

a thorough discussion): while the platform does not trade its consumers’ data for payment

(direct sales), it is nonetheless able to create value for merchants by allowing them to con-

dition their strategies (in particular, which product to offer) on the consumers’ information

(e.g., their browsing or shopping history, and third-party cookies). In the context of our

static model, direct transfers of information and indirect sales of information are, in fact,

equivalent.1

For an individual merchant, the expected volume of sales on a platform is driven by two

factors: (i) the degree of targeting, or precision of its campaign, as measured by the ability

to show the right product to each consumer; (ii) the exclusivity of its campaign, i.e., the

mismatch between its competitors’ offers and the consumer’s tastes. Merchants are willing

to pay more for better-targeted campaigns, and even more for exclusive access to targeted

campaigns.

However, the merchants’ willingness to pay for an advertising campaign also depends

on the profitability of making each sale, i.e., on their cost structure. As the latter is pri-

vately known to the merchant, the platform must elicit it through its choice of mechanism.

Abstracting from the details and dynamics of online advertising auctions, the platform’s

problem reduces to designing a menu of (information structure, payment) pairs. Each infor-

mation structure corresponds to an advertising campaign with a certain degree of precision

and exclusivity.

An information structure maps the true state (i.e., the consumer’s tastes) and the com-

peting merchants’ choices into a distribution over informative signals. Thus, each buyer

chooses an information structure from the platform’s menu and pays the platform upfront,

but the joint distribution of states and signals depends on all buyers’ choices.

These signals can be viewed as action recommendations, e.g., what product to show the

consumer. As such, the platform’s problem is subject to two types of constraints simultane-

ously: first, the merchant must find it worthwhile to follow the platform’s recommendation

(obedience constraints); second, the merchant must choose an option from the platform’s

1In a more realistic, dynamic setting, there are several reasons why digital platforms prefer indirect sales,
e.g., maintaining a reputation for privacy with their consumers, and using click-through rates to certify the
quality of their information.
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menu that correctly reveals its own preferences (truthful reporting constraints).

Summary of the Results We begin by setting up the model as a joint information and

mechanism design problem, we restrict attention to a linear setting with independent types.

For a binary example in this class, we characterize the welfare- and the revenue-maximizing

mechanisms.

Our results highlight two defining features of selling information to competing players,

and show how information and competition interact in shaping the optimal mechanism. Both

features distinguish the sale of information to competing firms from the sale of a physical

good, and from the case of a single buyer.

First, any buyer can always ignore (or indeed, reverse) the seller’s recommendation. The

resulting obedience constraint limits the social planner’s ability to reveal information to one

player exclusively. Likewise, obedience disciplines the monopolist seller’s ability to distort the

allocation of information to maximize revenue at the expense of social welfare. Intuitively,

the seller wants to distort the allocation of any buyer type with a negative Myersonian virtual

value, so as to minimize her payoff and reduce the information rents of higher types.

In our setting, this distortion corresponds to recommending the wrong action in every

state. However, the buyer would not follow such a recommendation in any mechanism that

does so too often. Therefore, the seller can do no better than to reveal “zero net information”

to a low-value buyer, i.e., to probabilistically send the right and the wrong recommendation

in a way that leaves the buyer indifferent over any course of action.

There are, of course, many such information structures (including entirely uninformative

ones). However, the seller is not indifferent among them. Indeed, she prefers to reveal the

correct state to both buyers when their types are sufficiently low. This relaxes a low type’s

obedience constraint and allows the seller to issue the correct recommendation to one player

exclusively (and the wrong recommendation to the other player) when their two types are

sufficiently different.

Second, providing information to one firm naturally imposes a negative externality on its

competitors. In our setting, these negative externalities expand the profitability of selling

information. In particular, each buyer is willing to pay a positive price as long as either (a)
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she is strictly better off following the seller’s recommendation, or (b) her opponent does not

receive the correct recommendation with probability one. As a result, the seller can charge

a strictly positive price to some types with negative Myersonian virtual values, including

some types whose obedience constraint binds, i.e., those who do not receive any valuable

information themselves.

Related Literature [3] study the sale of data to a single buyer with private information

about her beliefs over a payoff relevant state. Their problem is similar to us insofar as the

optimal mechanism can be represented through a menu of options (i.e., distributions over

action recommendations) and associated prices. However, because there is a single buyer,

the externalities that are central to our analysis do not arise.

[6] study a very similar setting, but only consider mechanisms with a single option: selling

the true state distorted by Gaussian noise. Their problem then consists of finding the optimal

covariance matrix of the noise and the associated prices. In particular, the covariance matrix

is not designed as a function of the buyers’ private types.

As mentioned, our work is closely related to the information design literature, e.g., [4],

[11], and the references therein. Most papers in this literature view the the problem as a

pure information design question as opposed to a mechanism design question in a quasilinear

setting. Consequently, these papers do not derive the implications of optimal information

design for the designer’s revenue.

[12] study competing information sellers who offer selling exogenous, imperfect informa-

tion structures about a binary state to buyers with known types who compete in a down-

stream game with binary actions.

Finally, [8] and [7] study specific instances of selling information in competitive markets.

The former consider the sale of cost information to a large number of perfectly competitive

firms, each one facing a privately informed manager. The latter sell information about a

consumer’s location along a Hotelling line to two firms with fixed locations who can use this

data to set personalized prices.
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Chapter 2

Model

We consider 𝑛 buyers who compete in a game of incomplete information (the “downstream

game”), and a monopolist data seller who observes a payoff relevant state variable. Loosely

speaking, the seller elicits the buyers’ private payoff types, and sells informative signals to the

data buyers. A complete specification of our model thus comprises (i) the payoff functions

of the data buyers in the downstream game, (ii) the information structure describing which

payoff relevant parameters is observed by each agent, and (iii) the information exchange and

transfers between the data buyers and the data seller occurring prior to the downstream

game. We now describe each component in turn after introducing some notation.

Notation For a tuple of sets (𝒮𝑖)𝑖∈[𝑛], we write 𝒮 =
∏︀𝑛

𝑖=1 𝒮𝑖 and 𝒮−𝑖 =
∏︀

𝑗 ̸=𝑖 𝒮𝑗. Similarly

for 𝑠 ∈ 𝒮, 𝑠𝑖 (resp. 𝑠−𝑖) denotes the projection of 𝑠 on 𝒮𝑖 (resp. 𝒮−𝑖). Finally ∆(𝒮) denotes

the set of probability distributions over 𝒮.

Downstream Game We consider a game of incomplete information between 𝑛 players,

depending on an unknown parameter 𝜃 (the state of the world) and denote by Θ the set of

all possible states.

Each player 𝑖 ∈ [𝑛] is described by a set of types 𝒱𝑖, a set of actions 𝒜𝑖, and a utility

function 𝑢𝑖 : 𝒜× Θ × 𝒱 → R.
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Information Structures The monopolist information seller chooses a set of signals 𝒮,

and a message (bid) space ℬ to design a communication rule 𝜎 : Θ × ℬ → ∆(𝒮) and

payment function 𝑝 : Θ × ℬ → R𝑛
≥0. Given a vector of bids 𝑏 ∈ ℬ and state 𝜃 ∈ Θ, we write

𝜎( · ; 𝜃, 𝑏) : 𝒮 → [0, 1] for the corresponding probability distribution over 𝒮.

The players’ utility functions (𝑢𝑖)𝑖∈[𝑛], the mechanism (𝜎, 𝑝), as well as the joint distri-

bution of the random variables (𝜃, 𝑉 ) ∈ Θ × 𝒱 are commonly known at the onset of the

game.

Timing The interaction between the information seller and the players, and among the

players in the downstream game, takes place as follows:

1. Each player 𝑖 ∈ [𝑛] observes their type 𝑉𝑖 and the information seller observes the state

𝜃.

2. Each player reports a bid 𝐵𝑖 to the information seller, where 𝐵𝑖 is a 𝑉𝑖-measurable

random variable in ℬ𝑖.

3. The information seller generates signals 𝑆 ∈ 𝒮 distributed as 𝜎(𝜃, 𝐵) and reveals 𝑆𝑖 to

each player 𝑖 ∈ [𝑛] in exchange for payment 𝑝𝑖(𝜃, 𝐵).

4. Each player 𝑖 chooses an action 𝐴𝑖 ∈ 𝒜𝑖 which is (𝑉𝑖, 𝑆𝑖)-measurable and obtains utility

𝑢𝑖(𝐴; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝐵).

Linear Payoffs Beginning with Section 3.2, we shall restrict attention to a specific in-

stance of our problem. We assume that the random variables (𝜃, 𝑉1, . . . , 𝑉𝑛) are mutually

independent and that the utility of buyer 𝑖 only depends on 𝑉 through 𝑉𝑖 only, and it does

so in a linear manner:

𝑢𝑖(𝑎; 𝜃, 𝑣) = 𝑣𝑖 · 𝜋𝑖(𝑎; 𝜃)

for some function 𝜋𝑖 : 𝒜×Θ → R. In other words, the buyers have private-value, payoff types

that capture their marginal valuations, and reveal nothing about the state of the world.

This setup allows us to describe settings that capture our motivating scenario (sponsored

links or listing) above, such as the following examples.
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Example 1 (Competing Locations). Consider a variant of Hotelling’s product-location game.

A unit mass of consumers are located along the real line according to a Gaussian distribution

𝒩 (𝜃, 1). As customary in discrete-choice models of product differentiation, a consumer’s

location equivalently represents her ideal product variety. Two competing firms 𝑖 = 1, 2 (who

do not observe the mean of the consumers’ distribution 𝜃), choose a single location (i.e.,

offer a single variety from a continuum of products) 𝑎𝑖 ∈ R. For a given action profile

(𝑎1, 𝑎2) ∈ R2, each firm captures the mass of consumers closest to it. Thus, if 𝑎1 < 𝑎2, the

quantity sold by firm 1 is given by

𝜋1(𝑎1, 𝑎2; 𝜃) =
1√
2𝜋

∫︁ 𝑎1+𝑎2
2

−∞
𝑒−

1
2
(𝑥−𝜃)2𝑑𝑥.

If the two firms were homogeneous, this would describe a zero-sum game. However, each

firm is privately informed about its unit profit margin, i.e., firm 𝑖’s payoff in the downstream

game is given by 𝑣𝑖 ·𝜋𝑖. The asymmetry in the two firms’ profitability levels affects the seller’s

incentives to design mechanism that reveal more or less precise information about 𝜃.

The following example describes an even simpler setup that is meant to capture the

reduced-form competition between two predictors.

Example 2 (Competing Predictions). Suppose the state of the world follows a known Gaus-

sian distribution 𝜃 ∼ 𝒩 (𝜇, 1). Each player wishes to minimize a quadratic loss function

𝐿𝑖(𝑎𝑖; 𝜃) = −(𝑎𝑖−𝜃)2 and externalities are linear, in the sense that 𝜋𝑖(𝑎; 𝜃) = −𝐿𝑖(𝑎𝑖; 𝜃)−𝜆 ·

𝐿𝑗(𝑎𝑗; 𝜃), where 𝒜1 = 𝒜2 = R and 𝜆 ∈ (0, 1). Each player is also privately informed about

the marginal value of scaling down her losses, i.e., her payoffs in the downstream game are

again given by 𝑣𝑖 · 𝜋𝑖.

Unlike in Example 1, where a player’s ideal location choice depends both on the state

and on her opponent’s location, Example 2 does not involve strategic interaction among

the players, because each one has a dominant strategy to choose an action that matches the

(unknown) state 𝜃. In Chapter 4, Sections 4.2 and 4.3, we shall fully solve for the welfare- and

revenue-maximizing mechanisms for the downstream game described in Example 3, which is

a binary state and action version of the strategic setting in Example 2.
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Chapter 3

Incentive Compatibility and Solution

Concept

3.1 Definitions

In the game described in Chapter 2, each data buyer makes two strategic decisions: (i)

report a bid 𝐵𝑖 ∈ ℬ𝑖 after observing their private type 𝑉𝑖, and (ii) take an action 𝐴𝑖 in the

downstream game after receiving signal 𝑆𝑖 ∈ 𝒮𝑖 from the information seller.

By the revelation principle for dynamic games, see e.g. Section 6.3 in [10], it is without

loss of generality to assume that the seller’s set of signals 𝒮𝑖, is equal to the set of actions

𝒜𝑖, and that the buyers’ reports lie in their own type space, 𝒱𝑖, instead of a general message

space ℬ𝑖, as long as we consider incentive compatible mechanisms.

For such mechanisms, a signal from the seller can thus be thought of as recommending

to the buyer which action to take in the downstream game. Henceforth, we therefore denote

the seller’s recommendation by 𝐴𝑖, and then buyer’s choice of action by 𝑎𝑖. Incentive com-

patibility (below) requires each buyer to both report her true type and to follow the seller’s

recommendation.

Definition 1 (Incentive Compatibility). A mechanism (𝜎, 𝑝) is incentive compatible if, for

17



each (𝑣𝑖, 𝑣
′
𝑖) ∈ 𝒱2

𝑖 and for each deviation function 𝛿 : 𝒜𝑖 → 𝒜𝑖,

E
[︀
𝑢𝑖(𝐴𝑖, 𝐴−𝑖; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣𝑖] ≥

E
[︀
𝑢𝑖(𝛿(𝐴𝑖), 𝐴−𝑖; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑣

′
𝑖, 𝑉−𝑖) |𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣′𝑖],

where 𝐴 is distributed as 𝜎(𝜃, 𝐵𝑖, 𝑉−𝑖). The input into the deviation function 𝛿 is the seller’s

recommended action, and its output is the action the buyer takes after receiving the recom-

mendation.

This definition of incentive compatibility is closely related to the one of [5, Section 3.1]

in the context of information design with elicitation. Unlike in our setting, this previous

definition did not consider any payment to the information designer.

Definition 1 requires the mechanism to be robust to double deviations in which the data

buyer both misreports their private type and deviate from the seller’s recommendation. This

implies in particular, when considering single deviations, that the mechanism is both truthful

and obedient as defined next.

Definition 2 (Obedience). A mechanism (𝜎, 𝑝) is obedient if players have no incentive to

deviate from the action recommendation of the information seller assuming everyone reports

their type truthfully. Formally, for each 𝛿 : 𝒜𝑖 → 𝒜𝑖 and 𝑣𝑖 ∈ 𝒱𝑖,

E
[︀
𝑢𝑖(𝐴𝑖, 𝐴−𝑖; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖] ≥ E

[︀
𝑢𝑖(𝛿(𝐴𝑖), 𝐴−𝑖; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖]

where 𝐴 is distributed as 𝜎(𝜃, 𝑉 )—in particular, data buyer 𝑖’s report is truthful.

Equivalently one can write obedience as: for each (𝑎𝑖, 𝑎
′
𝑖) ∈ 𝒜2

𝑖 and 𝑣𝑖 ∈ 𝒱𝑖,

E
[︀
𝑢𝑖(𝑎𝑖, 𝐴−𝑖; 𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖, 𝐴𝑖 = 𝑎𝑖] ≥ E

[︀
𝑢𝑖(𝑎

′
𝑖, 𝐴−𝑖; 𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖, 𝐴𝑖 = 𝑎𝑖] ,

where 𝐴 is distributed as 𝜎(𝜃, 𝑉 ).

The first expression shows data buyer 𝑖’s strategic behavior before receiving the action

recommendation when she intends to report her type in the first stage of the game. At this

stage, the buyer’s strategy specifies a course of action following any action recommendation
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from the seller. Obedience requires that no deviations 𝛿 : 𝒜𝑖 → 𝒜𝑖 are more profitable than

obedience, i.e., the identity mapping 𝑖𝑑 : 𝒜𝑖 → 𝒜𝑖.

The second expression shows data buyer 𝑖’s strategic behavior after receiving the action

recommendation at the second stage, and expresses that no other action results in a better

expected utility. As mentioned before, these two are equivalent.

The second expression (which assumes every player reports her type truthfully) shows

that obedience is only a property of the downstream game and of the recommendation rule

𝜎, which thus correlates the actions of the data buyers. The distribution of actions resulting

from an obedient recommendation rule in a game of incomplete information is a Bayes

correlated equilibrium as defined and studied in [4, 5].

Definition 3 (Truthfulness). A mechanism is truthful if players have no incentive to mis-

report their type, assuming that everyone follows the seller’s recommendations in the down-

stream game. Formally, for each (𝑣𝑖, 𝑣
′
𝑖) ∈ 𝒱2

𝑖 ,

E
[︀
𝑢𝑖(𝐴; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉

′
𝑖 , 𝑉−𝑖) |𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣𝑖] ≥ E

[︀
𝑢𝑖(𝐴; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉

′
𝑖 , 𝑉−𝑖) |𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣′𝑖]

where 𝐴 is distributed as 𝜎(𝜃, 𝐵𝑖, 𝑉−𝑖).

As already mentioned, incentive compatibility implies both obedience and truthfulness,

but the converse is not true in general. However, as we will see in Chapter 4, when pri-

vate types are independent linear valuation coefficients, the converse holds and incentive

compatibility is thus equivalent to having obedience and truthfulness.

The externalities across the players in the downstream game imply that the recommen-

dations given by the data seller affects the players’ utilities even when they choose not to

participate in the mechanism. This is because players engage in downstream competition

even when they acquire no information from the seller, and possibly face fiercer competition

when other players receive additional information instead.

Therefore, specifying the players’ individual rationality constraints in our setting requires

characterizing the outside option of the buyers, which results from the information structure

chosen by the seller when a player chooses not to participate in the mechanism. Regardless

of her objective function, it is optimal for the seller to choose the worst possible information
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structure for a non-participating player. We then have the following definition.

Definition 4 (Individual Rationality). For each 𝑣𝑖 ∈ 𝒱𝑖,

E
[︀
𝑢𝑖(𝐴; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖] ≥ min

𝜎−𝑖

max
𝑎𝑖∈𝒜𝑖

E
[︀
𝑢𝑖(𝑎𝑖, 𝐴−𝑖; 𝜃, 𝑉 ) |𝑉𝑖 = 𝑣𝑖]

where the minimization on the right-hand side is over all communication rules 𝜎−𝑖 : Θ ×

𝒱−𝑖 → ∆(𝒜−𝑖) and where 𝐴−𝑖 is distributed as 𝜎−𝑖(𝜃, 𝑉−𝑖).

3.2 Characterization of Incentive Compatible and Truth-

ful Mechanisms

For the rest of the work, we will focus on a specialized version of the model in Chapter 2

which covers settings such as those of Examples 1 and 2. In particular, we make the following

assumption.

Assumption 1 (Linear Payoffs). The random variables (𝜃, 𝑉1, . . . , 𝑉𝑛) are mutually inde-

pendent and for each 𝑖 ∈ [𝑛], the utility of buyer 𝑖 is given by

𝑢𝑖(𝑎; 𝜃, 𝑣) = 𝑣𝑖 · 𝜋𝑖(𝑎; 𝜃)

for some function 𝜋𝑖 : 𝒜× Θ → R.

With this formulation, the downstream game is interpreted as an imperfectly competitive

market in which the outcome (𝜋1, . . . , 𝜋𝑛) determines the quantity sold by each data buyer,

and their types represent their marginal value of making a sale (i.e., their unit profit mar-

gins). Because the downstream game determines market shares, we maintain the following

assumption on the nature of competition.

Assumption 2 (Competitive Market). Players in the downstream game impose negative

externalities on each other, that is,

𝜋𝑖(𝑎𝑖, 𝑎−𝑖; 𝜃) ≥ 𝜋𝑖(𝑎
′
𝑖, 𝑎−𝑖; 𝜃) =⇒ ∀𝑗 ̸= 𝑖 𝜋𝑗(𝑎𝑖, 𝑎−𝑖; 𝜃) ≤ 𝜋𝑗(𝑎

′
𝑖, 𝑎−𝑖; 𝜃) ,
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for each 𝑎𝑖, 𝑎
′
𝑖 ∈ 𝒜𝑖, 𝑎−𝑖 ∈ 𝒜−𝑖 and state 𝜃 ∈ Θ.

We begin the analysis with a characterization of incentive compatibility (Definition 1).

For the linear payoff model with independent types, the next proposition shows that incentive

compatibility reduces to requiring truthfulness and obedience separately. In other words

double deviations are not beneficial to the data buyers whenever a mechanism is immune to

single deviations.

Proposition 1 (IC Characterization). Under Assumption 1, a mechanism is incentive com-

patible whenever it is truthful and obedient.

Proof. Indeed we can write, using the notations of Definition 1, for each (𝑣𝑖, 𝑣
′
𝑖) ∈ 𝒱𝑖:

E
[︀
𝑢𝑖(𝐴; 𝜃, 𝑉 ) − 𝑝𝑖(𝜃, 𝑉 )|𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣𝑖] = E

[︀
𝑣𝑖 · 𝜋𝑖(𝐴, 𝜃) − 𝑝𝑖(𝜃, 𝑉 )|𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣𝑖]

≥ E
[︀
𝑣′𝑖 · 𝜋𝑖(𝐴, 𝜃) − 𝑝𝑖(𝜃, 𝑣

′
𝑖, 𝑉−𝑖)|𝑉𝑖 = 𝑣𝑖, 𝐵𝑖 = 𝑣′𝑖]

= E
[︀
𝑣′𝑖 · 𝜋𝑖(𝐴, 𝜃) − 𝑝𝑖(𝜃, 𝑣

′
𝑖, 𝑉−𝑖)|𝐵𝑖 = 𝑣′𝑖]

= E
[︀
𝑢𝑖(𝐴; 𝜃, 𝐵𝑖, 𝑉−𝑖) − 𝑝𝑖(𝜃, 𝐵𝑖, 𝑉−𝑖)|𝐵𝑖 = 𝑣′𝑖],

where the first equality is by Assumption 1, the inequality is by truthfulness (Definition 3),

the third equality is because 𝐴 is independent of 𝑉𝑖 conditioned on 𝐵𝑖 by Assumption 1, and

the last equality uses the form of the payoffs from Assumption 1.

Moreover, note that since 𝐴 is distributed as 𝜎(𝜃, 𝐵𝑖, 𝑉−𝑖), the last expectation in the

previous derivation is exactly of the same form as the left-hand side in the first equation of

Definition 2 for a vector of types (𝐵𝑖, 𝑉−𝑖). Thus, by obedience for all 𝛿 : 𝒜𝑖 → 𝒜𝑖,

E
[︀
𝑢𝑖(𝐴; 𝜃, 𝐵𝑖, 𝑉−𝑖) − 𝑝𝑖(𝜃, 𝐵𝑖, 𝑉−𝑖)|𝐵𝑖 = 𝑣′𝑖] ≥ E

[︀
𝑢𝑖(𝛿(𝐴𝑖), 𝐴−𝑖, 𝜃) − 𝑝𝑖(𝜃, 𝐵𝑖, 𝑉−𝑖)|𝐵𝑖 = 𝑣′𝑖].

The previous two inequalities together imply incentive compatibility, which concludes the

proof. ⊓⊔

In order to characterize truthful mechanisms, we follow the classical result of [9], which

we restate in Proposition 2 below using our notation. In particular, recall that, in the general

formulation of our model, the payment function 𝑝 is allowed to depend on the realized state
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and on every player’s reported type. However, note that we can restrict attention without

loss of generality to interim-stage payments, i.e., where players’ payments are a function of

their own report only.

Thus, let (𝜎, 𝑝) be a mechanism and define for player 𝑖 ∈ [𝑛], the interim share �̃�𝑖(𝑉𝑖) :=

E[𝜋𝑖(𝐴; 𝜃) |𝑉𝑖] and interim payment 𝑝𝑖(𝑉𝑖) := E[𝑝𝑖(𝜃, 𝑉 ) |𝑉𝑖]. We then have the following

familiar characterization result. For completeness, a proof is provided in Appendix A.

Proposition 2 (Truthfulness Characterization). The mechanism (𝜎, 𝑝) is truthful if and

only if for each player 𝑖:

1. The interim share �̃�𝑖 is non-decreasing.

2. The interim payment 𝑝𝑖 is given for 𝑣𝑖 ∈ 𝒱𝑖 by

𝑝𝑖(𝑣𝑖) = 𝑣𝑖 · �̃�𝑖(𝑣𝑖) − 𝑣 · �̃�𝑖(𝑣) + 𝑝𝑖(𝑣) −
∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠 . (3.1)

3.3 Characterization of Obedient Mechanisms

For the rest of the work, we will further restrict attention to the following example in order

to characterize obedient mechanisms in this section and optimal mechanisms in Chapter 4

(for both the social planner and the monopolist seller).

Example 3 (Main Example). Consider two states of the world, Θ = {0, 1}, two players,

and two actions for each player in the downstream game, 𝒜1 = 𝒜2 = {0, 1}. The payoffs 𝜋𝑖

in the downstream game are as follows:

0 1

0 1 − 𝛼, 1 − 𝛼 1,−𝛼

1 − 𝛼, 1 0, 0

𝜃 = 0

0 1

0 0, 0 − 𝛼, 1

1 1,−𝛼 1 − 𝛼, 1 − 𝛼

𝜃 = 1
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In each state of the world, it is a dominant strategy for each player to play the action

matching that state. Furthermore, each player benefits from the other player choosing the

wrong action. Formally, for {𝑖, 𝑗} = {1, 2},

𝜋𝑖(𝑎; 𝜃) = 1{𝑎𝑖 = 𝜃} − 𝛼1{𝑎𝑗 = 𝜃} . (3.2)

A special case of this game occurs when 𝛼 = 1. In this case we have a zero-sum game

which is fully competitive. It can be viewed as a simplified version of the Hotelling model

of Example 1, where every consumer is located in one of two locations 𝜃 ∈ {0, 1}, which is

unknown to the players. If both players locate themselves in a same place they will serve

the consumer with probability 1/2. Otherwise, the player in the correct location wins the

consumer with probability 1. By varying 𝛼 ∈ [0, 1], one can change the intensity of the

competition between the firms.

In addition to having a dominant strategy in each state of the world, a crucial property

of the game in Example 3 is that the gain in utility when going from the suboptimal to the

optimal action does not depend on the state nor on the action of the other player. This

allows us to characterize obedient recommendation rules simply as those that recommend

the optimal action to each player with sufficiently high probability.

In particular, the dominant strategy for each player in the absence of any signal about

𝜃 is to play the action corresponding to the most likely state under the common prior. For

such a strategy,

P[𝐴𝑖 = 𝜃 |𝑉𝑖] = max{P[𝜃 = 0],P[𝜃 = 1]}.

Hence, the characterization of obedience in Proposition 3 below states that following their

recommended action makes the players more likely to be correct than if they were simply

basing their action on the common prior.

Proposition 3 (Obedience Characterization). Under Assumption 1 and for the downstream

game given by Example 3, a recommendation rule 𝜎 is obedient if and only if for each player

𝑖 ∈ {1, 2}, it holds almost surely that

P[𝐴𝑖 = 𝜃 |𝑉𝑖] ≥ max{P[𝜃 = 0],P[𝜃 = 1]} .
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Proof. Since there are only two actions, 𝑎𝑖 ∈ {0, 1}, we can rewrite obedience as

E[𝜋𝑖(𝑎𝑖, 𝐴𝑗; 𝜃) − 𝜋𝑖(1 − 𝑎𝑖, 𝐴𝑗; 𝜃) |𝐴𝑖 = 𝑎𝑖, 𝑉𝑖] ≥ 0, (3.3)

for {𝑖, 𝑗} = {1, 2} and 𝑎𝑖 ∈ {0, 1}. Using (3.2), we have that almost surely

𝜋𝑖(𝑎𝑖, 𝐴𝑗; 𝜃) − 𝜋𝑖(1 − 𝑎𝑖, 𝐴𝑗; 𝜃) = 1{𝑎𝑖 = 𝜃} − 𝛼1{𝐴𝑗 = 𝜃} −
(︀
1{1 − 𝑎𝑖 = 𝜃} − 𝛼1{𝐴𝑗 = 𝜃}

)︀
= 1{𝑎𝑖 = 𝜃} − 1{𝑎𝑖 = 1 − 𝜃} .

where the last expression crucially does not depend on 𝐴𝑗. Hence, obedience is equivalent

to

P[𝜃 = 𝑎𝑖 |𝐴𝑖 = 𝑎𝑖, 𝑉𝑖] − P[𝜃 = 1 − 𝑎𝑖 |𝐴𝑖 = 𝑎𝑖, 𝑉𝑖] ≥ 0 ,

for 𝑖 ∈ {1, 2} and 𝑎𝑖 ∈ {0, 1}.

By Bayes’ rule and independence of 𝜃 and 𝑉𝑖, this is equivalent to

P[𝜃 = 𝑎𝑖] · P[𝐴𝑖 = 𝑎𝑖 | 𝜃 = 𝑎𝑖, 𝑉𝑖] ≥ P[𝜃 = 1 − 𝑎𝑖] · P[𝐴𝑖 = 𝑎𝑖 | 𝜃 = 1 − 𝑎𝑖, 𝑉𝑖] ,

which is in turn equivalent to P[𝐴𝑖 = 𝜃 |𝑉𝑖] ≥ P[𝜃 = 1 − 𝑎𝑖]. Since the left-hand side no

longer depends on 𝑎𝑖, we can combine the two constraints when 𝑎𝑖 = 0 and when 𝑎𝑖 = 1 and

obtain the statement of the lemma. ⊓⊔
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Chapter 4

Welfare and Revenue Optimal

Mechanisms

We now turn to the seller’s objective and consider both social welfare and revenue maxi-

mization. We show below that, for the downstream game of Example 3, both objectives can

be written as a weighted sum of the probabilities that the mechanism recommends the dom-

inant strategy to each player (see Eq. (4.1) below). Hence, we first describe in Section 4.1

an optimal mechanism for a general class of objective functions of this form, which we then

instantiate in Section 4.2 and Section 4.3 to derive mechanisms maximizing social welfare

and revenue, respectively.

4.1 Optimal Mechanisms

We consider a general objective function of the form

E
[︀
𝑤1(𝑉 )P[𝐴1 = 𝜃 |𝑉 ] + 𝑤2(𝑉 )P[𝐴2 = 𝜃 |𝑉 ]

]︀
(4.1)

for functions 𝑤1, 𝑤2 : 𝒱 → R. The form of this expression as well as the characterization

of obedience obtained in Proposition 3 suggest that a convenient parametrization of the

auctioneer’s problem is in terms of the functions ℎ𝑖 : 𝑉 ↦→ P[𝐴𝑖 = 𝜃 |𝑉 ] from 𝒱 to [0, 1] for

𝑖 ∈ {1, 2}. These functions can easily be expressed in terms of the recommendation rule 𝜎.
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Indeed, we have almost surely

P[𝐴1 = 𝜃 |𝑉 ] = E[1{𝐴1 = 𝜃} |𝑉 ]

= E[1{𝐴1 = 𝜃, 𝐴2 = 1 − 𝜃} + 1{𝐴1 = 𝜃, 𝐴2 = 𝜃} |𝑉 ]

= E[𝜎(𝜃, 1 − 𝜃; 𝜃, 𝑉1, 𝑉2) |𝑉 ] + E[𝜎(𝜃, 𝜃; 𝜃, 𝑉1, 𝑉2) |𝑉 ]

and similarly for P[𝐴2 = 𝜃 |𝑉 ]. Conversely the following lemma shows how to construct a

recommendation rule which has ℎ1 and ℎ2 as its marginals.

Lemma 1 (Recommendation Rule from Marginals). Let ℎ1 and ℎ2 be two measurable func-

tions from 𝒱 to [0, 1], then there exists a recommendation rule 𝜎 : Θ×𝒱 → ∆(𝒜) such that,

almost surely for 𝑖 ∈ {1, 2},

P[𝐴𝑖 = 𝜃 |𝑉 ] = ℎ𝑖(𝑉 ) .

Proof. Given two functions ℎ1 and ℎ2 satisfying the lemma’s assumptions, one can choose

for example 𝜎 such that for all (𝑥, 𝑣1, 𝑣2) ∈ Θ×𝒱1 ×𝒱2, the distribution 𝜎(𝑥, 𝑣1, 𝑣2) ∈ ∆(𝒜)

has independent coordinates with marginals given by ℎ1 and ℎ2 respectively. Formally, we

have

𝜎(𝑎1, 𝑎2;𝑥, 𝑣1, 𝑣2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ1(𝑣1, 𝑣2)ℎ2(𝑣1, 𝑣2) if (𝑎1, 𝑎2) = (𝑥, 𝑥)

ℎ1(𝑣1, 𝑣2)
(︀
1 − ℎ2(𝑣1, 𝑣2)

)︀
if (𝑎1, 𝑎2) = (𝑥, 1 − 𝑥)(︀

1 − ℎ1(𝑣1, 𝑣2)
)︀
ℎ2(𝑣1, 𝑣2) if (𝑎1, 𝑎2) = (1 − 𝑥, 𝑥)(︀

1 − ℎ1(𝑣1, 𝑣2)
)︀(︀

1 − ℎ2(𝑣1, 𝑣2)
)︀

if (𝑎1, 𝑎2) = (1 − 𝑥, 1 − 𝑥),

which ends the proof. ⊓⊔

In other words, any choice of the marginal functions P[𝐴𝑖 = 𝜃 |𝑉 ] can be “realized” by

a recommendation rule. Hence, as long as the criterion being optimized by the auctioneer

and the constraints on the recommendation rule can be expressed in terms of P[𝐴𝑖 = 𝜃 |𝑉 ],

we will directly optimize over these quantities. An optimal information structure 𝜎 in this

class can then be obtained using Lemma 1.

We now describe a general recommendation rule that optimizes criteria of the form (4.1)
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(including welfare and revenue maximization) subject to obedience constraints. Our first

result (Lemma 2 below) describes and solves the “core” of this optimization problem.

Lemma 2 (Variational Lemma). Let 𝑓 : R → R≥0 be a probability density function and

let 𝐹 : R → [0, 1] be its associated cumulative density function. Let 𝑔 : R → R be a non-

increasing function such that 𝑔 · 𝑓 is absolutely integrable and define 𝑡𝑔 := sup{𝑡 ∈ R | 𝑔(𝑡) ≥

0}. Let ℱ be the set of measurable functions R → [0, 1], and 𝑐 ∈ [0, 1] be a constant. Then,

a solution to
max
ℎ∈ℱ

ℒ(ℎ) :=

∫︁
R
ℎ(𝑣)𝑔(𝑣)𝑓(𝑣)𝑑𝑣

s.t.
∫︁
R
ℎ(𝑣)𝑓(𝑣)𝑑𝑣 ≥ 𝑐

is given by ℎ⋆ : 𝑣 ↦→ 1{𝑣 ≤ 𝑣⋆} where 𝑣⋆ = max
{︀
𝐹−1(𝑐), 𝑡𝑔

}︀
.

Proof. We note that under the assumptions of the lemma 𝐹 is non-decreasing and absolutely

continuous hence it admits a right inverse and 𝑞𝑐 := 𝐹−1(𝑐) is well-defined.

We first show that ℎ⋆ is feasible. Indeed, since 𝑣⋆ ≥ 𝑞𝑐 and 𝐹 is non-decreasing

∫︁
R
ℎ⋆(𝑣)𝑓(𝑣)𝑑𝑣 =

∫︁ 𝑣⋆

−∞
𝑓(𝑣)𝑑(𝑣) = 𝐹 (𝑣⋆) ≥ 𝐹 (𝑞𝑐) = 𝑐 .

We conclude by showing that ℒ(ℎ⋆) − ℒ(ℎ) ≥ 0 for all feasible ℎ by distinguishing two

cases depending on the relative position of 𝑞𝑐 and 𝑡𝑔.

1. If 𝑞𝑐 ≤ 𝑡𝑔, equivalently 𝑣⋆ = 𝑡𝑔, then

ℒ(ℎ⋆) − ℒ(ℎ) =

∫︁ ∞

𝑡𝑔

(−ℎ)(𝑣)𝑔(𝑣)𝑓(𝑣)𝑑𝑣 +

∫︁ 𝑡𝑔

−∞
(1 − ℎ)(𝑣)𝑔(𝑣)𝑓(𝑣)𝑑𝑣 ≥ 0 .

Indeed, since 𝑔 is non-increasing, 𝑔(𝑣) ≥ 0 for 𝑣 < 𝑡𝑔 and 𝑔(𝑣) ≤ 0 for 𝑣 > 𝑡𝑔. Since

0 ≤ ℎ(𝑣) ≤ 1 for all 𝑣 ∈ R, this implies that both integrals are non-negative.
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2. If 𝑞𝑐 > 𝑡𝑔, equivalently 𝑣⋆ = 𝑞𝑐. Then

ℒ(ℎ⋆) − ℒ(ℎ) =

∫︁ ∞

𝑞𝑐

(−ℎ)(𝑣)𝑔(𝑣)𝑓(𝑣)𝑑𝑣 +

∫︁ 𝑞𝑐

−∞
(1 − ℎ)(𝑣)𝑔(𝑣)𝑓(𝑣)𝑑𝑣

≥ 𝑔(𝑞𝑐)

∫︁ ∞

𝑞𝑐

(−ℎ)(𝑣)𝑓(𝑣)𝑑𝑣 + 𝑔(𝑞𝑐)

∫︁ 𝑞𝑐

−∞
(1 − ℎ)(𝑣)𝑓(𝑣)𝑑𝑣

= 𝑔(𝑞𝑐)𝐹 (𝑞𝑐) − 𝑔(𝑞𝑐)

∫︁
R
ℎ(𝑣)𝑓(𝑣)𝑑𝑣

≥ 𝑔(𝑞𝑐)𝐹 (𝑞𝑐) − 𝑔(𝑞𝑐)𝑐 = 0,

where the first inequality uses that 𝑔 is non-increasing and 0 ≤ ℎ ≤ 1, and the last

inequality uses that ℎ is feasible and 𝑔(𝑞𝑐) < 0.

⊓⊔

We are now ready to describe our optimal mechanism.

Proposition 4 (Optimal Mechanism). Assume that 𝑉1 and 𝑉2 are identically and indepen-

dently distributed with absolutely continuous cumulative distribution function 𝐹 and write

𝑣⋆ := 𝐹−1
(︀

max{P[𝜃 = 0],P[𝜃 = 1]}
)︀
. Consider the objective

𝑊 := E
[︀
𝑤1(𝑉 )1{𝐴1 = 𝜃} + 𝑤2(𝑉 )1{𝐴2 = 𝜃}

]︀
where 𝑤1, 𝑤2 : 𝒱 → R are functions such that for all (𝑣1, 𝑣2) ∈ 𝒱, 𝑤1(𝑣1, ·) and 𝑤2(·, 𝑣2) are

non-increasing functions. Define 𝑣⋆1, 𝑣
⋆
2 : 𝒱 → R by

𝑣⋆2(𝑣1) = sup{𝑣2 ∈ R |𝑤1(𝑣1, 𝑣2) ≥ 0} and 𝑣⋆1(𝑣2) = sup{𝑣1 ∈ R |𝑤2(𝑣1, 𝑣2) ≥ 0}

with the usual convention sup ∅ = −∞. Then the recommendation rule characterized1 by

P[𝐴𝑖 = 𝜃 |𝑉 ] = 1
{︀
𝑉𝑗 ≤ max{𝑣⋆𝑗 (𝑉𝑖), 𝑣

⋆}
}︀

for all {𝑖, 𝑗} = {1, 2}, maximizes 𝑊 subject to obedience.
1Note that this recommendation rule is defined in terms of the functions 𝑉 ↦→ P[𝐴𝑖 = 𝜃 |𝑉 ] for 𝑖 ∈ {1, 2}.

Recall that a recommendation rule compatible with these functions can be constructed using Lemma 1.
Furthermore since the functions in fact take values in {0, 1}, it is easy to see that such a rule is in fact
uniquely defined.
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Proof. Define 𝜇 := max{P[𝜃 = 0],P[𝜃 = 1]} so that 𝑣⋆ = 𝐹−1(𝜇) and define ℎ𝑖 : 𝒱 → [0, 1] by

ℎ𝑖(𝑉 ) = P[𝐴𝑖 = 𝜃 |𝑉 ]. By Proposition 3 and using the law of total expectation, obedience

can be written as, for 𝑖 ∈ {1, 2} and almost surely

P[𝐴𝑖 = 𝜃 |𝑉𝑖] = E[1{𝐴𝑖 = 𝜃} |𝑉𝑖] = E
[︀
E[1{𝐴𝑖 = 𝜃} |𝑉 ] |𝑉𝑖

]︀
= E[ℎ𝑖(𝑉 ) |𝑉𝑖] ≥ 𝜇 .

Similarly we can rewrite the objective in terms of the functions ℎ𝑖

𝑊 = E
[︀
𝑤1(𝑉 )P[𝐴1 = 𝜃 |𝑉 ] + 𝑤2(𝑉 )P[𝐴2 = 𝜃 |𝑉 ]

]︀
= E

[︀
𝑤1(𝑉 )ℎ1(𝑉 ) + 𝑤2(𝑉 )ℎ2(𝑉 )

]︀
.

Hence the optimization problem we need to solve is

max E
[︀
𝑤1(𝑉 )ℎ1(𝑉 ) + 𝑤2(𝑉 )ℎ2(𝑉 )

]︀
s.t. E[ℎ𝑖(𝑉 ) |𝑉𝑖] ≥ 𝜇, for 𝑖 ∈ {1, 2}.

This problem decomposes as the sum of two optimization problems, one for each ℎ𝑖,

𝑖 ∈ {1, 2}. We focus on the one for ℎ1, the other one being identical after swapping 1 and 2.

Writing the expectations in terms of the density 𝑓 associated with 𝐹 , the problem is

max

∫︁
R

(︂∫︁
R
𝑤1(𝑣)ℎ1(𝑣)𝑓(𝑣2)𝑑𝑣2

)︂
𝑓(𝑣1)𝑑𝑣1

s.t.
∫︁
R
ℎ1(𝑣1, 𝑣2)𝑓(𝑣2)𝑑𝑣2 ≥ 𝜇 , for all 𝑣1 ∈ R .

Since the constraint on ℎ1 is an integral constraint on the partial function ℎ1(𝑣1, ·) for each 𝑣1,

an optimal solution is obtained by choosing for each 𝑣1 ∈ R, ℎ1(𝑣1, ·) maximizing the inner

integral
∫︀
R 𝑤1(𝑣1, 𝑣2)ℎ1(𝑣1, 𝑣2)𝑓(𝑣2)𝑑𝑣2 subject to this integral constraint. But since 𝑤1(𝑣1, ·)

is non-increasing by assumption, this optimization problem over ℎ1(𝑣1, ·) has exactly the

form solved in Lemma 2, from which we get the solution

ℎ1(𝑣1, 𝑣2) = 1
{︀
𝑣2 ≤ max{𝑣⋆2(𝑣1), 𝑣

⋆}
}︀
,

and similarly for ℎ2, which concludes the proof by definition of ℎ1 and ℎ2. ⊓⊔
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4.2 Welfare Maximization

Using (3.2) we can write the expected social welfare for the game of Example 3 as

𝑊 = E
[︀
(𝑉1 − 𝛼𝑉2)1{𝐴1 = 𝜃} + (𝑉2 − 𝛼𝑉1)1{𝐴2 = 𝜃}

]︀
,

which is of the form solved by Proposition 4. We then obtain the following characterization

of the welfare-maximizing (second best) mechanism.

Proposition 5 (Welfare Optimal Mechanism). Assume that 𝑉1 and 𝑉2 are identically dis-

tributed with absolutely continuous c.d.f. 𝐹 and write 𝑣⋆ := 𝐹−1
(︀

max{P[𝜃 = 0],P[𝜃 = 1]}
)︀
.

A recommendation rule maximizing social welfare subject to obedience is given by

(𝐴1, 𝐴2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝜃, 𝜃) if 𝑉1 ≤ 𝑣⋆ and 𝑉2 ≤ 𝑣⋆

(𝜃, 1 − 𝜃) if 𝑉1 ≥ max{𝑣⋆, 𝑉2/𝛼}

(1 − 𝜃, 𝜃) if 𝑉2 ≥ max{𝑣⋆, 𝑉1/𝛼} .

Proof. We apply Proposition 4 with 𝑤1(𝑣1, 𝑣2) = (𝑣1 − 𝛼𝑣2) and 𝑤2(𝑣1, 𝑣2) = (𝑣2 − 𝛼𝑣1) for

which 𝑣⋆2(𝑣1) = 𝑣1/𝛼 and 𝑣⋆1(𝑣2) = 𝑣2/𝛼. The optimal mechanism is thus characterized by

P[𝐴𝑖 = 𝜃 |𝑉 ] = 1
{︀
𝑉𝑗 ≤ max{𝑣⋆, 𝑉𝑖/𝛼}

}︀
.

Since these probabilities take values in {0, 1}, we obtain a partition of the type space 𝒱 into

regions in which the recommended action profile (𝐴1, 𝐴2) is constant given (𝜃, 𝑉1, 𝑉2). ⊓⊔

We remark on several noteworthy properties of the welfare-optimal (second best) mech-

anism. First, the recommended action profile is deterministic given both players’ types and

the state 𝜃. This appears at first glance to be in contradiction with the obedience constraint,

since a player could infer the state from their recommendation and thus deviate when be-

ing recommended the suboptimal action. This apparent contradiction disappears when one

remembers that the players only observe their own type and have to reason in expectation

over the other player’s type. Hence, the seller is able to exploit a player’s uncertainty about
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𝑣2

𝑣1

𝑣 2
=
𝑣 1
/𝛼

𝑣2
=
𝛼𝑣

1

𝑣⋆

𝑣⋆

(1 − 𝜃, 𝜃)

(𝜃, 1 − 𝜃)

(𝜃, 𝜃)

Figure 4-1: Representation of the second-best recommendation rule from Proposition 5 for
𝛼 = 2/3, showing the recommended action profile as a function of both players’ types.

the other player’s type to “hide” the true state of the world and recommend the subopti-

mal action with positive probability (across realizations of the other player’s type) without

violating obedience constraints.

Second, a simple computation shows that

P[𝐴𝑖 = 𝜃 |𝑉𝑖] = max{𝐹 (𝑣⋆), 𝐹 (𝑉𝑖/𝛼)},

which indicates that the obedience constraint is binding for player 𝑖 whenever 𝑉𝑖 ≤ 𝛼𝑣⋆.

The socially efficient (first best) allocation would instead set (𝐴1, 𝐴2) = (𝜃, 1 − 𝜃) when

𝑉1 ≥ 𝑉2/𝛼 and (𝐴1, 𝐴2) = (1 − 𝜃, 𝜃) when 𝑉2 ≥ 𝑉1/𝛼, and finally (𝐴1, 𝐴2) = (𝜃, 𝜃) when

𝛼𝑉1 ≤ 𝑉2 ≤ 𝑉1/𝛼. Therefore, the area in Figure 4-1 where 𝑉𝑖 ≤ 𝑣⋆ for 𝑖 ∈ {1, 2} and

max𝑖 𝑉𝑖 > min𝑖 𝑉𝑖/𝛼 captures the loss in efficiency due to obedience constraints.

Finally, it is easy to verify that the second best mechanism is implementable, i.e. satisfies

the players’ truth-telling constraints. Indeed, by Proposition 2 it suffices to verify that the

interim share of the data buyers are non-decreasing.

Proposition 6 (Truthfulness of Second Best). For the mechanism of Proposition 5, the

interim share �̃�𝑖(𝑉𝑖) = E
[︀
𝜋𝑖(𝐴, 𝜃) |𝑉𝑖

]︀
of player 𝑖 ∈ {1, 2} is non-decreasing. Hence the

second best mechanism is implementable.
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Proof. We have

�̃�𝑖(𝑉𝑖) = E
[︀
P[𝐴𝑖 = 𝜃 |𝑉 ] − 𝛼P[𝐴𝑗 = 𝜃 |𝑉 ] |𝑉𝑖

]︀
= E

[︀
1
{︀
𝑉𝑗 ≤ max{𝑣⋆, 𝑉𝑖/𝛼}

}︀
|𝑉𝑖

]︀
− 𝛼E

[︀
1
{︀
𝑉𝑖 ≤ max{𝑣⋆, 𝑉𝑗/𝛼}

}︀
|𝑉𝑖

]︀
= max{𝐹 (𝑣*), 𝐹 (𝑉𝑖/𝛼)} − 𝛼

(︀
1 − P[𝑉𝑖 > 𝑣* ∧ 𝑉𝑗 < 𝛼𝑉𝑖 |𝑉𝑖]

)︀
= max{𝐹 (𝑣*), 𝐹 (𝑉𝑖/𝛼)} + 𝛼1{𝑉𝑖 > 𝑣*} · 𝐹 (𝛼𝑉𝑖) − 𝛼 ,

where the first equality uses (3.2) and the law of total expectation, the second equality uses

the characterization of the second best mechanism from Proposition 5 and the remaining

two equalities are basic algebra. The final expression is clearly non-decreasing in 𝑉𝑖 as sum

and product of non-negative non-decreasing functions. ⊓⊔

Intuitively, a higher type is revealed the correct state more often by the social planner,

which makes it possible to find transfers that would induce truthful reporting of the players’

types. Of course these transfers do not correspond to a monopolist data seller’s optimal

choice. In the next section, we will see how a monopolist data seller modifies the second best

mechanism to maximize the associated payments.

4.3 Revenue Maximization

Throughout this section, we assume that 𝑉1 and 𝑉2 are identically distributed with absolutely

continuous cumulative distribution function 𝐹 . Denoting by 𝑓 the associated probability

density function, we define the virtual value 𝜑 : 𝒱 → R as

𝜑(𝑣) := 𝑣 − 1 − 𝐹 (𝑣)

𝑓(𝑣)
,

and call a distribution 𝐹 regular if the associated virtual values 𝜑 are non-decreasing.

Recall that the outside option determining data buyer 𝑖’s participation constraint (Def-

inition 4) is given by the expected quantity �̃�𝑖 sold in the worst-case scenario—where all

her competitors learn the state with probability one—scaled by the private type 𝑣𝑖. Despite

this dependency on the private types, we show in Lemma 3 below that the seller’s expected
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revenue 𝑅 := E
[︀∑︀

𝑖 𝑝𝑖(𝑉 )
]︀

can be expressed in terms of the virtual valuations, as in the

standard Myersonian auction [9]. The proof is given in Appendix A.

Lemma 3 (Reduction to Virtual Surplus). Assuming truthfulness and individual rationality,

optimal allocation for maximizing virtual social surplus is also the solution to the seller’s

revenue maximization problem. Moreover,

𝑝𝑖(𝑣𝑖) = 𝑣𝑖 · �̃�𝑖(𝑣𝑖) −𝐾 · 𝑣 −
∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠 , (4.2)

where 𝐾 := min𝜎𝑗∈Δ(𝒜𝑗) max𝑎𝑖∈𝒜𝑖
E
[︀
𝜋𝑖(𝑎𝑖, 𝐴𝑗; 𝜃)] is the expected market share in a player’s

outside option (recall we assume that the game is symmetric, hence 𝐾 does not depend on

𝑖).

Hence, we now focus on maximizing the virtual surplus which can be written using (3.2)

in terms of the recommendation to each player,

𝑅† = E
[︀(︀
𝜑(𝑉1) − 𝛼𝜑(𝑉2)

)︀
1{𝐴1 = 𝜃} +

(︀
𝜑(𝑉2) − 𝛼𝜑(𝑉1)

)︀
1{𝐴2 = 𝜃}

]︀
.

We can then apply Proposition 4 to characterize the optimal information structure.

Proposition 7 (Revenue Optimal Mechanism). For 𝛼 ∈ [0, 1], if the distributions of 𝑉1 and

𝑉2 are identical and regular, the recommendation rule maximizing virtual surplus subject to

obedience is given by

P[𝐴𝑖 = 𝜃 |𝑉 ] = 1
{︀
𝑉𝑗 ≤ max{𝑣⋆, 𝜑−1(𝜑(𝑉𝑖)/𝛼)}

}︀
.

Proof. This follows from Proposition 4 applied to 𝑤1(𝑣1, 𝑣2) = 𝜑(𝑣1)−𝛼𝜑(𝑣2) and 𝑤2(𝑣1, 𝑣2) =

𝜑(𝑣2) − 𝛼𝜑(𝑣1). By regularity, 𝑤1(𝑣1, ·) and 𝑤2(·, 𝑣2) are non-increasing for all (𝑣1, 𝑣2) ∈ 𝒱

and 𝑣⋆𝑖 (𝑣𝑗) = 𝜑−1(𝜑(𝑣𝑗)/𝛼) for {𝑖, 𝑗} = {1, 2}. ⊓⊔

In contrast to the welfare-maximization case, the recommendation rule described in

Proposition 7 can potentially partition the type space into more than three regions when

𝛼 < 1. To understand this, let us first ignore the obedience constraint, in which case the
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recommendation rule maximizing virtual surplus is determined by

P[𝐴𝑖 = 𝜃 |𝑉 ] = 1
{︀
𝑉𝑗 ≤ 𝜑−1(𝜑(𝑉𝑖)/𝛼)

}︀
.

Since the functions 𝑣 ↦→ 𝜑−1(𝜑(𝑣)/𝛼) and 𝑣 ↦→ 𝜑−1(𝛼𝜑(𝑣)) intersect at 𝑣0 := 𝜑−1(0), this

recommendation rule partitions the type space into four regions. Crucially, there is now a

new region, defined by 𝜑−1(𝜑(𝑣1)/𝛼) ≤ 𝑣2 ≤ 𝜑−1(𝛼𝜑(𝑣1)) in which both players receive the

wrong action recommendation.

The presence of this region is intuitive, because the seller finds it profitable to distort

the allocation (i.e., to lower the quality of her recommendations) to players with low types,

so to reduce information rents and increase the payments of higher types. However, unlike

settings without externalities, merely having a negative virtual value does not imply a player

receives the wrong information. Even absent obedience constraints, the seller knows that

distorting one player’s recommendations increases the surplus of the other player. Therefore,

both players receive the wrong recommendation only if both their virtual values are negative

and they are sufficiently similar. Conversely, if both 𝜑(𝑉𝑖) < 0 but 𝑉1 is sufficiently larger

than 𝑉2, then the seller prefers issuing the correct recommendation to player 1. Indeed,

distorting the recommendation to player 1 would increase player 2’s payoff, which has an

even stronger negative impact on the seller’s profits.

After introducing the obedience constraints, however, one needs to further intersect these

regions with the lines 𝑣2 = 𝑣⋆ and 𝑣1 = 𝑣⋆ and enforce that 𝐴𝑖 = 𝜃 when 𝑉𝑗 ≤ 𝑣⋆. Depending

on the type distribution, it might be that 𝑣⋆ ≥ 𝑣0, in which case the region over which both

players receive the wrong recommendation is empty.2

Therefore, when 𝑣⋆ ≥ 𝑣0, the square where 𝑣1, 𝑣2 ≤ 𝑣⋆, in which obedience requires

recommending the optimal action to both players, fully contains the aforementioned region,

and the situation is qualitatively the same as in Figure 4-1. However, when 𝑣⋆ ≤ 𝑣0, the

type space is now partitioned into five regions as in Figure 4-2. Notice that obedience binds

for all 𝑣𝑖 < 𝑣 as for those types P
[︀
𝐴𝑖 = 𝜃 |𝑉𝑖

]︀
= 𝐹 (𝑣*).

To summarize, the expected quantity sold �̃�𝑖 of data buyer 𝑖 in the revenue-optimal

2For example, when the types are uniformly distributed over [0, 1], we have by definition 𝑃 (𝑣⋆) = 𝑣⋆ =
max{P[𝜃 = 0],P[𝜃 = 1]} ≥ 1/2, but 𝜑 : 𝑣 ↦→ 2𝑣 − 1 and 𝑣0 = 1/2.
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Figure 4-2: Virtual surplus-maximizing recommendation rule from Proposition 7 with 𝛼 =
1/2 and equally likely states. The types are distributed exponentially with parameter 1, so
that 𝜑(𝑣) = 𝑣−1 and 𝑣0 = 1. On the left, the surplus-maximizing rule ignoring the obedience
constraint; on the right with the obedience constraint (𝑣⋆ = ln 2). In both panels, the gray
area is the region where the suboptimal action 1 − 𝜃 is recommended to both players.

mechanism is given by the following function. Define 𝑣 := 𝜑−1(𝛼𝜑(𝑣*)), then

• If 𝑣0 < 𝑣*:

�̃�𝑖(𝑣𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹 (𝑣*) − 𝛼 𝑣𝑖 < 𝑣

𝐹
(︀
𝜑−1(𝜑(𝑣𝑖)

𝛼
)
)︀
− 𝛼 𝑣 < 𝑣𝑖 < 𝑣*

𝐹
(︀
𝜑−1(𝜑(𝑣𝑖)

𝛼
)
)︀
− 𝛼 + 𝛼𝐹

(︀
𝜑−1(𝛼𝜑(𝑣𝑖))

)︀
𝑣* < 𝑣𝑖.

• If 𝑣* < 𝑣0:

�̃�𝑖(𝑣𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹 (𝑣*) − 𝛼 𝑣𝑖 < 𝑣*

𝐹 (𝑣*) − 𝛼 + 𝛼𝐹
(︀
𝜑−1(𝛼𝜑(𝑣𝑖))

)︀
𝑣* < 𝑣𝑖 < 𝑣

𝐹 (𝜑−1(𝜑(𝑣𝑖)
𝛼

)) − 𝛼 + 𝛼𝐹
(︀
𝜑−1(𝛼𝜑(𝑣𝑖))

)︀
𝑣 < 𝑣𝑖.

We now show this share is increasing, i.e., the obedient mechanism above is also truthful

(implementable), and therefore we have the optimal solution.
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Proposition 8 (Truthfulness of Optimal Mechanism). For the mechanism of Proposition 7

and under the same assumptions, the interim share �̃�𝑖(𝑉𝑖) = E
[︀
𝜋𝑖(𝐴, 𝜃) |𝑉𝑖

]︀
of each player

𝑖 ∈ {1, 2} is non-decreasing. Hence the revenue-maximizing mechanism is implementable

and the payments are given by

𝑝𝑖(𝑣𝑖) = 𝑣𝑖�̃�𝑖(𝑣𝑖) − 𝑣�̃�𝑖(𝑣) −
∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠 . (4.3)

Also by comparing eq. (4.3) to eq. (4.2), we find out that �̃�𝑖(𝑣) = 𝐾 and 𝑝𝑖(𝑣) = 0.

Proof. The proof is almost identical to the one of Proposition 6. Again we write,

�̃�𝑖(𝑉𝑖) = E
[︀
P[𝐴𝑖 = 𝜃 |𝑉 ] − 𝛼P[𝐴𝑗 = 𝜃 |𝑉 ] |𝑉𝑖

]︀
= E

[︀
1
{︀
𝑉𝑗 ≤ max{𝑣⋆, 𝜑−1(𝜑(𝑉𝑖)/𝛼)}

}︀
|𝑉𝑖

]︀
− 𝛼E

[︀
1
{︀
𝑉𝑖 ≤ max{𝑣⋆, 𝜑−1(𝜑(𝑉𝑗)/𝛼)}

}︀
|𝑉𝑖

]︀
= max{𝐹 (𝑣*), 𝐹 (𝜑−1(𝜑(𝑉𝑖)/𝛼)} − 𝛼

(︀
1 − P[𝑉𝑖 > 𝑣* ∧ 𝑉𝑗 ≤ 𝜑−1(𝛼𝜑(𝑉𝑖)) |𝑉𝑖]

)︀
= max{𝐹 (𝑣*), 𝐹 (𝜑−1(𝜑(𝑉𝑖)/𝛼)} + 𝛼1{𝑉𝑖 > 𝑣*} · 𝐹

(︀
𝜑−1(𝛼𝜑(𝑉𝑖))

)︀
− 𝛼 ,

where this last expression is non-decreasing in 𝑉𝑖 as sum and product of non-decreasing

functions, since 𝜑 is non-decreasing by regularity.

For the payment, by (3.1)

𝑝𝑖(𝑣𝑖) = 𝑣𝑖 · �̃�𝑖(𝑣𝑖) − 𝑣 · �̃�𝑖(𝑣) + 𝑝𝑖(𝑣) −
∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠

where 𝑝𝑖(𝑣) = 0 as in eq. (4.2) we have 𝑝𝑖(𝑣) = 𝑣(�̃�𝑖(𝑣) − 𝐾). But we can see that 𝐾 =

�̃�𝑖(𝑣) = 𝐹 (𝑣*) − 𝛼 .

𝐾 = max
𝑎𝑖∈𝒜𝑖

E
[︀
𝜋𝑖(𝑎𝑖, 𝜃; 𝜃)] = max

𝑎𝑖∈𝒜𝑖

E
[︀
1{𝑎𝑖 = Θ}

]︀
− 𝛼

= max
{︀
P{𝜃 = 0},P{𝜃 = 1}

}︀
− 𝛼 = 𝐹 (𝑣*) − 𝛼

Which is equal to �̃�𝑖(𝑣) as it is computed above the Proposition 8. ⊓⊔
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We remark on two striking properties of the optimal payments, which apply whenever

𝑣* < 𝑣0. First, some types of player 𝑖 with a negative virtual valuation, 𝑣 < 𝑣𝑖 < 𝑣0, are

nonetheless charged a positive payment. This occurs because these types are sufficiently

high that their opponent 𝑗 has an even lower type 𝑣𝑗 with a significant probability, 𝐹 (𝑣𝑖).

In other words, the seller finds it optimal to reveal the correct state to player 𝑖 with prob-

ability, 𝐹 (𝜑−1(𝜑(𝑣𝑖)/𝛼)) > 𝐹 (𝑣*). Player 𝑖 then has a strict incentive to follow the seller’s

recommendation—her obedience constraint is slack.

Second, even types of player 𝑖 such that 𝑣* < 𝑣𝑖 < 𝑣, and whose obedience constraint

binds, pay a strictly positive price. Because their obedience constraint is binding, these

types derive no net utility from following the seller’s recommendation. However, unlike

types in [0, 𝑣*] where the other data buyer always receives the right recommendation, these

types’ opponent is revealed the correct state with probability 1−𝐹 (𝜑−1(𝛼𝜑(𝑣𝑖))). Therefore,

these types are strictly better off participating, and they can be charged a positive payment.

Put differently, the presence of negative externalities augments the profitability of selling

information, as the seller charge positive payments in exchange for limiting the information

available to each buyer’s competitors.

Impact of the competitiveness of the game Finally, we investigate the role of down-

stream competition intensity on the revenue-optimal mechanism. Figure 4-3 compares two

settings, where competition is fiercer in the left panel (𝛼 = 1/2) than in the right panel

(𝛼 = 1/4).

Reducing the intensity of competition reduces the value of exclusive sales of information

(i.e., recommending the right action to one player only) in the first best: at one extreme, if

players imposed no externalities on each other, the seller would recommend the right action to

any player with a positive virtual value. In particular, in an unconstrained revenue problem,

the seller would recommend the wrong action to both players more often when competition

is weaker. However, this recommendation profile would violate obedience, which requires

the seller to recommend the right action to both players in the square where their types is

smaller than 𝑣⋆. As 𝑣⋆ is independent of 𝛼, the right panel shows how the seller resorts to

exclusive sales as a second-best policy under obedience constraints, and does so more often
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𝑣2

𝑣1𝑣0

𝑣0

𝑣

𝑣

𝑣⋆

𝑣⋆

(1 − 𝜃, 𝜃)

(𝜃, 1 − 𝜃)

(𝜃, 𝜃)

(𝜃, 𝜃)

(a) 𝛼 = 1/2

𝑣2

𝑣1𝑣0

𝑣0

𝑣

𝑣

𝑣⋆

𝑣⋆

(1 − 𝜃, 𝜃)

(𝜃, 1 − 𝜃)

(𝜃, 𝜃)

(𝜃, 𝜃)

(b) 𝛼 = 1/4

Figure 4-3: Comparison of the revenue-maximizing recommendation rules from Proposition 7
for two different values of 𝛼. As in Figure 4-2 the types are exponentially distributed and
the states are equally likely. Recall that the larger the value of 𝛼, the more competitive the
downstream game.

as the competition weakens.
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Chapter 5

Future Work and Conclusions

We have begun to explore the implications of selling information to competing players in a

mechanism design framework. We have shown that the nature of information disciplines the

optimal selling mechanisms for data products, and distinguishes them from canonical (e.g.,

physical) goods.

In particular, the players’ actions in the downstream game introduce a moral hazard

problem for the designer’s choice of mechanism. The resulting obedience constraints on

the information structure prevent a social planner from implementing the efficient level of

information exclusivity—the second best involves symmetric information more often than

optimal. At the same time, obedience also severely limits the distortions that a monopo-

list information seller is able to impose on the allocation—the revenue-optimal mechanism

provides the correct information to the players more often than the monopolist would like.

In the present work, we characterized optimal mechanisms in the context of a linear

model with binary states and actions. In that respect, considerable work remains to be done

to extend the applicability of this framework. Natural next steps include removing domi-

nant strategies, introducing strategic complements and substitutes, more than two players,

actions, and states. We pursue these avenues in the future work.

In the following, an overview of the ongoing work on strategic complements and substi-

tutes is given.
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5.1 Substitute and Complement Competitions

In this section, everything is similar to Example 3 (the main example) except the payoff

matrix of the down stream market. The dominant strategy (the right action) for each data

buyer is matching his action with the state of the world, and he prefers the other data buyer

to take the wrong action. However, the externality is not constant and changes based on

the action of the other data buyer. If the rival takes the right action, data buyers payoff

increases by 𝛼 when he switches from wrong action to the right action. If the rival takes the

wrong action, the data buyer’s payoff increases by 𝛽 when he takes right action instead of

the wrong one. If 𝛼 > 𝛽, we have a complement competition, and it is substitute if 𝛼 < 𝛽.

The payoff matrix for the down stream market is given below.

0 1

0 𝛼, 𝛼 1, 0

1 0, 1 1 − 𝛽, 1 − 𝛽

𝜃 = 0

0 1

0 1 − 𝛽, 1 − 𝛽 0, 1

1 1, 0 𝛼, 𝛼

𝜃 = 1

In the payoff matrix above, we assume 0 ≤ 𝛼 , 𝛽 ≤ 1. Therefore, a data buyer’s dominant

strategy is taking the action which matches the state of the world. He also prefers the other

data buyer to take the wrong action. We also assume 𝛼 ≥ 1 − 𝛽 so it is better for both of

them to take the right action rather than both taking the wrong action.

Remark. When 𝛼 = 𝛽, the new payoff matrix is a shifted and scaled version of the payoff

matrix in Example 3, and we have

𝜋𝑖(𝑎; 𝜃) = 𝛼
(︁
1{𝑎𝑖 = 𝜃} − 1 − 𝛼

𝛼
1{𝑎𝑗 = 𝜃}

)︁
+ 1 − 𝛼 .

Comparing it to (3.2), we find out the results will be the same as the results in the previous

chapters but we only need to substitute 𝛼 by 1−𝛼
𝛼

. In other words,

𝛼𝑜𝑙𝑑 =
1 − 𝛼𝑛𝑒𝑤

𝛼𝑛𝑒𝑤

.

40



Moreover, we have 0 ≤ 𝛼𝑜𝑙𝑑 ≤ 1 iff 1
2
≤ 𝛼𝑛𝑒𝑤 ≤ 1.

In the following, simulation results for revenue-optimal communication rule, 𝜎 for differ-

ent values of 𝛼 and 𝛽 from Matlab are given. Notice that payments still can be computed

based on the expected market share, �̃�𝑖, using Proposition 2, and �̃�𝑖 can be computed when

we have the 𝜎.

Valuations are distributed exponentially over the finite interval [2, 5]. In the blue regions,

both data buyers receive the right action, (𝑟, 𝑟). In the black region, both receive wrong

action, (𝑤,𝑤). In the red region, the first data buyer receives the right action and the

second one receives the wrong action, (𝑟, 𝑤), and it is the opposite in the green region,

(𝑤, 𝑟).

As we can see the structure of the solution is different for 𝛼 > 𝛽, 𝛼 = 𝛽, and 𝛼 < 𝛽.

Figure 5-1: 𝛼 = 0.7, 𝛽 = 0.6
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Figure 5-2: 𝛼 = 0.7, 𝛽 = 0.7

Figure 5-3: 𝛼 = 0.7, 𝛽 = 0.8
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Appendix A

Missing proofs

Proposition 9 (Proposition 2 restated). The mechanism (𝜎, 𝑝) is truthful if and only if for

each player 𝑖:

1. The interim share �̃�𝑖 is non-decreasing.

2. The interim payment 𝑝𝑖 is given for 𝑣𝑖 ∈ 𝒱𝑖 by

𝑝𝑖(𝑣𝑖) = 𝑣𝑖 · �̃�𝑖(𝑣𝑖) − 𝑣 · �̃�𝑖(𝑣) + 𝑝𝑖(𝑣) −
∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠 . (A.1)

Proof. Define �̃�𝑖 : 𝑣𝑖 ↦→ 𝑣𝑖 · �̃�𝑖(𝑣𝑖) − 𝑝𝑖(𝑣𝑖). Then truthfulness is equivalent to

�̃�𝑖(𝑣𝑖) = 𝑣𝑖 · �̃�𝑖(𝑣𝑖) − 𝑝𝑖(𝑣𝑖) ≥ 𝑣𝑖 · �̃�𝑖(𝑣
′
𝑖) − 𝑝𝑖(𝑣

′
𝑖) = �̃�𝑖(𝑣

′
𝑖) + (𝑣𝑖 − 𝑣′𝑖) · �̃�𝑖(𝑣

′
𝑖) ,

for all (𝑣𝑖, 𝑣
′
𝑖) ∈ 𝒱2

𝑖 . This is equivalent to saying that �̃�𝑖(𝑣𝑖) ∈ 𝜕�̃�𝑖(𝑣𝑖) for all 𝑣𝑖 ∈ 𝒱𝑖 where

𝜕�̃�𝑖(𝑣𝑖) ⊂ R denotes the subdifferential of �̃�𝑖 at 𝑣𝑖. By a well-known characterization of

convexity, this in turn equivalent to saying that �̃�𝑖 is non-decreasing and that

�̃�𝑖(𝑣𝑖) = �̃�𝑖(𝑣) +

∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠 .

This concludes the proof since this last expression is equivalent to (3.1). ⊓⊔

Lemma 4 (Lemma 3 restated). Assuming truthfulness and individual rationality, optimal

allocation for maximizing virtual social surplus is also the solution to the seller’s revenue
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maximization problem. Moreover,

𝑝𝑖(𝑣𝑖) = 𝑣𝑖 · �̃�𝑖(𝑣𝑖) −𝐾 · 𝑣 −
∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠 , (A.2)

where 𝐾 := min𝜎𝑗∈Δ(𝒜𝑗) max𝑎𝑖∈𝒜𝑖
E
[︀
𝜋𝑖(𝑎𝑖, 𝐴𝑗; 𝜃)] is the expected market share in a player’s

outside option (recall we assume that the game is symmetric, hence 𝐾 does not depend on

𝑖).

Proof. Note that we can write the seller’s revenue as

𝑅 = E
[︁∑︁

𝑖

𝑝𝑖(𝜃, 𝑉 )
]︁

= E
[︁∑︁

𝑖

E[𝑝𝑖(𝜃, 𝑉 ) |𝑉𝑖]
]︁

= E
[︁∑︁

𝑖

𝑝𝑖(𝑉𝑖)
]︁
.

By Proposition 2, we have

𝑅 = E
[︂∑︁

𝑖

𝑉𝑖 · �̃�𝑖(𝑉𝑖) − 𝑣 · �̃�𝑖(𝑣) + 𝑝𝑖(𝑣) −
∫︁ 𝑉𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠

]︂
=

∑︁
𝑖

E
[︂
𝑉𝑖 · �̃�𝑖(𝑉𝑖) −

∫︁ 𝑉𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠

]︂
+
∑︁
𝑖

(︀
− 𝑣 · �̃�𝑖(𝑣) + 𝑝𝑖(𝑣)

)︀
.

We are now going to treat each summand separately. First, we will show that the first one

is equal to the virtual surplus and then we will compute 𝑝𝑖(𝑣) in the second one for the

revenue-maximizing mechanism.

We compute the expectation in the first summand as follows:

E
[︁
𝑉𝑖 · �̃�𝑖(𝑉𝑖) −

∫︁ 𝑉𝑖

𝑣

�̃�𝑖(𝑠)𝑑𝑠
]︁

=

∫︁ 𝑣

𝑣

𝑣𝑖 · �̃�𝑖(𝑣𝑖)𝑓(𝑣𝑖)𝑑𝑣𝑖 −
∫︁ 𝑣

𝑣

∫︁ 𝑣𝑖

𝑣

�̃�𝑖(𝑠)𝑓(𝑣𝑖)𝑑𝑠𝑑𝑣𝑖

=

∫︁ 𝑣

𝑣

𝑣𝑖 · �̃�𝑖(𝑣𝑖)𝑓(𝑣𝑖)𝑑𝑣𝑖 −
∫︁ 𝑣

𝑣

∫︁ 𝑣

𝑠

�̃�𝑖(𝑠)𝑓(𝑣𝑖)𝑑𝑣𝑖𝑑𝑠

=

∫︁ 𝑣

𝑣

(︂
𝑣𝑖 −

1 − 𝐹 (𝑣𝑖)

𝑓(𝑣𝑖)

)︂
· �̃�𝑖(𝑣𝑖)𝑓(𝑣𝑖)𝑑𝑣𝑖

= E
[︀
𝜑(𝑉𝑖)�̃�𝑖(𝑉𝑖)

]︀
,

where the second equality uses Fubini’s theorem and the last equality is the definition of the

virtual value function. Summing the last expression over 𝑖 ∈ [𝑛] yields the virtual surplus.
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It then only remains to determine the value of 𝑝𝑖(𝑣) which maximizes revenue. For this,

note that individual rationality is the only constraint on 𝑝𝑖(𝑣) since the payments do not

appear in the incentive obedience constraint, and since truthfulness does not constrain the

payment at the lowest type by Proposition 2.

We express individual rationality (Definition 4) using the interim market share �̃�𝑖:

∀𝑣𝑖∈𝒱𝑖 𝑣𝑖�̃�𝑖(𝑣𝑖) − 𝑝𝑖(𝑣𝑖)≥𝑣𝑖 ·𝐾 .

Substituting 𝑝𝑖 in the previous equation using (3.1), we have

∀𝑣𝑖 ∈ 𝒱𝑖 𝑣(�̃�𝑖(𝑣) −𝐾) +

∫︁ 𝑣𝑖

𝑣

(�̃�𝑖(𝑠) −𝐾)𝑑𝑠 ≥ 𝑝𝑖(𝑣).

Thus, we can find the maximum value for 𝑝𝑖(𝑣) by minimizing the left-hand side over 𝑣𝑖:

max 𝑝𝑖(𝑣) = min
𝑣𝑖

{︂
𝑣(�̃�𝑖(𝑣) −𝐾) +

∫︁ 𝑣𝑖

𝑣

(�̃�𝑖(𝑠) −𝐾)𝑑𝑠

}︂
= 𝑣(�̃�𝑖(𝑣) −𝐾).

The second equality holds because �̃�𝑖 ≥ 𝐾 since

�̃�𝑖(𝑉𝑖) = E
[︀
�̃�𝑖(𝐴𝑖, 𝐴𝑗; 𝜃) |𝑉𝑖

]︀
≥ E

[︀
�̃�𝑖(𝑎

𝑜, 𝐴𝑗; 𝜃) |𝑉𝑖

]︀
≥ E

[︀
�̃�𝑖(𝑎

𝑜, 𝜃; 𝜃) |𝑉𝑖

]︀
= 𝐾,

where 𝑎𝑜 := arg max𝑎𝑖∈𝒜𝑖
E
[︀
𝜋𝑖(𝑎𝑖, 𝜃; 𝜃)]. The first inequality holds by choosing the deviation

function 𝛿 in Definition 2 to be the constant function 𝑎𝑜, the second inequality holds by

Assumption 2, and the last equality is the definition of 𝐾. ⊓⊔
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