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Abstract

Checkpoint blockade immunotherapies have transformed the standard of care and
outcomes for many cancer types; however. more than 60% of patients still do not
experience a durable clinical response from these treatments. To address this prob-
lem, the development of novel biomarkers and more effective combinatorial thera-
pies are needed. In this thesis, we first explore and validate the use of extracellular
vesicular (EV) RNA as a potential biomarker for immunotherapy response. We dis-
cover differentially expressed genes and pathways within the plasma-derived EV RNA
that is concordant with known biology. We also show that mutational information
contained within EV RNA can stratify responders and non-responders. We lever-
age a Bayesian probabilistic model to deconvolve the tissue-of-origin of EV RNA
transcripts, allowing greater interpretability for differentially expressed genes and
pathways. Next, we performed large-scale epigenomics profiling in two cohorts of
immunotherapy patients, and we discovered a non-responder enhancer signature that
is lost in responders. Many genes contained within this epigenetic signature are as-
sociated with immunotherapy resistance, and we reasoned targeting this signature
with acetylation-reader bromodomain inhibitors would allow suppression of multiple
resistance mechanisms at once. We show that bromodomain inhibitors exhibit con-
siderable synergism with anti-PD1 in reducing tumor volume in murine melanoma
transplantation models, and this synergism also improves anti-tumor killing by tu-
mor infiltrating lymphocytes. Using the same cohort, we also identify 189 peaks with
differential activity in both the responders and non-responders, and we show these
peaks are potentially predictive biomarkers of immunotherapy response. Finally, we
leverage three transgenic mice lines to investigate the effect of T-cell receptor reper-
toire on cell fate commitment by CD4+ SP T-cells into either the thymic conven-
tional (Tconv) or thymic T regulator (tTreg) lineages. We show based on overlap and
machine learning analysis that T-cell receptors are not the sole determining factor in
Tconv vs. tTreg cell fate decisions. Together, these projects offer new biomarkers and
novel combinatorial treatment options for checkpoint blockade immunotherapies.
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Chapter 1

Introduction

This chapter provides an overview of several key topics necessary to contextualize this

thesis. It starts with an overview of cancer immunotherapy, extravesicular profiling

and analysis, epigenetic profiling and analysis, TCR repertoire profiling and analysis,

and computational methods. It concludes with an outline of the thesis in section 1.2.

1.1 Background

1.1.1 Melanoma

Melanoma is a cancer of melanocytes, UV-absorbing, pigment-producing cells found

throughout the body. Cutaneous melanoma is the most common in the Western

world, with a global incidence of 15-25 per 100,000 individuals. In 2019, 96,480 new

cases of melanoma was diagnosed, and 7,230 people died in the U.S alone [1]. There

are two types of melanin produced by melanocytes: black pigment eumelanin and a

red/yellow pigment pheomelanin. The ratio of eumelanin to pheomelanin determines

skin color, and, since eumelanin is a better UV absorber, the level of melanoma cancer

risk. Also, increased melanoma risk is associated with physical characteristics, such

as blond or red hair and light eye color.

Melanomas carry the highest mutation rates of any cancer, and they contain an

overwhelming number of UV-induced mutations, such as C>T or G>T transitions.
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A familial background occurs in 8% of patients with melanoma, a significant fraction

of which carry high-risk, high-penetrance mutations in the CKDN2A locus; however,

the vast majority of melanomas are sporadic, arising from low penetrance, low risk

alleles. Population-level Genome Wide Association Studies (GWAS) have revealed

MC1R, a master regulator of pigmentation transcription factor MITF, as a risk gene.

MITF alone is amplified in 4-21% of melanomas [2]. Besides MITF, there are a

number of other driving mutations that tend to converge on recurrently mutated

genes, including genes related to proliferation (BRAF, NRAS, and NF1 ), growth and

metabolism (PTEN and KIT ), resistance to apoptosis (TP53 ), replicative lifespan

(TERT ), and cell cycle (CDKN2A). Another key pathway with recurrent mutation is

the MAPK pathway. which is involved in controlling cell proliferation and survival;

MAPK mutational events are associated with nearly 70% of melanomas [1].

1.1.2 Checkpoint blockade immunotherapy

Checkpoint blockade immunotherapies are a revolutionary class of immunothearpies

that have transformed treatment options for a number of cancer types, including

melanoma, colorectal cancers, and non-small cell lung cancers. They work by revers-

ing negative immune regulation induced by expression of ligands against inhibitory

receptors on T-cells. These inhibitory receptors include CTLA4, PD1, TIM3, BTLA,

VISTA, and LAG-3 [3]. Since the first 2011 trial of ipilimumab (anti-CTLA4) [4],

checkpoint blockade immunotherapies have provided immense relief for 40% of the pa-

tient population experiencing durable clinical responses to these treatments [5]. The

success of checkpoint blockade immunotherapies earned its inventors, Jim Allison and

Tasuku Honjo, the 2018 Nobel Prize in Physiology or Medicine.

Checkpoint blockade immunotherapies have also transformed how cancers are

managed. Clinical trials are now far more cognizant of the role that immune systems

play in mediating successful treatments. This is in contrast with previous thinking,

in which preclinical cancer drugs were routeinly tested on cultured cancer cell lines

or immune-compromised mouse lines; current preclinical models are widely using

immune-competent animals [5]. Checkpoint blockade immunotherapies can have a
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delayed effect after an initial increase in the size of tumor metastases. These pseudo-

progressions may reflect the increased time it takes to activate the immune system and

effect an anti-tumor response. This understanding has resulted in the development of

immune RECIST (iRECIST) evaluation system, which has replaced the traditional

radiological evaluation criteria RECIST-1.1 for immunotherapy patients [5].

The poor overall efficacy of checkpoint blockade immunotherapies has led to a

search for actionable biomarkers to stratify the patient population, with the hopes of

engendering overall better response for a subset of patients with positive biomarker

status. One such biomarker is Tumor Mutational Burden (TMB), the sum of syn-

onymous and non-synonymous mutations present within a patient’s tumor. A meta-

analysis of 27 cancer types showed that overall response rate was correlated with

TMB [6]. Several studies, including that of KEYNOTE-061 [7], have confirmed the

predictive value of TMB in the context of checkpoint blockade immunotherapy. There

are also epigenetic changes associated with TMB. Cai et al. showed that association

between TMB and DNA methylation have the potential to serve as complimentary

biomarkers in the context of non-small cell lung cancer (NSCLC) immunotherapies.

Specifically, they showed that high TMB NSCLCs had methylation aberrations and

copy number changes, with the latter offering predictive potential [8].

Another biomarker that showed stratification between responders and non-responders

to checkpoint blockade immunotherapy is neoantigen load. Neoantigen predictions

are done computationally, with the focus being on major histocompatibility complex

binding of peptides based on anchor residue identities. In general, predictions made

by neoantigen load are not as accurate as those made by TMB [9]. Today, neoanti-

gens can be measured by the difference in predicted MHC I binding affinities between

the mutant and wild-type peptide, generating an index known as the differential

agretopicity index (DAI). A high DAI suggests that the mutant peptide significantly

increased in binding affinity relative to wild-type and can thus generate a stronger

immune reaction. Studies have shown that DAI is superior to TMB for stratifying

patient response to checkpoint blockade immunotherapies [10, 11].

In addition to TMB and neoantigen load, other predictive biomakers include tu-
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mor PD-L1 expression, immunophenotyping of the tumor microenvironment, specific

mutations exhibited by the tumor, diversity of immune repertoire within the tumor

microenvironment, and a number of blood-based molecular biomarkers [12].

1.1.3 Extravesicular profiling and analysis

Extracellular vesicles (EVs) are lipid enclosed membranes released by all mammalian

cells and contain cargo representative of their intracellular origins. EVs are found in

all types of bodily fluids, including plasma, serum, blood, saliva, urine, and amniotic

fluid. EVs refer to a generalized umbrella term that encompass microvesicles (150-

1000nm), exosomes (40-150nm), apoptotic bodies (100-5000nm). EVs can contain

a variety of biomolecular macromolecules, including DNA, RNA, miRNA, proteins,

and lipids. Different types of EVs may enrich for specific macromolecules, such as the

observed enrichment for miRNAs in exosomes [13].

EVs have recently emerged as attractive biomarkers for immunotherapy resistance

due to the variety of intercellular communication roles EVs play in the tumor microen-

vironment. In a recent study, Chen et al. showed the presence of PD-L1 on melanoma

derived exosomes and demonstrated that higher levels of circulating exosomal PD-

L1 correlated negatively with response to checkpoint blockade immunotherapies [14].

Several additional have reported the presence of cancer-associated miRNAs responsi-

ble for generating immune tolerance and suppression in the microenvironment inside

exosomes [13]. These findings collectively show that EVs - exosomes in particular -

play a causal role in generating an immunosuppressive microenvironment that makes

response to checkpoint blockade immunotherapies more difficult.

EVs have many natural characteristics that make them attractive biomarkers.

Since they are secreted by all cell types, profiling EVs offers a snapshot of many

different cell types at once, though this raises additional problems in deconvoluting

the mixed profiles. Given that EVs are found in all bodily fluids, this makes EVs a

minimally invasive or non-invasive biomarker. Moreover, EVs protect the biomacro-

molecules inside with a lipid bilayer, offering protection for RNAs and proteins against

enzymatic activity. Finally, EV levels are increased during tumor progression, and
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this increased EV shedding may offer potential for early diagnosis and monitoring of

cancers [15].

1.1.4 Epigenetic profiling and chromatin state analysis

Epigenetic modifications control gene expression patterns in a cell, and these modifica-

tions are stable and somatically heritable. An epigenotype is defined as the ensemble

of DNA methylation states, histone modifications, histone variant composition, and

lncRNAs in a particular locus [16]. DNA methylation is the most well-studied of the

epigenetic modifications. A repressive epigenetic signal at promoters, it occurs when

carbon 5 of CpG dinucleotides are methylated. After cell division, the state of DNA

methylation is maintained by DNA methyltransferase 1 (DNMT1), which also plays

a key role in imprinting gene expression. DNA methylation is highly dysregulated

in human cancers, with the loss of DNA methylation as one of the first epigenetic

changes described in human cancers [17].

Chromatin modifications involve covalent post-translational modifications (PTM)

of the amino-terminal histone tails by the addition or deletion of acetyl, methyl, phos-

phate, or other groups. These chromatin modifications impact gene expression via

their effects on chromatin structure or the attraction/repulsion of binding proteins

such as PTM writers and readers. Since chromatin is made up of DNA packed around

histone cores, the folding patterns of DNA - as determined by chromatin PTMs - cause

downstream changes in gene expression. Different PTMs are associated with differ-

ent outcomes. For example, H3 lysine trimethylation (H3K3me3) is associated with

promoter regions; H3 lysine 4 monomethylation (H3K4me1) is associated with active

enhancer regions; H3 lysine 36 trimethylation (H3K36me3) is associated with tran-

scribed regions; H3 lysine 27 trimethylation (H3K27me3) is associated with Polycomb

repression; H3 lysine 9 trimethylation (H3K9me3) is associated with heterochromatin

regions; H3K27ac and H3k9ac is associated with enhancer activation and promoter

regions [18]. Chromatin modifications have a significant role in cancer. For example,

For example, EZH2, a polycomb repressive complex 2 member with a methyltrans-

ferase and reader proteins that recognize H3K27me3, is overexpressed at both the
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transcriptional and translational levels in many human cancers [17].

Major studies in the field now profile several chromatin marks in conjunction

with one an other, such as done by the ROADMAP Epigenomics project [18]. A

major issue in the combinatorial analysis of chromatin mark is how to reduce the

complexity of the dataset by clustering it. The ChromHMM algorithm [19] is a

multivariate Hidden Markov Model trained on combinatorial chromatin state data.

ChromHMM learns a set of de novo chromatin state definitions, and then assigns each

location in the genome to an instance of each state. One can then use the emission

matrix (a matrix relating chromatin states with the combinatorial marks that reside in

them) and genomic annotations to assign functional categories, such as enhancers or

polycomb repressed, to individual chromatin states. One can then compare chromatin

states between two different conditions using the program Epilogos. ChromHMM and

Epilogos are extremely powerful tools for interpreting combinatorial chromatin state

data and associating it with downstream functional effects.

1.1.5 TCR repertoire profiling and analysis

T-cell receptor activation requires the interaction of the T-cell receptor (TCR) with

the antigen-major histocompatibility complex (MHC) molecules. TCRs are diverse

heterodimers consisting of an α and β chain (expressed by the vast majority of T-cells)

or γ and δ chains (expressed by mucosoal T-cells). The TCR consists of a variable

region, crucial for antigen recognition, and a constant region, important for struc-

tural reasons. The variable region of TCRα and TCRδ chains consist of a number of

variable (V) and joining (J) gene, while the TCRβ and TCRγ chains are additionally

encoded by a set of diversity (D) genes. During V(D)J recombination, one random

allele of a gene segment is recombined with others to form a functional variable region.

Further recombination of the variable region with a constant gene segment creates a

functional TCR chain transcript. Random nucleotides are added/deleted at the junc-

tion between gene segments, leading to additional diversity. Each TCR chain contains

three hypervariable loop regions known as the complementarity determining regions

(CDR1-3). CDR1-2 are coded by the V gene and are necessary for the interaction
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between TCR and the MHC complex, whereas CDR3, a highly diverse region at the

junction between the V/D/J genes, is necessary for the interaction between the TCR

and the peptide-MHC complex [20].

The collective TCRs of an individual is known as the TCR repertoire or the TCR

profile. The TCR profile can change with disease status, age, and a number of other

physiological factors. This is driving interest in profiling the immune repertoire under

different disease conditions, such as cancer, autoimmune, or infectious disease. In

cancer, T-cells can kill tumor cells upon recognition tumor-specific antigens. Several

studies have tried to identify the specific T-cell clonotypes responsible by analyzing

the tumor infilitrating lymphocyte repertoire [21]. The major challenge to analyzing

and interpreting immune repertoires in the context of disease is the large overall

diversity of the T-cell receptor repertoire. VDJ recombination can yield a repertoire

as large as 1015 to 1020 unique TCR chains. The actual diversity present in adult

humans is around 1013 different clonotypes. Moreover, individual TCRs are quite rare

at the population level [20]. Today, next-generation sequencing methods are able to

capture millions of TCR sequences from a given individual, allowing us to probe the

overwhelming diversity of T-cells.

1.1.6 Bayesian inference and modeling

Bayesian statistics is a statistical methodology for data analysis centered on Bayes’

theorem, in which the data set 𝑦 and the data parameters 𝜃 are related to each other

in the equation described in Eqn. 1.1. The typical Bayesian inference problem under-

goes three steps: 1) capturing information regarding a given parameter in the prior

distribution 𝑝(𝜃), 2) determining the likelihood function which relates information

about the observed parameters from the data, and 3) updating both the likelihood

and prior distribution with Bayes’ rule to create the posterior distribution. The ma-

jor subjective element of Bayesian inference is the choice of priors. Statisticians have

the choice between informative priors, weakly informative priors, or diffuse priors in

terms of model specification. Each choice has its own advantages and disadvantages,

for example, diffuse priors will often produce results more aligned to that of the like-
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lihood, and regardless of the choice, prior specification will have an impact on the

posterior estimates [22].

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

(1.1)

The Bayesian emphasis on estimating the entire posterior distribution of model pa-

rameters makes inference computationally challenging for sophisticated models, often

due to the high dimensionality of the calculations. A key algorithm in tackling this

problem is Markov chain Monte Carlo (MCMC) - a technique for sampling from a

probability distribution. MCMC involves two separate steps: 1) obtaining a set of

parameter values from the posterior distribution using Markov chains, and 2) obtain-

ing a distributional estimate of the posterior with sampled parameters using Monte

Carlo integration. There are many variants of MCMC, including Metropolis Hast-

ings, Gibbs sampling, Hamiltonian Monte Carlo, in which a transition kernel for the

Markov chain is defined such that the resulting stationary distribution is the distri-

bution of interest.

1.1.7 Identification of differentially expressed genes

Gene expression and other high-dimensional datasets (e.g., from ChIP-seq studies) are

often compared between multiple conditions to yield the subset of genes or markers

that show differential expression relative to certain conditions. These powerful type

of studies have yielded many fundamental insights into basic biology as well disease

pathogenesis [23]. Study designs for these studies can be complex, with the potential

for several experimental factors varying over multiple levels. Modeling such complex

designs with statistical rigor is now the domain of specialized packages (often in R)

designed to handle large-scale bioinformatics data with complex designs.

One such package is limma, which operates on a matrix of expression values, where

each row represents a gene and each column corresponds to a sample. limma fits a

linear model to each row of the data, and it allows sharing of information between

samples to model correlations due to repeated measures and other causes. limma also

has a built in parametric empircal Bayes module, allowing moderation of residual
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variances by allowing linear models to borrow strength across genes [23]. The gene-

level estimated variance becomes a compromise between gene-wise estimators and

global variability (estimated by pooling the ensemble of all genes). This approach is

beneficial in experiments with small sample sizes, ensuring inference is stable even in

the case of low number of replicates.

1.2 Thesis outline

Chapters 2 and 3 of the thesis concerns the use of extravesicular (EV) RNA as a

predictive biomarker in checkpoint blockade immunotherapy, with chapter 2 providing

a set of predictive genes and pathways and chapter 3 providing a novel deconvolution

algorithm for inferring tissue-of-origin for plasma-derived EVs. In chapters 4 and 5, we

provide a detailed investigation into the epigenetic changes that stratify responders

and non-responders to immunotherapy, with chapter 4 focused on in vitro and in

vivo experimentation and chapter 5 focused on generating predictive biomarkers.

Finally, chapter 6 investigates the impact of T-cell receptor repertoires on theymic T

regulatory vs. T conventional T-cell differentiation.

1.3 Previously published work

The work in chapters 2 and 3 derived from work published by Shi et al. [24]. The

work in chapter 6 appeared in work published by Ko et al. [25]. Work in chapters 4

and 5 derive from manuscripts currently under review for publication. Some passages

in this thesis have been quoted verbatim from the above sources.

1.4 Collaborators and contributions

This thesis would not have been possible without the close collaboration of many

people. In particular, chapters 2 and 3 would not have been possible without the

help of Gyulnara Kasumova, William A. Michaud, Jessica Cintolo-Gonzalez, Marta
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Diaz-Martinez, Jacqueline Ohmura, Arnav Mehta, Isabel Chien, Dennie T. Fred-

erick, Sonia Cohen, Deborah Plana, Douglas Johnson, Keith T. Flaherty, Ryan J.

Sullivan, Manolis Kellis, and Genevieve Boland. The work in chapters 4 and 5 would

not have been possible without the help of Mayinuer Maitituoheti, Ming Tang, Li-

lun Ho, Christopher Terranova, Kyriaki Galani, Emily Z. Keung, Caitlin A. Creasy,

Anand K. Singh, Apoorvi Chaudhri, Nazanin E. Anvar, Jiekun Yang, Ayush T. Ra-

man, Sharmistha Sarka, Shan Jiang, Jared Malke, Lauren Haydu, Elizabeth Burton,

Michael A. Davies, Jeffrey E. Gershenwald, Patrick Hwu, Alexander Lazar, David

Liu, Jamie H Cheah, Christian K. Soule, Chantale Bernanthez, Jennifer Wargo, and

Kunal Rai. Finally, the work in 6 would not have been possible without Annette

Ko, Masashi Watanabe, Thomas Nguyen, Achouak Achour, Baojun Zhang, Xiaoping

Sun, Qun Wang, Yuan Zhuang, Nan-ping Weng, and Richard J. Hodges.
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Chapter 2

Extracellular vesicles are predictive

biomarkers of immunotherapy

response

2.1 Introduction

Historically, blood-based biomarkers for immunotherapy focused on cell-free DNA

(cfDNA) or circulating tumor cells [26, 27], which solely reflect tumor-based properties

and not changes in the immune system during treatment. To improve prediction and

tracking of ICI resistance, simultaneous capture of transcriptomic features from both

the tumor and immune system [28] is critical.

Extracellular Vesicles (EV) are produced by many cell types including tumor

and immune cells, which contain a sub-transcriptome of their cell-of-origin. EVs

are involved in oncogenesis, immune modulation, and serve as communicators of

genetic and epigenetic signals. In cancers, tumor-secreted EVs modulate the tumor

microenvironment, elicit anti-tumoral immune responses [29], and plasma-derived EV

transcripts are markers of anti-tumor immune activity [30]. EVs are also secreted

by many immune cell-types implicated in ICI response including CD4+/CD8+ T-

cells, dendritic cells, regulatory T-cells, and macrophages [31, 32, 33, 34]. During
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tumor progression, both overall and tumor-specific EVs are elevated in plasma10. We

hypothesize that bulk, non-enriched plasma-derived EVs capture both tumor-derived

EVs and non-tumor-derived EVs reflecting tumor-intrinsic and non-tumor signals. We

analyzed pre-treatment and on-treatment peripheral blood-derived bulk EV RNA

from 50 patients with metastatic melanoma (discovery cohort; N=33 responders,

N=17 non-responders) treated with ICI via transcriptome microarray (Fig. 2-1a

and Table S1). A subset of patients had post-treatment plasma samples (N=15)

and tumors (N=26). Additionally, we profiled four melanoma cell lines and paired

EV. We validated results from the discovery cohort using an independent validation

cohort of 30 patients (N=14 responders, N=16 non-responders) using extracellular

vesicle RNA-seq (evRNA-seq). To integrate transcriptomic data from two sequencing

platforms, we utilized a multi-pronged statistical strategy to minimize cross-platform

variance (Fig. 2-1b).
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Pre-treatment EVs

*Patient 307 had pre-treatment tumor collected at an earlier time than his EV samples.
Pre-treatment Tumor

On-treatment EVs

N=7 Controls

Healthy control EVs

Cell-line tissue

Cell-line EVs

N=4 cell-lines
17 patients 
11 R, 6 NR

14 patients 
3 R, 11 NR 2 patients 

1 R, 1 NR

Responder (Clinical Benefit) 
Non-Responder (No Clinical Benefit)

1 patients 
1 R

6 patients* 
3 R, 3 NR4 patients 

3 R, 1 NR

6 patients 
3 R, 3 NR

 

Discovery Cohort - Profiled using microarray technology

30 patients 
19 R, 11NR

a.

b. Processing & Analysis Pipelines

Microarray .cel files supplied 
directly by ThermoFisher 
(contractor) from Human-
Transcriptome 

Discovery Cohort Validation Cohort

Standardization using 
‘rma’ and within-microar-
ray batch correction using 
‘ComBat’ to produce log2 
expression values

Technical replicates averaged and 
combined to single amalgamted files; 
removed samples collected from >365 
before treatment start 

RNA-seq .fastq files from Illumina 
HiSeq 2000 sequencing from Ting Lab 
@ MGH (collaborator)

Production of .bam files via STAR 
alignment against hg38. Count matrix 
via R library ‘featureCounts’ against 
ucsc_hg38.gtf

Count matrix transformed into 
log2(TPM+1) using custom R script.

Joint-normalization of log2(TPM+1) 
RNA-seq & log2 microarray 
expression data with ‘ComBat’ 
followed by quantile normalization. 
This is to remove platform-specific 
effects & produce reasonable basis 
joint for analyses requiring both 
datasets 

Mapping with 
‘bwa’ against 
hg38 reference

Joint validation + discovery cohort analyses using platform-normalized expression data

Discovery Cohort DEG (via limma) 
& KEGG differential analysis 
(GAGE)

Validation Cohort DEG calling (via 
limma) & KEGG differential 
analysis (GAGE)

Discovery cohort/Microarray only
(micorrary expression 

was not platform-normalized)

1. Comparing cell-line EVs vs. cell-line 
(4 melanoma cell-lines vs. 4 melanoma 
cell-lined derived exosomes, Supple-
mental Fig 2) 

2. CIBERSORT on patient & EV data 
and comparison of enrichment of 
specific immune sub-populations (Fig. 
1)

3. Deconvolution modeling. Selected 
genes are displayed in Fig 4a.    

EV pre-treatment responders 
vs. non-responders (28R vs. 
13NR)

EV on-treatment  responders 
vs. non-responders (28R vs. 
9NR)  

Tis pre responders vs. 
non-responders (16R vs 14NR)

EV pre-treatment 
responders vs. 
non-responders (14R vs. 
16NR)

EV on-treatment 
responders vs. 
non-responders (14R vs. 
16NR)
 

Downstream analyses

*All numbers here refer to the 
number of samples used in each 
comparison 

+

+

Pre-treatment validation 
cohort & discovery 
pathway & DEG overlap 
(Fig. 3a-b)

Discovery cohort Random 
Forest model creation & K=5 
internal cross-validation  
based on replicated DEGs 
(Fig. 3c, methods)

Test performance of 
Random Forest trained 
using discovery cohort on 
validation cohort to compute 
ROC & AUC (Fig. 3c, 
methods)

Calling all (somatic & germline) 
mutations against hg38 using 
GATK HaplotypeCaller

Overlap GATK calls against 
COSMIC v91 significant genes

On-treatment EVs

Pre-treatment EVs

On-treatment calidation 
cohort & discovery KEGG 
& DEG overlap (Fig. 2a, 
2c)

Aggregate time dynamics 
analysis & plotting using 
GSVA (for KEGG pathways) or 
normalized gene expression 
values for validated DEGs 
(53R samples vs. 21NR 
samples Fig. 2b, 2d)

Compared VCF calls to panel 
sequencing results

Compared per-patient 
mutational load between 
responders and non-respond-
ers 

Figure 2-1: EV cohort description and processing methodology. (a) Outline
of both the discovery and validation study cohort (b) Outline of the processing and
analysis steps undertaken to generate the major results in the paper
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2.2 Methods

2.2.1 Tumor cell lines

Melanoma cell lines (A375, RPMI 7951, SK-MEL-30, SK-MEL-2, MeWo) were pur-

chased directly from the American Type Culture Collection (ATCC) and maintained

in culture per ATCC recommendations. The A375 cell line was maintained in Dul-

becco’s minimal essential medium (DMEM), whereas RPMI 7951, SK-MEL-30, SK-

MEL-2, and MeWo cell lines were cultured in RPMI-1640 media. All growth media

consisted of media supplemented with 10% FBS, and 100 I.U./mL penicillin, 100

µg/ml streptomycin, and 0.292 mg/mL L-glutamine. Cells were grown on plates and

incubated at 37∘C with a humidified atmosphere of 5% CO2 in air.

2.2.2 Patient samples and plasma isolation

Serial tumor and blood samples were collected from patients with melanoma under

protocols approved by the Institutional Review Board at the Massachusetts General

Hospital. Patient samples were linked to clinical data in a retrospective electronic

health records database. Blood was collected in sodium citrate cell preparation tubes,

with plasma isolated after centrifugation at room temperature for 25-30 minutes at a

relative centrifugal force of 1800. Plasma was then frozen and stored at -80∘C until

use. Peripheral blood mononuclear cells (PBMCs) are collected from the same sodium

citrate tubes, washed in phosphate buffered saline, resuspended in DMSO with 90%

FBS, slow frozen at 1∘C per minute, and stored at -80∘C until use.
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Figure 2-2: In vitro EV characterization.(a) Electron microscope images of repre-
sentative cellline and patient-derived EVs. (b) Nanosight analysis of a representative
cell line sample (RPMI) and patient sample. (c) Western blot of 5 cell line/paired EV
proteins with no calnexin within EV, but high levels of CD9 within EV as compared
to paired cells.

2.2.3 Isolation of EVs

Cell lines : When 150mm plates reached between 50 – 70% confluence, depending

on the doubling time of the cell line, the media was replaced with the appropriate

media containing EV-depleted FBS and the media was harvested after 48 hours.

EVs were isolated from cell-conditioned media using serial centrifugation to remove

cellular debris and filtration with a 0.8µM or smaller filter (Millipore) followed by

ultracentrifugation as previously described [35]. Briefly, cell-conditioned media was

collected and centrifuged at 3,000 revolutions per minute (rpm) for 10 minutes at

4∘C after which the supernatant was decanted and filtered using a 0.45µM or 0.8µM

filter. The filtered supernatant then underwent ultracentrifugation at 150,000xg for

120 minutes. The pellet was then washed in PBS and underwent a second round of

ultracentrifugation for 90 minutes. The EVs were then resuspended in cold RPMI

media on ice, and then frozen and stored at -80∘C.
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Plasma: All EV for RNA transcriptomic analysis from plasma were isolated from 1ml

of plasma using column isolation (Qiagen exoRNAeasy midi kit). Column isolation

using the Qiagen exoRNAeasy serum/plasma midi kit resulted in direct isolation of

EV RNA (10–30ng RNA/ml). Approximately 1 in 10 patients had an additional 1ml

of plasma isolated in parallel using ultracentrifugation (for quality control studies

only, Fig. 2-2). For ultracentrifugation, plasma was thawed and filtered through a

0.2µM filter prior to ultracentrifugation as described for cell lines, above.

2.2.4 Nanoparticle tracking analysis, electron microscopy, West-

ern Blot analysis

Nanoparticle tracking analysis : Nanoparticle tracking analysis (NTA) using the Nanosight

LM10 (Malvern) was employed in order to assess size distribution and concentration

of particles in cell cultures and selected patient samples. Samples were diluted in

PBS either 1/500 or 1/1000 according to Nanosight instruction manual.

Transmission electron microscopy : Electron microscopy was used to confirm the pres-

ence of EVs in cell culture and selected patient samples by size and morphology. Iso-

lated EV suspensions were diluted 2:1 in 1xPBS and 8-10µl aliquots of each diluted

sample were placed on formvar-carbon coated Ni mesh grids; samples were allowed

to adsorb for 15 minutes. Following adsorption, grid preparations were placed on

drops of primary antibody CD9, rabbit monoclonal (D801A), Cell Signaling #13174,

diluted 1:25 (dilutions made in DAKO antibody diluent). Samples were allowed to

incubate in primary antibody for at least 1 hour at room temperature, then rinsed on

drops of PBS and incubated in drops of a secondary gold conjugate at least 1 hour at

room temperature: Goat anti-rabbit 10nm IgG (Ted Pella #15726). Grids were then

rinsed on drops of 1xPBS, then distilled water, contrast-stained for 10 minutes in

droplets of chilled tylose/uranyl acetate, and air-dried prior to examining in a JEOL

JEM 1011 transmission electron microscope at 80 kV. Images were collected using

an AMT digital camera and imaging system with proprietary image capture software

(Advanced Microscopy Techniques, Danvers, MA).
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Protein isolation from cell lines or EVs : protein was isolated using RRIPA buffer sup-

plemented with protease inhibitors as described in Wright 198938. EVs were lysed

directly in a sample buffer containing SDS and DTT.

Protein Quantification: Protein concentration of EV samples was determined using

the DC� Protein Assay (Bio-Rad) according to the manufacturer’s protocol.

Western Blot : Western blot was performed on samples of EV isolated from cell lines

(Fig. 2-2) to confirm their presence in the samples. Antibodies for EV markers

CD939 were used as a positive marker given their consistency in expression across

EV samples, whereas calnexin, an endoplasmic reticulum protein, is not found in EV

and was used as a negative control. Actin was used as a loading control for cell lines,

using standard protocols.

2.2.5 RNA extraction and sequencing

Cell lines : Cells were trypsinized, washed in media for trypsin deactivation, then

washed in PBS, counted, and pelleted. The cell pellet was resuspended in Trizol at a

concentration of 5 x 106 cells per 1mL and RNA isolated according to manufacturer’s

instructions (Invitrogen). RNA was then quantified using a NanoDrop spectrometer

(Thermofisher).

Cell line derived EV : RNA was extracted from EV using Qiagen exoRNeasy kit.

Tumor : Formalin-fixed tissue was analyzed to confirm that viable tumor was present

via standard hematoxylin and eosin (H & E) staining. DNA was extracted from snap

frozen tissue using Qiagen’s AllPrep DNA/RNA FFPE Kit.

Peripheral blood derived/plasma EV: Total EV RNA was extracted from thawed

patient plasma using the Qiagen exoRNeasy Serum/Plasma Midi Kit as per the man-

ufacturer’s protocol. Briefly, 1mL of plasma was thawed and filtered using a 0.8µM

or smaller filter (Millipore). The sample was then mixed with binding buffer and

placed on a spin column. After a wash step, the EVs were lysed on the column using

QIAzol and the eluate was then treated with chloroform to achieve phase separation.

The aqueous phase was combined with 100% ethanol and then underwent column

extraction with wash steps and final elution of EV RNA in RNase-free water.
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Extracellular vesicle RNA-seq (evRNA-seq): Sequencing was performed using an Il-

lumina HiSeq 2000 system in the Ting lab at Massachusetts General Hospital. RNA

was prepared with the SMARTer Stranded Total RNA-Seq Kit v2 (Pico Input Mam-

malian) per supplier instructions. For EV sequencing, RNA with a RIN of 4 or less

was not subjected to fragmentation. Libraries were purified using AMPure beads and

ZapR v2 for the depletion of ribosomal cDNA.

2.2.6 Discovery cohort microarray processing

We performed microarray analysis (via a subcontract to Thermo Fisher Scientific)

utilizing Applied Biosystems GeneChip Human Transcriptome Array 2.0. Raw .cel

files provided by ThermoFisher were read using the R package ‘oligo’. We performed

background subtraction, quantile normalization, and summarization via the Robust

Multichip Average (rma) algorithm using the R package ‘oligo’ [36]. We used the

R package ‘pd.hta.2.0’ to provide functional annotations for the probes. We filtered

all probes that did not map to an annotated gene, as well as duplicate probes. We

corrected for batch effects using the ‘ComBat’ algorithm from the R ‘sva’ package [37].

For analyses that required validation by evRNA-seq, the resulting matrix was further

corrected for platform-specific effects using ‘ComBat’ and was quantile normalized

(fully described in the RNA-seq processing section). Analyses that only utilized

microarray data (Fig. 2-1b) was performed using the non-platform-corrected data,

since cross-platform normalization with evRNA-seq log2(TPM+1) may unduly bias

microarray-only analyses.

2.2.7 Validation cohort RNA-seq processing

Raw Illumina .fastq files were first filtered using ‘fastp’ [38] with default settings and

then aligned to human hg38 transcriptomic reference using STAR v2.4.1 with default

settings. To summarize the count data from the aligned .bam files, we utilized the

function ‘featurecounts’ function from the R package ‘Rsubread’ [39]. Next, we de-

rived log2(TPM+1) values using a custom R function. To make the RNA-seq count
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matrix co-analyzable with our microarray data, we essentially treated the resulting

ComBat-corrected log2(TPM+1) matrix as an additional microarray batch. To mini-

mize platform-based effects, we concatenated log2(TPM+1) matrix with the microar-

ray expression matrix to make a joint data matrix. Next, we used the ‘ComBat’ [37]

algorithm from the R ‘sva’ [37] package to perform a “batch”-correction step where

the two platforms were treated as two distinct batches. Existing biological treat-

ments were included in the ‘ComBat’ normalization step as an input argument to

preserve true biological effects during the platform-correction step. Next, we quantile

normalized the resulting data matrix using R ‘preprocessCore’ library. The result-

ing platform-normalized matrix was then split back into evRNA-seq and microarray

matrices for relevant downstream analyses.

2.2.8 Differential expression analysis

To calculate differential expression in our microarray-based discovery and our evRNA-

seq validation cohort, we used the R ‘limma’ package to compute the p-values that

corresponded to the comparisons [40]. For the samples that had multiple replicates,

we modeled biological replicates as a random effect. Confounding variables such

as age and prior immunotherapy treatment were tested for association against ICI

response and did not exhibit significant associations, and, as a result, they were not

included as covariates. To find the top differentially expressed genes, we utilized

limma’s Empirical Bayes linear modeling framework [40]. Differentially expressed

genes were defined by 1.5 log-fold change between responders and non-responders and

a nominal p-value cutoff of p=0.1 from limma. In order to be considered validated, a

gene has to fulfill both the nominal p-value cutoff and log-fold change cutoff in both

the validation and discovery cohorts. We note that this nominal p-value cutoff is

ordinarily insufficient to control for false positive discoveries in a single cohort study;

however, we require explicit confirmation for putative discovery cohort DEGs in our

validation cohort, thus the combined false positive rate for a gene to be both falsely

discovered and falsely validated is substantially lower than what the nominal p-value

cutoff would suggest.
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2.2.9 Concordance and differential pathway analysis

Concordance analysis was performed by first binarizing the mean expression values

of either the cell-line or patient data based on a 1.5 log expression cutoff using non-

platform-corrected microarray data. If a gene is either present or absent in both

groups, it is labeled as concordant. We averaged the expression signal from two

pre-treatment patients present in the pre-treatment time point; the post-treatment

replicates were considered separately since they were from separate time points. To

find differential pathways that are different between patient tumors and patient EV,

we used gene-set enrichment between responders and non-responders with default

parameters and GO biological processes database11. To find the canonical (C2)

MSigDB [41] pathways that are significantly different between responders and non-

responders in both the discovery and validation cohorts, we utilized the Gene Set

Variation Analysis (GSVA)16 program with default settings to generate per-patient

GSVA scores (a normalized statistic summarizing enrichment relative to the entire

cohort analogous to ssGSEA scores) across our platform-corrected discovery and vali-

dation cohorts datasets. We then used a Mann-Whitney U-Test to test for differential

GSVA scores between responders and non-responders. Similar to the rationale used

for DEG analysis, we utilized a nominal p-value cutoff of 0.1 to flag differential path-

ways. A pathway was considered validated if it achieved significance in both the

discovery and validation cohorts.

2.2.10 Survival analysis and time-series analysis

To compute and plot the Kaplan-Meier curves, we utilized overall survival data and

censoring information as inputs into the Kaplan-Meier computation and plotting func-

tions in the R package ‘survminer’. To generate the time-series plots, we utilized the

R Gene Set Variation Analysis (GSVA)16 package to generate a normalized enrich-

ment score for each sample for target KEGG pathways. To generate the per-patient

time dynamic plots, we normalized discovery cohort expression data by subtracting

the expression of a patient’s first sample from all samples from the same patient.
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2.2.11 Building a predictive classifier

To build a random forest predictive classifier from our selected pre-treatment DEGs,

we first merged the post-platform-corrected evRNA-seq and microarray data into a

single combined matrix with 71 samples (N=41 from discovery cohort, N=30 from

validation cohort). In order to reduce potential bias from platform and batch effects

not corrected for by our ComBat correction steps, we randomized the selection of

samples in the training and testing cohort by including samples from both sequencing

platforms in the training and testing groups. To accomplish this, we randomly selected

N=30 samples to be (reflecting the size of our discovery cohort) the size of the held-out

testing cohort and N=41 samples (reflecting the size of our validation cohort) to be the

training set. In order to minimize variability due to random sampling and potential

non-linear bias between platforms that remains uncorrected for by ComBat, we ran

100 trials for our machine learning pipeline, each with a N=30 random selection

of pre-treatment samples as testing set and the remaining N=41 random samples.

Note that the randomly partitioned training and testing sets will typically contain

both evRNA-seq and microarray samples and may contain different proportions of

responders and non-responders depending on the partitioning.

Within each trial, we first conducted K=5-fold internal cross-validation within the

training set using the function ‘StratifiedKFold’ from the python library ‘sklearn’ to

optimize the hyperparameters (number of trees) of a random forest model within the

training set by optimizing cross-validation AUROC [42]. For each trial, We searched

T=10,20,30 as a potential number of trees for our random forest classifier. The

optimal hyperparameters within the internal cross-validation and the predicted prob-

abilities for all K=5 cross-validation folds for each trial were saved. We next used the

optimal hyperparameters to train a random forest model on the entire training set,

and then evaluated the performance of this trained model on the testing set. Both the

predicted probabilities for the internal and ground truths for each trial were saved.

To generate the ROC plots, we concatenated the predicted probabilities and ground

truths across 100 trials for both the internal training CV and testing sets. We then
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used the python ‘roc_curve’ from the python library ‘sklearn.metrics’ to compute the

receiver operating characteristic (ROC) and the area under the ROC (AUROC) for

both the results from the internal training-set cross-validation and the performance

of the best performing model on the held-out testing set across all 100 trials [42].

2.2.12 Mutational calling and analysis from evRNA-seq data

To derive the mutational information shown in Table S1 and Fig. 4g-h, we first

mapped all reads using ‘bwa’ mem v0.7.17 (with default settings) against reference

human hg38 reference; ‘bwa’ was chosen to include reads lying outside of the refer-

ence transcriptome with potentially useful mutational information. Next, we used

GATK ‘HaplotypeCaller’ submodule (with default settings) to call mutations from

our patient RNA-seq libraries against hg38 reference and compared the resulting

mutational information with summaries of SNaPshot panel sequencing results from

clinical records. SNaPshot is a multiplexed PCR assay aimed at identifying somatic

variants in 70 different loci from 15 cancer genes; the SNaPshot assay was performed

by the MGH’s pathology department (Boston, USA). We utilized a custom python

script to overlap the resulting .vcf files produced by GATK against the ‘CosmicCod-

ingMuts.vcf’ file downloaded from the COSMIC mutation database v89 [43].

2.3 Results

2.3.1 EV correspondence with tissue-of-origin

We analyzed melanoma cell-lines and cell-line-derived EV to correlate EV transcrip-

tomes with tumor transcriptomes. We observed high correlation between cell-lines

and EV (average 𝑅2=0.87, Fig. 2-3a). Cell lines shared similar concordance in gene

expression (Fig. 2-3b), and the majority of genes had small differences in expression

(Fig. 2-3c). Unsurprisingly, each cell line had the highest correlation with their EV

(Fig. 2-3d), suggesting that EV are reasonable proxies for expression in cell-lines.

To determine if a patient’s plasma-derived EV profiles correlate with their tumor’s
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profile, we analyzed paired EV and tumor transcriptomes from N=9 patients and

observed close correlation of expression between the two profiles (average 𝑅2=0.82,

Fig. 2-4a). Concordance analysis demonstrated that most genes in bulk tumors are

detected in corresponding EV (Fig. 2-4b). By conducting gene-set enrichment anal-

ysis via GAGE11, we found enrichment of immune-related signatures exclusively in

EV (e.g., T-cell activation, NK activation), while tumor-exclusive transcripts enriched

for metabolic and tumor-related pathways (Fig. 2-4c). To identify cell populations

represented in EV, we utilized CIBERSORT to infer immune cell-type enrichments

in patient EV [44, 45]. We observed enrichment in 5 immune sub-populations exclu-

sively in EV (neutrophils, NK cells, CD4+/CD8+ T-cells), and a relative depletion

in macrophages/mast cells (Fig. 2-4d), suggesting EV are over-enriched for signals

from immune populations important for anti-PD1 responses [28]. Therefore, we hy-

pothesized that EV transcripts from patients prior to and during treatment would

predict or reflect resistance to ICI
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Figure 2-4: Tumor and EV RNA concordance. (a) Scatter plot displaying the
relationship between expression values of tumors and plasma EV in a representative
patient (Patient 178) and a histogram for 𝑅2 between paired tumors and plasma EV
across the cohort. (b) Concordance was calculated using a low-expression threshold
cut-off for expressed versus non-expressed status (Section 2.2.9). Genes expressed or
not expressed in tissue and EV were considered concordant (blue), while a subset of
transcripts were unique EV or tumor. (c) Selected pathways from gene-set enrich-
ment comparison of EV (left) vs. patient tumors (right). (d) CIBERSORT inferred
deconvolution estimates for all pre-treatment patient tumor and pre-treatment pa-
tient plasma-derived EV samples using LM22 immune reference profiles [44].
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2.3.2 On-treatment EV analysis

Since tumoral post-treatment signatures are more representative of ICI response

than pretreatment values [27, 46], we correlated on-treatment EV transcripts with

ICI response. Through differential gene set analysis utilizing the Molecular Signa-

tures Database (MSigDB) [41] via Gene Set Variation Analysis (GSVA, section 2.2.9)

[47], we observed 258 pathways significantly different between responders and non-

responders in the discovery cohort, of which 25 pathways were significant in the vali-

dation cohort. Validated pathways (e.g. T-cell receptor, CTLA4, TGF-β, SMAD2/3,

Notch, TNFR2, and VEGFR) (Fig. 2-5a, Fig. 2-6) are implicated in ICI resistance

and melanoma progression [48, 49, 50]. With our longitudinal data, we visualized

on-treatment pathway dynamics via single-sample GSVA16 and observed decreases

in T-cell receptor (TCR) pathway activity during treatment in non-responders (Fig.

2-5c, SFig. 2-7a) and the CD28 costimulatory pathway (SFig. 2-8a). The CTLA4

pathway diverges over time (SFig. 2-8b), potentially resulting from peripheral toler-

ance during treatment [51], and similar changes are seen in tumor-related pathways

(e.g. P53-Hypoxia (SFig. 2-8c) and Kinesin activity22 (SFig. 2-8d)). At the gene

level, there were 1240 nominal and 43 FDR-corrected differentially expressed genes

(DEGs) in the discovery cohort and 514 nominal and 3 FDR-corrected DEGs in

the validation cohort. 80 nominal DEGs shared successful p-value validation and 47

nominal DEGs were successfully replicated at both p-value, minimum expression, and

log-fold change levels (Section 2.2.6, Fig. 2-5c). The replication rate of the 47 DEGs is

significantly above that expected by chance (p=0.00088, hypergeometric test). Many

shared DEGs mirrored gene-set enrichment findings (e.g. KLF10: major actor in the

TGF-β pathway [52]; WNT8B: impacts T-effector differentiation [53]). We detected

cancer testis antigens (MAGEA1, MAGEA3) known to be expressed by melanoma

cells [54] in validated DEGs. On-treatment DEGs (MAGEA1, MAGEA2, KLF10, and

MIR4519) were plotted to illustrate time dynamics relative to normalized expression

changes at first collection (Fig. 2d) and unnormalized expression (Fig. 2-7b-e).
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Figure 2-6: On-treatment validated pathways. Box-plots and associated p-values
for validated MSigDB canonical pathways that differ between responders (green) and
non-responders (purple). The visualized points are individual GSVA scores inferred
for each pathway. The p-values were generated by comparing responder vs. non-
responder GSVA scores via a Mann-Whitney U-test.
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Figure 2-7: Un-normalized time series plots for differential genes and path-
ways. Un-normalized time-series plots showing time dynamics for pathways and
genes discussed in Fig. 2-5b and Fig. 2-5d. Individual GSVA scores were used to
plot the TCR KEGG pathway, while platform-normalized log2 expression values were
used to plot the individual gene expression levels.
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Figure 2-8: Normalized and un-normalized time series plots for differential
genes and pathways.Normalized and unnormalized time-series plots showing time
dynamics for selected pathways. The plotting was performed per methodology pre-
viously discussed in captions for Fig. 2-5b, Fig. 2-5d and Fig. 2-7.

48



2.3.3 Pre-treatment EV analysis

We assessed if pre-treatment EV transcriptomes are able to stratify responders from

non-responders by performing gene-set enrichment via GSVA [55], showing 101 differ-

entially expressed MSigDB pathways (discovery cohort), of which 26 replicated in the

validation cohort (Fig. 2-9a, Fig. 2-10) [56]. Compared to on-treatment pathways, we

see differential Notch and TGF-β signaling in the pre-treatment cohort and observe

differences in MAPK-related signaling (ERRB4) and keratinization. Statistical test-

ing revealed 366 nominal and 12 FDR-corrected DEGs in the pre-treatment discovery

cohort, and 1406 nominal and 45 FDR-corrected differentially expressed genes (DEGs)

in the pre-treatment validation cohort. 54 nominal DEGs had replicated p-values,

while 38 nominal DEGs had replicated p-values and log fold changes, representing

a replication rate significantly above that of random chance (p=0.0041, hypergeo-

metric test). DEGs included members of both immune and tumor-related pathways

implicated in ICI resistance or tumor growth (e.g. CD1A, MAP2K4, TRBV7-2 and

IFGL1 [48, 57, 58]) (Fig. 2-9b), and cancer-associated miRNAs (e.g. miR551A) were

enriched in non-responders. We constructed a pre-treatment random forest classi-

fier to predict post-treatment response vs. non-response status from pre-treatment

DEGs in order to quantify their predictive power. To minimize platform-specific dif-

ferences and demonstrate the robustness of these markers, we pursued a machine

learning framework that mixed samples across platforms in both the training and

testing sets. To minimize variability from random sampling, we created 100 random-

ized partitionings (“trial”) of the combined dataset into N=41 training and N=30

testing samples. Within each trial, we first conducted K=5 internal cross-validation

to optimize the hyperparameters of a random forest model specific to that trial. We

next used the best performing hyperparameter set to evaluate testing performance on

the test set. By summarizing the results from all 100 trials, we are able to generate

receiver operator characteristic (ROC) plots displayed for both the training cross-

validation performance (top panel) and the testing set performance (bottom panel)

in Fig. 2-9c. To evaluate binary classification accuracy, we utilized the area under

49



the receiver operator character (AUROC); this is the probability that a binary clas-

sifier will rank a randomly chosen responder patient higher than a randomly chosen

non-responder one [59]. We observed moderate predictive power in both our internal

cross-validation (AUROC=0.784) and our independent testing set (AUROC=0.737)

for our pre-treatment DEGs (Methods). Multiple validated DEGs (IGFL1, TFF2,

and MAP2K4) showed significant stratification in progression-free or overall survival

(Fig. 2-9d, Fig. 2-11).
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Figure 2-9: Biological pathways and genes that stratify responders and non-
responders in pre-treatment EV profiles. (a) GSVA scores and associated p-
values for selected MSigDB canonical pathways that differ significantly between re-
sponders and non-responders in pre-treatment EVs. The p-values were generated by
performing a Mann-Whitney U-Test. (b) Boxplots of expression values of selected val-
idated pre-treatment EV DEGs between responders and non-responders in both the
discovery and validation cohort (purple color: non-responders, green color: respon-
ders). (c) Receiver operating characteristics (ROCs) generated by a random forest
classifier [42] utilizing the validated pre-treatment DEGs genes as features to predict
response vs. non-response status from pre-treatment plasma-derived EV transcrip-
tomic profiles. (d) Kaplan-Meier overall survival plots and associated log-rank test
p-values for IGFL1 in the discovery and validation cohorts.

51



−0.2 0.0 0.2 0.4

KEGG_HISTIDINE_METABOLISM (p=0.08919)

−0.2 0.0 0.2 0.4

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 (p=0.00367)

−0.2 −0.1 0.0 0.1 0.2

KEGG_TGF_BETA_SIGNALING_PATHWAY (p=0.0128)

−0.3 0.0 0.3 0.6

BIOCARTA_SKP2E2F_PATHWAY (p=0.09753)

−0.2 0.0 0.2 0.4

PID_NCADHERIN_PATHWAY (p=0.01643)

−0.2 −0.1 0.0 0.1 0.2

REACTOME_SIGNALING_BY_ERBB4 (p=0.03294)

−0.2 0.0 0.2

REACTOME_O_LINKED_GLYCOSYLATION_OF_MUCINS (p=0.00048)

−0.6 −0.3 0.0 0.3 0.6

REACTOME_TERMINATION_OF_O_GLYCAN_BIOSYNTHESIS (p=0.00119)

−0.4 −0.2 0.0 0.2

REACTOME_NOTCH1_INTRACELLULAR_DOMAIN_REGULATES_TRANSCRIPTION (p=0.0209)

−0.2 0.0 0.2 0.4

REACTOME_OLFACTORY_SIGNALING_PATHWAY (p=0.08919)

−0.6 −0.3 0.0 0.3 0.6

REACTOME_MRNA_DECAY_BY_5_TO_3_EXORIBONUCLEASE (p=0.03672)

−0.4 −0.2 0.0 0.2 0.4

REACTOME_MYOGENESIS (p=0.0742)

−0.25 0.00 0.25 0.50

REACTOME_POSTSYNAPTIC_NICOTINIC_ACETYLCHOLINE_RECEPTORS (p=0.01452)

−0.50 −0.25 0.00 0.25 0.50

REACTOME_NEUROTRANSMITTER_CLEARANCE (p=0.02635)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

REACTOME_POST_TX_MODIFICATION:_SYNTHESIS_OF_GPI_ANCHORED_PROTEINS (p=0.0057)

−0.25 0.00 0.25 0.50

REACTOME_METABOLISM_OF_ANGIOTENSINOGEN_TO_ANGIOTENSINS (p=0.06128)

−0.4 0.0 0.4

REACTOME_FATTY_ACIDS (p=0.06128)

−0.3 0.0 0.3 0.6

REACTOME_SYNTHESIS_OF_LEUKOTRIENES_LT_AND_EOXINS_EX (p=0.01643)

−0.4 −0.2 0.0 0.2 0.4

REACTOME_ARACHIDONIC_ACID_METABOLISM (p=0.05022)

−0.3 0.0 0.3 0.6

REACTOME_SCAVENGING_OF_HEME_FROM_PLASMA (p=0.09753)

−0.2 0.0 0.2

REACTOME_SIGNALING_BY_NOTCH1_IN_CANCER (p=0.03672)

−0.4 0.0 0.4 0.8

REACTOME_DEFECTIVE_GALNT3_CAUSES_TUMORAL_CALCINOSIS_HFTC (p=0.0027)

−0.25 0.00 0.25

REACTOME_DECTIN_2_FAMILY (p=0.01855)

−0.25 0.00 0.25 0.50

REACTOME_MAP3K8_TPL2_DEPENDENT_MAPK1_3_ACTIVATION (p=0.00987)

−0.2 0.0 0.2 0.4

REACTOME_KERATINIZATION (p=0.0057)

−0.25 0.00 0.25

REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE (p=0.03294)

−0.2 0.0 0.2 0.4

KEGG_HISTIDINE_METABOLISM (p=0.00429)

−0.50 −0.25 0.00 0.25

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 (p=0.09586)

−0.3 −0.2 −0.1 0.0 0.1 0.2

KEGG_TGF_BETA_SIGNALING_PATHWAY (p=0.02099)

−0.4 0.0 0.4

BIOCARTA_SKP2E2F_PATHWAY (p=0.00991)

−0.4 −0.2 0.0 0.2

PID_NCADHERIN_PATHWAY (p=0.09027)

−0.2 −0.1 0.0 0.1 0.2

REACTOME_SIGNALING_BY_ERBB4 (p=0.08493)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

REACTOME_O_LINKED_GLYCOSYLATION_OF_MUCINS (p=0.05418)

−0.50 −0.25 0.00 0.25 0.50

REACTOME_TERMINATION_OF_O_GLYCAN_BIOSYNTHESIS (p=0.05792)

−0.50 −0.25 0.00 0.25 0.50

REACTOME_NOTCH1_INTRACELLULAR_DOMAIN_REGULATES_TRANSCRIPTION (p=0.05418)

−0.2 0.0 0.2 0.4

REACTOME_OLFACTORY_SIGNALING_PATHWAY (p=0.00573)

−0.4 0.0 0.4

REACTOME_MRNA_DECAY_BY_5_TO_3_EXORIBONUCLEASE (p=0.05418)

−0.4 −0.2 0.0 0.2 0.4

REACTOME_MYOGENESIS (p=0.06602)

−0.3 0.0 0.3 0.6

REACTOME_POSTSYNAPTIC_NICOTINIC_ACETYLCHOLINE_RECEPTORS (p=0.06187)

−0.3 0.0 0.3

REACTOME_NEUROTRANSMITTER_CLEARANCE (p=0.07501)

−0.2 0.0 0.2

REACTOME_POST_TX_MODIFICATION:_SYNTHESIS_OF_GPI_ANCHORED_PROTEINS (p=0.01939)

−0.4 −0.2 0.0 0.2 0.4 0.6

REACTOME_METABOLISM_OF_ANGIOTENSINOGEN_TO_ANGIOTENSINS (p=0.07985)

−0.4 0.0 0.4

REACTOME_FATTY_ACIDS (p=0.0704)

−0.4 −0.2 0.0 0.2 0.4

REACTOME_SYNTHESIS_OF_LEUKOTRIENES_LT_AND_EOXINS_EX (p=0.01519)

−0.2 0.0 0.2

REACTOME_ARACHIDONIC_ACID_METABOLISM (p=0.06187)

−0.2 0.0 0.2 0.4

REACTOME_SCAVENGING_OF_HEME_FROM_PLASMA (p=0.06187)

−0.4 −0.2 0.0 0.2 0.4

REACTOME_SIGNALING_BY_NOTCH1_IN_CANCER (p=0.07985)

−0.3 0.0 0.3 0.6

REACTOME_DEFECTIVE_GALNT3_CAUSES_TUMORAL_CALCINOSIS_HFTC (p=0.09586)

−0.25 0.00 0.25

REACTOME_DECTIN_2_FAMILY (p=0.01397)

−0.4 0.0 0.4

REACTOME_MAP3K8_TPL2_DEPENDENT_MAPK1_3_ACTIVATION (p=0.08493)

−0.25 0.00 0.25

REACTOME_KERATINIZATION (p=0.04114)

−0.25 0.00 0.25

REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE (p=0.07985)

Discovery Cohort Validation Cohort

GSVA level in non-responder

GSVA level in responder

GSVA ScoreGSVA Score

Pre-treatment 
validated differential 
pathways

Figure 2-10: Pre-treatment validated pathways. Box-plots and associated p-
values for validated MSigDB canonical pathways that differ between responders
(green) and non-responders (purple). The visualized points are individual GSVA
scores inferred for each pathway. The p-values were generated by comparing respon-
der vs. non-responder GSVA scores via a Mann-Whitney U-test.
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Figure 2-11: Kaplan-Meier progression-free and overall survival curves for
selected genes.Kaplan-Meier progression-free and overall survival curves for selected
genes that showed significant or near-significant differences between high-expressed
and low-expressed patients.
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2.3.4 EV RNA-seq mutational information

We investigated whether mutational information in the evRNA-seq can stratify re-

sponders and non-responders given data relating to tumor mutational burden (TMB)

[60]. We surveyed the mutational landscape using hg38 genomic reference to call

somatic and germline RNA-seq-associated mutations (section 2.2.12). By comparing

evRNA-seq mutational calls against patient matched tumor panel sequencing results

(MGH SNaPshot), we determined that three of our patients had specific driver muta-

tions called by both panel sequencing and evRNA-seq mutational calling. Since panel

data represents a small fraction of somatic tumor-associated mutations, we surveyed

the entire somatic mutational landscape to evaluate differences in cancer driver mu-

tational burden. Although patient samples varied in absolute number of mutations

detected, we reasoned that differences in the fraction of somatic tumor-related mu-

tations from COSMIC database relative to overall mutational pool can be attributed

to changes in somatic mutation load and not differences in germline mutations [43].

We observed significantly higher COSMIC driver somatic mutational fraction in re-

sponders relative to non-responders (Fig. 2-12a-b). This was also reflected in the

survival analysis. We observed significant stratification (p=0.014, log-rank test) be-

tween patients with high COSMIC mutational fraction (top 50% of cohort) vs. those

patients with low COSMIC mutational fraction (Fig. 2-12c), with patients with

higher mutational fractions experiencing overall longer-survival times. Interestingly,

the progression-free survival log-rank test was not significant (Fig. 2-13, p=0.67),

suggesting that evRNA-seq cancer driver information may be more effective for pre-

dicting long-term effects of ICI treatment rather than short-term effects.

2.4 Discussion

In this study, we explored the potential usage of plasma-derived EV transcriptomic

profiles as a source of biomarkers for predicting and monitoring checkpoint block-

ade immunotherapy success. Our results show that EVs, in aggregate, correlate with

certain aspects of bulk tumoral biology and reflect a number of previously identified
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Figure 2-12: Comparison of COSMIC mutational driver load between re-
sponders and non-responders.Visualization of cohort-wide percentage of COS-
MIC driver mutations, as part of total mutations (a combination of somatic &
germline) called for each patient’s evRNA-seq profile in the validation cohort, a higher
mutational load in responder patients (purple color: non-responders, green color: re-
sponders). (b) Boxplot summarizing the distribution of COSMIC driver mutation
fraction between responder and non-responder profiles. A Mann-Whitney U-test was
used to test for significant differences between the responder and non-responder dis-
tributions. (c) Kaplan-Meier overall survival plots for COSMIC survival fraction in
the validation evRNA-seq cohort. High and low expression classifications were deter-
mined for each patient based on whether a particular patient’s COSMIC mutational
fraction was in the top half (teal) or bottom half (yellow) of the validation cohort’s
COSMIC mutational fraction distribution. A log-rank test was used to derive the
p-value.

differentially regulated biological pathways implicated in ICI resistance or melanoma

progression in responders vs. non-responders. The majority of differential pathways

and genes at the pre-treatment time point primarily reflect differences in metabolic

state as opposed to pre-existing immune-related differences, suggesting that plasma-
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Figure 2-13: Kaplan-Meier progression-free survival plots for COSMIC mu-
tational fraction in the validation evRNA-seq cohort.High and low expression
classifications were determined for each patient based on whether a particular pa-
tient’s COSMIC mutational fraction was in the top half (teal) or bottom half (yellow)
of the validation cohort’s COSMIC mutational fraction distribution.

derived EVs only start capturing immune-related differences between responders and

non-responders after ICI treatment is administered. This is supported by the enrich-

ment of immune-related pathways in our on-treatment differential pathway analysis,

as well as the enrichment for non-tumor-derived DEGs as inferred by our deconvolu-

tion model. Though the validated pre-treatment DEGs we discovered are biologically

informative and can be utilized to create predictive models of ICI response with mod-

erate predictive ability, our predictive classifier still lags behind predictive classifiers

created from transcriptomic profiles from bulk tumor biopsies in terms of perfor-

mance; bulk-tumor profiles demonstrate performance in the 0.8-0.9 AUROC range
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[61], compared to our testing AUROC of 0.737. Despite its lower predictive per-

formance, the greater availability and ease of obtaining plasma-derived EV samples

relative to bulk tumor biopsies may provide a viable clinical use case for EV profiling

in the context of ICI treatment.

The higher levels of correlation between melanoma cell-lines and their EVs as com-

pared to bulk patient tumors and corresponding plasma-derived EVs suggest that bulk

plasma-derived EVs reflect a broader repertoire of EV sources. Indeed, the most ro-

bust enrichment in EVs is for immune-related pathways (Fig. 2-4c). This is reinforced

by the relative enrichment of several key immune cell-types in our CIBERSORT de-

convolution and are validated by our on-treatment DEGs and pathway enrichments.

EV transcriptomic biomarkers may complement circulating tumor DNA (ctDNA) to

gain transcriptomic information regarding tumor dynamics in addition to genomic in-

formation and may give a readout of both tumor-intrinsic and immunologic changes

simultaneously.

Our utilization of evRNA-seq technology in the validation cohort brought ad-

ditional challenges to our analysis when cross-comparing with discovery cohort mi-

croarray data. We reasoned that utilizing two separate sequencing technologies on

two independent cohorts raises the bar for reproducibility and that findings replicated

with distinct methodologies are likely to be robust. Additionally, we show that mu-

tational information embedded in the evRNA-seq itself can potentially be exploited

to stratify responder and non-responder populations and to serve as an orthogonal

means to determine the tissue-of-origin of plasma-derived EV transcripts. This ap-

proach can be further enhanced through complementary WES of EV DNA. Although

it is unlikely the utility of the mutational information from EV RNA-seq data will

outstrip high-depth cfDNA or WES TMB data in the near future, this mutational

information is embedded within a large amount of transcriptomic information pro-

vided, which reflects dynamic tumoral changes and can complement other DNA-based

sequencing methods (ctDNA, evDNA-seq) in ICI monitoring and response prediction

tasks.
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Chapter 3

Deconvolution of extravesicular cargo

enables tissue-of-origin identification

3.1 Introduction

Extravesicular vesicles (EVs) are key mediators of intercellular communication. Ex-

tracellular vesicles are phospholipid bilayered vesicles generated by almost all mam-

malian cell types. Consisting of exosomes (30-120nm in diameter), microvesicles (MVs

0.1-1.0µm), ectosomes (0.1-1 µm) and apoptotic bodies (0.8-5.0 µm) [62]. EVs is able

to shuttle multiple types of cargo, including: membrane proteins, cytosolic proteins,

lipids, DNA, mRNA, miRNA. These cargo can have a causal role and may serve

as cancer biomarkers. Indeed, circulating EVs have been a source of liquid biopsies

[63, 64] and EVs have been demonstrated to carry a variety of miRNAs with roles in

tumor progression [62].

Given the importance of EVs, it is natural to wonder if it is possible to deconvolve

the mixed EV profiles observed in bodily fluids such as blood into its tissues-of-origin

components. To the best of our knowledge, there has been no explicit attempt to

create deconvolution models with the expressed intent of deconvolving plasma-derived

exosomal profiles. The closest approachesa re in silico deconvolution techniques such

as CIBERSORT [44] and CIBERSORTx [45], which use cell-type specific expression

profiles to deconvolve bulk mixtures. However, these approaches fail to account for
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EV idiosyncrasies, such as the tumor-to-EV export process that may impact the

RNA concentration. In this chapter, we provide the first such deconvolution model

to explicitly account for such idiosyncrasies and provide an accurate estimate of tumor

and non-tumor contributions to the plasma-derived EV mixture.

3.2 Methods

3.2.1 Deconvolution model justification

To summarize, we want to infer the contribution of the tumor-derived EV component

and non-tumor derived (interchangeably referred to as "immune" and "non-tumor")

component to the observed plasma-derived EV transcriptomic profile. In contrast to

existing deconvolution models designed for bulk deconvolution (e.g., CIBERSORT[44]),

our model explicitly models the changes in transcript abundance as a result of export/-

packaging from the transcript abundance in the tumor to the transcript abundance.

All of the data shown both here and in the main-figures related to deconvolution

utilized only non-platform-corrected discovery cohort microarray data, since the dis-

covery cohort exoRNA-seq included only plasma-derived EV samples and thus were

not suitable inputs for our deconvolution model (see Fig. 2-1b for more detailed

information regarding our analysis methodology). We created two versions of the

deconvolution probabilistic model. In single-gene mode, the probabilistic model is

fully fitted using the No-U-Turn Sampler (NUTS) Hamiltonian Monte Carlo (HMC)

algorithm[65] and full posterior estimates for all the relevant parameters are returned.

This model is fitted using the probabilistic programming language Stan[66]. This

mode is designed for in-depth analysis of a single gene (or few genes), or situations

where inferred parameters (e.g., scaling parameter, patient inferred tumor-EV ex-

pression) of interest requires a full posterior estimate. Due to the time and resource

intensive nature of the fitting process, it is impractical to perform full MCMC in-

ference when we want to analyze the deconvolution profiles for tens of thousands of

genes. Thus, we included a second mode, amulti-gene mode, in which we fit a sim-
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plified version of the single-gene model using Scipy’s implementation sequential least

squares programming (SLSQP) to return a point estimate of the mixing coefficient.

The single-gene model not only returns posterior distribution mixing fraction, but

also the full posterior distribution of the scaling coefficient, which allows per-patient

imputation of the tumor-derived EV fractions (Supplemental Figure 9); however,

the multi-gene model only returns a single maximum a posterori (MAP) estimate of

the mixing fraction. We envision the usage of the single-gene model in cases when

a specific gene needs to carefully dissected and more robust inference is required,

whereas the multi-gene model can be used on large-scale transcriptomic datasets to

infer population-wide mixing fractions.

3.2.2 Deconvolution model specification

� 𝑁 : number of patient derived tumor profiles and tumor EV profiles

� 𝑀 : number of cell-line tumor and tumor EV profiles

� 𝑥𝑖: the 𝑖th patient’s observed tumor expression for the current gene

� 𝑦𝑖: the 𝑖th patient’s observed peripheral-blood derived expression for the current

gene

� 𝑤𝑗: the 𝑗th cell-line’s

� 𝛼: mixing fraction between tumor-component and immune-component

� 𝜎2
𝑇 : variance component

� 𝜇𝐼 : Immune component mean (fixed parameter)

� 𝜎2
𝐼 : Immune variance component (fixed parameter)
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𝑦𝑖

𝑥𝑖𝑠

𝑤𝑗

𝑣𝑗 𝜇𝐼

𝜎2
𝐼

𝛼

𝜎2
𝑇𝜎
2
𝑇

𝑖 = 1, . . . , 𝑁𝑗 = 1, . . . ,𝑀

Prior specification

𝑠 ∼ 𝒩 (0, 2)

𝜎2
𝑇 ∼ ℐ𝒢(1, 1)

𝛼 ∼ ℬ(2, 2)

Where ℬ denotes the Beta distribution and ℐ𝒢 denotes the Inverse-Gamma distribu-

tion.

Data likelihood

𝑝(𝑦𝑖|𝛼, 𝜎2
𝑇 ;𝜇𝐼 , 𝜎

2
𝐼 ) = 𝛼𝒩 (𝑦𝑖|𝑥𝑖 + 𝑠, 𝜎2

𝑇 )⏟  ⏞  
Tumor EV component

+ (1− 𝛼)𝒩 (𝑦𝑖|𝜇𝐼 , 𝜎
2
𝐼 )⏟  ⏞  

Immune/background EV component

(3.1)

𝑝(𝑤𝑗|𝑠, 𝑣𝑗, 𝜎2
𝑇 ) = 𝒩 (𝑤𝑗|𝑠+ 𝑣𝑗, 𝜎

2
𝑇 ) (3.2)

𝑝(y,w|x,v, 𝑠, 𝛼, 𝜎2
𝑇 ;𝜇𝐼 , 𝜎

2
𝐼 ) =

𝑁∏︁
𝑖=1

[︀
𝛼𝒩 (𝑦𝑖|𝑥𝑖 + 𝑠, 𝜎2

𝑇 ) + (1− 𝛼)𝒩 (𝑦𝑖|𝜇𝐼 , 𝜎
2
𝐼 )
]︀ 𝑀∏︁
𝑗=1

𝒩 (𝑤𝑗|𝑠+ 𝑣𝑗, 𝜎
2
𝑇 )

(3.3)

Full Posterior

𝑝(y,w|x,v, 𝑠, 𝛼, 𝜎2
𝑇 ;𝜇𝐼 , 𝜎

2
𝐼 ) ∝ 𝑝(y,w,x,v, 𝑠, 𝛼, 𝜎2

𝑇 ;𝜇𝐼 , 𝜎
2
𝐼 )𝑝(𝑠, 𝜎

2
𝑇 , 𝛼) (3.4)

𝑝(y,w|x,v, 𝑠, 𝛼, 𝜎2
𝑇 ;𝜇𝐼 , 𝜎

2
𝐼 ) ∝

𝑁∏︁
𝑖=1

[︀
𝛼𝒩 (𝑦𝑖|𝑥𝑖 + 𝑠, 𝜎2

𝑇 ) + (1− 𝛼)𝒩 (𝑦𝑖|𝜇𝐼 , 𝜎
2
𝐼 )
]︀ 𝑀∏︁
𝑗=1

𝒩 (𝑤𝑗|𝑠+ 𝑣𝑗, 𝜎
2
𝑇 )

(3.5)
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𝑝(𝑠, 𝛼, 𝜎2
𝑇 |x,v,y,w;𝜇𝐼 , 𝜎

2
𝐼 ) ∝

𝑁∏︁
𝑖=1

[︀
𝛼𝒩 (𝑦𝑖|𝑥𝑖 + 𝑠, 𝜎2

𝑇 ) + (1− 𝛼)𝒩 (𝑦𝑖|𝜇𝐼 , 𝜎
2
𝐼 )
]︀ 𝑀∏︁
𝑗=1

𝒩 (𝑤𝑗|𝑠+ 𝑣𝑗, 𝜎
2
𝑇 )𝑝(𝑠, 𝛼, 𝜎

2
𝑇 )

(3.6)

3.3 Results

3.3.1 Validation of deconvolution model

Figure 3-1: Correlation between CIBERSORTx and EV deconvolution
model. Scatterplot with line-of-best-fit and correlation between inferred CIBER-
SORTx and our deconvolution model inferred tumor fraction estimates on discovery
cohort data

In order to provide evidence that our model is correctly partitioning genes into tumor

and non-tumor components, we utilized CIBERSORTx [45]- a recently published bulk

deconvolution program from Newman et al. that attempts to separate bulk transcrip-

tomic profiles into component cell-type-specific profiles. In order to run the program,

we utilized first inputted our discovery cohort (non-cross-platform corrected) microar-

ray data matrix into the online CIBERSORTx web portal and utilized the melanoma
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reference profiles from Tirosh et al.’s Science 2016 single-cell dissection of metastatic

melanoma that is provided by CIBERSORTx’s default online profiles [44, 45]. Since

the algorithm generates estimates for all component cell-types instead of tumor-only

profiles, we averaged the non-tumor cell-types in order to make it comparable to our

non-tumor component estimation. A direct comparison of our values can be found in

Supplemental Note Figure 3-1. We see that there’s a slight but significant correlation

between CIBERSORTx inferred-tumor fraction and tumor fraction inferred from our

deconvolution model; however, it is clear from the CIBERSORTx density plot (y-axis)

that the inferred tumor fraction is roughly normally distributed, an assumption that

our model does not make (see density plot on x-axis). This continuous coding of tu-

mor fractions hinders direct comparison of model predictions between CIBERSORTx

and our model; thus, in order to better compare our cell-type predictions, we bina-

rized model predictions for each gene as either tumor-derived or non-tumor derived

using a cut-off of 0.5 as the threshold between tumor and non-tumor (same threshold

used in the main manuscript). Using this cutoff, we can generate the confusion matrix

found in Supplementary Note Table 3.1.

CIBERSORTx tumor CIBERSORTx non-tumor

EV deconvolution tumor 12984 2319

EV deconvolution non-tumor 3719 1244

Table 3.1: Confusion matrix between CIBERSORTx and deconvolution
model. Confusion matrix between CIBERSORTx and our deconvolution model us-
ing 0.5 tumor fraction as a cutoff between tumor and non-tumor binary classification
of genes

We can assess the concordance between binary predictions generated by CIBER-

SORTx and our model using values from the confusion matrix. This corresponded

to the following binary classification statistics shown in Supplementary Note Table

3.2, using CIBERSORTx tumor predictions as "ground" truth and our deconvolu-

tion model estimates as predictions. We see that overall accuracy (0.70), sensitivity

(0.78), precision (0.85), and F1-score (0.81) all support the ability of our deconvolution

model to properly classify CIBERSORTx predicted tumor-derived genes. However,
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the two models’ predictions diverge significantly in terms of specificity (0.35) and

negative predictive value (0.25), suggesting that the two models differ significantly in

the overall prediction of non-tumor derived genes, with our model predicting a higher

fraction of tumor-derived genes relative to CIBERSORTx. This is likely a result of

the different distributional assumptions regarding tumor vs. non-tumor distributions

between the two models (see Supplementary Note Figure 3-1). We reason that our

model is likely to approximate reality more closely, based on known literature regard-

ing significant increases in both overall and tumor-derived EV load in plasma during

progression[10]. Furthermore, as mentioned in the main text, our model explicitly

accounts for EV-specific characteristics - such as the differential EV packaging pro-

cess - that bulk deconvolution techniques like CIBERSORTx does not account for.

Additionally, our the underlying reference profiles is trained directly or inferred uti-

lizing EV data, which is likely a far better approximation of the underlying mixture

profiles in the context of cell-type deconvolution than bulk references. Though in

silico independent validation via CIBERSORTx provides evidence for the validity

of our deconvolution model predictions, particularly the prediction of tumor-derived

genes, in vivo experimental evidence gathered via tumor vs. non-tumor derived EV

selection/enrichment remains the gold standard to validate our model.

Metrics Value

Accuracy 0.70

Sensitivity 0.78

Specificity 0.35

Precision 0.85

Negative Predictive Value 0.25

False Positive Rate 0.65

F1 Score 0.81

Table 3.2: Confusion matrix statistics between CIBERSORTx and decon-
volution model. Binary classification performance metrics generated from the con-
fusion matrix in Table 3.1

.
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3.3.2 Application of deconvolution model on experimental data

The bulk EV selection approach raises questions regarding how EVs from non-tumor

sources impact tumor-derived EV contributions. Based upon CIBERSORT results

(Fig. 1c), we hypothesized that both tumor-derived EVs and non-tumor-derived EVs

are detected. Dissecting the contribution from tumor-derived EVs versus non-tumor-

derived sources may reveal whether response-related changes reflect changes in the tu-

mor microenvironment or non-tumoral changes (i.e. systemic changes in the immune

system). Therefore, we developed a probabilistic deconvolution model to infer: (i) a

“packaging” coefficient representing depletion/enrichment of transcripts during pack-

aging/export into EVs, (ii) the unobserved non-tumor-derived EV profile (Fig. 3-3,

and (iii) a mixing fraction between unobserved tumor-derived EV component and the

non-tumor-derived components for each gene (Fig. 3-2a). To assess the accuracy of

the predictions we analyzed known genes involved in EV function or immunotherapy

response [67, 48] (Fig. 3-2b) followed by DEGs at pre- and on-treatment time points

(Fig. 3-2c). Our model also probed enrichment across gene sets and calculated a

gene-set level tumor fraction, demonstrating significant enrichment for tumor-derived

transcripts (Fig. 3-2d). When assessing ICI and melanoma-relevant KEGG path-

ways, our results align with expected ranking (Fig. 3-2e) (e.g. melanoma-related

pathways have higher tumor fraction). Validated pre-treatment DEGs enriched for

tumor-derived genes, while on-treatment DEGs had greater non-tumor contribution

(Fig. 3-2f). This suggests that on-treatment DEGs preferentially reflect changes

induced by ICI, consistent with findings from on-treatment differential pathway anal-

ysis. To illustrate the utility of our deconvolution algorithm for interpreting DEGs,

we use KLF10, a member of the TGF-β pathway that has both roles as a tumor

suppressor [52] and as an inductor of Th1/Th17 polarity and CD8+ memory T-cell

formation [68]. Our data suggests that KLF10 is derived from the non-tumor compo-

nent, suggesting differential on-treatment changes may be related to the Th1/Th17

polarity-inducing function of KLF10 as opposed to a tumor suppressor role.

66



Figure 3-2: Deconvolution of EV profiles and analysis of driver mutations
in RNA-seq profiles.(a) Schematic representation of our deconvolution model (see
Supplementary Note). (b) Selected tumor contributions from known tumor and non-
tumor genes. Red denotes predicted tumor and grey denotes predicted non-tumor
tissue-of-origin for a particular gene. (c) Estimated tumor fraction for pre-treatment
and on-treatment DEGs demonstrates that a majority of DEGs are predicted to
come from tumor sources. (d) Histograms of maximum a posterori (MAP) estimates
of tumor fraction from our model across all genes. (e) Average tumor fraction of all
genes involved in several selected KEGG categories. (f) Predicted tumor fraction of
validated pre-treatment DEGs, on-treatment DEGs, and all other genes predicted to
be non-tumor derived (i.e., predicted tumor fractions of <0.5)
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a. b.

c.

d.

Posterior imputed tumor EV distributions for CD8A

Posterior imputed tumor EV distributions for CD8A

Figure 3-3: Example of per-patient imputed tumor-EV expression from our
Bayesian deconvolution model. (a-b) Posterior estimates for two illustrative genes
for high immune fraction (CD8A) and high tumor fraction (MIR47888). (c-d) Pre-
dicted tumor-derived EV expression from our deconvolution model for CD8A and
MIR4788 for a subset of patients
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3.4 Discussion

To address tissue of origin of EV transcripts, we developed a deconvolution model

to characterize EV transcripts from tumor versus non-tumoral sources that explic-

itly accounts for differential EV transcript packaging. Currently, our model can only

differentiate between tumor versus non-tumor contributions; however, ongoing exper-

iments utilizing cell-specific EV selection and/or depletion may enable us to differ-

entiate between specific sources. Our deconvolution model is limited by three major

factors: (i) the simplifying assumptions regarding the linear nature of the packaging

coefficient and how its shared between in vitro and in vivo samples, and (ii) lack

of accounting for both tumor - especially potential immune infiltration in the tumor

microenvironment - and patient heterogeneity, which is in part due to (iii) the limited

number of samples. These limitations could potentially explain the classification of

predominantly immune genes (e.g., CD8) into tumor compartments by our model.

Thus, quantitative estimates of tumor purity should be interpreted in a qualitative

fashion until in-depth in vitro experimental verification. As we continue to analyze

data from more patients and perform in vitro EV selection experiments, we antici-

pate that our current model will serve as the foundation for more sophisticated models

that can address these issues. Despite these limitations, our deconvolution model is

the first to be able to pinpoint the potential source of EV expression and generate

testable hypotheses regarding tissue-of-origin. Work is ongoing to experimentally val-

idate the predicted source of circulating EVs via both tumor and immune cell-specific

EV selection, which will be used to iteratively improve our deconvolution model and

establish potential causal roles for EV transcripts in driving ICI resistance.
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Chapter 4

Chromatin state changes during

immunotherapy response reveals a

non-responsive enhancer signature

4.1 Introduction

In recent years, there has been tremendous progress in melanoma immunotherapy

including the FDA approval of anti-CTLA-4 antibodies (2011) and anti-PD-1 anti-

bodies (2014). Though response rates for monotherapy with these agents are modest

( 15% for anti-CTLA-4 and 44% for anti-PD-1), a subset of responses are often

durable [69, 70, 71, 72], with 2-year survival rates up to 43% among patients who

receive anti-PD-1 monotherapy, and a 10-year survival rate of 20% for those who

receive anti-CTLA-4 monotherapy [72, 73]. Although response rates are significantly

increased [74] with combination anti-PD-1/anti-CTLA-4 therapy, a significant pro-

portion of patients still do not achieve clinical response and the toxicity is high [74].

Therefore, there is a tremendous unmet need to identify biomarkers that predict re-

sponse or resistance to immune checkpoint blockade (ICB) – either as monotherapy

or in combination – and to identify actionable strategies that will enhance the effec-

tiveness of these potent therapies in the patients most likely to benefit.
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The epigenome consists of an array of chromatin modifications, including DNAmethy-

lation and histone marks, which collectively form a dynamic state that is referred to

as a ‘chromatin state’. The nature of chromatin states and their impact on associ-

ated genomic loci are determined by their constituent histone or DNA modification

marks [75]. For example, the presence of the H3K27me3 (tri-methylation of lysine

27 on histone H3) mark in promoters is associated with transcriptional repression,

whereas H3K4me3 (tri-methylation of lysine 4) is associated with transcriptionally

active promoters. H3K4me1 and H3K27Ac modified nucleosomes are only present

at enhancer elements, whereas the presence of H3K79me2 or H3K36me3 coincides

with transcribed regions [76]. Thus, profiles of histone modification marks generate

a comprehensive map of the epigenome.

Recent data indicate that responsiveness to ICB therapy may be associated with

specific epigenetic processes. For example, regulation of histone modifications by

HDAC, EZH2 or KMT2D has been proposed to modulate either response to these

agents or antitumor activity of immune cells [77, 78, 79]. However, we do not have

sufficient understanding of the epigenome content of sensitive and resistant patients

to ICB. Furthermore, whether specific patterns of chromatin modification states are

associated with response to immune checkpoint inhibitors has not been systemati-

cally investigated. As chromatin modification states are stable and heritable, specific

pattern of chromatin modification states can potentially be used as biomarkers [80].

By generating epigenome profiles of 36 samples treated with ICB at MD Anderson

Cancer Center (MDACC) followed by validation in an independent cohort of 30 sam-

ples treated with ICB at Massachusetts General Hospital (MGH), we demonstrate

that the enhancer signature of 410 genomic loci in pre-treatment samples can predict

non-response to ICB. Enhancer gains in non-responders were observed on a number

of resistance-driving genes and enhancer-blocking bromodomain inhibitors synergized

with anti-PD-1 antibody in pre-clinical models. Together, we identify enhancer gains

as a key epigenetic mechanism driving resistance to anti-PD-1 therapy in melanoma

which could also be leveraged for biomarker development or novel therapeutic com-

binations.
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4.2 Methods

4.2.1 Patient samples

Tissue samples from metastatic melanoma patients were collected and viably frozen

as part of an IRB-approved tissue banking protocol at the University of Texas MD

Anderson Cancer Center and Massachusetts General Hospital. All patients signed

written informed consent prior to having the sample collected. All patients received

either pembrolizumab or nivolumab as the anti- PD-1 therapy for their metastatic

melanoma. Thirty-six melanoma tumor samples (19 samples at baseline, and 17

samples at post treatment) from MDACC and 30 samples (10 samples at baseline,

and 20 samples at post treatment) from MGH were analyzed by ChIP-seq. We also

analyzed 12 MDACC pre-treatment samples by RNA-access for RNA expression.

Response rate are accessed based on RECIST criteria.

4.2.2 Cell lines

Short term culture tumor cells and TILs were obtained from same anti PD-1 resistant

melanoma patient. Short term culture tumor cells were cultured in RPMI + Gluta-

max supplemented with 10% FBS, Sodium Bicarbonate, HEPES, Human Transferred

Insulin and b-Mercaptoethanol. TILs were cultured in RPMI + Glutamax supple-

mented with 10% Human serum, Sodium Bicarbonate, HEPES, Human Transferred

Insulin and b-Mercaptoethanol. The B16-F10 and iBiP melanoma cell lines, 293T

cells were cultured in complete DMEM high glucose, supplemented with 10% FBS.

All cell lines were cultured at 37 C with 5% CO2.

4.2.3 Animal studies

All animal studies were performed according to University of Texas MD Anderson

Cancer Center Institutional Animal Care and Use Committee (IACUC) approved

protocols. Five million B16-F10 or iBiP melanoma cells were injected into 6-8 weeks

old C57BL/6 mice (The Jackson Laboratory, 000664 |Black 6) via subcutaneously
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and monitored every other day for tumor growth. Mice with established disease were

randomly divided into 4 cohorts and treated every other day with IgG (100 µg/mouse),

PD1 (100 µg/mouse), GSK-762 (7.5mg/kg) or vector PBS via subcutaneous injection.

Tumor volume was measured every other day. Mice were treated for indicated number

of days and euthanized once any arm of the treatment developed tumors approaching

or beyond IACUC-approved limit of 1.5cm.

4.2.4 MDACC Chromatin immunoprecipitation

Chromatin immunoprecipitation was performed as described earlier33 with optimized

shearing conditions and minor modifications. ChIP of 5-10 mg flash-frozen melanoma

tumour was performed using 2mg antibody per ChIP experiment for H3K4me1 (Ab-

cam ab8895), H3K27ac (Abcam ab4729), H3K4me3 (Abcam ab8580), H3K79me2

(Abcam ab3594) or 3mg antibody per ChIP experiment for H3K27me3 (Abcam

ab6002). Enriched DNA was quantified using Qubit (Thermo Fisher Scientific) and

ChIP libraries were amplified and barcoded using the NEBNext® Ultra� II DNA

library preparation kit (New England Biolabs) according to the manufacturer’s recom-

mendations. Following library amplification, DNA fragments were AMPure XP beads

(Beckman Coulter) size-selected (200 - 600 bp), assessed using Bioanalyzer (Agilent

Technologies) and sequenced at Sequencing & Microarray Facility (The University

of Texas MD Anderson Cancer Center) using Illumina Hi-Seq 2000 36-bp single-end

sequencing.

4.2.5 MGH Chromatin immunoprecipitation

20-50 mg of Snap-frozen melanoma tissues were pulverized by GenoGrinder for 2 min

at 1500 rpm and then fixed with 1% methanol-free formaldehyde plus protease in-

hibitors cocktails (Roche, Inc) for 10 min at room temperature, and quenched by 125

uM glycine for 5 min at room temperature. Samples were incubated in cold RIPA

buffer supplemented with protease inhibitor, and sonicated using Covaris E220. Su-

pernatants were quantified using BioRad protein assay kits, and 1 mg of protein were
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loaded on 96 well plates for chromatin immunoprecipitation.

Protein A/G coated silica columns embedded pipet tips were used for immunoprecip-

iating H3K27Ac antibody bounded proteins instead of Protein A/G beads. The DNA

was eluted in 100 ul 50 mM Tris pH 8.0, 10 mM EDTA + 1% SDS after several washes

and the elutes were treated with proteinase K for 16 hours at 65C before library syn-

thesis using NEBNext Ultra II DNA library preparation kits (NEB, Inc). The samples

were sequenced on Hiseq 2000 (Illumina, Inc) and 30-50 million paired-ended reads

from each sample were recorded.

4.2.6 ChIP-seq analysis

ChIP-seq data were quality controlled and processed by pyflow-ChIPseq [81] a snake-

make [82] based ChIPseq pipeline. Briefly, raw reads were mapped by bowtie1 [83]

to hg19. Duplicated reads were removed and only uniquely mapped reads were re-

tained. RPKM normalized bigwigs were generated by deep tools [84] and tracks were

visualized with IGV [85]. Peaks were called using macs1.4 [86] with a p-value of

1e-9. Chromatin state was called using ChromHMM [19] and the emission profile

was plotted by ComplexHeatmap [87]. Heatmaps were generated using R package

EnrichedHeatmap. ChIP-seq peaks were annotated with the nearest genes using

ChIPseeker [88]. Super-enhancers were identified using ROSE [89] based on H3K27ac

ChIP-seq data.

4.2.7 Epilogos analysis

chromHMM profiles of 5 pre-treatment non-responders and 6 pre-treatment respon-

ders are consolidated using epilogos. With the output of Epilogos, the chromatin

state for each bin is chosen for the state that contains the greatest weights.

4.2.8 Chromatin transition circos plot and transition heatmap

The consolidated chromHMM profiles by epilogos were compared. The number of

bins that switch from one state to a different state in one group to the other group
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was obtained. The number of bases that showed the transition change was obtained

by multiply the number of bins with the bin size (1000bp). A circos transition plot

was made by circlize R package.

The consolidated chromHMM profiles by epilogos were read into R package Enriched-

Heatmap. The chromatin state (categorical variable) was plotted in a 25kb window

centered on the active enhancer bins (chromatin state E7). Only bins that have E7

in one of the group were retained to plot. For two group comparisons, the bins were

merged together if the same state change occurs in consecutive bins.

4.2.9 RNA-access sequencing and analysis of MDACC tumor

mRNA libraries of the melanoma tumor (n = 12) samples were prepared from 200

ng of total RNA with the use of the TruSeq Stranded mRNA HT sample preparation

kit. Samples were dual-indexed before pooling. Libraries were quantified by qPCR

with the use of the NGS Library Quantification Kit. Pooled libraries were sequenced

by using the HiSeq2000 (Illumina) according to the manufacturer’s instructions. An

average of approximately 30 million paired-end reads per sample were obtained. The

quality of raw reads was assessed by using FastQC. The raw reads were aligned to the

Homo sapiens genome (hg19) using STAR v2.4.2a [90]. The mappability of unique

reads on average was 89% RNA-seq dataset. The raw counts were computed with

the use of quantMode function in STAR. The read counts that were obtained are

analogous to the expression level of each gene across all the samples. The differential

expression analysis was done by using DESeq2 [91]. Genes with raw mean reads of

greater than 10 were used for normalization and differential gene expression analy-

sis using DESeq2 package in R. Genes with absolute log2 fold-change greater than

log2(1.5) and p value < 0.05 were called as differentially expressed genes. SKCM

TCGA RNA-seq transcription comparison analysis was performed on the UALCAN

website [92].
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4.2.10 RNA-seq sequencing and analysis of MGH tumors

Total RNA from 5-20 mg of melanoma primary and metastatic tissues were extracted

using AllPrep DNA/RNA mini isolation kit (Qiagen, Inc). 100 ng of total RNA

was used as input for RNA-seq libraries using SMARTer Stranded Total RNA-seq

- Pico input (Takara Bio USA, Inc) to remove rRNA transcripts. Each library was

sequenced on Hiseq 2000 (Illumina, Inc) and approximately 20 million single-ended

reads were recorded. Reads were aligned to Homo sapiens reference hg38 using STAR

v2.5.3. Read counts were quantified using featureCounts. Differential expression was

performed via limma-voom [23]. Multiple biological replicates stemming from the

same patient was treated as a random effects, whereas batch effects were treated as

a fixed effect.

4.2.11 HiChIP and Data Analysis

HiChIP experiments were performed as previously described by Mumbach et al. [93],

with minor modifications. Briefly,1 x 107 STC2765 cells were crosslinked. In situ

contacts were generated in isolated and pelleted nuclei by DNA digestion with MboI

restriction enzyme, followed by biotinylation of digested DNA fragments with bi-

otin–dATP, dCTP, dGTP, and dTTP. Thereafter, DNA was sheared with Covaris

E220 with the following parameters: fill level =10, duty cycle = 5, PIP = 140, cy-

cles/burst = 200, and time = 4 min; chromatin immunoprecipitation was done for

H3K27Ac with use of anti-H3K27ac antibody. After reverse-crosslinking, 150 ng of

eluted DNA was taken for biotin capture with Streptavidin C1 beads followed by

transposition with Tn5. In addition, transposed DNA was used for library prepa-

ration with Nextera Ad1_noMX, Nextera Ad2.X primers, and Phusion HF 2XPCR

master mix. The following PCR program was performed: 72C for 5 minutes, 98C for

1 minute, then cycle at 98C for 15 seconds, 63C for 30 seconds, 70C for 1 minute.

Afterward, libraries were two-sided size selected with AMPure XP beads. Finally,

libraries were paired-end sequenced with reading lengths of 76 nucleotides. HiChIP

paired-end reads were aligned to the MboI digested hg19 genome using the HiC-Pro
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pipeline with default conditions. The default setting of HiC-Pro removes duplicate

reads, assigns reads to MboI fragments, identifies valid interactions and generates

hi-resolution interaction matrices. HiChIP for H3K27ac generated high-resolution

contact maps containing 65 million valid interactions in STC2765 cells. Files for

Juicebox visualization were generated using the HiC-Pro hicpro2juicebox.sh com-

mand based on the total valid interactions. Identification of H3K27ac mediated loops

was performed with the hichipper/diffloop programs using the HiC-Pro [94] output

and ChIP-seq peaks from H3K27ac as anchor loci. Hichipper identifies intrachromos-

mal looping between anchor loci within 5kb-2MB and produces a per-loop FDR value

from the loop proximity bias correction implemented by Mango. Using the mango

output from hichipper [95], diffloop was used to filter significant loops (FDR < 0.01,

width > 5000, loop-count > 2) and define enhancer-enhancer and enhancer-promoter

interactions.

4.2.12 In vitro inhibitor assays

Melanoma short-term culture line STC2765 were treated with crizotinib (2µM, 24hrs)

or iBET762 (1µM, 72hrs) prior to co-culture with TIL2765.

4.2.13 Enhancer modulation using CRISPR-dCas9-KRAB

In order to modulate gene expression without altering the target DNA sequences, an

RNA-guided, catalytically inactive Cas9 (dCas9) fused to a transcriptional repres-

sor domain (KRAB) was used to silence genomic regions identified as enhancers via

KRAB repression at the promoter region. To generate a dCas9-KRAB effector stable

cell line, we produced lentiviral particles from pHAGE EF1α dCas9-KRAB (Addgene

plasmid 50919) using a standard protocol. Transduced cells were selected for 6 days

with the use of antibiotic resistance and were expanded to generate a stable cell line.

Next, gRNAs were designed by using the GPPWeb Portal of the Broad Institute. An-

nealed gRNA oligos were ligated to pLKO.1-puro U6 sgRNA BfuAI stuffer (Addgene

plasmid 50920), and lentiviral particles were generated. A transduction procedure
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was performed in the stable dCas9-KRAB cell line, and transduced cells having both

dCas9-KRAB and gRNA constructs were selected with the use of antibiotic resistance.

To evaluate the effects of the recruitment of dCas9-KRAB to the target enhancer’s

genomic region, H3K27ac ChIP followed by quantitative PCR for enhancer regions

was performed to assess the enrichment level of H3K27ac at the enhancer site in mod-

ulated cells compared with the non-modulated parental control cells. To investigate

the impact of enhancers’ modulation on the corresponding gene expression, qRT-PCR

was performed for the target gene.

4.2.14 Tumor Infiltrating Lymphocytes (TILs) and matched

Tumor cells co-culture

Harvested target tumor cells were labeled with DDAO-SE, then add effector cells

suspension to achieve the desired E:T (Eeffector:Target) ratio. The mixtures were

incubated at 37 °C, 5% CO2 in a humidified incubator for 3 hours. The cells were

fixed and permeabilized with Fix/Perm solution (BD Biosciences, Cat. No. 554722)

20 min at RT immediately. The cells were stained for 30 min on ice with 5 µl

biotin-labeled anti-cleaved caspase 3 monoclonal antibody (BD Biosciences, Cat. No.

550821). The cells were washed in Perm/WashTM buffer ((BD Biosciences, Cat.

No. 554723) 2 times and re-suspended in D-PBS, 1% BSA for analysis on a flow

cytometer.

4.2.15 Flow cytometry

TIL were stained with fluorochrome-conjugated monoclonal antibodies (CD3, CD4,

and CD8 from BD Bioscience) in FACS Wash Buffer (Dulbecco’s phosphate buffered

saline 1x with 1% bovine serum albiumin) for 30 min on ice for surface staining.

Dead cells were excluded using Ghost 450 cell viability dye from Tonbo Biosciences.

For intracellular staining of active caspase-3, cells were fixed and permeabilized using

Cytofix/Cytoperm (BD Bioscience) and stained with cleaved anti-caspase-3 (BD Bio-

science) on ice as well. Acquisition of stained cells was done using BD FACSCanto II
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and analyzed using FlowJo software (Tree star).

4.2.16 Pathway analysis

Differential enhancers associated genes in each group or in each cluster were imported

into the ClusterProfiler [96] for pathway analysis, restricted to GO, KEGG, Hallmark

and WiKi gene sets. The Enrichplot package was used to generate dotplot and net-

works for genesets enriched with a false discovery rate (FDR) cut-off of < 0.05.

4.2.17 Survival and statistical analysis

The survminer package was used for drawing the Kaplan-Meier plots and defining

the optimal threshold (function surv). The outcome is overall survival censored at 10

years. P-values reported for the univariate model correspond to the logrank test.

The two-tailed Student’s t-test was used to determine the statistical significance of

two groups of data using GraphPad Prism. Data are presented as means ± standard

error of the mean (SEM; error bars) of at least three independent experiments or

three biological replicates. P-values less than 0.05 were considered statistically sig-

nificant. *, P <0.05; **, P <0.01; and ***, P <0.001 indicate statistically significant

differences.

4.3 Results

4.3.1 Defining chromatin states

To directly address whether epigenetic changes are associated with response to ICB

therapy, we first performed epigenomic profiling of 36 metastatic melanoma samples

from patients treated with nivolumab or pembrolizumab (anti-PD-1 antibody) at

MDACC (Figure 4-1a). Response in these patients was documented using RECIST

criteria, which identified 4 samples from patients achieved complete response, 4 par-

tial response, 5 had stable disease and 23 had progressive disease in response to ICB

therapy (Figures 4-2a-b). Overall, 13 samples from patients with the complete or
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partial response or stable disease were annotated as “Responders (R)” and 23 sam-

ples from patients with progressive disease were labelled as “Non-responders (NR)”

(Figures 4-2a-b). Samples were collected at three timepoints: 1. Pre-treatment, 2.

On-treatment, and 3. Post-treatment.

To identify basic epigenome elements, we profiled 6 reference histone modifications

that mark promoter (H3K4me3), enhancer (H3K4me1 and H3K27Ac), transcribed

(H3K79me2) and repressed (H3K27me3 and H3K9me3) states using high-throughput

ChIP-sequencing methodology [97, 98] in all 36 samples, generating 148 chromatin

maps (Figure 4-2c). As histone modifications exert their function in a combinato-

rial fashion, we identified such chromatin states using the ChromHMM algorithm

[19]. A 15 chromatin state model was chosen for more in-depth interrogation into

the biology of chromatin in anti-PD-1 response as it presented sufficient resolution

needed for biological interpretation (Figure 4-1b and Figure 4-2d). Annotation of

these states based on the content of histone marks and their genomic locations re-

vealed the presence of active promoter states (E1, E2, E3), active enhancer states

(E6, E7), transcribed states (E4, E5), polycomb-enriched (E11), heterochromatin/bi-

valent (E9), poised (E8, E10) low (E12, E13, E14; merged as E12 afterwards) states

(Figure 4-1b).

81



!"
!#
!$
!%
!&
!'
!(
!)
!*
!"+
!""
!"#

!" !# !$ !% !& !' !( !) !* !"
+

!"
"

!"
#

!"
!"#$%&'(

!"#$%&'()*++,-.'*-/,-0*+'+*1+2#+,33"-#',4420",.*5'6"./'+*4"4.,-0*'.2',-."'789:'./*+,1;'"-'3*<,-23,

!"#$%&'("#')*&

!
!"#
!"$
!"%
!"&
'

#(!!! )*+,* #(!!!

%&'("#')*&

!
!"#
!"$
!"%
!"&
'

#(!!! )*+,* #(!!!

4.,.*4=>2-9?*412-4"@*
-.*/012344
56+78/792-.*/012344
3,+7).,"2+*291712(:2+7;2<:
4*,=792*,+7).,/>*/=7
?1+82*,+7).,/>*/=7
@17/.217A+7.1,)
-.*/01217A+7.1,)
3,/0+617*B>=/)1;2344
C/0+617*B>=/)1;2344
D1>,1))1;2344BE7A
D1>,1))1;2F=6G.=HI
J=K
-,*/L+.*)

,+,, )+,

0+, 5+,

ME@@NEOPNDEOEF3QDNRS3ED-O3RQS

FRTNRS3E@DRS'NF-3U?-V

FRTNPE3NF-3U?-V

FRTNSQ3OUNF-3U?-V

DE-O3QPENOQJJ-@ESN5QDP-3RQS

DE-O3QPENEW3D-OEJJXJ-DNP-3DRWNQD@-SRY-3RQS

DE-O3QPENSO-PN4R@S-JRS@N5QDNSEXDR3ENQX3N@DQ?3U

DE-O3QPEN4R@S-JRS@NCVNSQ3OU

EZN*=NE'! EZN*=NE'' EZN*=NE'#

6=9'![C/=7HN-;\>NCU]

!

'!

#!

<!

.+*19=,G
EZN*=NE'!

EZN*=NE''

EZN*=NE'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

^'!
!!! )*+,

*
'!!
!!

!
'!
#!
<!
$!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

!"#$%&'("#')*&,-./0123 %&'("#')*&,-./0123

4&
53
&#
6,7
85
*)*
9:

;<<

=<

<
< 0< >< ?<

@"#6A'

B#A9#3&5,:"C

B#A9#3&5,A)DA

(,E,<+<;

#" $"

%"

&"

0

1
0

2
0

3
0

4
0

%of NR E7 transition

E1
E2
E3
E4
E5
E6
E8
E9E10
E11E12

'"

!"#$%&'()*++,-.'*-/,-0*+'+*1+2#+,33"-#',4420",.*5'6"./'+*4"4.,-0*'.2',-."'789:'./*+,1;'"-'3*<,-23,

!"#$%&'("#')*&

!
!"#
!"$
!"%
!"&
'

#(!!! )*+,* #(!!!

%&'("#')*&

!
!"#
!"$
!"%
!"&
'

#(!!! )*+,* #(!!!

4.,.*4=>2-9?*412-4"@*
-.*/012344
56+78/792-.*/012344
3,+7).,"2+*291712(:2+7;2<:
4*,=792*,+7).,/>*/=7
?1+82*,+7).,/>*/=7
@17/.217A+7.1,)
-.*/01217A+7.1,)
3,/0+617*B>=/)1;2344
C/0+617*B>=/)1;2344
D1>,1))1;2344BE7A
D1>,1))1;2F=6G.=HI
J=K
-,*/L+.*)

,+,, )+,

0+, 5+,

ME@@NEOPNDEOEF3QDNRS3ED-O3RQS

FRTNRS3E@DRS'NF-3U?-V

FRTNPE3NF-3U?-V

FRTNSQ3OUNF-3U?-V

DE-O3QPENOQJJ-@ESN5QDP-3RQS

DE-O3QPENEW3D-OEJJXJ-DNP-3DRWNQD@-SRY-3RQS

DE-O3QPENSO-PN4R@S-JRS@N5QDNSEXDR3ENQX3N@DQ?3U

DE-O3QPEN4R@S-JRS@NCVNSQ3OU

EZN*=NE'! EZN*=NE'' EZN*=NE'#

6=9'![C/=7HN-;\>NCU]

!

'!

#!

<!

.+*19=,G
EZN*=NE'!

EZN*=NE''

EZN*=NE'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

^'!
!!! )*+

,*
'!!
!!

!
'!
#!
<!
$!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

^'!
!!! )*+

,*
'!!
!!

!"#$%&'("#')*&,-./0123 %&'("#')*&,-./0123

4&
53
&#
6,7
85
*)
*9
:

;<<

=<

<
< 0< >< ?<

@"#6A'

B#A9#3&5,:"C

B#A9#3&5,A)DA

(,E,<+<;

!"
#$
%&

'(
"#

')*
&+
,-
.
"/
+0
12
1&
'+3
4/
".

5

%&'("#')*&+,-."/+0121&'+3,"5

67
68
69
6:
6;
6<
6=
6>

67?
677
678

("

!"#$%&'"()*&%+,&-.()+/0"

!

!

!

!

!!
!
!!

!

!!
!
!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!!

!10

!5

0

5

10

lo
g2
(m
ea
n_
TP

M
)

category
Pre_NonResponder
Pre_Responder

12()%$%"(0".3#$%"4(."-")
56'$#3"(7(8988:;<=

!"#$%&'()*++,-.'*-/,-0*+'+*1+2#+,33"-#',4420",.*5'6"./'+*4"4.,-0*'.2',-."'789:'./*+,1;'"-'3*<,-23,

!"#$%&'("#')*&

!
!"#
!"$
!"%
!"&
'

#(!!! )*+,* #(!!!

%&'("#')*&

!
!"#
!"$
!"%
!"&
'

#(!!! )*+,* #(!!!

4.,.*4=>2-9?*412-4"@*
-.*/012344
56+78/792-.*/012344
3,+7).,"2+*291712(:2+7;2<:
4*,=792*,+7).,/>*/=7
?1+82*,+7).,/>*/=7
@17/.217A+7.1,)
-.*/01217A+7.1,)
3,/0+617*B>=/)1;2344
C/0+617*B>=/)1;2344
D1>,1))1;2344BE7A
D1>,1))1;2F=6G.=HI
J=K
-,*/L+.*)

,+,, )+,

0+, 5+,

ME@@NEOPNDEOEF3QDNRS3ED-O3RQS

FRTNRS3E@DRS'NF-3U?-V

FRTNPE3NF-3U?-V

FRTNSQ3OUNF-3U?-V

DE-O3QPENOQJJ-@ESN5QDP-3RQS

DE-O3QPENEW3D-OEJJXJ-DNP-3DRWNQD@-SRY-3RQS

DE-O3QPENSO-PN4R@S-JRS@N5QDNSEXDR3ENQX3N@DQ?3U

DE-O3QPEN4R@S-JRS@NCVNSQ3OU

EZN*=NE'! EZN*=NE'' EZN*=NE'#

6=9'![C/=7HN-;\>NCU]

!

'!

#!

<!

.+*19=,G
EZN*=NE'!

EZN*=NE''

EZN*=NE'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

$

%

&

'!

'#

^'!
!!! )*+,

*
'!!
!!

!
'!
#!
<!
$!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

^'!
!!! )*+,

*
'!!
!!

!"#$%&'("#')*&,-./0123 %&'("#')*&,-./0123

4&
53
&#
6,7
85
*)*
9:

;<<

=<

<
< 0< >< ?<

@"#6A'

B#A9#3&5,:"C

B#A9#3&5,A)DA

(,E,<+<;

1>>

1>?

1>8

Figure 4-1: Comprehensive epigenome profiling of anti-PD-1 treated
melanoma patients. (a) Outline of the study and description of patient sample (b)
Emission parameters of the 15-state chromatin state model called from ChromHMM.
(c) Heat map showing the fold enrichment of chromatin state transitions between
responder and non-responder pre-treatment samples for the 15-state model defined
by the ChromHMM. (d) Bar graph showing the percentage of non-responder active
enhancer state E7 switch to any other states in responder. (e)Box plots showing the
log2 mean expression levels (TPM) of genes associated with Enhancer State E7, genes
were linked using H3K27ac HiChIP data. (f) Heatmap of chromatin state intensities
for 31,155 loci that show switch from E7 in nonresponder pre-treatment samples to
any other state in responder pre-treatment samples.
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Figure 4-2: Characteristics and chromatin maps of ICB-treated melanoma
patients. (a) Waterfall plot showing responsiveness of MDACC patients to anti-
PD-1 therapy in a subset of patients where 6 months RECIST data was available.
(b) Difference in progression free survival between responders and non-responders to
anti-PD-1 therapy in melanoma. (c) IGV view of 6 different histone mark (as noted
on right side) profiles on the shown chromosomal region in all the anti-PD-1 treated
patients. (d) Genomic annotation enrichments for each chromatin state in anti-PD-1
responder and non-responder tumor samples.
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4.3.2 Chromatin state transitions between sensitive and resis-

tant lesions

In order to interrogate an epigenomic signature of response, we unbiasedly identified

chromatin states that differentiate between pre-treatment samples belonging to the

responsive and non-responsive groups. Epilogos (see section 4.2.7) based convergence

of chromatin states followed by computation of transitions between them in the re-

sponder versus non-responder samples showed important differences in epigenomic

features of anti-PD-1 response (Figure 4-1c). The major transition consisted of those

in the active enhancer state E7 in non-responder samples to low (E12), polycomb

(E11) or repressed states (E10) in responders based on number of switching bins as

well as differences in expression of the associated genes in the responder and non-

responder groups (Figure 4-1d-e). We identified 31,555 bins (1kb segments) that

showed transition between active enhancer E7 state in non-responsive patients to

Low, repressive states E10, E11 and E12 in responsive samples (Figure 4-1f). An-

alyzing signal of H3K27ac on these set of loci also showed similar loss of H3K27ac

signal in pre-treatment samples from responder population compared to those from

non-responder patients (Figure 4-1g and Figure 4-3a). Overall, average intensity pro-

file of H3K27ac on these enhancers showed drastic increase in non-responder samples

in comparison to responder samples, whereas average intensity profiles for H3K27me3

occupancy on these enhancers was significantly increased (Figure 4-3a).
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Figure 4-3: Enhancer activation in non-responders to ICB in melanoma.
(a) Average intensity plots for H3K27ac (left) and H3K27me3 (right) in loci that
lose H3K27ac marks (b) Bar plot showing percent overlap of the active enhancer
loci which was calculated in each sample to define an enhancer-presence score. (c)
Progression-free survival for enhancer-low or enhancer-high groups as described in
panel B above. (d) List of enriched transcription factor (TF) motifs in non-responder
specific active enhancers. (e) Heatmap of chromatin state intensities for 20,194 loci
that show switch from E7 in responder pre-treatment samples to any other state in
non-responder pre-treatment samples as shown by colors for each state. (f) Dot plot
showing the significantly enriched pathways in genes targeted by responder E7 state
enhancers that depleted in non-responder.
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4.3.3 An enhancer signature predicts response to anti-PD-1

therapy in melanoma

Overlap percentage of active enhancer loci were calculated in each sample to define

an enhancer-presence score. Using median score to guide cut-off points, the enhancer-

high group was defined as samples above 11.3% (n=16), while enhancer-low group

constituted the remaining samples. Objective response rate, defined as either partial

response (PR) or complete response (CR) to therapy, was higher in the enhancer-

low group than in the enhancer-high group (Figure 4-3b). Notably, PFS and OS

were also statistically significantly different between the enhancer-low and enhancer-

high groups [PFS: 2.8 months (enhancer-high) versus 34 months (enhancer-low), p

= 0.0032; OS: 17.4 months (enhancer-high) versus 37 months (enhancer-low), p =

0.0063] (Figure 4-3c). These enhancers were enriched for binding motifs of Jun-AP1,

Fosl2 and Bach1/2 among others (Figure 4-3d). We also noted that a set of enhancers

were enriched in the E7 (active enhancer) state in responder samples in comparison

to non-responders which mostly enriched surrounding genes involved in T-cells which

suggests increased lymphocyte infiltration in responder samples (Figure 4-3e-f).

4.3.4 Enhancer activation upregulates genes contributing to

anti-PD-1 resistance

Pathway analysis of active enhancers that transitioned from E7 in non-responders

to E10/E11/E12 in responders revealed enrichment in various signaling pathways

including those earlier shown to alter anti-tumor immune response or modulate im-

munotherapy response such as MET pathway, Notch pathway, NCAM/integrin sig-

naling (Figure 4-4a) and included c-MET, (Figure 4-4b and Figure 4-5a) with asso-

ciated change in expression (Figure 4-4c and Figure 4-5b). To understand the source

of H3K27ac peaks observed to be enriched in NR tumors, we also generated the

H3K27ac ChIP-Seq data on 10 short-term melanoma cultures (STCs) and 8 cognate

tumor-infiltrating T cells (TILs) derived from patients. To identify gene targets of

H3K27ac marked enhancers, we generated HiChIP data that identifies 3D interaction
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of H3K27ac peaks with distal genomic loci. C-MET locus showed multiple distal

enhancers that were present in non-responsive tumors, but not in responsive tumors

and HiChIP data showed 4 distal enhancers E1, E2, E3 and E4 looping to the gene

body/TSS of c-MET gene (Figure 4-4b, 4-4d). These enhancers were also present in

a melanoma culture derived from ICB non-responder patient (STC2765) as suggested

from overlapping H3K27ac peaks (Figure 4-4b) and c-MET expression was localized

to melanomas cells (Figure 4-5C). Silencing of these enhancers using specific gRNAs

and dCas9-KRAB22 repressed the gene expression in STC2765 (Figure 4-4d). The

cell lines with dCas9-KRAB mediated enhancer suppression also showed increased

tumor killing by cognate T cells (TIL2765) that were derived from the same tumor as

STC2765 in a co-culture assay, thus demonstrating enhancer functionality (Figure 4-

4e). Consistently, suppression of c-MET activity via Crizotinib also showed enhanced

T-cell mediated killing of STC2765 cells by TIL2765 (Figure 4-4f).

To gain a better understanding of enhancer gains in gene expression, we generated

gene expression (RNA-seq) data on 47 ICB treated samples consisting of 25 pre-

treatment (14 NR and 11 R) and 22 on-treatment (16 NR and 6 R) samples (Figure

4-5d). We identified 922 gene targets of reproducibly enriched 752 enhancers (FDR

<0.1) in anti-PD-1 non-responsive samples by overlapping H3K27ac HiChIP data

from STC2765 and by leveraging the enhancer-promoter annotation from 935 samples

[99]. To gain a better understanding of the heterogeneity of the enhancer patterns,

we overlapped the 752 NR-specific and 747 R-specific peaks with those H3K27ac

ChIP-Seq peaks in patient-derived melanoma cells or T cells. We noted gains of

enhancers either in tumor cells or in T cells surrounding numerous genes that are

linked to regulation of immune microenvironment or anti-tumor immune responses

(For example, NOTCH1, AKT1, USP22, MYC in melanoma cells and CISH, LEF1

in T cells) or other potentially novel regulators (TGF-𝛽2, MITF, FAM20C, RFPL2,

MAMDC2, SPATA2 in melanoma cells and FKBP3, LGALSL, LARP1 in T cells)

(Figure 4-4g, 4-5e, 4-6a-d). We noted concomitant upregulation of gene expression of a

subset of these genes either at the pre-treatment stage or during on- or post-treatment

stage (Figure 4-4h and Figure 4-6e). Importantly, we also identified enhancers on
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other important inhibitory checkpoint receptors such as LAG3 [100] and BTLA [101],

or their key partners such as CEACAM-1 (required for function of TIM-3 [102]) which

were present in non-responder tumors and isolated infiltrating T-cells (TILs) (Figure

4-4i-k and Figure 4-7a). In addition, we also noted enhancer enrichment surrounding

other receptors from T cells, such as CD244, CD48, CADM3, HVEM [103] that

mediate key interactions with antigen presenting cells or tumor cells (Figures 4-7b-

d). Finally, we also observed enhancer gains on important transcriptions such as

NR4A1 which known to drive T cell exhaustion 28 and others such as CEBP𝛽 and

KLF6 (Figures 4-7e). Overall, these data suggest that activation of enhancers could

be a key epigenetic mechanism for activation of regulators and processes that promote

resistance to ICB.
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Figure 4-4: Enhancer activation marks a number of resistance-associated
genes in anti-PD-1 non-responders. (a) Pathway analysis (GREAT) based on
differentially enriched loci in E7 state in non-responder to E10, E11 or E12 in respon-
ders (b) IGV snapshot of aggregate H3K27ac profiles around c-MET. (c) Normalized
RNA counts as a representation of gene expression for c-MET between non-responder
and responder samples at pre- and post-treatment stages. (d) Enhancer locations
and HiChIP-derived loops between enhancers and c-MET gene. (e-f) Percentage of
cleaved caspase-3 in target tumor cells. (g) IGV snapshot of aggregate H3K27ac
profiles around TGFb2, XIST, SPATA2, RFPL2 and MAMDC2 genes. (h) Box plot
showing the gene expression level of TGFb2, XIST, SPATA2, RFPL2 and MAMDC2
genes. (i-k) IGV snapshot of aggregate H3K27ac profiles around CEACAM-1(i),
LAG-3(j) and BTLA(k).
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Figure 4-5: Identification of gene targets for enhancers enriched in ICB non-
responder melanoma samples. (a) IGV snapshot of aggregate H3K27ac profiles
around c-MET (left) and TGF𝛽2 (right) in non-responder samples, responder sam-
ples, isolated melanoma short term cultures (STCs) or isolated TILs (b) Volcano plot
showing MDACC cohort differentially expressed genes (gray dots) and differentially
enriched enhancers targeted genes. (c) Distribution of expression of S100B, MITF
and MET genes in 2-dimensional embedding obtained by tSNE. (d) Volcano plot
showing MDACC and MGH cohort combined expression data differentially expressed
genes (blue and red) in responder vs non-responders. (e) IGV snapshot of aggregate
H3K27ac profiles around XIST, SPATA2, RFPL2 and MAMDC2.
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Figure 4-6: Enhancers enriched in ICB non-responders activate important
resistance-causing genes in melanoma cells. (a-d) IGV snapshot of aggregate
H3K27ac profiles around NOTCH1, AKT1 and USP22 (a); FAM20C, MITF and
cMYC (b); CISH, LEF1 and LGALSL (c); LARP1 and FKBP3 (d) in non-responder
samples, responder samples, isolated melanoma short term cultures (STCs) or isolated
TILs. The top track shows the HiChIP data derived from STC2765 cells. (e) Box plot
showing the gene expression level of LGALSL and LARP1 genes in non-responder and
responder pretreatment samples.
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Figure 4-7: Enhancers enriched in ICB non-responders activate important
checkpoint receptors in TILs . (a) IGV snapshot of aggregate H3K27ac profiles
around CEACAM1, LAG3 and BTLA in non-responder samples, responder samples,
isolated melanoma short term cultures (STCs) or isolated TILs. The top track shows
the HiChIP data derived from STC2765 cells. (b) Schematic showing the key Immune
checkpoint receptors on exhausted tumor-infiltrating T cells. (c-e) IGV snapshot
of aggregate H3K27ac profiles around CD48, HVEM and CADM3 (c); CD244 (d);
NR4A1, CEBPB and KLF6 (e) in non-responder samples, responder samples, isolated
melanoma short term cultures (STCs) or isolated TILs.
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4.3.5 Enhancer Reprogramming During ICB treatment

Chromatin state transition between pre- and post-treatment samples showed massive

transitions from active states to repressed states in the responder samples, whereas

those in non-responder samples were distributed more evenly between repressive and

active states (Figure 4-8a). To determine the reprogramming of active enhancers

during the treatment stage, we computed the chromatin state transition of active

enhancer state E7 between post-treatment and pre-treatment samples (Figure 4-8b).

The clustering of these states based on the transition revealed 4 clusters of which Clus-

ter 1 enhancers gained repressive states or lost the active enhancer marking, whereas

Cluster 4 enhancers remained in active enhancer state even at the post-treatment

stage. Cluster 1 enhancers were enriched in VEGFA, autophagy, HIF1 signaling

including VEGFA, RUNX3, AKT2 genes (Figure 4-8c-d). Unaffected Cluster 4 en-

hancers were enriched in TGF𝛽, PI3K/AKT/mTOR signaling pathways, AHR and

oxidative stress pathways, including on genes such as TGF𝛽 and LOXL4 (Figure

4-8e-f).
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Figure 4-8: Analysis of enhancer reprogramming between pre- and post-
treatment ICB-treated melanoma samples. (a)Circos plot showing chromatin
state switches between responder pre-treatment and responder post-treatment sam-
ples (left) or non-responder pre-treatment and non-responder post-treatment samples
(right) based on epilogos-derived transitions. (b) Heatmap of chromatin state intensi-
ties for 31,155 loci that show switch from E7 in non- responder pre-treatment samples
to any other state (c-d) Dot plot showing the significantly enriched pathways in genes
targeted by non-responder E7 state cluster1 (c) and cluster4 (d) enhancers (from
panel A). Dot size represents the gene counts, adjusted p values are shown and are
color-coded based on the level of significance (e-f)IGV snapshot of aggregate H3K27ac
profiles around VEGFA, RUNX3 and AKT2 (e); LOXL4, VIM and MTOR (f).
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4.3.6 Combination of BRD inhibitors with anti-PD-1 enhances

the response in mouse melanoma models

Since enhancer activation marks multiple genes that regulate resistance to anti-PD-1

antibodies, we reasoned that inhibitors of acetylation-reader bromodomain could be

used as an umbrella approach to target many resistance mechanisms at once along

with anti-PD-1 therapy to enhance its efficacy. Consistently, we noted higher BRD4

levels in metastatic melanoma in the TCGA SKCM dataset (Figure 4-9a). The tumors

harboring high levels of BRD4 survived poorly in comparison to those harboring lower

levels of BRD4 (Figure 4-9b). Treatment of tumors generated by transplantation of

murine melanoma cells, BP (from Bosenberg model [104]) and B16F10, with combi-

nation of iBET-762 with anti-PD-1 antibody significantly reduced tumor growth at

doses which failed to generate much response when used as monotherapy (Figure 4-

9c-d). Profiling of infiltrating CD8+ T-cells in these experiments suggested increased

infiltration of these cells upon combination treatment in comparison to monotherapy

(Figure 4-9e, 4-10a). In addition, treatment of STC2765 cells with bromodomain

inhibitors increased the TIL2765 mediated killing in a co-culture assay (Figure 4-9f),

also increased the MHC class I expression on tumor cells (Figure 4-9g). ChIP-Seq

profiling of the tumors from mice treated with these agents showed a significant de-

crease of intensities of enhancers on c-MET, TGF𝛽, XIST, LAG3, MAMDC2, FKBP3,

AKT1, MYC, SPATA2, NOTCH1, HES1, and SIK1 among others in the combination

treatment but not in monotherapy suggesting that enhancer depletion may contribute

to observed decrease of tumors growth in combination treatment (Figure 4-9h and

Figure 4-10b-c). Indeed, RNA-Seq profiling revealed a loss of expression of a large

number of genes in the combo treatment in comparison to the monotherapy or control

IgG samples which coincided with loss of binding of BRD4 and modest loss of active

enhancer marks, H3K27ac (Figure 4-9i). These genes were enriched in WNT, TGF𝛽,

epithelial-to-mesenchymal transition (EMT) and UV response pathways (Figure 4-

9j, 4-10d). Overall, this data provide evidence toward enhancer mediated activation

of key resistance-driving genes/pathways as an epigenetic mechanism for resistance
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to ICB and need for clinical studies focused on the combination of enhancer block-

ing agents in combination with ICB to improve the response rate in melanoma and

potentially other malignancies.

4.4 Discussion

Our data help address two major clinical needs regarding ICB therapy in metastatic

melanoma: 1) biomarkers that predict response and 2) combination therapy strate-

gies to improve the response to ICB. We observed that gains of enhancer activity on

a set of genomic loci are associated with response to ICB, which could potentially act

as a predictive biomarker of response to ICB in metastatic melanoma. Our data also

suggests causative roles for enhancers gains in non-response to ICB and supports the

use of enhancer blocking clinical agents with anti-PD1 as a potential strategy that

can be tested in future clinical trials. Importantly, the overlap between the MDACC

and MGH cohorts was highly significant at the pre-treatment time point, although

marginal at on-treatment time points, suggesting that baseline chromatin states of

the tumor are likely important drivers of ICB response. Our results also imply that

the impact of the ICB therapy on enhancer patterns of melanoma tumors signifi-

cantly varies between different patients. Indeed, pre-existing chromatin states of the

tumor or T cells are likely to be deterministic towards activation of pathways increas-

ing immunogenicity or facilitating T cell mediated killing (e.g. GAS/STING, IFN

pathways, or MHC expression) or repressing those that prevent immune recognition

(e.g. checkpoint receptors/ligands such as PD-L1) or resist T cell mediated killing

(e.g. EMT). Our studies support further prospective investigation into the utility of

these enhancer signatures in predicting response to immunotherapy, offering prognos-

tic information, and informing combinatorial clinical trials facilitated by cutting-edge

epigenomic tools.
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Figure 4-9: Targeting enhancers using bromodomain inhibitors in combina-
tion with anti-PD-1 antibody confers synergistic growth reduction. (a) Box
plot showing the gene expression level of BRD4 in TCGA. (b) Difference in overall
survival between BRD4 high expression and BRD low expression groups in TCGA
melanoma. (c) Schematic for mouse treatments. (d) Tumor growth curves for BP cells
upon treatment with four different strategies as shown in panel a (e) Graph showing
infiltrated CD8+ T-cell percentages in B16F10 mice treated with IgG or anti-PD-1
alone or in combination with iBET-762. (f) Percentage of cleaved caspase-3 in target
tumor cells. (g) Control, DMSO and iBET treated alone or along with IFN-g treated
tumor cell 2765 were analyzed by flow cytometry for the expression of MHC class
I molecules. (h) IGV snapshot of aggregate BRD4 profiles around genes in c-MET
and TGF𝛽. (i) Heatmaps for differentially expressed genes between IgG alone and
iBET-762 with anti-PD-1 combo treatment mouse B16F10 melanoma tumors. (j)
Pathway analysis (Hallmark) of the genes from the panel f.
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Figure 4-10: Combination of bromodomain inhibitors and anti-PD1 therapy
significantly alters the immune and enhancer landscape in treated murine
tumors. (a) FACS analysis of TILs from four different treatment groups (from Figure
4-9c. The boxes indicate CD31+CD45+CD4+/CD8+ T cells. (b-c) Genome browser
view of H3K27Ac ChIP-Seq signal track surrounding the FKBP3 and MAMDC2 (c);
AKT1, MYC, SPATA2, NOTCH1, HES1 and SIK1 (b) in four different treatment
groups shown in Fig 4-9c. (d) Pathway network analysis (from Fig 4-9i) showing the
genes downregulated in iBET-762 with anti-PD-1 combo treatment tumors compare
to IgG alone tumors.

98



Chapter 5

Epigenetic predictors of

immunotherapy response

5.1 Introduction

Given the lower overall response to checkpoint blockade immunotherapies, it is critical

for the field to develop prognostic predictors of immunotherapy response [105, 56].

Prior developmenets in the space have primarily revolved around tumor mutational

burden (TMB), especially for urothelial carcinoma, small cell lung cancers, NSCLC,

and melanoma [12]. A previous meta-analysis of 27 cancer types demonstrated that

response rate was positively correlated with log TMB [6]. There additional studies

examining epigenetic biomarkers in conjunction with TMB. Cai et al. demonstrated

that high TMB NSCLCs had more DNA methylation aberrations and copy number

variations, showing predictive efficacy [8]. This opens the avenue for exploration of

epigenetic liquid biopsies in the future.

In this chapter, we will further the development of solid-tumor-based epigenetic

biomarkers. We will look at the direct prediction of immunotherapy response from

H3K27ac ChIP-seq signal io a cohort of responders and non-responders. We hope to

demonstrate efficacy of active enhancer marks as a power predictive tool in predicting

immunotherapy resistance.
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5.2 Methods

5.2.1 M-value processing and IDR calculations

In order to derive the M-values, we first used .bam files from both the ChIP and

WCE files, along with a common peak file of 244,472 peaks, as inputs to MANorm

using default arguments. The common peak file was generated using MACS2 ‘bdgdiff’

function between combined pileups of responder and non-responder samples across

the MDACC and MGH cohorts. The resulting normalized outputs from MAnorm

[106] were first used to filter samples by imposing a M>0 and p<0.05 filter. All

samples must have 20% of peaks bypassing the threshold or else it was discarded from

the analysis. 30 samples from the MGH cohort passed this filter, while 27 MDACC

samples passed this filter. Next, we subjected the samples to the IDR algorithm. In

this case, average M-values for all peaks were calculated for both cohorts, and the two

average M-value vectors were utilized as inputs to the IDR algorithm with default

arguments. The resulting 77356 peaks was considered the final replicated peak set

used for all downstream analyses.

5.2.2 Differential H3K27ac ChIP activity calling

By leveraging the M-values, we can easily compare responder vs. non-responder

differential response. We first batch normalized the two cohorts’ M-values using

the ComBat algorithm from the R package ‘sva’ [107]. Next, we used limma’s [40]

empirical Bayes modeling framework to construct a linear model regressing response

and treatment time against M-values. We modeled patient identity - for patients with

more than one sample analyzed - as a random effect.

5.2.3 Global test for groups of peaks

To run the global test for genes, we first associated each of the peaks with a gene

in the common peak set with a gene via HOMER10 annotatePeak function. Each

gene’s associated peaks were organized as a group for the global test. The global test
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was conducted using the function ‘gt’ with default parameters using the ‘globaltest’

R package [108].

5.3 Results

5.3.1 Epigenetic predictors of anti-PD1 resistance

In order to derive a concrete set of epigenomic features that had multiple, indepen-

dent lines of evidence as epigenomic correlates of ICB resistance, we collected an

independent cohort of H3K27ac ChIP-seq samples from the MGH melanoma biobank

(Figure 4-1a). In order to make our previously presented dataset from MD Anderson

cancer center (MDACC) jointly analyzable with the MGH data, we defined a common

metric that can be used across both cohorts by using MAnorm16 to calculate a log2

ratio of read densities (M-value) between ChIP and whole-cell extract (WCE) control

that is adjusted for the average log2 read density at all peaks (Figure 5-1a-b). This

allows any two peak regions to be compared on the same scale across the two distinct

cohorts by accounting for variable total read depth at peak regions of interest. Using

IDR analysis (see section 5.2.1), we identified a subset of 86,226 of 244,472 peaks

as reproducible peaks betwene the MDACC and MGH cohorts (Figure 5-2a) which

enriched in different functional classes including promoter, intron, and TSS (Figure

5-1c).

Next, we subjected these 86k peaks’ M-values to differential peak calling via

limma [23] independently in each cohort. We identified 3008 MGH and 7984 MDACC

pre-treatment peaks whose activity was significantly different between responders and

non-responders at nominal p<0.05. To identify a replicated peak-set, we took the

intersection of MDACC and MGH significant peaks to determine whether the doubly

significant set exhibited statistically significant enrichment above null expectation.

Only the pre-treatment comparisons exhibited a significant enrichment in the number

of replicated peaks relative to the null expectation (p<4.193e-05, One-sided Exact

Binomial Test) and 189 peaks were doubly significant in both the MDACC and MGH
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pre-treatment comparisons. We note an excess enrichment in the signal from the

MDACC cohorts in both the pre-treatment (Figure 5-1d) and on-treatment (Figure

5-1e).

Next, to identify a subset of enhancers with predictive ability toward patient

response, we concentrated on the pre-treatment overlapping significant peak-set. We

utilized the the replicated 189 peaks as a feature set in a cross-validation setting and

trained two random forest models as follows: one in which the MDACC cohort was

designated as the training set and the MGH cohort the testing set, and vice versa.

The results were combined into a single receiver operator characteristic (ROC) for

evaluation. We also evaluated the area under the ROC (auROC) as a measure of

model performance (Figure 5-2b). Using the 189 peaks, we were able to achieve a

performant AUC of 0.91, suggesting that epigenomic features are just as performant

as those from transcriptome (AUC range 0.8-0.9)[61].

We next assayed to what extent these 189 peaks stratified overall survival (OS)

and progression-free survival (PFS) in our clinical cohort. To do so, we performed

Cox proportional hazards regression with M-values as the design matrix. Our analysis

showed that 4 out of the 189 peaks significantly stratified survival at p<0.05 via Cox

regression in both the MGH and MDACC cohorts. To visualize the survival differ-

ences, we first clustered the peaks by their sample M-values. We noted the presence

of two distinct clusters (Figure 5-2c, 5-3a-b) corresponding to two opposite direction-

alities by which increased epigenomic activity at these peaks modulate survival time

(Figure 5-2d-e, 5-3c-d). Our results show that a distinct set of epigenomic peaks

which are significantly associated with treatment response and survival stratification

in two independent cohorts, making these ideal targets for follow-up studies.

Since a gene could be activated by multiple enhancers, we sought to converge the

enhancer dysregulation into the level of genes which might impact response to ICB.

To do so, we employed the global test, a testing procedure designed to test whether

a group of peaks is significantly associated with the clinical outcome as a unit [108],

to systematically test whether groups of peaks associated with individual genes (see

section 5.2.3) are different between responders and non-responders across both the
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MGH and MDACC cohorts. We designated all peaks associated with a particular gene

after annotation as a group and conducted a total of 19,212 global tests for genes with

peak activity levels as the independent variable and binary clinical response as the

response variable. Of these tests, 922 genes had a global test p-value of p<0.05.

The top-ranked hits from this analysis are displayed in Figure 5-2f, includes MIR-

4492, whose downstream targets includes IL-10 and TNF-𝛼 and lncRNA TLR8-AS1,

which modulates TLR8 expression levels via stabilizing TLR8 mRNA21, as well as

FOXP3, a master regulator of Treg differentiation. GO enrichment analysis of the

922 global test significant genes revealed enrichment in a diverse set of immune and

metabolic related pathways, including NK T cell activation, neutrophil activation,

and macrophage proliferation (Figure 5-2g).

5.4 Discussion

We identify for the first time an enhancer-based signature that could be potentially

used as an epigenomic biomarker for non-response to ICB therapy in melanoma. Of

these, 147 enhancers further predicted OS and PFS suggesting the potential use of this

epigenomic signature as a prognostic indicator. These signatures have the potential

to be utilized alone, or in combination with other genomic, transcriptomic, or immune

features to generate a multi-omic signature to predict response or survival in patients

on ICB. Indeed, other features such as tumor mutation burden [60] (TMB), specific

genetic features (PTEN deletion [110], IFNG-R deletions [111], PBRM1 mutations,

KMT2D mutations [77]) have been shown to be associated with response to ICB.
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Figure 5-1: Validation of an enhancer signature of non-response in an in-
dependent cohort. (a) Number of peaks from MDACC cohort sample peaks pass-
ing quality threshold M-value>0 and MANorm p>0.1 (b) Number of peaks from
MGH cohort sample peaks passing quality threshold M-value>0 and MANorm p>0.1
(c) Functional enrichments for the 86,226 peaks passing the IDR threshold (d) QQ-
plot between MGH (x-axis) and MDACC (y-axis) sample quantiles from the pre-
treatment comparison. (e) QQ-plot between MGH (x-axis) and MDACC (y-axis)
sample quantiles from the on-treatment comparison. (f) Receiver operating charac-
teristic (ROC) of random forest trained predictive models utilizing the 189 replicated
pre-treatment peaks (p <0.05) or 410 replicated pre-treatment peaks (p<0.1). The
ROC values were calculated for the published anti-PD-1 treated melanoma patient
datasets[109, 28, 105, 56]. 104



Figure 5-2: Validation of enhancer signature prediction of response in an
independent cohort. (a) MGH vs MDACC cohort average M-value with IDR status
<0.01. Individual points represent averaged M-value across the MDACC cohort (X-
axis) and across the MGH cohort (Y-axis). (b) Receiver operating characteristic
(ROC) of random forest trained predictive models utilizing the 189 replicated pre-
treatment peaks. (c) Progression-free survival Kaplan-Meier plots in MDACC for
peak Chr12:65,929,800-65,930,660. (d) Progression-free survival Kaplan-Meier plots
in MGH for peak Chr12:65,929,800-65,930,660. (e) Top genes from Global Test for
peaks. (f) Selected GO enrichment from the 922 gene significant from the Global
Test.
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Figure 5-3: Predictive power of enhancer peaks for progression free sur-
vival. (a) PFS Kaplan-Meier plot of MDACC (left) and MGH (right) for peak
Chr13:53,025,650-53,025,905 (b) PFS Kaplan-Meier plot of MDACC (left) and MGH
(right)) for peak Chr14:21,294,599-21,294,805. (c) PFS Kaplan-Meier plot of MDACC
(left) and MGH (right) for peak ChrX:13,119,104-13,119,804.
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Chapter 6

TCR repertoire of thymic

conventional and regulatory T-cells

6.1 Introduction

The ability to generate a rapid and sustained T cell response to external pathogens

and transformed malignant cells is essential for the protection of the host. At the same

time, deletion of autoreactive T cells during development and repression of excessive

or autoreactive responses in peripheral tissues is essential to proper T cell protective

function ([112]). This duality in the regulation of T cell function is accomplished

by two types of T cells: conventional T cells that provide “helper” (CD4+) and

“killer” (CD8+) functions and regulatory T cells (Treg) that suppress conventional

T cell–dependent responses. Treg have been assigned to two subsets based on the

origin of their generation: thymic Treg (tTreg) (or natural Treg) that develop in

the thymus [113, 114, 115, 116] and peripheral Treg generated in the periphery from

thymic conventional CD4+ T cells (Tconv) under specific conditions [117, 118, 119].

The development of tTreg appears to require both TCR signals and other factors,

such as costimulatory signaling and cytokines, but the precise mechanisms of tTreg

generation have not been fully elucidated.

A key factor in tTreg generation is the specificity of the TCR whose interaction

with self-antigen/MHC plays a critical role in tTreg differentiation. Several studies
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using transgenic (Tg) mouse models suggest that the signal strength of TCR recogni-

tion of self-antigen/MHC ligand differs in tTreg and Tconv, with tTreg differentiation

involving a higher level of signal strength [120, 121]. Indeed, the disruption of normal

self-antigen/MHC ligand expression in the thymus because of Aire deficiency causes

a change in the fate of self-antigen–specific T cells from tTreg to Tconv [122, 123].

Subsequent studies suggest that Ag presentation by different APCs (classical and

plasmacytoid dendritic cells, cortical and medullary thymic epithelial cells, and B

cells) at different thymic locations (cortex and medulla) influences the deletion of

autoreactive thymocytes and the differentiation of tTreg [114, 124]. In addition, fac-

tors such as cytokines (including IL-2 and TGF-b) [125, 126, 127] and costimulatory

receptors (CD28) [128] have also been implicated in the development of tTreg. Col-

lectively, it is clear that no single factor alone determines differentiation to the tTreg

fate, but precisely how these factors act in combination remains to be determined.

Initial analyses of TCR sequences in Treg and Tconv of TCRa or TCRb Tg mice

reported that CDR3a and CDR3b sequence repertoires of Treg and Tconv are differ-

ent either by exclusive appearance in only one of these lineages or by their relative

abundance in Treg or Tconv when sequences were found in both cell types [129, 130].

Subsequent studies using high-throughput sequencing generated larger numbers of

TCR sequences in Treg and Tconv. Studies using TCRb Tg mice to compare TCRa

sequences between tTreg and Tconv reported little overlap of TCRa sequence between

tTreg and effector T cells [131] or between tTreg and Tconv that recognize the same

foreign Ag [132]. Study of a TCRa Tg mouse to compare TCRb sequences between

Treg and Tconv from spleen and peripheral lymph nodes found that 12% of TCRb se-

quences are shared by peripheral Treg and Tconv and are thus presumed to be derived

from common progenitors [133]. However, there has been no reported deep sequenc-

ing analysis examining endogenous TCRa and TCRb of tTreg and Tconv from the

thymus of non-TCR Tg mice. It is therefore unclear what degree of TCR sequence

uniqueness and similarity exists overall between tTreg and Tconv or, importantly,

whether there are general sequence features that distinguish ab TCR of tTreg from

those of Tconv.
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In this study, we addressed the role of TCR sequence in determining whether T

cells develop into tTreg or Tconv lineages. We report a comprehensive comparison of

TCRa and TCRb sequences of tTreg and Tconv using a Unique Molecular Identifier

(UMI) methodology incorporating a 59 single universal primer for PCR amplification

of all V genes, significantly reducing PCR bias of amplification and sequencing errors

affecting the quantitation of TCR frequency [134, 135]. Comparison of TCRa and

TCRb sequences between tTreg and Tconv from two normal mouse strains revealed

that, although many sequences were unique to either Treg or Tconv, a substantial

proportion of TCRa (21–30%) and TCRb (5–20%) sequences from tTreg were also

found in Tconv. Analysis of a TCRb Tg mouse line revealed an even higher proportion

(71%) of TCRa sequences found in tTreg that were also found in Tconv. Interest-

ingly, these shared TCRa clonotypes that were common to tTreg and Tconv were

significantly more abundant than nonshared TCRa sequences of tTreg and Tconv.

Finally, we used machine learning (ML) to develop an algorithm that was capable of

distinguishing nonshared TCRa and TCRb sequences expressed by tTreg from those

of Tconv and, in addition, found that specific amino acid trimers were differentially

expressed in either tTreg or Tconv. When we applied the same ML algorithm to

an analysis of those TCR sequences that were shared by tTreg and Tconv, the vast

majority of these sequences were classified as characteristic of Tconv and not tTreg.

Taken together, our findings identify TCR sequence characteristics that bias to tTreg

or Tconv fate, in addition to the presence of factors that can drive cells with an

identical TCR sequence into either Tconv or tTreg lineages.

6.2 Methods

6.2.1 Isolation of tTreg and Tconv from thymus

tTreg and Tconv were isolated from 4- to 8-wk-old mice of three strains, all on a

C57BL/6 background: 1) Rag-GFP-Foxp3-RFP [136, 137]: tTreg and Tconv were

isolated from three individual mice based on GFP and Foxp3-RFP expression (Sup-
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plemental Fig. 1) and were sequenced independently; 2) TcrdCreERZsGreen-Foxp3-

RFP: TcrdCreER knock-in with tamoxifeninduced ZsGreen reporter for TCRd ex-

pression (three doses of 1 mg tamoxifen i.p. every other day, cells isolated 2 wk

after last injection) (27): tTreg and Tconv cells were isolated from nine mice based

on expressions of ZsGreen, Foxp3-RFP, and CD25 (Fig. 6-1), and sequencing was

performed on three pools (three mice pooled in one sample); and 3) Foxp3-GFP

TCRa+/2 TCRb-Tg mice carrying the DO11.10 TCRb [138, 139]: tTreg and Tconv

samples from three individual mice were sorted based on Foxp3 reporter + and 2,

respectively, and individual samples were sequenced independently. Foxp3-GFP mice

were provided by Vijay Kuchroo [140]. All mice were maintained under specific

pathogen free conditions at the animal facility of National Cancer Institute and Duke

University. Animal procedures were reviewed and approved by National Institutes of

Health or Duke Institutional Animal Care and Use Committee.
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Figure 6-1: Gating strategy for isolation of tTreg and Tconv cells from
thymus of three strains of mice. (a) Gating strategy for isolating tTreg and
Tconv cells from Rag-GFP/Foxp3-RFP mice. Gating was first on single positive
CD4+CD8- followed by the gating shown (b) Gating strategy for isolating tTreg and
Tconv cells from TcrdCreERZsGreen-Foxp3-RFP mice. Cells were gated on ZsGreen
and TCRb positive first and then gated on Foxp3-RFP and CD25. (c) Gating strategy
for isolating tTreg and Tconv cells from TCRa +/- TCRb Tg-Foxp3-GFP mice.

6.2.2 Library construction and sequencing strategy

cDNA library construction was previously described (24). Briefly, total RNA was iso-

lated from tTreg and Tconv using a QIAGEN RNeasy Micro Kit. Isolated total RNA
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(50–500 ng) was used for cDNA synthesis using TCRa and TCRb C region–specific

primers mTRAC1 (59-GGCGTTGGTCTCTTTGAAG-39) and mTRBC1 (5’-CACTTGTCCTCCTCTGAAAG-

3’) (all oligos made by Eurofins USA), SMARTScribe Reverse Transcriptase (Takara

Bio), and SmartN oligos (5’-AAGCAGUGGTAUCAACGCAGAGUNNNNUNNNNUNNNNUCTTrGrGrGrGp-

3’) for template switching at the 5’ end to incorporate a UMI and M1SS sequence for

PCR. The cDNA products were treated with uracil-DNA glycosylase (New England

BioLabs) at 37∘C for 30 min to remove SmartN oligos.

Three rounds of PCR using Super Fidelity Platinum Taq DNA Polymerase (Thermo

Fisher Scientific) were performed to prepare libraries for sequencing. The first PCR

(18–24 cycles) was used to enrich TCRs using M1SS (5’-AAGCAGTGGTATCAACGCA-

3’, part of SmartN used as a 5’ PCR primer) and TCR C region primers (mTRAC2: 5’-

CGGCACATTGATTTGGGAG-3’ and mTRBC2: 5’-TGTGGACCTCCTTGCCATTC-

3’), and primers were removed by the QIAquick PCR Purification Kit (QIAGEN).

The second PCR (20–32 cycles) was used to add an 8-bp sample barcode to each sam-

ple at 59 end (P7M1S-n: 5’-CGTGTGCTCTTCCGATC(N)1–2-NNNNNNNN(8 bp

barcode)-CAGTGGTATCAACGCAGAG-3’) and internal C region primers (mTRAC3:

5’-AGGTTCTGGGTTCTGGATG-3’ and mTRBC3: 5’-GGTGGAGTCACATTTCTCAG-

3’). PCR products were separated by 2% agarose (UltraPure; Thermo Fisher Sci-

entific) gel electrophoresis, and DNA fragments (400–800 bp) were further puri-

fied by a QIAquick Gel Extraction Kit (QIAGEN). Purified DNAs of each sample

were quantitated by a BioAnalyzer (Agilent Technologies) and combined for the

third round of PCR (10 cycles), which incorporates the Illumina adaptor (P7: 5’-

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC-

3’, mP5TA: 5’-AATGATACGGCGACCACCGATCGTCGAGGTTCTGGGTTCTGGATG-

3’ and mP5TB: 5’-AATGATACGGCGACCACCGATCGTCGGGTGGAGTCACATTTCTC-

3’). Amplified DNA was separated by 2% agarose gel electrophoresis and further

purified by QIAquick Gel Extraction and followed by the PCR purification kits. The

amount of purified DNA was measured using a Qubit Fluorometer (Thermo Fisher

Scientific). Fifty picomoles of DNA were used for sequencing on an Illumina HiSeq

2500 system. A modified paired end sequencing protocol was used: TCR-specific
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sequencing primers TRA (5’-TCGTCGAGGTTCTGGGTTCTGGATG-3’) and TRB

(5’-TCGTCGGGTGGAGTCACATTTCTCAG- 3’) were used for first round sequenc-

ing of 150 bps. Illumina RD2 primer (5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC-

3’) was used for second round sequencing of 50 bp, covering the sample barcode and

UMI.

6.2.3 Analysis of overlapping TCRα and TCRβ sequences

Overlap of TCRa and TCRb sequences between different mice/samples of the same

strain of mice or between two strains of mice was analyzed at two levels: 1) overlapping

distinct TCR sequences (Eq. 6.1) 2) and overlapping total sequences based on UMI

counts (Eq. 6.2). The overlapping sequences are presented as percentages for each

pair of comparison. Eq. 6.1 was used for the calculation of the overlapping percentage

of distinct TCR sequences, as follows:

Overlap(%) =
TCRs found in both S1 and S2

All distinct TCR in S1 + All distinct TCRs in S2 - TCRs found in both
(6.1)

Eq. 6.2 was used for the calculation of the overlapping percentage of total TCR

sequences, as follows

Overlap(%) =
Sum of UMI counts of TCRs found in both S1 and S2

UMI counts of all TCRs in S1 + UMI counts of all TCRs in S2
(6.2)

The sum of UMI counts of TCRs found in both S1 and S2 is calculated as UMI counts

of TCRs found in both S1 and S2 in S1 plus UMI counts of TCRs found in both S1

and S2 in S2.

6.2.4 Identification of distinct TCR sequences between tTreg

and Tconv by ML algorithm

To build an ML classifier to analyze ab TCR sequences from tTreg and Tconv, we

converted the TCR CDR3 sequences into a matrix of length 3 aa (3-mers or trimers)
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from all three strains of mice used in these studies. We first enumerated all possible

3-mers from all CDR3s (3-mer library) and then embedded each CDR3 into a length

𝐿 vector that supposed there are 𝐿 possible 3-mers observed in our data, in which

each entry is the number of times that 3-mer appears in a CDR3; all other 3-mers

in the library but not found in the analyzed TCR were labeled as 0. To calculate

the relative starting location of each 3-mer, we recorded where the 3-mer appeared in

CDR3 relative to the 3-mer starting locations that are possible for each CDR3 length

(e.g., a length 12 CDR3 has 10 possible 3-mer locations). To determine multiple

copies of the same 3-mer in a TCR, we used a Python dictionary to keep track of the

number of occurrences of a 3-mer in a particular TCR. These are then combined into

an 𝑁 by 𝐿 matrix, where 𝑁 is the number of CDR3s. Furthermore, we vectorized the

V/J information and concatenated this with the 𝑁 ×𝐿 3-mer matrix. Suppose there

are 𝑀 possible V genes and 𝐾 possible J genes; each CDR3’s V gene information is

embedded into a length 𝑀 vector, where the V gene entry that corresponds to the V

gene in the TCR is labeled as 1 and the rest as 0 to produce an 𝑁 ×𝑀 matrix. The

same procedure was done for the length K J gene vector to produce an 𝑁×𝐾 matrix.

To generate the final matrix for ML, we concatenated the three matrices to produce a

matrix of size 𝑁×(𝐿+𝑀+𝐾) matrix. For two-class classification, we train a random

forest binary classifier, which takes in a L vector and predicts the compartment to

which a CDR3 belongs. We used 70% of the distinct TCR sequences as a training

set and 30% of the sequences as a testing set. Training was performed using the

random forest classifier from scikit-learn using 150 trees and default settings for other

parameters [141]. Model performance was evaluated by calculating the area under

the receiver operating characteristic (ROC) using the scikit-learn metrics package.

The ROC was plotted using Python’s matplotlib library.
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6.2.5 Analysis of enriched amino acid trimers in tTreg and

Tconv

To compare trimer enrichment in the non-V/J portions of the CDR3, we first removed

3 aa from either ends of CDR3 and used the central CDR3 sequences for trimer

analysis. Next, to compare the relative abundance of a particular amino acid trimer

in tTreg and Tconv, we created a 2 × 2 contingency table for each k-mer and then

computed the p value using a 𝜒2 test using the Python library SciPy (34). We

corrected for multiple comparisons using the Benjamini-Hochberg procedure. The

significantly enriched trimers in tTreg were defined as those that met the criteria

tTreg/Tconv ratio ≥ 1.5 and false discovery rate (FDR) ≤ 0.05. The percentages of

amino acid usage in the enriched trimers were calculated by the sum of each amino

acid in the enriched trimers multiplied by their respective UMI counts divided by the

total number of amino acids based on UMI counts in these enriched trimers. The

percentages of amino acid usage in all trimers were calculated by sum of each amino

acid in all the trimers multiplied by their respective UMI counts divided by the total

number of amino acids based on UMI counts in all trimers unique to either tTreg or

Tconv.

6.2.6 Statistical analysis

The Mann–Whitney U test was used to calculate the significant difference of UMI/TCR

ratios between shared and nonshared TCRs with tTreg and Tconv. A p value <0.05

was considered significant.

6.3 Results
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6.3.1 TCRα and TCRβ repertoires of tTreg and Tconv are

comparably diverse

To analyze ab TCR repertoires of tTreg and Tconv, we isolated similar numbers

of recently generated tTreg and Tconv from the thymus of Rag-GFP/Foxp3-RFP

(25, 26) and TcrdCreERZsGreen-Foxp3-RFP mice [142] by cell sorting and applied

a high-throughput sequencing method with UMI labeling of TCR mRNA. The Rag-

GFP/Foxp3-RFP strain marked newly generated tTreg and Tconv in green fluores-

cent dye–GFP [136, 137], whereas the TcrdCreERZsGreen-Foxp3-RFP strain labeled

newly produced tTreg and Tconv in fluorescent dye–ZsGreen after tamoxifen induc-

tion [142]. These fluorescent markers were used in flow cytometric isolation of tTreg

and Tconv to ensure the thymic origin of tTreg and Tconv by excluding the poten-

tial contamination of recirculating T cells (Fig. 6-1a-b). We analyzed a total of

3.7×105 tTreg and 3.0×105 Tconv from three Rag-GFP/Foxp3-RFP mice and found

that the estimated size of TCRa and TCRb repertoires, identified as the number of

distinct sequences, was comparably diverse between tTreg and Tconv when similar

cell numbers were analyzed (Table 6.1). We also isolated tTreg (6.0 ×104 cells) and

Tconv (7.2× 104 cells) from TcrdCreERZsGreen-Foxp3-RFP mice by cell sorting and

determined their TCRa and TCRb repertoires. Again, we found that the sizes of

estimated TCRa and TCRb repertoires were comparably diverse in similar numbers

of Tconv and tTreg in TcrdCreERZsGreen-Foxp3-RFP mice (Table 6.1). However,

it should be noted that the total TCR repertoire size of Tconv in a mouse is likely

larger than that of tTreg when the actual number of cells in the thymus is adjusted.

Consistent with this is the observation that there were higher percentages of overlap

in tTreg TCRs (3.4–5.2%) than in Tconv TCRs (1.8–2.1%) between individual mice

(Rag-GFP/Foxp3-RFP) or different samples (TcrdCreERZsGreen-Foxp3-RFP) (Fig.

6-2a-b). Because we analyzed TCRa and TCRb repertoires separately, it could not be

determined from this analysis whether the ab combinatorial TCR repertoire was also

comparable between tTreg and Tconv. V gene usage and CDR3 length distributions

of TCRa and TCRb were also not substantially different between tTreg and Tconv
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(Fig. 6-3a-d).

Figure 6-2: Overlap of TCRα and TCRβ sequences of tTreg and Tconv cells
among different samples or mice within the same strain in three categories: tTreg-
specific, Tconv-specific, and tTreg/Tconv shared. (a) Overlap percentages of distinct
TCRα and TCRβ sequences among different samples or mice within the same strain of
mice. Each dot represents the value of two mice compared. (b) Overlap percentages of
total TCRα and TCRβ sequences (based on UMI counts) among different samples or
mice within the same strain of mice. The UMI percentages of corresponding distinct
TCR sequences are presented.
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Figure 6-3: V gene usage and CDR3 length of tTreg and Tconv cells (a) Top
3 most used TRAV and TRAJ genes in tTreg and Tconv cells from three strains of
mice. (b) Top 5 most used TRBV and TRBJ genes in tTreg and Tconv cells from
three strains of mice. (c) CDR3 length of TCRα of three strains of mice. The average
values and standard deviation of three samples of each strain of mice are presented.
(d) CDR3 length of TCRβ of three strains of mice.
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6.3.2 Abundance of TCRα and TCRβ sequences distinct to

tTreg or Tconv or shared between lineages

Next, we determined the degree to which ab TCR sequences of tTreg and Tconv of

normal non-TCR Tg mice are similar or distinct. To overcome the limited numbers

of cells available from each individual mouse, in particular for tTreg populations, we

combined TCRa and TCRb sequences of tTreg and Tconv from three samples of each

strain of mice and then compared these pooled sequence sets (Fig. 6-4a). In Rag-

GFP/Foxp3-RFP mice, we found that 12% of distinct tTreg TCRa sequences (580

out of total 4906 TCRa sequences from tTreg) were found in Tconv and accounted

for 14% of distinct TCRa Tconv sequences. Those shared TCRa sequences were more

abundant than nonshared sequences as they accounted for 21 and 25% of total tTreg

and Tconv sequences (based on UMI counts), respectively (Fig. 6-4a). Compared

with TCRa, the overlap in TCRb between tTreg and Tconv was slightly lower, ac-

counting for 11 and 10% of distinct TCRb in Treg and Tconv, respectively (Fig.

6-4c). These overlapping TCRb sequences were also more abundant, accounting for

20 and 26% of total Treg and Tconv (Fig. 6-4c). TCRa and TCRb sequences found

in both tTreg and Tconv were also observed in TcrdCreERZsGreen-Foxp3-RFP mice

(Fig. 6-4b, 6-4d). Collectively these findings showed that 9–12% TCRa and 2–11%

TCRb sequences of tTreg were found in thymic Tconv, and they accounted for 21–30%

of TCRa and 5–20% of TCRb in total tTreg. With the caveat that these data de-

rived from individual TCRa and TCRb sequences do not directly measure ab pairing,

these findings indicate that TCR sequence is not the only factor determining tTreg

generation in thymus.
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Figure 6-4: Number and percentages of distinct and shared TCRα and
TCRβ sequences between tTreg and Tconv from two lines of normal mice.
(a) Shared TCRa clonotypes in tTreg and Tconv of Rag-GFP/Foxp3-RFP mice. (b)
Shared TCRa sequences in tTreg and Tconv of TcrdCreERZsGreen-Foxp3-RFP mice.
(c) Shared TCRb sequences in tTreg and Tconv of Rag-GFP/Foxp3-RFP mice. (d)
Shared TCRb sequences in tTreg and Tconv of TcrdCreERZsGreen-Foxp3-RFP mice.
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Figure 6-5: Number and percentages of distinct and shared TCRa sequences
between tTreg and Tconv of TCRα+/- TCRβ Tg-Foxp3-GFP mice. The
number and the proportion (%) of sequences found in tTreg only, in Tconv only, or in
both tTreg and Tconv (overlap or shared) are presented as a function of all distinct
TCRa clonotypes (headed as distinct sequences) and as a proportion of the total UMI
counts corresponding to these TCRa (headed as total sequences).

6.3.3 TCRα sequences distinct to tTreg or Tconv or shared

between lineages in TCRa+/2 TCRβ Tg mice

To more directly analyze ab combinatorial TCR expression in tTreg and Tconv, we

analyzed TCRa sequences of tTreg and Tconv from TCRa+/- TCRb Tg-Foxp3-GFP

mice (Table I). Each T cell from these mice expresses a single TCRa (because only

one TCRa allele is expressed in these TCRa+/- heterozygotes) in combination with

the Tg TCRb (the Tg TCRb accounted for 99.99% of TCRb sequences) so that the

TCRa repertoire reflects overall ab TCR clonotype expression. Again, we pooled

TCRa sequences of three mice and compared tTreg and Tconv. Strikingly, we found

that 42% (483 out of total of 1159) of distinct TCRa sequences of tTreg were shared

with Tconv, accounting for 71% of total tTreg TCRa sequences (Fig. 6-5). Shared

TCRa sequences represented only 2% of distinct TCRa of Tconv and accounted for

18% of Tconv sequences (Fig. 6-5). These results showed that approximately half

of tTreg expressed abTCR identical to those expressed by Tconv in this Tg mouse,

indicating that the TCR sequence is not the sole determinant of Treg fate for this

large proportion tTreg.
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To further characterize the ab TCR sequences shared between tTreg and Tconv,

we analyzed their relative abundance by UMI counts of each TCR in two normal

mouse strains as well as in a TCRb Tg. We grouped each of the TCRa and TCRb

sequences into four groups: 1) found only in tTreg or 2) only in Tconv, 3) shared

sequences expressed in Treg, and 4) shared sequences expressed in Tconv. We found

that shared TCRa sequences were significantly more abundant (two to nine times)

than those of distinct TCRa sequences in both tTreg and Tconv in two normal stains

of mice as well as in the TCRa+/- TCRb Tg-Foxp3-GFP mice (Fig. 6-6a). This

suggests that those shared TCRab expressing Tconv and tTreg may either be derived

from more abundant progenitor cells or might have undergone preferential expansion

after differentiation. Shared TCRb sequences were significantly more abundant (three

to five times) in Tconv but not in tTreg in two normal strains of mice (Fig. 6-6b).

Last, if the tTreg and Tconv TCRa sequences of TCRa+/- TCRb Tg-Foxp3-

GFP are selected based on their sequences, we would expect to see conservation of

these TCRa sequences in other strains of mice. To address this, we first pooled

sequences from three samples of each strains and then compared tTreg and Tconv

TCRa sequences of TCRa+/- TCRb Tg-Foxp3-GFP with those from the non-Tg mice

(Rag-GFP/Foxp3-RFP and TcrdCreERZsGreen-Foxp3-EGFP). Indeed, we found a

small overlap in TCRa sequences between TCRa+/- TCRb Tg-Foxp3-GFP mice and

the two non-Tg strains: 0.14 and 0.08% for distinct and total sequences (based on

UMI counts) in tTreg-specific TCRa, 2.7 and 8.3% in Tconv-specific TCRa, and 1.3

and 7.6% in tTreg/ Tconv–shared TCRa (Fig. 6-7).
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Figure 6-6: Abundance of shared and nonshared TCRa and TCRb sequences
in tTreg and Tconv. (a) Abundance of TCRa sequences in tTreg and Tconv of
three strains of mice. The number of UMI counts corresponding to those shared or
nonshared TCRa sequences from all three individual samples of each strain. The
data are presented as Log10 transformed values. (b) Abundance of TCRb in tTreg
and Tconv of two strains of mice. The number of UMI counts corresponding to those
shared or nonshared TCRb sequences from all three individual samples of each strain
are presented as the box whisker plot. ***p , 0.001 using Mann–Whitney U test.
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Figure 6-7: Conservation of TCRa sequences across mouse strains. Venn di-
agram displays the percentages of overlap of TCRa sequences (tTreg-specific, Tconv-
specfic, and tTreg/Tconv–shared) found in TCRa+/- TCRb Tg-Foxp3-GFP mice with
the pooled sequences from Rag-GFP/Foxp3-RFP and TcrdCreERZsGreen-Foxp3-
RFP mice. The percentages in black refer to distinct TCRa sequences, and per-
centages in green refer to total TCRa sequences (based on UMI counts).
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6.3.4 Nonshared αβ TCR sequences from tTreg can be distin-

guished from Tconv

The identification of ab TCR sequences found only in tTreg or only in Tconv could

reflect true differences in the TCR repertoires of these populations or might be, at

least in part, a consequence of the inability to sequence to saturation all TCR in

the large Tconv population. We therefore next asked whether the ab TCR sequences

that were not identified as shared between tTreg and Tconv have distinct features that

distinguish tTreg and Tconv. We applied an ML algorithm to compare the nonshared

ab TCR (V gene-CDR3 amino acids-J gene) of tTreg and Tconv. We first generated

a continuous 3-aa motif (trimer) library found in TCR CDR3 [143] and incorporated

V and J gene information. We then used 70% of the combined distinct TCRa and

TCRb sequences of tTreg and Tconv as a training set and 30% as a testing set using a

random forest classifier from scikit-learn [141]. The model performance on the testing

set was calculated using the area under the ROC. We found that nonshared TCRa

of tTreg were distinguishable from TCRa of Tconv with ROC = 0.82 (Fig. 6-8a) and

that TCRb of tTreg were distinguishable from TCRb of Tconv with ROC = 0.72 (Fig.

6-8b); thus, both TCRa and TCRb nonshared sequences of tTreg were distinguished

from their counterparts in Tconv.

To further determine the features of tTreg-restricted CDR3 amino acid sequences,

we compared the abundance in tTreg and Tconv of specific trimers in the central

region of CDR3, which mediates direct contact with Ag–MHC, excluding the N-

terminal amino acid and the C-terminal 3 aa of CDR3 [135]. We found that a number

of trimers were significantly more abundant in tTreg than in Tconv (trimer ratio

tTreg/Tconv ≥ 1.5, FDR 𝑙𝑒𝑞0.05) in CDR3a (n = 49 found in 2.2% of total tTreg

TCRa sequences) and CDR3b (n = 86 found in 1.2% of total tTreg TCRb sequences),

and the 20 most abundant trimers for CDR3a and CDR3b are presented in Fig. 6-8c,

6-8d. Strikingly, 2 aa present in these trimers were highly enriched in the abundant

trimers of both CDR3a and CDR3b of tTreg: cysteine (enriched by 6.8- and 3.9-fold

compared with the CDR3a and CDR3b of Tconv, respectively) and phenylalanine
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(enriched by 2.9- and 1.7-fold to the CDR3a and CDR3b of Tconv, respectively) (Fig.

6-8e), suggesting some common biophysical properties of tTreg TCRs. In addition,

lysine was enriched by 2.3-fold in CDR3a, and methionine was enriched by 2.2-fold

in CDR3b of tTreg. These findings indicate that TCRa and TCRb in tTreg express

a distribution of amino acids and trimer sequences that differs from those of Tconv.

To determine the degree to which TCRa and TCRb sequences shared by Treg and

Tconv resemble sequences that are found only in tTreg or only in Tconv, we applied

the ML algorithm described above. Strikingly, we found that the great majority

of TCRa and TCRb sequences that are shared by Treg and Tconv were classified as

Tconv in origin by this algorithm (Fig. 6-9a-b). Therefore, 82.4% of TCRa and 91.9%

of TCRb sequences were classified as Tconv/TCR–based on cutoffs selected from the

receiver operator characteristic of the TCRa and TCRb ML classifiers, respectively.

Progenitors that express these shared TCR can thus differentiate to tTreg fate despite

the expressions of TCR that are classified as more similar to Tconv.

6.4 Discussion

The factors that determine the selection of Tconv or tTreg fate during thymic devel-

opment are not completely understood. We designed studies to assess the degree to

which TCR sequence determines this lineage choice. We conducted TCRa and TCRb

sequencing of tTreg and Tconv using a UMI-based method. Comparing TCRa and

TCRb sequences between tTreg and Tconv from normal strains of mice, we found

that a substantial proportion of TCRa sequences and TCRb sequences were shared

between tTreg and Tconv; in TCRa+/2 TCRb Tg-Foxp3-GFP mice, shared TCRa

sequences or clonotypes were even more abundant. Notably, the TCRa and TCRb

sequences that were not shared between tTreg and Tconv were distinct in tTreg and

Tconv as recognized by an ML algorithm and by identification of amino acid trimers

more commonly used in CDR3a and CDR3b of tTreg than in Tconv. Finally, ML

indicated that the great majority of TCRs that are shared by tTreg and Tconv have

features in common with the sequences distinct to Tconv but not with sequences dis-
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Figure 6-8: Characterization of distinct nonshared TCRa and TCRb se-
quences expressed by tTreg or Tconv. (a and b) ML classification of TCRa (a)
and TCRb (b) of tTreg and Tconv. The ROC and the associated areas under the
curve (AUC) are presented. (c and d) Top 20 most abundant tTreg enriched trimers
and their locations in CDR3a (c) and CDR3b (d). (e) Enriched amino acids in these
tTreg trimers. Each amino acid present in the enriched trimers and in all trimers
are summed and then divided by the total number of amino acids in these enriched
trimers or all trimers from tTreg and Tconv. The resulting percentages and the ratios
of percentage in enriched tTreg trimer/percentage in Tconv are presented.
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Figure 6-9: TCRα and TCRβ sequences shared by tTreg and Tconv resemble
TCR found uniquely in Tconv. ML classification of TCRa (a) and TCRb (b)
sequences shared by tTreg and Tconv. A classified TCR sequence with the 𝑝 ≥ 0.8
is considered as Tconv in origin, whereas ≤ 0.2 is considered as tTreg origin. By
this definition, 82.4% of shared TCRa sequences were classified as Tconv and 91.9%
shared TCRb sequences were classified as Tconv origin.

tinct to tTreg. Our TCR sequence analysis identified two populations of tTreg, one

in which Treg fate is associated with the unique properties of the TCR and another

with TCR properties that are characteristic of Tconv and for which tTreg fate may

be therefore influenced by other factors than TCR. As previously described in an in-

structive model of intraclonal competition, the tTreg fate decision can be influenced

by the abundance of tTreg precursors during thymic development (36). Further, the

potential presence of precursor tTreg within the Tconv population could affect the

analysis of the TCR contribution.

It has been reported that tTreg development can proceed through two progen-

itor cell pathways, with mature CD25+Foxp3+ tTreg being generated from either

CD252Foxp3lo or CD25+ Foxp32 precursors (37). These two progenitor tTreg pro-

duce functionally distinct mature tTreg. tTreg derived from CD25+ tTreg progeni-

tors are able to prevent experimental autoimmune encephalitis, whereas tTreg from

Foxp3lo progenitor cells do not, and TCR of CD25+ tTreg progenitors have a higher

affinity than those Foxp3lo progenitor cells. Sequence analysis of the Va2 TCR fam-
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ily in that study revealed both distinct and overlapped sequences between these two

progenitor cells. Whether these reported features of the Va2 TCR family general-

ize across the entire TCR repertoire and whether the tTreg-specific TCR and the

tTreg/Tconv–shared TCR that we have identified in this study have distinct progen-

itor origins will require further study.

Our study provides a quantitative assessment of the degree of uniqueness and sim-

ilarity of ab TCR between tTreg and Tconv. The distinct tTreg and Tconv sequences

that we identified are present at a small but consistent percentage among individ-

ual mice within the same strain and between different strains, suggesting sequence

conservation of tTreg- or Tconv-specific TCR characteristics. Furthermore, these con-

served sequences occupy a larger fraction of total TCRa and TCRb sequences based

on UMI counts than on distinct TCR sequences. Several factors could affect the es-

timated proportion of these shared TCR. Because the number of Tconv that could

be used for sequencing was only a fraction of total Tconv in the thymus, the per-

centage of shared TCR sequences in tTreg may be an underestimate. In contrast,

the existence of a potential precursor tTreg in the Tconv population could increase

apparent sharing, although it should be noted that the Tconv (Foxp3-RFP2) analyzed

for Rag-GFP/Foxp3-RFP thymocytes were only 1% CD25+ and that Tconv for other

analyses were 99% Foxp3- CD252. The extensive sharing of ab TCR between tTreg

and Tconv is further confirmed through the analysis of TCRa sequences in a TCRb

Tg mouse, in which we found sharing of TCRa and therefore sharing of identical ab

TCR clonotypes between tTreg and Tconv in 71% of total Treg. This high degree

of sharing may result from the substantially reduced size of the TCRa repertoire

that can be paired with the single Tg TCRb. Together, these findings suggest that

TCR sequence alone does not determine the fate of tTreg or Tconv for a significant

proportion of tTreg.

The UMI marking of TCR mRNA molecules allowed us to calculate the abun-

dance of TCR sequences in tTreg and Tconv more accurately than prior approaches.

This strategy led to the observation that those TCRa sequences in normal mice and

ab TCR clonotypes in TCRa+/- TCRb Tg-Foxp3-GFP mice that are shared between
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tTreg and Tconv are significantly more abundant than the nonshared TCRa sequences

and ab TCR clonotypes. It is not clear whether the abundance of those shared TCR

occurs prior to or after the fate decision of tTreg and Tconv. A study using fluo-

rescent tracking of thymic mature CD4+ and tTreg showed only one cell division

postselection (38). This suggests that a high abundance of a given preselection pro-

genitor may simply increase the probability that some progenitors of that clonotype

will differentiate to tTreg and others to Tconv, reflecting a role of additional factors

that drive Treg differentiation in concert with TCR signaling. However, TCRb se-

quences shared by tTreg and Tconv were significantly more abundant than nonshared

sequences expressed only in Tconv but not more abundant than nonshared sequences

expressed only in tTreg. It remains to be determined whether there is selective ex-

pansion occurring after the fate decision in the thymus for Tconv that have shared

TCR with tTreg.

ML has become an increasingly powerful tool in biological studies, in particular

for those involving large datasets [144, 145]. In this study, we applied ML to analyze

TCRs by first partitioning each distinct TCR into its component V-CDR3 (multiple

continuous tri–amino acids)-J factors and determining whether nonshared TCRa and

TCRb sequences are distinct between tTreg and Tconv. Indeed, a random forest

classifier is able to distinguish those TCRa and TCRb sequences of tTreg from those of

Tconv with high accuracy. The identification of specific trimers that occur at a higher

frequency in tTreg CDR3a and CDR3b reveals that cysteine and phenylalanine are

enriched in both CDR3a and CDR3b of tTreg, suggesting common structural features

of at least some tTreg TCR. This ML algorithm can be further improved when more

TCR sequences of tTreg and Tconv are generated and can also be modified to test

ab paired TCRs as the potential for single cell sequencing advances. In addition, we

observed that lysine is enriched in CDR3a trimers, whereas methionine is enriched in

CDR3b trimers of tTreg. Although the roles of these enriched trimers and specific

amino acids is currently unknown, cysteine is reported to be enriched in CDR3a

and CDR3b in intraepithelial lymphocytes and type A intraepithelial lymphocytes

precursors [146]. Interestingly, cysteine and phenylalanine are reported to be less
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frequent in CDR3b of MHC-restricted than in MHC-independent TCR-expressing

thymocytes [135], and phenylalanine was found in CDR3b of selfreactive TCR [147].

Thus, it is possible that the enriched amino acids and enriched trimers in tTreg CDR3

may be involved in the interaction with self-antigen peptide rather than MHC during

tTreg differentiation. Collectively, our findings demonstrate that TCR expressed by

tTreg and not by Tconv have distinct CDR3a and CDR3b sequences compared with

those of Tconv, supporting the critical role of TCR in the tTreg generation in thymus.

Further studies will be needed to characterize the interaction of these TCRs with

potentially selecting self-peptides to provide insights into the role of TCR in tTreg

generation in the thymus.

Collectively, the results reported in this study have identified features that distin-

guish the ab TCR sequences expressed by a significant proportion of tTreg from those

expressed by Tconv in the thymus of normal mice and which therefore appear criti-

cal to determining differentiation into these lineages. The identification in tTreg of

preferentially used trimers and selected amino acids in CDR3a and CDR3b provides

molecular features for further understanding of TCR and Ag interaction in tTreg gen-

eration. For TCR clonotypes that are shared between tTreg and Tconv, it remains

to be elucidated what are the non-TCR factors that drive the same TCR-carrying

progenitors into either Treg or Tconv lineage. Candidates for such factors include

differential costimulatory signaling, cytokine requirements, and other aspects of APC

and thymic environment. The ML classification of tTreg and Tconv subsets by TCR

sequence described in this study provides a strategy for dissecting the molecular path-

ways that mark these lineages at a single cell level. Combining ML and single cell

analysis of ab TCR sequence with transcriptome and other molecular parameters will

allow better definition of the selection, function, and activation state of these T cell

subsets.
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Chapter 7

Conclusion

In this thesis, we have introduced extracellular vesicles (EVs) as biomarkers for im-

munotherapy response, delineated the epigenetic changes that result from checkpoint

blockade immunotherapy, and elucidated the role of TCR repertoires in driving CD4+

SP differentiation into Tconv or tTreg lineages.

In chapter 2, we first described the potential of EV RNA as a potential predictive

biomarker for checkpoint blockade immunotherapy patients. We show a high level of

correlation between both tumor cell-lines and tumor cell-line-derived EVs, as well as

between patient tumors and patient plasma-derived EVs. Using concordance analysis,

we show enrichment for immune related pathways and cell types in the EV popula-

tion, suggesting that EV populations maybe more reflective of an immune role. We

pinpoint DEGs and pathways that stratify responders and non-responders in both

the pre-treatment and on-treatment EV samples. We note the presence of cancer

testis antigens MAGEA1 and MAGEA3, which are uniquely expressed in melanoma

cells, as on-treatment DEGs. In addition, we demonstrate that the pre-treatment

samples are moderately predictive of immunotherapy response. Finally, we demon-

strate that EV RNA-seq mutational information can serve as a proxy for somatic

mutational load and can stratify responders and non-responders. In chapter 3, we

present a Bayesian probabilistic model that explicitly models a "scaling" coefficient

meant to capture the export process between tumors and EVs, as well as a mixture

coefficient to denote the fraction of plasma-derived EV signal that is thought to be
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patient tumor DEV-derived. We validate this model using the in silico deconvolution

method CIBERSORTx, and we leverage the model to provide interpretations for our

on-treatment and pre-treatment DEGs.

In chapter 4, we described the epigenetic state changes that differ between re-

sponders and non-responders. We first pinpointed a set of peaks that transition from

enhancer states in non-responders to repressed or polycomb states in responders. We

demonstrate that GO pathways such as Notch, MET, and ECM signaling are en-

riched for in this set of peaks. Next, we dissected the MET locus, with its 4 distal

enhancers, and showed that silencing these enhancer interactions with dCas9-KRAB

resulted in increased tumor killing in a co-culture experiment. We also found a num-

ber of other genes, including TGFβ2, XIST, and SPATA2, also demonstrated similar

patterns as the c-MET locus of having significantly higher non-responder H3K27ac

activity. Based on this, we reasoned that inhibiting acetylation reader bromodomains

via BETi inhibition could potentially target multiple resistance mechanisms at once.

We show both in B16F10 and the Bosenberg model that anti-PD1 in conjunction with

BETi exhibits synergism and led to the largest decrease in tumor volume. We further

show that BETi increased CD8% T-cell percentage in the tumor microenvironment,

tumor killing by tumor infiltrating lymphocytes, as well as MHC I expression. In

chapter 5, we used MANorm and IDR to isolate a set of ∼ 86, 000 peaks for down-

stream analysis, of which 189 peaks showed significance in both the MGH and MDA

datasets. We show that these 189 peaks are able to predict response via a random

forest classifier and that 4 of the peaks stratified progression free survival. Finally, we

used the Global Test to test gene-peak modules and gene-pathway modules, leading

to the identification of several immune related pathways as differentially regulated.

In chapter 6, we elucidated the role of TCR in driving CD4+ SP T-cells into

thymic Treg (tTreg) vs. conventional T-cell (Tconv) fates. We identified αβ TCR

sequences that were unique to either tTreg or Tconv and found these sequences were

distinctly recognized by a random forest classifier and preferentially used amino acid

trimers in αβ CDR3 of tTreg. We also found a proportion of the αβ TCR sequences

expressed by tTreg were also found in Tconv, and machine learning classified the great
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majority of these shared αβ TCR sequences as characteristic of Tconv and not tTreg.

These findings identify two populations of tTreg, one in which regulatory T-cell fate

is associated with unique properties of the TCR and another for which tTreg fate is

determined by factors beyond TCR sequence.

7.1 Looking to the future

Additional research into the potential of extravesicular RNA as a predictive biomarker

for immunotherapy response is still needed. Targeted enrichment and profiling of

tumor-derived EV is necessary to pinpoint which of the observed signals in our study

is actually enriched for in patients. Performing targeted enrichment will also allow

us to validate aspects of our in silico deconvolution model. Furthermore, profiling of

patients outside of metastatic melanoma could also be useful to see if our findings

transfer over to additional tumor types. Ultimately, the bar is a prospective clinical

trial in which EVs are explicitly tested for their ability to guide clinical decision

making and provide better patient stratification in the context of immunotherapy

treatment. In this goal, EVs face a similar developmental process as that of tumor

mutational burden, which took several trials in order establish as a gold standard

biomarker in the context of immunotherapy response.

In the context of epigenetic profiling, the obvious next steps would be to investigate

whether the observed synergism between BETi and anti-PD1 is relevant in humans.

If so, this combinatorial drugging regime can potentially improve immunotherapy

efficacy and enable overall longer survival times in patients. Beyond this, confirmation

of the non-responder enhancer signature in other tumor types besides metastatic

melanoma would provide additional evidence that this is a universal signature of non-

response. As for the predictive enhancer signals isolated in chapter 5, these signatures

should be developed into a distinct assay utilizing ChIP-qPCR or another sensitive

detector of H3K27ac signal in a novel cohort to confirm whether these signatures are

truly predictive.

Finally, in the context of TCR profiling, studies leveraging paired αβ TCR se-
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quencing should be employed, as this would increase confidence in the applicability of

the findings to the total αβ TCR repertoire, instead of individual α or β repertoires by

themselves. Additional studies should be undertaken to determine the biological fac-

tors responsible for directing CD4+ SP T-cells down tTreg vs. Tconv fates. Specific

improvements to individual chapters are listed below.

7.1.1 Extracellular vesicles as biomarkers for immunotherapy

resistance

In the work presented in chapter 2, there are a number of areas for potential improve-

ment. The first is the overall approach of capturing mixed, plasma-derived EVs in

which tumor-derived EVs are an unknown fraction of the captured pool. To improve

upon this, we can use microfluidics and nanoengineering to explicitly filter for tumor-

derived EVs and profile them separately [148]. This will allow us to directly access the

tumor-derived EV RNA profile, without the need to impute for them computation-

ally, as well as specifically analyze tumor-associated changes instead of focusing on

both immune and tumor related changes as we have done in our work. Additionally,

more complete immunophenotyping of circulating EVs is also possible via the work

done by Zhang et al. [149].

7.1.2 Deconvolution of extracellular cargo

In the work presented in chapter 3, the limitations on the work are the lack of vali-

dation data and the simplistic model for the scaling coefficient 𝑠. The deconvolution

model should ideally be confirmed with in vitro or in vivo experimental model. The

current validation with CIBERSORTx uses another in silico model to confirm an

existing in silico model, leading to issues with how well the model realizes biological

reality. Ideally, this would involve experimentation in which tumor-derived EV pro-

files are isolated, for example via [148], and those profiles are compared with the in

silico predicted ones generated by the model. An additional issue is the simplistic

linear model for the scaling coefficient 𝑠, that models the export process between

136



tumors and tumor-derived EVs. Ideally, this export process should be non-linear in

nature, to capture more complex interactions between RNA concentration within the

tumors and the RNA concentration as exported to tumor-derived EVs.

7.1.3 Epigenetic changes during immunotherapy resistance

Amajor limitation of the work presented in chapter 4 is the focus on the non-responder

E7 state as the key signature of immunotherapy response. Although we were able to

detect an actionable epigenetic signature from peaks residing in the non-responder

E7 state, this does not preclude the presence of other epigenetic signatures residing

in other chromatin states. A significance test for whether read counts differed sig-

nificantly between each of the ChromHMM states would be able to identify other

epigenetic signatures that stratify responders and non-responders.

7.1.4 Epigenomic predictors of immunotherapy resistance

One limitation of the work presented in chapter 5 is the limited pool of peaks that we

were drawing from in order to create the feature set for input into the random forest

classifier. Using only the 189 doubly significant peaks ensured that the individual

peaks were predictive; however, it is potentially missing predictive features from the

∼ 86000 other peaks that could potentially stratify response. An alternative strategy

for peak discovery is perhaps to use a Bayesian spike and slab regression [150] to select

for the predictive peaks among the 86,000 peak pool prior to running a random forest

classifier. A regularized regression framework may also work. This would enable

the selection of peaks outside of doubly significant pool and potentially expand the

predictive power of the pre-treatment epigenetic peak set.

7.1.5 TCR profiling

The major limitation in the study is the lack of paired αβ TCR sequencing. This would

allow direct addressing of whether the paired αβ TCR repertoire influences tTreg vs.

Tconv development. Paired αβ TCR sequencing can be performed by the protocol

137



presented by Howie et al. [151], and the paired αβ sequences can be analyzed using

the existing analysis algorithms. This would complement the analysis with the TCRα

+/- TCRβ-Tg-Foxp3-GFP mice, which synthetically constrains TCR α by using only

a single TCR β gene. Paired sequences would ensure that the overlapping TCRα and

TCRβ sequences between tTreg and Tconv are actually overlapping as fully formed

αβ TCR.

138



Bibliography

[1] L. E. Davis, S. C. Shalin, and A. J. Tackett, “Current state of melanoma diag-
nosis and treatment,” Cancer Biol. Ther., vol. 20, pp. 1366–1379, Aug. 2019.

[2] D. Schadendorf, D. E. Fisher, C. Garbe, J. E. Gershenwald, J.-J. Grob,
A. Halpern, M. Herlyn, M. A. Marchetti, G. McArthur, A. Ribas, A. Roesch,
and A. Hauschild, “Melanoma,” Nature Reviews Disease Primers, vol. 1, pp. 1–
20, Apr. 2015.

[3] I. Mellman, G. Coukos, and G. Dranoff, “Cancer immunotherapy comes of age,”
Nature, vol. 480, pp. 480–489, Dec. 2011.

[4] F. S. Hodi, S. J. O’Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B.
Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley,
A. J. M. van den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette,
D. Hogg, C. H. Ottensmeier, C. Lebbé, C. Peschel, I. Quirt, J. I. Clark, J. D.
Wolchok, J. S. Weber, J. Tian, M. J. Yellin, G. M. Nichol, A. Hoos, and
W. J. Urba, “Improved survival with ipilimumab in patients with metastatic
melanoma,” N. Engl. J. Med., vol. 363, pp. 711–723, Aug. 2010.

[5] C. Robert, “A decade of immune-checkpoint inhibitors in cancer therapy,” Nat.
Commun., vol. 11, p. 3801, July 2020.

[6] M. Yarchoan, A. Hopkins, and E. M. Jaffee, “Tumor mutational burden and
response rate to PD-1 inhibition,” N. Engl. J. Med., vol. 377, pp. 2500–2501,
Dec. 2017.

[7] C. S. Fuchs, M. Özgüroğlu, Y.-J. Bang, M. Di Bartolomeo, M. Mandalà, M.-H.
Ryu, C. Vivaldi, T. Olesinski, C. Caglevic, H. C. Chung, K. Muro, E. Van Cut-
sem, J. Kobie, R. Cristescu, D. Aurora-Garg, J. Lu, C.-S. Shih, D. Adelberg,
Z. A. Cao, and K. Shitara, “The association of molecular biomarkers with effi-
cacy of pembrolizumab versus paclitaxel in patients with gastric cancer (GC)
from KEYNOTE-061,” J. Clin. Orthod., vol. 38, pp. 4512–4512, May 2020.

[8] L. Cai, H. Bai, J. Duan, Z. Wang, S. Gao, D. Wang, S. Wang, J. Jiang, J. Han,
Y. Tian, X. Zhang, H. Ye, M. Li, B. Huang, J. He, and J. Wang, “Epigenetic
alterations are associated with tumor mutation burden in non-small cell lung
cancer,” Journal for ImmunoTherapy of Cancer, vol. 7, pp. 1–11, July 2019.

139



[9] N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel,
W. Lee, J. Yuan, P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira,
F. Ibrahim, C. Bruggeman, B. Gasmi, R. Zappasodi, Y. Maeda, C. Sander, E. B.
Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher, and T. A. Chan, “Can-
cer immunology. mutational landscape determines sensitivity to PD-1 blockade
in non-small cell lung cancer,” Science, vol. 348, pp. 124–128, Apr. 2015.

[10] E. Ghorani, R. Rosenthal, N. McGranahan, J. L. Reading, M. Lynch, K. S.
Peggs, C. Swanton, and S. A. Quezada, “Differential binding affinity of mutated
peptides for MHC class I is a predictor of survival in advanced lung cancer and
melanoma,” Ann. Oncol., vol. 29, pp. 271–279, Jan. 2018.

[11] A. J. Rech, D. Balli, A. Mantero, H. Ishwaran, K. L. Nathanson, B. Z. Stanger,
and R. H. Vonderheide, “Tumor immunity and survival as a function of alterna-
tive neopeptides in human cancer,” Cancer Immunol Res, vol. 6, pp. 276–287,
Mar. 2018.

[12] R. Bai, Z. Lv, D. Xu, and J. Cui, “Predictive biomarkers for cancer immunother-
apy with immune checkpoint inhibitors,” Biomarker Research, vol. 8, pp. 1–17,
Aug. 2020.

[13] M. Mathew, M. Zade, N. Mezghani, R. Patel, Y. Wang, and F. Momen-
Heravi, “Extracellular vesicles as biomarkers in cancer immunotherapy,” Can-
cers, vol. 12, Sept. 2020.

[14] G. Chen, A. C. Huang, W. Zhang, G. Zhang, M. Wu, W. Xu, Z. Yu, J. Yang,
B. Wang, H. Sun, H. Xia, Q. Man, W. Zhong, L. F. Antelo, B. Wu, X. Xiong,
X. Liu, L. Guan, T. Li, S. Liu, R. Yang, Y. Lu, L. Dong, S. McGettigan, R. So-
masundaram, R. Radhakrishnan, G. Mills, Y. Lu, J. Kim, Y. H. Chen, H. Dong,
Y. Zhao, G. C. Karakousis, T. C. Mitchell, L. M. Schuchter, M. Herlyn, E. J.
Wherry, X. Xu, and W. Guo, “Exosomal PD-L1 contributes to immunosuppres-
sion and is associated with anti-PD-1 response,” Nature, vol. 560, pp. 382–386,
Aug. 2018.

[15] S. N. Hurwitz and D. G. Meckes, Jr, “Extracellular vesicle integrins distinguish
unique cancers,” Proteomes, vol. 7, Apr. 2019.

[16] H. Y. Zoghbi and A. L. Beaudet, “Epigenetics and human disease,” Cold Spring
Harb. Perspect. Biol., vol. 8, p. a019497, Feb. 2016.

[17] S. Virani, J. A. Colacino, J. H. Kim, and L. S. Rozek, “Cancer epigenetics: a
brief review,” ILAR J., vol. 53, no. 3-4, pp. 359–369, 2012.

[18] Roadmap Epigenomics Consortium, A. Kundaje, W. Meuleman, J. Ernst,
M. Bilenky, A. Yen, A. Heravi-Moussavi, P. Kheradpour, Z. Zhang, J. Wang,
M. J. Ziller, V. Amin, J. W. Whitaker, M. D. Schultz, L. D. Ward, A. Sarkar,
G. Quon, R. S. Sandstrom, M. L. Eaton, Y.-C. Wu, A. R. Pfenning, X. Wang,
M. Claussnitzer, Y. Liu, C. Coarfa, R. A. Harris, N. Shoresh, C. B. Epstein,

140



E. Gjoneska, D. Leung, W. Xie, R. D. Hawkins, R. Lister, C. Hong, P. Gascard,
A. J. Mungall, R. Moore, E. Chuah, A. Tam, T. K. Canfield, R. S. Hansen,
R. Kaul, P. J. Sabo, M. S. Bansal, A. Carles, J. R. Dixon, K.-H. Farh, S. Feizi,
R. Karlic, A.-R. Kim, A. Kulkarni, D. Li, R. Lowdon, G. Elliott, T. R. Mercer,
S. J. Neph, V. Onuchic, P. Polak, N. Rajagopal, P. Ray, R. C. Sallari, K. T.
Siebenthall, N. A. Sinnott-Armstrong, M. Stevens, R. E. Thurman, J. Wu,
B. Zhang, X. Zhou, A. E. Beaudet, L. A. Boyer, P. L. De Jager, P. J. Farnham,
S. J. Fisher, D. Haussler, S. J. M. Jones, W. Li, M. A. Marra, M. T. Mc-
Manus, S. Sunyaev, J. A. Thomson, T. D. Tlsty, L.-H. Tsai, W. Wang, R. A.
Waterland, M. Q. Zhang, L. H. Chadwick, B. E. Bernstein, J. F. Costello,
J. R. Ecker, M. Hirst, A. Meissner, A. Milosavljevic, B. Ren, J. A. Stama-
toyannopoulos, T. Wang, and M. Kellis, “Integrative analysis of 111 reference
human epigenomes,” Nature, vol. 518, p. 317, Feb. 2015.

[19] J. Ernst and M. Kellis, “Chromatin-state discovery and genome annotation with
ChromHMM,” Nat. Protoc., vol. 12, pp. 2478–2492, Nov. 2017.

[20] E. Rosati, C. M. Dowds, E. Liaskou, E. K. K. Henriksen, T. H. Karlsen, and
A. Franke, “Overview of methodologies for t-cell receptor repertoire analysis,”
BMC Biotechnol., vol. 17, p. 61, July 2017.

[21] X. Bai, Q. Zhang, S. Wu, X. Zhang, M. Wang, F. He, T. Wei, J. Yang, Y. Lou,
Z. Cai, and T. Liang, “Characteristics of tumor infiltrating lymphocyte and
circulating lymphocyte repertoires in pancreatic cancer by the sequencing of T
cell receptors,” Sci. Rep., vol. 5, p. 13664, Sept. 2015.

[22] R. van de Schoot, S. Depaoli, R. King, B. Kramer, K. Märtens, M. G. Tadesse,
M. Vannucci, A. Gelman, D. Veen, J. Willemsen, and C. Yau, “Bayesian statis-
tics and modelling,” Nature Reviews Methods Primers, vol. 1, pp. 1–26, Jan.
2021.

[23] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, and G. K.
Smyth, “limma powers differential expression analyses for RNA-sequencing and
microarray studies,” Nucleic Acids Res., vol. 43, pp. e47–e47, Jan. 2015.

[24] A. Shi, G. G. Kasumova, W. A. Michaud, J. Cintolo-Gonzalez, M. Díaz-
Martínez, J. Ohmura, A. Mehta, I. Chien, D. T. Frederick, S. Cohen, D. Plana,
D. Johnson, K. T. Flaherty, R. J. Sullivan, M. Kellis, and G. M. Boland,
“Plasma-derived extracellular vesicle analysis and deconvolution enable pre-
diction and tracking of melanoma checkpoint blockade outcome,” Science Ad-
vances, vol. 6, p. eabb3461, Nov. 2020.

[25] A. Ko, M. Watanabe, T. Nguyen, A. Shi, A. Achour, B. Zhang, X. Sun,
Q. Wang, Y. Zhuang, N.-P. Weng, and R. J. Hodes, “TCR repertoires of thymic
conventional and regulatory T cells: Identification and characterization of both
unique and shared TCR sequences,” J. Immunol., Jan. 2020.

141



[26] A. Ashida, K. Sakaizawa, H. Uhara, and R. Okuyama, “Circulating tumour
DNA for monitoring treatment response to Anti-PD-1 immunotherapy in
melanoma patients,” Acta Derm. Venereol., vol. 97, pp. 1212–1218, Nov. 2017.

[27] X. Hong, R. J. Sullivan, M. Kalinich, T. T. Kwan, A. Giobbie-Hurder, S. Pan,
J. A. LiCausi, J. D. Milner, L. T. Nieman, B. S. Wittner, U. Ho, T. Chen,
R. Kapur, D. P. Lawrence, K. T. Flaherty, L. V. Sequist, S. Ramaswamy, D. T.
Miyamoto, M. Lawrence, M. Toner, K. J. Isselbacher, S. Maheswaran, and
D. A. Haber, “Molecular signatures of circulating melanoma cells for monitoring
early response to immune checkpoint therapy,” Proc. Natl. Acad. Sci. U. S. A.,
vol. 115, pp. 2467–2472, Mar. 2018.

[28] N. Riaz, J. J. Havel, V. Makarov, A. Desrichard, W. J. Urba, J. S. Sims,
F. Stephen Hodi, S. Martín-Algarra, R. Mandal, W. H. Sharfman, S. Bha-
tia, W.-J. Hwu, T. F. Gajewski, C. L. Slingluff, D. Chowell, S. M. Kendall,
H. Chang, R. Shah, F. Kuo, L. G. T. Morris, J.-W. Sidhom, J. P. Schneck, C. E.
Horak, N. Weinhold, and T. A. Chan, “Tumor and microenvironment evolution
during immunotherapy with nivolumab,” Cell, vol. 171, pp. 934–949.e15, Nov.
2017.

[29] S. D. Alipoor, E. Mortaz, M. Varahram, M. Movassaghi, A. D. Kraneveld,
J. Garssen, and I. M. Adcock, “The potential biomarkers and immunological
effects of Tumor-Derived exosomes in lung cancer,” Front. Immunol., vol. 9,
p. 819, Apr. 2018.

[30] L. Muller, S. Muller-Haegele, M. Mitsuhashi, W. Gooding, H. Okada, and T. L.
Whiteside, “Exosomes isolated from plasma of glioma patients enrolled in a
vaccination trial reflect antitumor immune activity and might predict survival,”
Oncoimmunology, vol. 4, p. e1008347, June 2015.

[31] M. K. McDonald, Y. Tian, R. A. Qureshi, M. Gormley, A. Ertel, R. Gao,
E. Aradillas Lopez, G. M. Alexander, A. Sacan, P. Fortina, and S. K. Ajit,
“Functional significance of macrophage-derived exosomes in inflammation and
pain,” Pain, vol. 155, pp. 1527–1539, Aug. 2014.

[32] Z. Cai, F. Yang, L. Yu, Z. Yu, L. Jiang, Q. Wang, Y. Yang, L. Wang, X. Cao, and
J. Wang, “Activated T cell exosomes promote tumor invasion via fas signaling
pathway,” J. Immunol., vol. 188, pp. 5954–5961, June 2012.

[33] D. W. Greening, S. K. Gopal, R. Xu, R. J. Simpson, and W. Chen, “Exo-
somes and their roles in immune regulation and cancer,” Semin. Cell Dev. Biol.,
vol. 40, pp. 72–81, Apr. 2015.

[34] T. A. Chatila and C. B. Williams, “Regulatory T cells: exosomes deliver toler-
ance,” Immunity, vol. 41, pp. 3–5, July 2014.

142



[35] C. Théry, S. Amigorena, G. Raposo, and A. Clayton, “Isolation and character-
ization of exosomes from cell culture supernatants and biological fluids,” Curr.
Protoc. Cell Biol., vol. Chapter 3, p. Unit 3.22, Apr. 2006.

[36] B. S. Carvalho and R. A. Irizarry, “A framework for oligonucleotide microarray
preprocessing,” Bioinformatics, vol. 26, pp. 2363–2367, Oct. 2010.

[37] W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in microarray
expression data using empirical bayes methods,” Biostatistics, vol. 8, pp. 118–
127, Jan. 2007.

[38] S. Chen, Y. Zhou, Y. Chen, and J. Gu, “fastp: an ultra-fast all-in-one FASTQ
preprocessor,” Bioinformatics, vol. 34, pp. i884–i890, Sept. 2018.

[39] Y. Liao, G. K. Smyth, and W. Shi, “The R package rsubread is easier, faster,
cheaper and better for alignment and quantification of RNA sequencing reads,”
Nucleic Acids Res., vol. 47, p. e47, May 2019.

[40] G. K. Smith, “limma: Linear models for microarray data,” Bioinformatics and
Computational Biology Solutions Using R and Bioconductor, no. 2005, pp. 397–
420, 2005.

[41] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo,
and J. P. Mesirov, “Molecular signatures database (MSigDB) 3.0,” Bioinformat-
ics, vol. 27, pp. 1739–1740, June 2011.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Ma-
chine learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov.
2011.

[43] J. G. Tate, S. Bamford, H. C. Jubb, Z. Sondka, D. M. Beare, N. Bindal, H. Bout-
selakis, C. G. Cole, C. Creatore, E. Dawson, P. Fish, B. Harsha, C. Hathaway,
S. C. Jupe, C. Y. Kok, K. Noble, L. Ponting, C. C. Ramshaw, C. E. Rye, H. E.
Speedy, R. Stefancsik, S. L. Thompson, S. Wang, S. Ward, P. J. Campbell, and
S. A. Forbes, “COSMIC: the catalogue of somatic mutations in cancer,” Nucleic
Acids Res., vol. 47, pp. D941–D947, Jan. 2019.

[44] A. M. Newman, C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, C. D.
Hoang, M. Diehn, and A. a. Alizadeh, “Robust enumeration of cell subsets from
tissue expression profiles,” Nat. Methods, vol. 12, pp. 453–457, Mar. 2015.

[45] A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri,
F. Scherer, M. S. Khodadoust, M. S. Esfahani, B. A. Luca, D. Steiner, M. Diehn,
and A. A. Alizadeh, “Determining cell type abundance and expression from bulk
tissues with digital cytometry,” Nat. Biotechnol., vol. 37, pp. 773–782, July
2019.

143



[46] W. Roh, P.-L. Chen, A. Reuben, C. N. Spencer, P. A. Prieto, J. P. Miller,
V. Gopalakrishnan, F. Wang, Z. A. Cooper, S. M. Reddy, C. Gumbs, L. Little,
Q. Chang, W.-S. Chen, K. Wani, M. P. De Macedo, E. Chen, J. L. Austin-
Breneman, H. Jiang, J. Roszik, M. T. Tetzlaff, M. A. Davies, J. E. Gershen-
wald, H. Tawbi, A. J. Lazar, P. Hwu, W.-J. Hwu, A. Diab, I. C. Glitza, S. P.
Patel, S. E. Woodman, R. N. Amaria, V. G. Prieto, J. Hu, P. Sharma, J. P.
Allison, L. Chin, J. Zhang, J. A. Wargo, and P. A. Futreal, “Integrated molecu-
lar analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals
markers of response and resistance,” Sci. Transl. Med., vol. 9, Mar. 2017.

[47] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set variation analysis
for microarray and RNA-seq data,” BMC Bioinformatics, vol. 14, p. 7, Jan.
2013.

[48] R. W. Jenkins, A. R. Aref, P. H. Lizotte, E. Ivanova, S. Stinson, C. W. Zhou,
M. Bowden, J. Deng, H. Liu, D. Miao, M. X. He, W. Walker, G. Zhang,
T. Tian, C. Cheng, Z. Wei, S. Palakurthi, M. Bittinger, H. Vitzthum, J. W.
Kim, A. Merlino, M. Quinn, C. Venkataramani, J. A. Kaplan, A. Portell, P. C.
Gokhale, B. Phillips, A. Smart, A. Rotem, R. E. Jones, L. Keogh, M. Anguiano,
L. Stapleton, Z. Jia, M. Barzily-Rokni, I. Cañadas, T. C. Thai, M. R. Ham-
mond, R. Vlahos, E. S. Wang, H. Zhang, S. Li, G. J. Hanna, W. Huang, M. P.
Hoang, A. Piris, J.-P. Eliane, A. O. Stemmer-Rachamimov, L. Cameron, M.-J.
Su, P. Shah, B. Izar, M. Thakuria, N. R. LeBoeuf, G. Rabinowits, V. Gunda,
S. Parangi, J. M. Cleary, B. C. Miller, S. Kitajima, R. Thummalapalli, B. Miao,
T. U. Barbie, V. Sivathanu, J. Wong, W. G. Richards, R. Bueno, C. H. Yoon,
J. Miret, M. Herlyn, L. A. Garraway, E. M. Van Allen, G. J. Freeman, P. T.
Kirschmeier, J. H. Lorch, P. A. Ott, F. S. Hodi, K. T. Flaherty, R. D. Kamm,
G. M. Boland, K.-K. Wong, D. Dornan, C. P. Paweletz, and D. A. Barbie, “Ex
vivo profiling of PD-1 blockade using organotypic tumor spheroids,” Cancer
Discov., vol. 8, pp. 196–215, Feb. 2018.

[49] M. Janghorban, L. Xin, J. M. Rosen, and X. H.-F. Zhang, “Notch signaling as
a regulator of the tumor immune response: To target or not to target?,” Front.
Immunol., vol. 9, p. 1649, July 2018.

[50] T. Sinnberg, M. P. Levesque, J. Krochmann, P. F. Cheng, K. Ikenberg,
F. Meraz-Torres, H. Niessner, C. Garbe, and C. Busch, “Wnt-signaling enhances
neural crest migration of melanoma cells and induces an invasive phenotype,”
Mol. Cancer, vol. 17, p. 59, Feb. 2018.

[51] E. I. Buchbinder and A. Desai, “CTLA-4 and PD-1 pathways: Similarities,
differences, and implications of their inhibition,” Am. J. Clin. Oncol., vol. 39,
pp. 98–106, Feb. 2016.

[52] A. Memon and W. K. Lee, “KLF10 as a tumor suppressor gene and its TGF-𝛽
signaling,” Cancers, vol. 10, May 2018.

144



[53] L. Gattinoni, X.-S. Zhong, D. C. Palmer, Y. Ji, C. S. Hinrichs, Z. Yu,
C. Wrzesinski, A. Boni, L. Cassard, L. M. Garvin, C. M. Paulos, P. Muran-
ski, and N. P. Restifo, “Wnt signaling arrests effector T cell differentiation and
generates CD8+ memory stem cells,” Nat. Med., vol. 15, pp. 808–813, July
2009.

[54] K. Ohman Forslund and K. Nordqvist, “The melanoma antigen genes–any clues
to their functions in normal tissues?,” Exp. Cell Res., vol. 265, pp. 185–194,
May 2001.

[55] W. Luo, M. S. Friedman, K. Shedden, K. D. Hankenson, and P. J. Woolf,
“GAGE: generally applicable gene set enrichment for pathway analysis,” BMC
Bioinformatics, vol. 10, p. 161, May 2009.

[56] W. Hugo, J. M. Zaretsky, L. Sun, C. Song, B. H. Moreno, S. Hu-Lieskovan,
B. Berent-Maoz, J. Pang, B. Chmielowski, G. Cherry, E. Seja, S. Lomeli,
X. Kong, M. C. Kelley, J. A. Sosman, D. B. Johnson, A. Ribas, and R. S.
Lo, “Genomic and transcriptomic features of response to Anti-PD-1 therapy in
metastatic melanoma,” Cell, vol. 165, no. 1, pp. 35–44, 2016.

[57] J. Deng, E. S. Wang, R. W. Jenkins, S. Li, R. Dries, K. Yates, S. Chhabra,
W. Huang, H. Liu, A. R. Aref, E. Ivanova, C. P. Paweletz, M. Bowden, C. W.
Zhou, G. S. Herter-Sprie, J. A. Sorrentino, J. E. Bisi, P. H. Lizotte, A. A.
Merlino, M. M. Quinn, L. E. Bufe, A. Yang, Y. Zhang, H. Zhang, P. Gao,
T. Chen, M. E. Cavanaugh, A. J. Rode, E. Haines, P. J. Roberts, J. C. Strum,
W. G. Richards, J. H. Lorch, S. Parangi, V. Gunda, G. M. Boland, R. Bueno,
S. Palakurthi, G. J. Freeman, J. Ritz, W. N. Haining, N. E. Sharpless, H. Artha-
nari, G. I. Shapiro, D. A. Barbie, N. S. Gray, and K.-K. Wong, “CDK4/6 in-
hibition augments antitumor immunity by enhancing t-cell activation,” Cancer
Discov., vol. 8, pp. 216–233, Feb. 2018.

[58] L. Zhang and Z. Zhang, “Recharacterizing Tumor-Infiltrating lymphocytes by
Single-Cell RNA sequencing,” Cancer Immunol Res, vol. 7, pp. 1040–1046, July
2019.

[59] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of
machine learning algorithms,” Pattern Recognit., vol. 30, pp. 1145–1159, July
1997.

[60] A. M. Goodman, S. Kato, L. Bazhenova, S. P. Patel, G. M. Frampton, V. Miller,
P. J. Stephens, G. A. Daniels, and R. Kurzrock, “Tumor mutational burden as
an independent predictor of response to immunotherapy in diverse cancers,”
Mol. Cancer Ther., vol. 16, pp. 2598–2608, Nov. 2017.

[61] N. Auslander, G. Zhang, J. S. Lee, D. T. Frederick, B. Miao, T. Moll, T. Tian,
Z. Wei, S. Madan, R. J. Sullivan, G. Boland, K. Flaherty, M. Herlyn, and
E. Ruppin, “Robust prediction of response to immune checkpoint blockade ther-
apy in metastatic melanoma,” Nat. Med., vol. 24, pp. 1545–1549, Oct. 2018.

145



[62] L. Han, E. W.-F. Lam, and Y. Sun, “Extracellular vesicles in the tumor mi-
croenvironment: old stories, but new tales,” Mol. Cancer, vol. 18, pp. 1–14,
Mar. 2019.

[63] T. L. Whiteside, “The potential of tumor-derived exosomes for noninvasive can-
cer monitoring,” Expert Rev. Mol. Diagn., vol. 15, no. 10, pp. 1293–1310, 2015.

[64] T. L. Whiteside, “Exosomes and tumor-mediated immune suppression,” J. Clin.
Invest., vol. 126, no. 4, pp. 1216–1223, 2016.

[65] M. D. Hoffman and A. Gelman, “The No-U-Turn sampler: Adaptively set-
ting path lengths in hamiltonian monte carlo,” J. Mach. Learn. Res., vol. 15,
no. April, pp. 1593–1623, 2014.

[66] A. Gelman, D. Lee, and J. Guo, “Stan: A probabilistic programming language
for bayesian inference and optimization,” J. Educ. Behav. Stat., vol. 40, no. 5,
pp. 530–543, 2015.

[67] J. Lu, J. Li, S. Liu, T. Wang, A. Ianni, E. Bober, T. Braun, R. Xiang, and
S. Yue, “Exosomal tetraspanins mediate cancer metastasis by altering host mi-
croenvironment,” Oncotarget, vol. 8, pp. 62803–62815, Sept. 2017.

[68] K. A. Papadakis, J. Krempski, J. Reiter, P. Svingen, Y. Xiong, O. F. Sarmento,
A. Huseby, A. J. Johnson, G. A. Lomberk, R. A. Urrutia, and W. A. Faubion,
“Krüppel-like factor KLF10 regulates transforming growth factor receptor II
expression and TGF-𝛽 signaling in CD8+ T lymphocytes,” Am. J. Physiol.
Cell Physiol., vol. 308, pp. C362–71, Mar. 2015.

[69] F. S. Hodi, S. J. O’Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B.
Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley,
A. J. M. van den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette,
D. Hogg, C. H. Ottensmeier, C. Lebbé, C. Peschel, I. Quirt, J. I. Clark, J. D.
Wolchok, J. S. Weber, J. Tian, M. J. Yellin, G. M. Nichol, A. Hoos, and
W. J. Urba, “Improved survival with ipilimumab in patients with metastatic
melanoma,” N. Engl. J. Med., vol. 363, pp. 711–723, Aug. 2010.

[70] D. Schadendorf, G. V. Long, D. Stroiakovski, B. Karaszewska, A. Hauschild,
E. Levchenko, V. Chiarion-Sileni, J. Schachter, C. Garbe, C. Dutriaux,
H. Gogas, M. Mandalà, J. B. A. G. Haanen, C. Lebbé, A. Mackiewicz,
P. Rutkowski, J.-J. Grob, P. Nathan, A. Ribas, M. A. Davies, Y. Zhang,
M. Kaper, B. Mookerjee, J. J. Legos, K. T. Flaherty, and C. Robert, “Three-year
pooled analysis of factors associated with clinical outcomes across dabrafenib
and trametinib combination therapy phase 3 randomised trials,” Eur. J. Cancer,
vol. 82, pp. 45–55, Sept. 2017.

[71] J. R. Brahmer, S. S. Tykodi, L. Q. M. Chow, W.-J. Hwu, S. L. Topalian, P. Hwu,
C. G. Drake, L. H. Camacho, J. Kauh, K. Odunsi, H. C. Pitot, O. Hamid,
S. Bhatia, R. Martins, K. Eaton, S. Chen, T. M. Salay, S. Alaparthy, J. F.

146



Grosso, A. J. Korman, S. M. Parker, S. Agrawal, S. M. Goldberg, D. M. Pardoll,
A. Gupta, and J. M. Wigginton, “Safety and activity of Anti–PD-L1 antibody
in patients with advanced cancer,” N. Engl. J. Med., vol. 366, pp. 2455–2465,
June 2012.

[72] S. L. Topalian, F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F.
McDermott, J. D. Powderly, R. D. Carvajal, J. A. Sosman, M. B. Atkins,
P. D. Leming, D. R. Spigel, S. J. Antonia, L. Horn, C. G. Drake, D. M. Par-
doll, L. Chen, W. H. Sharfman, R. A. Anders, J. M. Taube, T. L. McMiller,
H. Xu, A. J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G. D. Kollia,
A. Gupta, J. M. Wigginton, and M. Sznol, “Safety, activity, and immune corre-
lates of Anti–PD-1 antibody in cancer,” N. Engl. J. Med., vol. 366, pp. 2443–
2454, June 2012.

[73] S. L. Topalian, M. Sznol, D. F. McDermott, H. M. Kluger, R. D. Carvajal,
W. H. Sharfman, J. R. Brahmer, D. P. Lawrence, M. B. Atkins, J. D. Powderly,
P. D. Leming, E. J. Lipson, I. Puzanov, D. C. Smith, J. M. Taube, J. M.
Wigginton, G. D. Kollia, A. Gupta, D. M. Pardoll, J. A. Sosman, and F. S.
Hodi, “Survival, durable tumor remission, and long-term safety in patients with
advanced melanoma receiving nivolumab,” J. Clin. Oncol., vol. 32, pp. 1020–
1030, Apr. 2014.

[74] M. A. Postow, J. Chesney, A. C. Pavlick, C. Robert, K. Grossmann, D. McDer-
mott, G. P. Linette, N. Meyer, J. K. Giguere, S. S. Agarwala, M. Shaheen, M. S.
Ernstoff, D. Minor, A. K. Salama, M. Taylor, P. A. Ott, L. M. Rollin, C. Horak,
P. Gagnier, J. D. Wolchok, and F. S. Hodi, “Nivolumab and ipilimumab versus
ipilimumab in untreated melanoma,” N. Engl. J. Med., vol. 372, pp. 2006–2017,
May 2015.

[75] T. I. Lee and R. A. Young, “Transcriptional regulation and its misregulation in
disease,” Cell, vol. 152, pp. 1237–1251, Mar. 2013.

[76] A. Barski, S. Cuddapah, K. Cui, T.-Y. Roh, D. E. Schones, Z. Wang, G. Wei,
I. Chepelev, and K. Zhao, “High-Resolution profiling of histone methylations in
the human genome,” Cell, vol. 129, pp. 823–837, May 2007.

[77] G. Wang, R. D. Chow, L. Zhu, Z. Bai, L. Ye, F. Zhang, P. A. Renauer, M. B.
Dong, X. Dai, X. Zhang, Y. Du, Y. Cheng, L. Niu, Z. Chu, K. Kim, C. Liao,
P. Clark, Y. Errami, and S. Chen, “CRISPR-GEMM pooled mutagenic screen-
ing identifies KMT2D as a major modulator of immune checkpoint blockade,”
Cancer Discov., vol. 10, pp. 1912–1933, Dec. 2020.

[78] D. Peng, I. Kryczek, N. Nagarsheth, L. Zhao, S. Wei, W. Wang, Y. Sun, E. Zhao,
L. Vatan, W. Szeliga, J. Kotarski, R. Tarkowski, Y. Dou, K. Cho, S. Hensley-
Alford, A. Munkarah, R. Liu, and W. Zou, “Epigenetic silencing of TH1-type
chemokines shapes tumour immunity and immunotherapy,” Nature, vol. 527,
pp. 249–253, Nov. 2015.

147



[79] D. M. Woods, A. L. Sodré, A. Villagra, A. Sarnaik, E. M. Sotomayor, and J. We-
ber, “HDAC inhibition upregulates PD-1 ligands in melanoma and augments
immunotherapy with PD-1 blockade,” Cancer Immunol Res, vol. 3, pp. 1375–
1385, Dec. 2015.

[80] S. Mulero-Navarro and M. Esteller, “Epigenetic biomarkers for human cancer:
the time is now,” Crit. Rev. Oncol. Hematol., vol. 68, pp. 1–11, Oct. 2008.

[81] M. Tang, “pyflow-ChIPseq: a snakemake based ChIP-seq pipeline,” June 2017.

[82] J. Köster and S. Rahmann, “Snakemake—a scalable bioinformatics workflow
engine,” Bioinformatics, vol. 28, pp. 2520–2522, Aug. 2012.

[83] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome,” Genome
Biol., vol. 10, pp. 1–10, Mar. 2009.

[84] F. Ramírez, D. P. Ryan, B. Grüning, V. Bhardwaj, F. Kilpert, A. S. Richter,
S. Heyne, F. Dündar, and T. Manke, “deeptools2: a next generation web server
for deep-sequencing data analysis,” Nucleic Acids Res., vol. 44, pp. W160–5,
July 2016.

[85] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander,
G. Getz, and J. P. Mesirov, “Integrative genomics viewer,” Nat. Biotechnol.,
vol. 29, pp. 24–26, Jan. 2011.

[86] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein,
C. Nusbaum, R. M. Myers, M. Brown, W. Li, and X. S. Liu, “Model-based
analysis of ChIP-Seq (MACS),” Genome Biol., vol. 9, p. R137, Sept. 2008.

[87] Z. Gu, R. Eils, and M. Schlesner, “Complex heatmaps reveal patterns and cor-
relations in multidimensional genomic data,” Bioinformatics, vol. 32, pp. 2847–
2849, Sept. 2016.

[88] G. Yu, L.-G. Wang, and Q.-Y. He, “ChIPseeker: an R/Bioconductor package for
ChIP peak annotation, comparison and visualization,” Bioinformatics, vol. 31,
pp. 2382–2383, Mar. 2015.

[89] J. Lovén, H. A. Hoke, C. Y. Lin, A. Lau, D. A. Orlando, C. R. Vakoc, J. E.
Bradner, T. I. Lee, and R. A. Young, “Selective inhibition of tumor oncogenes
by disruption of super-enhancers,” Cell, vol. 153, pp. 320–334, Apr. 2013.

[90] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut,
M. Chaisson, and T. R. Gingeras, “STAR: ultrafast universal RNA-seq aligner,”
Bioinformatics, vol. 29, pp. 15–21, Oct. 2012.

[91] M. I. Love, W. Huber, and S. Anders, “Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2,” Genome Biol., vol. 15, pp. 1–21,
Dec. 2014.

148



[92] D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya, C. J. Creighton,
I. Ponce-Rodriguez, B. V. S. K. Chakravarthi, and S. Varambally, “UALCAN:
A portal for facilitating tumor subgroup gene expression and survival analyses,”
Neoplasia, vol. 19, pp. 649–658, Aug. 2017.

[93] M. R. Mumbach, A. J. Rubin, R. A. Flynn, C. Dai, P. A. Khavari, W. J.
Greenleaf, and H. Y. Chang, “HiChIP: efficient and sensitive analysis of protein-
directed genome architecture,” Nat. Methods, vol. 13, pp. 919–922, Nov. 2016.

[94] N. Servant, N. Varoquaux, B. R. Lajoie, E. Viara, C.-J. Chen, J.-P. Vert,
E. Heard, J. Dekker, and E. Barillot, “HiC-Pro: an optimized and flexible
pipeline for Hi-C data processing,” Genome Biol., vol. 16, pp. 1–11, Dec. 2015.

[95] C. A. Lareau and M. J. Aryee, “hichipper: a preprocessing pipeline for calling
DNA loops from HiChIP data,” Nat. Methods, vol. 15, pp. 155–156, Feb. 2018.

[96] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, “clusterprofiler: an R package for
comparing biological themes among gene clusters,” OMICS, vol. 16, pp. 284–
287, May 2012.

[97] M. Garber, N. Yosef, A. Goren, R. Raychowdhury, A. Thielke, M. Guttman,
J. Robinson, B. Minie, N. Chevrier, Z. Itzhaki, R. Blecher-Gonen, C. Bornstein,
D. Amann-Zalcenstein, A. Weiner, D. Friedrich, J. Meldrim, O. Ram, C. Cheng,
A. Gnirke, S. Fisher, N. Friedman, B. Wong, B. E. Bernstein, C. Nusbaum,
N. Hacohen, A. Regev, and I. Amit, “A high-throughput chromatin immunopre-
cipitation approach reveals principles of dynamic gene regulation in mammals,”
Mol. Cell, vol. 47, pp. 810–822, Sept. 2012.

[98] K. Rai, K. C. Akdemir, L. N. Kwong, P. Fiziev, C.-J. Wu, E. Z. Keung,
S. Sharma, N. S. Samant, M. Williams, J. B. Axelrad, A. Shah, D. Yang,
E. A. Grimm, M. C. Barton, D. R. Milton, T. P. Heffernan, J. W. Horner,
S. Ekmekcioglu, A. J. Lazar, J. Ernst, and L. Chin, “Dual roles of RNF2 in
melanoma progression,” Cancer Discov., vol. 5, pp. 1314–1327, Dec. 2015.

[99] Q. Cao, C. Anyansi, X. Hu, L. Xu, L. Xiong, W. Tang, M. T. S. Mok, C. Cheng,
X. Fan, M. Gerstein, A. S. L. Cheng, and K. Y. Yip, “Reconstruction of
enhancer-target networks in 935 samples of human primary cells, tissues and
cell lines,” Nat. Genet., vol. 49, pp. 1428–1436, Oct. 2017.

[100] N. Joller and V. K. Kuchroo, “Tim-3, lag-3, and TIGIT,” Curr. Top. Microbiol.
Immunol., vol. 410, pp. 127–156, 2017.

[101] N. Watanabe, M. Gavrieli, J. R. Sedy, J. Yang, F. Fallarino, S. K. Loftin, M. A.
Hurchla, N. Zimmerman, J. Sim, X. Zang, T. L. Murphy, J. H. Russell, J. P.
Allison, and K. M. Murphy, “BTLA is a lymphocyte inhibitory receptor with
similarities to CTLA-4 and PD-1,” Nat. Immunol., vol. 4, pp. 670–679, June
2003.

149



[102] Y.-H. Huang, C. Zhu, Y. Kondo, A. C. Anderson, A. Gandhi, A. Russell, S. K.
Dougan, B.-S. Petersen, E. Melum, T. Pertel, K. L. Clayton, M. Raab, Q. Chen,
N. Beauchemin, P. J. Yazaki, M. Pyzik, M. A. Ostrowski, J. N. Glickman,
C. E. Rudd, H. L. Ploegh, A. Franke, G. A. Petsko, V. K. Kuchroo, and R. S.
Blumberg, “CEACAM1 regulates TIM-3-mediated tolerance and exhaustion,”
Nature, vol. 517, pp. 386–390, Jan. 2015.

[103] E. J. Wherry and M. Kurachi, “Molecular and cellular insights into T cell ex-
haustion,” Nat. Rev. Immunol., vol. 15, pp. 486–499, Aug. 2015.

[104] D. Dankort, D. P. Curley, R. A. Cartlidge, B. Nelson, A. N. Karnezis, W. E.
Damsky, Jr, M. J. You, R. A. DePinho, M. McMahon, and M. Bosenberg,
“Braf(V600E) cooperates with pten loss to induce metastatic melanoma,” Nat.
Genet., vol. 41, pp. 544–552, May 2009.

[105] E. M. Van Allen, D. Miao, B. Schilling, S. A. Shukla, C. Blank, L. Zimmer,
A. Sucker, U. Hillen, M. H. G. Foppen, S. M. Goldinger, J. Utikal, J. C. Has-
sel, B. Weide, K. C. Kaehler, C. Loquai, P. Mohr, R. Gutzmer, R. Dummer,
S. Gabriel, C. J. Wu, D. Schadendorf, and L. A. Garraway, “Genomic correlates
of response to CTLA-4 blockade in metastatic melanoma,” Science, vol. 350,
pp. 207–211, Oct. 2015.

[106] Z. Shao, Y. Zhang, G.-C. Yuan, S. H. Orkin, and D. J. Waxman, “MAnorm:
a robust model for quantitative comparison of ChIP-Seq data sets,” Genome
Biol., vol. 13, p. R16, Mar. 2012.

[107] J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey, “The
sva package for removing batch effects and other unwanted variation in high-
throughput experiments,” Bioinformatics, vol. 28, pp. 882–883, Mar. 2012.

[108] J. J. Goeman, S. A. van de Geer, F. de Kort, and H. C. van Houwelingen, “A
global test for groups of genes: testing association with a clinical outcome,”
Bioinformatics, vol. 20, pp. 93–99, Jan. 2004.

[109] D. Liu, B. Schilling, D. Liu, A. Sucker, E. Livingstone, L. Jerby-Arnon, L. Zim-
mer, R. Gutzmer, I. Satzger, C. Loquai, S. Grabbe, N. Vokes, C. A. Margolis,
J. Conway, M. X. He, H. Elmarakeby, F. Dietlein, D. Miao, A. Tracy, H. Gogas,
S. M. Goldinger, J. Utikal, C. U. Blank, R. Rauschenberg, D. von Bubnoff,
A. Krackhardt, B. Weide, S. Haferkamp, F. Kiecker, B. Izar, L. Garraway,
A. Regev, K. Flaherty, A. Paschen, E. M. Van Allen, and D. Schadendorf, “In-
tegrative molecular and clinical modeling of clinical outcomes to PD1 blockade
in patients with metastatic melanoma,” Nat. Med., vol. 25, pp. 1916–1927, Dec.
2019.

[110] W. Peng, J. Q. Chen, C. Liu, S. Malu, C. Creasy, M. T. Tetzlaff, C. Xu, J. A.
McKenzie, C. Zhang, X. Liang, L. J. Williams, W. Deng, G. Chen, R. Mbo-
fung, A. J. Lazar, C. A. Torres-Cabala, Z. A. Cooper, P.-L. Chen, T. N. Tieu,

150



S. Spranger, X. Yu, C. Bernatchez, M.-A. Forget, C. Haymaker, R. Amaria,
J. L. McQuade, I. C. Glitza, T. Cascone, H. S. Li, L. N. Kwong, T. P. Hef-
fernan, J. Hu, R. L. Bassett, Jr, M. W. Bosenberg, S. E. Woodman, W. W.
Overwijk, G. Lizée, J. Roszik, T. F. Gajewski, J. A. Wargo, J. E. Gershenwald,
L. Radvanyi, M. A. Davies, and P. Hwu, “Loss of PTEN promotes resistance
to T Cell-Mediated immunotherapy,” Cancer Discov., vol. 6, pp. 202–216, Feb.
2016.

[111] J. Gao, L. Z. Shi, H. Zhao, J. Chen, L. Xiong, Q. He, T. Chen, J. Roszik,
C. Bernatchez, S. E. Woodman, P.-L. Chen, P. Hwu, J. P. Allison, A. Futreal,
J. A. Wargo, and P. Sharma, “Loss of IFN-𝛾 pathway genes in tumor cells as
a mechanism of resistance to Anti-CTLA-4 therapy,” Cell, vol. 167, pp. 397–
404.e9, Oct. 2016.

[112] S. Z. Josefowicz, L.-F. Lu, and A. Y. Rudensky, “Regulatory T cells: mecha-
nisms of differentiation and function,” Annu. Rev. Immunol., vol. 30, pp. 531–
564, Jan. 2012.

[113] S. Z. Josefowicz and A. Rudensky, “Control of regulatory T cell lineage com-
mitment and maintenance,” Immunity, vol. 30, pp. 616–625, May 2009.

[114] L. Klein, E. A. Robey, and C.-S. Hsieh, “Central CD4+ T cell tolerance: deletion
versus regulatory T cell differentiation,” Nat. Rev. Immunol., vol. 19, pp. 7–18,
Jan. 2019.

[115] W. Chen and J. E. Konkel, “Development of thymic foxp3(+) regulatory T cells:
TGF-𝛽 matters,” Eur. J. Immunol., vol. 45, pp. 958–965, Apr. 2015.

[116] D. Malhotra and M. K. Jenkins, “Regulatory T cells: A crisis averted,” Immu-
nity, vol. 44, pp. 1079–1081, May 2016.

[117] A. M. Bilate and J. J. Lafaille, “Induced CD4+Foxp3+ regulatory T cells in
immune tolerance,” Annu. Rev. Immunol., vol. 30, pp. 733–758, Jan. 2012.

[118] G. Plitas and A. Y. Rudensky, “Regulatory T cells: Differentiation and func-
tion,” Cancer Immunol Res, vol. 4, pp. 721–725, Sept. 2016.

[119] E. M. Shevach and A. M. Thornton, “ttregs, ptregs, and itregs: similarities and
differences,” Immunol. Rev., vol. 259, pp. 88–102, May 2014.

[120] H.-M. Lee, J. L. Bautista, J. Scott-Browne, J. F. Mohan, and C.-S. Hsieh, “A
broad range of self-reactivity drives thymic regulatory T cell selection to limit
responses to self,” Immunity, vol. 37, pp. 475–486, Sept. 2012.

[121] G. L. Stritesky, S. C. Jameson, and K. A. Hogquist, “Selection of self-reactive
T cells in the thymus,” Annu. Rev. Immunol., vol. 30, pp. 95–114, 2012.

151



[122] S. Malchow, D. S. Leventhal, V. Lee, S. Nishi, N. D. Socci, and P. A. Sav-
age, “Aire enforces immune tolerance by directing autoreactive T cells into the
regulatory T cell lineage,” Immunity, vol. 44, pp. 1102–1113, May 2016.

[123] J. S. A. Perry, C.-W. J. Lio, A. L. Kau, K. Nutsch, Z. Yang, J. I. Gordon, K. M.
Murphy, and C.-S. Hsieh, “Distinct contributions of aire and antigen-presenting-
cell subsets to the generation of self-tolerance in the thymus,” Immunity, vol. 41,
pp. 414–426, Sept. 2014.

[124] L. Klein, B. Kyewski, P. M. Allen, and K. A. Hogquist, “Positive and negative
selection of the T cell repertoire: what thymocytes see (and don’t see),” Nat.
Rev. Immunol., vol. 14, pp. 377–391, June 2014.

[125] A. L. Bayer, A. Yu, D. Adeegbe, and T. R. Malek, “Essential role for interleukin-
2 for CD4(+)CD25(+) T regulatory cell development during the neonatal pe-
riod,” J. Exp. Med., vol. 201, pp. 769–777, Mar. 2005.

[126] W. Ouyang, O. Beckett, Q. Ma, and M. O. Li, “Transforming growth factor-beta
signaling curbs thymic negative selection promoting regulatory T cell develop-
ment,” Immunity, vol. 32, pp. 642–653, May 2010.

[127] Y. Liu, P. Zhang, J. Li, A. B. Kulkarni, S. Perruche, and W. Chen,
“A critical function for TGF-beta signaling in the development of natural
CD4+CD25+Foxp3+ regulatory T cells,” Nat. Immunol., vol. 9, pp. 632–640,
June 2008.

[128] B. Salomon, D. J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe, and
J. A. Bluestone, “B7/CD28 costimulation is essential for the homeostasis of the
CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes,”
Immunity, vol. 12, pp. 431–440, Apr. 2000.

[129] C.-S. Hsieh, Y. Zheng, Y. Liang, J. D. Fontenot, and A. Y. Rudensky, “An inter-
section between the self-reactive regulatory and nonregulatory T cell receptor
repertoires,” Nat. Immunol., vol. 7, pp. 401–410, Apr. 2006.

[130] R. Pacholczyk, H. Ignatowicz, P. Kraj, and L. Ignatowicz, “Origin and T cell
receptor diversity of Foxp3+CD4+CD25+ T cells,” Immunity, vol. 25, pp. 249–
259, Aug. 2006.

[131] A.-S. Bergot, W. Chaara, E. Ruggiero, E. Mariotti-Ferrandiz, S. Dulauroy,
M. Schmidt, C. von Kalle, A. Six, and D. Klatzmann, “TCR sequences and
tissue distribution discriminate the subsets of naïve and activated/memory treg
cells in mice,” Eur. J. Immunol., vol. 45, pp. 1524–1534, May 2015.

[132] L. M. Relland, J. B. Williams, G. N. Relland, D. Haribhai, J. Ziegelbauer,
M. Yassai, J. Gorski, and C. B. Williams, “The TCR repertoires of regulatory
and conventional T cells specific for the same foreign antigen are distinct,” J.
Immunol., vol. 189, pp. 3566–3574, Oct. 2012.

152



[133] K. J. Wolf, R. O. Emerson, J. Pingel, R. Mark Buller, and R. J. DiPaolo, “Con-
ventional and regulatory CD4+ T cells that share identical TCRs are derived
from common clones,” PLoS One, vol. 11, p. e0153705, Apr. 2016.

[134] M. Shugay, O. V. Britanova, E. M. Merzlyak, M. A. Turchaninova, I. Z. Mame-
dov, T. R. Tuganbaev, D. A. Bolotin, D. B. Staroverov, E. V. Putintseva,
K. Plevova, C. Linnemann, D. Shagin, S. Pospisilova, S. Lukyanov, T. N. Schu-
macher, and D. M. Chudakov, “Towards error-free profiling of immune reper-
toires,” Nat. Methods, vol. 11, pp. 653–655, May 2014.

[135] J. Lu, F. Van Laethem, A. Bhattacharya, M. Craveiro, I. Saba, J. Chu, N. C.
Love, A. Tikhonova, S. Radaev, X. Sun, A. Ko, T. Arnon, E. Shifrut, N. Fried-
man, N.-P. Weng, A. Singer, and P. D. Sun, “Molecular constraints on CDR3 for
thymic selection of MHC-restricted TCRs from a random pre-selection reper-
toire,” Nat. Commun., vol. 10, p. 1019, Mar. 2019.

[136] W. Yu, H. Nagaoka, Z. Misulovin, E. Meffre, H. Suh, M. Jankovic, N. Yannout-
sos, R. Casellas, E. Besmer, F. Papavasiliou, X. Qin, and M. C. Nussenzweig,
“RAG expression in B cells in secondary lymphoid tissues,” Cold Spring Harb.
Symp. Quant. Biol., vol. 64, pp. 207–210, 1999.

[137] Y. Y. Wan and R. A. Flavell, “Identifying foxp3-expressing suppressor T cells
with a bicistronic reporter,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 5126–
5131, Apr. 2005.

[138] Y. Shinkai, S. Koyasu, K. Nakayama, K. M. Murphy, D. Y. Loh, E. L. Reinherz,
and F. W. Alt, “Restoration of T cell development in RAG-2-deficient mice by
functional TCR transgenes,” Science, vol. 259, pp. 822–825, Feb. 1993.

[139] K. S. Hathcock, S. Bowen, F. Livak, and R. J. Hodes, “ATM influences the
efficiency of TCR𝛽 rearrangement, subsequent TCR𝛽-Dependent T cell devel-
opment, and generation of the Pre-Selection TCR𝛽 CDR3 repertoire,” PLoS
One, vol. 8, p. e62188, Apr. 2013.

[140] T. Korn, J. Reddy, W. Gao, E. Bettelli, A. Awasthi, T. R. Petersen, B. T.
Bäckström, R. A. Sobel, K. W. Wucherpfennig, T. B. Strom, M. Oukka, and
V. K. Kuchroo, “Myelin-specific regulatory T cells accumulate in the CNS but
fail to control autoimmune inflammation,” Nat. Med., vol. 13, pp. 423–431, Apr.
2007.

[141] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Ma-
chine learning in python,” J. Mach. Learn. Res., vol. 12, no. 85, pp. 2825–2830,
2011.

153



[142] B. Zhang, Q. Jia, C. Bock, G. Chen, H. Yu, Q. Ni, Y. Wan, Q. Li, and
Y. Zhuang, “Glimpse of natural selection of long-lived t-cell clones in healthy
life,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, pp. 9858–9863, Aug. 2016.

[143] J. Glanville, H. Huang, A. Nau, O. Hatton, L. E. Wagar, F. Rubelt, X. Ji,
A. Han, S. M. Krams, C. Pettus, N. Haas, C. S. L. Arlehamn, A. Sette, S. D.
Boyd, T. J. Scriba, O. M. Martinez, and M. M. Davis, “Identifying specificity
groups in the T cell receptor repertoire,” Nature, vol. 547, pp. 94–98, July 2017.

[144] D. M. Camacho, K. M. Collins, R. K. Powers, J. C. Costello, and J. J. Collins,
“Next-Generation machine learning for biological networks,” Cell, vol. 173,
pp. 1581–1592, June 2018.

[145] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti, “A
primer on deep learning in genomics,” Nat. Genet., vol. 51, pp. 12–18, Jan.
2019.

[146] R. C. Wirasinha, M. Singh, S. K. Archer, A. Chan, P. F. Harrison, C. C.
Goodnow, and S. R. Daley, “𝛼𝛽 t-cell receptors with a central CDR3 cysteine are
enriched in CD8𝛼𝛼 intraepithelial lymphocytes and their thymic precursors,”
Immunol. Cell Biol., vol. 96, pp. 553–561, July 2018.

[147] B. D. Stadinski, K. Shekhar, I. Gómez-Touriño, J. Jung, K. Sasaki, A. K.
Sewell, M. Peakman, A. K. Chakraborty, and E. S. Huseby, “Hydrophobic
CDR3 residues promote the development of self-reactive T cells,” Nat. Im-
munol., vol. 17, pp. 946–955, Aug. 2016.

[148] E. Reátegui, K. E. van der Vos, C. P. Lai, M. Zeinali, N. A. Atai, B. Aldikacti,
F. P. Floyd, Jr, A. H Khankhel, V. Thapar, F. H. Hochberg, L. V. Sequist,
B. V. Nahed, B. S Carter, M. Toner, L. Balaj, D. T Ting, X. O. Breakefield, and
S. L. Stott, “Engineered nanointerfaces for microfluidic isolation and molecular
profiling of tumor-specific extracellular vesicles,” Nat. Commun., vol. 9, p. 175,
Jan. 2018.

[149] P. Zhang, X. Zhou, and Y. Zeng, “Multiplexed immunophenotyping of circu-
lating exosomes on nano-engineered ExoProfile chip towards early diagnosis of
cancer,” Chem. Sci., vol. 10, pp. 5495–5504, June 2019.

[150] H. Ishwaran and J. Sunil Rao, “Spike and slab variable selection: Frequentist
and bayesian strategies,” aos, vol. 33, pp. 730–773, Apr. 2005.

[151] B. Howie, A. M. Sherwood, A. D. Berkebile, J. Berka, R. O. Emerson, D. W.
Williamson, I. Kirsch, M. Vignali, M. J. Rieder, C. S. Carlson, and H. S. Robins,
“High-throughput pairing of T cell receptor 𝛼 and 𝛽 sequences,” Sci. Transl.
Med., vol. 7, p. 301ra131, Aug. 2015.

154


	Introduction
	Background
	Melanoma
	Checkpoint blockade immunotherapy
	Extravesicular profiling and analysis
	Epigenetic profiling and chromatin state analysis
	TCR repertoire profiling and analysis
	Bayesian inference and modeling
	Identification of differentially expressed genes

	Thesis outline
	Previously published work
	Collaborators and contributions

	Extracellular vesicles are predictive biomarkers of immunotherapy response
	Introduction
	Methods
	Tumor cell lines
	Patient samples and plasma isolation
	Isolation of EVs
	Nanoparticle tracking analysis, electron microscopy, Western Blot analysis
	RNA extraction and sequencing
	Discovery cohort microarray processing
	Validation cohort RNA-seq processing
	Differential expression analysis
	Concordance and differential pathway analysis
	Survival analysis and time-series analysis
	Building a predictive classifier
	Mutational calling and analysis from evRNA-seq data

	Results
	EV correspondence with tissue-of-origin
	On-treatment EV analysis
	Pre-treatment EV analysis
	EV RNA-seq mutational information

	Discussion

	Deconvolution of extravesicular cargo enables tissue-of-origin identification
	Introduction
	Methods
	Deconvolution model justification
	Deconvolution model specification

	Results
	Validation of deconvolution model
	Application of deconvolution model on experimental data

	Discussion

	Chromatin state changes during immunotherapy response reveals a non-responsive enhancer signature
	Introduction
	Methods
	Patient samples
	Cell lines
	Animal studies
	MDACC Chromatin immunoprecipitation
	MGH Chromatin immunoprecipitation
	ChIP-seq analysis
	Epilogos analysis
	Chromatin transition circos plot and transition heatmap
	RNA-access sequencing and analysis of MDACC tumor
	RNA-seq sequencing and analysis of MGH tumors
	HiChIP and Data Analysis
	In vitro inhibitor assays
	Enhancer modulation using CRISPR-dCas9-KRAB
	Tumor Infiltrating Lymphocytes (TILs) and matched Tumor cells co-culture
	Flow cytometry
	Pathway analysis
	Survival and statistical analysis

	Results
	Defining chromatin states
	Chromatin state transitions between sensitive and resistant lesions
	An enhancer signature predicts response to anti-PD-1 therapy in melanoma
	Enhancer activation upregulates genes contributing to anti-PD-1 resistance
	Enhancer Reprogramming During ICB treatment
	Combination of BRD inhibitors with anti-PD-1 enhances the response in mouse melanoma models

	Discussion

	Epigenetic predictors of immunotherapy response
	Introduction
	Methods
	M-value processing and IDR calculations
	Differential H3K27ac ChIP activity calling
	Global test for groups of peaks

	Results
	Epigenetic predictors of anti-PD1 resistance

	Discussion

	TCR repertoire of thymic conventional and regulatory T-cells
	Introduction
	Methods
	Isolation of tTreg and Tconv from thymus
	Library construction and sequencing strategy
	Analysis of overlapping TCR and TCR sequences
	Identification of distinct TCR sequences between tTreg and Tconv by ML algorithm
	Analysis of enriched amino acid trimers in tTreg and Tconv
	Statistical analysis

	Results
	TCR and TCR repertoires of tTreg and Tconv are comparably diverse
	Abundance of TCR and TCR sequences distinct to tTreg or Tconv or shared between lineages
	TCR sequences distinct to tTreg or Tconv or shared between lineages in TCRa+/2 TCR Tg mice
	Nonshared  TCR sequences from tTreg can be distinguished from Tconv

	Discussion

	Conclusion
	Looking to the future
	Extracellular vesicles as biomarkers for immunotherapy resistance
	Deconvolution of extracellular cargo
	Epigenetic changes during immunotherapy resistance
	Epigenomic predictors of immunotherapy resistance
	TCR profiling



