
1

2

Efficient algorithms and representations for

chance-constrained mixed constraint programming

by

Cheng Fang

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2021

c○ Cheng Fang, MMXXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .

Department of Aeronautics and Astronautics

August 17th, 2021

Certified by. .

Brian C. Williams

Professor

Thesis Supervisor

Accepted by .

Jon How

Professor, Aeronautics and Astronautics, Chair, Graduate Program

Committee

4

Efficient algorithms and representations for

chance-constrained mixed constraint programming

by

Cheng Fang

Submitted to the Department of Aeronautics and Astronautics
on August 17th, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Resistance to adoption of autonomous systems in comes in part from the perceived
unreliability of the systems. The concerns can be addressed by deploying decision
making algorithms that operate in the presence of uncertainty.

The default approach is to optimise expected utility given probabilistic descrip-
tions of uncertainty. However, such approaches become problematic when the cost of
failure is difficult to define, for example when imposing constraints on remote science
missions. Without well-defined costs of failure, it is difficult to balance the risks of
failure against the rewards of success. This motivates an alternative approach, in
which we define what it means to fail, and look for plans with the highest reward
while limiting the probability of failure.

The alternative approach thus explicitly imposes a set of constraints required for
success, and provide upper-bounds on the probability of violating such constraints.
A chance-constrained mixed logical-linear program (CC-MLLP) is a natural formula-
tion, allowing for the specification of linear and logical constraints, with probabilistic
continuous variables. The formalism can be used to describe problems ranging from
automonous underwater vehicle path planning, to network routing under uncertainty.

My thesis addresses shortcomings in current approaches to CC-MLLP. In partic-
ular, I focus on the problem of computation speed for solving CC-MLLPs, and the
problem of accurate uncertainty representation.

While naive encodings of CC-MLLPs can be solved with generalised solvers, the
solution time may be unreasonable. In this thesis, I study architectures to speed up
solutions by partitioning CC-MLLPs into the discrete and continuous portions.

In order to provide faster solutions, I investigate methods for speeding up the
solutions to the continuous chance-constrained linear programs. Further, by exploit-
ing the new solution methods, I develop techniques for guiding the discrete decision
making portion of the problem. The resulting algorithm achieves 10 times speed up
over prior approaches on autonomous path planning benchmarks.

Lastly, current chance-constrained approaches require distributional descriptions
of uncertainty. In this thesis, I consider the problem of deriving uncertainty bounds

5

from data, which cover a required proportion of outcomes with a quantifiable amount
of confidence. In particular, I provide bounds for real world scenarios which feature
a finite number of executions. This is demonstrated on MBTA Red Line subway
schedules.

Thesis Supervisor: Brian C. Williams
Title: Professor

6

Acknowledgments

This thesis provides closure to a very long journey. I have been very fortunate through

out my experience in my graduate studies. I would like to acknowledge the support

I have received from my peers, my thesis committee, and the community in general.

This thesis would not have been possible without the generosity of the NSF,

DARPA, and Airbus. I would like to think that the advances made in this thesis are

of interest not just to particular governments or corporations, but generally to people

who would like some guarantees on the safety of automatically generated plans.

I would also like to thank my committee members and readers for their support

and advice throughout. I would like to thank Howie Shrobe for his advice on what is

important in a research project. I would like to thank Leslie Pack Kaelbling for her

amazing ability to tease out the technical points of interest in any problem. I would

like to thank Patrick Winston for his help in shaping the narrative at the outset of

this thesis. Lastly, I would like to thank my adviser, Brian Williams, for his patient

and rigorous review and discussions of ideas throughout my time at MIT.

I would also like to thank my colleagues at MERS, who have been such a huge

part of my time at MIT. I would like to acknowledge Pedro for being an amazing

sounding board for serious academic discussions and ridiculous puns, Steve for en-

during antipodean humour, Andrew for all the PSTN and Rowan Atkinson chats,

and Eric for carrying the infrastructure of the lab on his back. I would also like to

thank Peng for being the best shipmate, and hope that Peng’s Pingo off the coast of

California will be an officially recognised landmark. I would also like to thank Jingkai

for dealing with my nitpicking during our time together in the lab. I would also like

to thank the postdocs who have come through MERS - Erez, Tiago, Christian, and

Ashkan - each of whom has given me professional and academic advice. Thanks also

to Hiro, who kick-started a lot of the chance-constrained work at MERS, and hosted

me at JPL. Lastly, thanks to everyone at MERS over the years - David, Dan, James,

Enrique, Szymon, Jonathan, Ben, Sang, Sylvia, Nikhil, Yuening, Cyrus, Zach, Marl-

yse, Sungkweon, Nick, Big Matt, Little Matt, Spencer, Jacbo and Allen - for putting

7

up with me as social chair and picking terrible movies for movie nights. I hope my

successor will carry on the tradition of Dominos and cringey movies in the MERS

cave.

I would like to thank Anthony, Hang and Wei. Who knew sitting together on

the bus to Target that one time during orientation would lead to such an enduring

friendship? Also thanks to Anna, Anne, and Chris, for, I dunno, mateship and the

ANZAC spirit in Boston. I would also like to thank Simon, Daniel, Daniel, and Qi,

for the support they’ve given me across the seas.

It goes without saying that I owe everything to my mother Qin and my father

Xuan. I am thankful for your love, trust, and support, and I know I couldn’t be

where I am today without your sacrifices.

I would also like to acknowledge Lele. For being lovely.

8

Contents

1 Introduction 17

1.1 Challenges . 19

1.1.1 Speed of solution . 20

1.1.2 Uncertainty representation . 20

1.2 Approach . 20

1.2.1 Framework for CC-MLLP . 21

1.2.2 Cutting planes for CC-LPs . 21

1.2.3 Conflict Extraction for CC-MLLPs 22

1.2.4 Data-driven risk allocation . 22

1.3 Summary . 23

2 Background 25

2.1 Efficient constraint programming . 25

2.2 Chance-constrained programming . 27

2.3 Robust uncertainty representation . 28

3 Problem Description and Approach 31

3.1 Problem Definition: CC-MLLP . 31

3.2 Example CC-MLLPs . 33

3.3 High Level Solution Approach . 35

3.3.1 Efficient Subsolver . 37

3.3.2 Pruning Using Relaxations . 38

3.3.3 Conflict Guided Search . 39

9

3.3.4 High Level Algorithm . 39

3.3.5 Relationship to Prior Work 41

3.4 Summary . 41

4 Cutting-planes for CC-LP 43

4.1 Introduction . 44

4.2 Risk Allocation . 47

4.3 Approach . 48

4.3.1 Conflict-Based Risk Allocation 49

4.3.2 Related work . 52

4.4 Experiments . 54

4.5 Summary . 59

5 Chance Constrained Mixed Logic Linear Program 61

5.1 Relaxed Subproblem . 62

5.2 Conflict Extraction . 63

5.2.1 Conflict Extraction for Relaxed CC-LP 63

5.2.2 Conflict Extraction for CC-LP using Cutting Planes 64

5.3 Correctness of Conflicts . 67

5.4 Empirical Results . 70

5.4.1 Simple Path Planning Benchmark 71

5.4.2 Scarborough Oceanography Benchmark 73

5.5 Summary . 75

6 Data-driven Uncertainty Representation 77

6.1 Introduction . 78

6.2 Problem formulation . 79

6.3 Data-driven chance-constrained uncertainty sets 83

6.3.1 Bounds on underlying distribution 83

6.3.2 Bounds for finite executions 84

6.4 Experiments . 87

10

6.4.1 Correctness of estimates . 87

6.4.2 Effect on STNU scheduling . 89

6.5 Summary . 92

7 Conclusion 95

7.1 Future Work . 96

11

12

List of Figures

3-1 Example AUV path planning over safe regions. The safe regions are

shaded in blue. We can not travel directly between two points in 𝑟1

and 𝑟3, as demonstrated by the red path, because it may cut through

an unsafe region. Instead, vehicles must transition between two regions

by making a stop in 𝑟2, which is the intersection of both 𝑟1 and 𝑟3. . . 34

3-2 Topology for the EdgeCT network. 35

3-3 Decomposition of CC-MLLP. 36

4-1 Example AUV bottom following mission. 45

4-2 Convergence of the quality of path for Map 17 in the the benchmark

set. Utility is the sum of the depth of the vehicle, simulating a bottom

following mission, such that a lower utility is better. 59

5-1 Simple 2D path planning benchmark. 71

5-2 Best candidate quality as a function of time for the simple benchmark

problem, for a 20 time step plan. 74

5-3 Scarborough Oceanography map. 75

6-1 Subway scheduling example. 79

6-2 Probabilistic guarantee from bounds on quantiles. 81

13

14

List of Tables

4.1 Run time comparisons between CBRA and CRA for infeasible 3D AUV

maps, with number of cuts found by CBRA. 57

4.2 Run times for feasible 3D AUV maps, for CBRA solution within 5%

of the optimal, total time for optimality using the 5% solution as a

starting point for CRA, and optimality using just CRA. 58

5.1 Time in seconds to prove optimality for the simple benchmark problem. 72

5.2 Number of nodes expanded for the simple benchmark problem. . . . 72

5.3 Number of full CCLPs solved for the simple benchmark problem. . . 72

5.4 Time in seconds to the first solution for the simple benchmark problem. 73

6.1 Table of empirical results for different traversal datasets. For each

entry, the first number is the average number empirical proportion of

traversals larger than the bound which should be smaller than the spec-

ified 𝜖, and the second number is the empirical proportion of incorrect

bounds which should be smaller than the specified 𝛼. The datasets

cover the segments: 70063-70065 from Davis to Porter; 70065-70067

from Porter to Harvard; and 70067-70069 from Harvard to Central. . 90

6.2 Table of empirical results for traversal datasets. MBTA Redline seg-

ments: 70069-70071 from Central to Kendall; and 70071-70073 from

Kendall to MGH. 91

15

6.3 Performance of Example 5 schedules optimised with upper bounds on

traversal derived with different methods. High failure schedules are

those which empirically fail more than 10% of the time, and thus do

not meet the required risk bound. 92

16

Chapter 1

Introduction

Advances in hardware and algorithms have led to impressive developments in artificial

intelligence (AI). High profile deployments of AI to solve challenging problems have

inspired diverse industries to turn to automated systems. For example, aircraft con-

struction, financial trading and medical procedures have adopted intelligent systems

to varying degrees.

One of the strengths of automated systems lie in their ability for quantitative

reasoning. In many applications, we may impose constraints on the desired output

plans, reflecting collision avoidance, power constraints, and timing constraints. While

manual decision making given such constraints is difficult, there are natural encodings

of constrained problems for automated decision making systems. Such automated

systems solve increasingly complex systems, providing highly optimised plans.

However, in the presence of uncertainty, optimal plans may be brittle. In the case

of path planning for autonomous vehicles, the shortest distance plan may lead to the

vehicle travelling too close to no-go zones. Given relatively small disturbances, the

vehicle may then be lost in dangerous areas. In the case of network routing under

uncertainty, the optimal plan may lead to placing a large amount of tasks on the

network. When the network capacity fluctuates, important tasks may not receive the

required quality of service, due to insufficient bandwidth on the network.

One critical aspect of real-world autonomous decision making is thus the ability to

specify the conditions under which plans may be considered successful. We would like

17

to specify constraint on the outcomes of following the plan set out by an autonomous

agent. For example, in the AUV example, we would like to constrain the location

of the vehicle to be above the seafloor for safety. In the network routing problem,

we would like to require that the bandwidth reserved for high importance flows be

sufficient.

Constraint programming is a paradigm for decision making with constraints on

aspects of the solutions [47]. Constraint programming is widely applicable to au-

tonomous systems, with applications in logistics problems [50], robotics [8], among

others. However, simply being able to specify constraints and provide plans which

satisfy the specifications is not enough. An autonomous agent must also be able to

deal with the uncertainty inherent in the real world.

The traditional approach of planning under uncertainty focuses on optimising the

performance of the plan, averaging over the uncertain outcomes. However, for ap-

plications in which the cost of failure is not well-defined, for example path planning

for one-of-a-kind autonomous underwater vehicles, we would instead like to provide

guarantees of the correctness of output plans. In the context of uncertainty, we may

increase the trust that mission controllers place in autonomous planning capabili-

ties by providing guarantees on the chance of success with respect to user specified

constraints.

Intuitively, this is done by building additional safety margins into the automated

plans. As humans, we naturally add safety buffers when we are acting in response to

uncertainty. When driving, we have a minimum safe distance between us and the car

ahead, in order to allow time to react to emergencies. When scheduling, we typically

allocate additional time for travel, especially when we know the traffic conditions are

uncertainty.

Humans thus achieve safety by allocating safety buffers to account for uncertainty.

This can be adapted for automated decision making. The autonomous agent can

quantify the amount of risk taken on for each decision, and make sure the risk incurred

over the span of the plan is less than a specified tolerance. Such approaches, in which

the probability of failure is bounded, is known as chance-constrained planning.

18

The constraint programming community have considered decision making under

uncertainty with guarantees on the probability on success, in the family of approaches

under stochastic constraint programming [58]. However, the stochasticity involved is

primarily discrete. The work thus provides a good way of considering different modes

of operation, for example deciding whether to deploy an AUV depending on the

likelihood of interesting features in a region. However, the work is less applicable

for continuous uncertainty, for example when the position of an AUV is affected by

underwater currents.

In the constraint programming community, one way of capturing constraints over

continuous and logical states is the mixed logical linear program (MLLP). The formal-

ism allows different linear constraints to be applied when different logical conditions

are satisfied. In this thesis, I extend the formalism by incorporating continuous prob-

abilistic uncertainty in the linear constraints. I apply a further constraint on the

probability of success, and define the chance-constrained mixed logical linear pro-

grams (CC-MLLP).

In this thesis, I advance the state of the art in chance-constrained mixed logical

linear programming in order to address a lack of trust in automation. The primary

challenges addressed are: 1) efficiency of solution;and 2) correctness of data represen-

tations.

I address these issues through two primary thrusts. I focus on efficient solutions

to chance-constrained constraint programming, in order to allow such approaches to

scale to real world problems. I also focus on efficient representations of uncertainty

to be used with chance-constrained approaches, allowing data-driven descriptions of

uncertainty with guarantees against over-fitting.

1.1 Challenges

While chance-constrained mixed logical linear programming is a promising approach,

there are several challenges to address. Prominent concerns among these include: the

speed of solution, and the correctness of the uncertainty representation.

19

1.1.1 Speed of solution

Current chance-constrained programming methods are typically cast as nonlinear op-

timisation problems, and processed with generalised solvers, for example IPOPT[57]

or SNOPT [19]. Feasible problems are typically small. In order to extend the chance-

constrained approach to real-world problems, for example in public transport schedul-

ing or network resource allocation, we must find faster solution methods.

1.1.2 Uncertainty representation

As with all decision making under probabilistic uncertainty, current chance-constrained

techniques rely on a proper representation of uncertainty through a reasonable proba-

bility distribution. However, deriving a distribution is problematic. Distributions are

typically fitted from historical data and prior observations of the uncertain variables,

and as with any distribution fitting approaches there are concerns with over-fitting.

While there are results regarding the convergence of distributions derived from den-

sity estimation schemes to true distributions, these are asymptotic and do not provide

guarantees of safety.

1.2 Approach

In this section, I will outline the steps needed to construct a decision making sys-

tem which provides probabilistic guarantees of constraint satisfaction. I will start by

considering two thrusts: efficient algorithms for conflict-directed mixed logical lin-

ear programming, and data-driven risk allocation. The two thrusts will respectively

address the central challenges of fast computation and uncertainty representation.

The key elements of my work are as follows: 1) a decomposition framework for

chance-constrained mixed logical linear programs; 2) an efficient subsolver for chance-

constrained linear programs; 3) a set of conflict extraction procedures to coordinate

the CC-LP subsolver a higher level search; and 4) methods for providing uncertainty

sets covering required probability mass with confidence.

20

1.2.1 Framework for CC-MLLP

Chance-constrained mixed logical linear programs (CC-MLLPs) can be used to de-

scribe a variety of real-world applications, from cyber security to autonomous explo-

ration. The problem formulations allow combinations of logical constraints and linear

constraints, allowing us to describe different agent requirements and system dynamics

which arise when different logical conditions are met.

However, with such flexibility comes difficulties in computation. The logical con-

straints introduce combinatorics into the solution process. Further, due to the pres-

ence of probabilistic uncertainty and the risk tolerance, even a purely continuous

subproblem is nonlinear and thus difficult to optimise over.

In this thesis, I provide a framework for decomposing the CC-MLLP into discrete

and continuous portions. The framework couples a discrete search with a dedicated

solver for the continuous chance-constrained linear program subproblem. By coordi-

nating the two elements, I am able to provide at least a 10 times speed up over prior

approaches.

1.2.2 Cutting planes for CC-LPs

The first key element in the decomposition is an efficient solver for the continuous

subproblem. Current approaches to CC-LPs formulate the problem as a convex opti-

misation, and apply off-the-shelf solvers. However, in our approach, we would like to

quickly determine the feasibility of subproblems, and provide fast optimal solutions

where possible.

By noting that the majority of constraints in CC-LPs are linear, we employ a

cutting planes approach. The approach allows us to successively approximate the

nonlinear chance constraint using a set of linear constraints. This allows us to leverage

existing linear program solvers, which allow us to more quickly determine feasibility.

Once a problem is determined to be feasible, we are able to use the resulting first

solution as a starting point for off-the-shelf nonlinear solvers. The feasible starting

point allows quicker convergence to optimality for gradient-based solvers, resulting in

21

faster optimal solutions.

1.2.3 Conflict Extraction for CC-MLLPs

The second key element in the decomposition is the use of previous subsolver results

to guide search in the discrete portion of the problem.

Leveraging the successive linear approximations used to solve the CC-LP sub-

problem, we are able to identify conflicting linear constraints which prevent feasible

solutions or higher quality solutions. We can then identify the logical conditions

which give rise to these particular combinations of linear constraints.

By explicitly ruling out decisions which satisfy the identified logical conditions,

the discrete search is able to avoid infeasible and suboptimal candidates by making

sure the conflicting linear constraints never occur together. This allows the discrete

decision making portion to skip over large amounts of computation when searching

for the optimal solution.

1.2.4 Data-driven risk allocation

In this thrust, I will the address the problem of uncertainty representation. I will

do this by constructing uncertainty sets from data rather than fitting distributions.

Unlike prior work in robust programming, I will derive multiple uncertainty sets to

be reasoned over during optimisation.

Recall that we are interested in providing probabilistic guarantees, so that we can

provide upper-bounds on the probability of failure when making decisions. One way

of providing probabilistic guarantees to to construct robust sets which cover a set of

outcome with a sufficient probability mass, and performing robust optimisation. This

requires information about the lower and upper quantiles of uncontrollable variables.

For random variables with continuous outcomes, the key idea in my thesis will

be to estimate the location of the quantiles. Due to the finite set of samples, the

methods must be robust with respect to variations in sampling. I will thus also

provide a confidence for estimates, a bound on the probability of estimates being

22

incorrect.

Rather than directly fitting a cumulative distribution function from the data, I

will find lower- and upper-bounds for the values of the quantiles, with the required

confidence.

The approach contributes towards solving the challenges posed by chance-constrained

programming by providing an explicit confidence on the estimates, the approach

guards against inaccurate representation by being robust to sampling variations. This

contrasts with traditional density estimation methods, which do not provide explicit

guarantees of the accuracy of the distributions.

1.3 Summary

Despite advances in automated decision making, a lack of trust in the safety of derived

plans is an major obstacle to adoption. Chance-constrained constraint optimisation

is one way of addressing such concerns.

I have identified three main problems with current approaches to chance-constrained

optimisation. Specifically:

1. Difficulties in scaling to larger problems due to slow computational speed;

2. Difficulties in handling programs over multiple types of constraint specifications;

and

3. Difficulties in providing guarantees on the correctness of solutions, due to inap-

propriate uncertainty representation.

The remainder of the thesis is broken down as follows. In Chapter 2, I provide

a review of the relevant literature. The chapter focuses on the work surrounding

constraint programming, chance-constrained optimisation, and uncertainty represen-

tation.

In Chapter 3, I provide a formal definition of chance-constrained mixed logical

linear program, as well as example encodings of problems in the formalism. I present

23

the high level approach to solving CC-MLLPs. I outline how the problem is broken

down into a high level search paired with a lower level subsolver. The high level search

is responsible for the discrete decision making, while the lower level solver deals with

the continuous portion of the problem. I describe efficient ways for the subsolver and

the search to interact, and thus extract specifications on the lower level subsolver.

In Chapter 4, I describe the lower level solver in detail. I focus on how the use

of cutting planes allows us to make successive linear approximations of the chance

constraint, and can be solved efficiently by exploiting commercial solvers.

In Chapter 5, I describe the high level search in detail. I explain how the search

incorporates the results of the lower level subsolver to guide the search away from

unpromising branches, and how pruning is performed by solving relaxed versions of

the continuous subproblems.

In Chapter 6, I consider the problem of uncertainty representation, and provide

bounds on the outcome of uncertain variables with probabilistic guarantees. Two

versions are provided: one for the true distribution, and one in which quality of

service can be guaranteed even for a finite number of executions.

24

Chapter 2

Background

In this chapter we review prior work on which we build our proposed approach to

chance-constrained constraint programming. We consider advances in efficient so-

lution of mixed constraint systems, prior attempts at efficient chance-constrained

programming, as well as recent developments in uncertainty representation for robust

programming.

2.1 Efficient constraint programming

Constraint programming is concerned with finding feasible or optimal assignments to

a set of variables, given a set of constraints between the variables. The variables may

be finite domain, logical or continuous, and the constraints may be logical, linear, or

nonlinear. A comprehensive survey of classical methods and key ideas is given in [48].

One of the key ideas in constraint programming is constraint propagation. When

making an assignment to one variable in a constraint programming problem, we may

consider the effect of the assignment on other variables. With constraint propaga-

tion, when a variable is assigned, restrictions are placed on the set of possible values

for other variables due to constraints. Restrictions may be iteratively applied in

the search for a full set of assignments, eliminating impossible combinations of as-

signments as the search progresses. However, propagating constraints is typically

computationally expensive, especially when the set of constraints is large or when

25

there is a mixture of different types of constraints.

The alternative is to generate candidate solutions, and then check against the set of

all possible constraints, in a generate-and-check paradigm. Naively implemented, this

guess-and-check approach may generate an arbitrarily long sequence of unacceptable

candidates before coming up with the first feasible solution. When the verification of

each candidate is computationally difficult, or when the space of candidates is large,

an naive guess and check approach is impractical.

Recent advances in constraint programming have been concerned with improving

the efficiency of algorithms by balancing the generate-and-test and the constraint

propagation approaches. One line of investigation considers the discovery of impor-

tant constraints, and the use of such constraints to guide the search for solutions.

Usually only a subset of constraints are relevant to the search for solution. For ex-

ample, consider a set of linear constraints. If solutions exist, the space of feasible

assignments is a convex polytope, the intersection of half-planes defined by a subset

of the linear constraints. The constraints not in this subset would be irrelevant and

can be neglected when searching for a solution.

For some classes of constraints, the subset of relevant constraints may be dis-

covered when testing candidate assignments. This is the key idea behind conflict-

directed search. In [62, 29], conflicts or nogoods, combinations of assignments to a

subset of variables which result in infeasibility are discovered by testing candidates.

These constraints are then propagated when generating future assignments, leading

to more promising candidates. Recent extensions have included methods of identify-

ing constraints that must be satisfied by higher utility solutions [54, 33]. Moreover,

conflict-directed search have been applied to different types of problems in scheduling,

including robust scheduling and negotiating feasible mission parameters [60, 63].

A similar thrust, based on Bender’s Decomposition, decomposes constraint pro-

grams into smaller subprograms to be solved in alternation by specialised solvers.

The seminal work in [2, 18] described Bender’s Decomposition for problems involving

linear constraints, and its extension to nonlinear constraints. When each subprogram

is solved, infeasibility and suboptimality constraints are discovered using duality from

26

optimisation theory, and added to the set of constraints in other subprograms. This

allows coordination between smaller subprograms, where each can be efficiently solved

using specialised solvers. Recent generalisation to mixed logical constraint programs

in [23] are shown to outperform state-of-the-art commercial software.

2.2 Chance-constrained programming

There are different sources of uncertainty in applications such as field robotics or large

scale logistics. The timing of events, the positioning of autonomous agents, and the

effects of actuators are uncertain parameters and variables which are not completely

controllable by the autonomous system.

One approach is to maximise expected utility considering stochastic elements in

the problem. Examples include the approaches based on Markov decision processes

and its extensions [52, 27], which represents uncertainty with probability distributions.

However, such approaches are problematic when the penalty for failure is not well

defined. For example, due to the complex propagation of air traffic delays across

multiple airports [17], the cost of failing to meet schedules for a single flight is difficult

to estimate.

Chance-constrained programming was initially proposed as a paradigm in oper-

ations research [11, 12]. The problem was defined as maximisation of an objective

function subject to probability of satisfying constraints over deterministic and prob-

abilistic variables. Early work featured ideas familiar to more recent approaches,

especially the focus on transformations of constraints into random variables, and solv-

ing the problem by determinising the random variables and mapping to well-known

mathematical programming problems.

Chance-constrained programming has received recent interest in the planning and

scheduling community. Applications included control planning for safe traversals,

performed first through formulation of the problem as a convex program [6], and

then through a heuristic hill-climbing technique for non-convex problems [44]. Other

applications include scheduling under probabilistic uncertainty [16], which was ex-

27

tended to leverage efficient feasibility checking of temporal networks [60, 63]. In the

wider community, chance-constrained programming has applications in such diverse

fields as power management [61] and space systems architecture [37].

Additional theoretical work, relying on the theory of measures and moments [32],

have been developed to provide convex formulations of chance-constrained program-

ming. However, such approaches are limited, currently requiring bounded uncertainty

for the probability distributions, and solving small-sized problems [25].

Within the constraint programming community, stochastic programming [58] has

been a formalism for specifying constraints which must be satisfied with specified

probability. However, much of the work has concentrated on probability distributions

with discrete outcomes [53], and responding to uncertainty in stages. In contrast, my

thesis concentrates on stochasticity in the continuous portion of the problem.

Interest in constraint programming with continuous random variables have led to

a converge in the fields of study. For example, Probabilistic Continuous Constraint

Satisfaction Problem (PCCSP) [10] calculate the probability of satisfying a set of

numerical constraints, much like the method of moments approach [25], but using

interval approximations instead.

2.3 Robust uncertainty representation

While chance-constrained programming has successfully provided compliance guaran-

tees, there has been some criticism of the probabilistic representation of uncertainty.

Typically, density estimation is performed to find appropriate distributions to

describe the uncertainty. Traditional methods are typically kernel-based [51], while

more recent efforts include fitting to graphical models [31].

The resulting density functions are problematic for two reasons. First, while

there has been literature exploring the error of the estimators [1], the guarantees are

asymptotic and it is difficult to provide probabilistic guarantees on the correctness of

any estimated density. Second, the resulting densities are typically non-convex, and

thus difficult to incorporate into optimisation algorithms.

28

Robust optimisation was developed in response to concerns over the probabilistic

representation [9]. In robust optimisation, uncertainty is represented with robust sets,

giving bounds on the outcome of uncontrollable variables. Robust optimisation ap-

proaches look for assignments to decision variables which will satisfy all constraints,

for any combination of outcomes described in the robust sets. Given the robust sets

and constraints over controllable and uncontrollable variables, deterministic reformu-

lations can be found by applying duality from optimisation.

Prior work in robust optimisation has concentrated on finding families of robust

sets which lend themselves to optimisation [3]. For example, when a set of linear

constraints are applied over a polygonal uncertainty set, the resulting deterministic

reformulation is also a linear program. Robust programming is thus promising in

terms of the tractability of the uncertainty representation. More recent work has been

focusing on deriving uncertainty sets from data [4]. The approach uses hypothesis

testing to derive tractable uncertainty sets, with probabilistic guarantees of coverage.

A weakness of current approaches in robust optimisation is over-conservatism.

Typically, only one robust set is used, and decision variables are assigned given the

fixed robust sets. However, different robust sets giving the same guarantees may lead

to different utilities. Thus choosing an inappropriate robust set may lead to drasti-

cally lower utility. In chance-constrained optimisation, decision variables are assigned

taking into account probability distributions for uncertainty. Intuitively, this corre-

sponds to a simultaneous selection of robust sets and decision variable assignments,

and leads to better utility. In general, chance-constrained methods tend to provide

higher utility solutions, due to greater flexibility when choosing appropriate sets of

uncertain outcomes.

29

30

Chapter 3

Problem Description and Approach

In this chapter, I introduce the chance-constrained mixed logic linear program (cc-

MLLP). The cc-MLLP is motivated by real world applications, and I provide examples

in cyber security and autonomous underwater exploration in this chapter.

The problem requires a mix of continuous and discrete decision making, the former

introducing nonlinearities, and the latter introduces combinatoric search. In this

chapter, I provide a high level outline of a decomposition approach in response. The

proposed algorithm involves a high level search handling assignments to the logical

variables, guided by the results returned by an efficient solver for the continuous

portion of the problem.

3.1 Problem Definition: CC-MLLP

In constraint programming literature, the mixed logical linear program (MLLP) [22]

is a standard formalism for deterministic decision making, allowing a combination of

linear and logical constraints. The chance-constrained mixed logical linear program

is developed as an extension, which allows specifications on the probability of success.

Problem 1 (Chance-constrained Mixed Logical Linear Program). Let ⟨Ω,ℱ ,P⟩ be

a probability space and {𝑢𝑖 : Ω → R} be a set of random variables. The chance-

constrained mixed logical linear program is defined as:

31

min
x

c𝑇x

𝑠.𝑡.Ψ(p) = True

P(¬
⋀︁
𝑖

𝐶𝑖) ≤ ∆

where:

∙ x ∈ R𝑁𝑅 is a vector of continuous decision variables.

∙ p ∈ {0, 1}𝑁𝑃 is vector of logical decision variables.

∙ Ψ is a logical formula over p;

∙ 𝐶𝑖 is of the form Φ𝑖(p)⇒ A𝑖x + 𝑢𝑖 ≤ 𝑏𝑖;

∙ Φ𝑖 logic formulae over decision variables p;

∙ A𝑖 are vectors of size 𝑁𝑅 ;

∙ 𝑏𝑖 ∈ R are constants; and

∙ ∆ ∈ [0, 1] an upper bound on the probability of failure.

For convenience, in the following discussion, we assume that for feasible problems,

the optimal objective values are positive and bounded. This assumption could be

relaxed to allow bounded but possibly negative optimal objective values by adding a

constant term to the objective function.

The definition of the cc-MLLP consciously builds on the MLLP. Much like the

MLLP formalism, we have the discrete part of the problem described by the logical

formulae Ψ, and the continuous portions of the problem 𝐶𝑖.

However, the key distinction with the prior formulation is the introduction of the

continuous random variables 𝑢𝑖 in the continuous portion of the problem. These are

use to describe uncertainty in our problems, for example positional uncertainty for

AUV path planning, or uncertainty over available bandwidth for network routing.

32

In the presence of this uncertainty, we would like to provide some guarantee on

the probability of success. Thus, we impose a chance constraint over the continuous

portion of the problem, such that the probability of the continuous portion not being

satisfied is bounded. Specifically, the probability of ¬
⋀︀

𝑖 𝐶𝑖 has to be less than or

equal to ∆.

While we accept all logical formulae, we assume without loss of generality that

they are given in the equivalent conjunctive normal form [49]. Further, for conve-

nience in the subsequent discussion, a linear constraint is said to be implied by a

partial assignment to the logical variables if the associated logical formula is satisfied.

Specifically, consider a constraint 𝐶𝑖 of the form

Φ𝑖(p)⇒ A𝑖x + 𝑢𝑖 ≤ 𝑏𝑖

If Φ𝑖(p
′) = True for a partial assignment p′ to p the set of logical variables, then p′

implies the linear constraints A𝑖x + 𝑢𝑖 ≤ 𝑏𝑖.

3.2 Example CC-MLLPs

The cc-MLLP formulation occurs in many real world applications. We introduce two

such examples to demonstrate how the encoding may be used. We begin with a

chance-constrained autonomous underwater vehicle (AUV) path planning problem.

Example 1. Consider a vehicle path planning problem, in which we plan waypoints for a

vehicle which must stay within a sequence of safe polygonal regions. As before, we assume

that the mean path of the vehicle can be approximated by a sequence of straight lines, while

deviation from the mean paths can be described as random variables.

Let x𝑡 be the vehicle position at time 𝑡, and u𝑡 the uncertainty at time 𝑡. For the

continuous constraints, we have the linear dynamics as in the convex version of the problem.

In addition, we may encode whether a vehicle in a region 𝑅𝑖 at time 𝑡 with the logical variable

𝑟𝑖𝑡 ∈ {0, 1}. We thus have constraints of the form 𝑟𝑖𝑡 ⇒ 𝐴𝑖(x𝑡+u𝑡) ≤ 𝑏𝑖, where 𝐴𝑖, 𝑏𝑖 describe

the region 𝑅𝑖. Note that 𝐴𝑖(x𝑡 + u𝑡) ≤ 𝑏𝑖 can be rewritten as 𝐴𝑖x𝑡 + u′
𝑡 ≤ 𝑏𝑖 as required for

the CC-MLLP definition, where u′
𝑡 = 𝐴𝑖u𝑡.

33

Figure 3-1: Example AUV path planning over safe regions. The safe regions are
shaded in blue. We can not travel directly between two points in 𝑟1 and 𝑟3, as
demonstrated by the red path, because it may cut through an unsafe region. Instead,
vehicles must transition between two regions by making a stop in 𝑟2, which is the
intersection of both 𝑟1 and 𝑟3.

In addition, we require safe traversal between time steps - we do not wish to cut between

unsafe regions in between time steps. This is illustrated in Figure 1. We must encode

transitions between regions which intersect, by forcing the vehicle to make a stop in the

intersection. For each original safe region, we may denote its set of neighbour as the safe

region itself, and its intersections with all other regions. For each intersection, we denote

its set of neighbours as the intersection itself, and the two regions which intersect. Then,

we have logical constraints of the form 𝑟𝑖𝑡 ⇒
⋁︀

𝑗∈Neigh(𝑖)(𝑟
𝑗
𝑡−1), where Neigh(𝑖) denotes the

neighbours of region 𝑅𝑖.

The cc-MLLP can also be used to model a network routing problem with packet

loss constraints. The following problem was taken from the DARPA EdgeCT cyber-

security problem.

Example 2. Figure 3-2 shows the topology for a network of computers. The circles denote

network nodes, each of which is connected to several neighbours. For example, Node 0 has

neighbours Nodes 1, 2, 6 and 7.

Neighbouring nodes are connected by links, with a bounded amount of throughput, and

a known cumulative loss. The problem asks us to route flows, for example voice over IP

34

Figure 3-2: Topology for the EdgeCT network.

(VOIP) calls, from one node to another node on the network. For each link on the network,

we must decide the amount of throughput we must reserve for each flow.

Each flow has a minimum amount of bandwidth. The uncertainty in the problem comes

from the amount of bandwidth required by each flow. For example, the amount of VOIP calls

varies day to day. The uncertain bandwidth requirements is as a random variable, 𝐵𝑊 𝑘,

for flow 𝑘.

The real valued decision variables in this problem are the bandwidths allocated to each

flow along each link, denoted 𝐵𝑊 𝑘
𝑖,𝑗 for flow 𝑘 on the link from Node 𝑖 to Node 𝑗, as well

as 𝐵𝑊 𝑘
𝑎𝑙𝑙𝑜𝑐 the actual total amount of bandwidth allocated for each flow. For each flow 𝑘,

we have the standard flow conservation constraints
∑︀

𝑖∈Neigh(𝑗)𝐵𝑊 𝑘
𝑖,𝑗 =

∑︀
𝑖∈Neigh(𝑗)𝐵𝑊 𝑘

𝑗,𝑖

at nodes which are neither the source nor the sink. At the start node 𝑠 of the flow 𝑘, we

require
∑︀

𝑗∈Neigh(𝑠)𝐵𝑊 𝑘
𝑠,𝑗 = 𝐵𝑊 𝑘

𝑎𝑙𝑙𝑜𝑐. At the destination node 𝑑 of the flow 𝑘, we require∑︀
𝑗∈Neigh(𝑑)𝐵𝑊 𝑘

𝑗,𝑑 = 𝐵𝑊 𝑘
𝑎𝑙𝑙𝑜𝑐.

The logical part comes in when we decide whether to drop a flow. Let Drop𝑘 ∈ {0, 1}

be the logical variable deciding whether to drop flow 𝑘. For each flow 𝑘, we have Drop𝑘 ⇒

𝐵𝑊 𝑘
𝑎𝑙𝑙𝑜𝑐 = 0 and ̸ Drop𝑘 ⇒ 𝐵𝑊 𝑘

𝑎𝑙𝑙𝑜𝑐 −𝐵𝑊 𝑘 ≥ 0.

3.3 High Level Solution Approach

One of the common themes of constrained programming is a breakdown of a complex

system of constraints into portions, each of which could be efficiently handled by ded-

icated subsolvers. In addition to the advantages gained by allowing each subsolver

35

Figure 3-3: Decomposition of CC-MLLP.

to exploit the particular structure of the subproblems, a constraint programming ap-

proach would also identify how subsolvers can communicate. This allows computation

to be reused, such that the results of solving one subproblem could be used to guide

the computation when solving a different subproblem. I adopt this decomposition

approach in my solution algorithm for CC-MLLPs.

A natural way to consider the CC-MLLP is to decompose the problem into the

discrete and continuous components. This decomposition can be done by successively

assigning the logical decision variables. Once all the logical variables are assigned, we

arrive at purely continuous problems. This is visualised in Figure 3-3.

As logical variables are assigned, for every 𝐶𝑖 in the continuous portion of the

problem, the logical conditions Φ𝑖 can be checked. If they are evaluated to be true, the

implied linear constraints are imposed. Given a full set of assignments to the logical

decision variables, we are able to evaluate all the logical formulae in the continuous

36

part of the problem. Thus, for every 𝐶𝑖, we know whether the linear constraint

involved will need to be satisfied. This results in optimisation program, in which

the probability of jointly satisfying a set of linear constraints must be greater than a

specified bound, a problem that has been studied in the literature [45].

The decomposition motivates three main ways of speeding up the solution process:

1) using a more efficient subsolver dedicated to solving the continuous subproblem;

2) evaluating easier subproblems corresponding to each partial assignment to log-

ical variables, and pruning unpromising search branches; and 3) using the results

from evaluating the full subproblems from full logical assignments and the relaxed

subproblems from partial logical assignments as guides for search.

3.3.1 Efficient Subsolver

A full assignment to the logical variables represents a special case of the CC-MLLP,

in which only linear constraints over continuous variables feature. As this will be

the focus of our subsolver, we provide a formal definition of the purely continuous

subproblem, known as the chance-constrained linear program (CC-LP).

Problem 2 (Chance-Constrained Linear Program). Let ⟨Ω,ℱ ,P⟩ be a probability

space and {𝑢𝑖 : Ω→ R} be a set of random variables. A Chance-Constrained Linear

Program is defined as

min
x

c𝑇x (3.1)

𝑠.𝑡.Pr(A𝑖x + 𝑢𝑖 ≤ 𝑏𝑖 ∀𝑖) ≥ 1−∆ (3.2)

for:

∙ x ∈ R𝑁𝑅 is a vector of continuous decision variables.

∙ A𝑖 are vectors of size 𝑁𝑅 ;

∙ 𝑏𝑖 ∈ R are constants; and

∙ ∆ ∈ [0, 1] an upper bound on the probability of failure.

37

An efficient subsolver for the CC-LP suproblem would greatly increase the speed

of solution for a full CC-MLLP. Each full assignment to the discrete decision variables

implies a different continuous subproblem. There are thus typically a large number of

evaluations of continuous subproblems. The savings we would obtain from deploying

a subsolver which quickly returns results would accumulate over the course of the

search.

A chance constraint can be thought of as a constraint over the probability mass

of outcomes for which the assignments to the decision variables satisfy a set of spec-

ifications. As distributions are often nonlinear, this introduces a nonlinear element

to a problem which is otherwise composed only of linear constraints. I provide a

detailed description of an efficient CC-LP solver in Chapter 4, based on successive

linear approximations of the chance constraint. This allows us to leverage efficient off

the shelf solvers.

3.3.2 Pruning Using Relaxations

In search, one common method of speeding up solutions is by pruning branches early,

without evaluating a full subproblem. Given a partial set of assignments, we would like

to quickly determine whether it would be promising to keep going down the branch.

This is done by looking at relaxed problems, which are less difficult to solve than

the full continuous problem, and yield optimistic estimates for the quality of solution

provided if we continue on to a full assignment to the logical random variables.

In the case of CC-MLLPs, a partial set of assignments yields a relaxed CC-LP.

The partial assignments means a subset of the conditions are satisfied for the linear

constraints. As the more assignments are made, more conditions are satisfied, more

linear constraints are imposed, and the CC-LP becomes more constrained. Given

any partial assignment to the logical variables, the linear constraints implied by the

partial assignments is a subset of the linear constraints implied by a full assignment

to the logical variables. This subset of linear constraints thus constitute a relaxation.

A further relaxation can be done by relaxing the chance constraint. Again, the

chance constraint introduces nonlinearity to the subproblem. We provide an opti-

38

mistic relaxation of the chance constraint, determinising and linearising the subprob-

lem, so that we are only solving linear programs when evaluating the relaxation for

each partial assignment. This is elaborated in Chapter 5.

3.3.3 Conflict Guided Search

The third key technique to efficient solution processes is to extract guidance on which

assignments to try, given previous computation. When solving both full subproblem

from full assignments, and the relaxed subproblems from partial assignments, we are

able to either prove infeasibility, or provide information about the quality of solutions

possible given the logical assignments. We would like to use this information to guide

further searches.

In the case of infeasible problems, search guidance can be extracted by considering

the subsets of linear constraints which prevented a feasible solution. In the case of

potentially suboptimal problems, search guidance can be extracted by looking at the

subset of active linear constraints which prevent a better quality solution. In both

cases, the logical conditions which imply the linear constraints can be extracted, and

used to produce additional constraints to be added to Ψ, the discrete portion of the

CC-MLLP. This process of conflict extraction is also detailed further in Chapter 5.

3.3.4 High Level Algorithm

My approach to solving CC-MLLPs combines an efficient CC-LP subsolver, prun-

ing via relaxation, and conflict extraction. The high approach to the CC-MLLP is

described in Algorithm 1.

The algorithm generates successive partial assignments to the logical variables via

search, and solves the implied relaxed CC-LPs. When these relaxations are infeasible,

or yield a utility function worse than the incumbent, we identify a subset of logical

variable assignments which led to infeasibility or suboptimality. From these logical

variable assignments, we construct resolution constraints over the logical variables

which are then propagated to eliminate the infeasible or suboptimal part of the search

39

Input: Problem specified in Problem 1

Output: x,u
1 𝑄← InitQueue()

2 p̃, x̃← {}, 𝑐←∞ ; // initialise incumbent and incumbent cost

3 while 𝑄 not empty do

4 candidate← Dequeue(Q)

5 Solve relaxed CC-LP

6 if relaxed CC-LP infeasible or worse than incumbent then
7 Add resolution constraints, propagate for every element on queue

8 else

9 if candidate is a partial assignment then
10 children←Expand(candidate)

11 Enqueue(Q,children)

12 else

13 Solve CC-LP

14 Add we were able to quickly return results resolution constraints,

propagate for every element on queue

15 if CC-LP feasible, better than incumbent then
16 p̃← candidate

17 x̃← CC-LP solution variable assignments

18 𝑐← CC-LP solution cost

19 end

20 end

21 end

22 end

23 return p̃, x̃
Algorithm 1: Solving CC-MLLP.

40

space.

When a candidate is generated with full assignment to the logical variables, we

solve the implied CC-LP. Similar to the relaxed CC-LP, we return resolution con-

straints for infeasibility and suboptimality. Note that when the CC-LP is feasible, we

apply the resolution constraints even if the new candidate results in a solution better

than the incumbent. The constraints are used to eliminate future candidates which

have, at best, the same cost as the new candidate.

3.3.5 Relationship to Prior Work

The approach in this thesis builds on prior approaches in the literature. The NIRA

algorithm [46] also solved mixed discrete-continuous chance-constrained program.

NIRA concentrated on chance-constrained mixed integer-linear programs, with a

similar decomposition of the problem into search and dedicated continuous solver.

Further, NIRA introduced the idea of solving relaxed subproblems with partial as-

signments to the logical variables. However, NIRA did not try to extract conflicts

from the subsolver to guide its discrete search component, and used an off-the-shelf

solver for the continuous portion.

In deterministic problems, there have been work in extracting conflicts for disjunctive-

linear programs [33], and mixed logic-linear programs [23]. The algorithms exploit

duality in linear programs to identify subsets of linear constraints which prevent fea-

sibility or constrain the subproblem from a better objective function. However, in

the CC-MLLP context, the chance constraint introduces a nonlinear element to the

continuous subproblems. This partially motivates our approach to the CC-LP as a

sequence of linear linear approximations, as described in Chapter 4.

3.4 Summary

In this chapter, I have introduced the chance-constrained mixed logic-linear program,

as well as the chance-constrained linear program, and provided motivating examples.

I have outlined an approach to solving the CC-MLLP as a combination of high level

41

search, guided by a dedicated CC-LP solver.

The CC-LP solver is central to the approach. It must be tractable, and it must

summarise reasons for infeasibility or suboptimality in order to guide the higher level

search. In Chapter 4, I provide a CC-LP solver which achieves significant speed ups

over prior work. In Chapter 5, I show how the new CC-LP solver can be exploited to

provide the necessary conflicts to guide the discrete search.

42

Chapter 4

Cutting-planes for CC-LP

Chance-constrained methods for decision making under uncertainty have proven suc-

cessful for applications in which constraint violation is catastrophic. In particular, the

idea of risk allocation has driven solution algorithms for problems featuring chance

constraints over multiple constraints. For linear problems, the state-of-the-art risk

allocation algorithm, Convex Risk Allocation (CRA) encodes the problem as a single

nonlinear program; and 2) Iterative Risk Allocation (IRA), in which the problem is

decomposed into a risk allocation master and a linear subprogram, and hill-climbing

is used to iteratively improve utility. However, the former is difficult to scale as it

involves solving large nonlinear programs, while the latter is incomplete and subop-

timal.

In this chapter, we present Conflict-Based Risk Allocation (CBRA). We separate

the problem into a determinised linear optimization and a risk allocation subprob-

lems, and learn constraints approximating risk allocation as cutting planes. These

cutting planes successively guide the generated risk allocations towards feasibility and

optimality, give quick first solutions, and provide certificates of infeasibility.

We provide benchmarks comparing the new algorithm to CRA and IRA, on a set

of underwater vehicle model predictive control benchmarks. The results demonstrate

that IRA does not find solutions even in cases when CRA and CBRA quickly find

solutions. We also show that CBRA is able to achieve significant speed ups over CRA,

proving infeasibility up to 1000 times faster. Further, by finding a first solution using

43

CBRA, we are able to provide CRA with a good initial starting point, leading to up

to 20 times speed ups in finding optimal solutions.

4.1 Introduction

Advances in hardware and algorithms have led to impressive developments in au-

tonomous systems. High profile deployments of automated algorithms include air-

craft construction, financial trading and medical procedures. However, one of the

chief barriers to more widespread adoption of autonomous systems is the perceived

lack of reliability in autonomous systems. For example, there is a hesitation to allow

onboard path planning to be performed in NASA robotic missions to Mars. Mission

controllers are more comfortable with hand-coded sequences of activities, the safety

and correctness of which are manually checked. Such mistrust may be addressed if

autonomous agents were able to provide guarantees of the correctness of output plans.

Chance-constrained programming is one such approach, which allows automated

decision-making with guarantees on the probability of success and safety [11]. Con-

sider an example autonomous underwater vehicle (AUV) problem as follows.

Example 3. An AUV is on a bottom following mission, depicted as a side-on view in

Figure 4-1. The mean position of the vehicle must stay as close to the bottom as possible

during the duration of the traversal, while avoiding collision with the seafloor.

The AUV starts at x0 = [0, 5], and after 𝑛 time steps must end within a goal region,

such that x𝑛 ∈ [𝑛 − 1, 𝑛 + 1] × [4, 6]. The vehicle is able to move 1m/s in both 𝑥 and 𝑦,

although there is an normally distributed actuation noise 𝜔𝑛 ∼ 𝑁(0, 0.05) at each step. We

require that the probability of collision with the seafloor or not arriving at the goal region is

less than 1 in 20000.

The example problem may be expressed as a chance-constrained linear program

(CC-LP).

Example 4. Let x𝑡 be the 2-dimensional mean position of the vehicle at time step 𝑡.Note

that the actuation noise are accumulated at each time step, and the uncertainty at time step

𝑡 can written as y𝑡 ∼ 𝑁(0, (0.05𝑡)I2), where I2 is the 2× 2 identity matrix.

44

x0 = [0,5]
[n-1,6] [n+1,6]

[n-1,4] [n+1,4]

[0 1]x≤0

Figure 4-1: Example AUV bottom following mission.

The linear constraints in the problem are as follows:

∙ Actuation constraints:⎡⎣−1
−1

⎤⎦ ≤ x𝑡+1 − x𝑡 ≤

⎡⎣1
1

⎤⎦ , ∀𝑡 ∈ {0, 1, ..., 𝑛− 1} (4.1)

∙ Seafloor collision avoidance constraints:

[︁
0 1

]︁
(x𝑡 + y𝑡) ≥ 0, ∀𝑡 ∈ {0, 1, ..., 𝑛} (4.2)

∙ Goal region constraints: ⎡⎣𝑛− 1

4

⎤⎦ ≤ x𝑛 ≤

⎡⎣𝑛+ 1

6

⎤⎦ (4.3)

∙ Initial location constraint:

x0 =

⎡⎣0
5

⎤⎦ (4.4)

Then, the joint CCLP can be written:

min
x0,x1,...,x𝑛

𝑛∑︁
𝑡=0

[︁
0 1

]︁
x𝑡

𝑠.𝑡. Pr({ (4.1), (4.2), (4.3), and (4.4) satified}) ≥ 1− 0.00005

45

In prior work, CC-LPs have been used to describe vehicle path planning [45], and

power network planning [5], among other applications. In the classical definition, a

chance constraint is associated with each constraint in the underlying problem. This

is well-studied, and the CC-LP can be rewritten as a second order cone problem

(SOCP) given radial distributions [9], while convex approximation results exist for

other distributions [41].

However, for the example above, we would like to guarantee the probability of

success over the entire system of constraints, and hence is a joint chance-constrained

problem [38, 24]. As solving the exact joint chance-constrained problem is difficult,

recent solution algorithms have relied on approximations. The trivial approximation,

in which the probability of failure is evenly distributed over the each constraint, can

be solved as a traditional chance-constrained problem. However, this may result in

bad approximations. In Example 3, the trivial approximation may result in a problem

such that no waypoints meeting the chance constraints are possible. Alternatively,

evenly distributing the probability of failure may also lead to solutions with higher

cost [7].

In the distributionally robust optimization (DRO) community, there has been ex-

tensive work based on reformulating the problem to an optimization based on condi-

tional value at risk (CVar) [41, 13]. However, CVar approximations are loose even for

chance constraints over a single constraint, given that they are derived from Markov’s

Inequality. Further, CVar approximations require choosing set of scaling parameters.

While fixed scaling parameters lead to convex approximations, poor choices of scaling

parameters may lead to infeasible or suboptimal approximations as with the trivial

approximation. On the other hand, optimising over the scaling parameters is biconvex

with no guarantees of global optimality [65].

This motivates an alternative approximation via risk allocation, in which the total

risk is divided and allocated to each constraint. This approximation relies on the union

bound, and is known as optimised Bonferroni approximation to the DRO community.

46

4.2 Risk Allocation

Solving the joint chance-constrained linear program is difficult, especially due to the

need to evaluate the probability over a joint distribution, although [38] gives an exact

method assuming independence of random variables. Without the independence as-

sumption, a typical conservative approximation is performed using Boole’s inequality

[45, 7, 56, 20] to parcel out the risk to individual controls. The method is known as

risk allocation.

Problem 3 (Risk allocation approximation for Joint CC-LPs). The risk allocation

approximation for a joint CC-LP is defined as

min
x

c𝑇x (4.5)

𝑠.𝑡.A𝑖x + 𝜖𝑖 ≤ 𝑏𝑖 ∀𝑖 (4.6)∑︁
𝑖

(1− Pr(𝑢𝑖 ≤ 𝜖𝑖)) ≤ ∆ (4.7)

for:

∙ x, 𝑢𝑖, 𝑏𝑖, c, A𝑖, and ∆ ∈ [0, 1] as in Definition 2;

∙ 𝜖𝑖 decision variables, representing upper-bounds on random variables given risk

allocations.

Intuitively, we are allocating risk to find upper bounds 𝜖𝑖 on the outcomes of

random variables 𝑢𝑖 featured in each linear constraint. Given 𝜖𝑖, Equation (4.6)

ensures that x are chosen with a sufficient safety margin to satisfy the linear constraint

given that upper bounds on non-deterministic portions of the problem.

Equation (4.7) requires that the sum of these risk allocations is less than the

tolerated probability of failure ∆. This uses Boole’s Inequality to conservatively

approximate the probability of the scenario in which any of the random variables are

greater than the corresponding upper-bounds.

The formulation has similarities to the individual chance-constrained problems.

However, rather than having constant risk allocations, the risk allocations are cast

47

as decision variables in our problem, and thus can not be solved using algorithms for

problems with individual chance constraints. Given convex cumulative distribution

functions, the approximate problem outlined in Definition 3 is a convex nonlinear

program.

There are two prior algorithms for risk allocation: 1) Convex Risk Allocation

(CRA), which provides an encoding of the problem as a convex nonlinear problem [7]

and solves the problem with a convex nonlinear solver, for example SNOPT [19] or

IPOPT [57]; and 2) Iterative Risk Allocation (IRA), which decomposes the problem

into a risk allocation master and a deterministic subsolver and uses hill-climbing to

iteratively improve on solutions [45].

However, IRA is known to be suboptimal and incomplete. On the other hand,

CRA is typically slow to terminate for infeasible problems. Further, the time required

for convergence to optimal solutions for feasible problems is highly dependent on the

starting point. We would like to address these weaknesses through an algorithm which

quickly either proves infeasibility or returns a good first solution.

In this chapter, we describe a cutting plane method [30] to quickly find first so-

lutions or provide certificates of infeasibility. The key insight is that the chance

constraint implicitly defines a feasible region for the deterministic subproblem. By

decomposing the chance-constrained problem into the linear and risk allocation sub-

problems, we may iteratively generate solutions to the linear subproblem and check

the resulting probability of failure. This procedure allows us to extract linear con-

straints at each iteration to approximate the chance constraint, and are used when

generating subsequent solutions to the linear subproblem. We apply this method to

quickly generate first solutions or prove infeasibility, resulting in significant speed ups

in overall solution time.

4.3 Approach

In this section, we introduce Conflict-Based Risk Allocation (CBRA) for the Joint

Chance-Constrained Linear Program. We decompose the problem into a linear pro-

48

gramming subproblem, and a risk allocation subproblem. Candidate solutions are

generated via linear programming, and checked against the chance constraint. Cut-

ting planes are extracted to approximate the chance constraint as linear constraints,

and added to the linear subproblem for subsequent candidates.

By generating promising candidates by solving a sequence of LPs, we are able to

quickly find a first feasible solution if one exists. The cuts also allow us to provide

optimality guarantees and certificates of infeasibility.

4.3.1 Conflict-Based Risk Allocation

The key observation in our work is that risk allocation implicitly imposes a nonlinear

constraint over the solution space of the variables in the linear program. For any solu-

tion to the linear subproblem, we may evaluate the probability of violating constraints

by considering the slack in each constraint. Rather than performing risk allocation

explicitly, we may then evaluate each candidate solution to see whether the chance

constraint is met. When the chance constraint is violated, we would like to generalise

the reason for infeasibility, adding it as a constraint for subsequent candidates.

The procedure described above corresponds exactly to the cutting plane family of

methods [30, 15, 42], applicable to convex nonlinear optimization problems. While the

family of methods are slow to converge to optimality in practice, they have advantages

over interior point methods and sequential quadratic methods. In particular, they do

not require evaluations of the second derivatives at each iteration. Further, applying

a cutting plane technique allows us to exploit the fact that all but one constraint is

linear, and generate candidates using highly optimised linear solvers like Gurobi [21]

or CPLEX [14].

In our approach, we first generate a solution candidate which is furthest from

all linear constraints, ignoring the objective function. We then check whether the

candidate meets the chance constraint. If not, we extract a cutting plane for the

chance-constraint, adding it to the set of linear constraints for subsequent iterations.

Otherwise, we generate another candidate optimising for the objective function, and

update the lower- and upper-bounds. This is done iteratively until some termination

49

condition on the lower- and upper-bounds have been met, or when the LPs are in-

feasible. Our approach is summarised in Algorithm 2. In subsequent discussions, we

use the notation 𝐹𝑖 for the cumulative density function of random variable 𝑢𝑖, and 𝑓𝑖

for the probability density function.

Input: {𝑢𝑖}, c, {𝑏𝑖}, {A𝑖}, Δ
Output: x, 𝜖, 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒?, 𝒞

1 𝑈 ←∞, 𝐿← 0, 𝜖← 0, x← 0 ;

2 𝒞 ← ∅;
3 while True do

4 // generate candidate

5 [𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒?,x] ← SolveChebLP({𝑏𝑖}, {A𝑖}, 𝒞);
6 if ¬𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒? then return;

7 𝜖𝑖 ← 𝑑𝑖 −A𝑖x, ∀𝑖 ∈ {1, 2, ...,𝑀};
8 if

∑︀𝑀
𝑖=1 1− 𝐹𝑖(𝜖𝑖) > Δ then

9 // extract cutting plane

10 𝒞 ← 𝒞 ∪ {InfeasCut(x,{𝑢𝑖}, {𝑏𝑖}, {A𝑖}, Δ)}
11 else

12 // update lower- and upper-bounds

13 [𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒?,x′] ← SolveLP(c, {𝑏𝑖},{A𝑖},𝒞);
14 𝐿← c𝑇x;
15 𝜖′𝑖 ← 𝑏𝑖 −A𝑖x

′, ∀𝑖;
16 if

∑︀
𝑖 1− 𝐹𝑖(𝜖

′
𝑖) ≤ Δ then

17 // tighten upper-bound

18 [x,x′]←BiSearch(x,x′,{𝑢𝑖}, c, {𝑏𝑖}, {A𝑖}, Δ)

19 else

20 x← x′,𝜖← 𝜖′;
21 return

22 end

23 𝑈 ← min{𝑈, c𝑇x};
24 𝜖𝑖 ← 𝑑𝑖 −A𝑖x, ∀𝑖 ∈ {1, 2, ...,𝑀};
25 𝒞 ← 𝒞 ∪ {InfeasCut(x′, {𝑏𝑖}, {A𝑖}, Δ)};
26 𝒞 ← 𝒞 ∪ {c𝑇x ≤ 𝑈};
27 if Terminate(𝐿,𝑈) then return;

28 end

29 end

Algorithm 2: Conflict-Based Risk Allocation (CBRA).

By substitution into standard results for cutting planes, for candidate 𝜖′ such that∑︀𝑀
𝑖=1 1− 𝐹𝑖(𝜖

′
𝑖) > ∆, we can extract the linear constraint on future candidate 𝜖:

𝑀∑︁
𝑖=1

(1− 𝐹𝑖(𝜖
′
𝑖) + 𝑓𝑖(𝜖

′
𝑖)(𝜖𝑖 − 𝜖′𝑖)) ≤ ∆ (4.8)

50

Since we require 𝜖𝑖 = 𝑏𝑖 −A𝑖x, InfeasCut thus returns a linear constraint on future

candidates x such that:

−f(𝜖′)𝑇Ax ≤ ∆−
𝑀∑︁
𝑖=1

(1− 𝐹𝑖(𝜖
′
𝑖) + 𝑓𝑖(𝜖

′
𝑖)𝜖

′
𝑖) (4.9)

where f(𝜖′) = [𝑓1(𝜖1), 𝑓2(𝜖2), ..., 𝑓𝑀(𝜖𝑀)]𝑇 . From established results on cutting planes

in convex programming, any x satisfying the chance constraint also satisfies the linear

constraints describing each cutting plane. Thus the cuts do not eliminate candidates

which satisfy the chance constraint.

As each cutting plane eliminates a part of the solution space containing the infea-

sible candidate, we would like to generate candidates at each iteration which are far

from the boundaries defined by the existing linear constraints. We thus generate the

first candidate using the well-known Chebyshev center [15], the center of the largest

Euclidean ball which fits inside the space defined by the linear constraints. In Line 5,

SolveChebLP solves the LP:

min
x,𝑟≥0

−𝑟

𝑠.𝑡.A𝑖x + 𝑟 ≤ 𝑏𝑖 ∀𝑖

g𝑇x + 𝑟 ≤ ℎ ∀{g𝑇x ≤ ℎ} ∈ 𝒞

The constraints generated are thus far away from both the original constraints, as well

as the cutting planes used to approximate the chance constraint. If the Chebyshev

center LP is infeasible, we conclude that the original joint CC-LP is also infeasible,

because the cutting planes do not eliminate a feasible solution if one exists.

If the Chebyshev center LP is feasible, we would like to update the lower- and

upper-bounds for the objective function. SolveLP generates a candidate x′ solving

51

the LP:

min
x

c𝑇x

𝑠.𝑡.A𝑖x ≤ 𝑏𝑖 ∀𝑖

g𝑇x ≤ ℎ ∀{g𝑇x ≤ ℎ} ∈ 𝒞

to optimistically estimate the lower-bound of the objective function. If the minimising

x′ satisfies the chance constraint, then we can exit, since we have found a candidate

minimising the objective function and meeting the chance constraint.

If instead the minimising candidate does not satisfy the chance constraint, we

use standard bisection search to find a better upper bound. While the procedure

is optional and not part of standard cutting plane methods, its inclusion leads to

better empirical performance, quickly reducing the upper-bound on the objective c𝑇x.

BiSearch is summarised in Algorithm 3, for some specified 𝑁 number of iterations.

Input: x,x′,{𝑢𝑖}, c, {𝑏𝑖}, {A𝑖}, Δ
Output: x,x′

1 for 𝑖 ∈ {1, ..., 𝑁} do
2 x′′ ← 1

2(x+ x′);
3 𝜖′′𝑖 ← 𝑏𝑖 −A𝑖x

′′, ∀𝑖 ∈ {1, 2, ...,𝑀};
4 if

∑︀𝑀
𝑖=1 1− 𝐹𝑖(𝜖

′′
𝑖) > Δ then x′ ← x′′;

5 else x← x′′;

6 end

Algorithm 3: Bisection search for upper-bound.

For CBRA, we may impose a termination based on 𝑙 and 𝑢, the lower- and upper-

bounds for the objective. As noted, cutting plane methods tend to be slow to converge.

In practice, rather than requiring 𝑢 − 𝑙 to be smaller than some tolerance, in our

benchmarks we find that terminating upon a first candidate which satisfies the chance-

constraint provides a good first solution for subsequent optimization.

4.3.2 Related work

There exists other methods which also use divide the problem into the risk allocation

and linear program subproblems. However, previous approaches concentrated on

52

Bender’s Decomposition in the standard context of constraints systems featuring only

random variables with finite support [35, 34]. Candidate risk allocation can thus be

generated efficiently through search in a discrete space, and Bender’s cuts extracted

from the linear subproblem. However, as our problems feature random variables with

continuous, possibly unbounded support, a risk allocation would need to be generated

via nonlinear programming, and is thus computationally demanding.

Other iterative methods have also been proposed for chance-constrained prob-

lems with continuous random variables. Outer Approximation, an alternative cutting

plane technique, is used in [5]. However, the prior work assumes that the probability

of violating each constraint is pre-specified, as opposed to CBRA which explicitly

optimises over the risk allocations. Crucially, this means the previous algorithm does

not extract cutting plans approximating the chance constraint, as it is not solving a

joint chance-constrained problem.

Iterative risk allocation (IRA) also decomposes the joint chance-constrained prob-

lem into a risk allocation subproblem and a linear subproblem [45]. IRA starts with

an initial risk allocation, and improves the solution via hill climbing. However, IRA

is not complete: while a risk allocation may exist, IRA will return no solution given

an infeasible initial risk allocation. Further, IRA provides no optimality guarantees.

There have been recent work in Probabilistic Simple Temporal Networks (pSTN),

which attempt to derive static assignments to execution times or an execution schedul-

ing policy in the presence of probabilistic uncertainty [60, 64]. The approaches use a

risk allocation master to generate candidate Simple Temporal Networks with Uncer-

tainty, which feature set-bounded uncertainty and can be encoded as distance graphs

and solved efficiently. Cuts are also returned to the risk allocation master in the

form of negative cycles. We note that in the pSTN strong controllability case, in

which we must find static execution times, the negative cycles correspond exactly

to Bender’s feasibility cuts. Our work, which also incorporate an objective function,

can thus be considered a generalisation of the pSTN approaches. However, negative

cycle detection on a distance graph using the Bellman-Ford algorithm is 𝑂(𝑛𝑚), for

𝑛 the number of variables and 𝑚 the number of constraints, and we expect the pSTN

53

algorithms to be faster on pSTN problems.

4.4 Experiments

In this sections, we compare empirical results for IRA, CRA and CBRA. We used

SNOPT 7.2 as the nonlinear solver for CRA, and Gurobi 6.51 as the linear solver for

the IRA and CBRA linear subproblems.

In order to directly address the motivating problem of linear AUV path planning

under uncertainty, we constructed a number of benchmark 3-dimensional seafloors.

For each instance, we uniformly sampled a number of points in 3 dimensional space,

and constructed a convex hull.

We modeled the dynamics and observation of the AUV using parameters from a

January 2018 Woods Hole Oceanographic Institute (WHOI) mission at Hawaii. The

maximum velocity was 1m/s in each direction, with a 0.7m/s standard deviation rep-

resenting the current. In addition, we allowed localization via Ultra-Short BaseLine

(USBL) every 60 seconds, with 7m standard deviation in the observation noise. We

also required that 𝑧 ≤ 0 for the vehicle at every time step: the vehicle must remain

in the water.

Path planning problems were defined over the generated maps. For each map, we

required velocities over 120s, 240s, and 600s, such that the vehicle ended within a

rectangular 50𝑚× 50𝑚 column, with no restrictions on the final depth. The proba-

bility of collision or failing to reach the goal was required to be less than 10%, and

we minimise the sum of the depths at each time step.

For a problem with 𝑛 faces and 𝑚 time steps, there are 3𝑚 variables for vehicle

state, 𝑚𝑛+4 variables for risk allocation for collision avoidance and goal satisfaction.

There are 𝑚𝑛+ 4 constraints for obstacle avoidance and goal satisfaction, and 6(𝑚−

1) constraints to describe the velocity restrictions, in addition to a single chance

constraint. For example, for a problem with 72 faces and 600 time steps, we would

have 45004 variables, and 46798 constraints.

We encoded CRA as described in Definition 3, with initial variables assignments

54

set to 0, and a final tolerance of 10−6 For CBRA, we chose to perform 10 bisections

in BiSearch. We terminate CBRA and return a solution when 𝑢−𝑙
max{|𝑢|,|𝑙|} ≤ 0.05. We

thus return a solution with objective within 5% of the optimum with CBRA. For

convergence to optimality with the required tolerance, we use the returned CBRA

solution as a starting point for CRA.

We first generated 3D maps by sampling 𝑥, 𝑦 ∈ [−200, 800], and 𝑧 ∈ [0,−10]. This

was expected to create maps for which no plans satisfying the chance-constraints could

be found. We did not run IRA on these maps, because IRA assumes the existence of

a solution.

The results are summarised in Table 4.1. Of the 90 cases, CBRA performs better

in 77 instances. Note further that for many of the problems in which CBRA is faster,

it is able to prove infeasibility orders of magnitude more quickly than CRA, especially

for the 600 time step instances. For example, for Map 26 with 600 time steps, CBRA

was able to prove infeasibility in 13.87 seconds with 6 cuts, whereas CRA needed

8638.55 seconds. Where CRA is faster, the solution times for the two algorithms are

typically within the same order of magnitude.

We also considered the same maps, but with depth scaled such that 𝑧 ∈ [0,−50].

These are problem instances where a solution should exist. We performed a modified

version of IRA. As the method would terminate if the initial even risk allocation were

infeasible, we allowed for risk to be randomly allocated if the initial risk allocation

were infeasible. Random risk allocation was repeated until a feasible risk allocation

were found. Even with the adjustment, IRA was unable to find feasible solutions

within a 3600 minute time limit for any of the problems.

Empirically, we found that CBRA tended to have difficulty converging with the

condition that 𝑢 − 𝑙 ≤ 10−6: a large number of cuts were generated which did not

improve the upper bound in later iterations. However, by terminating when a first

chance-constrained candidate has been found, we were able to speed up solutions by

first finding a feasible solution with CBRA, and then using the risk allocation and

vehicle positions as a starting point for CRA. This leverages the fact that CBRA

typically quickly finds a first feasible solution if one exists, and good starting points

55

typically allow SNOPT to converge faster.

Table 4.2 summarises the results, showing the times for CBRA to return a first

solution satisfying the chance-constraint, the number of cuts needed, the total time

for running CBRA to find a starting point and then running CRA, and the time

taken if we ran CRA without the CBRA solution as a starting point. Purely running

CRA was slower in 84 of the 90 instances. Again, we generally see order of magnitude

improvements in computation time for the problems with larger number of time steps.

As expected, the problems in which CRA performed better were those in which CBRA

had trouble converging, requiring a large number of cuts.

Noting the use case, we see that the introduction of CBRA is important as it

allows chance-constrained path planning to scale and provide real-time controls for the

vehicles. Notably, for problems with a planning horizon of 240 seconds, we were able

to find controls for all problems in under 240 seconds with combined CBRA+CRA,

whereas we were only able to do so for 11 out of 30 problems using CRA. For problems

with a planning horizon of 600 seconds, we are able to find optimal solutions by

combining CBRA and CRA in 17 of 30 instances, while no instances were solved in

under 600 seconds by running CRA alone.

In the above results, we have used CBRA to provide an initial seed solution, and

solved problems to optimality using a monolithic encoding. This is because CBRA,

while quick to find an initial solution, has trouble converging to optimality. As an

example we may consider the maintained lower- and upper-bounds on the utility as

we run CBRA over a longer time.

As an example, we may consider the lower- and upper-bounds for CBRA on Map

17, the map described by the largest number of linear constraints, planning for 120

time steps. The convergence is given in Figure 4-2. The CBRA approach was run

for 3600 seconds. We see that there is a steady decrease in the upperbound, as we

update the upper-bound whenever a new chance-constrained candidate is found.

However, note that bounds only seem to converge after around 500 seconds. This

is significantly slower than the results in Table 4.2. Running CRA provided an optimal

path in 202.33 seconds, whereas running CBRA for a first solution and subsequently

56

Map # Faces Steps # Cuts CBRA (s) CRA (s)

0 35
120 1 0.00 0.58
240 1 0.01 2.43
600 1 0.02 21.13

1 57
120 294 13.87 12.76

240 1 0.01 4.54
600 1 0.05 30.61

2 57
120 316 18.13 13.15

240 245 25.89 29.91
600 13 20.94 586.22

3 36
120 1 0.00 0.63
240 1 0.01 2.89
600 1 0.02 23.08

4 49
120 305 12.80 19.76
240 227 31.59 34.40
600 1 0.02 32.46

5 55
120 338 18.83 17.11

240 1 0.02 4.34
600 1 0.03 27.97

6 36
120 272 7.20 19.30
240 52 22.18 86.98
600 47 75.92 699.00

7 57
120 326 20.46 19.49

240 1 0.01 3.85
600 1 0.02 27.04

8 50
120 386 23.86 17.80

240 279 40.19 75.26
600 15 13.18 2259.48

9 48
120 1 0.01 0.80
240 1 0.01 3.00
600 1 0.02 19.55

10 42
120 325 13.43 23.31
240 54 22.76 158.45
600 12 13.83 1098.21

11 76
120 382 31.79 37.05
240 289 46.52 1204.17
600 11 17.08 348.45

12 37
120 1 0.00 0.59
240 1 0.01 2.40
600 1 0.02 15.18

13 71
120 466 43.94 35.32

240 345 57.05 202.78
600 285 143.42 3265.55

14 72
120 353 25.36 33.17
240 279 35.68 291.94
600 35 50.30 1659.40

15 37
120 1 0.00 0.67
240 1 0.01 2.72
600 1 0.02 19.64

16 60
120 1 0.01 1.20
240 1 0.02 4.62
600 1 0.04 36.17

17 83
120 367 36.55 27.13

240 1 0.02 9.12
600 1 0.06 62.74

18 34
120 288 7.70 18.14
240 208 18.98 15.29

600 1 0.02 12.49

19 58
120 1 0.01 1.35
240 1 0.01 4.90
600 1 0.04 33.80

20 67
120 348 24.72 22.27

240 268 47.63 50.25
600 47 61.30 853.39

21 37
120 1 0.00 0.71
240 1 0.01 2.61
600 1 0.02 15.50

22 68
120 250 14.38 16.48
240 189 54.27 85.77
600 1 0.05 36.88

23 77
120 311 24.69 43.51
240 229 32.48 235.36
600 183 140.94 4675.05

24 41
120 399 18.60 2.25

240 282 22.51 157.19
600 1 0.02 19.98

25 50
120 319 15.20 21.55
240 246 64.16 172.39
600 15 17.00 41.97

26 62
120 450 33.26 27.04

240 344 46.46 65.35
600 6 13.87 8638.55

27 35
120 1 0.00 0.69
240 1 0.01 2.14
600 1 0.02 15.51

28 48
120 330 16.50 10.37

240 1 0.01 3.19
600 235 462.50 358.84

29 71
120 201 10.65 21.47
240 148 20.89 102.46
600 15 29.20 619.08

Table 4.1: Run time comparisons between CBRA and CRA for infeasible 3D AUV
maps, with number of cuts found by CBRA.57

Map # Faces Steps CBRA (s) # Cuts CBRA+CRA (s) CRA (s)

0 35
120 3.66 27 31.74 35.23
240 13.47 69 56.11 295.21
600 21.82 8 261.59 1825.22

1 57
120 4.75 25 32.09 65.10
240 17.17 62 61.81 307.14
600 704.13 935 819.83 2764.71

2 57
120 5.13 26 35.01 56.84
240 18.76 78 74.35 252.66
600 53.95 44 530.94 3726.68

3 36
120 3.67 24 10.83 40.23
240 15.80 71 35.70 183.01
600 29.73 27 930.77 1474.76

4 49
120 4.63 26 53.81 49.46

240 17.08 61 37.94 259.84
600 334.69 613 476.21 3158.51

5 55
120 6.99 30 19.32 84.56
240 22.54 86 42.14 322.92
600 59.92 70 164.83 2586.02

6 36
120 3.52 25 15.04 40.98
240 14.84 67 38.55 217.22
600 332.20 556 413.36 1048.81

7 57
120 5.66 27 17.61 54.52
240 20.27 81 53.57 262.44
600 94.70 193 197.37 4639.95

8 50
120 5.25 32 12.81 66.78
240 20.61 78 36.05 192.94
600 753.78 1059 824.00 2107.08

9 48
120 4.64 30 14.81 94.01
240 21.21 87 45.45 284.89
600 59.70 118 154.66 1719.39

10 42
120 3.71 25 21.52 53.45
240 17.82 53 37.38 175.64
600 450.30 697 539.42 3083.50

11 76
120 6.94 25 48.99 119.48
240 26.14 82 71.89 665.69
600 899.72 954 1043.37 612.37

12 37
120 4.83 29 12.97 34.68
240 13.94 68 29.42 178.80
600 1213.22 1314 1506.90 3141.87

13 71
120 6.76 25 42.19 94.87
240 27.02 80 62.37 591.80
600 175.19 241 411.60 1035.14

14 72
120 6.98 26 36.29 130.32
240 31.33 98 53.89 542.03
600 807.65 814 944.56 1375.46

15 37
120 3.85 28 15.85 30.09
240 12.60 63 46.94 158.75
600 249.71 575 404.41 1335.90

16 60
120 6.74 28 18.25 69.76
240 16.87 75 34.10 793.40
600 2299.96 2093 2375.18 2361.94

17 83
120 8.15 27 23.36 202.33
240 30.27 102 96.66 892.04
600 97.11 12 580.83 988.05

18 34
120 3.55 27 28.48 31.97
240 12.47 77 63.35 99.89
600 26.14 7 296.38 1535.66

19 58
120 5.57 28 26.39 79.86
240 21.97 89 59.36 330.96
600 124.51 220 435.23 2557.80

20 67
120 6.52 27 19.18 81.20
240 23.57 104 43.91 316.23
600 640.56 789 739.81 774.49

21 37
120 4.53 24 14.07 37.58
240 15.94 66 136.63 135.42

600 32.77 41 222.93 1789.12

22 68
120 6.32 35 21.76 116.65
240 48.19 15 126.08 368.90
600 802.84 841 1085.12 884.00

23 77
120 8.26 32 41.37 113.82
240 29.07 93 56.27 600.41
600 1339.11 936 1461.75 727.80

24 41
120 3.83 23 17.57 74.60
240 17.31 67 33.99 174.67
600 124.43 198 203.62 2511.03

25 50
120 5.45 25 34.77 75.75
240 26.30 95 38.07 243.66
600 1639.54 1447 1723.15 4085.27

26 62
120 5.94 25 25.72 84.19
240 21.75 66 39.82 387.78
600 79.14 73 1753.15 2117.43

27 35
120 3.28 27 11.24 30.04
240 15.50 71 30.48 176.77
600 35.57 59 494.75 1163.20

28 48
120 4.97 29 20.18 87.58
240 18.25 78 52.03 207.04
600 677.90 932 764.59 2504.45

29 71
120 7.03 31 14.83 124.16
240 31.57 134 84.28 415.13
600 346.98 357 477.35 2184.00

Table 4.2: Run times for feasible 3D AUV maps, for CBRA solution within 5% of the
optimal, total time for optimality using the 5% solution as a starting point for CRA,
and optimality using just CRA.

58

0 500 1000 1500 2000 2500 3000 3500
Time (s)

3500

3000

2500

2000

1500

1000

500

0
Ut

ilit
y

Upperbound
Lowerbound

Figure 4-2: Convergence of the quality of path for Map 17 in the the benchmark set.
Utility is the sum of the depth of the vehicle, simulating a bottom following mission,
such that a lower utility is better.

solving with CRA provided an optimal solution in 23.36 seconds.

If we considered the optimality gap as a proportion of the maintained bounds,
𝑢−𝑙

max{|𝑢|,|𝑙|} , we find that in this instance, the bounds are within 20% of each other after

271.09 seconds, 10% after 290.10 seconds, 5% 300.46 seconds, 1% after 363.39 seconds.

This provides an empirical demonstration of the difficulties with convergence.

4.5 Summary

Chance-constrained programming has been successful in applications where constraints

must be satisfied despite stochasticity in the problem, from autonomous vehicle con-

trols to planning for power flow infrastructure. Joint chance constraints are seen as

intractable, and the risk allocation approximation has been popular. While Convex

Risk Allocation encodes the problem as a single convex program, the solution time

required is often prohibitive.

59

In this chapter, we have proposed a new algorithm, Conflict-Based Risk Allocation

(CBRA). We decompose the problem into a linear subproblem and a chance constraint

subproblem. We are thus able to solve the linear subproblem with highly optimised

commercial solvers. We learn linear constraints approximating the chance constraint

in the space of deterministic variables, using cutting planes to inform the master risk

allocation problem. This allows us to quickly find first solutions or prove that the

problem is infeasible.

We have shown empirically, using a set of vehicle path planning problems, that

CBRA is often able to prove infeasibility orders of magnitude faster than CRA. We

also show that CBRA is often able to find a good solution very quickly. Using the

first solution from CBRA as a starting point and then optimising with CRA, we are

also able to find optimal solution much more quickly than just running CRA alone.

Crucially, this enables us to perform real-time risk-bounded model predictive control.

While we have used cutting planes to quickly detect infeasibility, and to provide

a good starting point for interior point convex optimisation, we can further exploit

the technique for mixed discrete-continuous problems. Specifically, because we have

a sequence of linear optimisations, we can easily identify the sources of infeasibility

in terms of linear constraints which taken together exclude solutions. We may also

look at the active linear constraints at optimal solutions to identify the subset which

may prevent better solutions to be found. This is exploited in the next chapter.

60

Chapter 5

Chance Constrained Mixed Logic

Linear Program

In Chapter 3, I introduced a high level algorithm for solving CC-MLLPs. The algo-

rithm requires a tractable subsolver for CC-LPs, described in Chapter 4. However,

further efficiency can be gained at the search level. Computation can be reduced if

we were able to restrict search down unpromising combinations of assignments to the

logical variables.

In this chapter, I describe the relaxations solved given partial assignments, which

allow for early pruning. I also describe how additional logical constraints are extracted

to guide discrete search, in the form of conflicts which summarise why certain portions

of the search space are not promising.

The approaches exploit linearity in the relaxed subproblems, as well as our ap-

proach to full CC-LPs using successive linear approximations. I prove the correct-

ness of the conflicts extracted. Empirical evaluations show that the conflict directed

method is able to achieve at least an order of magnitude speed up in finding the first

solution, and to prove optimality.

61

5.1 Relaxed Subproblem

In the main algorithm, a relaxed CC-LP is solved whenever a new assignment to one

of the logical variables is made. This results in a set of implied linear constraints. We

thus have a relaxed CC-LP, in which we consider only the implied constraints.

As in NIRA [46], we perform a further full-risk relaxation, in which we allocate

the entirety of the risk bound to each random variable. This is a relaxation because

the risk allocated to each random variable can only be less than or equal to the risk

bound when solving for the actual CC-LP.

Input: Partial assignments p′ to logical decision variables, real-valued decision

variables x, random variables {𝑢𝑖}, constraints {𝐶𝑖}, incumbent objective 𝑈 ,

risk bound Δ
Output: FeasOpt? whether the relaxation is infeasible or suboptimal

1 𝑢+𝑖 ← the upper Δ-quantile for each random variable 𝑢𝑖
2 SolveLP(minx 𝑐 (x), st {A𝑖x+ 𝑢+𝑖 ≤ b𝑖} ∀𝑖, Ψ𝑖(p

′) = True)

3 return FeasOpt?
Algorithm 4: Relaxed CC-LP.

The procedure is given in Algorithm 4. We first find the upper ∆-quantile for each

random variable. Then, for each constraint in the continuous portion of the problem, if

the logical formulae is evaluated to be true, we add the corresponding linear constraint

to the LP relaxation, replacing the random variable with the corresponding quantile.

For any full assignment to the logical decision variables which contain the partial

assignments p′, the solution space of the full CC-LP will be smaller. Again, this is

due to two reasons:

1. the set of linear constraints in the full CC-LP will be a superset of the linear

constraints in the relaxation; and

2. the risk allocated to each random variable must be less than or equal to ∆.

Thus, if the relaxation is infeasible, then the full CC-LP will also be infeasible.

Similarly, if the relaxation is feasible, then the objective obtained is an optimistic

bound on that of the full CC-LP.

62

5.2 Conflict Extraction

One of the keys for the proposed decomposition algorithm for CC-MLLPs is the con-

flict extraction.As the algorithm performs computation on the continuous portion of

the problem, we would like to extract information about the subproblems. In partic-

ular, we would like to understand which of the linear constraints were responsible for

ruling out all feasible solution, or eliminating solutions with better objective values.

If we were able to identify these conflicting linear constraints, we can then trace

back to the associated logical variable assignments. This would allow us to guide

the discrete search, by avoiding combinations of assignments leading to unpromising

parts of the search space.

We first outline the approach used for the relaxed CC-LP, and then extend the

approach to the full CC-LP.

5.2.1 Conflict Extraction for Relaxed CC-LP

The resulting CC-LP thus becomes an LP, which can be solved using off-the-shelf

solvers. If the relaxed CC-LP is infeasible, we know that the full CC-LP is also

infeasible, and we may extract infeasibility conflicts by looking at irreducible infeasible

sets. Alternatively, if we observe optimality, we may look at the active constraints

to find optimality conflicts if the relaxed CC-LP has a worse objective function than

the incumbent.

The procedure is given in Algorithm 5. It takes as input the set of implied linear

constraints as well as the associated logical formulae, the incumbent objective, and

a risk bound. It returns whether the relaxed CC-LP is feasible and better than the

incumbent, and any conflicts if not.

We first construct the relaxation as in Algorithm 4, by finding the upper ∆-

quantiles of the random variables, and considering only the constraints implied by

the partial logical assignments.

We then call an off-the-shelve LP solver for the relaxed CC-LP, and consider the

solution. If the problem is infeasible, then we may identify the irreducible infeasible

63

Input: Partial assignments p′ to logical decision variables, real-valued decision

variables x, random variables {𝑢𝑖}, constraints {𝐶𝑖}, incumbent objective 𝑈 ,

risk bound Δ
Output: FeasOpt? whether the relaxation is infeasible or suboptimal, Ψ′ the set of

conflicts if so

1 𝑢+𝑖 ← the upper Δ-quantile for each random variable 𝑢𝑖
2 SolveLP(minx 𝑐 (x), st {A𝑖x+ 𝑢+𝑖 ≤ b𝑖} ∀𝑖, Ψ𝑖(p

′) = True)

3 if LP infeasible then

4 Ψ′ ←
⋀︀

𝑗 Φ𝑗 for all 𝑗 such that {A𝑗x+𝑢+𝑗 ≤ b𝑗} is in the irreducible infeasible set

5 FeasOpt?← False

6 else if LP feasible but objective worse than incumbent 𝑈 then

7 Ψ′ ←
⋀︀

𝑗 Φ𝑗 for all 𝑗 such that {A𝑗x+ 𝑢+𝑗 ≤ b𝑖} is active at the solution

8 FeasOpt?← False

9 else

10 FeasOpt?← True,Ψ′ ← ∅
11 end

12 return FeasOpt?,Ψ′

Algorithm 5: Conflict extraction from Relaxed CC-LP.

set of constraints. These linear constraints meant that no solution could be found.

We would like to prevent these linear constraints from being implied in all future

candidates when searching for assignments to the logical variables.

We thus collect the associated logical formulae for each linear constraint. When

the conjunction of these logical formulae evaluate to True, the same set of linear

constraints will be present, and thus no solution can be found. We may thus return

the conjunction of the logical formulae as a conflict.

Similarly, when the LP solver returns a solution which is optimal, but with an

objective value worse than the incumbent, we may consider the set of active linear

constraints. The set of active constraint prevent the objective value from getting

any better, and we would like to avoid these linear constraints in future candidates.

Similar to the above, we thus return the conjunction of the associated logical formulae

as a conflict.

5.2.2 Conflict Extraction for CC-LP using Cutting Planes

We now consider the extraction of conflicts from the full CC-LP, building on the

ideas presented in conflict extraction from the relaxed CC-LP. While the CC-LP with

64

the union bound approximation is a nonlinear convex program, we may still employ

similar techniques to identify sets of logical statements which must be negated in

order to generate better candidates.

The key idea is that we may incrementally approximate the convex nonlinear union

bound using a sequence of cutting planes. These are linear constraints which restrict

the feasible region, which approximate the nonlinear constraint. In Chapter 4, we

have demonstrated that the application of cutting planes allows us to quickly identify

infeasible solutions, and provide good initialisation for nonlinear solvers. We now

demonstrate how cutting planes may also be used to identify conflicts in a CC-MLLP

setting. The procedure is given in Algorithm 6.

As we are solving the full CC-LP, we explicitly create decision variables for upper-

and lower-bounds of random variables, and impose a union bound constraint. The

procedure is similar to that described in Chapter 4. We again begin with an empty

set of cutting plane constraints 𝐶 ′. We then enter a loop and iteratives add cutting

planes.

At each iteration, we first solve an LP with the cutting planes and the origi-

nal linear constraints, generating solutions that are as far away from the constraint

boundaries as possible. This is done through the standard cutting planes method of

finding the Chebyshev Centre, by maximising a decision variable 𝑟 representing the

distance of the solution to the boundaries.

While our previous procedure in Chapter 4 would exit if the LP is infeasible, here

we also return an infeasibility conflict using the same methods as the relaxed CC-LP

conflict extraction in Algorithm 5.

If the LP returns a solution, we may evaluate the risk of the solution using the

solution values for lower- and upper-bounds of the random variables. If the risk is

greater than the risk bound ∆, we construct cutting planes as in Chapter 4, and add

them to the set of constraint in 𝐶 ′. The LP is the solved again with the newly added

constraints.

We exit the cutting planes phase of the procedure when a candidate meeting

the risk bound is found. As for convex CC-LPs, we use the solution values for x

65

Input: Assignments p′ to logical decision variables, real-valued decision variables x,
random variables {𝑢𝑖} such that 𝑢𝑖 has PDF 𝑓𝑖 and CDF 𝐹𝑖, constraints

{𝐶𝑖}, incumbent objective 𝑈 , risk bound Δ
Output: FeasOpt? whether the relaxation is infeasible or suboptimal, Ψ′ the set of

conflicts if so

1 𝑢+𝑖 ← decision variables for the upper-bounds of each random variable 𝑢𝑖
2 𝐶 ′ ← ∅ ; /* Set of cutting planes linear inequalities */

3 while True do

4 SolveLP(maxx,{𝑢+
𝑖 },𝑟 𝑟, st {A𝑖x+ 𝑢+𝑖 + 𝑟 ≤ 𝑏𝑖} ∀𝑖,Ψ𝑖(p

′) = True, and for 𝐶 ′)

5 if LP infeasible then

6 Ψ′ ←
⋀︀

𝑗 Φ𝑗 for all 𝑗 such that A𝑗x+ 𝑢+𝑗 + 𝑟 ≤ 𝑏𝑗 is in the irreducible

infeasible set

7 FeasOpt?← False

8 return FeasOpt?,Ψ′

9 end

10 v+ ← the LP solution values for u+

11 Risk←
∑︀

𝑣𝑖∈v+ 1− 𝐹𝑖(𝑣𝑖)

12 if Risk > Δ then

13 f+ ← [𝑓𝑖(𝑣𝑖)]
𝑇
𝑣𝑖∈v+

14 𝐶 ′ ← 𝐶 ′ ∪ {−f+u+ + 𝑟 ≤ Δ− Risk− f+v+};
15 else

16 Break

17 end

18 end

19 Solve CC-LP with nonlinear solver;

20 if CC-LP feasible but objective worse than incumbent 𝑈 then

21 Ψ′ ←
⋀︀

𝑗 Φ𝑗 for all 𝑗 such that A𝑗x+ 𝑢+𝑗 ≤ 𝑏𝑗 is active at the solution

22 FeasOpt?← False

23 else

24 FeasOpt?← True,Ψ′ ← ∅
25 end

26 return FeasOpt?,Ψ′

Algorithm 6: Conflict extraction from Full CC-LP.

66

and the upper-bounds of the random variables as an initial point for an off-the-shelf

nonlinear solver. Once a solution has been found, we examine the objective value.

If the objective is better than the incumbent, we exit noting that the new candidate

is better than the incumbent. Otherwise, we extract a suboptimality conflict by

considering the active constraints, similar to the way described for the relaxed CC-

LP conflict extraction in Algorithm 5.

5.3 Correctness of Conflicts

The algorithm derives its efficiency from the ability to prune large parts of the search

space using the conflicts. However, it remains to be shown that the algorithm does

not prune combinations of logical variables which lead to CC-LPs which are feasible

and better than the incumbent. In this subsection, I present results which guarantee

the correctness of the conflicts. The proofs of correctness for the conflicts extracted

from the full CC-LP is presented first. The proofs of correctness for relaxed CC-LPs

follow, drawing on similar ideas to those used in the results for conflict extraction

from full CC-LPs.

In the following discussions, I use the following notation:

∙ 𝐿̃ the set of linear constraints returned as part of conflict extraction;

∙ U the set of random variables for a subproblem; and

∙ Ũ the set of random variables featuring in 𝐿̃.

I first show that the feasibility conflicts only prune parts of the search space which

contain infeasible CC-LPs. The proof procedure can then be followed to show that

the optimality conflicts only prune parts of the search space with CC-LPs containing

worse utility.

Theorem 1 (Correctness of feasibility conflicts for full CC-LPs). Let 𝐿̃ the set of

linear constraints returned as feasibility conflicts from the cutting planes methods for

some CC-LP with risk bound ∆. Then any CC-LP with 𝐿̃ as a subset of its linear

constraints will also be infeasible.

67

Proof. The cutting planes method provide an approximation to the union bound

approximation of the chance constraint
∑︀

𝑢∈U 𝐹 (𝑢 ≤ 𝑑) ≤ ∆. If 𝐿̃ is the set of

linear constraints returned, it means these linear constraints feature in the irreducible

infeasible subset. There is thus no solution to a system of constraints which feature

both 𝐿̃ and a linear relaxation of the chance constraints.

Thus the system of constraints

∑︁
𝑢∈U

𝑃 (𝑢 ≤ 𝑑) ≤ ∆ | 𝐿̃ (5.1)

has no solution.

Note that, for any random variable not featured in 𝐿̃, there are no constraints

on the risk bounds, as 𝐿̃ are the only constraints in the above system apart from

the chance constraint. Thus, we may essentially choose the risk allocations for such

random variables to be zero in the above system. The above system of constraints

thus reduces to ∑︁
𝑢∈Ũ

𝑃 (𝑢 ≤ 𝑑) ≤ ∆ | 𝐿̃ (5.2)

where Ũ is the set of random variables featuring in 𝐿̃.

Since this reduced system of equations is infeasible, any CC-LP which has 𝐿̃ as a

subset of its linear constraints will also be infeasible.

The key insight for the above proof lies in the fact that we can write a relaxed

subproblem, with just the linear constraints returned in the feasibility conflicts, and

a chance constraint defined only over the random variables featured in the linear

constraints. This can be shown to be infeasible, meaning that any other CC-LP

containing these linear constraints will also be infeasible.

This result proves that using the feasibility conflicts, the conflict directed algo-

rithm only eliminates CC-LPs which will be infeasible. Again, the conflicts are sum-

maries of assignments to the logical constraints which lead to combinations of linear

constraints infeasible given the risk bound. By avoiding these logical assignments, we

68

will never obtain CC-LPs containing the same linear constraints.

I now provide a similar result for optimality conflicts. The proof procedure is

similar, also making use of a reduced system of constraints featuring only the linear

constraints.

Theorem 2 (Correctness of suboptimality conflicts for full CC-LPs). Let 𝐿̃ the set of

linear constraints returned in suboptimality conflicts from the cutting planes methods

for some CC-LP with risk bound ∆, with a resulting cost 𝐶. Then any CC-LP with

𝐿̃ as a subset of its linear constraints will also have cost lower-bounded by 𝑈 .

Proof. Optimality conflicts are extracted as the active constraints at the optimal

solution. Thus we know that, for 𝑓(𝑥) the cost function in the CC-LP, the numerical

program:

min 𝑓(𝑥) | 𝐿̃,
∑︁
𝑢∈U

𝑃 (𝑢 ≤ 𝑑) ≤ ∆ (5.3)

has optimal cost 𝐶.

Note that, for any random variable not featured in 𝐿̃, there are no constraints

on the risk bounds, as 𝐿̃ are the only constraints in the above system apart from

the chance constraint. Thus, we may essentially choose the risk allocations for such

random variables to be zero in the above system. The numerical program thus reduces

to

min 𝑓(𝑥) | 𝐿̃,
∑︁
𝑢∈U

𝑃 (𝑢 ≤ 𝑑) ≤ ∆ (5.4)

where Ũ is the set of random variables featuring in 𝐿̃. This program thus also has

cost 𝐶

Consider an CC-LP with 𝐿̃ as a subset of its linear constraints. Any additional

linear constraints would place additional restrictions on the feasible set of solutions,

leading to a higher cost. Thus any CC-LP containing 𝐿̃ will have a cost lower-bounded

by 𝐶

The above result shows that the optimality conflicts are correct, and only eliminate

logical assignments which lead to CC-LPs with worse cost.

69

I now present correctness results for the conflicts extracted from relaxed CC-LPs.

The key to the results is that the relaxed CC-LPs have, by construction, a larger

feasible solution space than any full CC-LPs expanding on the set of partial logical

assignments. This is because the relaxations contain relaxed versions of the chance

constraint.

Theorem 3 (Correctness of conflicts for relaxed CC-LPs). Let 𝐿̃ the set of linear

constraints returned as feasibility conflicts from a relaxed CC-LP with risk bound ∆.

Then any CC-LP with 𝐿̃ as a subset of its linear constraints will also be infeasible.

Let 𝐿̃ the set of linear constraints returned as suboptimality conflicts from a relaxed

CC-LP with risk bound ∆. Then any CC-LP with 𝐿̃ as a subset of its linear constraints

will also be suboptimal.

Proof. Suppose a relaxed CC-LP is infeasible, with 𝐿̃ the set of linear constraints

identified as feasibility conflicts. Then, by construction of the relaxed CC-LP, 𝐿̃ is

a set of linear constraints with a relaxed chance constraint. Any full CC-LP con-

taining the corresponding linear constraints will also need to satisfy the full chance

constraint. The full CC-LP will thus not be feasible, as the full chance constraint is

more restrictive than the relaxation.

Suppose a relaxed CC-LP is suboptimal, with 𝐿̃ the set of linear constraints

identified as suboptimality conflicts. Similar to the above argument, by construction

of the relaxed CC-LP, 𝐿̃ is a set of linear constraints with a relaxed chance constraint.

Any full CC-LP containing the corresponding linear constraints will also need to

satisfy the full chance constraint. The full CC-LP will have a worse objective value,

again due to the fact that the full chance constraint is more restrictive than the

relaxation.

5.4 Empirical Results

In this section, we present empirical evaluations of the new conflict-directed algorithm

on benchmark problems, and compare them against existing nonconvex risk allocation

70

Figure 5-1: Simple 2D path planning benchmark.

approaches.

5.4.1 Simple Path Planning Benchmark

The key performance properties of the algorithm was first demonstrated with the sim-

ple benchmarking problem, as shown in Figure 5-1. The vehicle must travel from [1,1]

to [9,7]. Planning was performed for varying number of time steps to demonstrated

the scalability of the algorithm. We compared our conflict-directed algorithm against

NIRA from [46], except swapping out the subsolver from SNOPT to our faster cutting

planes based CCLP. We planned with simple linear dynamics, and a risk bound of

0.2.

As seen in Table 5.1, CBRA has significant time savings over NIRA, when consid-

ering the time to arrive prove optimality by exhausting search candidates. Crucially,

if we were to provide control with 1 second time steps, CBRA would be able to pro-

vide real-time control for horizons of up to 18 seconds, whereas NIRA would have

trouble planning over a 10 second horizon.

Our key claim was that we would observe faster computation times because the

conflict-directed algorithm would be able to effectively prune the search space. The

71

Time
Steps

8 10 12 14 16 18 20

NIRA 4.64 12.54 28.14 65.19 125.09 248.20 521.35
CBRA 1.20 2.45 3.66 7.08 11.30 17.18 53.49

Table 5.1: Time in seconds to prove optimality for the simple benchmark problem.

Time
Steps

8 10 12 14 16 18 20

NIRA 338 871 1955 4015 7527 13465 23988
CBRA 96 171 259 430 667 897 1968

Table 5.2: Number of nodes expanded for the simple benchmark problem.

conflicts should rule out parts of the search space, drastically reducing the number of

expansions.

As seen in Table 5.2, the number of nodes expanded by CBRA is far fewer than

that required by NIRA. This becomes more significant as the number of time steps

increase. Even though the number of distinct logical combinations increases exponen-

tially, at each time step the vehicle must choose from the same set of regions. Thus,

a conflict denoting a sequence of regions becomes more powerful as the number of

time steps increase - the same conflict now prunes an exponentially larger number of

possible trajectories.

One key motivation for the pruning was to avoid expensive evaluations of full

CCLPs. At each partial solution, a fixed risk relaxation is solved as a linear program.

However, a full CCLP requires a sequence of LPs to be solved to prove feasibility, and

then possibly a nonlinear convex optimisation if the CCLP is feasible. The results

are given in Table 5.3. We again observe a similar amount of time saving of CBRA

over NIRA.

We also note that both NIRA and CBRA are able to be used as anytime al-

Time
Steps

8 10 12 14 16 18 20

NIRA 13 30 66 136 293 730 2257
CBRA 5 13 19 31 41 59 153

Table 5.3: Number of full CCLPs solved for the simple benchmark problem.

72

Time
Steps

8 10 12 14 16 18 20

NIRA 0.08 0.12 1.35 3.06 5.29 9.62 15.24
CBRA 0.10 0.15 0.49 0.70 0.99 1.58 2.21

Table 5.4: Time in seconds to the first solution for the simple benchmark problem.

gorithms. We may thus consider the time to first solution of the algorithms. The

comparison is given in Table 5.4.

Interestingly, NIRA is quicker to first solutions for smaller number of time steps.

There are two reasons for this. First, CBRA expends additional computation to find

conflicts when an infeasible fixed-risk relaxation occurs, because it must calculate the

irreducible infeasible subset. Second, there might be a slight computation expendi-

ture used when propagating on conflicts. However, these additional computation is

overshadowed for long time step plans, in which the additional computation to find

and propagate on conflicts is far outweighed by the number of pruned partial CC-LPs

before a first solution.

As CBRA only begins pruning suboptimal solutions after the first solution is

found, the quality of first solutions is the same for both algorithms - the first feasible

full CC-LP found is identical. However, we may consider the improvements of the best

candidate solutions with time. This is shown in Figure 5-2. In addition to being able

to quickly find a first solution, CBRA is able to very quickly find the best candidate,

in about 10 seconds. By contrast, NIRA takes about 100 seconds to come up with

the same candidate.

5.4.2 Scarborough Oceanography Benchmark

The algorithms were run on a benchmark problem inspired by a WHOI AUV mission.

The map is given in Figure 5-3. The regions outlined in red were obstacles, and the

free space was divided into the regions outlined in black. The vehicle was required to

traverse from [-531, 2565] to [984, -2974] within 20 time steps, with a 10% risk bound.

We compared the run time of the new dCBRA algorithm against NIRA as described

in [46], with a planning time out of 3 hours. Both algorithms used CBRA as solvers

73

Figure 5-2: Best candidate quality as a function of time for the simple benchmark
problem, for a 20 time step plan.

for the CC-LP subproblems. This was done in order to provide a fair comparison,

such that dCBRA did not enjoy speedups due to a faster subsolver.

The dCBRA algorithm was able to solve the problem to optimality within 2522.22

seconds, while NIRA was unable to finish in time. This improvement is observed

because NIRA was only pruning branches based on a fixed risk relaxation, while

dCBRA was able to prune large sections of the search space using conflicts derived

from the CBRA.

The use of infeasibility conflicts allowed dCBRA to learn which linear constraints

were in conflict whenever an infeasible relaxation or full candidate was found. As

such, dCBRA obtain a first solution in 3.5 seconds, while it took NIRA 21.77 seconds

- dCBRA was able to generalise the infeasible partial candidates and skip over similar

candidates for a first solution.

Beyond the time to the first solution, we also observe that dCBRA expanded

110881 candidates, of which 596 were full candidates. In contrast, NIRA expanded

377435 candidates, of which 25635 were full candidates. The lower total number of

74

Figure 5-3: Scarborough Oceanography map.

candidates expanded is directly responsible for the much lower run time. Further, note

the ratio of full candidates to total candidates explored by dCBRA was two orders of

magnitude lower. This means that the use of conflicts was effective in reducing the

number of evaluations of full CCLPs, each of which would have been computationally

expensive.

Finally, the best solution found using conflicts to guide search had distance 2875382.13.

In contrast, the best solution at termination for NIRA had distance 2982142.31. Thus,

at termination, NIRA was yet to find the optimal solution.

5.5 Summary

In this chapter, I have introduced the conflict extraction methods central to the

proposed algorithm for CC-MLLPs. The conflict extraction techniques allow us to

identify subsets of linear constraints which prevent feasible solutions, or rule out

better quality solutions. Given the conflicting linear constraints, we can trace back

to the logical conditions which entail the linear constraints. These conditions thus

form the conflicts we require in our discrete search.

75

I have provided proofs for the correctness of the derived conflicts. Empirically,

I have demonstrated the effectiveness of conflict guided search for CC-MLLPs. I

have shown that orders of magnitude improvements in speeds can be gained, as the

conflicts allow us to eliminate large sections of the search space, reducing the number

of expansions in search needed to first solution and to optimality.

The focus of the thesis has thus far been on CC-MLLPs with explicitly stated

distributions. However, in real world applications, the true distributions may not

be available, and must be estimated from data. In the next Chapter, we provide

methods for deriving correct bounds for uncertainty from data, which allow us to

provide chance-constrained solutions with quantifiable confidence.

76

Chapter 6

Data-driven Uncertainty

Representation

Chance-constrained programs aim to account for uncertainty while providing guar-

antees on the probability of success. Chance-constrained approaches typically rely on

good probabilistic models to provide guarantees, because inaccurate distributions to

represent uncertainty may lead to decisions incurring excessive risk. While models

may be derived from sampled data using existing density estimation approaches, there

is little guarantee on the correctness of the resulting model, especially with respect

to variance in sampling.

In this chapter, we propose an alternative to probability distributions in the par-

ticular context of chance-constrained scheduling. Instead, we derive set-bounded un-

certainty from data, with additional quantitative guarantees on the correctness of the

bounds with respect to variance in sampling. In relation to the general CC-MLLPs,

these set-bounds could be considered analogous to the results of risk allocation - we

find bounded sets which contain a sufficiently large probability mass, and make sure

that our decisions have enough leeway to cover all outcomes within the bounds.

In addition to guarantees of correctness, the derived set-bounded uncertainty al-

lows us to apply well-explored algorithms for scheduling Simple Temporal Networks

with Uncertainty. We provide two such methods, one for estimating uncertainty

bounds with respect to the true distribution, and one for estimating uncertainty

77

bounds given a finite number of future executions. We provide proofs of soundness,

as well as empirical comparisons of our methods with kernel density estimation in a

subway scheduling domain.

6.1 Introduction

Scheduling under uncertainty is a problem with real-world applications, including

planetary rover [37] and human-robot interaction [28]. The Simple Temporal Problem

with Uncertainty (STNU) framework [55] has been a particularly successful formal-

ism for scheduling given set-bounds for uncertain durations, with recent algorithmic

breakthroughs providing efficient scheduling algorithms [39, 43]. However, sometimes

it is impossible to cover the entire range of possible outcomes for uncontrollable

durations, either due to possibly unbounded uncertainty, or due to tight timing re-

quirements. In such cases, a chance-constrained approach may be adopted, in which

scheduling only accounts for some range of outcomes covering a required probability

mass [16, 60].

Existing chance-constrained approaches typically rely on reasonable probability

distributions to represent uncertainty. When distributions are fitted from historical

data, for example with kernel density estimation (KDE), there are concerns with

over-fitting. When such models are used in chance-constrained programming, the

resulting decisions may not provide correct probabilistic guarantees due to incorrect

assessments of the likelihood of outcomes. Inaccuracies in distributions thus invalidate

the key feature of chance-constrained programming, the ability to provide guarantees

on succcess.

In this chapter, we concentrate on providing accurate models for chance-constrained

scheduling. Instead of relying on distributions fitted from data, we propose using

bounded sets which cover required probability of outcomes, with probabilistic guar-

antees on the correctness of the bounds given to variances in sampling. The resulting

bounded sets are exactly those used in the STNU literature, allowing us to provide

chance-constrained schedules while leveraging efficient STNU algorithms. In this

78

d11 a12
T1 [0,∞]

d12 a13
T3 [0,∞]

d13

d20 a21
T0 [0,∞]

d21 a22
T2 [0,∞]

d22 a23
T4

[0,h1] [0,h2] [0,h3]

Figure 6-1: Subway scheduling example.

chapter, we present two such methods for constructing the models, one estimating

bounds on the true distribution and one estimating bounds for a finite number of

future executions. We present theoretical proofs of correctness, as well as empirical

comparison of the correctness of the new methods with KDE, using a set of subway

traversal data. We also compare the conservatism incurred by adopting such methods

through a subway scheduling problem.

6.2 Problem formulation

We begin by offering a motivating example of a chance-constrained problem, in which

we are not given distributional representations of uncertainty. The example serves

to illustrate the key insight in our proposed approach. We do not need to reason

over the actual distribution to guarantee the probability of success - we only need

to extract upper and lower bounds on the possible outcomes. In doing so, we are

estimating nonparametric statistics, and can provide further probabilistic guarantees

on the correctness of the upper and lower bounds.

Example 5. Consider an example problem as in Figure 6-1, in which trains on the

Boston subway system must be scheduled. There are two consecutive trains, and we

would like to find the departure times of trains to minimise the headway between the

trains, such that the delay between the departure of the first train and the arrival of

the second is small.

The events 𝑑11, 𝑑12, and 𝑑13 represent the departure times of the first train from

the stations Central, Kendall and MGH respectively, while 𝑑20, 𝑑21, and 𝑑22 represent

79

the departure times of the second train from Harvard, Central, and Kendall. The

arrival times for the first train, 𝑎12 and 𝑎13 at Kendall and MGH, as well as the

arrival times for the second train, 𝑎21, 𝑎22 and 𝑎23 at Central, Kendall and MGH, are

uncontrollable and dependent on varying conditions. There are five traversals which

take an uncertain amount of time: 𝑇0 the traversal from Harvard to Central, 𝑇1 and

𝑇2 traversals between Central and Kendall, and 𝑇3 and 𝑇4 traversals between Kendall

and MGH. While we are not given the probability distributions for the duration of

each traversal, we have access to historical data[36]. A common metric of the quality

of a timetable is the headway, or the time between the departure of one train and the

arrival of the next, and is represented by the upper-bound variables ℎ1, ℎ2, ℎ3. The

total headway is represented by the sum ℎ1 + ℎ2 + ℎ3, the objective function to be

minimized.

This problem is an example of a chance-constrained probabilistic simple temporal

problem (cc-pSTP) [16], although the traversal distributions are unknown. Given the

available data, one solution is to directly fit a distribution, for example using KDE.

However, there are two complications: 1) we do not know the shape of the underlying

distribution; and 2) given that there is only a finite number of samples, the data may

not be representative of the actual distribution.

Note that in practice, for chance-constrained scheduling with cc-pSTPs, we only

use the distributions for uncertain durations to generate bounded representation of

uncertainty. The problem is usually solved by constructing bounded sets of outcomes

for uncertain durations, and appealing to results for simple temporal problems with

uncertainty (STNUs).

The STNU formalism uses a set-bounded representation of uncertainty for uncon-

trollable durations [55], referred to in the STNU literature as contingent constraints.

The standard solution method for cc-pSTPs construct contingent constraints which

cover a required probability of outcomes. This construction generates STNUs candi-

dates, which are checked for the existence of static and dynamic execution policies

which satisfy any combination of outcomes for the contingent constraints [40, 39, 43].

For example, we may wish to plan using an upper bound on the traversal duration

80

5%
Quantile

95%
Quantile

>90% probability

Figure 6-2: Probabilistic guarantee from bounds on quantiles.

from Harvard to Central such that 99% of future traversals will be shorter. Training

using standard Gaussian KDE as implemented in Scipy [26] on 8000 observations of

the traversal time from Harvard to Central, and testing against 40000 observations,

we found that the returned upper-bounds are underestimates in 2220 out of 5000

trials. Over 40% of time, the upper-bounds from KDE would be incorrect, and we

may return plans which do not provide the required probabilistic guarantee.

This motivates an alternative approach when we are not given the true distribu-

tions, but we are only given sampled data. Instead of constructing a distribution,

we can directly construct from sampled data upper and lower bounds for uncertain

durations which cover the required probability mass. We should also provide guaran-

tees on the probability of the upper and lower bounds covering less probability mass

than is required. An example is given in Figure 6-2, in which with 99% confidence

the 5% quantile traversal is greater than 30 seconds and the 95% quantile is less than

180 seconds. Then, with 99% confidence the traversal takes between 30 seconds to

180 seconds with probability at least 90%. Our problem of finding a set-bounded

representation of uncertainty is thus formally defined as follows.

Problem 4 (Chance-constrained bounded sets with confidence guarantees). Let <

Ω,ℱ ,P > be a probability space and 𝑋 : Ω → R a random variable, with cumulative

distribution function 𝐹 .

Let 𝑏𝑙𝜖 be the lower 𝜖-quantile of 𝑋, where 𝐹 (𝑏𝑙𝜖) = 𝜖. Given 𝜖, for confidence

81

1− 𝛼, 𝛼 ∈ [0, 1], we must find lower bound 𝑙𝜖 such that

𝑃 (𝑙𝜖 > 𝑏𝑙𝜖) ≤ 𝛼 (6.1)

Similarly, let 𝑏𝑢𝜖 be the upper 𝜖-quantile of 𝑋 such that 𝐹 (𝑏𝑢𝜖) = 1−𝜖, for 𝜖 ∈ [0, 1].

For confidence 1− 𝛼, 𝛼 ∈ [0, 1], we must find upper bound 𝑢𝜖 such that

𝑃 (𝑢𝜖 < 𝑏𝑢𝜖) ≤ 𝛼 (6.2)

Recall that we need lower- and upper-bounds so that the probability mass outside

the bounds is limited. Specifically for lower-bounds, we wish to find 𝑙𝜖 ∈ R and

associated 𝜖 such that 𝑃 (𝑋 ≤ 𝑙𝜖) ≤ 𝜖. Similarly for upper-bounds, we wish to find

𝑢𝜖 ∈ R and associated 𝜖 such that 𝑃 (𝑋 ≥ 𝑢𝜖) ≤ 𝜖.

An equivalent statement would be that we wish to find 𝑙𝜖 ≤ 𝑏𝑙𝜖 and 𝑢𝜖 ≥ 𝑏𝑢𝜖

for different combinations of 𝜖. While the tightest bounds would be the quantiles

themselves, these are not known. The key idea is to instead choose 𝑙𝜖 and 𝑢𝜖 from

the sample points.

In the presence of variations in sampling, we need a further probabilistic guarantee

on the correctness of these bounds. This gives us a way of being robust to sampling:

we can require the probability of underestimating or over estimating 𝜖-bounds to be

less than some small 𝛼 ∈ [0, 1].

We note that the solution to the above problem will find lower and upper bounds

on the actual underlying distribution. However, the empirical success rate is evaluated

on a finite number of future observations from the underlying distribution. The

empirical proportion of successes is thus also subject to variations in sampling. For

chance-constrained problems in which we are tasked with providing guarantees on

rate of success for a finite number of future executions, we have the finite sample

version of the problem as follows.

Problem 5 (Chance-constrained bounded sets for finite executions with confidence

guarantees). Let < Ω,ℱ ,P > be a probability space and 𝑋 : Ω → R a random

82

variable. Suppose that we will also draw a set of 𝑀 future samples of 𝑋, with ordered

set 𝒟′ = {𝑑′1, 𝑑′2, ..., 𝑑′𝑀}, where 𝑑′𝑖 ≤ 𝑑′𝑗 for 𝑖 < 𝑗.

Given 𝑚 ∈ {1, ...,𝑀}, for confidence 1− 𝛼, 𝛼 ∈ [0, 1], we must find lower bound

𝑙′𝑚 such that

𝑃 (𝑙′𝑚 > 𝑑′𝑚) ≤ 𝛼 (6.3)

Similarly, for confidence 1−𝛼, 𝛼 ∈ [0, 1], we must find upper bound 𝑢′
𝑚 such that

𝑃 (𝑢′
𝑚 < 𝑑′𝑀−𝑚) ≤ 𝛼 (6.4)

In the following section we describe how to construct lower and upper bounds

with the confidence guarantees from past samples.

6.3 Data-driven chance-constrained uncertainty sets

We propose to construct the uncertainty bounds as defined in Problems 4 and 5

by picking out promising observed samples. Given an ordered set of samples from

the underlying distribution, we can derive the likelihood of the 𝑛th sample being

underestimates or overestimates for quantiles of the underlying distribution using

results from order statistics. Similarly, we can derive the probability of the 𝑛th

observed sample being less than or greater than the𝑚th future sample using counting.

In subsequent discussion in this section, assume that we have 𝒟 = {𝑑1, 𝑑2, ..., 𝑑𝑁},

a set of ordered samples of 𝑋.

6.3.1 Bounds on underlying distribution

We begin with results for uncertainty bounds for the underlying distribution, before

considering the finite case.

Theorem 4. For 𝑛th ordered sample 𝑑𝑛 out of 𝑁 samples sorted in ascending order:

∙ 𝑃 (𝑑𝑛 ≤ 𝑏𝑢𝜖) =
∑︀𝑁

𝑖=𝑛

(︀
𝑁
𝑖

)︀
[1− 𝜖]𝑖[𝜖]𝑁−𝑖

83

∙ 𝑃 (𝑑𝑛 ≥ 𝑏𝑙𝜖) =
∑︀𝑁

𝑖=𝑁−𝑛+1

(︀
𝑁
𝑖

)︀
[1− 𝜖]𝑖[𝜖]𝑁−𝑖

where 𝐵(*; 𝑎, 𝑏) is the cumulative density for the 𝐵𝑒𝑡𝑎(𝑎, 𝑏) distribution.

Proof. From order statistics, for finite 𝑥 and the 𝑛-th ordered sample 𝑑𝑛:

𝑃 (𝑑𝑛 ≤ 𝑥) =
𝑁∑︁
𝑖=𝑛

(︂
𝑁

𝑖

)︂
[𝐹 (𝑥)]𝑖[1− 𝐹 (𝑥)]𝑁−𝑖

Substituting 𝐹 (𝑥) = 𝜖, we have:

𝑃 (𝑑𝑛 ≤ 𝑏𝑢𝜖) =
𝑁∑︁
𝑖=𝑛

(︂
𝑁

𝑖

)︂
[1− 𝜖]𝑖[𝜖]𝑁−𝑖

𝑃 (𝑑𝑛 ≥ 𝑏𝑙𝜖) =
𝑁∑︁

𝑖=𝑁−𝑛+1

(︂
𝑁

𝑖

)︂
[1− 𝜖]𝑖[𝜖]𝑁−𝑖

as required

The above results give us an easy way of constructing lower and upper bounds

given 𝜖 and 𝛼. We may simply iterate through the list of ordered samples until we

find the appropriate 𝑛. In the case of samples of continuous random variables, we

may do so using bisection search. In the case of samples which are discrete, with

multiple samples taking on the same value, we may use the following procedure.

Note that the above procedure can be used for both lower and upper bounds. For

lower bounds, the samples should be sorted in ascending order. Conversely, for upper

bounds, the samples should be sorted in descending order.

6.3.2 Bounds for finite executions

The previous result allows us to find bounds for the underlying distribution. However,

as previously noted, the above result is inappropriate for finite future executions.

Intuitively, the above result only accounts for variance in the historical data. It does

84

Data: 𝜖, 𝛼 ∈ [0, 1], sorted samples 𝒟
Result: 𝑏𝜖

1 𝑑𝑝𝑟𝑒𝑣 ← 𝑑1, 𝑛← 1;
2 while 𝑛 < 𝑁 do

3 while 𝑑𝑝𝑟𝑒𝑣 = 𝑑𝑛 do

4 𝑛← 𝑛+ 1
5 end

6 if 𝐵(1− 𝜖, 𝑛,𝑁 − 𝑛+ 1) > 𝛼 then

7 break

8 end

9 𝑑𝑝𝑟𝑒𝑣 ← 𝑑𝑛
10 end

11 𝑏𝜖 ← 𝑑𝑝𝑟𝑒𝑣
Algorithm 7: Finding 𝜖-bound of distribution with confidence 1− 𝛼

not account for outliers which may be observed during a finite number of actual

executions. For finite future executions, we have the result as follows.

Theorem 5. For 𝑛th sample 𝑑𝑛 out of 𝑁 previous samples in ascending order, it is

larger than 𝑚th out of 𝑀 future observations with probability

(︂
𝑀

𝑚

)︂ 𝑛−1∑︁
𝑘=0

(︂
𝑁

𝑘

)︂(︂
𝑁 + 𝑀

𝑚 + 𝑘

)︂−1
𝑚

𝑚 + 𝑘

Proof. Suppose the future observations were also sorted in ascending order, and given

as 𝒟′ = {𝑑′1, 𝑑′2, ..., 𝑑′𝑀}. The above probability is equivalent to 𝑃 (𝑑𝑛 > 𝑑′𝑚).

Note that 𝑑𝑛 > 𝑑′𝑚 is equivalent to 𝑑′𝑚 being greater than up to 𝑛 − 1 elements

from the set 𝒟. Summing up the probability over the disjoint scenarios, we have:

𝑃 (𝑑𝑛 > 𝑑′𝑚) =
𝑛−1∑︁
𝑘=0

𝑃 (𝑑′𝑚 larger than only 𝑘 samples)

Consider when 𝑑′𝑚 is larger than only 𝑘 samples. This is the same as arranging a

combined set of 𝒟
⋃︀
𝒟′, so that the 𝑚+ 𝑘th element is in the set 𝒟′. The first 𝑚+ 𝑘

elements consist of𝑚 from the set of future observations, 𝑘 from the past samples, and

the 𝑚 + 𝑘th element must be from the future observations. The remaining elements

from the combined set can be arranged in any order.

There are
(︀
𝑀
𝑚

)︀
ways of choosing 𝑚 of the future observations, and

(︀
𝑁
𝑘

)︀
of choosing

85

𝑘 of the previous samples. From the set of 𝑚 future observations, there are 𝑚 ways

of choosing an element for the 𝑚 + 𝑘th element of the combined set. There are

(𝑚 + 𝑘 − 1)! ways of arranging the first 𝑚 + 𝑘 − 1 element, and (𝑀 + 𝑁 −𝑚 − 𝑘)!

ways of arranging the remaining elements. This must be normalised over a total of

(𝑁 + 𝑀)! ways of arranging all the elements.

Combining the above, we have

𝑃 (𝑑𝑛 > 𝑑′𝑚)

=
𝑛−1∑︁
𝑘=0

(︂
𝑀

𝑚

)︂(︂
𝑁

𝑘

)︂
(𝑚 + 𝑘 − 1)!𝑚(𝑀 + 𝑁 −𝑚− 𝑘)!

(𝑁 + 𝑀)!

=

(︂
𝑀

𝑚

)︂ 𝑛−1∑︁
𝑘=0

(︂
𝑁

𝑘

)︂(︂
𝑁 + 𝑀

𝑚 + 𝑘

)︂−1
𝑚

𝑚 + 𝑘

as required.

A direct application of the above result allows us to construct a lower bound for

finite execution, as required in Problem 5. Note that a similar argument based on

counting can be made to derive the result for the finite execution upper bound.

Theorem 6. For 𝑛th sample 𝑑𝑛 out of 𝑁 previous samples in descending order, it is

smaller than 𝑚th out of 𝑀 future observations with probability

(︂
𝑀

𝑚

)︂ 𝑛−1∑︁
𝑘=0

(︂
𝑁

𝑘

)︂(︂
𝑁 + 𝑀

𝑚 + 𝑘

)︂−1
𝑚

𝑚 + 𝑘

The proof is the similar to that for the lower bound, substituting descending order

for ascending order in the original proof.

Using the above results, we may construct lower and upper bounds to provide

guarantees for a finite number of future executions. Similar to bound estimate for

distributions, for continuous samples we would use bisection search. For discrete

samples, we have the following procedure.

Again, the lower bound can be found with input samples sorted in ascending order,

and the upper bound can be found with input samples sorted in descending order.

86

Data: 𝑚,𝑀,𝛼 ∈ [0, 1], sorted samples 𝒟
Result: 𝑏𝜖

1 𝑑𝑝𝑟𝑒𝑣 ← 𝑑1, 𝑛← 0;

2 𝛼′, 𝑎←
(︀
𝑀
𝑚

)︀(︀
𝑁
𝑛

)︀(︀
𝑁+𝑀
𝑚+𝑛

)︀−1
(𝑚
𝑚+𝑛), ;

3 while 𝑛 < 𝑁 do

4 𝑛← 𝑛+ 1;

5 𝑎← 𝑎(𝑁−𝑛+1
𝑛)(𝑚+𝑛−1

𝑀+𝑁−𝑚−𝑛+1);

6 𝛼′ ← 𝛼′ + 𝑎;
7 if 𝑑𝑝𝑟𝑒𝑣 ̸= 𝑑𝑛 then

8 if 𝛼′ > 𝛼 then

9 break

10 end

11 𝑑𝑝𝑟𝑒𝑣 ← 𝑑𝑛
12 end

13 end

14 𝑏𝜖 ← 𝑑𝑝𝑟𝑒𝑣
Algorithm 8: Finding bound for 𝑚 of 𝑀 future observations with confidence 1−𝛼

6.4 Experiments

The results in the previous section provide theoretical justification for our methods for

constructing chance-constrained bounds with confidence. In this section, we present

empirical validation of the correctness of the constructed bounds, with comparisons

to bounds derived from KDE, using traversal data from the Red Line in the MBTA

subway system.

In the first subsection, we examine the correctness of bounds for a number of

different traversals, with varying 𝜖 bounds and 1− 𝛼 confidences.

In the second subsection, we return to the motivating example, and perform em-

pirical comparisons for the correctness of schedules resulting from bounds on distri-

bution, bounds for finite execution, and KDE. We also present empirical results on

the conservatism in terms of differences in headway.

6.4.1 Correctness of estimates

In this section, we provide an empirical comparison of the correctness of bounds de-

rived on the underlying distribution, bounds for finite execution, and bounds derived

from KDE.

87

We conducted the experiment for five sets of traversal data. In each set, we

wanted to find upper bounds on traversal time, varying 𝜖 and 𝛼 parameters. For each

set of traversal data, and with each combination of parameters, we randomly chose

8000 data points as training samples, derived bounds using the varying methods, and

found the proportion of traversals which took longer than the derived bounds from a

random set of 40000 other data points. For each data set and each combination of

parameters, the process was repeated 5000 times.

The results are summarised in Table 6.1 and Table 6.2. Each entry has two

numbers. The first number is the average proportion of traversals which was longer

than the derived upper bounds. This gives an idea of how closely the bounds matched

the desired probability covered, as specified by the 𝜖 parameter. The second number

is the proportion of bounds which were incorrect - that is, for a bound 𝑢 derived with

a given 𝜖, the proportion of traversals in the test set greater than 𝑢 was greater than

𝜖. This gives an idea of how frequently the chance constraint was incorrect due to

variances in sampling, and should be compared with the corresponding 𝛼 parameter.

The results confirm that, in a large number of instances, the bounds derived from

KDE are incorrect. On average the KDE bounds are correct with respect to the

probability covered as specified with the 𝜖 parameters. However, for a number of

datasets and for a number of choices of 𝜖, a significant proportion of the time the

derived bounds are incorrect. For example, if we asked for an upper bound such that

only 1% of future traversals were longer, KDE is wrong for traversals 70063-70065,

70069-70071, and 70071-70073 over 40% of the time.

This is contrasted with the performance of the data-driven methods with confi-

dence guarantees. For bounds on underlying distribution and bounds for finite exe-

cution, we see that the averages are correct with respect to the probability covered

as specified with the 𝜖 parameters.

The main difference between the two data-driven chance-constrained methods is in

the correctness of the confidence guarantees. For example, for the 1% upper bound on

the 70063-70065 and 70069-70071 traversals, the proportions of distribution bounds

which were incorrect were significantly higher than that allowed by the 𝛼 parameter.

88

In contrast, by explicitly accounting for variance in future observations as well as

sampling, the proportion of bounds for finite execution which were incorrect were

close to that allowed with the 𝛼 parameter.

Of particular interest is the fact that, for some traversals, KDE was also sig-

nificantly more conservative than the new data-driven methods. For example, for

traversal 70069-70071, when we asked for 𝑢 such that up to 10% of future traversals

would take longer, the average proportion of test traversals which were longer than

those found by KDE was 6.92%. This contrasts with the confidence based methods,

which returned averages greater than 8.5%. In this case, there is a good chance KDE

would overestimate the required traversal time, possibly leading to worse utility.

6.4.2 Effect on STNU scheduling

In this section, we return to the motivating scenario in Example 5. We would like to

schedule departures time for two consecutive trains. In addition to the constraints pre-

viously outlined, we impose the chance constraint that the probability of the schedule

being infeasible is less than 10%. As we are constructing the schedule based on real

world data, we also want a 90% confidence in the correctness of the chance-constraint.

For simplicity, we assume the the random variables describing the traversal times

are independent. Distributing the risk evenly, and noting that we have 5 instances

of uncertain traversal durations, we find that we must find upper bounds for each

traversal with 𝜖 = 1− .91/5.

In guaranteeing a 90% confidence in the correctness of the chance-constraint, we

divide the risk evenly between the correctness of the 𝜖 upper bounds for the three

uncertain traveral durations. Thus, we have 𝛼 = 1− .91/3 for each traversal.

The traversal T0 from Harvard to Central corresponds to the dataset 70067-70069.

The traversals T1 and T2 from Central to Kendall corresponds to the dataset 70069-

70071. The traversals T3 and T4 from Kendall to MGH corresponds to the dataset

70071-70073.

For each traversal, we found upper bounds using the 𝜖 and 𝛼 parameters above.

This gave us set-bounded uncertainty for traversal durations, and thus allowed a

89

KDE
Distribution Finite execution

𝛼 =
0.001

𝛼 =
0.01

𝛼 =
0.05

𝛼 =
0.001

𝛼 =
0.01

𝛼 =
0.05

70063-70065

𝜖 = 0.01 9.76e-

03;

4.52e-

01

6.72e-

03;

1.60e-

03

7.44e-

03;

1.80e-

02

8.21e-

03;

5.08e-

02

6.46e-

03;

1.00e-

03

7.19e-

03;

9.00e-

03

7.96e-

03;

4.52e-

02

𝜖 = 0.05 3.35e-

02;

0.00e+00

3.95e-

02;

0.00e+00

4.15e-

02;

0.00e+00

4.27e-

02;

3.40e-

03

3.87e-

02;

0.00e+00

4.09e-

02;

0.00e+00

4.25e-

02;

2.00e-

03

𝜖 = 0.1 5.02e-

02;

0.00e+00

7.59e-

02;

0.00e+00

8.38e-

02;

0.00e+00

8.85e-

02;

0.00e+00

7.35e-

02;

0.00e+00

8.15e-

02;

0.00e+00

8.77e-

02;

0.00e+00

70065-70067

𝜖 = 0.01 9.72e-

03;

3.98e-

01

6.82e-

03;

1.40e-

03

7.54e-

03;

1.54e-

02

8.31e-

03;

6.78e-

02

6.57e-

03;

8.00e-

04

7.30e-

03;

6.20e-

03

8.07e-

03;

4.06e-

02

𝜖 = 0.05 4.79e-

02;

1.50e-

01

4.20e-

02;

4.00e-

04

4.37e-

02;

9.00e-

03

4.53e-

02;

5.58e-

02

4.14e-

02;

0.00e+00

4.32e-

02;

4.80e-

03

4.49e-

02;

3.86e-

02

𝜖 = 0.1 9.61e-

02;

7.54e-

02

8.79e-

02;

2.20e-

03

9.04e-

02;

1.72e-

02

9.25e-

02;

2.34e-

02

8.70e-

02;

4.00e-

04

8.96e-

02;

8.00e-

03

9.21e-

02;

2.34e-

02

70067-70069

𝜖 = 0.01 9.74e-

03;

4.42e-

01

6.81e-

03;

1.80e-

03

7.53e-

03;

1.48e-

02

8.31e-

03;

5.14e-

02

6.56e-

03;

1.60e-

03

7.29e-

03;

7.40e-

03

8.06e-

03;

4.02e-

02

𝜖 = 0.05 4.16e-

02;

0.00e+00

4.11e-

02;

0.00e+00

4.28e-

02;

0.00e+00

4.43e-

02;

7.00e-

03

4.05e-

02;

0.00e+00

4.23e-

02;

0.00e+00

4.40e-

02;

4.60e-

03

𝜖 = 0.1 6.97e-

02;

0.00e+00

8.25e-

02;

0.00e+00

8.31e-

02;

0.00e+00

8.53e-

02;

0.00e+00

8.24e-

02;

0.00e+00

8.28e-

02;

0.00e+00

8.47e-

02;

0.00e+00

Table 6.1: Table of empirical results for different traversal datasets. For each entry,
the first number is the average number empirical proportion of traversals larger than
the bound which should be smaller than the specified 𝜖, and the second number is the
empirical proportion of incorrect bounds which should be smaller than the specified
𝛼. The datasets cover the segments: 70063-70065 from Davis to Porter; 70065-70067
from Porter to Harvard; and 70067-70069 from Harvard to Central.

90

KDE
Distribution Finite execution

𝛼 =
0.001

𝛼 =
0.01

𝛼 =
0.05

𝛼 =
0.001

𝛼 =
0.01

𝛼 =
0.05

70069-70071

𝜖 = 0.01 9.92e-

03;

4.52e-

01

6.86e-

03;

1.40e-

03

7.58e-

03;

1.58e-

02

8.35e-

03;

7.72e-

02

6.61e-

03;

1.00e-

03

7.33e-

03;

9.00e-

03

8.09e-

03;

4.88e-

02

𝜖 = 0.05 4.53e-

02;

1.14e-

02

4.23e-

02;

2.00e-

03

4.40e-

02;

7.00e-

03

4.56e-

02;

1.36e-

02

4.17e-

02;

1.00e-

03

4.35e-

02;

7.00e-

03

4.52e-

02;

1.14e-

02

𝜖 = 0.1 6.92e-

02;

0.00e+00

8.71e-

02;

0.00e+00

8.96e-

02;

0.00e+00

9.16e-

02;

4.00e-

04

8.63e-

02;

0.00e+00

8.89e-

02;

0.00e+00

9.11e-

02;

0.00e+00

70071-70073

𝜖 = 0.01 9.82e-

03;

4.42e-

01

6.81e-

03;

2.20e-

03

7.56e-

03;

1.56e-

02

8.31e-

03;

7.48e-

02

6.56e-

03;

8.00e-

04

7.31e-

03;

9.00e-

03

8.06e-

03;

4.84e-

02

𝜖 = 0.05 4.93e-

02;

4.15e-

01

4.24e-

02;

1.20e-

03

4.42e-

02;

9.80e-

03

4.58e-

02;

6.50e-

02

4.18e-

02;

6.00e-

04

4.37e-

02;

5.40e-

03

4.54e-

02;

4.78e-

02

𝜖 = 0.1 9.89e-

02;

3.38e-

01

8.91e-

02;

2.20e-

03

9.17e-

02;

7.60e-

03

9.39e-

02;

5.22e-

02

8.82e-

02;

8.00e-

04

9.09e-

02;

3.40e-

03

9.34e-

02;

3.60e-

02

Table 6.2: Table of empirical results for traversal datasets. MBTA Redline segments:
70069-70071 from Central to Kendall; and 70071-70073 from Kendall to MGH.

91

Average Headway
(seconds)

Average # of Fail-
ures

of High Failure
Schedules

KDE 611.465 980.530 343
Distribution 641.331 867.666 5
Finite execution 654.171 821.804 0

Table 6.3: Performance of Example 5 schedules optimised with upper bounds on
traversal derived with different methods. High failure schedules are those which
empirically fail more than 10% of the time, and thus do not meet the required risk
bound.

STNU description of the problem. Finding a static schedule is an instance of a strong

controllability problem for STNUs. Taking inspiration from [16], we encoded the

linear constraints ensuring strong controllability, and optimised the linear function for

headway using the standard linear solver in [26]. Each resulting schedule was then

tested against 10000 combinations of outcomes for the traversals. This procedure

was repeated 1000 times, and we gathered statistic on the resulting headway and the

empirical rate of schedule failure. This information is summarised in Table 6.3.

In all cases, the average number of failure for each schedule was lower than that

allowed. However, the number of high failure schedules, schedule which had higher

than 10% probability of failure, was 34.3% for schedules optimised using bounds from

KDE. This contrasts with the negligible number of high failure schedules optimised

with the proposed bounds. We may also note that, in this case, the cost of hav-

ing probabilistic guarantees on the chance-constraint is very small in terms of the

differences in headway - under a minute when compared to KDE.

6.5 Summary

Chance-constrained scheduling relies on accurate descriptions of uncertainty in pro-

viding probabilistic guarantees. When the underlying distributions are not known and

only data sets of past samples are available, simply fitting distributions to the data

sets do not provide accurate descriptions. As scheduling under uncertainty is typi-

cally a model-based approach, the correctness of the probabilistic guarantees depend

on the correctness of the model.

92

In this chapter, we focused on constructing models from data for use in scheduling

under uncertainty. We have motivated an alternative representation of uncertainty,

using bounded sets which cover a required probability mass, allowing us to leverage

STNU algorithms while guaranteeing probability of success. We have also shown

how to construct such sets, either as bounds for the underlying distribution, or as

bounds for a finite number of future outcomes, with quantitative confidence on the

correctness of the bounds in each case.

The correctness of these theoretical results were empirically validated with exten-

sive testing. We have shown the inadequacies of distribution fitting with standard

KDEs, and the correctness of the two proposed methods. We have further demon-

strated, in a motivating scenario, that the use of the proposed bounded sets with

correctness guarantees do not lead to schedules with drastically lower utility.

There are several avenues for future work. The first is to extend this work into a

risk-allocation scheme, in which we allow different risks to be prescribed to different

random variables within the same problem. The approaches proposed in this chapter

also only provide bounds on marginal distributions. Providing analogous bounds for

joint distributions is thus an open problem. Lastly, while this chapter has demon-

strated the correctness of the uncertainty sets in a strong controllability setting, the

resulting uncertainty sets are equally applicable for STNU dynamic controllability.

Further work will concentrate on leveraging recent advances in dynamic controllabil-

ity for correct chance-constrained dynamic execution.

93

94

Chapter 7

Conclusion

As robotics and artificial intelligence advances, we must address difficulties in learning

to trust autonomous decision making. One approach is to provide plans which are

robust to uncertainty, with correct quantifiable estimates of the risk involved.

The chance-constrained mixed logical-linear program is a problem formulation

which allows us to describe many real world problems, including cyber security and

autonomous exploration. However, the problem is difficult to solve, due to the com-

binatorics introduced by the logical constraints, and because the continuous portion

of the problem is nonlinear.

To address the difficulties in solving CC-MLLPs, I have proposed a decomposition

framework in Chapter 3, combining a discrete search for assigning logical variables,

and a dedicated solver for the chance-constrained linear programs which feature as

the continuous subproblems.

In Chapter 4, I provided a method of solving CC-LPs which quickly determines

feasibility, and can be combined with off-the-shelf solvers to quickly return optimal

solutions. The method relies on successive linear approximations of the chance con-

straint using cutting planes.

The linear approximations are further exploited in Chapter 5, in which I expand

on the conflict extraction necessary to the decomposition algorithm. By identifying

linear constraints preventing feasible solutions or higher quality solutions, we are able

to trace back and find the logical conditions which lead to the conflicting linear con-

95

straints. These are explicitly avoided in the subsequent search, to avoid unpromising

portions of the search space.

In Chapter 6, I consider the case when the distributions for uncertainty are un-

known, and we must make chance constrained decisions using only data. Focusing

on the case of scheduling, I derive uncertainty bounds which cover the required prob-

ability mass with quantifiable amounts of confidence. In addition to estimating the

appropriate bounds for the true distribution, I consider the real world application

in which each uncertain variable is observed a finite number of times. The resulting

bounds meet empirical service quality guarantees over a finite number of executions.

7.1 Future Work

There are three main potential avenues of future work. The most immediate is a

closer unification of the data-driven uncertainty representation with the CC-MLLP

framework. Separately, while the treatment of chance constraints in this thesis has

concentrated on a risk allocation approach, methods should be developed for CC-

MLLPs with exact probabilities of success given continuous random variables. Fur-

ther, while the present work concentrates on continuous random variables only, incor-

porating methods from stochastic constraint programming will allow the introduction

of stochasticity in the logical variables.

In this thesis, I have concentrated separately on solution methods for CC-MLLPs

given known distributions, and extracting uncertainty representation from data. How-

ever, these two thrusts could be more closely interwoven. The uncertainty represen-

tation derived can be thought of as random variables with discrete domains. If the

representations are directly deployed in CC-MLLPs, the cutting planes techniques

developed for CC-LPs will not be applicable. This is because the cutting planes re-

quire the evaluation of the probability density functions. This is an important and

technically interesting challenge.

This thesis has also concentrated on solving CC-MLLPs with the risk allocation

approximation. However, in the chance-constrained optimisation community, recent

96

efforts have considered exact evaluations of the probability of success using the method

of moments [25, 59]. Just as this thesis builds off prior work in risk allocation for

CC-LPs, analogous approaches using exact risk for CC-LPs may also be deployed.

This has two advantages. The first is that the risk allocation approach is conser-

vative, and better solutions may be found with the method of moments approach.

The second is that the method of moments allows chance constraints to be specified

over nonlinear constraints as well. A method of moments approach may then allow a

generalisation to chance-constrained mixed logical nonlinear programs. The key tech-

nical challenge would be to identify the corresponding conflict extraction techniques,

given the different subsolver.

Finally, there has been significant efforts in the constraint programming commu-

nity dedicated to stochastic constraint programming [58, 53]. As previously noted,

this has resulted in insights into handling discrete stochasticity. This would be useful

to a CC-MLLP framework in which the agent must deal with unknown operation

scenarios. The expertise in dealing with discrete random variables may also help

in unifying the data-driven uncertainty representation with the current conflict ex-

traction framework. Lasting, while the current thesis has dealt with CC-MLLPs in

an open-loop manner, the stochastic constraint programming work have dealt with

policies responding to observations of random variables. Incorporating these insights

would allow use to develop a reactive approach to CC-MLLPs.

97

Bibliography

[1] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for
model selection. Statistics surveys, 4:40–79, 2010.

[2] Jacques F Benders. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische mathematik, 4(1):238–252, 1962.

[3] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and
applications of robust optimization. SIAM review, 53(3):464–501, 2011.

[4] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust opti-
mization. arXiv preprint arXiv:1401.0212, 2013.

[5] Daniel Bienstock, Michael Chertkov, and Sean Harnett. Chance-constrained
optimal power flow: Risk-aware network control under uncertainty. Siam Review,
56(3):461–495, 2014.

[6] Lars Blackmore, Hui Li, and Brian Williams. A probabilistic approach to optimal
robust path planning with obstacles. In American Control Conference, 2006,
pages 7–pp. IEEE, 2006.

[7] Lars Blackmore and Masahiro Ono. Convex chance constrained predictive control
without sampling. In AIAA Guidance, Navigation, and Control Conference, page
5876, 2009.

[8] Kyle EC Booth, Goldie Nejat, and J Christopher Beck. A constraint program-
ming approach to multi-robot task allocation and scheduling in retirement homes.
In International conference on principles and practice of constraint programming,
pages 539–555. Springer, 2016.

[9] Giuseppe Carlo Calafiore and Laurent El Ghaoui. On distributionally robust
chance-constrained linear programs. Journal of Optimization Theory and Appli-
cations, 130(1):1–22, 2006.

[10] Elsa Carvalho, Jorge Cruz, and Pedro Barahona. Probabilistic continuous con-
straint satisfaction problems. In 2008 20th IEEE International Conference on
Tools with Artificial Intelligence, volume 2, pages 155–162. IEEE, 2008.

[11] Abraham Charnes and William W Cooper. Chance-constrained programming.
Management science, 6(1):73–79, 1959.

[12] Abraham Charnes and WilliamW Cooper. Deterministic equivalents for optimiz-
ing and satisficing under chance constraints. Operations research, 11(1):18–39,
1963.

[13] Wenqing Chen, Melvyn Sim, Jie Sun, and Chung-Piaw Teo. From cvar to un-
certainty set: Implications in joint chance-constrained optimization. Operations
research, 58(2):470–485, 2010.

[14] IBM ILOG CPLEX. V12. 1: UserâĂŹs manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[15] Jack Elzinga and Thomas G Moore. A central cutting plane algorithm for the
convex programming problem. Mathematical Programming, 8(1):134–145, 1975.

[16] Cheng Fang, Peng Yu, and Brian C Williams. Chance-constrained probabilistic
simple temporal problems. 2014.

[17] Pablo Fleurquin, José J Ramasco, and Victor M Eguiluz. Systemic delay prop-
agation in the us airport network. Scientific reports, 3, 2013.

[18] Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237–260, 1972.

[19] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[20] JM Grosso, Carlos Ocampo-Martínez, Vicenç Puig, and B Joseph. Chance-
constrained model predictive control for drinking water networks. Journal of
process control, 24(5):504–516, 2014.

[21] Gurobi. Inc.,âĂĲgurobi optimizer reference manual,âĂİ 2015. URL:
http://www. gurobi. com, 2014.

[22] John N Hooker and Maria A Osorio. Mixed logical-linear programming. Discrete
Applied Mathematics, 96:395–442, 1999.

[23] John N Hooker and Greger Ottosson. Logic-based benders decomposition. Math-
ematical Programming, 96(1):33–60, 2003.

[24] Raj Jagannathan. Chance-constrained programming with joint constraints. Op-
erations Research, 22(2):358–372, 1974.

[25] AM Jasour, NS Aybat, and CM Lagoa. Semidefinite programming for chance
constrained optimization over semialgebraic sets. SIAM Journal on Optimiza-
tion, 25(3):1411–1440, 2015.

[26] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed 2017-03-06].

[27] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning
and acting in partially observable stochastic domains. Artificial intelligence,
101(1):99–134, 1998.

[28] Erez Karpas, Steven James Levine, Peng Yu, and Brian Charles Williams. Ro-
bust execution of plans for human-robot teams. In ICAPS, pages 342–346, 2015.

[29] George Katsirelos and Fahiem Bacchus. Generalized nogoods in csps. In AAAI,
volume 5, pages 390–396, 2005.

[30] James E Kelley, Jr. The cutting-plane method for solving convex programs.
Journal of the society for Industrial and Applied Mathematics, 8(4):703–712,
1960.

[31] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[32] Jean B Lasserre. Global optimization with polynomials and the problem of
moments. SIAM Journal on Optimization, 11(3):796–817, 2001.

[33] Hui Li and Brian Williams. Generalized conflict learning for hybrid dis-
crete/linear optimizationâŃĘ. In Principles and Practice of Constraint
Programming-CP 2005: 11th International Conference, CP 2005, Sitges Spain,
October 1-5, 2005, volume 3709, page 415. Springer, 2005.

[34] Xiao Liu, Simge Küçükyavuz, and James Luedtke. Decomposition algo-
rithms for two-stage chance-constrained programs. Mathematical Programming,
157(1):219–243, 2016.

[35] James Luedtke. A branch-and-cut decomposition algorithm for solving chance-
constrained mathematical programs with finite support. Mathematical Program-
ming, 146(1-2):219–244, 2014.

[36] MBTA. Online trip planning tools. http://old.mbta.com/rider_tools/

developers/default.asp?id=21895, 2017. Accessed: 2017-11-20.

[37] Catharine LR McGhan, Richard M Murray, Romain Serra, Michel D Ingham,
Masahiro Ono, Tara Estlin, and Brian C Williams. A risk-aware architecture
for resilient spacecraft operations. In Aerospace Conference, 2015 IEEE, pages
1–15. IEEE, 2015.

[38] Bruce L Miller and Harvey M Wagner. Chance constrained programming with
joint constraints. Operations Research, 13(6):930–945, 1965.

[39] Paul Morris. Dynamic controllability and dispatchability relationships. In Inter-
national Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 464–479. Springer, 2014.

[40] Paul H Morris and Nicola Muscettola. Temporal dynamic controllability revis-
ited. In AAAI, pages 1193–1198, 2005.

[41] Arkadi Nemirovski and Alexander Shapiro. Convex approximations of chance
constrained programs. SIAM Journal on Optimization, 17(4):969–996, 2006.

[42] Yu Nesterov. Complexity estimates of some cutting plane methods based on the
analytic barrier. Mathematical Programming, 69(1-3):149–176, 1995.

[43] Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental dynamic
controllability in cubic worst-case time. In Temporal Representation and Reason-
ing (TIME), 2014 21st International Symposium on, pages 17–26. IEEE, 2014.

[44] Masahiro Ono, Lars Blackmore, and Brian C Williams. Chance constrained
finite horizon optimal control with nonconvex constraints. In American Control
Conference (ACC), 2010, pages 1145–1152. IEEE, 2010.

[45] Masahiro Ono and Brian C Williams. An efficient motion planning algorithm
for stochastic dynamic systems with constraints on probability of failure. In
Proceedings of the 23rd national conference on Artificial intelligence-Volume 3,
pages 1376–1382. AAAI Press, 2008.

[46] Masahiro Ono, Brian C Williams, and Lars Blackmore. Probabilistic planning
for continuous dynamic systems under bounded risk. Journal of Artificial Intel-
ligence Research, 46:511–577, 2013.

[47] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

[48] Francesca Rossi, Peter Van Beek, and Toby Walsh. Constraint programming.
Foundations of Artificial Intelligence, 3:181–211, 2008.

[49] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, USA, 3rd edition, 2009.

[50] Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In International conference on principles and practice
of constraint programming, pages 417–431. Springer, 1998.

[51] Bernard W Silverman. Density estimation for statistics and data analysis, vol-
ume 26. CRC press, 1986.

[52] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1.

[53] S Armagan Tarim, Suresh Manandhar, and Toby Walsh. Stochastic constraint
programming: A scenario-based approach. Constraints, 11(1):53–80, 2006.

[54] Eric Timmons and Brian C Williams. Enumerating preferred solutions to condi-
tional simple temporal networks quickly using bounding conflicts. In Workshops
at the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[55] Thierry Vidal. Handling contingency in temporal constraint networks: from
consistency to controllabilities. Journal of Experimental & Theoretical Artificial
Intelligence, 11(1):23–45, 1999.

[56] Michael P Vitus and Claire J Tomlin. On feedback design and risk allocation
in chance constrained control. In Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 734–739. IEEE,
2011.

[57] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Mathe-
matical programming, 106(1):25–57, 2006.

[58] Toby Walsh. Stochastic constraint programming. In ECAI, volume 2, pages
111–115, 2002.

[59] Allen Wang, Ashkan Jasour, and Brian C Williams. Non-gaussian chance-
constrained trajectory planning for autonomous vehicles under agent uncertainty.
IEEE Robotics and Automation Letters, 5(4):6041–6048, 2020.

[60] Andrew J Wang and Brian C Williams. Chance-constrained scheduling via
conflict-directed risk allocation. 2015.

[61] Qianfan Wang, Yongpei Guan, and Jianhui Wang. A chance-constrained two-
stage stochastic program for unit commitment with uncertain wind power output.
Power Systems, IEEE Transactions on, 27(1):206–215, 2012.

[62] Brian C Williams and Robert J Ragno. Conflict-directed a* and its role in
model-based embedded systems. Discrete Applied Mathematics, 155(12):1562–
1595, 2007.

[63] Peng Yu, Cheng Fang, and Brian Williams. Resolving uncontrollable conditional
temporal problems using continuous relaxations. In Twenty-Fourth International
Conference on Automated Planning and Scheduling, 2014.

[64] Peng Yu, Cheng Fang, and Brian Williams. Resolving over-constrained proba-
bilistic temporal problems through chance constraint relaxation. 2015.

[65] Steve Zymler, Daniel Kuhn, and Berç Rustem. Distributionally robust joint
chance constraints with second-order moment information. Mathematical Pro-
gramming, 137(1-2):167–198, 2013.

